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Preface 

Live in fragments no longer. Only connect. 

Edward Morgan Forster 
Welcome to the world of operating systems. This text is intended primarily for use 
in the one-semester and two-semester operating systems courses (as defined in the 
most recent ACM/IEEE curriculum) that universities offer to juniors, seniors and 
graduate students in computer science. Operating systems designers and systems 
programmers will find the text useful as a reference as well. 

The text features extensive case studies on two of today's most important 
operating systems—Linux (94 pages) and Microsoft® Windows® XP (106 
pages) —that represent two different operating system design paradigms—free, 
open-source development and licensed, corporate development, respectively. The 
Linux case study follows the development of the kernel through version 2.6. The 
Windows XP case study highlights the internals of the current version of the most 
widely used personal computer operating system. These case studies enable you to 
compare and contrast the design and implementation philosophies used in real-
world operating systems. 

Both Linux and Windows XP are massive, complex operating systems con
taining millions of lines of source code. We survey the major components of each 
operating system. The case studies present issues in personal computer, worksta
tion, multiprocessor, distributed and embedded environments, including a 
detailed discussion on why Linux and other UNIX-like operating systems have 
become prominent in the open-source and open-systems philosophies of major 
corporations. 

This preface introduces our teaching approach in Operating Systems, 3/e and 
the book's key content and design elements. We also discuss the ancillary support 
available with the text. The section entitled "Tour of the Book" overviews the rich 
coverage of operating systems this book provides. 

Operating Systems, 3/e, was reviewed by a team of distinguished academics 
and industry professionals; their names and affiliations are listed in the Acknowl
edgements section. 



xxxviii Preface 

As you read this book, if you have any questions, please send us an e-mail at 
deitel@deitel.com; we will respond promptly. Please visit our Web site. 
www.deitel.com, regularly and sign up for the Deitel Buzz Online e-mail newslet
ter at www.deitel.com/newsletter/subscribe.html. We use the Web site and 
the newsletter to keep our readers current on all Deitel publications and services. 
The site www.deitel.com/books/os3e is dedicated to Operating Systems, 3/e. At 
that site, we will post various ancillary materials for students and instructors, includ
ing dependency charts, content updates, errata, suggested student research projects 
(term projects, directed studies and theses), sample syllabi and the bibliography of 
research materials from the prior edition of the book. Prentice Hall provides a 
Companion Website for the book at www.prenhall.com/deitel. 

Book Design 
Operating Systems, 3/e features a completely new, two-color design inspired by the 
work of Leonardo DaVinci.The two-color design is visually appealing and allows us 
to use color to improve the pedagogy of the book. For example, defining occur
rences of key terms appear in bold and color so they stand out to you. 

Operating Systems, 3/e Features 
Operating Systems, 3/e includes extensive new content. We also revised and updated 
much of the material from the second edition. The focus on current technologies 
and issues in distributed computing makes this book unique from its competition. 
Several new sections have been added to address embedded, real-time and distrib
uted systems. Some key features of this edition are: 

• Conforms to all core requirements of the ACM/IEEE CC2001 Operating 
Systems course requirements. 

• Discusses all the CC2001 elective operating systems topics except shell 
scripting. 

• Provides an updated hardware introduction that includes leading-edge 
technologies and their impact on operating systems design. 

• Presents process, thread, memory and disk management solutions that 
reflect the needs of current applications. 

• Supplements the extensive coverage of general-purpose systems with con
cepts relevant to real-time, embedded and superscalar architectures. 

• Highlights key evaluation techniques that enable effective comparative 
analyses of operating system components. 

• Includes a richer treatment of networking concepts. 

• Enhances the security treatment to include current trends in authentication 
mechanisms, security protocols, anti-virus research, access control methods 
and wireless security. 

mailto:deitel@deitel.com
www.deitel.com
http://www.deitel.com/newsletter/subscribe.html
www.deitel.com/books/os3e
www.prenhall.com/deitel


• Enhances the distributed computing coverage to acknowledge the tremen
dous influence of the Internet and the World Wide Web on computing and 
operating systems. 

• Provides details of the ubiquitous Intel architecture. 

• Provides many diagrams, tables, working code examples, pseudocode 
examples and algorithms. 

• Includes a new chapter on threads. 

• Pseudocode is presented in Java-like syntax to capitalize on C/C++/Java lit
eracy—virtually all computer-science students know one or more of these 
languages. 

• Provides multithreading treatments in both pseudocode and Java that dem
onstrate issues in concurrent programming—enabling instructors to cover 
the material the way they prefer. The Java treatment is new to this edition 
and is optional. Visit java.sun.com/j2se/downloads.html to obtain the 
latest version of Java. The download page contains a link to the installation 
instructions. 

• Enhances the multiprocessor management treatment. 

• Provides new sections on thread scheduling and real-time scheduling. 

• Includes a RAID discussion. 

• Provides a case study on UNIX processes. 

• Includes up-to-the-minute sections on memory-management and disk-
scheduling strategies. 

• Covers the important topic of I/O systems in many chapters—most notably 
Chapters 2, 12, 13 and the case study chapters (20 and 21). 

• Provides 730 self-review questions and answers (approximately two per 
section) for immediate feedback. 

• Includes extensive research with citations listed in the Works Cited section 
at the end of each chapter. 

Teaching Approach 
This book is divided into eight parts, each containing a set of related chapters. The 
parts are: 

1. Introduction to Hardware, Software and Operating Systems 

2. Processes and Threads 

3. Real and Virtual Memory 

4. Secondary Storage, Files and Databases 

5. Performance, Processors and Multiprocessor Management 

6. Networking and Distributed Computing 

Teaching Approach xxxix 

http://java.sun.com/j2se/downloads.html
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7. Security 

8. Case Studies 

The book's pedagogic features are described below. 

Quotations 
Each chapter begins with quotations—some are humorous, some are philosophical 
and some offer interesting insights. Many readers have told us that they enjoy relat
ing the quotations to the chapter material. You might appreciate some of the quota
tions more after reading the chapters. 

Next, objectives tell you what to expect and give you an opportunity, after reading 
the chapter, to determine whether you have met these objectives. 

Objectives 

The chapter outline helps you approach the material in a top-down fashion, so you 
can anticipate the concepts that will be presented in each chapter and set a comfort
able learning pace. 

Outline 

Sections and Self-Review Exercises 
Each chapter contains small sections that address important operating systems con
cepts. Most sections end with two self-review exercises and answers. These exercises 
enable you to test your knowledge, get immediate feedback and gauge your under
standing of the material. These exercises also help prepare you for the end-of-chap-
ter exercises and for quizzes and exams. Some of the self-review exercises cannot be 
answered only from the material presented in their corresponding sections; these 
are additional teaching and learning opportunities. 

Key Terms 
The defining occurrence of each term appears in bold and color. In addition, all 
chapters include a Key Terms section containing the terms defined in the chapter 
and their definitions (1800+ key terms in the text). A cumulative alphabetized glos
sary appears at the end of the book. The Key Terms sections and the Glossary are 
wonderful pedagogic devices for review and reference. 

Figures 

The text contains over 300 charts, diagrams, examples and illustrations that support 
the concepts presented in the text. 

Web Resources 
Each chapter contains Web resources that direct you to sites where you can locate 
valuable additional research materials. 
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Summary 
Detailed end-of-chapter summary sections help you review the key concepts pre-
sented in each chapter. 

Exercises, Suggested Projects and Suggested Simulations 
Each chapter includes many exercises that vary in difficulty from review of basic 
operating systems principles to complex reasoning and research projects (900+ 
exercises in the text). Many OS instructors like to assign term projects, so we have 
included Suggested Projects and Suggested Simulations sections at the end of each 
chapter's exercises. 

Recommended Readings 
Each chapter lists recommended books and articles, and provides a brief review of 
the most important sources for the chapter content so you can do additional 
research on your own. 

This book required an extraordinary research effort. The entire book is thoroughly 
cited (2300+ citations). Each citation appears as a superscript in the text and corre
sponds to an entry in the Works Cited section at the end of the chapter. Many of 
these citations are to Web sites. Prior editions of this text used only standard book 
and literature citations; those books and papers were often difficult for readers to 
locate for further research. Now you can access these citations directly via the Web. 
Also, it is easy to use search engines to locate additional articles on subjects of 
interest. Many research journals are accessible online—some are free and others 
are available through personal or organizational memberships in professional soci
eties. The Web is truly a research bonanza that leverages your learning experience. 

Works Cited 

We provide a two-level index to help you locate any term or concept quickly. For 
example, each operating system mentioned in the text appears in the index both 
alphabetically and indented under the term "Operating Systems." 

Index 

The second edition of Operating Systems included a full chapter on analytic model
ing with queuing theory and Markov processes. This edition omits that material, 
recognizing that operating systems is for the most part not a mathematical field. 
Rather it has a basis in what we call "systems thinking"—operating systems is 
largely a field of empirical results. To illuminate these issues, we have included in 
this edition four types of feature boxes, presenting material to challenge, entertain 
and enrich you. 

Feature Boxes 
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Eighteen Biographical Notes provide interesting details about people who have 
made significant contributions to the field of operating systems—Edsger Dijkstra, 
Linus Torvalds, David Cutler, Ken Thompson, Dennis Ritchie, Doug Engelbart, Tim 
Berners-Lee, Richard Stallman, Gordon Moore, Fernando J. Corbato, Leslie Lam
port, Per Brinch Hansen, Peter Denning, Seymour Cray, Bill Gates, Ronald Rivest, 
Adi Shamir and Leonard Adleman. Please do not attach any particular significance 
to our choices; these are only a few among thousands of important contributors. 
Please let us know of other people you feel deserve mention. 

Biographical Notes 

In addition to the detailed case studies on the Linux and Windows XP operating sys
tems, 14 Mini Case Studies focus on other important operating systems of historical 
research or commercial interest. These Mini Case Studies include Mach, CTSS and 
Multics, UNIX Systems, Real-Time Operating Systems, Atlas, IBM Mainframe Oper
ating Systems, Early History of the VM Operating System, MS-DOS, Supercomputers, 
Symbian OS, OpenBSD, Macintosh, User-Mode Linux (UML) and OS/2. 

Mini Case Studies 

One of the authors, HMD, accumulated many anecdotes over decades of teaching 
operating systems in academia and industry. We have included 16 of these anec
dotes. Some are humorous; others are thought provoking—raising deep philosophi
cal issues. Each is a (hopefully) pleasant diversion from the book's technical 
discussions and concludes with a Lesson to operating systems designers. 

Anecdotes 

Operating Systems Thinking 
Academics enjoy the luxury of being able to study what is interesting about operating 
systems, especially clever algorithms, data structures and occasionally, areas that lend 
themselves nicely to mathematical analysis. Industry professionals must build real 
systems that work and meet the demanding cost, performance and reliability require
ments of customers. Both kinds of thinking are rich with interesting issues. There are 
considerable overlaps as well as significant differences in what academics and indus
try professionals think about. This book aims to present a balanced treatment of both 
the academic and industry sides of operating systems theory and practice. 

What is "operating systems thinking?" Forty-three Operating Systems Think
ing features explore that question. Indeed, some aspects of operating systems lend 
themselves to sophisticated mathematical analysis. But the author's (HMD's) 
extended experience in the computer industry—42 years, including working (as a 
very junior person) on major operating systems research and development efforts 
at IBM and MIT, writing two earlier editions of this book and teaching operating 
systems in academia and industry dozens of times—has shown that these systems 
are far too complex for a significant mathematical treatment at the undergraduate 
or early graduate level. Even at the advanced graduate level, except for narrow 
areas of interest, operating systems defy mathematical analysis. 
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If there is not a mathematical basis for evaluating aspects of operating sys
tems, how can we think about them productively? The answer is what we call "sys
tems thinking," and the text certainly covers this. However, the Operating Systems 
Thinking features are our effort to capture key concepts that are prevalent in oper
ating systems design and implementation. 

The Operating Systems Thinking features are: Innovation; Relative Value of 
Human and Computer Resources; Performance; Keep It Simple (KIS); Architecture; 
Caching; Legacy Hardware and Software; Principle of Least Privilege; Protection; 
Heuristics; Customers Ultimately Want Applications; Data Structures in Operating 
Systems; Asynchronism vs. Synchronism; Concurrency; Parallelism; Standards Con
formance; Scalability; Information Hiding; Waiting, Deadlock and Indefinite Post
ponement; Overhead; Predictability; Fairness; Intensity of Resource Management vs. 
Relative Resource Value; There Are No Upper Limits to Processing Power, Memory, 
Storage and Bandwidth; Change Is the Rule Rather Than the Exception; Spatial 
Resources and Fragmentation; Visualization; Empirical Results and Locality-Based 
Heuristics; Lazy Allocation; Computer Theory in Operating Systems; Space-Time 
Trade-offs; Saturation and Bottlenecks; Compression and Decompression; Redun
dancy; Fault Tolerance; Mission-Critical Systems; Encryption and Decryption; Secu
rity; Backup and Recovery; Murphy's Law and Robust Systems; Graceful 
Degradation; Data Replication and Coherency and Ethical Systems Design 

Case Studies 
Chapters 20 and 21 cover in depth the Linux and Windows XP operating systems, 
respectively. These thorough case studies were carefully reviewed by key Linux and 
Windows XP operating systems developers. The outlines for each of these case 
studies mimic the text's table of contents. The case studies truly reinforce the text's 
key concepts—the text presents the principles; the case studies show how these 
principles are applied in building today's two most widely used operating systems. 
The Linux case study follows the development of the latest kernel release (v. 2.6) 
and contains 262 citations. The Windows XP case study reflects the latest Windows 
operating system features and contains 485 citations. 

Tour of the Book 
This section provides an overview of the eight parts and 21 chapters of Operating 
Systems, 3/e. 

Part 1—Introduction to Hardware, Software and Operating Systems— 
includes two chapters that introduce the notion of operating systems, present a his
tory of operating systems and lay the groundwork of hardware and software con
cepts the reader will use throughout the book. 

Chapter 1—Introduction to Operating Systems—defines the term "operating 
system" and explains the need for such systems. The chapter provides a historical 
perspective on operating systems, tracing their development decade by decade 
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through the second half of the 20th century. The batch-processing systems of the 
1950s are considered. We see the 1960s trend towards parallelism with the advent of 
mutiprogramming—both batch mutiprogramnming and interactive timesharing 
systems. We follow the development of key operating systems including CTSS, Mul-
tics, CP/CMS and Unix. The chapter considers the kinds of thinking that operating 
systems designers did in an era when computing resources were far more expensive 
than people resources (today the reverse is true). We follow the 1970s evolution of 
computer networking, the Internet and the TCP/IP protocol suite, and see the 
beginnings of the personal computing revolution. Personal computing matures in 
the 1980s with the release of the IBM personal computer and the Apple Macintosh, 
the latter popularizing the graphical user interface (GUI). We see the beginnings of 
distributed computing and the development of the client/server model. In the 1990s, 
Internet usage literally explodes with the availability of the World Wide Web. 
Microsoft becomes the world's dominant software maker and releases its Windows 
NT operating system (the ancestor of today's Windows XP operating system—the 
focus of Chapter 21). Object technology becomes the dominant development para
digm with languages like C++ and Java becoming popular. The rapid rise of the 
open-source-software movement leads to the phenomenal success of the Linux 
operating system—the focus of Chapter 20. We discuss how operating systems pro
vide a platform for applications development. Embedded systems are considered 
with an emphasis on how crucial it is that mission-critical and business-critical sys
tems be extraordinarily reliable. We consider the core components of operating sys
tems and key operating systems goals. (The book maintains a focus on performance 
issues in virtually every aspect of operating systems.) Operating system architec
tures are introduced, including monolithic architecture, layered architecture, micro
kernel architecture and networked and distributed operating systems. 

Chapter 2—Hardware and Software Concepts—summarizes the hardware 
and software resources operating systems manage. The chapter covers how trends 
in hardware design—most notably phenomenal increases in processing power, 
memory capacity and communications bandwidth—have affected operating system 
design and vice versa. Hardware components including mainboards, processors, 
clocks, main memory, secondary storage devices, buses, direct memory access 
(DMA), peripheral devices and more are discussed. We present recent and emerg
ing hardware technologies, and discuss hardware support for operating systems, 
including processor execution modes, privileged instructions, timers, clocks, boot
strapping and plug-and-play Performance enhancement techniques like caching 
and buffering are considered. Software concepts are examined including compiling, 
linking, loading, machine languages, assembly languages, interpreters, compilers, 
high-level languages, structured programming, object-oriented programming and 
application programming interfaces (APIs). The chapter also explains firmware and 
middleware. 

Part 2—Processes and Threads—includes six chapters that present the 
notions of processes, threads, process- and thread-state transitions, interrupts, con-
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text switching, asynchronism, mutual exclusion, monitors, deadlock and indefinite 
postponement, and processor scheduling of processes and threads. 

Chapter 3—Process Concepts—begins our discussion of operating system 
primitives by defining the fundamental notion of process. We consider the life cycle 
of a process as it transitions between process states. The representation of a process 
as a process-control block or process descriptor is discussed with an emphasis on 
the importance of data structures in operating systems. The chapter motivates the 
need for process structures in an operating system and describes operations that 
can be performed on them, such as suspend and resume. Multiprogramming consid
erations, including suspending process execution and context switching, are intro
duced. The chapter discusses interrupts—a key to the successful implementation of 
any multiprogrammed environment. We consider interrupt processing and inter
rupt classes, interprocess communication with signals and message passing. We con
clude with a case study of UNIX processes. 

Chapter 4—Thread Concepts—extends our discussion of process concepts to 
a smaller unit of concurrent program execution: the thread. The chapter defines 
what threads are and explains their relationship to processes. The life cycle of a 
thread and how threads transition among various thread states is discussed. We con
sider various threading architectural models, including user-level threads, kernel-
level threads and combining user- and kernel-level threads. The chapter presents 
thread implementation considerations, including thread signal delivery and thread 
termination. We discuss the POSIX standard and its threading specification, 
Pthreads. The chapter concludes with a presentation of the Linux, Windows XP and 
Java threading implementations. The Java presentation is accompanied by a com
plete, working Java program with sample outputs. [Note: The Java source code for all 
of the Java programs in the book is available for download at www.deitel.com/ 
books/os3e.] 

Chapter 5—Asynchronous Concurrent Execution—discusses the issues of con
currency encountered in multiprogrammed systems. The chapter introduces the prob
lem of mutual exclusion and how threads must manage access to shared resources. A 
feature of the chapter is the Java Multithreading Case Study: A Producer/Consumer 
Relationship in Java—which uses a complete, working Java program and several sam
ple outputs to clearly illustrate what happens when concurrent threads access shared 
data without synchronization. This example clearly shows that sometimes such a con
current program will work fine and sometimes it will produce erroneous results. We 
show how to solve this problem with a multithreaded Java program in Chapter 6. The 
concept of the critical section in program code is introduced. Several software mecha
nisms that protect access to critical sections are presented as solutions to the mutual 
exclusion problem; these include Dekker's Algorithm, Peterson's Algorithm and N-
thread mutual exclusion with Lamport's Bakery Algorithm. The chapter also dis
cusses hardware mechanisms that facilitate the implementation of mutual exclusion 
algorithms; these include disabling interrupts, the test-and-set instruction and the 
swap instruction. Finally, semaphores are presented as a high-level mechanism for 

http://www.deitel.com/books/os3e
http://www.deitel.com/books/os3e
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implementing mutual exclusion and thread synchronization; both binary semaphores 
and counting semaphores are considered. 

Chapter 6—Concurrent Programming—explains the notion of monitors (a 
high-level mutual exclusion construct) then proceeds to solve several classic prob
lems in concurrent programming, using first pseudocode monitors then complete 
working Java programs with sample outputs. The monitor solutions are provided in 
a C/C++/Java-like pseudocode syntax. We explain how monitors enforce informa
tion hiding and discuss how monitor condition variables differ from "conventional" 
variables. The chapter illustrates how a simple monitor may be used to control 
access to a resource that requires exclusive use. We then discuss two classic prob
lems in concurrent programming—the circular buffer and the readers-and-writers 
problem; we implement solutions to each of these with pseudocode monitors. Java 
monitors are explained and the differences between Java monitors and the ones 
described by the classic literature are discussed. The chapter continues our optional 
Java Multithreading Case Study by implementing a producer/consumer relation
ship and a circular buffer in Java. The student can use this latter program as a basis 
for implementing a solution to the readers-and-writers problem in Java. 

Chapter 7—Deadlock and Indefinite Postponement—introduces two poten
tially disastrous consequences of waiting: deadlock and indefinite postponement. 
The key concern is that systems that manage waiting entities must be carefully 
designed to avoid these problems. Several examples of deadlock are presented, 
including a traffic deadlock, the classic one-lane bridge, a simple resource deadlock, 
deadlock in spooling systems and deadlock in Dijkstra's charming Dining Philoso
phers problem. Key resource concepts are considered, including preemptibility, 
sharing, reentrancy and serial reusability. The chapter formally defines deadlock 
and discusses deadlock prevention, avoidance, detection and recovery (almost 
invariably painful). The four necessary conditions for deadlock are explained, 
namely the "mutual-exclusion," "wait-for," "no-preemption" and "circular-wait" 
conditions. We examine Havender's methods for preventing deadlock by denying, 
individually, any of the last three conditions. Deadlock avoidance enables more 
flexible resource allocation than deadlock prevention. The chapter explains dead
lock avoidance with Dijkstra's Banker's Algorithm, showing examples of a safe 
state, an unsafe state and a safe-state-to-unsafe-state transition. Weaknesses in the 
Banker's Algorithm are discussed. We explain deadlock detection with the 
resource-allocation graph reduction technique. The chapter concludes with a dis
cussion of deadlock strategies in current and future systems. 

Chapter 8—Processor Scheduling—discusses concepts and algorithms related 
to allocating processor time to processes and threads. Scheduling levels, objectives 
and criteria are considered. Preemptive and nonpreemptive scheduling approaches 
are compared. We explain how to carefully set priorities and quanta (finite-sized 
allocations of processor time) in scheduling algorithms. Several classic and current 
scheduling algorithms are considered, including first-in-first-out (FIFO), round-
robin (RR), shortest-process-first (SPF), highest-response-ratio-next (HRRN), 
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shortest-remaining-time (SRT), multilevel feedback queues and fair-share schedul
ing. Each algorithm is evaluated using metrics such as throughput, average 
response time and the variance of response times. We discuss Java thread schedul
ing, soft real-time scheduling, hard real-time scheduling and deadline scheduling. 

Part 3—Real and Virtual Memory—includes three chapters that discuss mem
ory organization and memory management in real and virtual memory systems. 

Chapter 9—Real Memory Management and Organization—presents a histor
ical discussion of how real memory operating systems have organized and managed 
physical memory resources. The schemes have gone from the simple to the com
plex, ultimately seeking optimal usage of the relatively precious main memory 
resource. We review the memory hierarchy consisting of cache(s), primary memory 
and secondary storage. Then, three types of memory management strategies are 
discussed, namely fetch, placement and replacement. We present contiguous and 
noncontiguous memory allocation schemes. Single-user contiguous memory alloca
tion is considered with a discussion of overlays, protection and single-stream batch 
processing. We trace the evolution of multiprogramming memory organizations 
from fixed-partition multiprogramming to variable-partition multiprogramming, 
considering issues including internal and external memory fragmentation, and pre
senting memory compaction and coalescing as means of reducing fragmentation. 
The chapter discusses the first-fit, best-fit and worst-fit memory placement strate
gies, and concludes with a discussion of multiprogramming with memory swapping. 

Chapter 10—Virtual Memory Organization—describes fundamental virtual 
memory concepts and the hardware capabilities that support virtual memory. The 
chapter motivates the need for virtual memory and describes typical implementa
tions. The key approaches to virtual memory organization—paging and segmenta
tion—are explained and their relative merits are analyzed. We discuss paging 
systems, focusing on paging address translation by direct mapping, paging address 
translation by associative mapping, paging address translation with direct/associa
tive mapping, multilevel page tables, inverted page tables and sharing in paging sys
tems. The chapter investigates segmentation systems, focusing on segmentation 
address translation by direct mapping, sharing in a segmentation system, protection 
and access control in segmentation systems. We also examine hybridized segmenta
tion/paging systems, considering dynamic address translation, sharing and protec
tion in these systems. The chapter concludes by examining the popular IA-32 Intel 
architecture virtual-memory implementation. 

Chapter 11—Virtual Memory Management—continues the discussion of vir
tual memory by analyzing how operating systems attempt to optimize virtual mem
ory performance. Because paging systems have become dominant, we focus on 
page management in detail, most notably on page-replacement strategies. The 
chapter considers one of the most important empirical results in the field of operat
ing systems, namely the locality phenomenon, and we consider the results from 
both the temporal and spatial perspectives. We discuss when pages should be 
brought into memory, examining both demand paging and anticipatory paging. 
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When available memory becomes scarce, incoming pages must replace pages 
already in memory—an operating system's page-replacement strategy can have an 
enormous impact on performance. Many page-replacement strategies are exam
ined, including random, first-in-first-out (FIFO and Belady's Anomaly), least-
recently-used (LRU), least-frequently-used (LFU), not-used-recently (NUR), sec
ond-chance, clock and segmented queue (SEGQ), far page and page-fault-fre
quency (PFF). Denning's classic working set model of program behavior is 
considered as well as how various page-replacement strategies attempt to achieve 
its goals. The chapter discusses the possibility of voluntary page release. We care
fully examine the arguments for small pages and large pages, and how programs 
behave under paging. The chapter discusses Linux page replacement and concludes 
with a discussion of global vs. local page-replacement strategies. 

Part 4—Secondary Storage, Files and Databases—includes two chapters that 
present techniques which operating systems employ to manage data on secondary 
storage. Hard-disk performance optimization, and file and database systems are dis
cussed. Our treatment of I/O systems is distributed throughout the book, most 
notably in Chapters 2, 12 and 13 and in the case studies on Linux and Windows XP 
(Chapters 20 and 21, respectively). 

Chapter 12—Disk Performance Optimization—focuses on the characteristics of 
moving-head disk storage and how the operating system can optimize its perfor
mance. The chapter discusses the evolution of secondary-storage devices and exam
ines the characteristics of moving-head disk storage. During a half century of 
explosive technological development, moving-head disk storage devices continue to 
endure. We define why disk scheduling is necessary and demonstrate why it is needed 
to achieve high-performance from moving-head disk devices. The evolution of disk-
scheduling strategies is presented, including seek-optimization strategies, including 
first-come-first-served (FCFS), shortest-seek-time-first (SSTF), SCAN, C-SCAN, 
FSCAN, N-Step SCAN, LOOK, C-LOOK and VSCAN (introduced in the exercises), 
and rotational-optimization strategies, including SLTF, SPTF and SATE Other popu
lar disk-system performance techniques are discussed, including caching, buffering, 
defragmentation, data compression and blocking. One of the most important addi
tions to this third edition is the extensive treatment of RAID systems in this chapter. 
RAID (Redundant Arrays of Independent Disks) is a set of technologies that enable 
disk systems to achieve higher performance and fault tolerance. The chapter presents 
various key RAID "levels," including level 0 (striping), level 1 (mirroring), level 2 
(bit-level Hamming ECC parity), level 3 (bit-level XOR ECC parity), level 4 (block-
level XOR ECC parity) and level 5 (block-level distributed XOR ECC parity). 

Chapter 13—File and Database Systems—discusses how operating systems 
organize and manage collections of data called files and databases. We explain key 
concepts, including the data hierarchy, files, file systems, directories, links, metadata 
and mounting. The chapter presents various file organizations, including sequential, 
direct, index sequential and partitioned. File allocation techniques are examined, 
including contiguous file allocation, linked-list noncontiguous file allocation, tabu-
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lar noncontiguous file allocation and indexed noncontiguous file allocation. We 
explain file access control by user classes and access control matrices. Data access 
techniques are discussed in the context of basic access methods, queued access 
methods, anticipatory buffering and memory-mapped files. We explain techniques 
for ensuring data integrity, including protection, backup, recovery, logging, atomic 
transactions, rollback, commitment, checkpointing, shadow paging and using log-
structured file systems. The chapter considers file servers and distributed systems 
and points the reader to the extensive treatment of these topics and others in Chap
ters 16-18. The chapter also introduces database systems, and analyzes their advan
tages, data access, the relational database model and operating system services that 
support database systems. 

Part 5—Performance, Processors and Multiprocessor Management—includes 
two chapters that discuss performance monitoring, measurement and evaluation 
techniques, and focus on the extraordinary performance that can be achieved with 
systems that employ multiple processors. 

Chapter 14—Performance and Processor Design—focuses on one of operat
ing systems designers' most preeminent goals —system performance —and discusses 
the important role of specific processor types in achieving that goal. The chapter 
surveys performance measures, considering issues including absolute performance 
measures, ease of use, turnaround time, response time, system reaction time, vari
ance in response times, throughput, workload, capacity and utilization. We discuss 
performance evaluation techniques, including tracing and profiling, timings, 
microbenchmarks, application-specific evaluation, analytic models, benchmarks, 
synthetic programs, simulation and performance monitoring. Bottlenecks and satu
ration are considered. We demonstrate how systems dynamically adjust to positive 
and negative feedback. A system's performance depends heavily on the perfor
mance of its processor(s), which is, in turn, heavily influenced by its instruction set 
architecture. The chapter examines key architectures, including complex instruction 
set computing (CISC), reduced instruction set computing (RISC) and various kinds 
of post-RISC processors. The chapter concludes with a discussion of explicitly par
allel instruction computing (EPIC). 

Chapter 15—Multiprocessor Management—provides an in-depth introduc
tion to the hardware and software aspects of multiprocessing. One way to build 
ever more powerful computing systems is to employ multiple processors and possi
bly massive numbers of them. The discussion begins with a Mini Case Study on 
supercomputers followed by a Biographical Note on Seymour Cray, the father of 
supercomputing. We investigate multiprocessor architecture, considering issues 
including the classification of sequential and parallel architectures, processor inter
connection schemes and loosely coupled vs. tightly coupled systems. Multiprocessor 
operating system organizations are examined, including master/slave, separate ker
nels and symmetrical organization. We explain memory access architectures, includ
ing uniform memory access (UMA), nonuniform memory access (NUMA), cache-
only memory architecture (COMA) and no remote memory access (NORMA). 
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The chapter discusses multiprocessor memory sharing, considering issues of cache 
coherence, page replication and migration and shared virtual memory. We continue 
the discussion on processor scheduling which we began in Chapter 8, presenting 
job-blind multiprocessor scheduling and job-aware multiprocessor scheduling. Pro
cess migration is considered and issues of flow of process migration and process 
migration strategies are examined. We discuss multiprocessor load balancing, exam
ining both static and dynamic load balancing strategies. The chapter explains how to 
enforce multiprocessor mutual exclusion with spin locks, sleep/wakeup locks and 
read/write locks. 

Part 6—Networking and Distributed Computing—includes three chapters 
that present networks, networked systems and distributed systems. 

Chapter 16—Introduction to Networking—introduces computer networking 
to lay the foundation for the following two chapters on distributed computing. The 
chapter discusses network topologies, including buses, rings, meshes, fully con
nected meshes, stars and trees and we explain the unique challenges posed by wire
less networks. We consider local-area networks (LANs) and wide-area networks 
(WANs), and present a major treatment of the TCP/IP protocol stack. Application 
layer protocols including the Hypertext Transfer protocol (HTTP) and the File 
Transfer Protocol (FTP) are examined. We explain transport layer protocols includ
ing the Transmission Control Protocol (TCP) and the User Datagram Protocol 
(UDP). At the network layer the chapter explores the Internet Protocol (IP) and its 
latest version—Internet Protocol version 6 (IPv6). The chapter discusses link layer 
protocols, including Ethernet, Token Ring, Fiber Distributed Data Interface 
(FDDI) and IEEE 802.11 (wireless). The chapter concludes with a discussion of the 
client/server model and n-tier systems. 

Chapter 17—Introduction to Distributed Systems—introduces distributed 
operating systems and discusses the attributes of distributed systems, including per
formance, scalability, connectivity, security, reliability, fault tolerance and transpar
ency. We compare and contrast network operating systems and distributed 
operating systems. Communication in distributed systems and the crucial role 
played by "middleware" technologies are discussed, including remote procedure 
call (RPC), Remote Method Invocation (RMI), CORBA (Common Object 
Request Broker Architecture), and Microsoft's DCOM (Distributed Component 
Object Model). The chapter considers process migration, synchronization and 
mutual exclusion in distributed systems, examining mutual exclusion without 
shared memory, and Agrawala and Ricart's distributed mutual exclusion algorithm. 
We discuss deadlock in distributed systems, focusing on deadlock prevention and 
deadlock detection. The chapter concludes with case studies on the Sprite and 
Amoeba distributed operating systems. 

Chapter 18—Distributed Systems and Web Services—continues the study of 
distributed systems, focusing on distributed file systems, clustering, peer-to-peer 
computing, grid computing, Java distributed computing and Web services. The chap
ter begins by considering some characteristics and concerns of distributed systems, 
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including transparency, scalability, security, fault tolerance and consistency and we 
present case studies on key distributed file systems, including the Network File Sys
tem (NFS), Andrew File System (AFS), Coda File System and Sprite File System. 
We discuss clustering, considering high-performance clusters, high-availability clus
ters and load-balancing clusters; we investigate various examples of clusters includ
ing Linux-based Beowulf clusters Windows-based clusters. Peer-to-peer (P2P) 
distributed computing is explored considering the relationship between P2P and cli
ent/server applications, centralized vs. decentralized P2P applications, peer discov
ery and searching. We examine Sun Microsystems' Project JXTA and we consider 
how JXTA creates a framework for building P2P applications. The chapter considers 
grid computing and how it makes possible solutions to problems that require a truly 
massive amount of computation by using available unused processing power on per
sonal and business computers worldwide. We discuss key Java distributed computing 
technologies, including Java servlets and JavaServer Pages (JSP), Jini, JavaSpaces 
and Java Management Extensions (JMX). The chapter concludes by surveying the 
exciting new technology of Web services and exploring two key Web services plat
forms—Microsoft's .NET Platform and Sun Microsystems' Sun ONE platform. 

Part 7—Security—includes one chapter. 
Chapter 19—Security—presents a general introduction to computer and net

work security techniques that operating systems can use to provide secure comput
ing environments. The chapter discusses secret-key and public-key cryptography 
and the popular RSA and PGP (Pretty Good Privacy) public key schemes. Authen
tication is considered: password protection, password salting, biometrics, smart 
cards. Kerberos and single sign-on. We discuss access control, exploring issues of 
access rights, protection domains, access control models, access control policies and 
access control mechanisms, including access control matrices, access control lists 
and capability lists. The chapter presents the great variety of security attacks that 
have been attempted, including cryptanalysis, viruses, worms, denial-of-service 
(DoS) attacks, software exploitation and system penetration. We survey attack pre
vention and security solutions, including firewalls and intrusion detection systems 
(IDSs), antivirus software, security patches and secure file systems. We discuss the 
federal government's Orange Book Security classification system and present a 
Mini Case Study on OpenBSD, arguably the most secure operating system avail
able. The chapter explores secure communication and consider the requirements 
for a successful, secure transaction—privacy, integrity, authentication, authorization 
and nonrepudiation. Key agreement protocols—the process by which two parties 
exchange secret keys over an unsecure medium—are discussed. We explain digital 
signatures —a technology that is enormously crucial to the future of electronic com
merce—and their implementation. The chapter presents an in-depth treatment of 
public-key infrastructure, including digital certificates and certificate authorities. 
Various secure communication protocols are considered including Secure Sockets 
Layer (SSL), Virtual Private Networks (VPNs), IP Security (IPSec) and wireless 
security. We discuss the intriguing technology of steganography—the practice of 
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hiding information within other information. This can hide secret messages in pub
licly transmitted messages; it can also protect intellectual property rights, with digi
tal watermarks for example. The chapter compares and contrasts proprietary and 
open-source security solutions and concludes with a case study on UNIX Security. 

Part 8—Operating Systems Case Studies—includes two chapters that provide 
in-depth case studies on the Linux 2.6 kernel and the Microsoft Windows XP oper
ating system,. The case studies follow the book's outline to make it convenient for 
the student to comprehend topics discussed earlier in the book. 

Chapter 20—Case Study: Linux—provides an in-depth study of Linux 2.6. 
This extensive (94 pages) case study was written and updated throughout the devel
opment of the release (by following the version 2.5 development kernel and having 
the material carefully reviewed by key Linux kernel developers). The chapter dis
cusses the history, community and software distributions that have created the most 
popular open-source operating system in the world. The chapter examines the core 
components of the Linux operating system, with particular attention to their imple
mentation in the context of concepts studied in previous chapters. Kernel architec
ture, process management (processes, threads, scheduling), memory organization 
and management, file systems (virtual file system, virtual file system caches, ext2fs 
and proc fs), I/O management (device drivers, character device I/O, block device I/ 
O, network device I/O, unified device model, interrupts), synchronization (spin 
locks, reader/writer locks, seqlocks and kernel semaphores), IPC (signals, pipes, 
sockets, message queues, shared memory and System V semaphores), networking 
(packet processing, netfilter framework and hooks), scalability (symmetric multi
processing, nonuniform memory access, other scalability features, embedded 
Linux) and security are all analyzed and explained. 

Chapter 21—Case Study: Windows XP—complements the Linux case study 
by examining the internals of the most popular commercial operating system— 
Windows XP. This case study (106 pages) examines the core components of the 
Windows XP operating system and how they interact to provide services to users. 
We discuss the history of Windows operating systems, including Biographical notes 
on Bill Gates and David Cutler. The chapter presents the design goals of Windows 
XP and overviews its system architecture, considering topics including the Hard
ware Abstraction Layer (HAL), the microkernel, the executive, the environment 
subsystems, dynamic link libraries (DLLs) and system services. We discuss system 
management mechanisms, including the registry, Object Manager, interrupt request 
levels (IRQLs), asynchronous procedure calls (APCs), deferred procedure calls 
(DPCs) and system threads. We examine process and thread organization, consider
ing control blocks, thread local storage (TLS), creating and terminating processes, 
jobs, fibers and thread pools. Thread scheduling is explained, and thread states, the 
thread scheduling algorithm, determining thread priorities and multiprocessor 
scheduling are considered. We investigate thread synchronization, examining dis
patcher objects, event objects, mutex objects, semaphore objects, waitable timer 
objects, kernel mode locks and other synchronization tools. Memory management. 
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and the concepts of memory organization, memory allocation and page replace
ment are explained. We explore file systems management, discussing file system 
drivers and NTFS topics including the Master File Table (MFT), data streams, file 
compression, file encryption, sparse files, reparse points and mounted volumes. We 
study input/output management, explaining device drivers, Plug-and-Play, power 
management, the Windows Driver Model (WDM), input/output processing, I/O 
request packets (IORPs), synchronous I/O, asynchronous I/O, data transfer tech
niques, interrupt handling and file cache management. We consider interprocess 
communication mechanisms including pipes (anonymous and named), mailslots, 
shared memory, and local and remote procedure calls. Microsoft's Component 
Object Model (COM) is overviewed. We explain drag-and-drop and compound 
documents. We discuss networking capabilities, including network input/output, 
network driver architecture, network protocols (IPX, SPX, NetBEUI, NetBIOS 
over TCP/IP, WinHTTP, WinlNet and Winsock 2. Network services topics including 
Active Directory, Lightweight Directory Access Protocol (LDAP) and Remote 
Access Service (RAS) are discussed. We overview Microsoft's new .NET technol
ogy which is replacing DCOM. We examine scalability, considering both symmetric 
multiprocessing (SMP) and Windows XP Embedded. The chapter concludes with a 
discussion of security topics, including authentication, authorization, Internet Con
nection Firewall (ICF) and other security features. 

Whew! Well, that completes the Tour of the Book. There is much here for 
operating systems students and professionals. 

Ancillary Package for Operating Systems, 3/e 
Operating Systems, 3/e has extensive ancillary materials for instructors. The Instruc
tor's Resource CD (IRCD) contains solutions to the vast majority of the end-of-
chapter exercises. This CD is available only to instructors through their Prentice 
Hall representatives. Visit vig.prenhall.com/replocator to locate your Prentice 
Hall representative. [NOTE: Please do not write to us requesting the instructor's 
CD. Distribution of this CD is limited strictly to college professors teaching from 
the book. Instructors may obtain the solutions manual only from their Prentice Hall 
representatives.] The ancillaries for the book also include a Test Item File of multi
ple-choice questions. In addition, we provide PowerPoint lecture notes containing 
all figures, illustrations, diagrams and code in the text and bullet points that summa
rize key portions of the text. Instructors can customize the slides. The PowerPoint® 
slides are downloadable from www.deitel.com and as part of Prentice Hall's com
panion Web site (www.prenhall.com/deitel) for Operating Systems, 3/e, which 
offers resources for both instructors and students. For instructors, the Companion 
Web site includes a Syllabus Manager, which helps instructors plan courses interac
tively and create online syllabi. 

Students also benefit from the functionality of the Companion Web site. 
Book-specific resources for students include: 

http://vig.prenhall.com/replocator
http://www.deitel.com
www.prenhall.com/deitel
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• Customizable PowerPoint lecture notes 

• Source code for the Java programs 

Chapter-specific resources available for students include: 

• Chapter objectives 

• Outline 

• Highlights (e.g., chapter summary) 

• Web links 
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Hardware, Software and 

Operating Systems 

Intelligence ...is the faculty of making artificial objects, especilly tolls to make tools. 
—Henri Bergson— 

Part 1 



The following chapters define the term operating 

system, present a history of operating systems and 

lay a foundation of hardware and software con

cepts. As you study the history of operating sys

tems you will see a constant emphasis on 

performance improvement and on increasing the 

intensity of resource management to achieve that 

improvement. You will see hardware power 

increasing dramatically as costs decline equally 

dramatically. You will see the emergence of two 

dominant operating systems, Linux and Windows 

XP, built with the open-source approach (Linux) 

vs. the proprietary approach (Windows XP). You 

will study key operating system architectures. You 

will study hardware that operating systems man

age for users and hardware that supports operat

ing systems functions. You will study your first 

performance enhancement techniques—a process 

that you will continue throughout the book. 

Every test carries with it the spirit by which it has been created. 
—Werner Karl Heisenberg— 



Live in fragments no longer. Only connect…
—Edward Morgan Forster—

Efficiency is getting the job done right. Effectiveness is getting the right job done.
—Zig Ziglar—

Nothing endures but change.
—Heraclitus—

Open sesame!
—The History of Ali Baba—
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Chapter 1

Chapter 1

Introduction to Operating
Systems

Objectives
After reading this chapter, you should understand:

• what an operating system is.

• a brief history of operating systems.

• a brief history of the Internet and the World Wide Web.

• core operating system components.

• goals of operating systems.

• operating system architectures.
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6 Introduction to Operating Systems

1.1 Introduction
Welcome to the world of operating systems. During the past several decades, com-
puting has evolved at an unprecedented pace. Computer power continues to
increase at phenomenal rates as costs decline dramatically. Today, computer users
have desktop workstations that execute billions of instructions per second (BIPS),
and supercomputers that execute over a trillion instructions per second have been
built,1, 2 numbers that just a few years ago were inconceivable.

Processors are becoming so inexpensive and powerful that computers can be
employed in almost every aspect of our lives. On personal computers, users can edit
documents, play games, listen to music, watch videos and manage their personal
finances. Portable devices, including laptop computers, personal digital assistants
(PDAs), cell phones, and MP3 players all have computers as key components. Wired
and wireless network architectures are increasing our interconnectivity—allowing
users to communicate instantly over vast distances.The Internet and World Wide Web
have revolutionized business, creating demand for networks of large, powerful com-
puters that service vast numbers of transactions per second. Networks of computers
have become so powerful that they are used to conduct complex research and simula-
tion projects, such as modeling the Earth’s climate, emulating human intelligence and
constructing lifelike 3D animations. Such pervasive and powerful computing is
reshaping the roles and responsibilities of operating systems.

In this book, we review operating system principles and discuss cutting-edge
advances in computing that are redefining operating systems. We investigate the
structure and responsibilities of operating systems. Design considerations, such as
performance, fault tolerance, security, modularity and cost, are explored in detail. We
also address more recent operating system design issues arising from the rapid growth
in distributed computing, made possible by the Internet and the World Wide Web.

We have worked hard to create what we hope will be an informative, enter-
taining and challenging experience for you. As you read this book, you may want to
refer to our Web site at www.deitel.com for updates and additional information on
each topic. You can reach us at deitel@deitel.com.

1.2 What Is an Operating System?
In the 1960s, the definition of an operating system might have been the software that
controls the hardware. But the landscape of computer systems has evolved signifi-
cantly since then, requiring a richer definition.

Today’s hardware executes a great variety of software applications. To
increase hardware utilization, applications are designed to execute concurrently. If
these applications are not carefully programmed, they might interfere with one
another. As a result, a layer of software called an operating system separates appli-
cations from the hardware they access and provides services that allow each appli-
cation to execute safely and effectively.
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1.3 Early History: The 1940s and 1950s 7

An operating system is software that enables applications to interact with a
computer’s hardware. The software that contains the core components of the oper-
ating system is called the kernel. Operating systems can be found in devices ranging
from cell phones and automobiles to personal and mainframe computers. In most
computer systems, a user requests that the computer perform an action (e.g., exe-
cute an application or print a document) and the operating system manages the
software and hardware to produce the desired result.

To most users, the operating system is a “black box” between the applications
and the hardware they run on that ensures the proper result, given appropriate
inputs. Operating systems are primarily resource managers—they manage hard-
ware, including processors, memory, input/output devices and communication
devices. They must also manage applications and other software abstractions that,
unlike hardware, are not physical objects.

In the next several sections we present a brief history of operating systems
from the simple, single-user batch systems of the 1950s to the complex, multiproces-
sor, distributed, multiuser platforms of today.

Self Review

1. (T/F) Operating systems manage only hardware.
2. What are the primary purposes of an operating system?

Ans: 1) False. Operating systems manage applications and other software abstractions, such
as virtual machines. 2) The primary purposes of an operating system are to enable applica-
tions to interact with a computer’s hardware and to manage a system’s hardware and soft-
ware resources.

1.3 Early History: The 1940s and 1950s
Operating systems have evolved over the last 60 years through several distinct
phases or generations that correspond roughly to the decades (see the Operating
Systems Thinking feature, Innovation).3 In the 1940s, the earliest electronic digital
computers did not include operating systems.4, 5, 6 Machines of the time were so
primitive that programmers often entered their machine-language programs one bit
at a time on rows of mechanical switches. Eventually, programmers entered their
machine-language programs on punched cards. Then, assembly languages—which
used English-like abbreviations to represent the basic operations of the computer—
were developed to speed the programming process.

General Motors Research Laboratories implemented the first operating sys-
tem in the early 1950s for its IBM 701 computer.7 The systems of the 1950s gener-
ally executed only one job at a time, using techniques that smoothed the transition
between jobs to obtain maximum utilization of the computer system.8 A job consti-
tuted the set of program instructions corresponding to a particular computational
task, such as payroll or inventory. Jobs typically executed without user input for
minutes, hours or days. These early computers were called single-stream batch-pro-
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8 Introduction to Operating Systems

cessing systems, because programs and data were submitted in groups or batches by
loading them consecutively onto tape or disk. A job stream processor read the job
control language statements (that defined each job) and facilitated the setup of the
next job. When the current job terminated, the job stream reader read in the con-
trol-language statements for the next job and performed appropriate housekeeping
chores to ease the transition to the next job. Although operating systems of the
1950s reduced interjob transition times, programmers often were required to
directly control system resources such as memory and input/output devices. This
was slow, difficult and tedious work. Further, these early systems required that an
entire program be loaded into memory for the program to run. This limited pro-
grammers to creating small programs with limited capabilities.9

Self Review

1. Why were assembly languages developed?
2. What limited the size and capabilities of programs in the 1950s?

Ans: 1) Assembly languages were developed to speed the programming process. They
enabled programmers to specify instructions as English-like abbreviations that were easier
for humans to work with than machine-language instructions. 2) The entire program had to
be loaded into memory to execute. Because memory was relatively expensive, the amount of
memory available to those computers was small.

Innovation
Innovation is a fundamental chal-
lenge for operating systems 
designers. If we are going to
make the massive investment 
required to produce new operat-
ing systems or new versions of
existing operating systems, we
must constantly be evaluating
new technologies, new applica-
tions of computing and communi-
cations and new thinking about 

how systems should be built. We
have provided thousands of cita-
tions and hundreds of Web 
resources for you to do additional 
readings on topics that are of
interest to you. You should con-
sider belonging to professional
organizations like the ACM
(www.acm.org), the IEEE
(www.ieee.org) and USENIX
(www.usenix.org) that publish

journals on the latest research
and development efforts in the
computer field. You should access 
the Web frequently to follow 
important developments in the
field. There is always a high
degree of risk when innovating,
but the rewards can be substan-
tial.

Operating Systems Thinking
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1.4 The 1960s 9

1.4 The 1960s
The systems of the 1960s were also batch-processing systems, but they used the
computer’s resources more efficiently by running several jobs at once. Systems
included many peripheral devices such as card readers, card punches, printers, tape
drives and disk drives. Any one job rarely used all the system’s resources efficiently.
A typical job would use the processor for a certain period of time before perform-
ing an input/output (I/O) operation on one of the system’s peripheral devices. At
this point, the processor would remain idle while the job waited for the I/O opera-
tion to complete.

The systems of the 1960s improved resource utilization by allowing one job to
use the processor while other jobs used peripheral devices. In fact, running a mix-
ture of diverse jobs—some jobs that mainly used the processor (called processor-
bound jobs or compute-bound jobs) and some jobs that mainly used peripheral
devices (called I/O-bound jobs)—appeared to be the best way to optimize resource
utilization. With these observations in mind, operating systems designers developed
multiprogramming systems that managed several jobs at once.10, 11, 12 In a multipro-
gramming environment, the operating system rapidly switches the processor from
job to job, keeping several jobs advancing while also keeping peripheral devices in
use. A system’s degree of multiprogramming (also called its level of multiprogram-
ming) indicates how many jobs can be managed at once. Thus, operating systems
evolved from managing one job to managing several jobs at a time.

In multiprogrammed computing systems, resource sharing is one of the pri-
mary goals. When resources are shared among a set of processes, each process
maintaining exclusive control over particular resources allocated to it, a process
may be made to wait for a resource that never becomes available. If this occurs, that
process will be unable to complete its task, perhaps requiring the user to restart it,
losing all work that the process had accomplished to that point. In Chapter 7, Dead-
lock and Indefinite Postponement, we discuss how operating systems can deal with
such problems.

Normally, users of the 1960s were not present at the computing facility when
their jobs were run. Jobs were submitted on punched cards or computer tapes and
remained on input tables until the system’s human operator could load them into the
computer for execution. Often, a user’s job would sit for hours or even days before it
could be processed.The slightest error in a program, even a missing period or comma,
would “bomb” the job, at which point the (often frustrated) user would correct the
error, resubmit the job and once again wait hours or days for the next attempt at exe-
cution. Software development in that environment was painstakingly slow.

In 1964, IBM announced its System/360 family of computers (“360” refers to
all points on a compass to denote universal applicability).13, 14, 15, 16 The various 360
computer models were designed to be hardware compatible, to use the OS/360
operating system and to offer greater computer power as the user moved upward in
the series.17 Over the years, IBM evolved its 360 architecture to the 370 series18, 19

and, more recently, the 390 series20 and the zSeries.21
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10 Introduction to Operating Systems

More advanced operating systems were developed to service multiple interac-
tive users at once. Interactive users communicate with their jobs during execution. In
the 1960s, users interacted with the computer via “dumb terminals” (i.e., devices that
supplied a user interface but no processor power) which were online (i.e., directly
attached to the computer via an active connection). Because the user was present and
interacting with it, the computer system needed to respond quickly to user requests;
otherwise, user productivity could suffer. As we discuss in the Operating Systems
Thinking feature, Relative Value of Human and Computer Resources, increased pro-
ductivity has become an important goal for computers because human resources are
extremely expensive compared to computer resources. Timesharing systems were
developed to support simultaneous interactive users.22

Many of the timesharing systems of the 1960s were multimode systems that
supported batch-processing as well as real-time applications (such as industrial pro-
cess control systems).23 Real-time systems attempt to supply a response within a
certain bounded time period. For example, a measurement from a petroleum refin-
ery indicating that temperatures are too high might demand immediate attention to

Relative Value of Human and Computer Resources
In 1965, reasonably experienced
programmers were earning about 
$4 per hour. Computer time on
mainframe computers (which 
were far less powerful than 
today's desktop machines) was 
commonly rented for $500 or 
more per hour—and that was in
1965 dollars which, because of
inflation, would be comparable to 
thousands of dollars in today's 
currency! Today, you can buy a 
top-of-the-line, enormously pow-
erful desktop computer for what 
it cost to rent a far less powerful
mainframe computer for one
hour 40 years ago! As the cost of

computing has plummeted, the
cost of man-hours has risen to the
point that today human resources 
are far more expensive than com-
puting resources.

Computer hardware, operat-
ing systems and software applica-
tions are all designed to leverage
people’s time, to help improve
efficiency and productivity. A clas-
sic example of this was the advent 
of timesharing systems in the
1960s in which these interactive 
systems (with almost immediate 
response times) often enabled pro-
grammers to become far more
productive than was possible with

the batch-processing systems 
response times of hours or even
days. Another classic example was 
the advent of the graphical user 
interface (GUI) originally devel-
oped at the Xerox Palo Alto
Research Center (PARC) in the
1970s. With cheaper and more
powerful computing, and with the 
relative cost of people-time rising 
rapidly compared to that of com-
puting, operating systems design-
ers must provide capabilities that 
favor the human over the
machine, exactly the opposite of 
what early operating systems did.

Operating Systems Thinking
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1.4 The 1960s 11

avert an explosion. The resources of a real-time system are often heavily underuti-
lized—it is more important for such systems to respond quickly than it is for them
to use their resources efficiently. Servicing both batch and real-time jobs meant that
operating systems had to distinguish between types of users and provide each with
an appropriate level of service. Batch-processing jobs could suffer reasonable
delays, whereas interactive applications demanded a higher level of service and
real-time systems demanded extremely high levels of service.

The key timesharing systems development efforts of this period included the
CTSS (Compatible Time-Sharing System)24, 25 developed by MIT, the TSS (Time
Sharing System)26 developed by IBM, the Multics system27 developed at MIT, GE
and Bell Laboratories as the successor to CTSS and the CP/CMS (Control Pro-
gram/Conversational Monitor System)—which eventually evolved into IBM’s VM
(Virtual Machine) operating system—developed by IBM’s Cambridge Scientific
Center.28, 29 These systems were designed to perform basic interactive computing
tasks for individuals, but their real value proved to be the manner in which they
shared programs and data and demonstrated the value of interactive computing in
program development environments.

The designers of the Multics system were the first to use the term process to
describe a program in execution in the context of operating systems. In many cases,
users submitted jobs containing multiple processes that could execute concurrently.
In Chapter 3, Process Concepts, we discuss how multiprogrammed operating sys-
tems manage multiple processes at once.

In general, concurrent processes execute independently, but multipro-
grammed systems enable multiple processes to cooperate to perform a common
task. In Chapter 5, Asynchronous Concurrent Execution, and Chapter 6, Concur-
rent Programming, we discuss how processes coordinate and synchronize activities
and how operating systems support this capability. We show many examples of con-
current programs, some expressed generally in pseudocode and some in the popu-
lar Java™ programming language.

Turnaround time—the time between submission of a job and the return of its
results—was reduced to minutes or even seconds. The programmer no longer
needed to wait hours or days to correct even the simplest errors. The programmer
could enter a program, compile it, receive a list of syntax errors, correct them
immediately, recompile and continue this cycle until the program was free of syntax
errors. Then the program could be executed, debugged, corrected and completed
with similar time savings.

The value of timesharing systems in support of program development was
demonstrated when MIT, GE and Bell Laboratories used the CTSS system to
develop its own successor, Multics. Multics was notable for being the first major
operating system written primarily in a high-level language (EPL—modeled after
IBM’s PL/1) instead of an assembly language. The designers of UNIX learned from
this experience; they created the high-level language C specifically to implement
UNIX. A family of UNIX-based operating systems, including Linux and Berkeley
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12 Introduction to Operating Systems

Software Distribution (BSD) UNIX, have evolved from the original system created
by Dennis Ritchie and Ken Thompson at Bell Laboratories in the late 1960s (see
the Biographical Note, Ken Thompson and Dennis Ritchie).

TSS, Multics and CP/CMS all incorporated virtual memory, which we discuss
in detail in Chapter 10, Virtual Memory Organization, and Chapter 11, Virtual
Memory Management. In systems with virtual memory, programs are able to
address more memory locations than are actually provided in main memory, also
called real memory or physical memory.30, 31 (Real memory is discussed in
Chapter 9, Real Memory Organization and Management.) Virtual memory systems
help remove much of the burden of memory management from programmers, free-
ing them to concentrate on application development.

Ken Thompson and Dennis Ritchie
Ken Thompson and Dennis Ritchie
are well known in the field of
operating systems for their devel-
opment of the UNIX operating 
system and the C programming
language. They have received sev-
eral awards and recognition for 
their accomplishments, including 
the ACM Turing Award, the
National Medal of Technology, 
the NEC C&C Prize, the IEEE
Emmanuel Piore Award, the IEEE
Hamming Medal, induction into 
the United States National Acad-
emy of Engineering and the Bell
Labs National Fellowship.32

Ken Thompson attended the
University of California at Berke-
ley, where he earned a B.S. and
M.S. in Computer Science, gradu-
ating in 1966.33 After college
Thompson worked at Bell Labs, 
where he eventually joined Den-

nis Ritchie on the Multics 
project.34 While working on that 
project, Thompson created the B
language that led to Ritchie’s C
language.35 The Multics project 
eventually led to the creation of 
the UNIX operating system in
1969. Thompson continued to
develop UNIX through the early 
1970s, rewriting it in Ritchie’s C
programming language.36 After 
Thompson completed UNIX, he
made news again in 1980 with
Belle. Belle was a chess-playing
computer designed by Thompson
and Joe Condon that won the
World Computing Chess Champi-
onship. Thompson worked as a
professor at the University of Cali-
fornia at Berkeley and at the Uni-
versity of Sydney, Australia. He
continued to work at Bell Labs 
until he retired in 2000.37

Dennis Ritchie attended Har-
vard University, earning a Bache-
lor’s degree in Physics and a Ph.D.
in Mathematics. Ritchie went on 
to work at Bell Labs, where he
joined Thompson on the Multics 
project in 1968. Ritchie is most 
recognized for his C language, 
which he completed in 1972.38

Ritchie added some extra capabili-
ties to Thompson’s B language
and changed the syntax to make
it easier to use. Ritchie still works 
for Bell Labs and continues to 
work with operating systems.39

Within the past 10 years he has 
created two new operating sys-
tems, Plan 9 and Inferno.40 The
Plan 9 system is designed for com-
munication and production qual-
ity. 41Inferno is a system intended
for advanced networking.42

Biographical Note
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Once loaded into main memory, programs could execute quickly; however,
main memory was far too expensive to contain large numbers of programs at once.
Before the 1960s, jobs were largely loaded into memory using punched cards or
tape, a tedious and time-consuming task, during which the system could not be used
to execute jobs. The systems of the 1960s incorporated devices that reduced system
idle time by storing large amounts of rewritable data on relatively inexpensive mag-
netic storage media such as tapes, disks and drums. Although hard disks enabled
relatively fast access to programs and data compared to tape, they were significantly
slower than main memory. In Chapter 12, Disk Performance Optimization, we dis-
cuss how operating systems can manage disk input/output requests to improve per-
formance. In Chapter 13, File and Database Systems, we discuss how operating
systems organize data into named collections called files and manage space on stor-
age devices such as disks. We also discuss how operating systems protect data from
access by unauthorized users and prevent data from being lost when system failures
or other catastrophic events occur.

Self Review

1. How did interactive computing and its improvement in turnaround time increase pro-
grammer productivity?

2. What new concept did TSS, Multics and CP/CMS all incorporate? Why was it so helpful
for programmers?

Ans: 1) The time between submission of a job and the return of its results was reduced from
hours or days to minutes or even seconds. This enabled programmers to interactively enter,
compile and edit programs until their syntax errors were eliminated, then use a similar cycle to
test and debug their programs. 2) TSS, Multics, and CP/CMS all incorporated virtual memory.
Virtual memory allows applications access to more memory than is physically available on the
system. This allows programmers to develop larger, more powerful applications. Also, virtual
memory systems remove much of the memory management burden from the programmer.

1.5 The 1970s
The systems of the 1970s were primarily multimode multiprogramming systems that
supported batch processing, timesharing and real-time applications. Personal com-
puting was in its incipient stages, fostered by early and continuing developments in
microprocessor technology.43 The experimental timesharing systems of the 1960s
evolved into solid commercial products in the 1970s. Communications between
computer systems throughout the United States increased as the Department of
Defense’s TCP/IP communications standards became widely used—especially in
military and university computing environments.44, 45, 46 Communication in local
area networks (LANs) was made practical and economical by the Ethernet stan-
dard developed at Xerox’s Palo Alto Research Center (PARC).47, 48 In Chapter 16,
Introduction to Networking, we discuss TCP/IP, Ethernet and fundamental net-
working concepts.
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14 Introduction to Operating Systems

Security problems increased with the growing volumes of information passing
over vulnerable communications lines (see the Anecdote, Abraham Lincoln’s Tech-
nology Caution). Encryption received much attention—it became necessary to
encode proprietary or private data so that, even if the data was compromised, it was
of no value to anyone other than the intended receivers. In Chapter 19, Security, we
discuss how operating systems secure sensitive information from unauthorized access.
During the 1970s, operating systems grew to encompass networking and security
capabilities and continued to improve in performance to meet commercial demands.

The personal computing revolution began in the late 1970s with such systems
as the Apple II, and exploded in the 1980s.

Self Review

1. What developments in the 1970s improved communication between computer systems?
2. What new problem was introduced by the increased communication between computers?

How was this problem addressed?

Ans: 1) The DoD’s TCP/IP standards became widely used in network communications—
primarily in university and military computing environments. Also, Xerox’s PARC developed
the Ethernet standard, which made relatively high-speed local area networks (LANs) practi-
cal and economical. 2) Communication between computers introduced security problems
because data was sent over vulnerable communication lines. Encryption was employed to
make data unreadable to anyone other than the intended recipient.

Abraham Lincoln’s Technology Caution
The story goes that during the
Civil War one of President Lin-
coln's young lieutenants came 
running up to him eager to speak 
with the President. “What is it,
lieutenant?” “Mr. President, Mr.
President, we are wiring the bat-

tlefields for this wonderful new 
technology called the telegraph.
Do you know what that means,
Mr. President?” “No lieutenant, 
what does it mean?” “Mr. Presi-
dent, it means we'll be able to
make decisions at the speed of

light!” The older and wiser Presi-
dent Lincoln looked down at the
lieutenant and said calmly, “Yes,
lieutenant, but we'll also be able 
to make wrong decisions at the 
speed of light!”

Lessons to operating systems 
designers: Every new technology 
you will evaluate has its pros and

cons. You will inevitably spend a
great deal of your time concerned 
with performance issues. But,

making things happen faster may 
have unpleasant consequences.

Anecdote
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1.6 The 1980s 15

1.6 The 1980s
The 1980s was the decade of the personal computer and the workstation.49 Micro-
processor technology evolved to the point where high-end desktop computers
called workstations could be built that were as powerful as the mainframes of a
decade earlier. The IBM Personal Computer released in 1981 and the Apple Macin-
tosh personal computer released in 1984 made it possible for individuals and small
businesses to have their own dedicated computers. Communication facilities could
be used to transmit data quickly and economically between systems. Rather than
bringing data to a central, large-scale computer installation for processing, comput-
ing was distributed to the sites at which it was needed. Software such as spreadsheet
programs, word processors, database packages and graphics packages helped drive
the personal computing revolution by creating demand from businesses that could
use these products to increase their productivity.

Personal computers proved to be relatively easy to learn and use, partially
because of graphical user interfaces (GUI) that used graphical symbols such as win-
dows, icons and menus to facilitate user interaction with programs. Xerox’s Palo
Alto Research Center (PARC) developed the mouse and GUI (for more on the ori-
gins of the mouse, see the Biographical Note, Doug Engelbart); Apple’s release of
the Macintosh personal computer in 1984 popularized their use. In Macintosh com-
puters, the GUI was embedded in the operating system so that all applications
would have a similar look and feel.50 Once familiar with the Macintosh GUI, the
user could learn to use new applications faster.

As technology costs declined, transferring information between computers in
computer networks became more economical and practical. Electronic mail, file
transfer and remote database access applications proliferated. Distributed comput-
ing (i.e., using multiple independent computers to perform a common task) became
widespread under the client/server model. Clients are user computers that request
various services; servers are computers that perform the requested services. Servers
often are dedicated to one type of task, such as rendering graphics, managing data-
bases or serving Web pages.

The software engineering field continued to evolve, a major thrust coming
from the United States government aimed at providing tighter control of Depart-
ment of Defense software projects.51 Some goals of the initiative included realized
code reusability and the early construction of prototypes so developers and users
could suggest modifications early in the software design process.52

Self Review

1. What aspect of personal computers, popularized by the Apple Macintosh, made them
especially easy to learn and use?

2. (T/F) A server cannot be a client.

Ans: 1) Graphical User Interfaces (GUIs) facilitated personal computer use by providing
an easy-to-use, uniform interface to every application. This enabled users to learn new appli-
cations faster. 2) False. A computer can be a client and server. For example, a Web server can
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16 Introduction to Operating Systems

be both a client and server. When users request a Web page, it is a server; if the server then
requests information from a database system, it becomes a client of the database system.

1.7 History of the Internet and World Wide Web
In the late 1960s ARPA—the Advanced Research Projects Agency of the Depart-
ment of Defense rolled out the blueprints for networking the main computer sys-
tems of about a dozen ARPA-funded universities and research institutions. They
were to be connected with communications lines operating at a then-stunning 56
kilobits per second (Kbps)—1 Kbps is equal to 1,000 bits per second—at a time
when most people (of the few who could be) were connecting over telephone lines
to computers at a rate of 110 bits per second. HMD vividly recalls the excitement at

Doug Engelbart
Doug Engelbart invented the
computer mouse and was one of 
the primary designers of the origi-
nal graphical displays and win-
dows.

Engelbart’s background was 
in electronics. During World War II
he worked as an electronics tech-
nician on a variety of systems 
including RADAR and SONAR.53

After leaving the military, he 
went back to Oregon State to
complete a degree in Electrical
Engineering in 1948.54 He went 
on to receive his Ph.D. from the
University of California at Berke-
ley, then took a job at the Stan-
ford Research Institute (SRI), 
where he gained his first experi-
ence with computers.55 In 1968, at 
the Joint Computer Conference in

San Francisco, Engelbart and his 
coworkers displayed their com-
puter system, NLS (oNLine System) 
which featured Engelbart’s com-
puter mouse and a graphical
interface with windows.56 This 
original mouse, called an X-Y Posi-
tion Indicator for a Display Sys-
tem, had only one button.57 The
mouse had two wheels on the
bottom, one horizontal and one 
vertical, to detect movement.58

The mouse and the graphical win-
dows were interdependent. The
mouse made it significantly easier 
to switch between windows, and 
without windows the mouse was 
not as useful.

Engelbart has dedicated his 
life to augmenting human intel-
lect. His original idea behind the

NLS system was to create a system 
that could help people solve prob-
lems faster and enhance intelli-
gence. Engelbart founded the
Bootstrap Institute to foster 
worldwide awareness of his mis-
sion. Bootstrapping, according to
Engelbart, is the idea of improv-
ing one’s methods of improve-
ment. He believes this is the best 
way to improve human intelli-
gence.59

Today, Engelbart is still 
working with the Bootstrap Insti-
tute. He has received recognition
for his work including the Lemel-
son-MIT Prize, the National Medal
of Technology and induction into 
the National Inventors Hall of
Fame.60

Biographical Note
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1.7 History of the Internet and World Wide Web 17

that conference. Researchers at Harvard talked about communicating with the
Univac 1108 “supercomputer” across the country at the University of Utah to han-
dle the massive computations related to their computer graphics research. Aca-
demic research was about to take a giant leap forward. Shortly after this
conference, ARPA proceeded to implement what quickly became called the
ARPAnet—the grandparent of today’s Internet.

Although the ARPAnet did enable researchers to network their computers,
its chief benefit proved to be its capability for quick and easy communication via
what came to be known as electronic mail (e-mail). This is true even on the Internet
today, with e-mail, instant messaging and file transfer facilitating communications
among hundreds of millions of people worldwide and growing rapidly.

The ARPAnet was designed to operate without centralized control.This meant
that if a portion of the network should fail, the remaining working portions would
still be able to route data packets from senders to receivers over alternative paths.

The protocols (i.e., sets of rules) for communicating over the ARPAnet
became known as the Transmission Control Protocol/Internet Protocol (TCP/IP).
TCP/IP was used to manage communication between applications. The protocols
ensured that messages were routed properly from sender to receiver and that those
messages arrived intact. The advent of TCP/IP promoted worldwide computing
growth. Initially, Internet use was limited to universities and research institutions;
later, the military adopted the technology.

Eventually, the government decided to allow access to the Internet for com-
mercial purposes. This decision led to some concern among the research and mili-
tary communities—it was felt that response times would suffer as “the Net” became
saturated with users. In fact, the opposite occurred. Businesses rapidly realized that
they could use the Internet to tune their operations and to offer new and better ser-
vices to their clients. Companies spent vast amounts of money to develop and
enhance their Internet presence. This generated intense competition among com-
munications carriers, hardware suppliers and software suppliers to meet the
increased infrastructure demand. The result is that bandwidth (i.e., the information-
carrying capacity of communications lines) on the Internet has increased tremen-
dously, and hardware and communications costs have plummeted.

The World Wide Web (WWW) allows computer users to locate and view mul-
timedia-based documents (i.e., documents with text, graphics, animation, audio or
video) on almost any subject. Although the Internet was developed more than
three decades ago, the introduction of the World Wide Web (WWW) was a rela-
tively recent event. In 1989, Tim Berners-Lee of CERN (the European Center for
Nuclear Research) began to develop a technology for sharing information via
hyperlinked text documents (see the Biographical Note, Tim Berners-Lee). To
implement this new technology, Berners-Lee created the HyperText Markup Lan-
guage (HTML). Berners-Lee also implemented the Hypertext Transfer Protocol
(HTTP) to form the communications backbone of his new hypertext information
system, which he called the World Wide Web.
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18 Introduction to Operating Systems

Surely, historians will list the Internet and the World Wide Web among the
most important and profound creations of humankind. In the past, most computer
applications ran on “stand-alone” computers (computers that were not connected
to one another). Today’s applications can be written to communicate among the
world’s hundreds of millions of computers. The Internet and World Wide Web
merge computing and communications technologies, expediting and simplifying our
work. They make information instantly and conveniently accessible to large num-
bers of people. They enable individuals and small businesses to achieve worldwide
exposure.They are changing the way we do business and conduct our personal lives.
And they are changing the way we think of building operating systems. Today’s
operating systems provide GUIs that enable users to “access the world” over the
Internet and the Web as seamlessly as accessing the local system. The operating sys-
tems of the 1980s were concerned primarily with managing resources on the local
computer. Today’s distributed operating systems may utilize resources on comput-
ers worldwide. This creates many interesting challenges that we discuss throughout
the book, especially in Chapters 16–19, which examine networking, distributed
computing and security.

Tim Berners-Lee
The World Wide Web was 
invented by Tim Berners-Lee in
1990. The Web allows computer 
users to locate and view multime-
dia-based documents (i.e., docu-
ments with text, graphics,
animation, audio or video) on
almost any subject.

Berners-Lee graduated from
Queen’s College at Oxford Univer-
sity with a degree in Physics in
1976. In 1980 he wrote a program
called Enquire, which used hyper-
text links to help him quickly navi-
gate the numerous documents in
a large project. He entered into a

fellowship at the European Cen-
ter for Nuclear Research (CERN) in
1984, where he gained experience
in communication software for 
real-time networked 
systems.61, 62, 63

Berners-Lee invented HTTP
(the HyperText Transfer Protocol),
HTML (Hypertext Markup Lan-
guage) and the first World Wide
Web server and browser in 1989, 
while working at CERN.64, 65 He
intended the Web to be a mecha-
nism for open, available access to
all shared knowledge and experi-
ence.66

Until 1993, Berners-Lee indi-
vidually managed changes and 
suggestions for HTTP and HTML, 
sent from the early Web users. By 
1994 the Web community had
grown large enough that he 
started the World Wide Web Con-
sortium (W3C; www.w3.org) to
monitor and establish Web tech-
nology standards.67 As director of 
the organization, he actively pro-
motes the principle of freely avail-
able information accessed by 
open technologies.68

Biographical Note

000200010270588738

Operating Systems, Third Edition, by Harvey M. Deitel, Paul J. Deitel, and David R. Choffnes. Published by Prentice Hall. Copyright © 2004 by Pearson Education, Inc.
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Self Review

1. How did the ARPAnet differ from traditional computer networks? What was its primary
benefit?

2. What creations did Berners-Lee develop to facilitate data sharing over the Internet?

Ans: 1) The ARPAnet was decentralized, so the network continued to be able to pass infor-
mation even if portions of the network failed. The primary benefit of the ARPAnet was its
capability for quick and easy communication via e-mail. 2) Berners-Lee developed the
HyperText Markup Language (HTML) and the Hypertext Transfer Protocol (HTTP), mak-
ing possible the World Wide Web.

1.8 The 1990s
Hardware performance continued to improve exponentially in the 1990s.69 By the
end of the decade, a typical personal computer could execute several hundred mil-
lion instructions per second (MIPS) and store over a gigabyte of information on a
hard disk; some supercomputers could execute over a trillion operations per sec-
ond.70 Inexpensive processing power and storage enabled users to execute large,
complex programs on personal computers and enabled small- to mid-size compa-
nies to use these economical machines for the extensive database and processing
jobs that were once delegated to mainframe systems. Falling technology costs also
led to an increase in the number of home computers, which were used both for
work and for entertainment.

In the 1990s, the creation of the World Wide Web led to an explosion in the
popularity of distributed computing. Originally, operating systems performed iso-
lated resource management inside a single computer. With the creation of the
World Wide Web and increasingly fast Internet connections, distributed computing
became commonplace among personal computers. Users could request data stored
at remote locations or request that programs run on distant processors. Large orga-
nizations could use distributed multiprocessors (i.e., networks of computers con-
taining more than one processor) to scale resources and increase efficiency.71

Distributed applications, however, were still limited by the fact that communication
over a network occurred at relatively slow speeds compared to the internal process-
ing speeds of individual computers. Distributed computing is discussed in detail in
Chapter 17, Introduction to Distributed Systems, and Chapter 18, Distributed Sys-
tems and Web Services.

As demand for Internet connections grew, operating system support for net-
working tasks became standard. Users at home and in organizations increased pro-
ductivity by accessing the resources on networks of computers. However, increased
connectivity led to a proliferation of computer security threats. Operating system
designers developed techniques to protect computers from these malicious attacks.
Ever more sophisticated security threats continued to challenge the computer
industry’s ability to counter such attacks.
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20 Introduction to Operating Systems

Microsoft Corporation became dominant in the 1990s. In 1981, Microsoft
released the first version of its DOS operating system for the IBM personal com-
puter. In the mid-1980s, Microsoft developed the Windows operating system, a
graphical user interface built on top of the DOS operating system. Microsoft
released Windows 3.0 in 1990; this new version featured a user-friendly interface
and rich functionality. The Windows operating system became incredibly popular
after the 1993 release of Windows 3.1, whose successors, Windows 95 and Windows
98, virtually cornered the desktop operating system market by the late 90s. These
operating systems, which borrowed from many concepts (such as icons, menus and
windows) popularized by early Macintosh operating systems, enabled users to navi-
gate multiple concurrent applications with ease. Microsoft also entered the corpo-
rate operating system market with the 1993 release of Windows NT, which quickly
became the operating system of choice for corporate workstations.72 Windows XP,
which is based on the Windows NT operating system, is discussed in Chapter 21,
Case Study: Windows XP.

Object Technology

Object technology became popular in many areas of computing, as the number of
applications written in object-oriented programming languages, such as C++ or
Java, increased steadily. Object concepts also facilitated new approaches to comput-
ing. Each software object encapsulates a set of attributes and a set of actions. This
allows applications to be built with components that can be reused in many applica-
tions, reducing software development time. In object-oriented operating systems
(OOOS), objects represent components of the operating system and system
resources.73 Object-oriented concepts such as inheritance and interfaces were
exploited to create modular operating systems that were easier to maintain and
extend than operating systems built with previous techniques. Modularity facilitates
operating system support to new and different architectures. The demand for object
integration across multiple platforms and languages led to support for objects in
programming languages such as Sun’s Java and Microsoft’s .NET languages (e.g.,
Visual Basic .NET, Visual C++ .NET and C#).

Open-Source Movement

Another development in the computing community (particularly in the area of oper-
ating systems) during the 1990s was the movement toward open-source software.
Most software is created by writing source code in a high-level programming lan-
guage. However, most commercial software is sold as object code (also called
machine code or binaries)—the compiled source code that computers can under-
stand. The source code is not included, enabling vendors to hide proprietary informa-
tion and programming techniques. However, free and open-source software became
increasingly common in the 1990s. Open-source software is distributed with the
source code, allowing individuals to examine and modify the software before compil-
ing and executing it. For example, the Linux operating system and the Apache Web
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server, both of which are free and open source, were downloaded and installed by
millions of users during the 1990s, and the number of downloads is increasing rapidly
in the new millennium.74 Linux, created by Linus Torvalds (see the Biographical
Note, Linus Torvalds), is discussed in Chapter 20, Case Study: Linux.

In the 1980s, Richard Stallman, a software developer at MIT, launched a
project to recreate and extend most of the tools for AT&T’s UNIX operating sys-
tem and to make the code available at no charge. Stallman (see the Biographical
Note, Richard Stallman) founded the Free Software Foundation and created the
GNU project—which is a recursive name that stands for “GNU’s Not UNIX”—
because he disagreed with the concept of selling the permission to use software.75

He believed that granting users the freedom to modify and distribute software
would lead to better software, driven by user needs instead of personal or corporate
profit. When Linus Torvalds created the original version of the Linux operating sys-
tem, he employed many of the tools published by GNU for free under the General
Public License (GPL). The GPL, published online at www.gnu.org/licenses/
gpl.html, specifies that anyone can freely modify and redistribute software under
its license, provided that the modifications are clearly indicated and any derivative
of the software is also distributed under the GPL.76 Although most GPL-licensed
software is available free of charge, the GPL requires only that its software be free
in the sense that users can freely modify and redistribute it. Therefore, vendors can
charge a fee for providing GPL-licensed software and its source code, but cannot

Linus Torvalds
Linus Torvalds was born in 1969 in
Helsinki, Finland. As a child he 
taught himself how to program
by playing with a Commodore
VIC-20. In 1988 he entered the
University of Helsinki to study 
computer science. While there, he 
wrote a UNIX clone based on Pro-
fessor Andrew Tanenbaum’s Minix 
to run on his new PC.77, 78 In 1991
he completed the first version of 
the basic Linux kernel, which ran
on the Intel 80386 processor.79 He
distributed Linux under the GNU

Public License (GPL)80 as open-
source code and gladly accepted
additions, corrections and free
programs from other program-
mers.81,82 By 1994 Linux had
accrued enough applications to
be a complete, usable operating 
system, and version 1.0 was 
released.83 Programmers and pro-
fessors using UNIX on large sys-
tems liked Linux because it 
brought the features and power 
of UNIX to inexpensive desktop 
systems for free.84, 85

Torvalds is currently a fellow 
of the Open Source Development 
Labs (OSDL), which funds his full-
time work on the kernel. He con-
tinues to lead the open-source
Linux project, managing changes 
and releasing new versions of the
kernel.86, 87 Linux has become one
of the largest and best-known
open-source developments in com-
puting history and has become
particularly successful in the server 
market. Linux is discussed in
Chapter 20, Case Study: Linux.

Biographical Note
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22 Introduction to Operating Systems

prevent end users from modifying and redistributing them. In the late 90s, the Open
Source Initiative (OSI) was founded to protect open-source software and promote
the benefits of open-source programming (see www.opensource.org).

Open-source software facilitates enhancements to software products by per-
mitting anyone in the developer community to test, debug and enhance applica-
tions. This increases the chance that subtle bugs, which could otherwise be security
risks or logic errors, are caught and fixed. Also, individuals and corporations can
modify the source to create custom software that meets the needs of a particular
environment. Many open-source software vendors remain profitable by charging
individuals and organizations for technical support and customizing software.88

Though most systems in the 1990s still ran proprietary operating systems, such as
IBM mainframe operating systems, UNIX systems, Apple’s Macintosh and

Richard Stallman
Richard Stallman was the original
developer of the GNU project, 
started in the 1980s to create free 
software. Stallman graduated
from Harvard in 1974 with a
degree in Physics.89 While at Har-
vard, he worked at the MIT Artifi-
cial Intelligence Lab. After 
graduating, he continued at the
lab, where he and his colleagues 
worked with shared software.90

The idea was that someone 
receiving someone else’s execut-
able program would also receive
its source code. This was advanta-
geous because a programmer 
could add more functionality to 
someone else’s program.91 Stall-
man’s specific job was to modify 
and improve the ITS operating 
system the lab used. However, as 
the 1980s arrived, there was little

shared software.92 The lab’s new 
operating system was not shared.
Stallman became frustrated with
operating systems, drivers, and 
the like, that he could no longer 
modify.93 In 1984 he left the MIT
Artificial Intelligence Lab to work
on a new shared operating sys-
tem, which he called GNU (GNU’s 
Not UNIX).94

As interest in Stallman’s GNU
project grew, he created the Free
Software Foundation (FSF) in 1985 
to promote free software and
continue to develop the GNU
operating system.95 Stallman and
his associates at FSF created a
number of GNU programs, includ-
ing GNU Emacs (a text editor),
GCC (a C compiler) and GDB (a
debugger), to name a few.96 In
1992 Stallman used the Linux ker-

nel to complete his system. The 
system, known as GNU/Linux, is a
fully functional operating system
and includes a variety of pro-
grams.97

Stallman has received
numerous awards and recognition
for his work, including the Grace
Hopper Award, MacArthur Foun-
dation Fellowship, the Electric
Frontier Foundation Pioneer 
Award, the Yuri Rubinksi Award, 
the Takeda Award, election to the
National Academy of Engineer-
ing and two honorary doctorates 
from the Institute of Technology 
in Sweden and the University of
Glasgow. Stallman continues to
promote the free software cause
and speaks about free software
all over the world.98

Biographical Note
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Microsoft’s Windows, open-source operating systems, such as Linux, FreeBSD and
OpenBSD, became viable competition. In the future, they will undoubtedly con-
tinue to gain ground on proprietary solutions as a result of product improvement,
industry standardization, interoperability, product customization and cost savings.

In the 1990s, operating systems became increasingly user friendly. The GUI
features that Apple built into its Macintosh operating system in the 1980s became
more sophisticated in the 1990s. “Plug-and-play” capabilities were built into operat-
ing systems, enabling users to add and remove hardware components dynamically
without manually reconfiguring the operating system. Operating systems also main-
tained user profiles—serving authentication needs and enabling per-user customi-
zation of the operating system interface.

Self Review

1. How did object-oriented technology affect operating systems?
2. What are some of the benefits of open-source development?

Ans: 1) Operating systems designers could reuse objects when developing new compo-
nents. Increased modularity due to object-oriented technology facilitated operating system
support for new and different architectures. 2) Open-source software can be viewed and
modified by anyone in the software development community. Because these people con-
stantly test, debug and use the software, there is a greater chance that bugs will be found and
fixed. Also, open-source software enables users and organizations to modify a program to
meet their particular needs.

1.9 2000 and Beyond
In the current decade, middleware, which is software that links two separate applica-
tions (often over a network), has become vital as applications are published on the
World Wide Web and consumers use them via affordable, high-speed Internet con-
nections over cable television lines and digital subscriber lines (DSL). Middleware is
common in Web applications, in which a Web server (the application that sends data
to the user’s Web browser) must generate content to satisfy a user’s request with the
help of a database. The middleware acts as a courier to pass messages between the
Web server and the database, simplifying communication between multiple different
architectures. Web services encompass a set of related standards that can enable any
two computer applications to communicate and exchange data via the Internet. A
Web service communicates over a network to supply a specific set of operations that
other applications can invoke. The data is passed back and forth using standard pro-
tocols such as HTTP, the same protocol used to transfer ordinary Web pages. Web
services operate using open, text-based standards that enable components written in
different languages and on different platforms to communicate. They are ready-to-
use pieces of software on the Internet.

Web services will help drive the shift toward true distributed computing. For
example, the online retailer Amazon.com allows developers to build online stores
that search Amazon’s product databases and display detailed product information
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24 Introduction to Operating Systems

via Amazon.com Web Services (www.amazon.com/gp/aws/landing.html). The
Google search engine also can be integrated with other functionality through the
Google Web APIs (www.google.com/apis), which connect to Google’s indices of
Web sites using Web services. We discuss Web services in more detail in Chapter 18,
Distributed Systems and Web Services.

Multiprocessor and network architectures are creating numerous opportuni-
ties for research and development of new hardware and software design techniques.
Sequential programming languages that specify one computation at a time are now
complemented by concurrent programming languages, such as Java, that enable the
specification of parallel computations; in Java the units of parallel computing are
specified via threads. We discuss threads and the technique of multithreading in
Chapter 4, Thread Concepts.

An increasing number of systems exhibit massive parallelism; they have large
numbers of processors so that many independent parts of computations can be per-
formed in parallel. This is dramatically different in concept from the sequential
computing of the past 60 years; there are significant and challenging problems in
developing the software appropriate for dealing with such parallelism. We discuss
parallel computing architectures in Chapter 15, Multiprocessor Management.

Operating systems are standardizing user and application interfaces so that
they are easier to use and support a greater number of programs. Microsoft has
already merged the consumer and professional lines of its Windows operating sys-
tem into Windows XP. In its next operating system (code-named Longhorn),
Microsoft plans to integrate the formats of different types of files. This will, for
example, allow users to search their systems for all files (documents, spreadsheets,
e-mails, etc.) containing certain keywords. Longhorn will also include an enhanced
3D user interface, improved security and support for recordable digital versatile
discs (DVDs).99, 100 Open-source operating systems, such as Linux, will become
more widely used and will employ standard application programming interfaces
(APIs) such as the Portable Operating System Interface (POSIX) to improve com-
patibility with other UNIX-based operating systems.

Computing on mobile devices, such as cell phones and PDAs, will become more
common as mobile devices are equipped with increasingly powerful processors.
Today, these devices are used for such functions as e-mail, Web browsing and digital
imaging. Resource-intensive applications, such as full-motion video, will proliferate
on these devices. Because mobile device resources are limited by the devices’ small
size, distributed computing will play an even larger role, as PDAs and cell phones will
request increasing amounts of data and processing power from remote computers.

Self Review

1. What technologies can be used to bridge the gap between different operating systems?
How would these technologies make it possible to execute the same application on multi-
ple platforms?

2. Why is distributed computing useful for computations performed by mobile devices?
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Ans: 1) Virtual machines and operating system emulators bridge the gap between different
operating systems. Applications can be written once to use the functionality of the virtual
machine or emulator. The virtual machines or emulators can be implemented to hide the rep-
resentation of the underlying platform from the applications. 2) Distributed computing
allows a mobile device to delegate jobs to other machines with more resources. The mobile
device, having limited resources and battery life, can request data and processing power from
larger computers across a network.

1.10 Application Bases
When the IBM Personal Computer (often called simply “the PC”) appeared in
1981, it immediately spawned a huge software industry in which independent soft-
ware vendors (ISVs) were able to market packages for the IBM PC to run under
the MS-DOS operating system (IBM’s version was called DOS). Operating systems
free applications software developers from having to deal with the messy details of
manipulating computer hardware to manage memory, perform input/output, deal
with communication lines, and so on. The operating system provides a series of
application programming interface (API) calls which applications programmers use
to accomplish detailed hardware manipulations and other operations. The API pro-
vides system calls by which a user program instructs the operating system to do the
work; the application developer simply has to know what routines to call to accom-
plish specific tasks (Fig. 1.1). Note that in Fig. 1.1, the area above the dashed line,
user space, indicates software components that are not part of the operating system
and cannot directly access the system’s physical resources. The area below the
dashed line, kernel space, indicates software components that are part of the oper-
ating system and have unrestricted access to system resources. We frequently use
this convention in our diagrams to indicate the privilege with which software com-
ponents execute. If an application attempts to misuse system resources, or if the

Figure 1.1 | Interaction between applications and the operating system.
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26 Introduction to Operating Systems

application attempts to use resources that it has not been granted, the operating
system must intervene to prevent the application from damaging the system or
interfering with other user applications.

If an operating system presents an environment conducive to developing appli-
cations quickly and easily, the operating system and the hardware are more likely to
be successful in the marketplace. The applications development environment created
by MS-DOS encouraged the development of tens of thousands of application soft-
ware packages. This in turn encouraged users to buy IBM PCs and compatibles. Win-
dows could well have an application base of a hundred thousand applications.

Once an application base (i.e., the combination of the hardware and the oper-
ating system environment in which applications are developed) is widely estab-
lished, it becomes extremely difficult to ask users and software developers to
convert to a completely new application development environment provided by a
dramatically different operating system. Thus, it is likely that new architectures
evolving over the next several years will make every effort to support the existing
major application bases.

1.11 Operating System Environments
This book focuses on operating system concepts related to general-purpose com-
puters with a range of resources, including sizable amounts of main memory, high
processor speeds, high-capacity disks, various peripheral devices, and so on. Such
computers are typically used as personal computers or as workstations.

Many of the concepts that apply to general-purpose computers also apply to
high-end Web and database servers, which contain high-performance hardware.
Operating systems intended for high-end environments must be designed to sup-
port large main memories, special-purpose hardware, and large numbers of pro-
cesses.We discuss these considerations in Chapter 15, Multiprocessor Management.

Embedded systems provide a different operating system design challenge.
They are characterized by a small set of specialized resources that provide function-
ality to devices such as cell phones and PDAs. In embedded environments, efficient
resource management is the key to building a successful operating system. Storage
is often limited, so the operating system must provide services using a minimal
amount of code. Considerations such as power management and the need for user-
friendly interfaces create other challenges in embedded operating system design.

Real-time systems require that tasks be performed within a particular (often
short) time frame. For example, the autopilot feature of an aircraft must constantly
adjust speed, altitude and direction. Such actions cannot wait indefinitely—and some-
times cannot wait at all—for other nonessential tasks to complete. Real-time operat-
ing systems must enable processes to respond immediately to critical events. Soft real-
time systems ensure that real-time tasks execute with high priority, but do not guaran-
tee which, if any, of these tasks will complete on time. Hard real-time systems guaran-
tee that all of their tasks complete on time. We discuss how Linux and Windows XP
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1.11 Operating System Environments 27

handle real-time applications in Chapters 20 and 21, respectively. These systems are
found in many settings including robotics, avionics and other system control applica-
tions. Often, they are used in mission-critical systems, where the system fails to meet
its objectives (i.e., mission) if any of its tasks are not successfully completed on time.
In mission-critical systems such as those for air traffic control, nuclear reactor moni-
toring and military command and control, people’s lives could be at risk.

Business-critical systems, such as Web servers and databases, must consis-
tently meet their objectives. In e-business, this could mean guaranteeing fast
response times to users purchasing products over the Internet; in large corpora-
tions, it could mean enabling employees to share information efficiently and ensur-
ing that important information is protected from problems such as power failures
and disk failures. Unlike mission-critical systems, the business does not necessarily
fail if a business-critical system does not always meet its objectives.

Some operating systems must manage hardware that may or may not physi-
cally exist in the machine. A virtual machine (VM) is a software abstraction of a
computer that often executes as a user application on top of the native operating
system.101 A virtual machine operating system manages the resources provided by
the virtual machine. One application of virtual machines is to allow multiple
instances of an operating system to execute concurrently. Another is emulation—
using software or hardware that mimics the functionality of hardware or software
not present in the system.

Virtual machines interface with the hardware in a system via the underlying
operating system; other user programs can interact with VMs. A VM can create
software components that represent the contents of physical systems—such as pro-
cessors, memory, communication channels, disks and clocks (Fig. 1.2).102 This allows
multiple users to share hardware under the illusion of being serviced by a dedicated
machine. By providing this illusion, virtual machines promote portability, the ability
for software to run on multiple platforms.

The Java Virtual Machine (JVM) is one of the most widely used virtual
machines. The JVM is the foundation of the Java platform and allows Java applica-
tions to execute on any JVM of the correct version, regardless of the platform on
which the JVM is installed. The company VMware Software also provides virtual
machines, particularly for the Intel architecture, enabling owners of Intel x86-based
computers to run operating systems such as Linux and Windows concurrently on
one computer (each virtual machine appears in its own window).103

Virtual machines tend to be less efficient than real machines because they
access the hardware indirectly (or simulate hardware that is not actually connected
to the computer). Indirect or simulated hardware access increases the number of
software instructions required to perform each hardware action.104

Self Review

1. What type of system would a temperature monitor in a nuclear power plant probably be
described as? Why?

2. Describe the advantages and disadvantage of virtual machines.
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28 Introduction to Operating Systems

Ans: 1) A hard real-time system would monitor the temperature in a nuclear power plant to
ensure that it is always in an appropriate range, and would notify operators in real time (i.e.,
instantly) if there was a problem. 2) Virtual machines promote portability by enabling software
to run on multiple platforms, but they tend to be less efficient than real machines, because vir-
tual machines must execute software instructions that simulate hardware operations.

1.12 Operating System Components and Goals
Computer systems have evolved from early systems containing no operating sys-
tem, to multiprogramming machines, to timesharing machines, to personal comput-
ers and finally to truly distributed systems. As the demand for new features and
improved efficiency grew and hardware changed, operating systems evolved to fill
new roles. This section describes various core operating system components and
explains several goals of operating systems.

1.12.1 Core Operating System Components
A user interacts with the operating system via one or more user applications. and
often through a special application called a shell, or command interpreter.105 Most
of today’s shells are implemented as text-based interfaces that enable the user to
issue commands from a keyboard or as GUIs that allow the user to point and click
and drag and drop icons to request services from the operating system (e.g., to open
an application). For example, Microsoft Windows XP provides a GUI through

Figure 1.2 | Schematic of a virtual machine.
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1.12 Operating System Components and Goals 29

which users can issue commands; alternatively, the user can open a command
prompt window that accepts typed commands.

The software that contains the core components of the operating system is
referred to as the kernel. Typical operating system core components include:

• the process scheduler, which determines when and for how long a process
executes on a processor.

• the memory manager, which determines when and how memory is allo-
cated to processes and what to do when main memory becomes full.

• the I/O manager, which services input and output requests from and to
hardware devices, respectively.

• the interprocess communication (IPC) manager, which allows processes to
communicate with one another.

• the file system manager, which organizes named collections of data on stor-
age devices and provides an interface for accessing data on those devices.

Almost all modern operating systems support a multiprogrammed environ-
ment in which multiple applications can execute concurrently. One of the most fun-
damental responsibilities of an operating system is to determine which processor
executes a process and for how long that process executes.

A program may contain several elements that share data and that can be exe-
cuted concurrently. For example, a Web browser may contain separate components to
read a Web page’s HTML, retrieve the page’s media (e.g., images, text and video) and
render the page by laying out its content in the browser window. Such program com-
ponents, which execute independently but perform their work in a common memory
space, are called threads.Threads are discussed in Chapter 4,Thread Concepts.

Typically, many processes compete to use the processor. The process sched-
uler can base its decisions on several criteria, such as importance of a process, its
estimated running time, or how long it has waited to obtain the processor. We dis-
cuss processor scheduling in Chapter 8, Processor Scheduling.

The memory manager allocates memory to the operating system and to pro-
cesses. To ensure that processes to do not interfere with the operating system or
with one another, the memory manager prevents each process from accessing mem-
ory that has not been allocated to it. Almost all of today’s operating systems sup-
port virtual memory, as discussed in Chapters 10 and 11.

Another core function of the operating system is to manage the computer’s
input/output (I/O) devices. Input devices include keyboards, mice, microphones
and scanners; output devices include monitors, printers and speakers. Storage
devices (e.g., hard disks, rewritable optical discs and tape) and network cards func-
tion as both input and output devices. When a process wishes to access an I/O
device, it must issue a system call to the operating system. That system call is subse-
quently handled by a device driver, which is a software component that interacts
directly with hardware, often containing device-specific commands and other
instructions to perform the requested input/output operations.
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30 Introduction to Operating Systems

Most computer systems can store data persistently (i.e., after the computer is
turned off). Because main memory is often relatively small and loses its data when
the power is turned off, persistent secondary storage devices are used, most com-
monly hard disks. Disk I/O—one of the most common forms of I/O—occurs when a
process requests access to information on a disk device.

Secondary storage, however, is much slower than processors and main mem-
ory. The disk scheduler component of an operating system is responsible for reor-
dering disk I/O requests to maximize performance and minimize the amount of
time a process waits for disk I/O. Redundant Array of Independent Disks (RAID)
systems attempt to reduce the time a process waits for disk I/O by using multiple
disks at once to service I/O requests. We discuss disk scheduling algorithms and
RAID systems in Chapter 12, Disk Performance Optimization.

Operating systems use file systems to organize and efficiently access named
collections of data called files located on storage devices. File system concepts are
addressed in Chapter 13, File and Database Systems.

Often, processes (or threads) cooperate to accomplish a common goal. Thus,
many operating systems provide interprocess communication (IPC) and synchroni-
zation mechanisms to simplify such concurrent programming. Interprocess commu-
nication enables processes to communicate via messages sent between the
processes (and threads); synchronization provides structures that can be used to
ensure that processes (and threads) share data properly. Processes and threads are
discussed in Chapters 3 through 8.

Self Review

1. Which operating system components perform each of the following operations?

a. Write to disk.

b. Determine which process will run next.

c. Determine where in memory a new process should be placed.

d. Organize files on disk.

e. Enable one process to send data to another.

2. Why is it dangerous to allow users to perform read or write operations to any region of
disk at will?

Ans: 1) a) I/O manager; b) processor scheduler; c) memory manager; d) file system man-
ager; e) interprocess communication (IPC) manager. 2) It is dangerous because users could
accidentally or maliciously overwrite critical data (such as operating system files) or read sen-
sitive information (such as confidential documents) without authorization.

1.12.2 Operating System Goals
Users have come to expect certain characteristics of operating systems, such as:

• efficiency 

• robustness 
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• scalability 

• extensibility 

• portability 

• security 

• interactivity

• usability 

An efficient operating system achieves high throughput and low average turn-
around time. Throughput measures the amount of work a processor can complete
within a certain time period. Recall that one role of an operating system is to provide
services to many applications. An efficient operating system minimizes the time spent
providing these services (see the Operating Systems Thinking feature, Performance).

A robust operating system is fault tolerant and reliable—the system will not
fail due to isolated application or hardware errors, and if it fails, it does so gracefully
(i.e., by minimizing loss of work and by preventing damage to the system’s hard-

Performance
One of the most important goals 
of an operating system is to maxi-
mize system performance. We are
performance conscious in our 
everyday lives. We measure our 
cars’ gasoline mileage, we record 
various speed records, professors 
assign grades to students, employ-
ees receive performance evalua-
tions from their employers, a
corporate executive’s perfor-
mance is measured by company 
profits, politicians’ performance is 
measured in frequent polls of their 
constituents and so on.

High performance is essential 
to successful operating systems.

However, performance is often “in 
the eye of the beholder”—there
are many ways to classify operat-
ing system performance. For 
batch-processing systems, through-
put is an important measure; for 
interactive timesharing systems,
fast response times are more
important.

Throughout the book we
present many performance
improvement techniques. For 
example, Chapter 8, Processor 
Scheduling, discusses allocating
processor time to processes to
improve system performance as 
measured by interactivity and

throughput. Chapter 11, Virtual
Memory Management, discusses 
allocating memory to processes 
to reduce their execution times.
Chapter 12, Disk Performance
Optimization, focuses on improv-
ing disk performance by reorder-
ing I/O requests. In Chapter 14,
Performance and Processor 
Design, we discuss evaluating sys-
tems according to several impor-
tant performance criteria.
Chapters 20, and 21 discuss per-
formance issues in the Linux and
Windows XP operating systems, 
respectively.

Operating Systems Thinking
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ware). Such an operating system will provide services to each application unless the
hardware it relies on fails.

A scalable operating system is able to use resources as they are added. If an
operating system is not scalable, then it will quickly reach a point where additional
resources will not be fully utilized.A scalable operating system can readily adjust its
degree of multiprogramming. Scalability is a particularly important attribute of
multiprocessor systems—as more processors are added to a system, ideally the pro-
cessing capacity should increase in proportion to the number of processes, though,
in practice, that does not happen. Multiprocessing is discussed in Chapter 15, Multi-
processor Management.

An extensible operating system will adapt well to new technologies and pro-
vide capabilities to extend the operating system to perform tasks beyond its original
design.

A portable operating system is designed such that it can operate on many
hardware configurations. Application portability is also important, because it is
costly to develop applications, so the same application should run on a variety of
hardware configurations to reduce development costs. The operating system is cru-
cial to achieving this kind of portability.

A secure operating system prevents users and software from accessing ser-
vices and resources without authorization. Protection refers to the mechanisms that
implement the system’s security policy.

An interactive operating system allows applications to respond quickly to user
actions, or events. A usable operating system is one that has the potential to serve a
significant user base. These operating systems generally provide an easy-to-use user
interface. Operating systems such as Linux, Windows XP and MacOS X are charac-
terized as usable operating systems, because each supports a large set of applica-
tions and provides standard user interfaces. Many experimental and academic
operating systems do not support a large number of applications or provide user-
friendly interfaces and therefore are not considered to be usable.

Self Review

1. Which operating system goals correspond to each of the following characteristics?

a. Users cannot access services or information without proper authorization.

b. The operating system runs on a variety of hardware configurations.

c. System performance increases steadily when additional memory and processors are
added.

d. The operating system supports devices that were not available at the time of its design.

e. Hardware failure does not necessarily cause the system to fail.

2. How does device driver support contribute to an operating system’s extensibility?

Ans: 1) a) security; b) portability; c) scalability; d) extensibility; e) robustness. 2) Device
drivers enable developers to add support for hardware that did not exist when the operating
system was designed. With each new type of device that is added to a system a corresponding
device driver must be installed.

000200010270588738

Operating Systems, Third Edition, by Harvey M. Deitel, Paul J. Deitel, and David R. Choffnes. Published by Prentice Hall. Copyright © 2004 by Pearson Education, Inc.



1.13 Operating System Architectures 33

1.13 Operating System Architectures
Today’s operating systems tend to be complex because they provide many services
and support a variety of hardware and software resources (see the Operating Sys-
tems Thinking feature, Keep It Simple (KIS) and the Anecdote,). Operating system
architectures can help designers manage this complexity by organizing operating
system components and specifying the privilege with which each component exe-
cutes. In the monolithic design, every component of the operating system is con-
tained in the kernel; in the microkernel design, only the essential components are
included. In the sections that follow, we survey several important architectures (see
the Operating Systems Thinking feature, Architecture).

1.13.1 Monolithic Architecture
The monolithic operating system is the earliest and most common operating system
architecture. Every component of the operating system is contained in the kernel and
can directly communicate with any other (i.e., simply by using function calls). The
kernel typically executes with unrestricted access to the computer system (Fig. 1.3).
OS/360, VMS and Linux are broadly characterized as monolithic operating sys-
tems.106 Direct intercommunication between components makes monolithic operat-
ing systems highly efficient. Because monolithic kernels group components together,

Keep It Simple (KIS)
Complex systems are costly to
design, implement, test, debug
and maintain. Often, operating 
systems designers will choose the 
simplest of several approaches to 
solving a particular problem.
Sometimes, though, a more com-
plex approach can yield perfor-
mance benefits or other 
improvements that make such an
approach worthwhile. Such trade-
offs are common in computing. A 
simple linear search of an array is 

trivial to program, but runs slowly 
compared to a more elegant and
complicated binary search. Tree
data structures can be more com-
plex to work with than arrays, but 
make it easier and faster to per-
form certain types of insertions 
and deletions. We typically con-
sider alternate approaches to 
solving operating systems prob-
lems and developing resource
management strategies. As you 
read these discussions, you will

see the trade-offs between sim-
plicity and complexity. As you 
read these solutions, you might 
be inclined to favor certain
approaches. The systems you 
work with in the future may 
demand different approaches.
Our philosophy is to present the
pros and cons of the popular 
approaches to help you prepare 
to make your own best judgment 
calls in industry.

Operating Systems Thinking
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however it is difficult to isolate the source of bugs and other errors. Further, because
all code executes with unrestricted access to the system, systems with monolithic ker-
nels are particularly susceptible to damage from errant or malicious code.

Self Review

1. What is the defining characteristic of a monolithic operating system?
2. Why do monolithic operating systems tend to be efficient? What is a key weakness of

monolithic kernels?

Figure 1.3 | Monolithic operating system kernel architecture.
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System Architect vs. System Engineer
If you enter the field of operating 
systems development and you 
become more senior, you may be
given a title like systems architect 
or systems engineer. A profes-
sional software colleague was a
guest speaker at a conference

some years ago. He was intro-
duced as a systems architect. He 
said: “You may wonder how that 
differs from being a systems engi-
neer.” He humbly explained the
difference with a building anal-
ogy: "When an engineer builds a

building, it's very well built, but 
it's so ugly that the people tear it 
down; when an architect builds a
building, it's very beautiful, but 
it falls down!"

Lesson to operating systems designers: You need to combine aspects of both architecture and engineering 
to insure that your systems are both well built and elegant. The latter goal is less important.

Anecdote
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Ans: 1) In a monolithic operating system every component of the operating system is con-
tained in the kernel. 2) Monolithic kernels tend to be efficient because few calls cross from
user space to kernel space. Because all OS code in monolithic kernels operates with unre-
stricted access to the computer’s hardware and software, these systems are particularly sus-
ceptible to damage from errant code.

1.13.2 Layered Architecture
As operating systems became larger and more complex, purely monolithic designs
became unwieldy. The layered approach to operating systems attempts to address
this issue by grouping components that perform similar functions into layers. Each
layer communicates exclusively with those immediately above and below it. Lower-
level layers provide services to higher-level ones using an interface that hides their
implementation.

Layered operating systems are more modular than monolithic operating sys-
tems, because the implementation of each layer can be modified without requiring
any modification to other layers. A modular system has self-contained componen
that can be reused throughout the system. Each component hides how it performs

Architecture
Just as architects use different 
approaches to designing build-
ings, operating systems designers 
employ different architectural
approaches to designing operat-
ing systems. Sometimes these
approaches are pure in that one
architectural approach is used 
throughout the system. Some-
times hybridized approaches are 
used, mixing the advantages of 
several architectural styles. The
approach the designer chooses 
will have monumental conse-
quences on the initial implemen-
tation and the evolution of the
operating system. It becomes 

increasingly difficult to change
approaches the further into the
development you proceed, so it is 
important to choose the proper 
architecture early in system devel-
opment. More generally, it is 
much easier to build the building
correctly in the first place than it 
is to modify the building after it 
has been built.

One of the most common
architectural approaches 
employed in software systems such
as operating systems is called lay-
ering. This software is divided into
modules called layers that each
perform certain tasks. Each layer 

calls the services provided by the
layer below it, while the imple-
mentation of that layer is hidden
from the layer above. Layering
combines the virtues of the soft-
ware engineering techniques of
modularity and information hiding 
to provide a solid basis for building
quality systems. We discuss layered 
software approaches throughout 
the book, starting with a historic
mention of Dijkstra's THE system
(see Section 1.13.2, Layered Archi-
tecture) and continuing to expla-
nations of how layering is used
in Linux and Windows XP in
Chapters 20, and 21, respectively.

Operating Systems Thinking
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its job and presents a standard interface that other components can use to request
its services. Modularity imposes structure and consistency on the operating sys-
tem—often simplifying validation, debugging and modification. However, in a lay-
ered approach, a user process’s request may need to pass through many layers
before it is serviced. Because additional methods must be invoked to pass data from
one layer to the next, performance degrades compared to that of a monolithic ker-
nel, which may require only a single call to service a similar request. Also, because
all layers have unrestricted access to the system, layered kernels are also suscepti-
ble to damage from errant or malicious code. The THE operating system is an early
example of a layered operating system (Fig. 1.4).107 Many of today’s operating sys-
tems, including Windows XP and Linux, implement some level of layering.

Self Review

1. How are layered operating systems more modular than monolithic operating systems?
2. Why do layered operating systems tend to be less efficient than monolithic operating sys-

tems?

Ans: 1) In layered operating systems, the implementation and interface are separate for
each layer. This allows each layer to be tested and debugged separately. It also enables
designers to change each layer’s implementation without needing to modify the other layers.
2) In layered operating systems, several calls may be required to communicate between the
layers, whereas this overhead does not exist in monolithic kernels.

1.13.3 Microkernel Architecture
A microkernel operating system architecture provides only a small number of ser-
vices in an attempt to keep the kernel small and scalable. These services typically
include low-level memory management, interprocess communication and basic pro-

Figure 1.4 | Layers of the THE operating system.
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cess synchronization to enable processes to cooperate. In microkernel designs, most
operating system components—such as process management, networking, file sys-
tem interaction and device management—execute outside the kernel with a lower
privilege level (Fig. 1.5).108, 109, 110, 111

Microkernels exhibit a high degree of modularity, making them extensible,
portable and scalable.112 Further, because the microkernel does not rely on each
component to execute, one or more components can fail, without causing the oper-
ating system to fail. However, such modularity comes at the cost of an increased
level of intermodule communication, which can degrade system performance.
Although few of today’s popular operating systems fully embrace the microkernel
design, Linux and Windows XP, for example, contain modular components.113

Self Review

1. What is the difference between a purely layered architecture and a microkernel architec-
ture?

2. How do microkernels promote portability?

Ans: 1) A layered architecture enables communication exclusively between operating sys-
tem components in adjacent layers. A microkernel architecture enables communication
between all operating system components via the microkernel. 2) The microkernel does not
depend on a particular hardware platform; support for new hardware can be provided by
loading a new module.

Figure 1.5 | Microkernel operating system architecture.
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1.13.4 Networked and Distributed Operating Systems
Advances in telecommunications technology have profoundly affected operating sys-
tems.A network operating system enables its processes to access resources (e.g., files)
that reside on other independent computers on a network.114 The structure of many
networked and distributed operating systems is often based on the client/server
model (Fig. 1.6). The client computers in such a network request resources—such as
files and processor time—via the appropriate network protocol. The servers respond
with the appropriate resources. In such networks, operating system designers must
carefully consider how to manage data and communication among computers.

Some operating systems are more “networked” than others. In a networked
environment, a process can execute on the computer on which it is created or on
another computer on the network. In some network operating systems, users can
specify exactly where their processes run; in others, the operating system deter-
mines where processes are executed. For example, the system may determine that a
process can be more efficiently executed on a computer experiencing a light load.115

Networked file systems are an important component of networked operating
systems. At the lowest level, users acquire resources on another machine by explic-
itly connecting to that machine and retrieving files. Higher-level network file sys-
tems enable users to access remote files as if they were on the local system.
Examples of network file systems include Sun’s Network File System (NFS) and

Figure 1.6 | Client/server networked operating system model.
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CMU’s Andrew and Coda file systems. Networked file systems are discussed in
detail in Chapter 18, Distributed Systems and Web Services.

A distributed operating system is a single operating system that manages
resources on more than one computer system. Distributed systems provide the illu-
sion that multiple computers are a single powerful computer, so that a process can
access all of the system’s resources regardless of the process’s location within the
distributed system’s network of computers.116 Distributed operating systems are
often difficult to implement and require complicated algorithms to enable processes
to communicate and share data. Examples of distributed operating systems are
MIT’s Chord operating system and the Amoeba operating system from the Vrije
Universiteit (VU) in Amsterdam.117, 118 We discuss distributed systems in
Chapter 17, Introduction to Distributed Systems.

Now that we have presented a seemingly endless stream of facts, issues, and
acronyms, we proceed with a discussion of the basic principles of computer hard-
ware and software in Chapter 2, Hardware and Software Concepts.

Self Review

1. What is the major difference between networked and distributed operating systems?
2. What is the primary advantage of a distributed operating system? What is the primary

challenge of designing one?

Ans: 1) A networked operating system controls one computer but cooperates with other
computers on the network. In a distributed operating system, one operating system controls
many computers in a network. 2) The primary advantage is that processes do not need to
know the locations of the resources they use, which simplifies applications programming. This
comes at the expense of the systems programmer, who must implement complicated algo-
rithms to enable processes to communicate and share data among many computers, creating
the illusion of there being only a single larger computer.

Web Resources
www.bell-labs.com/history/unix/
Provides a history of the UNIX operating system, from its ori-
gins in the Multics system to the mature UNIX operating sys-
tems of today. Discusses many of the design and architectural
considerations in the evolution of UNIX.

www.softpanorama.org/History/os_history.shtml
Provides a wealth of information on open-source software
from a historical perspective.

www.microsoft.com/windows/WinHistoryIntro.mspx
Provides a history of the Microsoft Windows family of operat-
ing systems.

www.viewz.com/shoppingguide/os.shtml
Compares several popular operating systems, including Win-
dows, Linux and MacOS, and provides a historical perspective.

developer.apple.com/darwin/history.html
Covers the evolution of Darwin, the core of Apple’s OS X
operating system.

www.cryptonomicon.com/beginning.html
Contains a link to the article, “In the Beginning Was the Com-
mand Line,” by Neal Stephenson. This text is a narrative
account of the recent history of operating systems, making col-
orful use of anecdote and metaphor.

www.acm.org/sigcse/cc2001/225.html
Lists the operating systems course curriculum recommenda-
tion from the ACM/IEEE Joint Task Force that completed the
Computing Curricula 2001 (CC2001) project. The curriculum
indicates key areas of coverage for a typical operating systems
course.
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whatis.techtarget.com/
Provides definitions for computer-related terms.

www.webopedia.com/
Provides an online dictionary and a search engine for com-
puter- and Internet-related terms.

www.wikipedia.org/
Wikipedia is a project aimed at creating a free, open and accu-
rate encyclopedia online. Any user may modify the entries in
the encyclopedia, and all entries are licensed under the GNU
Free Documentation License (GNUFDL).

Summary
Some years ago an operating system was defined as the
software that controls the hardware, but the landscape of
computer systems has evolved significantly since then,
requiring a more complicated description. To increase
hardware utilization, applications are designed to execute
concurrently. However, if these applications are not care-
fully programmed, they might interfere with one another.
As a result, a layer of software called an operating system
separates applications (the software layer) from the hard-
ware they access.

When a user requests that the computer perform an
action (e.g., execute an application or print a document),
the operating system manages the software and hardware
to produce the desired result. Operating systems are prima-
rily resource managers—they manage hardware, including
processors, memory, input/output devices and communica-
tion devices. The operating system must also manage appli-
cations and other software abstractions that, unlike
hardware, are not physical objects.

Operating systems have evolved over the last 60
years through several distinct phases or generations that
correspond roughly to the decades. In the 1940s, the earli-
est electronic digital computers did not include operating
systems. The systems of the 1950s generally executed only
one job at a time, but used techniques that smoothed the
transition between jobs to obtain maximum utilization of
the computer system. A job constituted the set of instruc-
tions that a program would execute. These early computers
were called single-stream batch-processing systems,
because programs and data were submitted in groups or
batches by loading them consecutively onto tape or disk.

The systems of the 1960s were also batch-processing
systems, but they used the computer’s resources more effi-
ciently by running several jobs at once. The systems of the
1960s improved resource utilization by allowing one job to
use the processor while other jobs used peripheral devices.
With these observations in mind, operating systems design-
ers developed multiprogramming systems that managed a
number of jobs at once, that number being indicated by the
system’s degree of multiprogramming.

In 1964, IBM announced its System/360 family of
computers. The various 360 computer models were
designed to be hardware compatible, to use the OS/360
operating system and to offer greater computer power as
the user moved upward in the series. More advanced oper-
ating systems were developed to service multiple interac-
tive users at once. Timesharing systems were developed to
support large numbers of simultaneous interactive users.

Real-time systems attempt to supply a response
within a certain bounded time period. The resources of a
real-time system are often heavily under-utilized. It is more
important for real-time systems to respond quickly when
needed than to use their resources efficiently.

Turnaround time—the time between submission of a
job and the return of its results—was reduced to minutes or
even seconds. The value of timesharing systems in support
of program development was demonstrated when MIT
used the CTSS system to develop its own successor, Mul-
tics. TSS, Multics and CP/CMS all incorporated virtual
memory, which enables programs to address more memory
locations than are actually provided in main memory,
which is also called real memory or physical memory.

The systems of the 1970s were primarily multimode
timesharing systems that supported batch processing, time-
sharing and real-time applications. Personal computing was
in its incipient stages, fostered by early and continuing
developments in microprocessor technology. Communica-
tions between computer systems throughout the United
States increased as the Department of Defense’s TCP/IP
communications standards became widely used—especially
in military and university computing environments. Secu-
rity problems increased as growing volumes of information
passed over vulnerable communications lines.

The 1980s was the decade of the personal computer
and the workstation. Rather than data being brought to a
central, large-scale computer installation for processing,
computing was distributed to the sites at which it was
needed. Personal computers proved to be relatively easy to
learn and use, partially because of graphical user interfaces
(GUI), which used graphical symbols such as windows,
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icons and menus to facilitate user interaction with pro-
grams. As technology costs declined, transferring informa-
tion between computers in computer networks became
more economical and practical. The client/server distrib-
uted computing model became widespread. Clients are
user computers that request various services; servers are
computers that perform the requested services.

The software engineering field continued to evolve, a
major thrust by the United States government being aimed
especially at providing tighter control of Department of
Defense software projects. Some goals of the initiative
included realizing code reusability and a greater degree of
abstraction in programming languages. Another software
engineering development was the implementation of pro-
cesses containing multiple threads of instructions that
could execute independently.

In the late 1960s, ARPA, the Advanced Research
Projects Agency of the Department of Defense, rolled out
the blueprints for networking the main computer systems
of about a dozen ARPA-funded universities and research
institutions. ARPA proceeded to implement what was
dubbed the ARPAnet—the grandparent of today’s Inter-
net. ARPAnet’s chief benefit proved to be its capability for
quick and easy communication via what came to be known
as electronic mail (e-mail). This is true even on today’s
Internet, with e-mail, instant messaging and file transfer
facilitating communications among hundreds of millions of
people worldwide.

The ARPAnet was designed to operate without cen-
tralized control. The protocols (i.e., set of rules) for com-
municating over the ARPAnet became known as the
Transmission Control Protocol/Internet Protocol (TCP/IP).
TCP/IP was used to manage communication between
applications. The protocols ensured that messages were
routed properly from sender to receiver and arrived intact.
Eventually, the government decided to allow access to the
Internet for commercial purposes.

The World Wide Web allows computer users to locate
and view multimedia-based documents (i.e., documents
with text, graphics, animations, audios or videos) on almost
any subject. Even though the Internet was developed more
than three decades ago, the introduction of the World Wide
Web (WWW) was a relatively recent event. In 1989, Tim
Berners-Lee of CERN (the European Center for Nuclear
Research) began to develop a technology for sharing infor-
mation via hyperlinked text documents. To implement this
new technology, He created the HyperText Markup Lan-
guage (HTML). Berners-Lee also implemented the Hyper-
text Transfer Protocol (HTTP) to form the communications

backbone of his new hypertext information system, which
he called the World Wide Web.

Hardware performance continued to improve expo-
nentially in the 1990s. Inexpensive processing power and
storage allowed users to execute large, complex programs
on personal computers and enabled small to mid-size com-
panies to use these economical machines for the extensive
database and processing jobs that earlier had been dele-
gated to mainframe systems. In the 1990s, the shift toward
distributed computing (i.e., using multiple independent
computers to perform a common task) rapidly accelerated.
As demand for Internet connections grew, operating sys-
tem support for networking tasks became standard. Users
at home and in large corporations increased productivity
by accessing the resources on networks of computers.

Microsoft Corporation became dominant in the
1990s. Its Windows operating systems, which borrowed
from many concepts popularized by early Macintosh oper-
ating systems (such as icons, menus and windows), enabled
users to navigate multiple concurrent applications with
ease.

Object technology became popular in many areas of
computing. Many applications were written in object-ori-
ented programming languages, such as C++ or Java. In
object-oriented operating systems (OOOS), objects repre-
sent components of the operating system. Object-oriented
concepts such as inheritance and interfaces were exploited
to create modular operating systems that were easier to
maintain and extend than operating systems built with pre-
vious techniques.

Most commercial software is sold as object code. The
source code is not included, enabling vendors to hide pro-
prietary information and programming techniques. Free
and open-source software became increasingly common in
the 1990s. Open-source software is distributed with the
source code, allowing individuals to examine and modify
the software before compiling and executing it. The Linux
operating system and the Apache Web server are both free
and open source.

In the 1980s, Richard Stallman, a developer at MIT,
launched the GNU project to recreate and extend most of
the tools for AT&T’s UNIX operating system. Stallman
created the GNU project because he disagreed with the
concept of paying for permission to use software. The Open
Source Initiative (OSI) was founded to further the benefits
of open-source programming. Open-source software facili-
tates enhancements to software products by permitting
anyone in the developer community to test, debug and
enhance applications. This increases the chance that subtle
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bugs, which could otherwise be security risks or logic
errors, will be caught and fixed. Also, individuals and cor-
porations can modify the source to create custom software
that meets the needs of a particular environment.

In the 1990s, operating systems became increasingly
user friendly. The GUI features that Apple had built into its
Macintosh operating system in the 1980s were widely used
in many operating systems and became more sophisticated.
“Plug-and-play” capabilities were built into operating sys-
tems, enabling users to add and remove hardware compo-
nents dynamically without manually reconfiguring the
operating system.

Middleware is software that links two separate appli-
cations, often over a network and often between incompat-
ible machines. It is particularly important for Web services
because it simplifies communication across multiple archi-
tectures. Web services encompass a set of related standards
that can enable any two computer applications to commu-
nicate and exchange data via the Internet. They are ready-
to-use pieces of software on the Internet.

When the IBM PC appeared, it immediately spawned
a huge software industry in which independent software
vendors (ISVs) were able to market software packages for
the IBM PC to run under the MS-DOS operating system. If
an operating system presents an environment conducive to
developing applications quickly and easily, the operating
system and the hardware are more likely to be successful in
the marketplace. Once an application base (i.e., the combi-
nation of the hardware and the operating system environ-
ment in which applications are developed) is widely
established, it becomes extremely difficult to ask users and
software developers to convert to a completely new appli-
cations development environment provided by a dramati-
cally different operating system.

Operating systems intended for high-end environ-
ments must be designed to support large main memories,
special-purpose hardware, and large numbers of processes.
Embedded systems are characterized by a small set of spe-
cialized resources that provide functionality to devices such
as cell phones and PDAs. In these environments, efficient
resource management is the key to building a successful
operating system.

Real-time systems require that tasks be performed
within a particular (often short) time frame. For example,
the autopilot feature of an aircraft must constantly adjust
speed, altitude and direction. Such actions cannot wait
indefinitely—and sometimes cannot wait at all—for other
nonessential tasks to complete.

Some operating systems must manage hardware that
may or may not physically exist in the machine. A virtual
machine (VM) is a software abstraction of a computer that
often executes as a user application on top of the native
operating system.A virtual machine operating system man-
ages the resources provided by the virtual machine. One
application of virtual machines is to allow multiple
instances of an operating system to execute concurrently.
Another use for virtual machines is emulation—the ability
to use software or hardware that mimics the functionality
of hardware or software not present in the system. By pro-
viding the illusion that applications are running on differ-
ent hardware or operating systems, virtual machines
promote portability—the ability for software to run on
multiple platforms—and many other benefits.

A user interacts with the operating system via one or
more user applications. Often, the user interacts with an
operating system through a special application called a
shell. The software that contains the core components of
the operating system is referred to as the kernel. Typical
operating system components include the processor sched-
uler, memory manager, I/O manager, interprocess commu-
nication (IPC) manager, and file system manager.

Almost all modern operating systems support a mul-
tiprogrammed environment in which multiple applications
can execute concurrently. The kernel manages the execu-
tion of processes. Program components, which execute
independently but use a single memory space to share data,
are called threads.

When a process wishes to access an I/O device, it must
issue a system call to the operating system. That system call
is subsequently handled by a device driver—a software com-
ponent that interacts directly with hardware—often contain-
ing device-specific commands and other instructions to
perform the requested input and output operations.

Users have come to expect certain characteristics of
operating systems, such as efficiency, robustness, scalability,
extensibility, portability, security and protection, interactiv-
ity and usability.

In a monolithic operating system, every component is
contained in the kernel. As a result, any component can
directly communicate with any other. Monolithic operating
systems tend to be highly efficient. A disadvantage of
monolithic designs is that it is difficult to determine the
source of subtle errors.

The layered approach to operating systems attempts
to address this issue by grouping components that perform
similar functions into layers. Each layer communicates
exclusively with the layers immediately above and below it.
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In a layered approach, a user process’s request may need to
pass through many layers before completion. Because
additional methods must be invoked to pass data and con-
trol from one layer to the next, system throughput
decreases compared to that with a monolithic kernel, which
may require only a single call to service a similar request.

A microkernel operating system architecture pro-
vides only a small number of services in an attempt to keep
the kernel small and scalable. Microkernels exhibit a high
degree of modularity, making them extensible, portable

and scalable. However, such modularity comes at the cost
of an increased level of intermodule communication, which
can degrade system performance.

A network operating system runs on one computer
and allows its processes to access resources such as files and
processors on a remote computer. A distributed operating
system is a single operating system that manages resources
on more than one computer system. The goals of a distrib-
uted operating system include transparent performance,
scalability, fault tolerance and consistency.

Key Terms
Advanced Research Projects Agency (ARPA)—Government

agency under the Department of Defense that laid the
groundwork for the Internet; it is now called the Defense
Advanced Research Projects Agency (DARPA).

application base—Combination of the hardware and the oper-
ating system environment in which applications are devel-
oped. It is difficult for users and application developers to
convert from an established application base to another.

application programming interface (API)—Specification that
allows applications to request services from the kernel by
making system calls.

ARPAnet—Predecessor to the Internet that enabled research-
ers to network their computers. ARPAnet’s chief benefit
proved to be quick and easy communication via what
came to be known as electronic mail (e-mail).

bandwidth—Information-carrying capacity of a communica-
tions line.

business-critical system—System that must function properly,
but whose failure of which leads to reduced productivity
and profitability; not as crucial as a mission-critical sys-
tem, where failure could put human lives could be at risk.

C—High-level programming language that was designed and
used to implement the UNIX operating system.

client—Process that requests a service from another process (a
server). The machine on which the client process runs is
also called a client.

compute-bound—See processor-bound.

CP/CMS—Timesharing operating system developed by IBM
in the 1960s.

CTSS—Timesharing operating system developed at MIT in
the 1960s.

degree of multiprogramming—Number of programs a system
can manage at a time.

device driver—Software through which the kernel interacts
with hardware devices. Device drivers are intimately
familiar with the specifics of the devices they manage—
such as the arrangement of data on those devices—and
they deal with device-specific operations such as reading
data, writing data and opening and closing a DVD drive’s
tray. Drivers are modular, so they can be added and
removed as a system’s hardware changes, enabling users
to add new types of devices easily; in this way they con-
tribute to a system’s extensibility.

disk scheduler—Operating system component that determines
the order in which disk I/O requests are serviced to
improve performance.

distributed computing—Using multiple independent comput-
ers to perform a common task.

distributed operating system—Single operating system that
provides transparent access to resources spread over mul-
tiple computers.

distributed system—Collection of computers that cooperate to
perform a common task.

efficient operating system—Operating system that exhibits
high throughput and small turnaround time.

embedded system—Small computer containing limited
resources and specialized hardware to run devices such as
PDAs or cellular phones.

extensible operating system—An operating system that can
incorporate new features easily.

fault tolerance—Operating system’s ability to handle software
or hardware errors.

file system manager—Operating system component that orga-
nizes named collections of data on storage devices and
provides an interface for accessing data on those devices.
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General Public License (GPL)—Open-source software license
which specifies that software distributed under it must
contain the complete source code, must clearly indicate
any modifications to the original code and must be accom-
panied by the GPL. End users are free to modify and
redistribute any software under the GPL.

GNU—Project initiated by Stallman in the 1980s aimed at pro-
ducing an open-source operating system with the features
and utilities of UNIX.

graphical user interface (GUI)—User-friendly point of access
to an operating system that uses graphical symbols such as
windows, icons and menus to facilitate program and file
manipulation.

HyperText Markup Language (HTML)—Language that speci-
fies the content and arrangement of information on a Web
page and provides hyperlinks to access other pages.

Hypertext Transfer Protocol (HTTP)—Network protocol
used for transferring HTML documents and other data
formats between a client and a server. This is the key pro-
tocol of the World Wide Web.

I/O-bound—Process (or job) that tends to use a processor for
a short time before generating an I/O request and relin-
quishing a processor.

I/O manager—Operating system component that receives,
interprets and performs I/O requests.

independent software vendor (ISV)—Organization that devel-
ops and sells software. ISVs prospered after the release of
the IBM PC.

interactive operating system—Operating system that allows
applications to respond quickly to user input.

interactive users—Users that are present when the system pro-
cesses their jobs. Interactive users communicate with their
jobs during execution.

Internet—Network of communication channels that provides
the backbone for telecommunication and the World Wide
Web. Each computer on the Internet determines which
services it uses and which it makes available to other com-
puters connected to the Internet.

interprocess communication (IPC) manager—Operating sys-
tem component that governs communication between
processes.

Java Virtual Machine (JVM)—Virtual machine that enables
Java programs to execute on many different architectures
without recompiling Java programs into the native
machine language of the computer on which they execute.
The JVM promotes application portability and simplifies
programming by freeing the programmer from architec-
ture-specific considerations.

job—Set of work to be done by a computer.

kernel—Software that contains the core components of an
operating system.

layered operating system—Modular operating system that
places similar components in isolated layers. Each layer
accesses the services of the layer below and returns results
to the layer above.

level of multiprogramming—See degree of multiprogramming.

massive parallelism—Property of a system containing large
numbers of processors so that many parts of computations
can be performed in parallel.

memory manager—Operating system component that controls
physical and virtual memory.

microkernel operating system—Scalable operating system that
puts a minimal number of services in the kernel and
requires user-level programs to implement services gener-
ally delegated to the kernel in other types of operating
systems.

middleware—Layer of software that enables communication
between different applications. Middleware simplifies
application programming by performing work such as net-
work communication and translation between different
data formats.

mission-critical system—System that must function properly;
its failure could lead to loss of property, money or even
human life.

monolithic operating system—Operating system whose kernel
contains every component of the operating system. The
kernel typically operates with unrestricted access to the
computer system.

Multics—One of the first operating systems to implement vir-
tual memory. Developed by MIT, GE and Bell Laborato-
ries as the successor to MIT’s CTSS.

multiprogramming—Ability to store multiple programs in
memory at once so that they can be executed concur-
rently.

network operating system—Operating system that can manip-
ulate resources at remote locations but does not hide the
location of these resources from applications (as distrib-
uted systems can).

object-oriented operating system (OOOS)—Operating system
in which components and resources are represented as
objects. Object-oriented concepts such as inheritance and
interfaces help create modular operating systems that are
easier to maintain and extend than operating systems
built with previous techniques. Many operating systems
use objects, but few are written entirely using object-ori-
ented languages.
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online—State describing a computer that is turned on (i.e.,
active) and directly connected to a network.

open-source software—Software that includes the applica-
tion’s source code and is often distributed under the Gen-
eral Public License (GPL) or a similar license. Open-
source software is typically developed by teams of inde-
pendent programmers worldwide.

open-source initiative (OSI)—Group that supports and pro-
motes open-source software (see www.opensource.com).

operating system—Software that manages system resources to
provide services that allow applications to execute prop-
erly.An operating system may manage both hardware and
software resources. Operating systems provide an applica-
tion programming interface to facilitate application devel-
opment. They also help make system resources
conveniently available to users while providing a reliable,
secure and responsive environment to applications and
users.

portability—Property of software that can run on different
platforms.

portable operating system—Operating system that is designed
to operate on many hardware configurations.

Portable Operating Systems Interface (POSIX)—API based
on early UNIX operating systems.

priority of a process—Importance or urgency of a process rela-
tive to other processes.

process scheduler—Operating system component that deter-
mines which process can gain access to a processor and for
how long.

process—An executing program.

processor-bound—Process (or job) that consumes its quantum
when executing. These processes (or jobs) tend to be cal-
culation intensive and issue few, if any, I/O requests.

protection—Mechanism that implements a system’s security
policy by preventing applications from accessing
resources and services without authorization.

real-time system—System that attempts to service requests
within a specified (usually short) time period. In mission-
critical real-time systems (e.g., air traffic control and petro-
leum refinery monitors), money, property or even human
life could be lost if requests are not serviced on time.

robust operating system—Operating system that is fault toler-
ant and reliable—the system will not fail due to unex-
pected application or hardware errors (but if it must fail,
it does so gracefully). Such an operating system will pro-
vide services to each application unless the hardware
those services requires fails to function.

scalable operating system—Operating system that is able to
employ resources as they are added to the system. It can
readily adapt its degree of multiprogramming to meet the
needs of its users.

secure operating system—Operating system that prevents
users and software from gaining unauthorized access to
services and data.

server—Process that provides services to other processes
(called clients). The machine on which these processes run
is also called a server.

shell—Application (typically GUI or text based) that enables
a user to interact with an operating system

single-stream batch-processing system—Early computer sys-
tem that executed a series of noninteractive jobs sequen-
tially, one at a time.

system call—Call from a user process that invokes a service of
the kernel.

thread—Entity that describes an independently executable
stream of program instructions (also called a thread of
execution or thread of control). Threads facilitate parallel
execution of concurrent activities within a process.

throughput—Amount of work performed per unit time.

timesharing system—Operating system that enables multiple
simultaneous interactive users.

Transmission Control Protocol/Internet Protocol (TCP/IP)—
Family of protocols that provide a framework for net-
working on the Internet.

TSS—Operating system designed by IBM in the 1960s that
offered timesharing and virtual memory capabilities.
Although it was never released commercially, many of its
capabilities appeared in later IBM systems.

turnaround time—Time it takes from the submission of a
request until the system returns the result.

UNIX—Operating system developed at Bell Laboratories that
was written using the C high-level programming language.

usable operating system—Operating system that has the
potential to serve a significant user base by providing an
easy-to-use interface and supporting a large set of user-
oriented applications.

virtual machine—Application that emulates the functionality
of a computer system. A virtual machine can execute
applications that are not directly compatible with the
physical system that runs the virtual machine. The user
“sees” the computer not as the virtual machine, but as the
underlying physical machine.

virtual memory—Capability of operating systems that enables
programs to address more memory locations than are
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actually provided in main memory. Virtual memory sys-
tems help remove much of the burden of memory man-
agement from programmers, freeing them to concentrate
on application development.

VM operating system—One of the first virtual machine oper-
ating systems; developed at IBM in the 1960s and still
used widely today; its latest version is the z/VM.

Web services—Set of services and related standards that can
allow any two computer applications to communicate and
exchange data over the Internet. Web services operate

using open, text-based standards that enable components
written in different languages and on different platforms
to communicate. They are ready-to-use pieces of software
on the Internet.

World Wide Web (WWW)—Collection of hyperlinked docu-
ments accessible via the Internet using the Hypertext
Transfer Protocol (HTTP). Web documents are typically
written in languages such as HyperText Markup Language
(HTML) and Extensible Markup Language (XML).

Exercises
1.1 Distinguish between multiprogramming and multipro-
cessing.What were the key motivations for the development of
each?

1.2 Briefly discuss the significance of each of the following
systems mentioned in this chapter:

a. MS-DOS

b. CTSS

c. Multics

d. OS/360

e. TSS

f. UNIX

g. Macintosh

1.3 What developments made personal computing feasible?

1.4 Why is it impractical to use a virtual machine for a hard
real-time system?

1.5 What role did the development of graphical user inter-
faces play in the personal computer revolution?

1.6 The GNU Public License (GPL) promotes software that
is free, as in “freedom.” How does the GPL provide such free-
dom?

1.7 How has distributed computing affected operating sys-
tem design?

1.8 What are the advantages and disadvantages of commu-
nication between computers?

1.9 Define, compare, and contrast each of the following
terms:

a. online

b. real time

c. interactive computing

d. timesharing

1.10 How do middleware and Web services promote interop-
erability?

1.11 Evaluate monolithic, layered and microkernel architec-
tures according to

a. efficiency.

b. robustness.

c. extensibility.

d. security.

Suggested Projects
1.12 Prepare a research paper on the Linux operating system.
In what ways does it support Stallman’s “free as in freedom”
doctrine for software? In what ways does Linux conflict with
this philosophy?

1.13 Prepare a research paper on the Internet and how its
pervasive use affects operating system design.

1.14 Prepare a research paper on the open-source software
movement. Discuss whether all open-source software is free,

as in both “freedom” and “price.” How do the GPL and similar
licenses promote open-source software?

1.15 Prepare a research paper on the evolution of operating
systems. Be sure to mention the key hardware, software and
communications technologies that encouraged each new oper-
ating system innovation.

1.16 Prepare a research paper on the future of operating sys-
tems.
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1.17 Prepare a research paper giving a thorough taxonomy of
past and present operating systems.

1.18 Prepare a research paper on Web services. Discuss the
key technologies on which the Web services infrastructure is
being built. How will the availability of Web services affect
applications development?

1.19 Prepare a research paper on business-critical and mission-
critical applications. Discuss the key attributes of hardware,
communications software and operating systems that are essen-
tial to building systems to support these types of applications.

1.20 Prepare a research paper on virtual machine systems. Be
sure to investigate IBM’s VM operating system and Sun’s Java
Virtual Machine (JVM).

1.21 Prepare a research paper on operating systems and the
law. Survey legislation related to operating systems.

1.22 Prepare a research paper on the impact of operating sys-
tems on business and the economy.

1.23 Prepare a research paper on operating systems and secu-
rity and privacy. Be sure to consider the issues of worms and
viruses.

1.24 Prepare a research paper on the ethical issues with
which operating systems designers must be concerned. Be sure
to deal with issues such as the use of computer systems in war-
fare and in life-threatening situations, viruses and worms, and
other important topics you discover as you do your research
for your paper.

1.25 List several trends leading the way to future operating
systems designs. How will each affect the nature of future sys-
tems?

1.26 Prepare a research paper discussing the design of mas-
sively parallel systems. Be sure to compare large-scale multi-
processor systems (e.g., the Hewlitt-Packard Superdome
supercomputer, which contains up to 64 processors;
www.hp.com/products1/servers/scalableservers/
superdome/) to clustered systems and server farms that con-
tain hundreds or thousands of low-end computers that cooper-
ate to perform common tasks (see, for example,
www.beowulf.org). Use www.top500.org, a listing of the
world’s most powerful supercomputers, to determine the type
of tasks that each of these massively parallel systems performs.

1.27 What trends are leading the way to dramatic increases in
parallel computation? What challenges must be addressed by
hardware designers and software designers before parallel
computation will become widely used?

1.28 Prepare a research paper that compares MIT’s Exokernel
(www.pdos.lcs.mit.edu/exo.html) and CMU’s Mach micro-
kernel (www-2.cs.cmu.edu/afs/cs.cmu.edu/project/
mach/public/www/mach.html) research operating systems.119

What is the primary focus of each operating system? Be sure to
mention how the researchers organized components such as
memory management, disk scheduling and process manage-
ment. Has either or both of these systems become commercially
successful? Has either or both of these systems influenced the
designs of commercially successful operating systems?

1.29 Why have UNIX and UNIX-based systems continued to
be popular in recent decades? How does Linux impact the
future of UNIX systems?

Recommended Reading
This section will be used throughout the book to provide the
reader with references to seminal books and papers and current
research on the topic of each chapter. Many of the papers that
are cited in each chapter can be found in one of several journals
associated with either the Association of Computing Machinery
(ACM) or the Institute of Electrical and Electronics Engineers
(IEEE). Communications of the ACM is the ACM’s flagship
journal, containing research papers, editorials and features
about contemporary topics in computer science. The ACM also
sponsors several special-interest groups (SIGs), each dedicated
to particular fields of computer science. SIGOPS, the SIG for
the field of operating systems (www.acm.org/sigops/), holds
annual conferences and publishes the Operating Systems
Review. The IEEE Computer Society (www.computer.org), the

largest IEEE society, publishes several journals related to com-
puter science, including the popular IEEE Computer (www.com-
puter.org/computer/). The reader is encouraged to join the
ACM, SIGOPS and the IEEE Computer Society. In the Web
Resources section, we have listed several links to sites that
recount the history of operating systems. An enlightening
account of the design and development of the OS/360 operating
system can be found in Frederick P. Brooks, Jr.’s The Mythical
Man-Month.120 Per Brinch Hansen’s Classic Operating Systems:
From Batch to Distributed Systems provides an anthology of
papers describing the design and development of innovative and
pioneering operating systems.121 The bibliography for this chap-
ter is located on our Web site at www.deitel.com/books/
os3e/Bibliography.pdf.
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"Now! Now!" cried tke Queen. "Faster! Faster!" 
—Lewis Carroll— 

To conquer without risk is to triumph witout glory. 
—Pierre Corneille — 

Our life is frittered away by detail ...Simplify, simplify. 
—Henry Thoreau— 

O holy simplicity! 
—John Huss — 
(Last words, at the stake) 



Chapter 2 

Hardware and 
Software Concepts 

Objectives 
After reading this chapter, you should understand: 

• hardware components that must be managed by an operating system. 

• how hardware has evolved to support operating system functions. 

• how to optimize performance of various hardware devices. 

• the notion of an application programming interface (API). 

• the process of compilation, linking and loading. 



Chapter Outline 

2.1 
Introduction 

Evolution of Hardware Devices 
Biographical Note: Gordon Moore and 

Moore's law 

Hardware Components 
2.3.1 Mainboards 

2.3.2 Processors 

2..3.3 Clocks 

2.3.4 Memory Hierarchy 
Operating Systems Thinking: Cachung 

2.3.5 Main Memory 
2.3.6 Secondary Storage 

2.3.7 Buses 
2.3.8 Direct Memory Access (DMA) 

Operating Systems Thinking: Legacy 
Hardware and Software 

2.3.9 Peripheral Devices 

2.4 
Hardware Support for Operating 

Systems 
2.4.1 Processor 

Operating Systems Thinking: Principle 
of least Privilege 

Operating Systems Thinking: 
Protection 

Anecdote: Origins of the Term "Glitch" 
2.4.2 Timers and Clocks 

2.4.3 Bootstrapping 
2.4.4 Plug and Play 

2.5 
Caching and Buffering 

Operating Systems Thinking: 
Heuristics 

2.6 
Software Overview 

2.6.1 Machine language and Assembly 
language 

2.6.2 Interpreter and Compilers 
2.6.3 High-level languages 

2.6.4 Structured Programming 
2.6.5 Object-Oriented Programming 

2.7 
Application Programming 

Interfaces (APIs) 

2.8 
Compiling, linking and loading 

2.8.1 Compiling 
2.8.2 Linking 

54 



Mini Case Study: Mach 
2.8.3 Loading 

2.9 
Firmware 
2.10 
Middleware 

Web Resources | Summary | Key Terms | Exercises | Recommended Reading | Works Cited 

55 



56 Hardware and Software Concepts 

2.1 Introduction 
Today's computers allow users to access the Internet, browse Web pages, display 
graphics and video, play music and games —and more. Personal and office comput
ers increase productivity by managing large amounts of data, providing application-
development tools and presenting an intuitive interface for authoring content. Net
works of computers coordinate to perform vast numbers of calculations and trans-
actions per second. In the mobile computing market, cell phones store phone 
numbers, send and receive text messages and even capture photos and video. All of 
these computers contain various types of hardware and software, and they are all 
managed by operating systems. 

Because the operating system is primarily a resource manager, its design must 
be intimately tied to the hardware and software resources that it manages. These 
resources include processors, memory, secondary storage (such as hard disks), other 
I/O devices, processes, threads, files, databases and so on. As computers evolve, 
operating systems must adapt to emerging hardware and software technologies and 
maintain compatibility with an installed base of older hardware and software. In 
this chapter, we introduce hardware and software concepts. 

1. List some common hardware and software resources managed by operating systems. 
2. List the types of data referenced in the preceding introduction. 

Ans: 1) Processors, memory, secondary storage and other devices, processes, threads, files 
and databases. 2) Web pages, graphics, video, music, game data, office data, content, transac-
tion data, cell phone numbers, text messages, photos, data in memory, data in secondary stor
age, data input or output by I/O devices and data processed by processors. 

Every time technological development has allowed for increased computing speeds, 
the new capabilities have immediately been absorbed by demands placed on comput
ing resources by more ambitious applications. Computing appears to be an inexhaust-
ible resource. Ever more interesting problems await the availability of increasingly 
powerful computing systems, as predicted by Moore's law (see the Biographical Note. 
Gordon Moore and Moore's Law). We have a "chicken or the egg" situation. Is it 
increasing applications demands that force computing technology to evolve, or is it 
improvements in technology that tempt us to think about new and innovative applica
tions? 

Initially, systems programming, which entailed writing code to perform hard
ware management and provide services to programs, was relatively straightforward 
because the operating system managed a small number of programs and hardware 
resources. Operating systems facilitate applications programming, because devel
opers can write software that requests services and resources from the operating 
system to perform tasks (e.g., text editing, loading Web pages or payroll processing) 
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wiithout needing to write code to perform device management. As the number of 

hardware manufacturers and devices proliferated, operating systems became more 

complex.To facilitate systems programming and improve extensibility, most operat

ing systems are written to be independent of a system's particular hardware config-

uration. Operating systems use device drivers, often provided by hardware 

manufacturers, to perform device-specific I/O operations. This enables the operat

ing system to support a new device simply by using the appropriate device driver. In 

faet. device drivers are such an integral part of today's systems that they comprise 

approximately 60 percent of the source code for the Linux kernel.1 

Many hardware components have been designed to interact with the operat

ing system in a way that facilitates operating system extensibility. For example, 

plug-and-play devices identify themselves to the operating system when they are 

Biographical Note 

Gordon Moore and Moore's law 
Dr. Gordon E. Moore earned his trol electric current (just as a light The reduction in transistor size 

B.S. in Chemistry from the Univer- switch is turned on or off). The has outpaced the growth of the 

sity of California at Berkeley and faster the switch can be fl ipped, number of transistors on the die 

Ph.D. in Chemistry and Physics the faster the processor can exe- (i.e., the chip containing the pro

from the California Institute of cute; the more transistors, the cessor), providing increased com-

Technology.2 He co-founded the more tasks a processor can do at putational power from smaller 

Intel Corporation, the largest pro- once. Moore predicted that the processors. Smaller transistors also 

cessor manufacturer in the com- increase in transistor count would operate faster than large ones. 

puting industry. Moore is continue for about a decade. By Recent advances in nano-

currently a Chairman Emeritus of 1975, Moore adjusted his " law" to technology (technology at the 

Intel Corporation.3 He is also predict that transistor counts scale of molecules) have enabled 

known for his prediction regard- would double every 24 months. semiconductor manufacturers to 

ing the progress of computing Currently, processor perfor- create transistors consisting of a 

power that has been named mance is doubling roughly every handful of atoms. Soon, however, 

Moore's law. Contrary to its 18 months and transistor count is researchers wil l be limited by the 

name, Moore's law is not a prov- doubling every 24 months size of an atom when designing 

able fact. In Moore's 1965 paper, (Fig. 2.1). A key factor that a transistor. To continue to extend 

"Cramming More Components enables this is that the cost per Moore's law, companies such as 

onto Integrated Circuits," he transistor in processors is decreas- Intel are investigating new tech-

observed that the number of tran- ing exponentially. There are other niques to modify transistor con-

sistors in processors had doubled trends related to Moore's law. For struction and create high-

roughly every year.4 Transistors one, the size of transistors is performance alternatives to tran-

are miniature switches that con- becoming exponentially smaller. sistor technology.5 
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connected to the computer (see Section 2.4.4, Plug and Play). This enables the oper
ating system to select and use an appropriate device driver with little or no user 
interaction, simplifying the installation of a new device. From the user perspective, 
devices that are added to the system are ready to use almost immediately. 

The hardware discussions in the next several sections focus on general-pur
pose computers (e.g., personal computers and servers) —special-purpose comput
ers, such as those in cell phones or cars, are beyond the scope of this book. We 
discuss the common hardware components found in typical computer systems, then 
focus on hardware components specifically designed to support operating system 
functionality. 

Self Review 
1. Why are operating systems more difficult to design today than 50 years ago? 
2. How do drivers and interfaces such as plug-and-play facilitate operating system extensi

bility? 

Figure 2.1 \ Transistor count plotted against time for Intel processors.6 
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Ans: 1) The operating systems of 50 years ago managed a small number of programs and 
hardware devices. Today's operating systems typically manage a large number of programs 
and a set of hardware devices that vary from one computer to another. 2) Drivers free the 
operating system designer from the details of interacting with hardware devices. Operating 

systems can support new hardware simply by using the appropriate device driver. Plug-and-
play devices enable the operating system to easily identify a computer's hardware resources, 

which facilitates installation of devices and their corresponding drivers. From the user per
ective, a device is ready to use almost immediately after it is installed. 

2.3 Hardware Components 
A computer's hardware consists of its physical devices—processor(s), main mem
ory and input/output devices. The following subsections describe hardware compo
ents that an operating system manages to meet its users' computing needs. 

2.3.1 Mainboards 
Computers rely on interactions between many hardware devices to satisfy the 
requirements of the system. To enable communication among independent devices, 
computers are equipped with one or more printed circuit boards (PCBs). A PCB is 
a hardware component that provides electrical connections between devices at var
ious locations on the board. 

The mainboard (also called the motherboard), the central PCB in a system, 
can be thought of as the backbone of a computer. The mainboard provides slots 
into which other components—such as the processor, main memory and other 
hardware devices —are inserted. These slots provide access to the electrical connec
tions between the various hardware components and enable users to customize 
their computers' hardware configuration by adding devices to, and removing them 
from, the slots. The mainboard is one of four hardware components required to exe
cute instructions in a general-purpose computer. The other three are the processor 
(Section 2.3.2, Processors), main memory (Section 2.3.5, Main Memory) and sec
ondary storage (Section 2.3.6, Secondary Storage). 

Traditional metal wires are too wide for establishing the large number of elec
trical connections between components in today's systems. Thus, mainboards typi
cally consist of several extremely thin layers of silicon containing microscopic 
electrical connections called traces that serve as communication channels and pro
vide connectivity on the board. A large set of traces forms a high-speed communi
cation channel known as a bus. 

Most mainboards include several computer chips to perform low-level opera
tions. For example, mainboards typically contain a basic input/output system (BIOS) 
chip that stores instructions for basic hardware initialization and management. The 
BfOS is also responsible for loading the initial portion of the operating system into 
memory, a process called bootstrapping (see Section 2.4.3, Bootstrapping). After the 
operating system has been loaded, it can use the BIOS to communicate with a sys
tem's hardware to perform low-level (i.e., basic) I/O operations. Mainboards also 
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contain chips called controllers that manage data transfer on the board's buses. A 
mainboard's chipset is the collection of controllers, coprocessors, buses and other 
hardware integrated onto the mainboard that determine the system's hardware capa
bilities (e.g., which types of processors and memory are supported). 

A recent trend in mainboard design is to integrate powerful hardware compo
nents onto the PCB. Traditionally, many of these were inserted into slots as add-on 
cards. Many of today's mainboards include chips that perform graphics processing, 
networking and RAID (Redundant Array of Independent Disks) operations. These 
on-board devices reduce the overall system cost and have contributed significantly 
to the continuing sharp decline in computer prices. A disadvantage is that they are 
permanently attached to the mainboard and cannot be replaced easily. 

Self Review 
1. What is the primary function of the mainboard? 
2. Why is the BIOS crucial to computer systems? 

Ans: 1) The mainboard serves as the backbone for communication between hardware com
ponents, allowing them to communicate via the electrical connections on the board. 2) The 
BIOS performs basic hardware initialization and management and loads the initial compo
nent of the operating system into memory. The BIOS also provides instructions that enable 
the operating system to communicate with system hardware. 

2.3.2 Processors 
A processor is a hardware component that executes a stream of machine-language 
instructions. Processors can take many forms in computers, such as a central pro
cessing unit (CPU), a graphics coprocessor or a digital signal processor (DSP). A 
CPU is a processor that executes the instructions of a program; a coprocessor, such 
as a graphics or digital signal processor, is designed to efficiently execute a limited 
set of special-purpose instructions (such as 3D transformations). In embedded sys
tems, processors might perform specific tasks, such as converting a digital signal to 
an analog audio signal in a cell phone—an example of a DSP. As a primary proces
sor in the system, a CPU executes the bulk of the instructions, but might increase 
efficiency by sending computationally intensive tasks to a coprocessor specifically 
designed to handle them. Throughout the rest of this book, we use the term "pro
cessor" or "general-purpose processor" when referring to a CPU. 

The instructions a processor can execute are defined by its instruction set. The 
size of each instruction, or the instruction length, might differ among architectures 
and within each architecture—some processors support multiple instruction sizes. 
The processor architecture also determines the amount of data that can be operated 
on at once. For instance, a 32-bit processor manipulates data in discrete units of 32 
bits. 

Modern processors perform many resource management operations in hard
ware to boost performance. Such features include support for virtual memory and 
hardware interrupts—two important concepts discussed later in this book. 



2.3 Hardware Components 61 

Despite the variety of processor architectures, several components are present 
in almost all contemporary processors. Such components include the instruction 
fetch unit, branch predictor, execution unit, registers, caches and a bus interface 
Fig. 2.2). The instruction fetch unit loads instructions into high-speed memory 

cailed instruction registers so that the processor can execute the instruction quickly. 
The instruction decode unit interprets the instruction and passes the corresponding 
input for the execution unit to perform the instruction. The main portion of the exe

cution unit is the arithmetic and logic unit (ALU), which performs basic arithmetic 
and logical operations, such as addition, multiplication and logical comparisons 
(note that the "V" shape of the ALU is common in architecture diagrams). 

The bus interface allows the processor to interact with memory and other 
devices in the system. Because processors typically operate at much higher speeds 
than main memory, they contain high-speed memory called cache that stores copies 
of data in main memory. Caches increase processor efficiency by enabling fast 
access to data and instructions. Because high-speed caches are significantly more 
expensive than main memory, they tend to be relatively small.The caches are classi
fied in levels—Level 1 (LI) is the fastest and most expensive cache and is located on 
the processor; the Level 2 (L2) cache, which is larger and slower than the LI cache, 

Figure 2.2 | Processor components. 
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is often located on the mainboard, but is increasingly being integrated onto the pro
cessor to improve performance.7 

Registers are high-speed memories located on a processor that hold data for 
immediate use by the processor. Before a processor can operate on data, the data 
must be placed in registers. Storing processor instructions in any other slower type 
of memory would be inefficient, because the processor would idle while waiting for 
data access. Registers are hard-wired to the processor circuitry and physically 
located near the execution units, making access to registers faster than access to the 
LI cache. The size of the registers is determined by the number of bits the processor 
can operate on at once. For example, a 32-bit processor can store 32 bits of data in 
each register. The majority of processors in personal computers today are 32-bit 
processors; 64-bit processors are becoming increasingly popular.8 

Each processor architecture provides a different number of registers, and each 
register serves a particular purpose. For example, the Intel Pentium 4 processor 
provides 16 program execution registers. Typically, half of these registers are 
reserved for use by applications for quick access to data values and pointers during 
execution. Such registers are called general-purpose registers. IBM's PowerPC 970 
processor (used in Apple's G5 computers) contains 32 general-purpose registers. 
The other registers (often called control registers) store system-specific informa
tion, such as the program counter, which the processor uses to determine the next 
instruction to execute.9 

Self Review 

1. Differentiate between a CPU and a coprocessor. How might a system benefit from multi
ple CPUs? How might a system benefit from multiple coprocessors? 

2. What aspects of a system does a processor architecture specify? 
3. Why is access to register memory faster than access to any other type of memory, includ

ing L1 cache? 

Ans: 1) A CPU executes machine-language instructions; a coprocessor is optimized to per
form special-purpose instructions. Multiple CPUs would allow a system to execute more than 
one program at once; multiple coprocessors could improve performance by performing pro
cessing in parallel with a CPU. 2) A CPU's architecture specifies the computer's instruction 
set, virtual memory support and interrupt structure. 3) Registers are hard-wired to the pro
cessor circuitry and physically located near the execution units. 

2.3.3 Clocks 
Computer time is often measured in cycles, also called a clocktick. The term cycle 
refers to one complete oscillation of an electrical signal provided by the system 
clock generator. The clock generator sets the cadence for a computer system, much 
like the conductor of an orchestra. Specifically, the clock generator determines the 
frequency at which buses transfer data, typically measured in cycles per second, or 
hertz (Hz). For example, the frontside bus (FSB), which connects processors to 
memory modules, typically operates at several hundred megahertz (MHz; one 
megahertz is one million hertz). 
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Most modern desktop processors execute at top speeds of hundreds of mega
hertz (MHz) or even several billion hertz, or gigahertz (GHz), which is often faster 
than the frontside bus. Processors and other devices generate derived speeds by 
multiplying or dividing the speed of the frontside bus.10 For example, a 2GHz pro
cessor with a 200MHz frontside bus uses a multiplier of 10 to generate its cycles; a 
66MHz sound card uses a divider of 2.5 to generate its cycles. 

Self Review 
1. (T/F) All components of a system operate at the same clock speed. 
2. What problems might arise if one component on a bus has an extremely high multiplier 

and another component on the same bus has an extremely high divider? 

Ans: 1) False. Devices usually use a multiplier or a divider that defines the device's speed rel
ative to the speed of the frontside bus. 2) Bottlenecks could occur, because a component with a 
high divider will operate at a much slower speed than a device with a high multiplier. A high-
multiplier device that relies on information from a high-divider device will be made to wait. 

2.3.4 Memory Hierarchy 
The size and the speed of memory are limited by the laws of physics and economics. 
Almost all electronic devices transfer data using electrons passing through traces on 
PCBs. There is a limit to the speed at which electrons can travel; the longer the wire 
between two terminals, the longer the transfer will take. Further, it is prohibitively 
expensive to equip processors with large amounts of memory that can respond to 
requests for data at (or near) processor speeds. 

The cost/performance trade-off characterizes the memory hierarchy (Fig. 2.3). 
The fastest and most expensive memory is at the top and typically has a small 
capacity. The slowest and least expensive memory is at the bottom and typically has 
a large capacity. Note that the size of each block represents how capacity increases 
for slower memories, but the figure is not drawn to scale. 

Registers are the fastest and most expensive memory on a system—they oper
ate at the same speed as processors. Cache memory speeds are measured according 
to their latency—the time required to transfer data. Latencies are typically mea
sured in nanoseconds or processor cycles. For example, the LI cache for an Intel 
Pentium 4 processor operates at a latency of two processor cycles.11 Its L2 cache 
operates with a latency of approximately 10 cycles. In many of today's processors, 
the LI and L2 cache are integrated onto the processor so that they can exploit the 
processor's high-speed interconnections. LI caches typically store tens of kilobytes 
of data while L2 caches typically store hundreds of kilobytes or several megabytes. 
High-end processors might contain a third level of processor cache (called the L3 
cache) that is slower than the L2 cache but is faster than main memory. 

Next in the hierarchy is main memory —also called real memory or physical 
memory. Main memory introduces additional latency because data must pass 
through the frontside bus, which typically operates at a fraction of processor speeds. 
Main memory in today's architectures exhibits latencies of tens or hundreds of pro-



64 Hardware and Software Concepts 

Fihure 2.3 | Memory hierarchy. 

cessor cycles.12 Current general-purpose main memory sizes range from hundreds 
of megabytes (PCs) to tens or hundreds of gigabytes (high-end servers). Main 
memory is discussed in Section 2.3.5, Main Memory, and in Chapter 9, Real Mem
ory Organization and Management. Registers, caches and main memory are typi
cally volatile media, so their data vanishes when they lose power. 

The hard disk and other storage devices such as CDs, DVDs and tapes are 
among the least expensive and slowest data storage units in a computer system. 
Disk storage device latencies are typically measured in milliseconds, typically a mil
lion times slower than processor cache latencies. Rather than allow a processor to 
idle while a process waits for data from secondary storage, the operating system 
typically executes another process to improve processor utilization. A primary 
advantage to secondary storage devices such as hard disks is that they have large 
capacities, often hundreds of gigabytes. Another advantage to secondary storage is 
that data is stored on a persistent medium, so data is preserved when power is 
removed from the device. Systems designers must balance the cost and the perfor
mance of various storage devices to meet the needs of users (see the Operating Sys
tems Thinking feature, Caching). 

Self Review 
1. What is the difference between persistent and volatile storage media? 
2. Why does the memory hierarchy assume a pyramidal shape? 
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Ans: 1) Volatile media lose their data when the computer is turned off, whereas persistent 
media retain the data. In general, volatile storage is faster and more expensive than persis-
tent storage. 2) If a storage medium is less expensive, users can afford to buy more of it; thus, 
storage space increases. 

2.3.5 Main Memory 
Main memory consists of volatile random access memory (RAM), "random" in the 
sense that processes can access data locations in any order. In contrast, data loca
tions on a sequential storage medium (e.g., tape) must be read sequentially. Unlike 
tapes and hard disks, memory latencies for each main memory address are essen
tially equal. 

The most common form of RAM is dynamic RAM (DRAM), which requires 
that a refresh circuit periodically (a few times every millisecond) read the contents 
or the data will be lost. This differs from static RAM (SRAM), which does not need 
to be refreshed to maintain the data it stores. SRAM, which is commonly employed 
in processor caches, is typically faster and more expensive than DRAM. 

An important goal for DRAM manufacturers is to narrow the gap between 
processor speed and memory-transfer speed. Memory modules are designed to 
minimize data access latency within the module and maximize the number of times 
data is transferred per second. These techniques reduce overall latency and increase 

Operating Systems Thinking 

Caching 
We all use caching in our everyday instructions for rapid access in the original data, causing incon-

lives. Generally speaking, a cache high-speed cache memories and sistency. If a system were to fail 

is a place for storing provisions caching data from disk in main when the cache contains updated 

that can be accessed quickly. memory for rapid access as a pro- data and the original does not. 

Squirrels stashing acorns as they gram runs. then the modified data could be 

prepare for the winter is a form of Operating systems design- lost. So operating systems fre-

caching. We keep pencils, pens, ers must be cautious when using quently copy the cached data to 

staples, tape and paper clips in caching because in computer sys- the original—this process is called 

our desk drawers so that we can terns, cached data is a copy of the flushing the cache. Distributed 

access them quickly when we data whose original is being file systems often place cache on 

need them (rather than having to maintained at a higher level in both the server and the client, 

walk down the hall to the supply the memory hierarchy. The cached which makes it even more com-

closet). Operating systems employ copy is usually the one to which plex to keep the cache consistent. 

many caching techniques, such as changes are made first, so it can 

caching a process's data and quickly become out of sync wi th 
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bandwidth —the amount of data that can be transferred per unit of time. As manu
facturers develop new memory technologies, the memory speed and capacity tend 
to increase and the cost per unit of storage tends to decrease, in accordance with 
Moore's law. 

Self review 

1. Compare main memory to disk in terms of access time, capacity and volatility. 
2. Why is main memory called random access memory? 

Ans: 1) Access times for main memory are much smaller than those for disk. Disks typically 
have a larger capacity than main memory, because the cost per unit storage for disks is less 
than for main memory. Main memory is typically volatile, whereas disks store data persis
tently. 2) Processes can access main memory locations in any order and at about the same 
speed, regardless of location. 

2.3.6 Secondary Storage 
Due to its limited capacity and volatility, main memory is unsuitable for storing 
data in large amounts or data that must persist after a power loss. To permanently 
store large quantities of data, such as data files and applications software, comput
ers use secondary storage (also called persistent or auxiliary storage) that maintains 
its data after the computer's power is turned off. Most computers use hard disks for 
secondary storage. 

Although hard disk drives store more and cost less than RAM, they are not 
practical as a primary memory store because access to hard disk drives is much 
slower than access to main memory. Accessing data stored on a hard disk requires 
mechanical movement of the read/write head, rotational latency as the data spins to 
the head, and transfer time as the data passes by the head. This mechanical move
ment is much slower than the speed of electrical signals between main memory and 
a processor. Also, data must be loaded from the disk into main memory before it 
can be accessed by a processor.13 A hard disk is an example of a block device. 
because it transmits data in fixed-size blocks of bytes (normally hundreds of bytes 
to tends of kilobytes). 

Some secondary storage devices record data on lower-capacity media that can 
be removed from the computer, facilitating data backup and data transfer between 
computers. However, this type of secondary storage typically exhibits higher 
latency than other devices such as hard disks. A popular storage device is the com
pact disk (CD), which can store up to 700MB per side. Data on CDs is encoded in 
digital form and "burned" onto the CD as a series of pits on an otherwise fiat sur
face that represent ones and zeroes. Write-once, read-many (WORM) disks, such as 
write-once compact disks (CD-R) and write-once digital versatile disks (DVD-R) 
are removable. Other types of persistent storage include Zip disks, floppy disks, 
Flash memory cards and tapes. 

Data recorded on a CD-RW (rewritable CD) is stored in metallic material 
inside the plastic disk. Laser light changes the reflective property of the recording 
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medium, creating two states representing one and zero. CD-Rs and CD-ROMs con
sist of a dye between plastic layers that cannot be altered, once it has been burned 
by the laser. 

Recently, digital versatile disk (DVD; also called digital video disk) technol
ogy, which was originally intended to record movies, has become an affordable data 
storage medium. DVDs are the same size as CDs, but store data in thinner tracks on 
tip to two layers per side and can store up to 5.6 GB of data per layer. 

Some systems contain levels of memory beyond secondary storage. For exam
ple, large data-processing systems often have tape libraries that are accessed by a 
robotic arm. Such storage systems, often classified as tertiary storage, are character-
ized by larger capacity and slower access times than secondary storage. 

Self Review 
1. Why is accessing data stored on disk slower than accessing data in main memory? 
2. Compare and contrast CDs and DVDs. 

Ans:: 1) Main memory can be accessed by electrical signals alone, but disks require mechan-
ical movements to move the read/write head, rotational latency as the disk spins to move the 
requested data to the head and transfer time as the data passes by the head. 2) CDs and 
DVDs are the same size and are accessed by laser light, but DVDs store data in multiple lay
ers using thinner tracks and thus have a higher capacity. 

2.3.7 Buses 
A bus is a collection of traces (or other electrical connections) that transport informa
tion between hardware devices. Devices send electrical signals over the bus to com
municate with other devices. Most buses consist of a data bus, which transports data, 
and an address bus, which determines the recipient or sources of that data.14 A port is 
a bus that connects exactly two devices. A bus that several devices share to perform I/ 
O operations is also called an I/O channel.15 

Access to main memory is a point of contention for channels and processors. 
Typically, only one access to a particular memory module may occur at any given 
time; however, the I/O channels and the processor may attempt to access main 
memory simultaneously. To prevent the two signals from colliding on the bus, the 
memory accesses are prioritized by a hardware device called a controller, and chan
nels are typically given priority over processors. This is called cycle stealing, because 
the I/O channel effectively steals cycles from the processor. I/O channels consume a 
small fraction of total processor cycles, which is typically offset by the enhanced I/O 
device utilization. 

Recall that the frontside bus (FSB) connects a processor to main memory. As 
the FSB speed increases, the amount of data transferred between main memory 
and a processor increases, which tends to increase performance. Bus speeds are 
measured in MHz (e.g., 133MHz and 200MHz). Some chipsets implement an FSB 
of 200MHz but effectively operate at 400MHz, because they perform two memory 
transfers per clock cycle. This feature, which must be supported by both the chipset 
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and the RAM, is called double data rate (DDR). Another implementation, called 
quad pumping, allows up to four data transfers per cycle, effectively quadrupling 
the system's memory bandwidth. 

The Peripheral Component Interconnect (PCI) bus connects peripheral 
devices, such as sound cards and network cards, to the rest of the system. The first 
version of the PCI specification required that the PCI bus operate at 33MHz and be 
32 bits wide, which considerably limited the speed with which data was transferred 
to and from peripheral devices. PCI Express is a recent standard that provides for 
variable-width buses. With PCI Express, each device is connected to the system by 
up to 32 lanes, each of which can transfer 250MB per second in each direction —a 
total of up to 16GB per second of bandwidth per link.16 

The Accelerated Graphics Port (AGP) is primarily used with graphics cards, 
which typically require tens or hundreds of megabytes of RAM to perform 3D 
graphics manipulations in real time. The original AGP specification called for a 32-
bit 66MHz bus, which provided approximately 260MB per second of bandwidth. 
Manufacturers have increased the speed of this bus from its original specification— 
denoting an increase in speed by a factor of 2 as 2x, by a factor of 4 as 4x, and so on. 
Current specifications allow for 2x, 4x and 8x versions of this protocol, permitting 
up to 2GB per second of bandwidth. 

Self Review 

1. How does FSB speed affect system performance? 
2. How do controllers simplify access to shared buses? 

Ans: 1) The FSB determines how much data can be transferred between processors and 
main memory per cycle. If a processor generates requests for more data than can be trans
ferred per cycle, system performance will decrease, because that processor may need to wait 
until its requested transfers complete. 2) Controllers prioritize multiple simultaneous 
requests to access a bus so that devices do not interfere with one another. 

2.3.8 Direct Memory Access (DMA) 
Most I/O operations transfer data between main memory and an I/O device. In early 
computers, this was accomplished using programmed I/O (PIO), which specifies a 
byte or word to be transferred between main memory and an I/O device, then waits 
idly for the operation to complete. This led to wasting a significant number of proces
sor cycles while waiting for PIO operations to complete. Designers later imple
mented interrupt-driven I/O, which enabled a processor to issue an I/O request and 
immediately continue to execute software instructions. The I/O device notified the 
processor when the operation was complete by generating an interrupt.17 

Direct memory access (DMA) improves upon these techniques by enabling 
devices and controllers to transfer blocks of data to and from main memory 
directly, which frees the processor to execute software instructions (Fig. 2.4). A 
direct memory access (DMA) channel uses an I/O controller to manage data trans
fer between I/O devices and main memory. To notify the processor, the I/O control-
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Figure 2.4 | Direct memory access (DMA). 

ler generates an interrupt when the operation is complete. DMA improves 
performance significantly in systems that perform large numbers of I/O operations 
(e.g.. mainframes and servers).18 

DMA is compatible with several bus architectures. On legacy architectures 
(i.c. architectures that are still in use but are no longer actively produced), such as 

the Industry Standard Architecture (ISA), extended ISA (EISA) or Micro Channel 
Architecture (MCA) buses, a DMA controller (also called a "third-party device") 
manages transfers between main memory and I/O devices (see the Operating Sys
tems Thinking feature, Legacy Hardware and Software). PCI buses employ "first-
party" DMA using bus mastering—a PCI device takes control of the bus to perform 
the operation. In general, first-party DMA transfer is more efficient than third-
party transfer and has been implemented by most modern bus architectures.19 

Self Review 
1. Why is DMA more efficient than PIO? 
2. How does first-party DMA differ from third-party DMA? 

Ans: 1) In a system that uses PIO, a processor waits idly for each memory transfer to com
plete. DMA frees processors from performing the work necessary to transfer information 

A processor sends an I/O request to the I/O controller, which sends the request 
to the disk. The processor continues executing instructions. 

The disk sends data to the I/O controller; the data is placed at the memory address 
specified by the DMA command. 

The disk sends an interrupt to the processor to indicate that the I/O is done. 
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between main memory and I/O devices, which enables the processor to execute instructions 
instead. 2) Third-party DMA requires a controller to manage access to the bus. First-party 
DMA enables devices to take control of the bus without additional hardware. 

2.3.9 Peripheral Devices 
A peripheral device is any hardware device that is not required for a computer to exe
cute software instructions. Peripheral devices include many types of I/O devices (e.g.. 
printers, scanners and mice), network devices (e.g., network interface cards and 
modems) and storage devices (e.g., CD, DVD and disk drives). Devices such as the 
processor, mainboard and main memory are not considered peripheral devices. Inter
nal peripheral devices (i.e., those that are located inside the computer case) are often 
referred to as integrated peripheral devices; these include modems, sound cards and 
internal CD-ROM drives. Perhaps the most common peripheral device is a hard disk. 
Figure 2.5 lists several peripheral devices.20 Keyboards and mice are example of char
acter devices—ones that transfer data one character at a time. Peripheral devices can 
be attached to computers via ports and other buses.21 Serial ports transfer data one 
bit at a time, typically connecting devices such as keyboards and mice; parallel ports 
transfer data several bits at a time, typically connecting printers.22 Universal Serial 
Bus (USB) and IEEE 1394 ports are popular high-speed serial interfaces. The small 
computer systems interface (SCSI) is a popular parallel interface. 

USB ports transfer data from and provide power to devices such as external 
disk drives, digital cameras and printers. USB devices can be attached to, recog
nized by and removed from the computer while the computer is on without damag
ing the system's hardware (a technique called "hot swapping"). USB 1.1 allows data 
transfer at speeds of 1.5Mbit (megabits, or 1 million bits; 8 bits = 1 byte) per second 
and 12Mbit per second. Because computers required fast access to large quantities 
of data on USB devices such as disk drives, USB 2.0 was developed to provide data 
transfers at speeds up to 480Mbit per second.23 

Operating Systems Thinking 

Legacy Hardware and Software 
The latest versions of operating often older equipment and appli- hardware and legacy software, 

systems are designed to support cations that individuals and orga- An enormous challenge for OS 

the latest available hardware and nizations have invested in and designers is to provide support 

software functionality. However, want to keep using, even when a for such legacy systems, one that 

the vast majority of hardware and new operating system is installed. real-world operating systems 

software that is "out there" is The older items are called legacy must meet. 
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Device Description 
CD-RW drive Reads data from, and writes data to, optical disks. 

Zip drive Transfers data to and from a removable, durable magnetic disk. 

Floppy drive Reads data from, and writes data to, removable magnetic disks. 

Mouse Transmits the change in location of a pointer or cursor in a graphical 

user interface (GUI). 

Keyboard Transmits characters or commands that a user types. 

Multifunction Can print, copy, fax and scan documents, 
printer 
Sound card Converts digital signals to audio signals for speakers. Also can receive 

audio signals via a microphone and produce a digital signal. 
Video accelerator Displays graphics on the screen; accelerates two- and three-dimen

sional graphics. 

Network card Sends data to and receives data from other computers. 

Digital camera Records, and often displays, digital images. 

Biometric device Scans human characteristics, such as fingerprints and retinas, typi
cally for identification and authentication purposes. 

Infrared device Communicates data between devices via a line-of-sight wireless con- j 
nection. 

Wireless device Communicates data between devices via an omnidirectional wireless 
connection. 

Figure 2.5 | Peripheral devices. 

The IEEE 1394 standard, branded as "iLink" by Sony and "FireWire" by 
Apple, is commonly found in digital video cameras and mass storage devices (e.g., 
disk drives). FireWire can transfer data at speeds up to 800Mbit per second; future 
revisions are expected to scale to up to 2Gbit (gigabits, or 1 billion bits) per second. 
Similar to USB, FireWire allows devices to be "hot swappable" and can provide 
power to devices. Further, the FireWire specification allows multiple devices to 
communicate without being attached to a computer.24 For example, a user can 
directly connect two FireWire hard disks to copy the contents of one to the other. 

Other interfaces used for connecting peripheral devices to the system include 
the small computer systems interface (SCSI) and the Advanced Technology Attach
ment (ATA), which implements the Integrated Drive Electronics (IDE) interface. 
These interfaces transfer data from a device such as a hard drive or a DVD drive to 
a mainboard controller, where it can be routed to the appropriate bus.25 More 
recent interfaces include Serial ATA (SATA), which permits higher transfer rates 
than ATA, and several wireless interfaces including Bluetooth (for short-range 
wireless connections) and IEEE 802.llg (for medium-range, high-speed wireless 
connections). 

SCSI (pronounced "scuh-zee") was developed in the early 1980s as a high
speed connection for mass storage devices. It is primarily used in high-performance 



72 Hardware and Software Concepts 

environments with many large-bandwidth devices.26 The original SCSI specification 
allowed a maximum data transfer rate of 5MB per second and supported eight 
devices on an 8-bit bus. Current specifications, such as Ultra320 SCSI, permit data 
transfer at up to 320MB per second for 16 devices on a 16-bit bus.27 

Self Review 

1. What is the main difference between a peripheral device, such as a printer, and a device 
such as a processor? 

2. Compare and contrast USB and Fire Wire. 

Ans: 1) Peripheral devices are not required for a computer to execute software instructions. 
By contrast, all computers need at least one processor to run. 2) Both USB and Fire Wire pro
vide large bandwidths and powered connections to devices. Fire Wire has a greater capacity 
than USB and enables devices to communicate without being attached to a computer. 

2.4 Hardware Support for Operating Systems 
Computer architectures contain features that perform operating system functions 
quickly in hardware to improve performance. They also provide features that 
enable the operating system to rigidly enforce protection, which improves the secu
rity and integrity of the system. 

2.4.1 Processor 
Most operating systems rely on processors to implement their protection mecha
nisms by preventing processes from accessing privileged instructions or accessing 
memory that has not been allocated to them. If processes attempt to violate a sys
tem's protection mechanisms, the processor notifies the operating system so that it 
can respond. The processor also invokes the operating system to respond to signals 
from hardware devices. 

User Mode, Kernel Mode and Privileged Instructions 
Computer systems generally have several different execution modes.28 Varying the 
mode of a machine makes it possible to build more robust, fault-tolerant and secure 
systems. Normally, when the machine is operating in a particular mode, applications 
have access to only a subset of the machine's instructions. For user applications, the 
subset of instructions the user may execute in user mode (also called the user state or 
problem state) precludes, for example, the direct execution of input/output instruc
tions; a user application allowed to perform arbitrary input/output could, for exam
ple, dump the system's master list of passwords, print the information of any other 
user or destroy the operating system. The operating system ordinarily executes with 
most trusted user status in kernel mode (also called the supervisor state); it has access 
to all the instructions in the machine's instruction set. In kernel mode, a processor 
may execute privileged instructions and access resources to perform tasks on behalf 
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of processes. Such a user mode/kernel mode dichotomy has been adequate for most 
modern computing systems. In highly secure systems, however, it is desirable to have 
more than two states to allow finer-grained protection. Multiple states allow access to 
be granted by the principle of least privilege —any particular user should be granted 
the least amount of privilege and access required to accomplish its designated tasks 
(see the Operating Systems Thinking feature, Principle of Least Privilege). 

It is interesting that as computer architectures have evolved, the number of 
privileged instructions (i.e., those instructions not accessible in user mode) has 
tended to increase. This indicates a trend toward incorporating more operating sys
tems functions in hardware. 

Memory Protection and Management 
Most processors provide mechanisms for memory protection and memory manage
ment. Memory protection, which prevents processes from accessing memory that 
has not been assigned to them (such as other users' memory and the operating sys
tem's memory), is implemented using processor registers that can be modified only 
by privileged instructions (see the Operating Systems Thinking feature, Protection). 
The processor checks the values of these registers to ensure that processes cannot 
access memory that has not been allocated to them. For example, in systems that do 
not use virtual memory, processes are allocated only a contiguous block of memory 
addresses. The system can prevent such processes from accessing memory locations 
that have not been allocated to them by providing bounds registers that specify the 
addresses of the beginning and end of a process's allocated memory. Protection is 
enforced by determining whether a given address is within the allocated block. 
Most hardware protection operations are performed in parallel with the execution 
of program instructions, so they do not degrade performance. 

Most processors also contain hardware that translates virtual addresses refer
enced by processes to corresponding addresses in main memory. Virtual memory 
systems allow programs to reference addresses that need not correspond to the lim-

Operating Systems Thinking 

Principle of least Privilege 
Generally speaking, the principle but no more. The government employ it when giving employees 

of least privilege says that in any employs this principle in awarding access to critical and confidential 

system, the various entities should security clearances. You employ it information. Operating systems 

be given only the capabilities that when deciding who gets the extra employ it in many areas, 

they need to accomplish their jobs keys to your home. Businesses 
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ited set of real (or physical) addresses available in main memory.29 Using hardware, 
the operating system dynamically translates a process's virtual addresses into physi
cal addresses at runtime. Virtual memory systems allow processes to reference 
address spaces much larger than the number of addresses available in main mem
ory, which allows programmers to create applications that are independent (for the 
most part) of the constraints of physical memory. Virtual memory also facilitates 
programming for timesharing systems, because processes need not be aware of the 
actual location of their data in main memory. Memory management and protection 
are discussed in detail in Chapters 9-11. 

Interrupts and Exceptions 
Processors inform the operating system of events such as program execution errors 
and changes in device status (e.g., a network packet has arrived or a disk I/O has 
completed). A processor can do so by repeatedly requesting the status of each 
device, a technique called polling. However, this can lead to significant execution 
overhead when polled devices have not changed status. 

Instead, most devices send a signal called an interrupt to the processor when 
an event occurs. The operating system can respond to a change in device status by 
notifying processes that are waiting on such events. Exceptions are interrupts gen
erated in response to errors, such as hardware failures, logic errors and protection 
violations (see the Anecdote, Origins of the Term "Glitch"). Instead of causing the 

Operating Systems Thinking 

Protection 
The earliest computers had primi- The operating system and its data daily in Chapter 9, Real Memory 

tive operating systems capable of must be protected from being Organization and Management 

running only one job at a time. clobbered by errant user pro- and Chapter 10, Virtual Memory 

That changed rapidly as parallel grams, either accidentally or mali- Organization. We consider pro-

processing capabilities were ciously. User programs must be tection in the form of file access 

added to local systems and as dis- protected from clobbering one controls in Chapter 13, File and 

tr ibuted systems were developed another. Such protection must be Database Systems. We discuss pro-

in which parallel activities occur enforced on the local machine tection in general throughout the 

across networks of computers like and it must be enforced among main portion of the book and 

the Internet. Operating systems users and operating system com- then discuss it in the context of 

must be concerned wi th various ponents spread across computer the Linux and Windows XP case 

kinds of protection, especially networks. We study protection in studies in Chapters 20 and 21, 

when connected to the Internet. many chapters of this book, espe- respectively. 
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system to fail, a processor will typically invoke the operating system to determine 
how to respond. For example, the operating system may determine that the process 

causing the error should be terminated or that the system must be restarted. If the 
system must fail, the operating system can do so gracefully, reducing the amount of 

lost work. Processes can also register exception handlers with the operating system. 
When the operating system receives an exception of the corresponding type, it calls 
the process's exception handler to respond. Interrupt mechanisms and exception 
handling are discussed in Section 3.4, Interrupts. 

Self Review 

1. What is the rationale for implementing multiple execution states? 
2. How do exceptions differ from other types of interrupts? 

Ans: 1) Multiple execution states provide protection by preventing most software from 
malliciously or accidentally damaging the system and accessing resources without authoriza
tion. These operations are restricted to kernel mode, which enables the operating system to 
execute privileged instructions. 2) Exceptions indicate that an error has occurred (e.g., divi
sion by zero or a protection violation) and invoke the operating system to determine how to 
respond. The operating system may then decide to do nothing or to terminate a process. If 
the operating system encounters a serious error that prevents it from executing properly, it 
may restart the computer. 

Anecdote 

Origins of the Term "Glitch" 
There are a number of theories on gram, one of the top computer puter failed, causing the space 

the etymology of the computer vendors built the first on-board capsule to spin wildly out of con-

term "g l i tch" which is typically computer system. The morning of trol , putt ing the astronauts' lives 

used as a synonym for "bug. " the launch, the computer vendor at risk. The next morning, one 

Many suggest that it is derived took out full-page ads in major of the major newspapers referred 

from the Yiddish word "glitshen," publications around the world, to this as the "Greatest Lemon in 

meaning " to slip." Here is another proclaiming that its computer was the Company's History!" 

take on this. In the mid 1960s dur- safely guiding the astronauts on 

ing the height of the space pro- their mission. That day, the com-

Lesson to operating systems designers: Always keep Murphy's Law in mind, "If something can go wrong, it 

will." And don't forget the common addendum, "and at the most inopportune time." 
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2.4.2 Timers and Clocks 
An interval timer periodically generates an interrupt that causes a processor to 
invoke the operating system. Operating systems often use interval timers to prevent 
processes from monopolizing the processor. For example, the operating system may 
respond to the timer interrupt by removing the current process from the processor 
so that another can run. A time-of-day clock enables the computer to keep track of 
"wall clock time," typically accurate to thousandths or millionths of a second. Some 
time-of-day clocks are battery powered, allowing them to tick even when there is 
no external power supplied to the computer. Such clocks provide a measure of con
tinuity in a system; for example, when the operating system loads, it may read the 
time-of-day clock to determine the current time and date. 

Self Review 

1. How does an interval timer prevent one process from monopolizing a processor? 
2. Processors often contain a counter that is incremented after each processor cycle, provid

ing a measure of time accurate to nanoseconds. Compare and contrast this measure of 
time to that provided by the time-of-day clock. 

Ans: 1) The interval timer generates interrupts periodically. The processor responds to each 
interrupt by invoking the operating system, which can then assign a different process to a 
processor. 2) A processor counter enables the system to determine with high precision how 
much time has passed between events, but does not maintain its information when the system 
is powered down. Because a time-of-day clock is battery powered, it is more appropriate for 
determining wall clock time. However, it measures time with coarser granularity than a pro
cessor counter. 

2.4.3 Bootstrapping 
Before an operating system can begin to manage resources, it must be loaded into 
memory. When a computer system is powered up, the BIOS initializes the system 
hardware, then attempts to load instructions into main memory from a region of 
secondary storage (e.g., a floppy disk, hard disk or CD) called the boot sector, a 
technique called bootstrapping (Fig. 2.6). The processor is made to execute these 
instructions, which typically load operating system components into memory, ini
tialize processor registers and prepare the system to run user applications. 

In many systems, the BIOS can load an operating system from a predefined 
location on a limited number of devices (e.g., the boot sector of a hard disk or a 
compact disk). If the boot sector is not found on a supported device, the system will 
not load and the user will be unable to access any of the computer's hardware. To 
enable greater functionality at boot time, the Intel Corporation has developed the 
Extensible Firmware Interface (EFI) as a replacement for the BIOS. EFI supports 
a shell through which users can directly access computer devices, and it incorpo
rates device drivers to support access to hard drives and networks immediately 
after powering up the system.30 
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Figure 2.6 | Bootstrapping. 

Self Review 

1. How does EFI address the limitations of BIOS? 
2. Why should the operating system prevent users from accessing the boot sector? 

Ans: 1) A typical BIOS contains low-level instructions that provide limited functionality and 
restrict how software is initially loaded. EFI supports drivers and provides a shell, enabling a 
user to interact with a system and customize the way that the operating system is loaded. 2) If 
users could access the boot sector, they could accidentally or maliciously modify operating sys
tem code, making the system unusable or enabling an attacker to gain control of the system. 

2.4.4 Plug and Play 
Plug-and-play technology allows operating systems to configure and use newly 
installed hardware without user interaction. A plug-and-play hardware device 

1. uniquely identifies itself to the operating system, 

2. communicates with the operating system to indicate the resources and ser
vices it requires to function properly, and 

3. identifies its corresponding driver and allows the operating system to use it 
to configure the device (e.g., assign the device to a DMA channel and allo
cate to the device a region of main memory).31 

These features enable users to add hardware to a system and use the hardware 
immediately with proper operating system support. 

As mobile computing devices become more popular, an increasing number of 
systems rely on batteries for power. Consequently, plug-and-play has evolved to 
include power management features that enable a system to dynamically adjust its 
power consumption to increase battery life. The Advanced Configuration and 
Power Interface (ACPI) defines a standard interface for operating systems to con-



78 Hardware and Software Concepts 

figure devices and manage their power consumption. All recent Windows operating 
systems support plug-and-play; Linux version 2.6 is compatible with many plug-
and-play devices.32 

Self Review 

1. Why, do you suppose, is it necessary for a plug-and-play device to uniquely identify itself. 
to the operating system? 

2. Why is power management particularly important for mobile devices? 

Ans: 1) Before an operating system can configure and make a device available to users, it 
must determine the resource needs that are unique to the device. 2) Mobile devices rely on 
battery power; managing a device's power consumption can improve battery life. 

2.5 Caching and buffering 
In Section 2.3.4, we discussed how computers contain a hierarchy of storage devices 
that operate at different speeds. To improve performance, most systems perform 
caching by placing copies of information that processes reference in faster storage. 
Due to the high cost of fast storage, caches can contain only a small portion of the 
information contained in slower storage. As a result, cache entries (also called 
cache lines) must be managed appropriately to minimize the number of times refer
enced information is not present in cache, an event called a cache miss. When a 
cache miss occurs, the system must retrieve the referenced information from slower 
storage. When a referenced item is present in the cache, a cache hit occurs, enabling 
the system to access data at relatively high speed.33 

To realize increased performance from caching, systems must ensure that a signif
icant number of memory references result in cache hits. As we discuss in Section 11.3, 
Demand Paging, it is difficult to predict with high accuracy the information that pro
cesses will soon reference. Therefore, most caches are managed using heuristics—rules 
of thumb and other approximations—that yield good results with relatively low execu
tion overhead (see the Operating Systems Thinking Feature, Heuristics). 

Examples of caches include the LI and L2 processor caches, which store 
recently used data to minimize the number of cycles during which the processor is 
idle. Many operating systems allocate a portion of main memory to cache data from 
secondary storage such as disks, which typically exhibit latencies several orders of 
magnitude larger than main memory. 

A buffer is storage area that temporarily holds data during transfers between 
devices or processes that operate at different speeds.34 Buffers improve system per
formance by allowing software and hardware devices to transmit data and requests 
asynchronously (i.e., independently of one another). Examples of buffers include 
hard disk buffers, the keyboard buffer and the printer buffer.35, 3fi Because hard 
disks operate at much slower speeds than main memory, operating systems typically 
buffer data corresponding to write requests. The buffer holds the data until the hard 
disk has completed the write operation, enabling the operating system to execute 
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other processes while waiting for the I/O to complete. A keyboard buffer is often 

used to hold characters typed by users until a process can acknowledge and respond 

to the corresponding keyboard interrupts. 

Spooling (simultaneous peripheral operations online) is a technique in which 

an intermediate device, such as a disk, is interposed between a process and a low-

speed or buffer-limited I/O device. For example, if a process attempts to print a doc-

ument but the printer is busy printing another document, the process, instead of 

waiting for the printer to become available, writes its output to disk. When the 

printer becomes available, the data on disk is printed. Spooling allows processes to 

request operations from a peripheral device without requiring that the device be 

ready to service the request.37 The term "spooling" comes from the notion of wind-

ing thread onto a spool from which it can be unwound as needed. 

1. How does caching improve system performance? 
2. Why do buffers generally not improve performance if one device or process produces 

data significantly faster than it is consumed? 

Ans.: 1) Caches improve performance by placing in fast storage information that a process 
is likely to reference soon; processes can reference data and instructions from a cache much 
faster than from main memory. 2) If the producing entity is much faster than the consuming 
entity. the buffer would quickly fill, then the relationship would be limited by the relatively 

Operating Systems Thinking 

A heuristic is a "rule of thumb"— 

a strategy that sounds reasonable 

and when employed, typically 

yields good results. It often does 

not have a basis in mathematics 

because the system to which it 

applies is sufficiently complex to 

defy easy mathematical analysis. 

As you leave your home each 

morning, you may use the heuris

tic, "If it looks like rain, take my 

umbrella." You do this because 

from your experience, "looks like 

rain" is a reasonable (although 

not perfect) indicator that it wi l l 

rain. By applying this heuristic in 

the past, you avoided a few soak-

ings, so you tend to rely on it. As 

you look at the pile of paperwork 

on your desk and schedule your 

work for the day, you may use 

another heuristic, "Do the short

est tasks first." This one has the 

satisfying result that you get a 

bunch of tasks done quickly; on 

the downside, it has the unfortu

nate side effect of postponing 

(possibly important) lengthier 

tasks. Worse yet, if a steady 

stream of new short tasks arrives ) 

for you to do, you could indefi

nitely postpone important longer 

tasks. We wil l see operating sys

tems heuristics in many chapters 

of the book, especially in the 

chapters that discuss resource 

management strategies, such as 

Chapter 8, Processor Scheduling 

and Chapter 12, Disk Performance 

Optimization. 

Heuristics 

Self Review 
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slow speed of the consuming entity—the producing entity would have to slow down because 
it would repeatedly find the buffer full and would have to wait (rather than execute at its nor
mally faster speed) until the consumer eventually freed space in the buffer. Similarly, if the 
consuming entity were faster, it would repeatedly find the buffer empty and would have to 
slow down to about the speed of the producing entity. 

In this section we review basic concepts of computer programming and software. 
Programmers write instructions in various programming languages; some are 
directly understandable by computers, while others require translation. Program
ming languages can be classified generally as either machine, assembly or high-level 
languages. 

A computer can understand only its own machine language. As the "natural lan
guage" of a particular computer, machine language is defined by the computer's 
hardware design. Machine languages generally consist of streams of numbers (ulti
mately reduced to 1s and Os) that instruct computers how to perform their most ele
mentary operations. Machine languages are machine dependent—a particular 
machine language can be used on only one type of computer. The following section 
of an early machine-language program, which adds overtime pay to base pay and 
stores the result in gross pay, demonstrates the incomprehensibility of machine lan
guage to humans: 

1300042774 
1400593419 
1200274027 

As the popularity of computers increased, machine-language programming 
proved to be slow and error prone. Instead of using the strings of numbers that com
puters could directly understand, programmers began using English-like abbrevia
tions to represent the computer's basic operations. These abbreviations formed the 
basis of assembly languages. Translator programs called assemblers convert assembly-
language programs to machine-language. The following section of a simplified assem
bly-language program also adds overtime pay to base pay and stores the result in gross 
pay, but it presents the steps somewhat more clearly to human readers: 

LOAD BASEPAY 
ADD OVERPAY 
STORE GR0SSPAY 

This assembly-language code is clearer to humans, but computers cannot under
stand it until it is translated into machine language by an assembler program. 

2.6.1 Machine language and Assembly language 

2.6 Software Overview 
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Self Review 

1. (T/F) Computers typically execute assembly code directly. 
2. Is software written in machine language portable? 

Ans.: 1) False. Assemblers translate assembly code into machine-language code before the 
code can execute. 2) No; machine languages are machine dependent, so software written in 
machine language executes only on machines of the same type. 

2.6.2 Interpreters and Compilers 
Although programming is faster in assembly languages than in machine language, 
issembly languages still require many instructions to accomplish even the simplest 
tasks. To increase programmer efficiency, high-level languages were developed. 
High-level languages accomplish more substantial tasks with fewer statements, but 
require translator programs called compilers to convert high-level language pro
grams into machine language. High-level languages enable programmers to write 
instructions that look similar to everyday English and that contain common mathe
matical notations. For example, a payroll application written in a high-level lan
guage might contain a statement such as 

grossPay = basePay + overTimePay 

This statement produces the same result as the machine-language and assembly-
language instructions in the prior sections. 

Whereas compilers convert high-level language programs to machine lan
guage programs, interpreters are programs which directly execute source code or 
code has been reduced to a low-level language that is not machine code. Program
ming languages such as Java compile to a format called bytecode (although Java also 
can be compiled to machine language), which acts as machine code for a so-called 
virtual machine. Thus, bytecode is not dependent on the physical machine on which 
it executes, which promotes application portability. A Java interpreter analyzes each 
statement and executes the bytecode on the physical machine. Due to the execution-
time overhead incurred by translation, programs executed via interpreters tend to 
execute slower than those that have been compiled to machine code.38, 39 

Self Review 

1. Discuss the benefits of high-level languages over assembly languages. 
2. Why are programs compiled to bytecode more portable than those compiled to machine 

code? 

Ans: 1) High-level language programs require many fewer instructions than assembly-lan
guage programs; also, programming in high-level languages is easier than in assembly lan
guage because high-level languages more closely mirror everyday English and common 
mathematical notations. 2) Bytecode is compiled to execute on a virtual machine that can be 
installed on many different platforms. By contrast, programs compiled to machine language 
can execute only on the type of machine for which the program was compiled. 
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2.6.3 High-Level languages 
Although hundreds of high-level languages have been developed, relatively few 
have achieved broad acceptance. Today, programming languages tend to be either 
structured or object oriented. In this section we enumerate some of the more popu
lar languages, then discuss how they relate to each programming model. 

IBM developed Fortran in the mid-1950s to create scientific and engineering 
applications that require complex mathematical computations. Fortran is still 
widely used, mainly in high-performance environments such as mainframes and 
supercomputers. 

COmmon Business Oriented Language (COBOL) was developed in the late 
1950s by a group of computer manufacturers, government agencies and industrial 
computer users. COBOL is designed for business applications that manipulate 
large volumes of data. A considerable portion of today's business software is still 
programmed in COBOL. 

The C language, which Dennis Ritchie developed at Bell Laboratories in the 
early 1970s, gained widespread recognition as the development language of the 
UNIX operating system. In the early 1980s at Bell Laboratories, Bjarne Stroustrup 
developed C++, an extension of C. C++ provides capabilities for object-oriented 
programming (OOP). Objects are reusable software components that model items 
in the real world. Object-oriented programs are often easier to understand, debug 
and modify than programs developed with previous techniques. Many of today's 
popular operating systems are written in C or C++. 

When the World Wide Web exploded in popularity in 1993, Sun Microsystems 
saw immediate potential for using its new object-oriented Java programming lan
guage to create applications that could be downloaded over the Web and executed 
in Web browsers. Sun announced Java to the public in 1995, gaining the attention of 
the business community because of the widespread interest in the Web. Java has 
become a widely used software development language; it is used to generate Web 
pages dynamically, build large-scale enterprise applications, enhance the functional
ity of Web servers, provide applications for consumer devices (for example, cell 
phones, pagers and PDAs) and for many other purposes. 

In 2000, Microsoft announced C# (pronounced "C-Sharp") and its .NET strat
egy. The C# programming language was designed specifically to be the key develop
ment language for the .NET platform; it has roots in C, C++ and Java. C# is object-
oriented and has access to .NET's powerful library of prebuilt components, 
enabling programmers to develop applications quickly. 

Self Review 
1. Classify each of the following programming languages as structured or object oriented: 

a)C#;b)C;c)Java;d)C++. 
2. What are some benefits of OOP? 
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Ans.: 1) a) object oriented; b) structured; c) object oriented; d) object-oriented. 2) Object-ori-
ented programs are often easier to understand, debug and modify than programs developed 
with previous techniques. Also OOP focuses on creating reusable software components. 

2.6.4 Structured Programming 
During the 1960s, software development efforts often ran behind schedule, costs 
greatly exceeded budgets and finished products were unreliable. People began to 

realize that software development was a far more complex activity than they had 
imagined. Research activity addressing these issues resulted in the evolution of 
structured programming—a disciplined approach to creating programs that are 
clear, correct and easy to modify. 

This research led to the development of the Pascal programming language by 
Professor Nicklaus Wirth in 1971. Pascal was named after the 17th-century mathe-
matician and philosopher Blaise Pascal. Designed for teaching structured program-
ming, it rapidly became the preferred introductory programming language at most 
colleges. The language lacked many features needed to make it useful in commer-
cial, industrial and government applications. 

The Ada programming language was developed under the sponsorship of the 
U.S. Department of Defense (DoD) during the 1970s and early 1980s. It was named 

after Lady Ada Lovelace, daughter of the poet Lord Byron. Lady Lovelace is gen-
erally credited as being the world's first computer programmer, having written an 
application in the middle 1800s for the Analytical Engine mechanical computing 
device designed by Charles Babbage. Ada was one of the first languages designed to 
facilitate concurrent programming, which is discussed with examples in pseudocode 
and Java in Chapter 5, Asynchronous Concurrent Execution, and Chapter 6, Con
current Programming. 

Self Review 

1. What problems in early software development did structured programming languages 
address? 

2. How did the Ada programming language differ from other structured programming lan
guages such as Pascal and C? 

Ans.: 1) In the early days of programming, developers did not have a systematic approach to 
constructing complex programs, resulting in unnecessarily high costs, missed deadlines and 

unreliable products. Structured programming filled the need for a disciplined approach to 
software development. 2) Ada was designed to facilitate concurrent programming. 

2.6.5 Object-Oriented Programming 
As the benefits of structured programming were realized in the 1970s, improved 
software technology began to appear. However, not until object-oriented program
ming became widely established in the 1980s and 1990s did software developers 
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finally feel they had the necessary tools to improve the software development pro
cess dramatically. 

Object technology is a packaging scheme for creating meaningful software 
units. Almost any noun can be represented as a software object. Objects have prop
erties (also called attributes), such as color, size and weight; and they perform 
actions (also called behaviors or methods), such as moving, sleeping or drawing. 
Classes are types of related objects. For example, all cars belong to the "car" class.' 
even though individual cars vary in make, model, color and options packages. A 
class specifies the general format of its objects, and the properties and actions avail
able to an object depend on its class. An object is related to its class in much the 
same way as a building is related to its blueprint. 

Before object-oriented languages appeared, procedural programming lan
guages (such as Fortran, Pascal, BASIC and C) focused on actions (verbs) rather than 
objects (nouns). This made programming a bit awkward. However, using today's pop
ular object-oriented languages, such as C++, Java and C#, programmers can program 
in an object-oriented manner that more naturally reflects the way in which people 
perceive the world, resulting in significant gains in programmer productivity. 

Object technology permits properly designed classes to be reused in multiple 
projects. Using libraries of classes can greatly reduce the effort required to imple
ment new systems. However, some organizations report that the key benefit from 
object-oriented programming is not software reusability, but rather the production 
of software that is more understandable because it is better organized and easier to 
maintain. 

Object-oriented programming allows programmers to focus on the "big pic
ture." Instead of worrying about the minute details of how reusable objects are 
implemented, they can focus on the behaviors and interactions of objects. Program
mers can also focus on modifying one object without worrying about the effect on 
another object. A road map that shows every tree, house and driveway would be 
difficult, if not impossible, to read. When such details are removed and only the 
essential information (roads) remains, the map becomes easier to understand. In 
the same way, an application that is divided into objects is easier to understand, 
modify and update because it hides much of the detail. 

Self Review 

1. How is the central focus of object-oriented programming different from that of structured 
programming? 

2. How do objects facilitate modifications to existing software? 

Ans.: 1) Object-oriented programming focuses on manipulating objects (nouns), whereas 
procedural programming focuses on actions (verbs). 2) Objects hide much of the detail of an 
overall application, allowing programmers to focus on the big picture. Programmers can 
focusing on modifying one object without worrying about the effect on another object. 
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2.7 Application Programming Interfaces (APIs) 
TODAY'S applications require access to many resources that are managed by the 
operating system, such as files on disk and data from remote computers. Because 

the operating system must act as a resource manager, it typically will not allow pro-
cesses to acquire these resources without first explicitly requesting them. 

Application programming interfaces (APIs) provide a set of routines that 
programmers can use to request services from the operating system (Fig. 2.7). In 
most of today's operating systems, communication between software and the oper
ating system is performed exclusively through APIs. Examples of APIs include the 
Portable Operating System Interface (POSIX) standards and the Windows API for 
developing Microsoft Windows applications. POSIX recommends standard APIs 
that are based on early UNIX systems and are widely used in UNIX-based operat-
ing systems. The Win32 API is Microsoft's interface for applications that execute in 
a Windows environment. 

Processes execute function calls defined by the API to access services pro-
vided by a lower layer of the system. These function calls may issue system calls to 
request services from the operating system. System calls are analogous to interrupts 
for hardware devices—when a system call occurs, the system switches to kernel 
mode and the operating system executes to service the system call. 

Self Review 
l. Why must processes issue system calls to request operating system services? 
2. How does the POSIX attempt to improve application portability? 

Ans.: 1) To protect the system, the operating system cannot allow processes to access oper-
ating system services or privileged instructions directly. Instead, the services that an operat-
ing system can provide to processes are packaged into APIs. Processes can access these 

Figure 2.7 | Application programming interface (API). 
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services only through the system call interface, which essentially puts the operating system in 
control. 2) Software written using a particular API can be run only on systems that imple
ment the same API. POSIX attempts to address this problem by specifying a standard API 
for UNIX-based systems. Even many non-UNIX systems now support POSIX. 

2.8 Compiling, linking and loading 
Before a program written in a high-level language can execute, it must be translated 
into machine language, linked with various other machine-language programs on 
which it depends and loaded into memory. In this section we consider how pro
grams written in high-level languages are compiled into machine-language code 
and we describe how linkers and loaders prepare compiled code for execution.40 

2.8.1 Compiling 
Although each type of computer can understand only its own machine language, 
nearly all programs are written in high-level languages. The first stage in the process 
of creating executable programs is compiling the high-level programming language 
code to machine language. A compiler accepts source code, which is written in a 
high-level language, as input and returns object code, containing the machine-lan
guage instructions to execute, as output. Nearly all commercially available pro
grams are delivered as object code, and some distributions (i.e., open-source 
software) also include the source code.41 

The compiling process can be divided into several phases; one view of compil
ing is presented in Fig. 2.8. Each phase modifies the program so that it can be inter
preted by the next phase, until the program has been translated into machine code. 
First, the source code is passed to the lexer (also called lexical analyzer or scanner). 
which separates the characters of a program's source into tokens. Examples of 
tokens include keywords (e.g., if, e l s e and in t ) , identifiers (e.g., named variables 
and constants), operators (e.g., -, +, * and /) and punctuation (e.g., semicolons). 

The lexer passes this stream of tokens to the parser (also called the syntax 
analyzer), which groups the tokens into syntactically correct statements. The inter-

Figure 2.8 | Compiling phases. 
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mediate code generator converts this syntactic structure into a stream of simple 
instructions that resemble assembly language (although it does not specify the reg-

isters used for each operation). The optimizer attempts to improve the code's exe-
cution efficiency and reduce the program's memory requirements. In the final 

phase, the code generator produces the object file containing the machine-language 
instructions.42'43 

Self Review 

1. What is the difference between compiling and assembling? 
2. Could a Java program run directly on a physical machine instead of on a virtual machine? 

Ans.: 1) The assembly process simply translates assembly-language instructions into machine 
language. A compiler translates high-level language code into machine-language code and may 

also optimize the code. 2) A Java program could run on a physical machine by using a compiler 
that translates Java source code or bytecode into the corresponding machine language. 

2.8.2 Linking 

Often, programs consist ot several independently developed suDprograms, caned 
modules. Functions to perform common computer routines such as I/O manipula
tions or random number generation are packaged into precompiled modules called 
libraries. Linking is the process of integrating the various modules referenced by a 
program into a single executable unit. 

When a program is compiled, its corresponding object module contains pro
gram data and instructions retrieved from the program's source file. If the program 
referenced functions or data from another module, the compiler translates these 
into external references. Also, if the program makes functions or data available to 
other programs, each of these is represented as an external name. Object modules 
store these external references and names in a data structure called a symbol table 
(Fig. 2.9). The integrated module produced by the linker is called a load module. 

Figure 2.9 | Object module 
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Input to the linker can include object modules, load modules and control state
ments, such as the location of referenced library files.44 

The linker often is provided with several object files that form a single pro
gram. These object files typically specify the locations of data and instructions using 
addresses that are relative to the beginning of each file, called relative addresses. 

In Fig. 2.10, symbol X in object module A and symbol Y in object module B 
have the same relative address in their respective modules. The linker must modify 
these addresses so that they do not reference invalid data or instructions when the 
modules are combined to form a linked program. Relocating addresses ensures that 
each statement is uniquely identified by an address within a file. When an address is 
modified, all references to it must be updated with the new location. In the resulting 
load module, X and Y have been relocated to new relative addresses that are unique 
within the load module. Often, linkers also provide relative addressing in the load 
module; however, the addresses are assigned such that they are all relative to the 
beginning of the entire load module. 

Linkers also perform symbol resolution, which converts external references in 
one module to their corresponding external names in another module.45,46 In 

Figure 2.10 | Linking process. 
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Fig. 2.11, the external reference to symbol C in object module 2 is resolved with the 
external name C from object module 1. Once an external reference is paired with the 
corresponding name in a separate module, the address of the external reference must 
be modified to reflect this integration. 

Often, linkage occurs in two passes. The first pass determines the size of each 
module and constructs a symbol table. The symbol table associates each symbol (such 
as a variable name) with an address, so that the linker can locate the reference. On 
the second pass, the linker assigns addresses to different instruction and data units 

Figure 2.11 | Symbol resolution. 
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and resolves external symbol references.47 Because a load module can become the 
input of another linking pass, the load module contains a symbol table, in which all 
symbols are external names. Notice that, in Fig. 2.11, the external reference to symbol 
Y is not listed in the load module's symbol table because it has been resolved. 

The time at which a program is linked depends on the environment. A pro
gram can be linked at compile time if the programmer includes all necessary code in 
the source file so that there are no references to external names. This is accom
plished by searching for the source code for any externally referenced symbols and 
placing those symbols in the resulting object file. This method typically is not feasi
ble because many programs rely on shared libraries, which are collections of func
tions that can be shared between different processes. Many programs can reference 
the same functions (such as library functions that manipulate input and output 
streams) without including them in their object code. This type of linking is typically 
performed after compilation but before loading. As discussed in the Mini Case 
Study, Mach, shared libraries enable the Mach microkernel to emulate multiple 
operating systems. 

This same process can be performed at load time (see Section 2.8.3, Loading). 
Linking and loading are sometimes both performed by one application called a 

Mini Case Study 

Mach 
The Mach system was developed which we discuss in by programs that are wr i t ten to 

at Carnegie-Mellon University Chapter 21).50,51,52 An open- run on the emulated OS.55,56 The 

from 1985-1994 and was based source implementation, GNU intercepted system calls can then 

on CMU's earlier Accent research Mach, is used as the kernel for the be translated into Mach system 

OS.48 The project was directed by GNU Hurd operating system, calls, and any results are trans-

Richard Rashid, now the senior which is currently under develop- lated back into the emulated 

vice president of Microsoft ment.53 form.5 7 , 5 8 Thus the user's program 

Research.49 Mach was one of the A powerful capability of the does not have to be ported to run 

first and best-known microkernel Mach microkernel system is that it on a system running Mach. In 

operating systems (see can emulate other operating sys- addition, any number of these 

Section 1.13.3, Microkernel Archi- terns. Mach achieves this using transparent libraries can be in 

tecture). It has been incorporated "transparent shared libraries."54 A memory, so Mach can emulate 

into later systems, including Mac transparent shared library imple- multiple operating systems simul-

OS X, NeXT and OSF/1, and had a ments the actions for the system taneously.59 

strong influence on Windows NT calls of the OS it is emulating, 

(and ultimately on Windows XP, then intercepts system calls made 
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linking loader. Linking can also occur at runtime, a process called dynamic linking. 
In this case, references to external functions are not resolved until the process is 

loaded into memory or issues a call to the function. This is useful for large programs 
that use programs controlled by another party, because a dynamically linked pro-

gram does not have to be relinked when a library that it uses is modified.60 Further, 
because dynamically linked programs are not linked until they are in main memory, 

shared library code can be stored separately from other program code. Thus, 
dynamic linking also saves space in secondary storage because only one copy of a 

shared library is stored for any number of programs that use it. 

Self Review 

1. How does linking facilitate the development of large programs built by many developers? 
2. What is one possible drawback of using a dynamic linker? What is a benefit? 

Ans.: 1) Linking permits programs to be written as many separate modules. The linker com-
bines these modules into a final load module when all pieces of the program have been com-
piled 2) If a library cannot be found during execution, an executing program will be forced 

to terminate, possibly losing all of the work performed up to that point. A benefit is that pro-
grams that are dynamically linked do not have to be relinked when a library changes. 

2.8.3 Loading 
Once the linker has created the load module, it passes it to a loader program. The 

loader is responsible for placing each instruction and data unit at a particular memory 
address. a process called address binding. There are several techniques for loading 
programs into main memory, most of which are important only for systems that do 
not support virtual memory. If the load module already specifies physical addresses in 
memory, the loader simply places the instruction and data units at the addresses spec-
ified by the programmer or compiler (assuming the memory addresses are available), 
a technique called absolute loading. Relocatable loading is performed when the load 
module contains relative addresses that need to be converted to actual memory 
addresses. The loader is responsible for requesting a block of memory space in which 

to place the program, then relocating the progranfs addresses to correspond to its 
location in memory. 

In Fig. 2.12, the operating system has allocated the block of memory beginning 
with memory address 10,000. As the program is loaded, the loader must add 10,000 to 
each address in the load module. The loader updates the memory address of the vari-
able Exampl e in the Fig. 2.12 to 10,450 from its original relative address of 450. 

Dynamic loading is a technique that loads program modules upon first use.61 

In many virtual memory systems, each process is assigned its own set of virtual 
addresses starting at zero, so the loader is responsible for loading the program into 
a valid memory region. 

We review the entire compiling, linking and loading process (using load-time 
address binding) from source code to execution in Fig. 2.13. The programmer 
begins by writing the source code in some high-level language—in this case, C. 
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Figure 2.12 | Loading. 

Figure 2.13 | Compiling, linking and loading. 

Next, the compiler transforms the foo. c and bar . c source-code files into machine 
language, creating the object modules foo. o and bar . o. In the code, the program
mer has defined variable X in foo. c and variable Y in bar . c; both are located at rel
ative address 100 in their respective object modules. The object modules are placed 
in secondary storage until requested by the user or another process, at which point 
the modules must be linked. 

In the next step, the linker integrates the two modules into a single load mod
ule. The linker accomplishes this task by collecting information about module sizes 
and external symbols in the first pass and linking the files together in the second 
pass. Notice that the linker relocates variable Y to relative address 400. 

In the third step, the loader requests a block of memory for the program. The 
operating system provides the address range of 4000 to 5050, so the loader relocates 
variable X to the absolute address 4100 and variable Y to the absolute address 4400. 
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1. How might absolute loading limit a system's degree of multiprogramming? 
2. How does dynamic loading improve a system's degree of multiprogramming? 

Ans.: 1) Two programs that specify overlapping addresses cannot execute at the same time, 
because only one can be resident at the same location in memory at once. 2) Modules are 
loaded as needed, so memory contains only the modules that are used. 

Self Review 

2.9 Firmware 
In addition to hardware and software, most computers contain firmware, executable 

instructions stored in persistent, often read-only, memory attached to a device. 
Firmware is programmed with microprogramming, which is a layer of programming 
below a computer's machine language. 

Microcode (i.e., microprogram instructions) typically includes simple, funda-
mental instructions necessary to implement all machine-language operations.62 For 
example, a typical machine instruction might specify that the hardware perform an 
additional operation. The microcode for this instruction specifies the actual primitive 
operations that hardware must perform, such as incrementing the pointer that ref-
erances to the current machine instruction, adding each bit of the numbers, storing 

the result in a new register and fetching the next instruction.6364 

Professor Maurice Wilkes, the creator of the early EDSAC computer, first 
introduced the concepts of microprogramming in 1951.65 However, not until the 
IBM System/360 appeared in 1964 was microcode used on a wide scale. Machine 
instruction sets implemented in microcode reached a peak with the VAX operating 
system, but have declined in recent years, because the execution of microcode 

instructions limits a processor's maximum speed. Thus, operations formerly per-
formed by microcode instructions are now performed by processor hardware.66 

Today, many hardware devices, including hard drives and peripheral devices, con-
tain miniature processors. The instructions for these processors are often imple-
mented using microcode.67 

Self Review 

1. (TF) There are no instructions smaller than machine-language instructions. 
2. Describe the role of firmware in a computer system. 

Ans.: 1) False. Microcode specifies a layer of programming below a processor's machine lan-
guage. 2) Firmware specifies simple, fundamental instructions necessary to implement 
machine-language instructions. 

2.10 Middleware 
Software plays an important role in distributed systems in which computers are con-
nected across a network. Often, the computers that compose a distributed system are 



94 Hardware and Software Concepts 

Self Review 

1. What are the costs and benefits of using middleware? 
2. How does middleware facilitate the construction of hetero

geneous systems? 

Ans: 1) Middleware promotes program modularity and facil
itates application programming, because the developer does 
not need to write code to manage interactions between pro
cesses. However, communication between middleware and 
processes incurs overhead compared to direct communication. 
2) Middleware facilitates communication between computers 
using different protocols by translating messages into different 
formats as they are passed between sender and receiver. 

developer.intel.com 
Provides technical documentation about Intel products, arti
cles on current technologies and topics investigated by their 
research and development teams. 
www.ieee.org 
IEEE defines many standards in computer hardware design. 
Members may access its journals online. 
sourceforge.net 
World's most popular site for open-source software develop
ment; provides resources and utilities for software developers. 

A processor is a hardware component that executes a 
stream of machine-language instructions. A CPU is a pro
cessor that executes the instructions of a program; a copro
cessor executes special-purpose instructions (such as 
graphics or audio) efficiently. In this book, we use the term 
"processor" to refer to a CPU. Registers are high-speed 
memory located on a processor that hold data for immedi
ate use by the processor. Before a processor can operate on 

need to provide only the database to which the applica
tion should connect. The ODBC driver handles connect
ing to the database and retrieving the information 
required by the application. Section 17.3.1, Middleware, 
through Section 17.3.4, CORBA (Common Object 
Request Broker Architecture), discuss common middle
ware implementations and protocols that form the back
bone of many distributed systems. 

heterogeneous—they use different hardware, run differ
ent operating systems and communicate across different 
network architectures using various network protocols. 
The nature of distributed systems requires middleware to 
enable interactions among multiple processes running on 
one or more computers across a network. 

Middleware allows an application running on one 
computer to communicate with an application running 
on a remote computer, enabling communications 
between computers in distributed systems. Middleware 
also permits applications to run on heterogeneous com
puter platforms, as long as each computer has the mid
dleware installed. Middleware simplifies application 
development, because developers do not need to know 
the details of how the middleware performs its tasks. 
Developers can concentrate on developing programs 
rather than developing communication protocols. Open 
DataBase Connectivity (ODBC) is an example of an 
API for database access that permits applications to 
access databases through middleware called an ODBC 
driver. When developing such applications, developers 

Web Resources 
www.pcguide.com 
Provides articles discussing various aspects of computer hard
ware and the motivation for creating various interfaces; covers 
a broad range of topics relating to computer architecture. 

www.tomshardware.com 
Tom's Hardware Guide is one of the most thorough hardware 
review sites on the Web. 

www.anandtech.com 
Reviews new and emerging hardware. 

An operating system is primarily a resource manager, so 
the design of an operating system is intimately tied to the 
hardware and software resources the operating system 
must manage. 

A PCB is a hardware component that provides elec
trical connections between devices at various locations on 
the PCB. The mainboard is the PCB to which devices such 
as processors and main memory are attached. 

Summary 

http://www.ieee.org
http://sourceforge.net
http://www.pcguide.com
http://www.tomshardware.com
http://www.anandtech.com
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data, the data must be placed in registers. The instruction 
lengtn is the size of a machine-language instruction; some 

processors support multiple instruction lengths. 
Computer time is measured in cycles; each cycle is 

one complete oscillation of an electrical signal provided by 
the system clock generator. Processor speeds are often 

measured in GHz (billions of cycles per second). 
The memory hierarchy is a scheme for categorizing 

memory. which places the fastest and most expensive mem-
ory at the top and the slowest and least expensive memory 

at the bottom. It has a steep, pyramidal shape in which reg-
ister memory occupies the hierarchy's top level, followed 
by L1 cache memory, L2 cache memory, main memory, sec-

ondary storage and tertiary storage. A system's main mem-
ory is the lowest data store in the memory hierarchy that 
the processor can reference directly. Main memory is vola-

tile, meaning it loses its contents when the system loses 
power. Secondary storage, such as hard disks, CDs, DVDs 
and floppy disks, persistently store large quantities of data 
at a low cost per unit storage. 

A bus is a collection of thin electrical connections 
called traces that transport information between hardware 

devices. A port is a bus connecting two devices. I/O channels 
are special-purpose components devoted to handling I/O 

independently of the computer system's main processors. 
A peripheral device is hardware that is not required 

for a computer to execute instructions. Printers, scanners 
and mice are peripheral devices; processors and main 
memory are not. 

Some hardware exists specifically to improve perfor
mance and simplify the design of operating systems. Com-
puter systems generally have several different execution 
states. For user applications, the subset of instructions the 
user may execute in user mode precludes, for example, the 
direct execution of input/output instructions. The operating 
system ordinarily executes with most trusted user status in 
kernel mode; in kernel mode, a processor may execute 
privileged instructions and access resources to perform 
tasks on behalf of processes. Memory protection, which 
prevents processes from accessing memory that has not 
been assigned to them (such as other users' memory and 
the operating system's memory), is implemented using pro
cessor registers that can be modified only by privileged 
instructions. Most devices send a signal called an interrupt 
to the processor when an event occurs. The operating sys
tem can respond to a change in device status by notifying 
processes that are waiting on such events. 

Programmed I/O (PIO) is a technique whereby a pro
cessor idles while data is transferred between a device and 

main memory. By contrast, direct memory access (DMA) 
enables devices and controllers to transfer blocks of data to 
and from main memory directly, which frees the processor 
to execute software instructions. 

Interrupts allow hardware to send signals to the pro
cessor, which notifies the operating system of the interrupt. 
The operating system decides what action to take in 
response to the interrupt. 

A computer contains several types of clocks and tim
ers. An interval timer is useful for preventing a process 
from monopolizing a processor. After a designated inter
val, the timer generates an interrupt to gain the attention of 
the processor; as a result of this interrupt, the processor 
might then be assigned to another application. The time-of-
day clock keeps track of "wall clock time." 

Bootstrapping is the process of loading initial operat
ing system components into memory. This process is per
formed by a computer's BIOS. 

Plug-and-play technology allows operating systems to 
configure newly installed hardware without user interac
tion. To support plug-and-play, a hardware device must 
uniquely identify itself to the operating system, communi
cate with the operating system to indicate the resources 
and services the device requires to function properly, and 
identify the driver that supports the device and allows soft
ware to configure the device (e.g., assign the device to a 
DMA channel). 

Caches are relatively fast memory designed to 
increase program execution speed by maintaining copies of 
data that will be accessed soon. Examples of caches are the 
LI and L2 processor caches and the main memory cache 
for hard disks. 

A buffer is a temporary storage area that holds data 
during I/O transfers. Buffer memory is used primarily to 
coordinate communication between devices operating at 
different speeds. Buffers can store data for asynchronous 
processing, coordinate input/output between devices oper
ating at different speeds or allow signals to be delivered 
asynchronously. 

Spooling is a buffering technique in which an inter
mediate device, such as a disk, is interposed between a pro
cess and a low-speed or buffer-limited I/O device. Spooling 
allows processes to request operations from a peripheral 
device without requiring that the device be ready to service 
the request. 

Three types of programming languages are machine, 
assembly and high-level languages. Machine languages 
consist of streams of numbers (ultimately reduced to Is and 
Os) that instruct computers how to perform their most ele-
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mentary operations. A computer can understand only its APIs allow a program to request services from the 
own machine language. Assembly languages represent operating system. Programs call API functions, which may 
machine-language instructions using English-like abbrevia- access the operating system by making system calls, 
tions. High-level languages enable programmers to write Before a high-level-language program can execute, it 
instructions that look similar to everyday English and that must be translated into machine code and loaded into 
contain common mathematical notations. High-level lan- memory. Compilers transform high-level-language code 
guages accomplish more substantial tasks with fewer state- into machine code. Linkers assign relative addresses to dif-
ments, but require translator programs called compilers to ferent program or data units and resolve external refer-
convert high-level language programs into machine lan- ences between subprograms. Loaders convert these 
guage. C, C++, Java and C# are examples of high-level lan- addresses into physical addresses and place the program or 
guages. data units into main memory. 

Today, high-level languages tend to fall into two Most computers contain firmware, which specifies 
types, structured programming languages and object-ori- software instructions but is physically part of a hardware 
ented programming languages. Structured programming is device. Most firmware is programmed with microprogram-
a disciplined approach to creating programs that are clear, ming, which is a layer of programming below a computer's 
correct and easy to modify. Pascal and Fortran are struc- machine language. 
tured programming languages. Object-oriented programs Middleware enables communication among multiple 
focus on manipulating objects (nouns) to create reusable processes running on one or more computers across a net-
software that is easy to modify and understand. C++, C# work. Middleware facilitates heterogeneous distributed 
and Java are object-oriented programming languages. systems and simplifies application programming. 

Key Terms 
absolute loading—Loading technique in which the loader 

places the program in memory at the address specified by 
the programmer or compiler. 

Accelerated Graphics Port (AGP)—Popular bus architecture 
used for connecting graphics devices; AGPs typically pro
vide 260MB/S of bandwidth. 

Ada—Concurrent, procedural programming language devel
oped by the DoD during the 1970s and 1980s. 

address binding—Assignment of memory addresses to pro
gram data and instructions. 

address bus—Part of a bus that specifies the memory location 
from or to which data is to be transferred. 

add-on card—Device that extends the functionality of a com
puter (e.g., sound and video cards). 

Advanced Configuration and Power Interface (ACPI)—Inter
face to which a plug-and-play device must conform so that 
Microsoft Windows operating systems can manage the 
device's power consumption. 

application programming—Software development that entails 
writing code that requests services and resources from the 
operating system to perform tasks (e.g., text editing, load
ing Web pages or payroll processing). 

application programming interface (API)—Set of functions 
that allows an application to request services from a lower 
level of the system (e.g., the operating system or a library 
module). 

Arithmetic and Logic Unit (ALU)—Component of a proces
sor that performs basic arithmetic and logic operations. 

assembler—Translator program that converts assembly-lan
guage programs to machine language. 

assembly language—Low-level language that represents basic 
computer operations as English-like abbreviations. 

attribute (of an object)—See property. 

asynchronous transmission—Transferring data from one 
device to another that operates independently via a buffer 
to eliminate the need for blocking; the sender can per
form other work once the data arrives in the buffer, even 
if the receiver has not yet read the data. 

auxiliary storage—See secondary storage. 

bandwidth—Measure of the amount of data transferred over a 
unit of time. 

behavior (of an object) —See method. 

basic input/output system (BIOS)—Low-level software 
instructions that control basic hardware initialization and 
management. 
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block device—Device such as a disk that transfers data in 
fixed-size groups of bytes, as opposed to a character 
device, which transfers data one byte at a time. 

boot sector—Specified location on a disk in which the initial 
operating system instructions are stored; the BIOS 
instructs the hardware to load these initial instructions 
when the computer is turned on. 

bootstrapping—Process of loading initial operating system 
components into system memory so that they can load the 
rest of the operating system. 

bounds register—Register that stores information regarding 
the range of memory addresses accessible to a process. 

buffer—Temporary storage area that holds data during I/O 
between devices operating at different speeds. Buffers 
enable a faster device to produce data at its full speed 
(until the buffer fills) while waiting for the slower device 
to consume the data. 

bus—Collection of traces that form a high-speed communica
tion channel for transporting information between differ
ent devices on a mainboard. 

bus mastering—DMA transfer in which a device assumes con
trol of the bus (preventing others from accessing the bus 
simultaneously) to access memory. 

bytecode—Intermediate code that is intended for virtual 
machines (e.g., Java bytecode runs on the Java Virtual 
Machine). 

C— Procedural programming language developed by Dennis 
Ritchie that was used to create UNIX. 

C++—Object-oriented extension of C developed by Bjarne 
Stroustup. 

C#—Object-oriented programming language developed by 
Microsoft that provides access to .NET libraries. 

cache hit—Request for data that is present in the cache. 

cache line—Entry in a cache. 

cache miss—Request for data that is not present in the cache. 
central processing unit (CPU)—Processor responsible for the 

general computations in a computer. 

character device—Device such as a keyboard or mouse that 
transfers data one byte at a time, as opposed to a block 
device, which transfers data in fixed-size groups of bytes. 

chipset—Collection of controllers, coprocessors, buses and 
other hardware specific to the mainboard that determine 
the hardware capabilities of a system. 

class—Type of an object. Determines an object's methods and 
attributes. 

clocktick—See cycle. 

COmmon Business Oriented Language (COBOL)—Proce
dural programming language developed in the late 1950s 
that was designed for writing business software that 
manipulates large volumes of data. 

code generator—Part of a compiler responsible for producing 
object code from a higher-level language. 

compact disk (CD)—Digital storage medium in which data is 
stored as a series of microscopic pits on a flat surface. 

compile—Translate high-level-language source code into 
machine code. 

compiler—Application that translates high-level-language 
source code into machine code. 

controller—Hardware component that manages access to a 
bus by devices. 

coprocessor—Processor, such as a graphics or digital signal 
processor, designed to efficiently execute a limited set of 
special-purpose instructions (e.g., 3D transformations). 

cycle (clock) —One complete oscillation of an electrical signal. 
The number of cycles that occur per second determines a 
device's frequency (e.g., processors, memory and buses) 
and can be used by the system to measure time. 

cycle stealing—Method that gives channels priority over a pro
cessor when accessing the bus to prevent signals from 
channels and processors from colliding. 

data bus—Bus that transfers data to or from locations in mem
ory that are specified by the address bus. 

derived speed—Actual speed of a device as determined by the 
frontside bus speed and clock multipliers or dividers. 

direct memory access (DMA)—Method of transferring data 
from a device to main memory via a controller that 
requires only interrupting the processor when the transfer 
completes. I/O transfer via DMA is more efficient than 
programmed I/O or interrupt-driven I/O because the pro
cessor does not need to supervise the transfer of each byte 
or word of data. 

double data rate (DDR)—Chipset feature that enables a fron
tside bus to effectively operate at twice its clock speed by 
performing two memory transfers per clock cycle. This 
feature must be supported by the system's chipset and 
RAM. 

dynamic linking—Linking mechanism that resolves references 
to external functions when the process first makes a call to 
the function. This can reduce linking overhead because 
external functions that are never called while the process 
executes are not linked. 

dynamic loading—Method for loading that specifies memory 
addresses at runtime. 
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dynamic RAM (DRAM)—RAM that must be continuously 
read by a refresh circuit to keep the contents in memory. 

execution mode—Operating system execution mode (e.g., user 
mode or kernel mode) that determines which instructions 
can be executed by a process. 

exception—Error caused by a process. Processor exceptions 
invoke the operating system, which determines how to 
respond. Processes can register exception handlers that 
are executed when the operating system receives the cor
responding exception. 

Extensible Firmware Interface (EFI)—Interface designed by 
Intel that improves upon a traditional BIOS by support
ing device drivers and providing a shell interface at boot 
time. 

external name—Symbol defined in a module that can be refer
enced by other modules. 

external reference—Reference from one module to an exter
nal name in a different module. 

firmware—Microcode that specifies simple, fundamental 
instructions necessary to implement machine-language 
instructions. 

Fortran—Procedural programming language developed by 
IBM in the mid-1950s for scientific applications that 
require complex mathematical computations. 

frontside bus (FSB)—Bus that connects a processor to main 
memory. 

general-purpose register—Register that can be used by pro
cesses to store data and pointer values. Special-purpose 
registers cannot be accessed by user processes. 

heuristics—Technique that solves complex problems using 
rules of thumb or other approximations that incur low 
execution overhead and generally provide good results. 

high-level language—Programming language that uses 
English-like identifiers and common mathematical nota
tion to represent programs using fewer statements than 
assembly-language programming. 

IEEE 1394 port—Commonly used serial port that provides 
transfer speeds of up to 800MB per second, sometimes 
supplies power to devices and allows devices to be hot 
swappable; these ports are commonly referred to as 
Fire Wire (from Apple) or iLink (from Sony). 

instruction decode unit—Component of a processor that inter
prets instructions and generates appropriate control sig
nals that cause the processor to perform each instruction. 

instruction fetch unit—Component of a processor that loads 
instructions from the instruction cache so they can be 
decoded and executed. 

instruction length—Number of bits that comprise an instruc
tion in a given architecture. Some architectures support 
variable-length instructions; instruction lengths also vary 
among different architectures. 

intermediate code generator—Stage of the compilation pro
cess that receives input from the parser and outputs a 
stream of instructions to the optimizer. 

interpreter—Application that can execute code other than 
machine code (e.g., high-level-language instructions). 

interrupt—Message that informs the system that another pro
cess or device has completed an operation or produced an 
error. An interrupt causes the processor to pause program 
execution and invoke the operating system so it can 
respond to the interrupt. 

interval timer—Hardware that generates periodic interrupts 
that cause operating system code to execute, which can 
ensure that a processor will not be monopolized by a mali
cious or malfunctioning process. 

I/O channel—Component responsible for handling device I/O 
independently of a main processor. 

Java—Object-oriented programming language developed b\ 
Sun Microsystems that promotes portability by running 
on a virtual machine. 

kernel mode—Execution mode of a processor that allows pro
cesses to execute privileged instructions. 

lane—Route between two points in a PCI Express bus. PCI 
Express devices are connected by a link that may contain 
up to 32 lanes. 

lexer—See lexical analyzer. 

lexical analyzer—Part of a compiler that separates the source 
code into tokens. 

library module—Precompiled module that performs common 
computer routines, such as I/O routines or mathematical 
functions. 

linking—Process of integrating a program's object modules 
into a single executable file. 

linking loader—Application that performs both linking and 
loading. 

loader—Application that loads linked executable modules 
into memory. 

load module—Integrated module produced by a linker that 
consists of object code and relative addresses. 

Mach—Early microkernel operating system, designed at Carn
egie-Mellon University by a team led by Richard Rashid. 
Mach has influenced the design of Windows NT and has 
been used to implement Mac OS X. 
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machine language—Language that is defined by a computer's 
hardware design and can be natively understood by the 
computer. 

•mainboard—Printed circuit board that provides electrical con-
nections between computer components such as proces
sor, memory and peripheral devices. 

main memory—Volatile memory that stores instructions and 
data; it is the lowest level of the memory hierarchy that 
can be directly referenced by a processor. 

memory hierarchy—Classification of memory from fastest, 
lowest-capacity, most expensive memory to slowest, high
est-capacity, least expensive memory. 

memory protection—Mechanism that prevents processes from 
accessing memory used by other processes or the operat
ing system. 

method (of an object)—Part of an object that manipulates 
object attributes or performs a service. 

microcode—Microprogramming instructions. 

microprogramming—Layer of programming below a com
puter's machine language that includes instructions neces
sary to implement machine-language operations. This 
enables processors to divide large, complex instructions 
into simpler ones that are performed by its execution unit. 

module—Independently developed subprogram that can be 
combined with other subprograms to create a larger, more 
complex program; programmers often use precompiled 
library modules to perform common computer functions 
such as I/O manipulations or random number generation. 

Moore's law—Prediction regarding the evolution of processor 
design that asserts the number of transistors in a proces
sor will double approximately every 18 months. 

motherboard—See mainboard. 

most trusted user status—See kernel mode. 

object—Reusable software component that can model real-
world items through properties and actions. 

object code—Code generated by a compiler that contains 
machine-language instructions that must be linked and 
loaded before execution. 

object-oriented programming (OOP)—Style of programming 
that allows programmers to quickly build complex soft
ware systems by reusing components called objects, built 
from "blueprints" called classes. 

on-board device—Device that is physically connected to a 
computer's mainboard. 

Open DataBase Connectivity (ODBC)—Protocol for middle
ware that permits applications to access a variety of data
bases that use different interfaces. The ODBC driver 
handles connections to the database and retrieves infor
mation requested by applications. This frees the applica
tion programmer from writing code to specify database-
specific commands. 

optimizer—Part of the compiler that attempts to improve the 
execution efficiency and reduce the space requirement of 
a program. 

parallel port—Interface to a parallel I/O device such as a 
printer. 

parser—Part of the compiler that receives a stream of tokens 
from the lexical analyzer and groups the tokens so they 
can be processed by the intermediate code generator. 

Pascal—Structured programming language developed in 1971 
by Wirth that became popular for teaching introductory 
programming courses. 

Peripheral Components Interconnect (PCI) bus—Popular bus 
used to connect peripheral devices, such as network and 
sound cards, to the rest of the system. PCI provides a 32-
bit or 64-bit bus interface and supports transfer rates of up 
to 533MB per second. 

persistent storage—See secondary storage. 

physical address—See real address. 

physical memory—See main memory. 

plug-and-play—Technology that facilitates driver installation 
and hardware configuration performed by the operating 
system. 

polling—Technique to discover hardware status by repeatedly 
testing each device. Polling can be implemented in lieu of 
interrupts but typically reduces performance due to 
increased overhead. 

port—Bus that connects two devices. 

principle of least privilege—Resource access policy that states 
that a user should only be granted the amount of privilege 
and access that the user needs to accomplish its desig
nated task. 

printed circuit board (PCB)—Piece of hardware that provides 
electrical connections to devices that can be placed at var
ious locations throughout the board. 

privileged instruction—Instruction that can be executed only 
from kernel mode. Privileged instructions perform opera
tions that access protected hardware and software 
resources (e.g., switching the processor between processes 
or issuing a command to a hard disk). 

problem state—See user mode. 
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procedural programming language—Programming language 
that is based on functions rather than objects. 

processor—Hardware component that executes machine-lan
guage instructions and enforces protection for system 
resources such as main memory. 

programmed I/O (PIO) —Implementation of I/O for devices 
that do not support interrupts in which the transfer of 
every word from memory must be supervised by the pro
cessor. 

property (of an object)—Part of an object that stores data 
about the object. 

quad pumping—Technique for increasing processor perfor
mance by performing four memory transfers per clock 
cycle. 

random access memory (RAM)—Memory whose contents can 
be accessed in any order. 

real address—Address in main memory. 

real memory—See main memory. 

register—High-speed memory located on a processor that 
holds data for immediate use by the processor. 

relative address—Address that is specified based on its loca
tion in relation to the beginning of a module. 

relocatable loading—Method of loading that translates rela
tive addresses in a load module to absolute addresses 
based on the location of a requested block of memory. 

relocating—Process of adjusting the addresses of program 
code and data. 

scanner—See lexical analyzer. 

secondary storage—Memory that typically stores large quanti
ties of data persistently. Secondary storage is one level 
lower than main memory in the memory hierarchy. After a 
computer is powered on, information is shuttled between 
secondary storage and main memory so that program 
instructions and data can be accessed by a processor. Hard 
disks are the most common form of secondary storage. 

serial port—Interface to a device that transfers one bit at a 
time (e.g, keyboards and mice). 

small computer systems interface (SCSI)—Interface designed 
to support multiple devices and high-speed connections. 
The SCSI interface supports a large number of devices 
than the less inexpensive IDE interface and is popular in 
Apple systems and computers containing large numbers 
of peripheral devices. 

shared library—Collection of functions shared between sev
eral programs. 

source code—Program code typically written in a high-level 
language or assembly language that must be compiled or 
interpreted before it can be understood by a computer. 

spool (simultaneous peripheral operations online)—Method 
of I/O in which processes write data to secondary storage 
where it is buffered before being transferred to a low-
speed device. 

static RAM (SRAM)—RAM that does not need to be 
refreshed and will hold data as long as it receives power. 

structured programming—Disciplined approach to creating 
programs that are clear, correct and easy to modify. 

supervisor state—See kernel mode. 

symbol resolution—Procedure performed by a linker that 
matches external references in one module to external 
names in another. 

symbol table—Part of an object module that lists an entry for 
each external name and each external reference found in 
the module. 

syntax analyzer—See parser. 

system call—Procedure call that requests a service from an 
operating system. When a process issues a system call, the 
processor execution mode changes from user mode to 
kernel mode to execute operating system instructions that 
respond to the call. 

systems programming—Development of software to manage a 
system's devices and applications. 

trace—Tiny electrically conducting line that forms part of a bus. 

transistor—Miniature switch that either allows or prevents 
current from passing to enable processors to perform 
operations on bits. 

time-of-day clock—Clock that measures time as perceived 
outside of a computer system, typically accurate to thou
sandths or millionths of a second. 

token—Characters in a program, separated by the lexical ana
lyzer, that generally represent keywords, identifiers, oper
ators or punctuation. 

universal serial bus (USB) —Serial bus interface that transfers 
data up to 480Mbits per second, can supply power to its 
devices and supports hot swappable devices. 

user mode—Mode of operation that does not allow processes 
to directly access system resources. 

user state—See user mode. 

volatile storage—Storage medium that loses data in the 
absence of power. 
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Windows API—Microsoft's interface for applications that exe
cute in a Windows environment. The API enables pro
grammers to request operating system services, which free 
the application programmer from writing the code to per

form these operations and enables the operating system 
to protect its resources. 

Write-Once, Read-Many (WORM) medium—Storage medium 
that can be modified only once, but whose contents can be 
accessed repeatedly. 

Ecercises 
2.1 Distinguish among hardware, software and firmware. 

2.2: Some hardware devices follow. 

i. mainboard 

ii. processor 

iii. bus 

iv. memory 

v. hard disk 

vi. peripheral device 

vii. tertiary storage device 

viii. register 

ix. cache 

Indicate which of these devices is best defined by each of 
the following. (Some items can have more than one answer.) 

a. executes program instructions 

b. not required for a computer to execute program 
instructions. 

c. volatile storage medium. 

d. the PCB that connects a system's processors to mem
ory, secondary storage and peripheral devices. 

e. fastest memory in a computer system 

f. set of traces that transmit data between hardware 
devices 

g. fast memory that improves application performance. 

h. lowest level of memory in the memory hierarchy that 
a processor can reference directly. 

2.3 Processor speeds have doubled roughly every 18 
months. Has overall computer performance doubled at the 
same rate? Why or why not? 

2.4 Sort the following list from fastest and most expensive 
memory to cheapest and least expensive memory: secondary 
storage, registers, main memory, tertiary storage, L2 cache, LI 
cache. Why do systems contain several data stores of different 
size and speed? What is the motivation behind caching? 

2.5 What are some costs and benefits of using nonvolatile 
RAM in all caches and main memory? 

2.6 Why is it important to support legacy architectures? 

2.7 Relate the principle of least privilege to the concepts of 
user mode, kernel mode and privileged instructions. 

2.8 Describe several techniques for implementing memory 
protection. 

2.9 Double buffering is a technique that allows an I/O chan
nel and a processor to operate in parallel. On double-buffered 
input, for example, while a processor consumes one set of data 
in one buffer, the channel reads the next set of data into the 
other buffer so that the data will (hopefully) be ready for the 
processor. Explain in detail how a triple-buffering scheme 
might operate. In what circumstances would triple buffering be 
effective? 

2.10 Describe two different techniques for handling the com
munications between a processor and devices. 

2.11 Explain how DMA improves system performance, and 
cycle stealing. 

2.12 Why is it appropriate for channel controllers to steal 
cycles from processors when accessing memory? 

2.13 Explain the notion of spooling and why it is useful. How, 
do you suppose, does an input spooling system designed to 
read punched cards from a card reader operate? 

2.14 Consider the following types of programming languages: 

i. machine language 

ii. assembly language 

iii. high-level language 

iv. object-oriented programming language 

v. structured programming language 

Indicate which of these categories is best defined by 
each of the following. (Some items can have more than one 
answer.) 

a. focuses on manipulating things (nouns) 

b. requires a translator programmer to convert the code 
into something a specific processor can understand 
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c. written using l's and O's 

d. defines a disciplined approach to software develop
ment and focuses on actions (verbs). 

e. specifies basic computer operations using English
like abbreviations for instructions 

F. Java and C++ 

g. Fortran and Pascal 

h. enables programmers to write code using everyday 
English words and mathematical notation 

2.15 Briefly describe how a program written in a high-level 
language is prepared for execution. 

2.16 Compare and contrast absolute loaders with relocating 
loaders. Give several motivations for the concept of relocat
able loading. 

2.17 What is microprogramming? Why is the term "firm
ware" appropriate for describing microcode that is part of a 
hardware device? 

Suggested Projects 
2.18 Prepare a research paper on MRAM, a form of nonvola
tile RAM (see www.research.ibm.com/resources/news/ 
20030610_mram.shtml). 

2.19 Prepare a research paper on MEMS (MicroElectroMe-
chanical System) storage, a secondary storage device intended 
to improve access times over hard disks (see 
www.pdl .cmu.edu/MEMS/). 

2.20 Research the difference between the SCSI interface and 
the IDE interface for secondary storage devices. Why has IDE 
become the more popular choice? 

2.21 Prepare a research paper on the design and implementa
tion of Microsoft's .NET framework. 

fet&twneMled feadfng 
Several textbooks describe computer organization and archi
tecture. Hennessy and Patterson's text is an excellent summary 
of computer architecture.68 Blaauw and Brooks, Jr. also discuss 
computer architecture, providing detailed coverage of low-
level mechanisms in computers.69 For discussion of the most 
recent hardware technologies, however, only online journals 
can truly keep pace—see the Web Resources section. 

An excellent essay regarding software engineering in the 
development of the OS/360 is The Mythical Man-Month, by 
Frederick P. Brooks.70 Steve Maguire's Debugging the Devel
opment Process is a discussion of how to manage project 

teams, drawing from his managerial experience at Microsoft.7' 
Code Complete by Steve McConnell is a valuable resource on 
good programming practices and software design.72 

A review of compiler design and techniques can be 
found in a text by Aho et. al.73 For those interested in modern 
compiler techniques, see the text by Grune et al.74 Levine's 
text is an excellent resource for students interested in concerns 
and techniques regarding linking and loading an application.74 

The bibliography for this chapter is located on our Web site at 
www.deitel.com/books/os3e/Bibliography.pdf. 
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Processes and Threads 

It was surprising that Nature had gone tranquilly on with her golden process 

in the midst of so much devilment. 
— Stephen Crane — 

Part 2 



To realize maximum performance and meet user 

needs, operating systems perform many activities 

simultaneously, using the abstractions of process 

and thread to keep track of the parallel activities. 

In the next six chapters, you will study how operat

ing systems manage processes and threads to 

ensure that they coexist peacefully, cooperate 

smoothly and do not collide with one another as 

they go about their business. You will learn how to 

write your own multithreaded Java applications. 

Sometimes processes and threads need to wait 

when there is contention over resources—you will 

study indefinite postponement and deadlock— 

problems that can ensue if waiting entities are not 

managed properly. To keep processes and threads 

progressing efficiently, you will learn how operat

ing systems schedule their most valuable hardware 

resource: processors. 

There is nothing more requisite in business than dispatch. 
—Joseph Addison— 



Learn to labor and to wait. 
—Henry Wadsworth Longfellow-

Many shall run to and fro, and knowledte shall be increased. 
-Daniel 12:2— 

You will wake, and remember, and understand. 
— Robert Browning — 

It was surprising that Nature had gone tranquilly on with her golden process in the 

midst of so much devilment. 
—Stephen Crane— 



Chapter 3 

Process Concepts 
Objectives 
After reading this chapter, you should understand: 

• the concept of a process. 

• the process life cycle. 

• process states and state transitions. 

• process control blocks (PCBs)/process descriptors. 

• how processors transition between processes via context switching. 

• how interrupts enable hardware to communicate with software. 

• how processes converse with one another via interprocess communication 

(IPC). 

• UNIX processes. 
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3.1 Introduction 111 

Many systems in nature have the ability to perform multiple actions at the same 
time. For example, the human body performs a great variety of operations in paral-
lel —or, as we will say, concurrently. Respiration, blood circulation, thinking, walk

ing and digestion, for example, can occur concurrently, as can the senses—sight, 
touch, smell, taste and hearing. Computers, too, perform operations concurrently. It 
is common for desktop computers to be compiling a program, sending a file to a 
printer, rendering a Web page, playing a digital video clip and receiving e-mail con
currently (see the Operating Systems Thinking feature, Customers Ultimately Want 
Applications). 

In this chapter we formally introduce the notion of a process, which is central 
to understanding how today's computer systems perform and keep track of many 
simultaneous activities. We introduce some of the more popular definitions of pro
cess. We present the concept of discrete process states and discuss how and why 
processes make transitions between these states. We also discuss various operations 
that operating systems perform to service processes, such as creating, destroying, 
suspending, resuming and waking up processes. 

3.1.1 Definition of Process 
The term "process" in the context of operating systems was first used by and the 
designers of the Multics system in the 1960s (see the Mini Case Study, CTSS and 
Multics and the Biographical Note, Fernando J. Corbato).1 Since that time, process, 
used somewhat interchangeably with task, has been given many definitions, such as: 
a program in execution, an asynchronous activity, the "animated spirit" of a proce
dure, the "locus of control" of a procedure in execution, that which is manifested by 

Customers Ultimately Want Applications 
Ultimately, computers exist to run 

useful applications. Operating sys

tems designers can lose sight of 

this because they tend to be con

cerned wi th complex technical 

issues of operating systems archi

tecture and engineering. But they 

cannot operate in a void; they 

must know their user community; 

the kinds of applications those 

users wil l be running and what 

results the users really want from 

those applications. Hardware 

stores sell many tools to help you 

perform household chores. The 

tool designer needs to be aware 

that few people are interested in 

simply purchasing tools; rather 

they ultimately buy the tools for 

the tasks they perform. Customers 

do not really want saws, hammers 

and drills—they want cuts, nails in 

wood and holes. 

Operating Systems Thinking 

3.1 Introduction 



112 Process Concepts 

the existence of a data structure called a "process descriptor" or a "process control 
block" in the operating system, that entity to which processors are assigned and the 
"dispatchable" unit. A program is to a process as sheet music is to a symphony 
orchestra playing the music. 

Two key concepts are presented by these definitions. First, a process is an entity. 
Each process has its own address space, which typically consists of a text region, data 
region and stack region. The text region stores the code that the processor executes. 
The data region stores variables and dynamically allocated memory that the process 

Mini Case Study 

In the early 1960s, a team of pro

grammers at MIT's Project MAC, 

led by Professor Fernando Cor-

bato, developed the Compatible 

Time-Sharing System (CTSS) which 

allowed users to command the 

computing power of an IBM 7090 

(which eventually became an IBM 

7094) wi th typewriterlike 

terminals.2 '3 CTSS ran a conven

tional batch stream to keep the 

computer working while giving 

fast responses to interactive users 

editing and debugging pro

grams. The computing capabilities 

provided by CTSS resembled those 

provided to personal computer 

users today—namely, a highly 

interactive environment in which 

the computer gave rapid 

responses to large numbers of rel

atively trivial requests. 

In 1965 the same MIT group, 

in cooperation w i th Bell Labs and 

GE, began working on the Multics 

(Multiplexed Information and 

Computing Service) operating sys

tem, the successor to CTSS. Multics 

was a large and complex system; 

the designers envisioned a gen

eral-purpose computer util ity that 

could be "all things to all peo

ple." Although it did not achieve 

commercial success, it was used by 

various research centers until the 

last system was shut down in 

2000.4 

A variety of Multics features 

influenced the development of 

future operating systems, includ

ing UNIX, TSS/360, TENEX and 

TOPS-20.5 Multics used a combina

tion of segmentation and paging 

for its virtual memory system, wi th 

paging controlled only by the 

operating system, while segments 

were manipulated by user pro

grams as well.6 It was one of the 

first operating systems to be writ

ten in a high-level systems-pro

gramming language, IBM's PL/I.7, 8 

Its designers coined the term "pro

cess" as it is currently used in oper

ating systems. Multics was built for 

security. It included a discretionary 

access mechanism called ACL 

(Access Control List), which was a 

list of permissions on a memory 

segment which would look famil

iar to UNIX users. Later versions 

included a mandatory access con

trol, A IM (Access Isolation Mecha

nism), an enhancement to ACL 

where every user and object was 

assigned a security classification, 

which helped Multics become the 

first operating system to get a B2 

security rating from the U.S. 

government.9,10, 11 In 1976 the first 

commercial relational database 

system was written, the Multics 

Relational Data Store.12 



3.2 Process States: Life Cycle of a Process 

uses during execution. The stack region stores instructions and local variables for 
active procedure calls. The contents of the stack grow as a process issues nested pro
cedure calls and shrink as called procedures return.13 Second, a process is a "program 
in execution." A program is an inanimate entity; only when a processor "breathes 
life" into a program does it become the active entity we call a process. 

1. Why is a process's address space divided into multiple regions? 
2. (T/F) The terms "process" and "program" are synonymous. 

Ans: 1) Each region of an address space typically contains information that is accessed in a 
similar way. For example, most processes read and execute instructions, but do not modify 
iheir instructions. Processes read from and write to the stack, but in last-in-first-out order. 
Processes read and write data in any order. Separating a process's address space into differ
ent regions enables the operating system to enforce such access rules. 2) False. A process is a 
program in execution; a program is an inanimate entity. 

3.2 Process States: Life Cycle of a Process 
The operating system must ensure that each process receives a sufficient amount of 
processor time. For any system, there can be only as many truly concurrently exe
cuting processes as there are processors. Normally, there are many more processes 
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than processors in a system. Thus, at any given time, some processes can execute 
and some cannot. 

During its lifetime, a process moves through a series of discrete process states. 
Various events can cause a process to change state. A process is said to be running 
(i.e., in the running state) if it is executing on a processor. A process is said to be ready 
(i.e., in the ready state) if it could execute on a processor if one were available. A pro
cess is said to be blocked (i.e., in the blocked state) if it is waiting for some event to 
happen (such as an I/O completion event, for example) before it can proceed. There 
are other process states, but for now we will concentrate on these three. 

For simplicity, let us consider a uniprocessor system, although the extension to 
multiprocessing (see Chapter 15, Multiprocessor Management) is not difficult. In a 
uniprocessor system only one process may be running at a time, but several may be 
ready and several blocked. The operating system maintains a ready list of ready pro
cesses and a blocked list of blocked processes. The ready list is maintained in prior
ity order, so that the next process to receive a processor is the first one in the list 
(i.e., the process with the highest priority). The blocked list is typically unordered— 
processes do not become unblocked (i.e., ready) in priority order; rather, they 
unblock in the order in which the events they are waiting for occur. As we will see 
later, there are situations in which several processes may block awaiting the same 
event; in these cases it is common to prioritize the waiting processes. 
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1. (T/F) At any given time, only one process can be executing instructions on a computer. 
2. A process enters the blocked state when it is waiting for an event to occur. Name several 

events that might cause a process to enter the blocked state. 

Ans: 1) False. On a multiprocessor computer, there can be as many processes executing 
instructions as there are processors. 2) A process may enter the blocked state if it issues a 
request for data located on a high-latency device such as a hard disk or requests a resource 
that is allocated to another process and is currently unavailable (e.g., a printer). A process 
may also block until an event occurs, such as a user pressing a key or moving a mouse. 

As the operating system interleaves the execution of its processes, it must carefully 
manage them to ensure that no errors occur as the processes are interrupted and 
resumed. Processes should be able to communicate with the operating system to 
perform simple tasks such as starting a new process or signaling the end of process 
execution. In this section, we discuss how operating systems provide certain funda
mental services to processes—these include creating processes, destroying pro
cesses, suspending processes, resuming processes, changing a process's priority, 
blocking processes, waking up processes, dispatching processes, enabling processes 
to interact via interprocess communication (IPC) and more. We also discuss how 
operating systems manage process resources to allow multiple processes to actively 
contend for processor time at once. 

3.3 Process Management 

Self Review 



3.3 Process Management 115 

3.3.1 Process States and State Transitions 
When a user runs a program, processes are created and inserted into the ready list. A 
process moves toward the head of the list as other processes complete their turns 
using a processor. When a process reaches the head of the list, and when a processor 
becomes available, that process is given a processor and is said to make a state tran
sition from the ready state to the running state (Fig. 3.1). The act of assigning a pro
cessor to the first process on the ready list is called dispatching and is performed by a 
system entity called the dispatcher. Processes that are in the ready or running states 
are said to be awake, because they are actively contending for processor time. The 
operating system manages state transitions to best serve processes in the system. To 
prevent any one process from monopolizing the system, either accidentally or mali
ciously, the operating system sets a hardware interrupting clock (also called an inter
val timer) to allow a process to run for a specific time interval or quantum. If the 
process does not voluntarily yield the processor before the time interval expires, the 
interrupting clock generates an interrupt, causing the operating system to gain con
trol of the processor (see Section 3.4, Interrupts). The operating system then changes 
the state of the previously running process to ready and dispatches the first process 
on the ready list, changing its state from ready to running. If a running process ini
tiates an input/output operation before its quantum expires, and therefore must wait 
for the I/O operation to complete before it can use a processor again, the running 
process voluntarily relinquishes the processor. In this case, the process 

Figure 3.1 | Process state transitions. 
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is said to block itself, pending the completion of the I/O operation. Processes in the 
blocked state are said to be asleep, because they cannot execute even if a processor 
becomes available. The only other allowable state transition in our three-state 
model occurs when an I/O operation (or some other event the process is waiting 
for) completes. In this case, the operating system transitions the process from the 
blocked to the ready state. 

We have defined four possible state transitions. When a process is dispatched, 
it transitions from ready to running. When a process's quantum expires, it transi
tions from running to ready. When a process blocks, it transitions from running to 
blocked. Finally, when a process wakes up because of the completion of some event 
it is awaiting, it transitions from blocked to ready. Note that the only state transition 
initiated by the user process itself is block—the other three transitions are initiated 
by the operating system. 

In this section, we have assumed that the operating system assigns each process 
a quantum. Some early operating systems that ran on processors without interrupting 
clocks employed cooperative multitasking, meaning that each process must voluntar
ily yield the processor on which it is running before another process can execute. 
Cooperative multitasking is rarely used in today's systems, however, because it allows 
processes to accidentally or maliciously monopolize a processor (e.g., by entering an 
infinite loop or simply refusing to yield the processor in a timely fashion). 

Self Review 
1. How does the operating system prevent a process from monopolizing a processor? 
2. What is the difference between processes that are awake and those that are asleep? 

Ans: 1) An interrupting clock generates an interrupt after a specified time quantum, and 
the operating system dispatches another process to execute. The interrupted process will run 
again when it gets to the head of the ready list and a processor again becomes available. 2) A 
process that is awake is in active contention for a processor; a process that is asleep cannot 
use a processor even if one becomes available. 

3.3.2 Process Control Blocks (PCBs)/Process Descriptors 
The operating system typically performs several operations when it creates a pro
cess. First, it must be able to identify each process; therefore, it assigns a process 
identification number (PID) to the process. Next, the operating system creates a 
process control block (PCB), also called a process descriptor, which maintains 
information that the operating system needs to manage the process. PCBs typically 
include information such as: 

• PID 

• process state (e.g., running, ready or blocked) 

• program counter (i.e., a value that determines which instruction the proces
sor should execute next) 

• scheduling priority 
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• credentials (i.e., data that determines the resources this process can access) 

• a pointer to the process's parent process (i.e., the process that created this 
process) 

• pointers to the process's child processes (i.e., processes created by this pro
cess) if any 

• pointers to locate the process's data and instructions in memory 

• pointers to allocated resources (such as files). 

The PCB also stores the register contents, called the execution context, of the 
processor on which the process was last running when it transitioned out of the run
ning state. The execution context of a process is architecture specific but typically 
includes the contents of general-purpose registers (which contain process data that 
the processor can directly access) in addition to process management registers, such 
as registers that store pointers to a process's address space. This enables the operat
ing system to restore a process's execution context when the process returns to the 
running state. 

When a process transitions from one state to another, the operating system 
must update information in the process's PCB. The operating system typically main
tains pointers to each process's PCB in a systemwide or per-user process table so 
that it can access the PCB quickly (Fig. 3.2). The process table is one of many oper
ating system data structures we discuss in this text (see the Operating Systems 
Thinking feature, Data Structures in Operating Systems). When a process is termi-

Figure 3.2 | Process table and process control blocks. 
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nated (either voluntarily or by the operating system), the operating system frees the 
process's memory and other resources, removes the process from the process table 
and makes its memory and other resources available to other processes. We discuss 
other process manipulation functions momentarily.19 

Self Review 
1. What is the purpose of the process table? 
2. (T/F) The structure of a PCB is dependent on the operating system implementation. 

Ans: 1) The process table enables the operating system to locate each process's PCB. 2) True. 

3.3.3 Process Operations 
Operating systems must be able to perform certain process operations, including: 

• create a process 

• destroy a process 

• suspend a process 

• resume a process 

• change a process's priority 

• block a process 

• wake up a process 

• dispatch a process 

• enable a process to communicate with another process (this is called inter
process communication). 

Data Structures in Operating Systems 
Computer science students gener

ally study data structures, both 

those on the main topic of a full 

course and as portions of many 

upper-level courses, such as com

pilers, databases, networking and 

operating systems. Data structures 

are used abundantly in operating 

systems. Queues are used wher

ever entities need to wait—pro

cesses wait ing for a processor, I/O 

requests wait ing for devices to 

become available, processes wait

ing for access to their critical sec

tions and so on. Stacks are used 

for supporting the function call 

return mechanism. Trees are used 

to represent file system directory 

structures, to keep track of the 

allocation of disk space to files, to 

build hierarchical page directory 

structures in support of virtual 

address translation, and so on. 

Graphs are used when studying 

networking arrangements, dead

lock resource allocation graphs, 

and the like. Hash tables are used 

to access PCBs quickly (using a PID 

as the key). 

Operating Systems Thinking 
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A process may spawn a new process. If it does, the creating process is called 
the parent process and the created process is called the child process. Each child 
process is created by exactly one parent process. Such creation yields a hierarchical 
process structure similar to Fig. 3.3, in which each child has only one parent (e.g., A 
is the one parent of C; H is the one parent of I), but each parent may have many 
children (e.g., B, C, and D are the children of A; F and G are the children of C).In 
UNIX-based systems, such as Linux, many processes are spawned from the init pro
cess, which is created when the kernel loads (Fig. 3.4). In Linux, such processes 
include kswapd, xfs and khubd—these processes perform memory, file system and 
device management operations, respectively. Many of these processes are discussed 
further in Chapter 20, Case Study: Linux. The login process authenticates users to 
the operating system. This is typically accomplished by requiring a user to enter a 
valid username and corresponding password. We discuss other means of authentica
tion in Chapter 19, Security. Once the login process authenticates the user, it 
spawns a shell, such as bash (Bourne-again shell), that allows the user to interact 
with the operating system (Fig. 3.4). The user may then issue commands to the shell 
to execute programs such as vi (a text editor) and finger (a utility that displays user 
information). Destroying a process involves obliterating it from the system. Its 
memory and other resources are returned to the system, it is purged from any sys
tem lists or tables and its process control block is erased, i.e., the PCB's memory 
space is made available to other processes in the system. Destruction of a process is 
more complicated when the process has spawned other processes. In some operat
ing systems, each spawned process is destroyed automatically when its parent is 
destroyed; in others, spawned processes proceed independently of their parents, 
and the destruction of a parent has no effect on its children. 

Process creation hierarchy. Figure 3.3 | 



Figure 3.4 | Process hierarchy in Linux. 

Changing the priority of a process normally involves modifying the priority 
value in the process's control block. Depending on how the operating system imple
ments process scheduling, it may need to place a pointer to the PCB in a different 
priority queue (see Chapter 8, Processor Scheduling). The other operations listed in 
this section are explained in subsequent sections. 
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1. (T/F) A process may have zero parent processes. 
2. Why is it advantageous to create a hierarchy of processes as opposed to a linked list? 

Ans: 1) True. The first process that is created, often called init in UNIX systems, does not 
have a parent. Also, in some systems, when a parent process is destroyed, its children proceed 
independently without their parent. 2) A hierarchy of processes allows the operating system 
to track parent/child relationships between processes. This simplifies operations such as 
locating all the child processes of a particular parent process when that parent terminates. 

Self Review 

3.3.4 Suspend and Resume 
Many operating systems allow administrators, users or processes to suspend a pro
cess. A suspended process is indefinitely removed from contention for time on a 
processor without being destroyed. Historically, this operation allowed a system 
operator to manually adjust the system load and/or respond to threats of system 
failure. Most of today's computers execute too quickly to permit such manual 
adjustments. However, an administrator or a user suspicious of the partial results of 
a process may suspend it (rather than aborting it) until the user can ascertain 
whether the process is functioning correctly. This is useful for detecting security 
threats (such as malicious code execution) and for software debugging purposes. 

Figure 3.5 displays the process state-transition diagram of Fig. 3.1 modified to 
include suspend and resume transitions. Two new states have been added, suspend-
edready and suspendedblocked. Above the dashed line in the figure are the active 
states; below it are the suspended states. 
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Figure 3.5 | Process state transitions with suspend and resume. 

A suspension may be initiated by the process being suspended or by another 
process. On a uniprocessor system a running process may suspend itself, indicated 
by Fig. 3.5(a); no other process could be running at the same moment to issue the 
suspend. A running process may also suspend a ready process or a blocked process, 
depicted in Fig. 3.5(b) and (c). On a multiprocessor system, a running process may 
be suspended by another process running at that moment on a different processor. 

Clearly, a process suspends itself only when it is in the running state. In such a 
situation, the process makes the transition from running to suspendedready. When a 
process suspends a ready process, the ready process transitions from ready to suspend
edready. A suspendedready process may be made ready, or resumed, by another pro
cess, causing the first process to transition from suspendedready to ready. A blocked 
process will make the transition from blocked to suspendedblocked when it is sus
pended by another process. A suspendedblocked process may be resumed by another 
process and make the transition from suspendedblocked to blocked. 

One could argue that instead of suspending a blocked process, it is better to 
wait until the I/O completion or event completion occurs and the process becomes 
ready; then the process could be suspended to the suspendedready state. Unfortu-



nately, the completion may never come, or it may be delayed indefinitely. The 
designer must choose between performing the suspension of the blocked process or 
creating a mechanism by which the suspension will be made from the ready state 
when the I/O or event completes. Because suspension is typically a high-priority 
activity, it is performed immediately. When the I/O or event completion finally 
occurs (if indeed it does), the suspendedblocked process makes the transition from 
suspendedblocked to suspendedready. 

Figure 3.6 | Context switch. 
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1. In what three ways can a process get to the suspendedready state? 
2. In what scenario is it best to suspend a process rather than abort it? 

Ans: 1) A process can get to the suspendedready state if it is suspended from the running 
state, if it is suspended from the ready state by a running process or if it is in the suspended-
blocked state and the I/O completion or event completion it is waiting for occurs. 2) When a 
user or system administrator is suspicious of a process's behavior but does not want to lose 
the work performed by the process, it is better to suspend the process so that it can be 
inspected. 

The operating system performs a context switch to stop executing a running process 
and begin executing a previously ready process.20 To perform a context switch, the 
kernel must first save the execution context of the running process to its PCB, then 
load the ready process's previous execution context from its PCB (Fig. 3.6). 

3.3.5 Context Switching 

Self Review 
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Context switches, which are essential in a multiprogrammed environment, 
introduce several operating system design challenges. For one, context switches 
must be essentially transparent to processes, meaning that the processes are 
unaware they have been removed from the processor. During a context switch a 
processor cannot perform any "useful" computation—i.e., it performs tasks that are 
essential to operating systems but does not execute instructions on behalf of any 
given process. Context switching is pure overhead and occurs so frequently that 
operating systems must minimize context-switching time. 

The operating system accesses PCBs often. As a result, many processors con
tain a hardware register that points to the PCB of the currently executing process to 
facilitate context switching. When the operating system initiates a context switch, 
the processor safely stores the currently executing process's execution context in 
the PCB. This prevents the operating system (or other processes) from overwriting 
the process's register values. Processors further simplify and speed context switch
ing by providing instructions that save and restore a process's execution context to 
and from its PCB, respectively. 

In the IA-32 architecture, the operating system dispatches a new process by 
specifying the location of its PCB in memory. The processor then performs a con
text switch by saving the execution context of the previously running process. The 
IA-32 architecture does not provide instructions to save and restore a process's exe
cution context, because the processor performs these operations without software 
intervention.21 

1. From where does an operating system load the execution context for the process to be dis
patched during a context switch? 

2. Why should an operating system minimize the time required to perform a context switch? 

Ans: 1) The process to be dispatched has its context information stored in its PCB. 2) Dur
ing a context switch, a processor cannot perform instructions on behalf of processes, which 
can reduce throughput. 

Self Review 

As discussed in Chapter 2, Hardware and Software Concepts, interrupts enable 
software to respond to signals from hardware. The operating system may specify a 
set of instructions, called an interrupt handler, to be executed in response to each 
type of interrupt. This allows the operating system to gain control of the processor 
to manage system resources. 

A processor may generate an interrupt as a result of executing a process's 
instructions (in which case it is often called a trap and is said to be synchronous with 
the operation of the process). For example, synchronous interrupts occur when a 
process attempts to perform an illegal action, such as dividing by zero or referenc
ing a protected memory location. 

3.4 Interrupts 
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Interrupts may also be caused by some event that is unrelated to a process's 
current instruction (in which case they are said to be asynchronous with process 
execution; see the Operating Systems Thinking feature, Asynchronism vs. Synchro
nism). Hardware devices issue asynchronous interrupts to communicate a status 
change to the processor. For example, the keyboard generates an interrupt when a 
user presses a key; the mouse generates an interrupt when it moves or when one of 
its buttons is pressed. 

Interrupts provide a low-overhead means of gaining the attention of a proces
sor. An alternative to interrupts is for a processor to repeatedly request the status of 
each device. This approach, called polling, increases overhead as the complexity of 
the computer system increases. Interrupts eliminate the need for a processor to 
repeatedly poll devices. 

A simple example of the difference between polling and interrupts can be 
seen in microwave ovens. A chef may either set a timer to expire after an appropri
ate number of minutes (the timer sounding after this interval interrupts the chef), 
or the chef may regularly peek through the oven's glass door and watch as the roast 
cooks (this kind of regular monitoring is an example of polling). 

Interrupt-oriented systems can become overloaded—if interrupts arrive too 
quickly, the system may not be able to keep up with them. A human air traffic con
troller, for example, could easily be overwhelmed by a situation in which too many 
planes converged in a narrow area. 

In networked systems, the network interface contains a small amount of mem
ory in which it stores each packet of data that it receives from other computers. 

Operating Systems Thinking 

When we say events occur asyn

chronously wi th the operation of 

a process, we mean that they hap

pen independently of what is 

going on in the process. I/O oper

ations can proceed concurrently 

and asynchronously wi th an exe

cuting process. Once the process 

initiates an asynchronous I/O 

operation, the process can con

tinue executing while the I/O 

operation proceeds. When the I/O 

completes, the process is notif ied. 

That notification can come at any 

t ime. The process can deal wi th it 

at that moment or can proceed 

wi th other tasks and deal wi th the 

l/O-completion interrupt at an 

appropriate time. So interrupts 

are often characterized as an 

asynchronous mechanism. Polling 

is a synchronous mechanism. The 

processor repeatedly tests a 

device until the I/O is complete. 

Synchronous mechanisms can 

spend a lot of t ime wait ing or 

retesting a device until an event 

occurs. Asynchronous mecha

nisms can proceed wi th other 

work and waste no t ime testing 

for events that have not hap

pened, which generally improves 

performance. 

Asynchronism vs. Synchronism 
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Each time the network interface receives a packet, it generates an interrupt to 
inform a processor that data is ready for processing. If a processor cannot process 
data from the network interface before the interface's memory fills, packets might 
be lost. Systems typically implement queues to hold interrupts to be processed 
when a processor becomes available. These queues, of course, consume memory 
that is limited in size. Under heavy load, the system might not be able to enqueue 
all arriving interrupts, meaning that some could be lost. 

Self Review 
1. What does it mean for an interrupt to be synchronous? 
2. What is an alternative to interrupts and why is it rarely used? 

Ans: 1) A synchronous interrupt occurs due to software execution. 2) A system can per
form polling, in which the processor periodically checks the status of devices. This technique 
is rarely used, because it creates significant overhead when the processor polls devices whose 
status has not changed. Interrupts eliminate this overhead by notifying a processor only when 
a device's status changes. 

3.4.1 Interrupt Processing 
We now consider how computer systems typically process hardware interrupts. 
(Note that there are other interrupt schemes.) 

1. The interrupt line, an electrical connection between the mainboard and a 
processor, becomes active—devices such as timers, peripheral cards and 
controllers send signals that activate the interrupt line to inform a proces
sor that an event has occurred (e.g., a period of time has passed or an I/O 
request has completed). Most processors contain an interrupt controller 
that orders interrupts according to their priority so that important inter
rupts are serviced first. Other interrupts are queued until all higher-priority 
interrupts have been serviced. 

2. After the interrupt line becomes active, the processor completes execution 
of the current instruction, then pauses the execution of the current process. 
To pause process execution, the processor must save enough information 
so that the process can be resumed at the correct place and with the correct 
register information. In early IBM systems, this data was contained in a 
data structure called the program status word (PSW). In the Intel IA-32 
architecture, such process state is referred to as the task state segment 
(TSS). The TSS is typically stored in a process's PCB.22 

3. The processor then passes control to the appropriate interrupt handler. 
Each type of interrupt is assigned a unique value that the processor uses as 
an index into the interrupt vector, which is an array of pointers to interrupt 
handlers. The interrupt vector is located in memory that processes cannot 
access, so that errant processes cannot modify its contents. 

4. The interrupt handler performs appropriate actions based on the type of 
interrupt. 



5. After the interrupt handler completes, the state of the interrupted process 
(or some other "next process" if the kernel initiates a context switch) is 
restored. 

6. The interrupted process (or some other "next process") executes. It is the 
responsibility of the operating system to determine whether the inter
rupted process or some other "next process" executes. This important deci
sion, which can significantly impact the level of service each application 
receives, is discussed in Chapter 8, Processor Scheduling. For example, if 
the interrupt signaled an I/O completion event that caused a high-priority 
process to transition from blocked to ready, the operating system might 
preempt the interrupted process and dispatch the high-priority process. 

Let us consider how the operating system and hardware interact in response to 
clock interrupts (Fig. 3.7). At each timer interval, the interrupting clock generates an 
interrupt that allows the operating system to execute to perform system management 
operations such as process scheduling. In this case, the processor is executing process 
P1 (1) when the clock issues an interrupt (2). Upon receiving the interrupt, the pro
cessor accesses the interrupt vector entry that corresponds to the timer interrupt (3). 

Figure 3.7 | Handling interrupts. 

126 Process Concepts 



3.4 Interrupts 127 

The processor then saves the process's execution context to memory (4) so that the 
P1's execution context is not lost when the interrupt handler executes.23 The processor 
then executes the interrupt handler, which determines how to respond to the inter
rupt (5). The interrupt handler may then restore the state of the previously executing 
process (P1) or call the operating system processor scheduler to determine the "next" 
process to run. In this case, the handler calls the process scheduler, which decides that 
process P2, the highest-priority waiting process, should obtain the processor (6). The 
context for process P2 is then loaded from its PCB in main memory, and process P1's 
execution context is saved to its PCB in main memory. 

1. Why are the locations of interrupt handlers generally not stored in a linked list? 
2. Why is the process's execution context saved to memory while the interrupt handler exe

cutes? 

Ans: 1) To avoid becoming overwhelmed by interrupts, the system must be able to process 
each interrupt quickly. Traversing a linked list could significantly increase a system's response 
time if the number of interrupt types were large. Therefore, most systems use an interrupt 
vector (i.e., an array) to quickly access the location of an interrupt handler. 2) If the process's 
execution context is not saved in memory, the interrupt handler could overwrite the process's 
registers. 

3.4.2 Interrupt Classes 
The set of interrupts a computer supports is dependent on the system's architecture. 
Several types of interrupts are common to many architectures; in this section we 
discuss the interrupt structure supported by the Intel IA-32 specification,24 which is 
implemented in Intel® Pentium® processors. (Intel produced over 80 percent of the 
personal computer processors shipped in 2002.25) 

The IA-32 specification distinguishes between two types of signals a processor 
may receive: interrupts and exceptions. Interrupts notify the processor that an 
event has occurred (e.g., a timer interval has passed) or that an external device's 
status has changed (e.g., an I/O completion). The IA-32 architecture also provides 
software-generated interrupts—processes can use these to perform system calls. 
Exceptions indicate that an error has occurred, either in hardware or as a result of a 
software instruction. The IA-32 architecture also uses exceptions to pause a process 
when it reaches a breakpoint in code.26 

Devices that generate interrupts, typically in the form of I/O signals and timer 
interrupts, are external to a processor. These interrupts are asynchronous with the 
running process, because they occur independently of instructions being executed by 
the processor. Software-generated interrupts, such as system calls, are synchronous 
with the running process, because they are generated in response to an instruction. 
Figure 3.8 lists several types of interrupts recognized by the IA-32 architecture. 

Self Review 
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Interrupt Type Description of Interrupts in Each Type 

I/O These are initiated by the input/output hardware. They notify a 
processor that the status of a channel or device has changed. I/O 
interrupts are caused when an I/O operation completes, for 
example. 

Timer A system may contain devices that generate interrupts periodically. 
These interrupts can be used for tasks such as timekeeping and 
performance monitoring. Timers also enable the operating system 
to determine if a process's quantum has expired. 

Interprocessor These interrupts allow one processor to send a message to another 
interrupts in a multiprocessor system. 

Figure 3.8 | Common interrupt types recognized in the Intel IA-32 architectures. 

The IA-32 specification classifies exceptions as faults, traps or aborts 

(Fig. 3.9). Faults and traps are exceptions to which an exception handler can 

respond to allow processes to continue execution. A fault indicates an error that an 

exception handler can correct. For example, a page fault occurs when a process 

attempts to access data that is not in memory (we discuss page faults in Chapter 10, 

Virtual Memory Organization, and in Chapter 11, Virtual Memory Management). 

The operating system can correct this error by placing the requested data in main 

memory. After the problem is corrected, the processor restarts the process that 

caused the error at the instruction that caused the exception. 

Traps do not typically correspond to correctable errors, but rather to condi

tions such as overflows or breakpoints. For example, as a process instructs a proces

sor to increment the value in an accumulator, the value might exceed the capacity 

Excertion Class Description of Exceptions in Each Class 

Fault These are caused by a wide range of problems that may occur as a 
program's machine-language instructions are executed. These 
problems include division by zero, data (being operated upon) in 
the wrong format, attempt to execute an invalid operation code, 
attempt to reference a memory location beyond the limits of real 
memory, attempt by a user process to execute a privileged instruc
tion and attempt to reference a protected resource. 

Trap These are generated by exceptions such as overflow (when the 
value stored by a register exceeds the capacity of the register) and 
when program control reaches a breakpoint in code. 

Abort This occurs when the processor detects an error from which a pro
cess cannot recover. For example, when an exception-handling 
routine itself causes an exception, the processor may not be able 
to handle both errors sequentially. This is called a double-fault 
exception, which terminates the process that initiated it. 

Figure 3.9 | Intel IA-32 exception classes. 
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of the accumulator. In this case, the operating system can simply notify the process 
that an overflow occurred. After executing the trap's exception handler, the proces-
sor restarts the process at the next instruction following the one that caused the 
exception. 

Aborts indicate errors from which the process (or perhaps even the system) 
cannot recover, such as hardware failure. In this case, the processor cannot reliably 
save the process's execution context. Typically, as a result, the operating system ter
minates prematurely the process that caused the abort. 

Most architectures and operating systems prioritize interrupts, because some 
require more immediate action than others. For example, responding to a hardware 
failure is more important than responding to an I/O-completion event. Interrupt 
priorities can be implemented in both hardware and software simultaneously. For 
example, a processor might block or queue interrupts of a lower priority than that 
of the interrupt the processor is currently handling. At times, the kernel can become 
so overloaded with interrupts that it can no longer respond to them. Rapid 
response to interrupts and quick return of control to interrupted processes is essen
tial to maximizing resource utilization and achieving a high degree of interactivity. 
Most processors therefore allow the kernel to disable (or mask) an interrupt type. 
The processor may then ignore interrupts of that type or store them in a queue of 
pending interrupts that are delivered when that type of interrupt is reenabled. In 
the IA-32 architecture, the processor provides a register that indicates whether 
interrupts are disabled.27 

1. In the IA-32 architecture, what two types of signals can a processor receive? 
2. In the IA-32 architecture, what is the difference between a fault and a trap? 

Ans: 1) A processor can receive interrupts or exceptions. Interrupts indicate that an event 
has occurred; exceptions indicate that an error has occurred. 2) A fault restarts a process 
from the instruction that caused the exception. Faults are generally errors that can be cor
rected. A trap restarts a process at the next instruction following the one that caused the 
exception. Traps are usually generated by system calls and by the arrival of program control 
at breakpoints. 

In multiprogrammed and networked environments, it is common for processes to 
communicate with one another. Many operating systems provide mechanisms for 
interprocess communication (IPC) that, for example, enable a text editor to send a 
document to a print spooler or a Web browser to retrieve data from a distant server. 
Interprocess communication is also essential for processes that must coordinate 
(i.e., synchronize) activities to achieve a common goal. The case studies on Linux 
(see Section 20.10, Interprocess Communication) and Windows XP (see 
Section 21.10, Interprocess Communication) discuss how IPC is implemented in 
popular operating systems. 

3.5 Interprocess Communication 

Self Review 
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3.5.1 Signals 
Signals are software interrupts that notify a process that an event has occurred. 
Unlike other IPC mechanisms we discuss, signals do not allow processes to specify 
data to exchange with other processes.28 A system's signals depend on the operating 
system and the software-generated interrupts supported by a particular processor. 
When a signal occurs, the operating system first determines which process should 
receive the signal and how that process will respond to the signal. 

Processes may catch, ignore or mask a signal. A process catches a signal by 
specifying a routine that the operating system calls when it delivers the signal.29 A 
process may also ignore the signal. In this case, the process relies on the operating 
system's default action to handle the signal. A common default action is to abort, 
which causes the process to exit immediately. Another common default action is 
called a memory dump, which is similar to aborting. A memory dump causes a pro
cess to exit, but before doing so, the process generates a core file that contains the 
process's execution context and data from its address space, which is useful for 
debugging. A third default action is to simply ignore the signal. Two other default 
actions are to suspend and, subsequently, resume a process.30 

A process can also block a signal by masking it. When a process masks a signal 
of a specific type (e.g., the suspend signal), the operating system does not deliver 
signals of that type until the process clears the signal mask. Processes typically 
block a signal type while handling another signal of the same type. Similar to 
masked interrupts, masked signals may be lost, depending on the operating system 
implementation. 

Self Review 
1. What is the major drawback of using signals for IPC? 
2. What are the three ways in which a process can respond to a signal? 

Ans: 1) Signals do not support data exchange between processes. 2) A process can catch, 
ignore or mask a signal. 

send( receiverProcess, message ); 
receive( senderProcess, message ); 

With the increasing prominence of distributed systems, there has been a surge of 
interest in message-based interprocess communication.31, 32, 33, 34, 35, 36 We discuss 
message-based communication in this section; particular implementations are dis
cussed in the Linux and Windows XP case studies.37, 38 

Messages can be passed in one direction at a time—for any given message, 
one process is the sender and the other is the receiver. Message passing may be 
bidirectional, meaning that each process can act as either a sender or a receiver 
while participating in interprocess communication. One model of message passing 
specifies that processes send and receive messages by making calls such as 

3.5.2 Message Passing 



The send and receive calls are normally implemented as system calls accessible 
from many programming language environments. A blocking send must wait for the 
receiver to receive the message, requiring that the receiver notify the sender when the 
message is received (this notification is called an acknowledgment). A nonblocking 
send enables the sender to continue with other processing even if the receiver has not 
yet received (and acknowledged) the message; this requires a message buffering 
mechanism to hold the message until the receiver receives it. A blocking send is an 
example of synchronous communication; a nonblocking send is an example of asyn
chronous communication. The send call may explicitly name a receiving process, or it 
may omit the name, indicating that the message is to be broadcast to all processes (or 
to some "working group" with which the sender generally communicates). 

Asynchronous communication with nonblocking sends increases throughput 
by reducing the time that processes spend waiting. For example, a sender may send 
information to a busy print server; the system will buffer this information until the 
print server is ready to receive it, and the sender will continue execution without 
having to wait on the print server. 

If no message has been sent, then a blocking receive call forces the receiver to 
wait; a nonblocking receive call enables the receiver to continue with other process
ing before it next attempts a receive. A receive call may specify that a message is to 
be received from a particular sender, or the receive may receive a message from any 
sender (or from any member of a group of senders). 

A popular implementation of message passing is a pipe—a region of memory 
protected by the operating system that serves as a buffer, allowing two or more pro
cesses to exchange data. The operating system synchronizes access to the buffer— 
after a writer completes writing to the buffer (possibly filling it), the operating system 
pauses the writer's execution and allows a reader to read data from the buffer. As a 
process reads data, that data is removed from the pipe. When the reader completes 
reading data from the buffer (possibly emptying it), the operating system pauses the 
reader's execution and allows the writer to write data to the buffer.39 Detailed treat
ments of pipes are provided in the Linux and Windows XP case studies at the end of 
the book. See Section 20.10.2, Pipes, and Section 21.10.1, Pipes, respectively. 

In our discussions of interprocess communication between processes on the 
same computer, we always assumed flawless transmission. In distributed systems, 
on the other hand, transmissions can be flawed and even lost. So senders and 
receivers often cooperate using an acknowledgment protocol for confirming that 
each transmission has been properly received. A timeout mechanism can be used 
by the sender waiting for an acknowledgment message from the receiver; on time
out, if the acknowledgment has not been received, the sender can retransmit the 
message. Message passing systems with retransmission capabilities can identify 
each new message with a sequence number. The receiver can examine these num
bers to be sure that it has received every message and to resequence out-of-
sequence messages. If an acknowledgment message is lost and the sender decides to 
retransmit, it assigns the same sequence number to the retransmitted message as to 
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the originally transmitted one. The receiver detecting several messages with the 
same sequence number knows to keep only one of them. 

One complication in distributed systems with send/receive message passing is 
in naming processes unambiguously so that explicit send and receive calls reference 
the proper processes. Process creation and destruction can be coordinated through 
some centralized naming mechanism, but this can introduce considerable transmis
sion overhead as individual machines request permission to use new names. An 
alternate approach is to have each computer ensure unique process names for its 
own processes; then processes may be addressed by combining the computer name 
with the process name. This, of course, requires centralized control in determining a 
unique name for each computer in a distributed system, which could potentially 
incur significant overhead if computers are frequently added and removed from the 
network. In practice, distributed systems pass messages between computers using 
numbered ports on which processes listen, avoiding the naming problem (see 
Chapter 16, Introduction to Networking). 

As we will see in Chapter 17, Introduction to Distributed Systems, message-
based communication in distributed systems presents serious security problems. 
One of these is the authentication problem: How do the senders and receivers 
know that they are not communicating with imposters who may be trying to steal or 
corrupt their data? Chapter 19, Security, discusses several authentication 
approaches. 

There are several IPC techniques that we discuss later in the book. In addition 
to signals and pipes, processes may communicate via shared memory (discussed in 
Chapter 10, Virtual Memory Organization), sockets (discussed in Chapter 16, 
Introduction to Networking) and remote procedure calls (discussed in Chapter 17). 
They also may communicate to synchronize activities using semaphores and moni
tors., which are discussed in Chapter 5, Asynchronous Concurrent Execution, and 
Chapter 6, Concurrent Programming, respectively. 

1. Why do distributed systems rely on message passing instead of signals? 
2. When a process performs a blocking send, it must receive an acknowledgment message to 

unblock. What problem might result from this scheme, and how can it be avoided? 

Ans 1) Signals are typically architecture specific, meaning that signals supported by one 
computer may not be compatible with signals supported by another. Also, signals do not 
allow processes to transmit data, a capability required by most distributed systems. 2) The 
sender may never receive an acknowledgment message, meaning that the process could be 
blocked indefinitely. This can be remedied by a timeout mechanism—if the sender does not 
receive an acknowledgment after a period of time, the send operation is assumed to have 
failed and it can be retried. 

UNIX and UNIX-based operating systems provide an implementation of processes 
that has been borrowed by many other operating systems (see the Mini Case Study, 

3.6 Vase Study: UNIX Processes 

Self Review 
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UNIX Systems). In this section, we describe the structure of UNIX processes, discuss 
several UNIX features that motivate the discussion in the following chapters and 
introduce how UNIX allows users to perform process management operations. 

Each process must store its code, data and stack in memory during execution. 
In a real memory system, processes would locate such information by referencing a 
range of physical addresses. The range of valid main memory addresses for each 
process is determined by the size of main memory and the memory consumed by 
other processes. Because UNIX implements virtual memory, all UNIX processes 
are provided with a set of memory addresses, called a virtual address space, in 
which the process may store information. The virtual address space contains a text 
region, data region and stack region.40 

The kernel maintains a process's PCB in a protected region of memory that 
user processes cannot access. In UNIX systems, a PCB stores information including 
the contents of processor registers, the process identifier (PID), the program 
counter and the system stack.41-42 The PCBs for all processes are listed in the pro
cess table, which allows the operating system to access information (e.g., priority) 
regarding every process.43 

UNIX processes interact with the operating system via system calls. 
Figure 3.10 lists several of these. A process can spawn a child process by using the 
fork system call, which creates a copy of the parent process.44-45 The child process 
receives a copy of the parent process's data and stack segments and any other 
resources.46-47 The text segment, which contains the parent's read-only instructions, 
is shared with its child. Immediately following the fork, the parent and child pro
cess contain identical data and instructions. This means that the two processes must 
perform exactly the same actions unless either the parent or child can determine its 
identity. The fork system call therefore returns different values; the parent process 

Mini Case Study 

In the days before Windows, Mac

intosh, Linux or even DOS, operat

ing systems typically worked on 

only one model of computer, 

managing system resources, run

ning batch streams and little 

more.48 From 1965 to 1969, a 

group of research teams from Bell 

Laboratories, General Electric and 

Project MAC at MIT developed the 

Multics operating system—a gen

eral-purpose computer utility, 

designed to be "all things to all 

people."49 It was large, expensive 

and complex. In 1969, Bell Labs 

withdrew from the project and 

their own small team, led by Ken 

Thompson, began designing a 

more practical operating system 

to run machines at Bell Labs. 

(Continued on the next page.) 
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Mini Case Study 

Thompson implemented the basic 

components of the operating sys

tem, which Brian Kernighan 

named UNICS, a joke on the 

"mu l t i " aspect of Multics; the 

spelling eventually changed to 

UNIX. Over the next few years, 

UNIX was rewritten in an inter

preted implementation of 

Thompson's language B (based on 

Martin Richard's BCPL program

ming language), and soon after in 

Dennis Ritchie's faster, compiled C 

language.50 

Due to a federal anti-trust 

lawsuit, AT&T (which owned Bell 

Labs) was not allowed to sell com

puter products, so they distrib

uted UNIX source code to 

universities for a small fee to 

cover just the expense of produc

ing the magnetic tapes. A group 

of students at the University of 

California at Berkeley, led by Bill 

Joy (later a cofounder of Sun 

Microsystems), modified the UNIX 

source code, evolving the operat

ing system into what became 

known as Berkeley Software 

Distribution UNIX (BSD 

UNIX).51 

Industry software develop

ers were drawn to UNIX because 

it was free, small and customize-

able. To work wi th UNIX, develop

ers had to learn C, and they liked 

it. Many of these developers also 

taught in colleges, and C gradu

ally replaced Pascal as the pre

ferred teaching language in 

college programming courses. Sun 

Microsystems based its SunOS on 

BSD UNIX, then later teamed up 

with AT&T to design the Solaris 

operating system based on AT&T's 

System V Release 4 UNIX.52 A 

group of other UNIX developers, 

concerned that Sun's association 

wi th AT&T would give Sun an 

unfair business lead over other 

UNIX developers, formed the 

Open Software Foundation 

(OSF) to produce their own non

proprietary version of UNIX called 

OSF/1; the fierce competition 

between OSF and AT&T-backed 

Sun was dubbed the UNIX Wars.53 

Several important operat

ing systems are based on UNIX 

technology. Professor Andrew 

Tanenbaum of the Vrije Univer-

siteit in Amsterdam built Minix in 

1987, a stripped-down version of 

UNIX that was designed for teach

ing OS basics and is still used for 

this purpose in some college 

courses. Linus Torvalds, a Finnish 

graduate student, used Minix to 

begin wri t ing the well-known 

open-source Linux operating sys

tem—now a whole family of sys

tems in its own right (see 

Chapter 20, Case Study: Linux).54 

Linux is the most popular open-

source operating system, and 

companies including IBM, 

Hewlett-Packard, Sun Microsys

tems and Intel all offer Linux ver

sions as an operating system 

option for their servers. OpenBSD 

is another open-source project, 

led by Theo de Raadt, and is rec

ognized as the most secure oper

ating system available (see 

Chapter 19, Security).55, 56, 57, 58 

FreeBSD is also open-source and is 

known for its ease of use.59 Yet 

another BSD descendant, Net-

BSD, has focused on portability to 

a variety of systems.60'61 IBM's 

AIX, based on both System V and 

BSD,62 runs on some of IBM's serv

ers. IBM claims AIX has a high 

degree of source-code compatibil

ity wi th Linux.63 Hewlett-Pack

ard's HP-UX is becoming a strong 

competitor to AIX and Solaris, 

achieving the highest ratings in all 

the categories in a 2002 D.H. 

Brown Associates report, placing 

ahead of both Solaris and 

AIX.64, 65, 66 

UNIX Systems (Cont.) 
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receives the PID of the child and the child process receives a value of zero. This 
convention allows the child process to recognize that it is newly created. Applica
tion programmers can use this convention to specify new instructions for the child 
process to execute. 

A process can call exec to load a new program from a file; exec is often per
formed by a child process immediately after it is spawned.67 When the parent cre
ates a child process, the parent can issue a wai t system call, which blocks the parent 
until the specified child process terminates.68 After a process has completed its 
work, it issues the exi t system call. This tells the kernel that the process has fin
ished; the kernel responds by freeing all of the process's memory and other 
resources, such as open files. When a parent process exits, its child processes are typ
ically relocated in the process hierarchy to be children of the init process.69'70 If a 
parent process is terminated by a ki 11 signal from another process, that signal is 
also sent to its child processes. 

UNIX process priorities are integers between -20 and 19 (inclusive) that the 
system uses to determine which process will run next. A lower numerical priority 
value indicates a higher scheduling priority.71 Processes that belong to the operating 
system, called kernel processes, often have negative integer values and typically 
have higher scheduling priority than user processes.72 Operating system processes 
that perform maintenance operations periodically, called daemons, typically exe
cute with the lowest possible priority. 

Many applications require several independent components to communicate 
during execution, requiring interprocess communication (IPC). UNIX provides 
several mechanisms to enable processes to exchange data, such as signals and pipes 
(see Section 3.5, Interprocess Communication, and Section 20.10.2, Pipes).73 

fork Spawns a child process and allocates to that process a copy of 
its parent's resources. 

exec Loads a process's instructions and data into its address space 
from a file. 

wait Causes the calling process to block until its child process has 
terminated. 

signal Allows a process to specify a signal handler for a particular sig

nal type. 

exi t Terminates the calling process. 

nice Modifies a process's scheduling priority. 

Figure 3.10 | UNIX system calls. 

System Call Description 



1. Why can a parent and its child share the parent's text segment after a fork system call? 
2. Why must a process use IPC to share data with other processes? 

Ans: 1) The text segment contains instructions that cannot be modified by either process, 
meaning that both the parent and child process will execute the same instructions regardless 
of whether the operating system maintains one, or multiple, copies of the segment in mem
ory. Therefore, the operating system can reduce memory consumption by sharing access to 
the text region between a parent and its child. 2) The operating system does not allow unre
lated processes to share the data segment of their address spaces, meaning that data stored by 
one process is inaccessible to an unrelated process. Therefore, the operating system must pro
vide some mechanism to make data from one process available to another. 

msdn.microsoft.com/library/en-us/dllproc/base/ 
about_processes_and_threads. asp 
Provides a description of processes in Windows XP. 

www.freebsd.org/handbook/basics-processes.html 
Includes a description of how the FreeBSD operating system 
handles processes. Mac OS X is based (in part) on FreeBSD. 

www.linux-tutorial.info/cgi-bin/dis-
play.pl?83&99980&0&3 
Discusses how Linux handles processes. 

A process, which is a program in execution, is central to 
understanding how today's computer systems perform and 
keep track of many simultaneous activities. Each process 
has its own address space, which may consist of a text 
region, data region and stack region. A process moves 
through a series of discrete process states. For example, a 
process can be in the running state, ready state or blocked 
state. The ready list and blocked list store references to pro
cesses that are not running. 

When a process reaches the head of the ready list, 
and when a processor becomes available, that process is 
given the processor and is said to make a transition from 
the ready state to the running state. The act of assigning a 
processor to the first process on the ready list is called dis
patching. To prevent any one process from monopolizing 
the system, either accidentally or maliciously, the operating 
system sets a hardware interrupting clock (or interval 
timer) to allow a process to run for a specific time interval 

docs.sun.com/db/doc/806-4125/6jd7pe6bg?a=view 
Provides a process state-transition diagram for Sun Microsys
tem's Solaris operating system. 

www.beyondlogic.org/interrupts/interupt.htm 
Overviews interrupts and provides a detailed description of 
interrupt handling in the Intel architecture. 

developer.apple.com/documentation/Hardware/Device-
Managers/pci_srvcs/pci_cards_drivers/ 
PCI_B00K.16d.html 
Documents the interrupt model in Apple Macintosh computers. 

or quantum. If a running process initiates an input/output 
operation before its quantum expires, the process is said to 
block itself pending the completion of the I/O operation. 
Alternatively, the operating system can employ coopera
tive multitasking in which each process runs until comple
tion or until it voluntarily relinquishes its processor. This 
can be dangerous, because cooperative multitasking does 
not prevent processes from monopolizing a processor. 

The operating system typically performs several 
operations when it creates a process, including assigning a 
process identification number (PID) to the process and cre
ating a process control block (PCB), or process descriptor, 
which stores the program counter (i.e., the pointer to the 
next instruction the process will execute), PID, scheduling 
priority and the process's execution context. The operating 
system maintains pointers to each process's PCB in the 
process table so that it can access PCBs quickly. When a 
process terminates (or is terminated by the operating sys-
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tern), the operating system removes the process from the 
process table and frees all of the process's resources, 
including its memory. 

A process may spawn a new process—the creating 
process is called the parent process and the created process 
is called the child process. Exactly one parent process cre
ates a child. Such creation yields a hierarchical process 
structure. In some systems, a spawned process is destroyed 
automatically when its parent is destroyed; in other sys
tems, spawned processes proceed independently of their 
parents, and the destruction of a parent has no effect on the 
destroyed parent's children. 

A suspended process is indefinitely removed from 
contention for time on the processor without being 
destroyed. The suspended states are suspendedready and 
suspendedblocked. A suspension may be initiated by the 
process being suspended or by another process; a sus
pended process must be resumed by another process. 

When the operating system dispatches a ready pro
cess to a processor, it initiates a context switch. Context 
switches must be transparent to processes. During a con
text switch a processor cannot perform any "useful" com
putation, so operating systems must minimize context-
switching time. Some architectures reduce overhead by 
performing context-switching operations in hardware. 

Interrupts enable software to respond to signals from 
hardware. An interrupt may be specifically initiated by a run
ning process (in which case it is often called a trap and said 
to be synchronous with the operation of the process), or it 
may be caused by some event that may or may not be related 
to the running process (in which case it is said to be asyn
chronous with the operation of the process). An alternative 
to interrupts is for the processor to repeatedly request the 
status of each device, an approach called polling. 

Interrupts are essential to maintaining a productive 
and protected computing environment. When an interrupt 
occurs, the processor will execute one of the kernel's inter-
rupt-handling functions. The interrupt handler determines 
how the system should respond to interrupts. The locations 

Key Terms 
abort—Action that terminates a process prematurely. Also, in 

the IA-32 specification, an error from which a process 
cannot recover. 

Access Control List (ACL) (Multics)—Multics' discretionary 
access control implementation. 

of the interrupt handlers are stored in an array of pointers 
called the interrupt vector. The set of interrupts a computer 
supports depends on the system's architecture. The IA-32 
specification distinguishes between two types of signals a 
processor may receive: interrupts and exceptions. 

Many operating systems provide mechanisms for 
interprocess communication (IPC) that, for example, 
enable a Web browser to retrieve data from a distant 
server. Signals are software interrupts that notify a process 
that an event has occurred. Signals do not allow processes 
to specify data to exchange with other processes. Processes 
may catch, ignore or mask a signal. 

Message-based interprocess communication can 
occur in one direction at a time or it may be bidirectional. 
One model of message passing specifies that processes send 
and receive messages by making calls. A popular imple
mentation of message passing is a pipe—a region of mem
ory protected by the operating system that allows two or 
more processes to exchange data. One complication in dis
tributed systems with send/receive message passing is in 
naming processes unambiguously so that explicit send and 
receive calls reference the proper processes. 

UNIX processes are provided with a set of memory 
addresses, called a virtual address space, which contains a 
text region, data region and stack region. In UNIX systems, 
a PCB stores information including the contents of processor 
registers, the process identifier (PID), the program counter 
and the system stack. All processes are listed in the process 
table, which allows the operating system to access informa
tion regarding every process. UNIX processes interact with 
the operating system via system calls. A process can spawn a 
child process by using the fork system call, which creates a 
copy of the parent process. UNIX process priorities are inte
gers between -20 and 19 (inclusive) that the system uses to 
determine which process will run next; a lower numerical 
priority value indicates a higher scheduling priority. The ker
nel also provides IPC mechanisms, such as pipes, to allow 
unrelated processes to transfer data. 

Access Isolation Mechanism (AIM) (Multics)—Multics' man
datory access control implementation. 

address space—Set of memory locations a process can refer
ence. 
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Berkeley Software Distribution (BSD) UNIX-UNIX version 
modified and released by a team led by Bill Joy at the 
University of California at Berkeley. BSD UNIX is the 
parent of several UNIX variations. 

blocked state—Process state in which the process is waiting for 
the completion of some event, such as an I/O completion, 
and cannot use a processor even if one is available. 

blocked list—Kernel data structure that contains pointers to 
all blocked processes. This list is not maintained in any 
particular priority order. 

child process—Process that has been spawned from a parent 
process. A child process is one level lower in the process 
hierarchy than its parent process. In UNIX systems, child 
processes are created using the fork system call. 

concurrent program execution—Technique whereby processor 
time is shared among multiple active processes. On a uni
processor system, concurrent processes cannot execute 
simultaneously; on a multiprocessor system, they can. 

context switching—Action performed by the operating system 
to remove a process from a processor and replace it with 
another. The operating system must save the state of the 
process that it replaces. Similarly, it must restore the state 
of the process being dispatched to the processor. 

cooperative multitasking—Process scheduling technique in 
which processes execute on a processor until they volun
tarily relinquish control of it. 

data region—Section of a process's address space that contains 
data (as opposed to instructions). This region is modifiable. 

disable (mask) interrupts—When a type of interrupt is dis
abled (masked), interrupts of that type are not delivered 
to the process that has disabled (masked) the interrupts. 
The interrupts are either queued to be delivered later or 
dropped by the processor. 

dispatcher—Operating system component that assigns the first 
process on the ready list to a processor. 

exception—Hardware signal generated by an error. In the 
Intel IA-32 specification, exceptions are classified as traps, 
faults and aborts. 

fault—In the Intel IA-32 specification, an exception as the 
result of an error such as division by zero or illegal access 
to memory. Some faults can be corrected by appropriate 
operating system exception handlers. 

I/O completion interrupt—Message issued by a device when it 
finishes servicing an I/O request. 

hierarchical process structure—Organization of processes 
when parent processes spawn child processes and, in par
ticular, only one parent creates a child. 

interrupt—Hardware signal indicating that an event has 
occurred. Interrupts cause the processor to invoke a set of 
software instructions called an interrupt handler. 

interrupt handler—Kernel code that is executed in response to 
an interrupt. 

interrupt vector—Array in protected memory containing 
pointers to the locations of interrupt handlers. 

interrupting clock (interval timer)—Hardware device that 
issues an interrupt after a certain amount of time (called a 
quantum), e.g., to prevent a process from monopolizing a 
processor. 

message passing—Mechanism to allow unrelated processes to 
communicate by exchanging data. 

Multics Relational Data Store (MRDS)—First commercial 
relational database system, included in Multics. 

Open Software Foundation (OSF)—Coalition of UNIX devel
opers that built the OSF/1 UNIX clone to compete with 
AT&T's and Sun's Solaris. The OSF and the AT&T/Sun 
partnership were the participants in the UNIX Wars. 

OSF/1—UNTX clone built by the Open Software Foundation 
to compete with Solaris. 

parent process—Process that has spawned one or more child 
processes. In UNIX, this is accomplished by issuing a 
fork system call. 

pipe—Message passing mechanism that creates a direct data 
stream between two processes. 

polling—Technique to discover hardware status by repeatedly 
testing each device. Polling can be implemented in lieu of 
interrupts but typically reduces performance due to 
increased overhead. 

process—Entity that represents a program in execution. 

process control block (PCB)—Data structure containing infor
mation that characterizes a process (e.g., PID, address 
space and state); also called a process descriptor. 

process descriptor—See process control block (PCB). 

process identification number (PID)—Value that uniquely 
identifies a process. 

process priority—Value that determines the importance of a 
process relative to other processes. It is often used to 
determine how a process should be scheduled for execu
tion on a processor relative to other processes. 

process state—Status of a process (e.g., running, ready, 
blocked, etc.). 

process table—Data structure that contains pointers to all pro
cesses in the system. 
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program counter—Pointer to the instruction a processor is 
executing for a running process. After the processor com
pletes the instruction, the program counter is adjusted to 
point to the next instruction the processor should execute. 

quantum—Unit of time during which a process can execute 
before it is removed from the processor. Helps prevent 
processes from monopolizing processors. 

ready state—Process state from which a process may be dis
patched to the processor. 

ready list—Kernel data structure that organizes all ready pro
cesses in the system. The ready list is typically ordered by 
process scheduling priority. 

resume—Remove a process from a suspended state. 

running state—Process state in which a process is executing on 
a processor. 

signal—Message sent by software to indicate that an event or 
error has occurred. Signals cannot pass data to their recip
ients. 

Solaris—UNIX version based on both System V Release 4 and 
SunOS, designed by AT&T and Sun collaboratively. 

spawning a process—A parent process creating a child process. 

stack region—Section of process's address space that contains 
instructions and values for open procedure calls. The con
tents of the stack grow as a process issues nested proce
dure calls and shrink as called procedures return. 

state transition—Change of a process from one state to 
another. 

suspended state—Process state (either suspendedblocked or 
suspendedready) in which a process is indefinitely 
removed from contention for time on a processor without 
being destroyed. Historically, this operation allowed a sys
tem operator to manually adjust the system load and/or 
respond to threats of system failure. 

suspendedblocked state—Process state resulting from the pro
cess being suspended while in the blocked state. Resum
ing such a process places it into the blocked state. 

suspendedready state—Process state resulting from the pro
cess being suspended while in the ready state. Resuming 
such a process places it into the ready state. 

text region—Section of a process's address space that contains 
instructions that are executed by a processor. 

trap—In the IA-32 specification, an exception generated by an 
error such as overflow (when the value stored by a regis
ter exceeds the capacity of the register). Also generated 
when program control reaches a breakpoint in code. 

unblock—Remove a process from the blocked state after the 
event on which it was waiting has completed. 

virtual address space—Set of memory addresses that a process 
can reference. A virtual address space may allow a process 
to reference more memory than is physically available in 
the system. 

Exercises 
3.1 Give several definitions of process. Why, do you sup
pose, is there no universally accepted definition? 

3.2 Sometimes the terms user and process are used inter
changeably. Define each of these terms. In what circumstances 
do they have similar meanings? 

3.3 Why does it not make sense to maintain the blocked list 
in priority order? 

3.4 The ability of one process to spawn a new process is an 
important capability, but it is not without its dangers. Consider 
the consequences of allowing a user to run the process in 
Fig.3.11. Assume that fork( ) is a system call that spawns a 
child process. 

1 i n t main() { 
2 
3 while( true ) { 
4 fo rk ( ) ; 
5 } 
6 
7 } 

Figure 3.1 | Code for Exercise 3.4. 
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a. Assuming that a system allowed such a process to 
run, what would the consequences be? 

b. Suppose that you as an operating systems designer 
have been asked to build in safeguards against such 
processes. We know (from the "Halting Problem" of 
computability theory) that it is impossible, in the gen
eral case, to predict the path of execution a program 
will take. What are the consequences of this funda
mental result from computer science on your ability 
to prevent processes like the above from running? 

c. Suppose you decide that it is inappropriate to reject 
certain processes, and that the best approach is to 
place certain runtime controls on them. What con
trols might the operating system use to detect pro
cesses like the above at runtime? 

d. Would the controls you propose hinder a process's 
ability to spawn new processes? 

e. How would the implementation of the controls you 
propose affect the design of the system's process han
dling mechanisms? 

3.5 In single-user dedicated systems, it is generally obvious 
when a program goes into an infinite loop. But in multiuser 
systems running large numbers of processes, it cannot easily be 
determined that an individual process is not progressing. 

a. Can the operating system determine that a process is 
in an infinite loop? 

b. What reasonable safeguards might be built into an 
operating system to prevent processes in infinite 
loops from running indefinitely? 

3.6 Choosing the correct quantum size is important to the 
effective operation of an operating system. Later in the text we 
will consider the issue of quantum determination in depth. For 
now, let us anticipate some of the problems. 

Consider a single-processor timesharing system that sup
ports a large number of interactive users. Each time a process 
gets the processor, the interrupting clock is set to interrupt after 
the quantum expires. This allows the operating system to pre
vent any single process from monopolizing the processor and to 
provide rapid responses to interactive processes. Assume a sin
gle quantum for all processes on the system. 

a. What would be the effect of setting the quantum to 
an extremely large value, say 10 minutes? 

b. What if the quantum were set to an extremely small 
value, say a few processor cycles? 

c. Obviously, an appropriate quantum must be between 
the values in (a) and (b). Suppose you could turn a 
dial and vary the quantum, starting with a small value 

and gradually increasing. How would you know when 
you had chosen the "right" value? 

d. What factors make this value right from the user's 
standpoint? 

e. What factors make it right from the system's stand
point? 

3.7 In a block/wakeup mechanism, a process blocks itself to 
wait for an event to occur. Another process must detect that 
the event has occurred, and wake up the blocked process. It is 
possible for a process to block itself to wait for an event that 
will never occur. 

a. Can the operating system detect that a blocked pro
cess is waiting for an event that will never occur? 

b. What reasonable safeguards might be built into an 
operating system to prevent processes from waiting 
indefinitely for an event? 

3.8 One reason for using a quantum to interrupt a running 
process after a "reasonable" period is to allow the operating 
system to regain the processor and dispatch the next process. 
Suppose that a system does not have an interrupting clock, and 
the only way a process can lose the processor is to relinquish it 
voluntarily. Suppose also that no dispatching mechanism is 
provided in the operating system. 

a. Describe how a group of user processes could coop
erate among themselves to effect a user-controlled 
dispatching mechanism. 

b. What potential dangers are inherent in this scheme? 

c. What are the advantages to the users over a system-
controlled dispatching mechanism? 

3.9 In some systems, a spawned process is destroyed auto
matically when its parent is destroyed; in other systems, 
spawned processes proceed independently of their parents, 
and the destruction of a parent has no effect on its children. 

a. Discuss the advantages and disadvantages of each 
approach. 

b. Give an example of a situation in which destroying a 
parent should specifically not result in the destruction 
of its children. 

3.10 When interrupts are disabled on most devices, they 
remain pending until they can be processed when interrupts 
are again enabled. No further interrupts are allowed. The func
tioning of the devices themselves is temporarily halted. But in 
real-time systems, the environment that generates the inter
rupts is often disassociated from the computer system. When 
interrupts are disabled on the computer system, the environ
ment keeps on generating interrupts anyway. These interrupts 
can be lost. 



a. Discuss the consequences of lost interrupts. 

b. In a real-time system, is it better to lose occasional 
interrupts or to halt the system temporarily until 
interrupts are again enabled? 

3.11 As we will see repeatedly throughout this text, manage
ment of waiting is an essential part of every operating system. 
In this chapter we have seen several waiting states, namely 
ready, blocked, suspendedready and suspendedblocked. For 
each of these states discuss how a process might get into the 
state, what the process is waiting for, and the likelihood that 
the process could get "lost" waiting in the state indefinitely. 

What features should operating systems incorporate to deal 
with the possibility that processes could start to wait for an 
event that might never happen? 

3.12 Waiting processes do consume various system resources. 
Could someone sabotage a system by repeatedly creating pro-

Suggested Projects 
3.18 Compare and contrast what information is stored in 
PCBs in Linux, Microsoft's Windows XP, and Apple's OS X. 
What process states are defined by each of these operating sys
tems? 

3.19 Research the improvements made to context switching 
over the years. How has the amount of time processors spend 
on context switches improved? How has hardware helped to 
make context switching faster? 

Recommended Reading 
Randell and Horning describe basic process concepts as well 
as management of multiple processes.74 Lampson considers 
some basic process concepts, including context switching.75 

Quarterman, Silberschatz and Peterson discuss how BSD 
UNIX 4.3 manages processes.76 The case studies in Part 8 
describe how Linux and Windows XP implement and manage 
processes. Information on how processors handle interrupts is 
available in computer architecture books such as Computer 
Organization and Design by Patterson and Hennessey.77 

Interprocess communication is a focal point of micro
kernel (see Section 1.13.3, Microkernel Architecture) and 
exokernel operating system architectures. Because the perfor
mance of such systems relies heavily on the efficient operation 
of IPC mechanisms, considerable research has been devoted to 
the topic of improving IPC performance. Early message-based 
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cesses and making them wait for events that will never hap
pen? What safeguards could be imposed? 

3.13 Can a single-processor system have no processes ready 
and no process running? Is this a "dead" system? Explain your 
answer. 

3.14 Why might it be useful to add a dead state to the state-
transition diagram? 

3.15 System A runs exactly one process per user. System B 
can support many processes per user. Discuss the organiza
tional differences between operating systems A and B with 
regard to support of processes. 

3.16 Compare and contrast IPC using signals and message 
passing. 

3.17 As discussed in Section 3.6, Case Study: UNIX Pro
cesses, UNIX processes may change their priority using the 
nice system call. What restrictions might UNIX impose on 
using this system call, and why? 

3.20 The Intel Itanium line of processors, which are designed 
for high-performance computing, are implemented according 
to the IA-64 (64-bit) specification. Compare and contrast the 
IA-32 architecture's method of interrupt processing discussed 
in this chapter with that of the IA-64 architecture (see devel -
oper.intel.com/design/itaniurn/manuals/245318.pdf). 

3.21 Discuss an interrupt scheme other than that described in 
this chapter. Compare the two schemes. 

architectures78 such as Chorus were distributed operating sys
tems, but as early as 1986, microkernels such as Mach79 were 
developed. IPC performance improvement to support effec
tive microkernels is reflected in the literature.80-81 

IPC mechanisms differ from one operating system to 
another. Most UNIX systems share the mechanisms presented 
in this chapter. Descriptions of such implementations can be 
found in the Linux manual pages, but the reader is encouraged 
to read Chapter 20, Case Study: Linux, first. Understanding the 
Linux Kernel82 discusses IPC in Linux and Inside Windows 
200083 discusses IPC in Windows 2000 (almost all of which 
applies to Windows XP as well). The bibliography for this 
chapter is located on our Web site at www.deitel.com/books/ 
os3e/Bibliography.pdf. 

http://oper.intel.com/design/itaniurn/manuals/245318.pdf
www.deitel.com/books/os3e/Bibliography.pdf
www.deitel.com/books/os3e/Bibliography.pdf
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The spider's touch, how exquisitely fine! 

Feels at each thread, and lives along the line. 
— Alexander Pope— 

Yon cannot conceive the many without the one. 
— Plato-

There is a time for many words, and there is also a time for sleep. 
—Homer— 

To be awake is to be alive. 
— Henry David Thoreau — 

Only a signal shown and a distant voice in the darkness. 
—Henry Wadsworth Longfellow— 
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Objectives 
After reading this chapter, you should understand: 

• the motivation for creating threads. 

• the similarities and differences between processes and threads. 

• the various levels of support for threads. 

• the life cycle of a thread. 

• thread signaling and cancellation. 

• the basics of POSIX, Linux, Windows XP and Java threads. 
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4.1 Introduction 
Early operating systems enabled computers to execute several programs concur

rently, but the programming languages of the time did not enable programmers to 

specify concurrent activities (see the Operating Systems Thinking feature, Concur

rency). Rather, these languages generally provided only a simple set of control 

structures that enabled programmers to specify a single thread of control. The types 

of concurrent operations that computers performed were generally implemented 

by operating system primitives available only to highly experienced systems pro

grammers. 

The Ada programming language, developed by the United States Department 

of Defense in the late 1970s and early 1980s, was one of the first languages to pro

vide explicit concurrency primitives. Ada was made widely available to defense con

tractors building military command-and-control systems. However, Ada has not 

been widely adopted by universities and commercial industry. 

with concurrent programming 

and the subtle issues of enabling 

concurrent processes and threads 

to work together to solve com

mon problems of coordination 

and data sharing. Chapter 7 deals 

wi th deadlock and indefinite 

postponement of concurrent pro

cesses and threads. Chapter 8 

deals wi th scheduling a processor 

among concurrent processes and 

threads. Chapters 9 and 11 deal 

wi th memory organization and 

management issues among con

current threads and processes. 

Chapter 15 deals wi th concurrent 

processes and threads on multi

processor systems. Chapter 16 

deals wi th computer networking 

and the fascinating protocols 

used to ensure that computers 

functioning concurrently on the 

same network do not "coll ide" 

wi th one another. Chapters 17 

and 18 deal wi th the problems of 

building concurrent applications, 

pieces of which are distributed 

across a computer network. 

Chapter 19 deals wi th issues of 

security and protection among 

concurrent users operating on 

individual and networked com

puters. The case study chapters on 

Linux and Windows XP show real-

world implementations of concur

rency control. 

We will see numerous examples in 

the text of things that can happen 

concurrently. I/O operations can 

proceed concurrently wi th pro

gram execution, several processors 

can be executing concurrently, sev

eral users can be using a system 

concurrently. Several processes can 

be trying to access shared data 

concurrently. Several computers 

can be operating on the same net

work concurrently. 

We study concurrency issues 

throughout the book. This and 

the preceding chapter discuss pro

cesses and threads—abstractions 

used by the operating system to 

manage concurrent activities. 

Chapters 5 and 6 are concerned 

Concurrency 

Operating Systems Thinking 
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In recent years, many general-purpose programming languages, including 
Java, C#, Visual C++ .NET, Visual Basic .NET and Python, have made concurrency 
primitives available to the applications programmer. The programmer specifies that 
applications contain "threads of execution," each thread designating a portion of a 
program that may execute concurrently with the other threads. This technology, 
called multithreading, gives the programmer powerful capabilities not directly 
available in languages such as C and C++, the languages on which Java and C# are 
based. C and C++ are called single-threaded languages. [Note: On many computer 
platforms, C and C++ programs can perform multithreading by using specific code 
libraries, but these are not part of the ANSI/ISO standard versions of these lan
guages.] Operating system support for threads is essential to supporting languages 
that provide multithreading semantics. 

Writing multithreaded programs can be tricky. Although the human mind can 
perform functions concurrently, people find it difficult to jump between parallel 
"trains of thought." To see why multithreaded applications can be difficult to pro
gram and understand, try the following experiment: Open three books to page 1 
and try reading the books concurrently. Read a few words from the first book, then 
read a few words from the second book, then read a few words from the third book, 
then loop back and read the next few words from the first book, and so on. After 
this experiment, you will appreciate some of the key challenges of multithreading— 
switching between books, reading briefly, remembering your place in each book, 
moving the book you are reading closer so you can see it, pushing books you are 
not reading aside—and amid all this chaos, trying to comprehend the content of the 
books! 

Self Review 
1. The text mentions that multithreading capabilities are not directly available in languages 

such as C and C++. How do programmers still manage to write multithreaded code in 
these languages? 

2. What key advantage would you get by running a multithreaded application on a multipro
cessor system over running it on a uniprocessor system? 

Ans: 1) There are specific code libraries that help with multithreading. However, these 
libraries are not part of the ANSI/ISO C and C++ standards, so programs written using them 
are not as portable as "standard C and C++" programs. 2) The multiple threads of the appli
cation that perform parallel tasks could run truly simultaneously on separate processors, 
speeding application execution. 

4.2 Definition of Thread 
Due to the broad support for multithreading in programming languages, virtually 
all recent operating systems provide at least some support for threads. A thread, 
sometimes called a lightweight process (LWP), shares many attributes of a process. 
Threads are scheduled on a processor, and each thread can execute a set of instruc
tions independent of other processes and threads. However, threads are not meant 
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to exist alone—they normally belong to traditional processes, sometimes referred 
to as heavyweight processes (HWP). Threads within a process share many of the 
process's resources—most notably its address space and open files—to improve the 
efficiency with which they perform their tasks. The name "thread" refers to a single 
thread of instructions or thread of control; threads within a process can execute 
concurrently and cooperate to attain a common goal. On a multiprocessor system, 
multiple threads may be able to execute simultaneously. 

Threads possess a subset of the resources contained in a process. Resources 
such as processor registers, the stack and other thread-specific data (TSD), such as 
signal masks (data that describes which signals a thread will not receive, discussed 
in Section 4.7.1, Thread Signal Delivery) are local to each thread, while the address 
space belongs to the process that contains the threads and is global to the threads 
i Fig. 4.1). Depending on the thread implementation for the particular platform, 
threads may be managed by the operating system or by the user application that 
creates them. 

Although many operating systems support threads, the implementations vary 
considerably. Win32 threads,1 C-threads2 and POSIX threads3 are examples of 
threading libraries with disparate APIs. Win32 threads are used in the Microsoft 32-
bit Windows operating systems; C-threads are created from a thread library in the 
Mach microkernel (on which Macintosh OS X is built) and are also supported by 
Solaris and Windows NT operating systems. The POSIX specification provides the 
Pthreads standard. The primary goal of Pthreads is to allow multithreaded programs 
to be portable across multiple operating system platforms. POSIX has been imple
mented in a variety of operating systems, including Solaris, Linux and Windows XP. 

Figure 4.1 | Thread relationship to processes. 
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Self Review 

1. Why are traditional processes called heavyweight processes? 
2. Why is it difficult to write portable multithreaded applications? 

Ans: 1) The primary distinction between relative "weights" of traditional processes and 
threads is how address spaces are allocated. When a process is created, it is allocated its own 
address space. When a thread is created, it shares the process's address space, so threads are 
'lighter weight" than processes. 2) There is no standard threading library that is implemented 
on all platforms. 

4.3 Motivatiion for Threads 
In the previous chapter, we introduced the notion of a process and described how 
computer systems benefit from improved efficiency and performance when multi
ple processes execute concurrently. When the process concept was introduced by 
the Multics project in the 1960s, computers typically contained a single processor 
and applications were relatively small.4 Processes of that era were designed to exe
cute a single thread of control on one processor at a time. Subsequent trends in soft
ware and hardware design indicated that systems could benefit from multiple 
threads of execution per process. Some motivating factors for multithreading are: 

• Software design—Due to modularity and compiler design, many of today's 
applications contain segments of code that can be executed independent of 
the rest of the application. Separating independent code segments into 
individual threads can improve application performance and can make 
inherently parallel tasks simpler to express in code (see the Operating Sys
tems Thinking feature, Parallelism). 

• Performance — A problem with single-threaded applications is independent 
activities cannot be scheduled to execute on multiple processors. In a multi
threaded application, threads can share a processor (or set of processors), 
so that multiple tasks are performed in parallel. Concurrent parallel execu
tion can significantly reduce the time required for a multithreaded applica
tion to complete its task, especially in multiprocessor systems, when 
compared to a single-threaded application that can execute on only one 
processor at a time and must perform its operations sequentially. Also, in 
multithreaded processes, ready threads can execute while others are 
blocked (i.e., while awaiting I/O completion). 

• Cooperation—Many applications rely on independent components to com
municate and synchronize activities. Before threads, these components 
executed as multiple "heavyweight" processes that established interprocess 
communication channels via the kernel.5, 6 Performance with a multiple-
lightweight-thread approach is often much better than that with a multiple-
heavyweight-process approach because a process's threads can communi
cate using their shared address space. 
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Multithreaded applications are ubiquitous in today's computer systems. A 
Web server is one environment in which threads can dramatically improve perfor
mance and interactivity. Web servers typically receive requests from remote appli
cations for Web pages, images and other files. It is common for Web servers to 
service each request with a separate thread. The process that receives requests may 
contain one thread that listens for requests from the Internet. For each request 
received, a new thread is spawned that interprets the request, retrieves the specified 
Web page and transmits the Web page to the client (typically a Web browser). After 
the new thread is spawned, its parent can continue to listen for new requests. 
Because many Web servers are multiprocessor systems, several requests can be 
received and fulfilled concurrently by different threads, improving both throughput 
and response time. The overhead incurred by creating and destroying a thread to 
service each request is substantial. As a result, most of today's Web servers main
tain a pool of threads that are assigned to service new requests as they arrive. These 
threads are not destroyed after servicing the request; rather, they are reassigned to 
the pool to be reassigned to incoming requests. We discuss thread pooling in greater 
detail in Section 4.6.3, Combining User- and Kernel-Level Threads. 

Word processors use threads to enhance user productivity and improve inter
activity. Each time the user types a character at the keyboard, the operating system 
receives a keyboard interrupt and issues a signal to the word processor. The word 
processor responds by storing the character in memory and displaying it on the 

One way to implement parallelism 

is to do so on the local machine 

with techniques like multipro

gramming, multithreading, multi

processing and massive 

parallelism. Computer hardware is 

built to be able to perform pro

cessing in parallel wi th input/out

put. Multiprocessors are built to 

have several processors working in 

parallel—massive parallelism car

ries that to the extreme with hun

dreds, thousands or even more 

processors working in parallel. 

Today, another kind of par

allelism is becoming prominent, 

namely distributed computing 

over computer networks. We 

study distributed computing in 

Chapters 16 through 18 where we 

examine computer networking 

and the issues of building distrib

uted operating systems. An oper

ating system is primarily a 

resource manager. For years, 

those resources were the hard

ware, software and data of the 

local computer system. Today, a 

distributed operating system must 

manage resources no matter 

where they reside, whether on 

the local computer system or on 

computer systems distributed 

across computer networks like the 

Internet. 

Operating Systems Thinking 
Parallelism 



screen. Because today's computers can execute hundreds of millions of processor 
instructions between successive keystrokes, word processors can execute several 
other threads between keyboard interrupts. For example, many of today's word 
processors detect misspelled words as they are typed and periodically save a copy of 
the document to disk to prevent loss of data. Each feature is implemented with a 
separate thread—as a result, the word processor can respond to keyboard inter
rupts even if one or more of its threads are blocked due to an I/O operation (e.g., 
saving a copy of the file to disk). 
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1. How does improved software design help to make multithreaded applications execute 
faster? 

2. Why is it typically more efficient for threads of the same process to communicate than it is 
for separate processes to communicate? 

Ans: 1) Many applications contain segments of code that can execute independently of one 
another. When these segments of code are assigned to separate threads, they can, for exam
ple, execute on multiple processors simultaneously. 2) Threads of the same process can com
municate via their shared address space and do not have to rely on IPC mechanisms that 
invoke the kernel. 

Self Review 

As discussed in Section 3.2, Process States: Life Cycle of a Process, each process can 
be viewed as transitioning between a series of discrete process states. In this model, 
each process contains a single thread of control; therefore, we could have also stated 
that each thread of control moves through a series of discrete states. When processes 
contain multiple threads of control, we can view each thread as transitioning between 
a series of discrete thread states. Thus, much of the discussion of process states and 
state transitions in Section 3.2, applies to thread states and state transitions. 

For example, consider the following set of states, based largely on the Java 
thread implementation (Fig. 4.2).7 In Java, a new thread begins its life cycle in the 
born state. It remains in the born state until the program starts the thread, which 
places the thread in the ready state (sometimes called the runnable state). In other 
operating systems, a thread is started upon creation, eliminating the born state. The 
highest-priority ready thread enters the running state (i.e., begins executing) when 
it obtains a processor. 

A running thread enters the dead state when it completes its task or otherwise 
terminates. Some threading libraries allow a thread to terminate another thread, 
which forces the latter into the dead state. Once a thread enters the dead state, its 
resources are released and it is removed from the system. 

A thread enters the blocked state when it must wait for the completion of an I/ 
O request (e.g., reading data from disk). A blocked thread is not dispatched to a pro
cessor until its I/O request has been completed. At that point, the thread returns to 
the ready state, so that it can resume execution when a processor becomes available. 

4.4 Thread States: Life Cycle of a Thread 
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Figure 4.2 | Thread life cycle. 

When a thread must wait for an event (e.g., mouse movement or a signal from 
another thread), it can enter the waiting state. Once in this state, it returns to the 
ready state when another thread notifies it (the term awakens it is also used). When 
a waiting thread receives a notify event, the thread transitions from waiting to ready. 

A running thread can enter the sleeping state for a specified period of time 
(called a sleep interval). A sleeping thread returns to the ready state when its desig
nated sleep interval expires. Sleeping threads cannot use a processor, even if one is 
available. Threads sleep when they momentarily do not have work to perform. For 
example, a word processor may contain a thread that periodically writes a copy of 
the current document to disk for recovery purposes. If the thread did not sleep 
between successive backups, it would require a loop in which it continually tests if it 
should write a copy of the document to disk. This loop would consume processor 
time without performing productive work, reducing system performance. In this 
case, it is more efficient for the thread to specify a sleep interval (equal to the 
period between successive backups) and enter the sleeping state. The sleeping 
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thread is returned to the ready state when its sleep interval expires, at which point it 
writes a copy of the document to disk and reenters the sleeping state. 

1. How can a thread enter the dead state? 
2. How are the waiting, blocked and sleeping states similar? How are they different? 

Ans: 1) A thread enters the dead state when it completes its task or when another thread 
terminates it. 2) These states are similar in that the threads in them could not use a processor, 
even if one were available. A blocked thread cannot be dispatched because it is waiting on an 
I/O operation that it requested. In this case, the operating system is responsible for ensuring 
that it eventually unblocks the thread. A waiting thread cannot be dispatched until it receives 
an event from hardware or software that the operating system does not initiate (e.g., a key 
press or a signal from another thread). In this case, the operating system cannot control 
whether or when a waiting thread will eventually be awakened. A sleeping thread cannot exe
cute because it has explicitly notified the system that it should not execute until its sleep 
interval expires. 

Self Review 

Threads and processes have many operations in common such as 

• create 

• exit (i.e., terminate) 

• suspend 

• resume 

• sleep 

• wake. 

In many ways, thread creation is similar to process creation. When a process spawns 
a thread, the threading library initializes thread-specific data structures that store 
information such as register contents, the program counter and a thread ID. Unlike 
process creation, thread creation does not require the operating system to initialize 
resources that are shared between the parent process and its threads (e.g., the 
address space). Many operating systems require fewer instructions to share 
resources than they do to initialize them, so in these systems, thread creation is 
faster than process creation.8 Likewise, thread termination is often faster than pro
cess termination. The reduced overhead due to thread creation and termination 
encourages software developers to implement parallel tasks using multiple threads 
instead of multiple processes, when feasible. 

Some thread operations do not correspond precisely to process operations. 
They include: 

• cancel—A thread or process can cause a thread to terminate prematurely 
by cancelling it. Unlike process termination, thread cancellation is not 
guaranteed to terminate the thread. This is because threads may disable, or 

4.5 Thread Operations 
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mask, signals; if a thread masks the cancellation signal, it will not receive 
the signal until the thread reenables the cancellation signal.9 However, a 
thread cannot mask an abort signal. 

• join—In some thread implementations (e.g., Windows XP), when a process 
is initialized, it creates a primary thread. The primary thread acts as any 
other thread, except that if it returns, the process terminates. To prevent a 
process from terminating before all its threads complete execution, the pri
mary thread typically sleeps until each thread it creates has completed exe
cution. In this case, the primary thread is said to join each of the threads it 
creates. When a thread joins another thread, the former does not execute 
until the latter terminates.10 

Although most thread implementations support the operations discussed in 
this section, other thread operations are specific to particular thread libraries. In the 
sections that follow, we introduce several popular thread implementations and dis
cuss issues the designer must address when creating a threading library. 

Self Review 
1. How does the cancellation signal differ from the abort signal, discussed in Section 3.5.1, 

Signals? 
2. Why does thread creation typically require fewer processor cycles than process creation? 

Ans: 1) When a thread receives an abort, it is terminated immediately (i.e., threads cannot 
mask abort signals). When a thread is cancelled, it may continue to exist until it unmasks the 
cancellation signal. 2) Unlike process creation, thread creation requires that the operating 
system initialize only resources that are local to the thread of control. Global resources (e.g., 
the process's address space) can be shared using pointers, which requires significantly fewer 
processor cycles than initialization. 

4.6 Threading Models 
Thread implementations vary among operating systems, but almost all operating 
systems support one of three primary threading models. This section examines the 
three most popular threading models: user-level threads, kernel-level threads, and a 
combination of the two. 

4.6.1 User-level Threads 
Early operating systems supported processes that contained only a single execution 
context.11 As a result, each multithreaded process was responsible for maintaining 
thread state information, scheduling threads and providing thread-synchronization 
primitives. These user-level threads perform threading operations in user space, 
meaning that threads are created by runtime libraries that cannot execute privi
leged instructions or access kernel primitives directly.12 User-level threads are 
transparent to the operating system—it treats each multithreaded process as a sin
gle execution context. This means that the operating system dispatches the multi
threaded process as a unit, as opposed to dispatching each individual thread. For 
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this reason, user-level thread implementations are also called many-to-one thread 
mappings, because the operating system maps all threads in a multithreaded pro
cess to a single execution context (Fig. 4.3). 

When a process employs user-level threads, user-level libraries perform sched
uling and dispatching operations on the process's threads because the operating 
system is unaware that the process contains multiple threads. The multithreaded 
process continues to execute until its quantum expires or until it is otherwise pre
empted by the kernel.13 

There are several benefits to implementing threads in user space instead of in 
kernel space. User-level threads do not require that the operating system support 
threads. Therefore, user-level threads are more portable because they do not rely 
on a particular operating system's threading API. Another advantage is that, 
because the threading library, not the operating system, controls how threads are 
scheduled, application developers can tune the threading library's scheduling algo
rithm to meet the needs of specific applications.14 

Also, user-level threads do not invoke the kernel for scheduling decisions or 
synchronization procedures. Recall from Section 3.4.1, Interrupt Processing, that a 
system loses a number of processor cycles to overhead when an interrupt, such as a 
system call, occurs. Therefore, user-level multithreaded processes that frequently 
perform threading operations (e.g., scheduling and synchronization) benefit from 
low overhead relative to threads that rely on the kernel for such operations.15 

User-level thread performance varies depending on the system and on process 
behavior. Many of the deficiencies of user-level threads relate to the fact that the ker
nel views a multithreaded process as a single thread of control. For instance, user-
level threads do not scale well to multiprocessor systems, because the kernel cannot 
simultaneously dispatch a process's threads to multiple processors, so user-level 

Figure 4.3 | User-level threads. 
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threads can result in suboptimal performance in multiprocessor systems.16 In a many-
to-one thread mapping, the entire process blocks when any of its threads requests a 
blocking I/O operation, because the entire multithreaded process is the only thread of 
control that the operating system recognizes. Even if the multithreaded process con
tains threads in the ready state, none of its threads can execute until the blocked 
thread becomes ready. This can slow progress to a crawl for multithreaded processes 
that block frequently. After a user-level thread blocks, the kernel will dispatch 
mother process, which may contain threads of a lower priority than the ready threads 
contained in the blocked process. Therefore, user-level threads also do not support 
systemwide scheduling priority, which could be particularly detrimental to real-time 
multithreaded processes.17 Note that some threading libraries translate blocking sys
tem calls into nonblocking system calls to address this problem.18 

Self Review 

1. Explain why user-level thread implementations promote portability. 
2. In many-to-one thread mappings, why does the operating system block the entire multi

threaded process when a single thread blocks? 

Ans: 1) User-level threads present an API to applications that is independent of the operat
ing system's API. 2) To the operating system, the entire multithreaded process is a single 
thread of control. Therefore, when the operating system receives a blocking I/O request, it 
blocks the entire process. 

4.6.2 Kernel-level Threads 
Kernel-level threads attempt to address the limitations of user-level threads by 
mapping each thread to its own execution context. As a result, kernel-level threads 
are often described as a one-to-one thread mapping (Fig. 4.4). Such mappings 
require the operating system to provide each user thread with a kernel thread that 

One process 

Each user 
thread maps to 

an execution 
context 

Kernel 
space 

Figure 4.4 | Kernel-level threads. 
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the operating system can dispatch. Kernel threads differ from heavyweight pro
cesses because they share their process's address space. Each kernel thread also 
stores thread-specific data, such as register contents and a thread identifier, for each 
thread in the system. When a user process requests a kernel-level thread using sys
tem calls defined by the operating system's API, the operating system creates a ker
nel thread that executes the user thread's instructions. 

There are several benefits to a one-to-one mapping. The kernel can dispatch a 
process's threads to several processors at once, which can improve performance for 
applications designed for concurrent execution.19 Also, the kernel can manage each 
thread individually, meaning that the operating system can dispatch a process's 
ready threads even if one of its threads is blocked. Therefore, applications that per
form blocking I/O can execute other threads while waiting for the I/O operation to 
complete. This can improve interactivity for applications that must respond to user 
input and can improve performance, in general, as long as the application can bene
fit from concurrent execution. 

Kernel-level threads enable the operating system's dispatcher to recognize 
each user thread individually. If the operating system implements a priority-based 
scheduling algorithm, a process that uses kernel-level threads can adjust the level of 
service each thread receives from the operating system by assigning scheduling pri
orities to each of its threads.20 For example, a process can improve its interactivity 
by assigning a high priority to a thread that responds to user requests and lower pri
orities to its other threads. 

Kernel-level threads are not always the optimal solution for multithreaded 
applications. Kernel-level thread implementations tend to be less efficient than 
user-level thread implementations because scheduling and synchronization opera
tions invoke the kernel, which increases overhead. Also, software that employs ker
nel-level threads is often less portable than software that employs user-level 
threads —the application programmer that uses kernel-level threads must modify 
the program to use the thread API for each operating system on which it runs.21 

Operating systems that conform to standard interfaces such as POSIX reduce this 
problem (see the Operating Systems Thinking feature, Standards Conformance). 
Another disadvantage is that kernel-level thread tend to consume more resources 
than user-level threads.22 Finally, kernel-level threads require that the operating 
system manage all threads in the system. Whereas a user-level library might be 
required to manage tens or hundreds of threads, the operating system may be 
required to manage thousands. Consequently, the application developer must be 
sure that the operating system's memory management and scheduling subsystems 
scale well to large numbers of threads. 

Self Review 
1. In what scenarios are kernel-level threads more efficient than user-level threads? 
2. Why is application software written for kernel-level threads less portable than software 

written for user-level threads? 
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Ans: 1) If an application contains threads that block or that can perform their instructions in 
parallel, kernel-level threads are more efficient than user-level threads. 2) Application software 
written using kernel-level threads depends on a particular operating system's thread API. 

4.6.3 Combining User- and Kernel-level Threads 
Some operating systems, such as Solaris and Windows XP, have attempted to bridge 
the gap between many-to-one and one-to-one mappings by creating a hybrid imple
mentation of threads. The combination of the user- and kernel-level thread imple
mentation is known as the many-to-many thread mapping (Fig. 4.5).23 As its name 
suggests, this implementation maps many user-level threads to a set of kernel 
threads. Some refer to this technique as m-to-n thread mapping, because the num
ber of user threads and the number of kernel threads need not be equal.24 

One-to-one thread mappings require that the operating system allocate data 
structures that represent kernel threads. As a result, the amount of memory con
sumed by kernel thread data structures can become significant as the number of 
threads in the system increases. Many-to-many thread mappings reduce this over
head by implementing thread pooling. This technique allows an application to spec
ify the number of kernel-level threads it requires. For example, in Fig. 4.5, process 
P1 has requested three kernel-level threads. Note that the threads T1 and T2 are 
mapped to a single kernel-level thread—a many-to-one mapping. This requires that 
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ffif&rfct threading model. 
the application maintain state information for each of its threads. Application 
developers are encouraged to use many-to-one mappings for threads that exhibit a 
low degree of parallelism (i.e., cannot benefit from simultaneous execution). Pro
cess P1's other threads (T3 andT4) are each mapped to a kernel-level thread. These 
threads are managed by the operating system, as discussed in the previous section. 

Thread pooling can significantly reduce the number of costly thread creation 
and destruction operations. For example, Web and database systems often create a 
new thread to respond to each incoming request for service. Thread pooling allows 
kernel threads to remain in the system after a user thread dies. The kernel thread 
can then be allocated to a new user thread that is created at a later time. This 
improves system response times in environments such as Web servers because 
requests can be assigned to threads that already exist in the pool. These persistent 
kernel threads are called worker threads because they typically perform several dif
ferent functions, depending on the threads that are assigned to them.25 

An advantage of a many-to-one thread mapping is that applications can 
improve performance by customizing the threading library's scheduling algorithm. 
However, as discussed in Section 4.6.1, User-Level Threads, if a single user-level 
thread blocks, the operating system blocks the entire multithreaded process. Another 
limitation to a many-to-one thread mapping is that a process's threads cannot simul
taneously execute on multiple processors. Scheduler activations attempt to address 
these limitations to user-level threads. A scheduler activation is a kernel thread that 
can notify a user-level threading library of events (e.g., a thread has blocked or a pro
cessor is available). This type of kernel thread is called a "scheduler activation," 
because the user-level threading library can perform thread-scheduling operations 
when "activated" by an event notification, sometimes called an upcall. 

When a multithreaded process is created, the operating system creates a 
scheduler activation that executes the process's user-level threading-library initial
ization code, which creates threads and requests additional processors for its 

Figure 4.5 | Hybrid threading model. 
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threads, if necessary. The operating system creates an additional scheduler activa
tion for each processor allocated to a process, enabling the user-level library to 
assign different threads to execute simultaneously on multiple processors. 

When a user-level thread blocks, the operating system saves the state of the 
thread to its scheduler activation and creates a new scheduler activation to notify the 
user-level library that one of its threads has blocked. The user-level threading library 
can then save the state of the blocked thread from its scheduler activation and assign 
a different thread to that scheduler activation. This mechanism prevents the entire 
multithreaded process from being blocked when one of its threads blocks.26 

The primary limitation of the many-to-many threading model is that it compli
cates operating system design, and there is no standard way in which to implement 
it.27 For example, Solaris 2.2's many-to-many threading model allowed user applica
tions to specify the number of kernel threads assigned to each process; Solaris 2.6 
introduced scheduler activations. Interestingly, Solaris 8 abandoned its predeces
sors' many-to-many thread mapping in favor of a simpler and scalable one-to-one 
thread mapping scheme.28 Windows XP, which does not support scheduler activa
tions, dynamically adjusts the number of worker threads in its thread pools in 
response to system load.29-30 

Self Review 

1. Why is it inefficient for an application to specify a thread pool size that is larger than the 
maximum number of ready user threads at any point during the application's execution? 

2. How do scheduler activations improve performance in a many-to-many thread mapping? 

Ans: 1) Each worker thread in the thread pool consumes system resources such as memory. 
If worker threads outnumber ready user threads, the system incurs overhead due to unneces
sary thread creation and inefficient memory allocation. 2) Scheduler activations allow the 
application to indicate how threads should be scheduled to maximize throughput. 

4.7 Thread Implementation Considerations 
In this section, we discuss differences among thread implementations relating to 
thread signal delivery and thread cancellation. These differences highlight funda
mental issues related to thread operations and thread management. 

4.7.1 Thread Signal Delivery 
Signals interrupt process execution, as do hardware interrupts, but signals are gen
erated by software—either by the operating system or by user processes. Signals 
became a standard interprocess communication mechanism after appearing in the 
UNIX operating system. The original UNIX operating system did not support 
threads, so signals were designed for use with processes.31 

As discussed in Section 3.5.1, Signals, when the operating system delivers a 
signal to a process, the process pauses execution and invokes a signal handler to 
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respond to the signal. When the signal handler completes, the process resumes exe
cution (assuming the process has not exited).32 

There are two types of signals: synchronous and asynchronous. A synchronous 
signal occurs as the direct result of an instruction executed by the process or thread. 
For example, if a process or thread performs an illegal memory operation, the oper
ating system sends the process a synchronous signal indicating the exception. An 
asynchronous signal occurs due to an event unrelated to the current instruction; 
such signals must specify a process ID to indicate the signal recipient. Asynchro
nous signals are commonly used to notify a process of I/O completion, suspend a 
process, continue a process or indicate that a process should terminate (see 
Section 20.10.1, Signals, for a list of POSIX signals). 

When every process in the system contains a single thread of control, signal 
delivery is straightforward. If the signal is synchronous (e.g., an illegal memory 
operation), it is delivered to the process currently executing on the processor that 
initiated the signal (by generating an interrupt). If the signal is asynchronous, the 
operating system can deliver it to the target process if it is currently running, or the 
operating system can add the signal to a queue of pending signals to be delivered 
when the recipient process enters the running state. 

Now consider the case of a multithreaded process. If the signal is synchronous, 
it is reasonable to deliver it to the thread currently executing on the processor that 
initiated the signal (by generating an interrupt). However, if the signal is asynchro
nous, the operating system must be able to identify the signal's recipient. One solu
tion is to require that the sender specify a thread ID. However, if the process 
employs a user-level thread library, the operating system cannot determine which 
thread should receive the signal. 

Alternatively, the operating system can implement signals such that the 
sender specifies a process ID. In this case, the operating system must decide 
whether to deliver the signal to all threads, several threads or one thread in the pro
cess. This may seem strange, but in fact this is the signal model that UNIX systems 
and the POSIX specification employ, and the aim is to provide compatibility with 
applications originally written for the UNIX operating system (see the Anecdote, 
Engineering). 

According to the POSIX specification, processes send signals by specifying a 
process identifier, not a thread identifier. To solve the thread signal delivery prob
lem, POSIX uses signal masking. A signal mask allows a thread to disable signals of 
a particular type, so that it does not receive signals of that type. A thread can 
thereby mask all signals except those that it wishes to receive (Fig. 4.6). In this 
approach, when the operating system receives a signal for a process, it delivers that 
signal to all threads in the process that are not masking signals of that type. 
Depending on the signal type and the default action (see Section 3.5.1, Signals), sig
nals may be queued for delivery after the thread unmasks the signal, or the signal 
may simply be dropped. For example, in Fig. 4.6, each shape represents a signal of a 
different type (e.g., suspend, resume, terminate). In this case, the operating system 
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attempts to deliver the triangle signal to a multithreaded process. Note that both 
threads 1 and 3 are masking the triangle signal. Thread 2 is not masking it; there
fore, the operating system delivers the triangle signal to thread 2, which then 
invokes the process's corresponding signal handler. 

Signal masking allows a process to divide signal handling among different 
threads. For example, a word processor may contain a thread that masks all signals 
except keyboard events. The sole purpose of this thread would be to record user 
keystrokes. Signal masking also enables the operating system to control which 
thread receives a signal. 

When implementing a POSIX signal delivery mechanism, the operating sys
tem must be able to locate a signal mask for each user thread. A one-to-one thread 
mapping simplifies this problem because the operating system can attach a signal 
mask to each kernel thread, which corresponds to exactly one user thread. How
ever, if the system employs a many-to-many model, signal masking can become 
complex. Consider the case where an asynchronous signal is generated for a process 
and the only thread that does not mask that signal is not currently running. In this 
case, the operating system can choose to add the signal to a list of pending signals or 
to drop the signal. As a general rule, because signals are often used to notify pro
cesses and threads of important events, the operating system should not drop sig
nals. [Note: The POSIX specification dictates that the operating system may drop a 
signal if all threads in the process have masked it and the corresponding signal-han
dler action is to ignore the signal.33] 

One way to implement pending signals for a many-to-many threading model 
is to create a kernel thread for each multithreaded process that monitors and deliv
ers its asynchronous signals. The Solaris 7 operating system employed a thread 
called the Asynchronous Signal Lightweight Process (ASLWP) that monitored sig-

Anecdote 

The field of operating systems 

often seems more like engineer

ing than science. A friend once 

told me his definit ion of engi

neering: "If it's scratched paint it; 

if it won' t f i t , smash it and it wil l 

f i t . " This explanation is certainly 

crude, but it points to the 

resourcefulness of operating sys

tems designers. 

Lesson to operating systems designers: Occasionally, when you dig deep into an operating system, you'll 

see examples of this kind of painting and smashing. 



Figure 4.6 | Signal masking. 

nals and managed pending signals so that they would be delivered to the appropri
ate thread, even if that thread was not running at the time of the signal.34 

If a multithreaded process employs a user-level library, the operating system 
simply delivers all signals to the process because it cannot distinguish individual 
threads. The user-level library registers signal handlers with the operating system, 
which are then executed upon receipt of a signal. The process's user-level thread 
library can then deliver the signal to any of its threads that do not mask it.35-36 
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1. Why is synchronous signal delivery simpler than asynchronous signal delivery? 
2. Explain how the ASLWP solves to the signal-handling problem in a many-to-many 

threading model. 

Ans: 1) Unlike an asynchronous signal, a synchronous signal is generated due to a process 
or thread that is currently executing on a processor. The operating system can easily identify 
the recipient of the signal by determining which process or thread is currently running on the 
processor that generated the interrupt corresponding to the signal. 2) An operating system 
can create a thread that stores each asynchronous signal until its recipient enters the running 
state (at which point the signal is delivered). 

Self Review 
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4.7.2 Thread Termination 
When a thread terminates by completing execution normally (e.g., by an exit call to a 
threading library or by exiting the method that contains the thread's code), the oper
ating system can immediately remove the thread from the system. Threads can also 
terminate prematurely, due to either an exception (such an illegal memory reference) 
or a cancellation signal from a process or thread. Because threads cooperate by 
means such as modifying shared data, an application may produce subtle erroneous 
results when one of its threads unexpectedly terminates. Consequently, threading 
libraries must carefully determine how and when to remove the thread from the sys
tem. A thread can choose to disable cancellation by masking the cancellation signal. 
Typically it will do so only while performing a task that should not be interrupted 
before termination, such as completing a modification to a shared variable.37 

Self Review 
1. Name three ways a thread can terminate. 
2. Why should a thread be allowed to disable its cancellation signal? 

Ans: 1) A thread can terminate by completing execution, raising a fatal exception or receiv
ing a cancellation signal. 2) A thread that modifies a value in its process's shared address 
space may leave data in an inconsistent state if terminated prematurely. 

4.8 POSIX and Pthreads 
POSIX (Portable Operating Systems Interface for Computing Environments) is a 
set of standards for operating system interfaces, published by the IEEE's Portable 
Application Standards Committee (PASC), that are largely based on UNIX System 
V.38 The POSIX specification defines a standard interface between threads and their 
threading library (see the Anecdote, Standards and Conformance: Plug-to-Plug 
Compatibility). Threads that use the POSIX threading API are called Pthreads 
(sometimes referred to as POSIX threads or POSIX 1003.1c threads).39 The 
POSIX specification is not concerned with the details of the implementation of the 
threading interface—Pthreads can be implemented in the kernel or by user-level 
libraries. 

POSIX states that the processor registers, the stack and the signal mask are 
maintained individually for each thread, and any other resource information must be 
globally accessible to all threads in the process.40 POSIX also defines a signal model 
to address many of the concerns discussed in Section 4.7, Thread Implementation 
Considerations. According to POSIX, when a thread generates a synchronous signal 
due to an exception such as an illegal memory operation, the signal is delivered only 
to that thread. If the signal is not specific to a thread, such as a signal to kill a process, 
then the threading library delivers that signal to a thread that does not mask it. If mul
tiple threads leave the kill signal unmasked, that signal is delivered to one of those 
threads. More importantly, one may not use the kill signal to terminate a particular 
thread—if a thread acts upon a kill signal, the entire process, including all of its 
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threads, will terminate. This example demonstrates another important property of the 
POSIX signal model: although signal masks are stored individually in each thread, 
signal handlers are global to all of a process's threads.41'42 

To terminate a particular thread, POSIX provides a cancellation operation 
that specifies a target thread, the result of which depends on the target thread's can
cellation mode. If the target thread chooses asynchronous cancellation, the thread 
can be terminated at any point during its execution. If the thread defers cancella
tion, it will not be cancelled until it explicitly checks for a cancellation request. 
Deferred cancellation allows a thread to complete a series of operations before 
being abruptly terminated. A thread may also disable cancellation, meaning that it 
is not notified that a cancellation operation has been requested.43 

In addition to the common operations discussed in Section 4.5, Thread Opera
tions, the POSIX specification provides functions that support more advanced opera
tions. It allows programs to specify various levels of parallelism and implement a 
variety of scheduling policies, including user-defined algorithms and real-time sched
uling. The specification also addresses synchronization using locks, semaphores and 
condition variables (see Chapter 5, Asynchronous Concurrent Execution).44, 45, 46 

Few of today's most popular operating systems provide complete native 
Pthreads implementations, i.e., in the kernel. However, POSIX threading libraries 
exist to provide a wide range of support for various operating systems. For example, 
although Linux does not conform to POSIX by default, the Native POSIX Thread 

Anecdote 

Standards and Conformance: Plug-to-Plug Compatibility 
The story goes that a manufac
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Lesson to operating systems designers: We live in a world of abundant and evolving standards. Achieving 

standards conformance is crucial to the success of modern operating systems. But standards are subject to 

human error just as operating systems are. 
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Library (NPTL) project aims to provide a conforming POSIX threading library that 
employs kernel-level threads in Linux.47 Similarly, the interface to the Microsoft Win
dows line of operating systems (namely the Win32 API) does not conform to POSIX, 
but users can install a POSIX subsystem. [Note: Sun Microsystem's Solaris 9 operat
ing system provides two threading libraries: a Pthreads library that conforms to 
POSIX and a legacy Solaris threads library (called UI threads). There is little differ
ence between Pthreads and Solaris threads—Solaris has been designed so that calls to 
Pthread and Solaris thread functions from within the same application are valid.48 

1. What is the primary reason to create standard thread interfaces such as Pthreads? 
2. Which threading model does the POSIX standard require? 

Ans: 1) Standard threading interfaces allow applications to be portable, which reduces soft
ware development time for applications that must operate on multiple platforms. 2) The 
POSIX standard does not require a specific implementation. Therefore, the threads can be 
implemented as user-level, kernel-level or hybrid threads. 

Self Review 

Support for threads in the Linux operating system was introduced as user-level 
threads in version 1.0.9 and as kernel-level threads in version 1.3.56.49 Although 
Linux supports threads, it is important to note that many Linux kernel subsystems 
do not distinguish between threads and processes. In fact, Linux allocates the same 
type of process descriptor to processes and threads, both of which are called tasks. 
Linux uses the UNIX-based system call fork to spawn child tasks. Linux responds 
to the fork system call by creating a new task that contains a copy of all of its par
ent's resources (e.g., address space, register contents, stack). 

To enable threading, Linux provides a modified version of the fork system 
call named clone. Similar to fork, clone creates a copy of the calling task—in the 
process hierarchy, the copy becomes the child of the task that issued the clone sys
tem call. Unlike fork, clone accepts arguments that specify which resources to 
share with the child process. At the highest level of resource sharing, tasks created 
by clone correspond to threads discussed in Section 4.2, Definition of Thread. 

As of version 2.6 of the kernel, Linux provides a one-to-one thread mapping 
that supports an arbitrary number of threads in the system. All tasks are managed 
by the same scheduler, meaning that processes and threads with equal priority 
receive the same level of service. The scheduler has been designed to scale well to a 
large number of processes and threads. The combination of a one-to-one mapping 
and an efficient scheduling algorithm provides Linux with a highly scalable thread 
implementation (see the Operating Systems Thinking feature, Scalability). 
Although Linux does not support POSIX threads by default, it is distributed with a 
POSIX threading library. In the 2.4 kernel, a threading library called LinuxThreads 
provided POSIX functionality but did not entirely conform to the POSIX specifica-

4.9 Linux Threads 
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tion. A more recent project, Native POSIX Thread Library (NPTL), has achieved 
nearly complete POSIX conformance and is likely to become the default threading 
library for the 2.6 kernel.50 

Each task in the process table stores information about the current task state 
(e.g., running, stopped, dead). A task in the running state may be dispatched to a pro
cessor (Fig. 4.7). A task enters the sleeping state when it sleeps, blocks or otherwise 
cannot execute on a processor. It enters the stopped stated when it receives a stop 
(i.e., suspend) signal. The zombie state indicates that a task has been terminated but 
has not yet been removed from the system. For example, if a task contains several 
threads, it will enter the zombie state while notifying its threads that it received a ter
mination signal. A task in the dead state may be removed from the system. These 
states are further discussed in Section 20.5.1, Process and Thread Organization. 

1. Explain the difference between the fork and clone system calls in Linux. 
2. What is the difference between the zombie state and the dead state? 

Ans: 1) When a task issues a fork system call, it spawns a child task and allocates it to a 
copy of its parent's resources. When a task issues a clone system call, the task specifies which 
resources it shares with the task it spawns. Tasks created using the clone system call are anal
ogous to threads. 2) A task in the zombie state is not removed from the system so other 
threads can be notified of its termination. A task in the dead state may be immediately 
removed from the system. 

Users' computing needs tend to 

increase wi th time. Operating sys

tems need to be scalable, i.e., they 

need to be able to adjust dynami

cally as more hardware and soft

ware capabilities are added to a 

system. A multiprocessor operat

ing system, for example, should 

scale smoothly from managing a 

two-processor configuration to 

managing a four-processor con

f iguration. We wil l see that most 

systems today employ a device-

driver architecture that makes it 

easy to add new types of devices, 

even ones that did not exist when 

the operating system was imple

mented. Throughout the book, 

we discuss techniques for making 

operating systems scalable. We 

conclude wi th discussions of scal

ability in Linux and Windows XP. 
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Figure 4.7 | Linux task state-transition diagram. 

4.10 Windows XP Threads 
In Windows XP, a process consists of program code, an execution context, resources 
(e.g., open files) and one or more associated threads. The execution context includes 
such items as the process's virtual address space and various attributes (e.g., secu
rity attributes). Threads are the actual unit of execution; threads execute a piece of 
a process's code in the process's context, using the process's resources. In addition 
to its process's context, a thread contains its own execution context which includes 
its runtime stack, the state of the machine's registers and several attributes (e.g, 
scheduling priority).51 

When the system initializes a process, the process creates a primary thread. It 
acts as any other thread, except that if the primary thread returns, the process ter
minates, unless the primary thread explicitly directs the process not to terminate. A 
thread can create other threads belonging to its process.52 All threads belonging to 
the same process share that process's virtual address space. Threads can maintain 
their own private data in thread local storage (TLS). 



Fibers 
Threads can create fibers, which are similar to threads, except that a fiber is sched
uled for execution by the thread that creates it, rather than the scheduler. Fibers 
make it easier for developers to port applications that employ user-level threads. A 
fiber executes in the context of the thread that creates the fiber.53 

It fiber must maintain state information, such as the next instruction to exe
cute processor registers. The thread stores this state information for each fiber. The 
thread itself is also a unit of execution, and thus must convert itself into a fiber to 
separate its own state information from other fibers executing in its context. In fact, 
the Windows API forces a thread to convert itself into a fiber before creating or 
scheduling other fibers. The thread's context remains, and all fibers associated with 
that thread execute in that context.54 

Whenever the kernel schedules a thread that has been converted to a fiber for 
execution, the converted fiber or another fiber belonging to that thread runs. Once 
a fiber obtains the processor, it executes until the thread in whose context it exe
cutes is preempted, or the fiber switches execution to another fiber within that 
thread. Just as threads possess their own thread local storage (TLS), fibers possess 
their own fiber local storage (FLS), which functions for fibers exactly as TLS func
tions for a thread. A fiber can also access its thread's TLS. If a fiber deletes itself 
(i.e., terminates), its thread terminates.55 

Thread Pools 
Windows XP also provides each process with a thread pool that consists of a num
ber of worker threads, which are kernel-mode threads that execute functions speci
fied by user threads. Because the functions specified by user threads may 
outnumber worker threads, Windows XP maintains requests to execute functions in 
a queue. The thread pool consists of worker threads that sleep until a request is 
queued to the pool.56 The thread that queues the request must specify the function 
to execute and must provide context information.57 The thread pool is created the 
first time a thread submits a function to the pool. 

Thread pools have many purposes. Web servers and databases can use them to 
handle client requests (e.g., from Web browsers). Instead of incurring the costly 
overhead of creating and destroying a thread for each request, the process simply 
queues the request to its pool of worker threads. Also, several threads that spend 
most of their time sleeping (e.g., waiting for events to occur) can be replaced by a 
single worker thread that awakens each time one of these events occurs. Further
more, applications can use the thread pool to accomplish asynchronous I/O by 
queuing a request to its pool of worker threads to execute the I/O completion rou
tines. Using thread pools can make an application more efficient and simpler, 
because developers do not have to create and delete as many threads. However, 
thread pools transfer some control from the programmer to the system, which can 
introduce inefficiency. For example, the system grows and shrinks the size of a pro-
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cess's thread pool in response to request volume; in some cases, the programmer 
can better estimate how many threads are needed.58 

Thread States 
In Windows XP, threads can be in any one of eight states (Fig. 4.8). A thread begins 
in the initialized state during thread creation. Once initialization concludes, the 
thread enters the ready state. Threads in the ready state are waiting to use a proces
sor. A thread that the dispatcher has decided will execute next enters the standby 
state as it awaits its turn for a processor. A thread is in the standby state, for exam
ple, during the context switch from the previously executing thread to that thread. 
Once the thread obtains a processor, it enters the running state. A thread transi
tions out of the running state if it terminates execution, exhausts its quantum, is 
preempted, is suspended or waits on an object. When a thread completes its instruc
tions, it enters the terminated state. The system does not necessarily delete a termi
nated thread immediately, which can reduce thread creation overhead if the process 
reinitializes that thread. The system deletes a thread after its resources have been 
freed. If a running thread is preempted or exhausts its quantum, it returns to the 
ready state. 

Figure 4.8 | Windows XP thread state-transition diagram. 
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A running thread enters the waiting state while waiting for an event (e.g., an 
I/O completion event). Also, another thread (with sufficient access rights) or the 
system can suspend a thread, forcing it into the waiting state until the thread is 
resumed. When the thread completes its wait, it either returns to the ready state or 
enters the transition state. The system places a thread in the transition state if the 
thread's data is not currently available (e.g., because the thread has not executed 
recently and the system needed its memory for other purposes), but the thread is 
otherwise ready to execute. The thread enters the ready state once the system pages 
the thread's kernel stack back into memory. The system places a thread in the 
unknown state when the thread's state is unclear (usually because of an error).59-60 

1. What purpose do fibers serve in Windows XP? 
2. How does a primary thread differ from other threads? 

Ans: 1) Fibers exist to improve compatibility with applications that schedule their own 
threads (e.g., user-level threads). 2) Unlike other threads, when a primary thread returns, the 
process to which it belongs terminates. 

Self Review 

As we will see in subsequent chapters, the concurrency introduced by processes and 
threads has significantly impacted software design. In this and the following 
optional case studies, we provide examples of real programs that demonstrate and 
solve problems introduced by concurrency. We have chosen to implement these 
programs in Java due to its portability across most popular platforms. This case 
study assumes a basic knowledge of Java. 

In this section, we overview various thread-related methods in the Java API. 
We use many of these methods in live-code examples. The reader should refer to 
the Java API directly for more details on using each method, especially the excep
tions thrown by each method (see java.sun.com/j2se/1.4/docs/api/java/ 
lang/Thread.html). 

Class Th read (package java.1ang) has several constructors. The constructor 

publ ic Thread( Str ing threadName ) 

constructs a Thread object whose name is threadName.The constructor 

publ ic Thread() 

constructs a Thread whose name is "Thread-" concatenated with a number, like 
Thread-l,Thread-2,and so on. 

The code that "does the real work" of a thread is placed in its run method. 
The run method can be overridden in a subclass of Thread or it may be imple-

4.11 Java Multithreading Case Studty, Part I: 
Introduction to Java Threads 

http://http://java.sun.com/j2se/1.4/docs/api/java/lang/Thread.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/Thread.html
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mented in a Runnable object; Runnable is a Java interface that allows the program
mer to control a thread's life cycle with the run method in an object of a class that 
Joes not extend Thread. 

A program launches a thread's execution by calling the thread's start 
method, which, in turn, calls method run. After s t a r t launches the thread, s t a r t 
returns to its caller immediately. The caller then executes concurrently with the 
launched thread. 

The s t a t i c method si eep is called with an argument specifying how long (in 
milliseconds) the currently executing thread should sleep; while a thread sleeps, it 
does not contend for the processor, so other threads can execute. This can give 
lower-priority threads a chance to run. 

Method setName sets a thread's name, which facilitates debugging by allow
ing the programmer to identify which thread is executing. Method getName returns 
the name of the Thread. Method toString returns a String consisting of the 
name of the thread, the priority of the thread and the thread's ThreadGroup (anal
ogous to the parent process of a group of threads).The s t a t i c method current-
Thread returns a reference to the currently executing Thread. 

Method join waits for the Thread to which the message is sent to terminate 
before the calling Thread can proceed; no argument or an argument of 0 millisec
onds to method join indicates that the current Thread will wait forever for the tar
get Thread to die before the Thread proceeds. Such waiting can be dangerous; it 
can lead to two particularly serious problems called deadlock and indefinite post
ponement—we discuss these concepts in Chapter 7, Deadlock and Indefinite Post
ponement. 

Java implements thread signaling using the interrupt method. Calling the 
interrupt method on a thread that is blocked (because that thread's wai t, joi n or 
sleep method was called) raises (throws) its InterruptedException exception 
handler.The s t a t i c method interrupted returns true if the current thread has 
been interrupted and false otherwise. A program can invoke a specific thread's 
isinterrupted method to determine whether that thread has been interrupted. 

Creating and Executing Threads 
Figure 4.9 demonstrates basic threading techniques, such as constructing Thread 
objects and using Thread method sleep.The program creates three threads of exe
cution. Each thread displays a message indicating that it is going to sleep for a ran
dom interval from 0 to 5000 milliseconds, then goes to sleep. When each thread 
awakens, it displays its name, indicates that it is done sleeping, terminates and 
enters the dead state. You will see that method main (i.e., the main thread of execu
tion) terminates before the application terminates. The program consists of two 
classes—ThreadTester (lines 4-23), which creates the three threads, and Print-
Thread (lines 25-59), which contains in its run method the actions each Print-
Thread will perform. 

Class PrintThread (lines 25-59) extends Thread, so that each PrintThread 
object can execute concurrently. The class consists of instance variable sleepTime 
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1 // Fig. 4.9: ThreadTester.Java 
2 // Multiple threads printing at different intervals. 
3 
4 public class ThreadTester { 
5 

6 public static void main( String [] args ) 

7 { 
8 // create and name each thread 
9 PrintThread threadl = new PrintThread( "threadl" ); 
10 PrintThread thread2 = new PrintThreadC "thread2" ); 
11 PrintThread thread3 = new PrintThreadC "thread3" ); 
12 

13 System.err.println( "Starting threads" ); 
14 

15 threadl.startO; // start threadl; place it in ready state 
16 thread2.start(); // start thread2; place it in ready state 
17 thread3.start(); // start thread3; place it in ready state 
18 
19 System.err.println( "Threads started, main ends\n" ); 
20 
21 } // end main 
22 
23 } // end class ThreadTester 
24 
25 // class PrintThread controls thread execution 
26 class PrintThread extends Thread { 
27 private int sleepTime; 
28 
29 // assign name to thread by calling superclass constructor 
30 public PrintThreadC String name ) 

31 { 
32 super( name ); 
33 
34 // pick random sleep time between 0 and 5 seconds 
35 sleepTime = ( int ) ( Math. random() * 5001 ); 
36 } // end PrintThread constructor 
37 
38 // method run is the code to be executed by new thread 
39 public void run() 
40 { 
41 // put thread to sleep for sleepTime amount of time 
42 try { 

43 System.err.println( getName() + " going to sleep for " + 
44 sleepTime + " milliseconds" ); 
45 

Figure 4.9 | Java threads being created, starting, sleeping and printing. (Part 1 
of 2.) 
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46 Thread.sieep( sleepTime ); 
47 } // end try 
48 
49 // if thread interrupted during sleep, print stack trace 
50 catch ( InterruptedException exception ) { 
51 exception.printStackTrace(); 
52 } // end catch 
53 
54 // print thread name 
55 System.err.println( getNameO + " done sleeping" ); 
56 
57 } // end method run 

58 
59 } // end class PrintThread 

Sample Output 1: 
Starting threads 

Threads started, main ends 

threadl going to sleep for 1217 milliseconds 

thread2 going to sleep for 3989 milliseconds 

thread3 going to sleep for 662 milliseconds 

thread3 done sleeping 

threadl done sleeping 

thread2 done sleeping 

Sample Output 2: 
Star t ing threads 
th read l going to sleep f o r 314 mi l l iseconds 
thread2 going to sleep f o r 1990 mi l l iseconds 
Threads s t a r t e d , main ends 

thread3 going to sleep fo r 3016 mi l l iseconds 
th read l done sleeping 
thread2 done sleeping 
thread3 done sleeping 

Figure 4.9 | Java threads being created, starting, sleeping and printing. (Part 2 
of 2.) 

(line 27), a constructor (lines 29-36) and a run method (lines 38-57). Variable 
sleepTime stores a random integer value chosen when a new PrintThread 
object's constructor is called. Each thread controlled by a PrintThread object 
sleeps for the amount of time specified by the corresponding Pri ntThread object's 
sleepTi me, then outputs its name. 
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The PrintThread constructor (lines 29-36) initializes sleepTime to a ran
dom integer from 0 to 5000. When a PrintThread is assigned a processor for the 
first time, its run method begins executing. Lines 43-44 display a message indicating 
the name of the currently executing thread and stating that the thread is going to 
sleep for a certain number of milliseconds. Line 43 uses the currently executing 
thread's getName method to obtain the thread's name, which was specified as a 
string argument to the PrintThread constructor and passed to the superclass 
Thread constructor in line 32. Note that line 43 uses System.err to print the mes
sage because System.err is unbuffered, meaning that it prints its argument imme
diately after being called. Line 46 invokes static Thread method s leep to place the 
thread into the sleeping state. At this point, the thread loses the processor, and the 
system allows another thread to execute. When the thread awakens, it reenters the 
ready state, where it waits until the system assigns it a processor. When the Pri n t 
Thread object enters the running state again, line 55 outputs the thread's name in a 
message that indicates the thread is done sleeping; then method run terminates. 
This places the thread in the dead state, at which point its resources can be freed. 

ThreadTester method main (lines 6-21) creates and names three P r i n t -
Thread objects (lines 9-11). When debugging a multithreaded program, these 
names identify which threads are executing. Lines 15-17 invoke each thread's 
s t a r t method to transition all three PrintThread objects from the born state to 
the ready state. Method s t a r t returns immediately from each invocation; then line 
19 outputs a message indicating that the threads were started. Note that all code in 
this program, except for the code in method run, executes in the main thread. The 
PrintThread constructor also executes in the main thread, since each P r i n t -
Thread object is created in method mai n. When method mai n terminates (line 21), 
the program itself continues running, because there are still threads that are alive 
(i.e., the threads were started and have not yet reached the dead state) and are not 
daemon threads. The program terminates when its last thread dies. When the sys
tem assigns a processor to a PrintThread for the first time, the thread enters the 
running state, and the thread's run method begins executing. 

The sample outputs for this program show each thread's name and sleep time 
as the thread goes to sleep. The thread with the shortest sleep time normally awak
ens first, indicates that it is done sleeping and terminates. Note in the second sample 
output that t h r e a d l and thread2 each output their name and sleep time before 
method mai n completes its execution. This situation demonstrates that, once multi
ple threads are in the ready state, any thread can be assigned the processor. 

Self Review 
1. Why should programmers name Java threads? 
2. How does Java allow programmers to create threads from objects that do not extend 

Thread? 

Ans: 1) Naming Java threads allows the programmer to identify each thread when debug
ging. 2) A class can implement the Runnabl e interface so that objects of the class can control 
the life cycles of threads with their run methods. 
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www.serpentine.com/~bos/threads-faq/ 
Contains a frequently-asked-questions (FAQ) page about 
threads. Aside from answering basic thread questions, it pro
vides links to books on threads, discusses some common pit-
falls programmers encounter when implementing operating 
system support for threads and directs readers to thread pack
ages available on the Internet. 
www.1inux-mag.com/2001-05/compile_01.html 

This Linux Magazine article by Benjamin Chelf gives an over
view of thread implementations. Chelf describes in detail how 
Linux handles Pthreads, providing sample Linux code. 

publib.boulder.ibm.com/iseries/v5rl/ic2924/ 
index.htm?info/apis/rzah4mst.htm 
Provides a complete API for programming Pthreads and 
defines basic thread concepts. 

sources.redhat.com/pthreads-win32/ 
Contains an implementation of Pthreads for 32-bit Windows 
environments. 

Summary 
In recent years, several general-purpose programming lan
guages, such as Java, C#, Visual C++ .NET, Visual Basic 
.NET and Python, have made concurrency primitives avail
able to the applications programmer. The programmer spec
ifies that applications contain threads of execution, each 
thread designating a portion of a program that may execute 
concurrently with other threads. This technology, called mul
tithreading, gives the programmer powerful capabilities. 
Operating system support for threads is essential to support
ing languages that provide multithreading semantics. 

Threads, sometimes called lightweight processes 
(LWPs), share many resources—most notably the address 
space of their process—to improve the efficiency with 
which they perform their tasks. The name "thread" refers 
to a single thread of instructions or thread of control; 
threads within a process execute concurrently to attain a 
common goal. Resources such as processor registers, the 
stack and other thread-specific data (TSD) are local to each 
thread, while all threads share the address space of their 
process. Depending on the thread implementation, threads 
may be managed by the operating system or by a user 
application. Although many operating systems support 
threads, the implementations vary considerably. 

Threads have become prominent due to trends in 
software design, scalability and cooperation. Each thread 
transitions among a series of discrete thread states. Threads 

Java.sun.com/docs/books/tutorial/essential/threads/ 
Sun's tutorial on Java threads. 

java.sun.com/j2se/l.4.1/docs/api/ 
Java API containing a specification of the Thread class. 

archive.devx.com/dotnet/articles/pa061702/ 
pa061702-l.asp 
Article that overviews multithreading using the .NET plat
form, including a concise presentation of multithreading con
cepts. 

www.microsoft.com/msj/0499/pooling/pooling.aspx 
Article that describes thread pooling in Windows XP. 

j ava . sun .com/docs /ho t spo t / th reads / th reads .h tml 
White paper that documents the relationship between Java 
threads and Solaris threads. 

developer.apple.com/documentation/MacOSX/Concep-
tual/SystemOverview/InverEnvironissues/ 
chapter_14_section_3.html 
Describes the thread manager in Macintosh OS X. 

and processes have many operations in common, such as 
create, exit, resume and suspend. Unlike process creation, 
thread creation does not requires the operating system to 
initialize resources that are shared between the parent pro
cess and its threads (e.g., the address space). This reduces 
the overhead of thread creation and termination when 
compared to process creation and termination. Some 
thread operations do not correspond precisely to process 
operations, such as cancel and join. 

Thread implementations vary among operating sys
tems, but almost all operating systems support user-level 
threads, kernel-level threads or a combination of the two. 
User-level threads perform threading operations in user 
space, meaning that threads are created by runtime librar
ies that cannot execute privileged instructions or access 
kernel primitives directly. User-level thread implementa
tions are also called many-to-one thread mappings, because 
the operating system maps all threads in a multithreaded 
process to a single execution context. Although user-level 
threads vary in performance among applications, many of 
their deficiencies relate to the fact that the kernel views a 
multithreaded process as a single thread of control. 

Kernel-level threads attempt to address the limita
tions of user-level threads by mapping each thread to its 
own execution context. As a result, kernel-level threads 
provide a one-to-one thread mapping. Their benefits 

www.serpentine.com/~bos/threads-faq/
www.1inux-mag.com/2001-05/compile_01.html
publib.boulder.ibm.com/iseries/v5rl/ic2924/index.htm?info/apis/rzah4mst.htm
http://publib.boulder.ibm.com/iseries/v5rl/ic2924/index.htm?info/apis/rzah4mst.htm
http://sources.redhat.com/pthreads-win32/
http://Java.sun.com/docs/books/tutorial/essential/threads/
http://java.sun.com/j2se/l.4.1/docs/api/
http://archive.devx.com/dotnet/articles/pa061702/ pa061702-1.asp
http://http://archive.devx.com/dotnet/articles/pa061702/ pa061702-1.asp
http://www.microsoft.com/msj/0499/pooling/pooling.aspx
http://java.sun.com/docs/hotspot/threads/threads.html
http://developer.apple.com/documentation/MacOSX/Conceptual/SystemOverview/InverEnvironissues/chapter_14_section_3.html
http://developer.apple.com/documentation/MacOSX/Conceptual/SystemOverview/InverEnvironissues/chapter_14_section_3.html
http://developer.apple.com/documentation/MacOSX/Conceptual/SystemOverview/InverEnvironissues/chapter_14_section_3.html
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include increased scalability, interactivity and throughput. 
Due to overhead and reduced portability, however, kernel-
level threads are not always the optimal solution for multi
threaded applications. 

The combination of the user- and kernel-level thread 
implementation is known as the many-to-many thread map
ping. Some refer to this technique as m-to-n thread mapping 
because the number of user and kernel threads need not be 
equal. Many-to-many thread mappings reduce overhead due 
to one-to-one thread mappings by implementing thread 
pooling, which allows an application to specify the number 
of kernel-level threads it requires. Persistent kernel threads 
that occupy the thread pool are called worker threads. A 
technique that enables a user-level library to schedule its 
threads is called a scheduler activation. It occurs when the 
operating system calls a user-level threading library that 
determines if any of its threads need rescheduling. Scheduler 
activations can reduce context-switching overhead due to 
inappropriate scheduling decisions in the kernel by allowing 
the threading library to determine the scheduling policy that 
best addresses the application's needs. 

When the operating system delivers a signal to a pro
cess, the process pauses execution and invokes a signal han
dler to respond. There are two types of signals: 
synchronous (which occur as the direct result of an instruc
tion being executed) or asynchronous (which occur as the 
result of an event unrelated to the instructions being exe
cuted). Signal delivery introduces several design challenges 
in threading implementations. The threading library must 
determine each signal's recipient so that asynchronous sig
nals are delivered properly. Each thread is usually associ
ated with a set of pending signals that are delivered when it 
executes. One way to control which threads receive signals 
of a particular type is to require that each thread specify a 
signal mask that disables signals of particular types. A 
thread can thereby mask all signals except those that it 
wishes to receive. 

Thread termination, or cancellation, also differs 
between thread implementations. Because multiple threads 
share the same address space, prematurely terminating a 
thread can cause subtle errors in processes. Some thread 

Key Terms 
asynchronous cancellation (POSIX)—Cancellation mode in 

which a thread is terminated immediately upon receiving 
the cancellation signal. 

asynchronous signal—Signal generated for reasons unrelated 
to the current instruction of the running thread. 

implementations allow a thread to determine when it can 
be terminated to prevent the process from entering an 
inconsistent state. 

Threads that use the POSIX threading API are called 
Pthreads (sometimes referred to as POSIX threads or 
POSIX 1003.1c threads). POSIX states that the processor 
registers, the stack and the signal mask are maintained indi
vidually for each thread, and any other resource informa
tion must be globally accessible to all threads in the 
process. POSIX specifies how operating systems should 
deliver signals to Pthreads in addition to specifying several 
thread-cancellation modes. 

Linux allocates the same type of process descriptor to 
processes and threads, both of which are called tasks. Linux 
uses the UNIX-based system call fork to spawn child tasks. 
To enable threading, Linux provides a modified version 
named clone, which accepts arguments that specify which 
resources to share with the child task. At the highest level 
of resource sharing, tasks created by clone correspond to 
threads discussed in Section 4.2, Definition of Thread. 

In Windows XP, threads—not processes —are dis
patched to a processor; threads execute a piece of the pro
cess's code in the process's context, using the process's 
resources. In addition to its process's context, a thread con
tains its own execution context, which includes its runtime 
stack, the state of the machine's registers and several 
attributes (e.g, scheduling priority). When the system ini
tializes a process, the process creates a primary thread, 
which typically terminates the process upon completion. 
Windows XP threads can create fibers, which are similar to 
threads, except that a fiber is scheduled for execution by 
the thread that creates it, rather than the scheduler. Win
dows XP provides each process with a thread pool that con
sists of a number of worker threads, which are kernel-mode 
threads that execute functions specified by user threads. 

The Java programming language allows the applica
tion programmer to create threads that are portable to 
many computing platforms. Java uses class Thread to create 
threads, which execute code specified in a Runnable 
object's run method. Java supports operations such as nam
ing, starting and joining threads. 

blocked state—Thread state in which the thread is awaiting 
notification of some event, such as completion of an I/O 
operation, before it can again become ready. 

born state—Thread state in which a new thread begins its life 
cycle. 
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C-threads—Threads supported natively in the Mach micro
kernel (on which Macintosh OS X is built). 

cancellation of a thread—Thread operation that terminates 
the target thread. Three modes of cancellation are dis
abled, deferred and asynchronous cancellation. 

dead state—Thread state entered after a thread completes its 
task or otherwise terminates. 

deferred cancellation (POSIX)—Cancellation mode in which 
a thread is terminated only after explicitly checking that it 
has received a cancellation signal. 

disabled cancellation (POSIX) —Cancellation mode in which a 
thread does not receive pending cancellation signals. 

fiber (Windows XP)—Unit of execution in Windows XP cre
ated by a thread and scheduled by the thread. Fibers facil
itate portability for applications that schedule their own 
threads. 

fiber local storage (FLS) (Windows XP)—Area of a process's 
baddress space where a fiber can store data that only the 
fiber can access. 

heavyweight process ( H W P ) - A traditional process, which 
may contain one or more threads. The process is "heavy
weight" because it is allocated its own address space upon 
creation. 

initialized state (Windows XP)—Thread state in which the 
thread is created by the operating system. 

join—Thread operation that causes the calling thread to block 
until the thread it joins terminates. A primary thread 
often joins each of threads it creates so that its corre
sponding process does not exit until all of its threads have 
terminated. 

kernel-level thread—Thread created by an operating system 
(also called kernel thread). 

lightweight process (LWP)—A single thread of program 
instructions (also called a thread of execution or thread of 
control). Threads are "lightweight" because they share 
their address space with other threads in the same process. 

main thread of execution—Thread created upon process cre
ation (also called primary thread). 

many-to-many (m-to-n) thread mapping—Threading model in 
which a set of user threads is assigned to a set of kernel 
threads so that applications can benefit both from kernel-
level threads and user-level features such as scheduler 
activations. In practice the number of user threads is 
greater than or equal to the number of kernel threads in 
the system to minimize memory consumption. 

many-to-one thread mapping—Threading model in which all 
user-level threads in a process are assigned to one kernel 
thread. 

mask a signal—Prevent a signal from being delivered. Signal 
masking enables a multithreaded process to specify which 
of its threads will handle signals of a particular type. 

multithreading—Technique that incorporates multiple threads 
of execution within a process to perform parallel activi
ties, possibly simultaneously. 

notify—Thread operation that transitions its target thread 
from the waiting to the ready state. 

one-to-one mapping—Threading model in which each user-
level thread is assigned to a kernel-level thread. 

pending signal—Signal that has not been delivered to a thread 
because the thread is not running and/or because the 
thread has masked signals of that type. 

primary thread—Thread created upon process creation (also 
called main thread of execution). When the primary 
thread returns, its process terminates. 

Pthread (POSIX 1003.1c thread)-Thread that conforms to 
the POSIX 1003.1c standard. 

ready (or runnable) state—Thread state from which a thread 
can transition to the running state and execute on a proces
sor. In Windows XP, a ready thread transitions to the 
standby state, from which it transitions to the running state. 

running state—Thread state in which a thread executes on a 
processor. 

scheduler activation—Mechanism that allows a user-level 
library to schedule kernel threads. 

signal handler—Code that is executed in response to a particu
lar signal type. 

signal mask—Data structure that specifies which signals are 
not delivered to a thread. Depending on the signal type 
and default action, masked signals are either queued or 
dropped. 

sleep interval—Period of time (specified by the thread that is 
about to enter the sleeping state) during which a thread 
remains in the sleeping state. 

sleeping state—Thread state in which a thread cannot execute 
until being returned to the ready state after the sleep 
interval expires. 

standby state (Windows XP)—Thread state denoting a thread 
that has been selected for execution. 

synchronous signal—Signal generated due to execution of the 
currently running thread's instructions. 

task—Linux representation of an execution context (i.e., pro
cess or thread). 

terminated state (Windows XP)—Thread state that denotes a 
thread has finished executing. 
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thread—Entity that describes an independently executable 
stream of program instructions (also called a thread of 
execution or thread of control). Threads facilitate parallel 
execution of concurrent activities within a process. 

thread local storage (TLS)—Windows XP implementation of 
thread-specific data. A thread can share its address space 
with other threads of that process, but hide its private data 
in its TLS. 

thread pooling—Threading technique that employs a number 
of kernel threads that exist for the duration of the process 
that creates them. This technique can improve perfor
mance by reducing the number of costly thread creation 
and termination operations. 

thread state —Status of a thread (e.g., running, ready, blocked, 
and so on). 

transition state (Windows XP)—Thread state denoting a 
thread that has completed a wait but is not yet ready to 

4.1 Compare and contrast thread dispatching in kernel-level 
threads and in user-level threads. 

4.2 Would an algorithm that performs several independent 
calculations concurrently (e.g., matrix multiplication) be more 
efficient if it used threads, or if it did not use threads? Why is 
this a hard question to answer? 

4.3 Name two situations other than a Web or database server 
for which thread pooling may be useful. Another possibility is 
an online interactive multi-player game. Several such games can 
have hundreds of active players simultaneously, each of whom 
can be represented by a thread. In these environments, users 
frequently enter and exit the game, meaning that thread pools 
can provide an efficient way to allocate threads. In general, any 
environment in which threads are rapidly created and 
destroyed, but variance in the total number of threads in the sys
tem at any given time is small, can benefit from thread pools. 

4.4 Why are scheduler activations less portable than either 
user-level or kernel-level threads? 

Suggested Projects 
4.10 Research how threads are implemented in Windows XP, 
OS X, and Linux. Compare and contrast the implementations. 
How do these implementations differ from POSIX Pthreads? 

4.11 Prepare a research paper on Java's implementation of 
threads. What information does the Java Virtual Machine keep 

run because its kernel stack has been paged out of mem
ory. 

unknown state (Windows XP)—Thread state denoting that the 
some error has occurred and the system does not know 
the state of the thread. 

user-level threads—Threading model in which all threads in a 
process are assigned to one execution context. 

wake—Thread operation that transitions its target from the 
waiting state to the ready state. 

waiting state—Thread state from which a thread cannot exe
cute until transitioning to the ready state via a wake or 
notify operation. 

Win32 thread—Threads natively supported in the Microsoft 
32-bit Windows line of operating systems. 

worker thread—Kernel thread that is a member of a thread 
pool. Worker threads may be mapped to any user thread 
in the process that created its thread pool. 

4.5 In Section 4.7.1, Thread Signal Delivery, we explained 
how signals may specify their targets using thread identifiers or 
process identifiers. Suggest an alternative way to implement 
signals to solve the asynchronous signal delivery problem. 

4.6 Section 4.7.1, Thread Signal Delivery, discusses how 
Solaris 7 employed a thread called the Asynchronous Light
weight Process (ASLWP) to monitor and deliver pending 
asynchronous signals. How can this solution be simplified if the 
operating system represents threads using one-to-one thread 
mappings? 

4.7 Compare and contrast asynchronous, deferred and dis
abled cancellation in Pthreads. 

4.8 How do the Linux fork and clone system calls differ? 
How are they alike? 

4.9 According to the discussion in Section 4.10, Windows XP 
Threads, which thread mappings does Windows XP support? 

track of for each thread? Does the implementation depend on 
the platform on which the JVM is running? 

4.12 Research the Solaris compatible Thread Library. Pre
pare a research paper on how this library works. How does it 
handle the thread signal delivery and termination problems 

Exercises 
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that were mentioned in the text? Does it conform to the 
POSIX standard? 

4.13 Research three types of systems that use thread pooling. 
What average number of threads does each of these systems 
use? 

4.14 Research how threads are managed in multiprocessor 
systems and distributed systems. 

Solaris operating system to be particularly sensitive to operating 
system design concerns regarding thread implementations.64 

In recent years, the level of support for Pthreads across 
different operating systems has increased significantly. Blel-
loch describes Pthread implementation concerns and presents 
a case study on Solaris threads.65 Butenhof s Programming 
with POSIX Threads discusses the POSIX specification and 
demonstrates how to program with Pthreads.66 For more infor
mation regarding threads and thread programming, see Kle-
iman et al.'s Programming with Threads67 and Birrell's An 
Introduction to Programming with Threads.68 Ousterhout dis
cusses how improper use of threads can reduce performance.69 
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Do not put me to't, For I am nothing if not critical. 
—William Shakespeare— 

A person with one watch knows what time it is; a person with two watches is never sure. 
—Proverb— 

Bury leisure. 
—Johann Elias Schlegel— 

A really busy person never knows how much he weighs. 
—Edgar Watson Howe— 

Delays breed dangers. 
—John Lyly— 

By delaying he preserved the state. 
—Quintus Ennius— 



Asynchronous Concurrent 
Execution 

Objectives 
After reading this chapter, you should understand: 

• the challenges of synchronizing concurrent processes and threads. 

• critical sections and the need for mutual exclusion. 

• how to implement mutual exclusion primitives in software. 

• hardware mutual exclusion primitives. 

• semaphore usage and implementation. 
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5.1 Introduction 
In the previous two chapters, we introduced the concept of units of execution— 
processes and threads. Once again, we will focus our discussion on threads in this 
chapter, but most of what we say can apply to processes as well. If more than one 
thread exists in a system at the same time, then the threads are said to be concur
rent.1, 2, 3 Two concurrent threads can execute completely independently of one 
another, or they can execute in cooperation. Threads that operate independently of 
one another but must occasionally communicate and synchronize to perform coop
erative tasks are said to execute asynchronously.4, 5 Asynchronism is a complex 
topic—this chapter and Chapter 6, Concurrent Programming, discuss the organiza
tion and management of systems that support asynchronous concurrent threads. 

We begin with a Java example that demonstrates the difficulty of writing correct 
programs even with as few as two asynchronous concurrent threads. If coded improp
erly, such programs can produce undesired and unpredictable results. In the remain
der of the chapter, we discuss various mechanisms that programmers can use to 
create correct programs with asynchronous concurrent threads. In the next chapter, 
we present two classic asynchronism problems and implement their solutions in Java. 

1. (T/F) Communication and synchronization are necessary only for asynchronously execut
ing threads. 

2. (T/F) Threads that occasionally communicate, even though they normally operate inde
pendently of one another are said to execute synchronously. 

Ans: 1) False. Communication and synchronization are necessary for asynchronously exe
cuting threads and processes. 2) False. Such threads are said to execute asynchronously. 

Self Review 

Consider a mail server that processes e-mail for an organization. Suppose we want 
the system to continuously monitor the total number of e-mails that have been sent 
since the day began. Assume that the receipt of an e-mail is handled by one of sev
eral concurrent threads. Each time one of these threads receives an e-mail from a 
user, the thread increments a processwide shared variable, mailCount, by 1. Con
sider what happens if two threads attempt to increment mailCount simultaneously. 
First, assume that each thread runs the assembly-language code 

LOAD mailCount 
ADD 1 
STORE mailCount 

Assume that the LOAD instruction copies mailCount from memory to a regis
ter, the ADD instruction adds the immediate constant 1 from memory to the value in 
the register, and the STORE instruction copies the value in the register to memory. 
Suppose mailCount is currently 21687. Now suppose the first thread executes the 
LOAD and ADD instructions, thus leaving 21688 in the register (but not yet updating 

5 . 2 M u t u a l E x c l u s i o n 
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the value in mailCount in memory, which is still 21687). Then, due to a quantum 
expiration, the first thread loses the processor and the system context switches to 
the second thread. The second thread now executes all three instructions, thus set
ting mailCount to 21688. This thread loses the processor, and the system context 
switches back to the first thread, which then continues by executing the STORE 
instruction—also placing 21688 into mailCount. Due to the uncontrolled access to 
the shared variable mailCount, the system has essentially lost track of one of the e-
mails—mailCount should be 21689. In the case of an e-mail management applica
tion, such an error may seem minor. A similar error occurring in a mission-critical 
application such as air traffic control could cost lives. 

The cause of this incorrect result is the writing of the shared variable mai l -
Count. Clearly, many concurrent threads may read data simultaneously without this 
difficulty. But when one thread reads data that another thread is writing, or when 
one thread writes data that another thread is also writing, indeterminate results can 
occur.6, 7, 8 

We can solve this problem by granting each thread exclusive access to mai l -
Count. While one thread increments the shared variable, all other threads desiring 
to do so will be made to wait. When the executing thread finishes accessing the 
shared variable, the system will allow one of the waiting processes to proceed. This 
is called serializing access to the shared variable. In this manner, threads will not be 
able to access shared data simultaneously. As each thread proceeds to update the 
shared variable, all others are excluded from doing so simultaneously. This is called 
mutual exclusion.9, 10, 11 As we will see in this and subsequent chapters, waiting 
threads must be carefully managed to ensure that they will be able to proceed 
within a "reasonable" amount of time. 

Self Review 
1. In the mailCount example above, would it be acceptable if several threads simultaneously 

read the value without updating it? 
2. (T/F) Suppose each of two threads that share a variable needs to update that shared vari

able at some point during the thread's execution. If the threads are not made to mutually 
exclude each other from updating the shared variable simultaneously, then on any execu
tion of two threads, the system will fail. 

Ans: 1) Yes, mutual exclusion is necessary only when threads update the shared variable. 2) 
False. It is possible that the threads will attempt to update the shared variable at different 
times, and the program could thus function correctly. 

5.2.1 Java Multithreading Case Study, Parf II: 
A Producer/Consumer Relationship in Java 
In a producer/consumer relationship, the producer portion of the application gener
ates data and stores it in a shared object, and the consumer portion reads data from 
the shared object. One example of a common producer/consumer relationship is print 
spooling. A word processor spools data to a buffer (typically a file) and that data is 
subsequently consumed by the printer as it prints the document. Similarly, an applica-



tion that copies data onto compact discs places data in a fixed-size buffer that is emp
tied as the CD-RW drive burns the data onto the compact disk. 

Consider a multithreaded producer/consumer relationship implemented in 
Java in which a producer thread generates data and places it into a buffer capable of 
holding a single value and a consumer thread reads data from the buffer. If the pro
ducer waiting to put the next data into the buffer determines that the consumer has 
not yet read the previous data from the buffer, the producer should call wai t so the 
consumer gets a chance to read unconsumed data before it is overwritten. When the 
consumer reads the data, it should call notify to allow the (possibly waiting) pro
ducer to store the next value. Object method notify transitions a thread from the 
waiting state to the ready state. If the consumer finds the buffer empty (because the 
producer has not yet produced its first data) or finds that the previous data has 
already been read, the consumer should call wait to place itself in the waiting state; 
otherwise, the consumer might read "garbage" from an empty buffer or might erro
neously process the same data again. When the producer places the next data into 
the buffer, the producer should call notify to allow the (possibly waiting) con
sumer thread to proceed, so the consumer can read the new data. Note that notify 
has no effect when none of an application's threads are waiting. 

Let us implement this example in Java to see how logic errors can arise if we 
do not synchronize access among multiple threads manipulating shared data. The 
example that follows (Fig. 5.1-Fig. 5.5) implements a producer/consumer relation
ship in which a producer thread sequentially writes numbers (1 to 4) into a shared 
buffer—a memory location shared between two threads (a single in t variable 
called buffer in Fig. 5.4). The consumer thread reads this data from the shared 
buffer and displays the data. The program's output (three samples are shown in 
Fig. 5.5) shows the values that the producer writes (produces) into the shared buffer 
and the values that the consumer reads (consumes) from the shared buffer. 

Each value the producer writes to the shared buffer must be consumed 
exactly once (and in order) by the consumer thread. However, the threads in this 
example are not synchronized, meaning that they do not cooperate when perform
ing their tasks (which, as we have seen, is especially important when one of the 
threads is writing to the buffer). Therefore, data (possibly multiple values) can be 
lost if the producer places new data into the shared buffer before the consumer con
sumes the previous data, and data can be incorrectly duplicated (possibly many 
times) if the consumer consumes data again before the producer produces the next 
value. The consequence of not synchronizing access to shared data is somewhat like 
the consequence of not having a traffic light at a busy intersection. 

To show these possibilities, the consumer in the following example keeps a 
total of all the values it reads. The producer produces values from 1 to 4 in order. In 
the traditional producer/consumer relationship, the consumer reads each produced 
value once and only once. In addition, the consumer cannot read each value until 
after the producer has produced it. Therefore, the producer must always produce a 
value before the consumer reads that value, and the total of the values consumed in 
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our example must be 10. However, if you execute this program several times (see 
the sample outputs of Fig. 5.5), you will see that the total is rarely, if ever, 10. The 
producer and consumer threads in the example each sleep for random intervals of 
up to three seconds between performing their tasks, simulating some lengthy delay 
such as waiting for user input or for some event to occur. Thus, we do not know 
exactly when the producer will attempt to write a new value, nor do we know when 
the consumer will attempt to read a value. 

The Java program consists of interface Buffer (Fig. 5.1) and four classes — 
Producer (Fig.5.2), Consumer (Fig.5.3), UnsynchronizedBuffer (Fig.5.4) and 
SharedBufferTest (Fig. 5.5). Interface Buffer declares methods s e t and get that 
a Buffer must implement to enable a Producer thread to place a value in the 
Buffer and enable a Consumer thread to retrieve a value from the Buffer, respec
tively. This interface is implemented in Fig. 5.4 (line 4). 

Class Producer (Fig.5.2) —a subclass of Thread (line 5) —contains field 
sharedLocation (line 7), a constructor (lines 9-14) and a run method (lines 18-
40). The constructor initializes Buffer reference sharedLocation (line 13) with a 
reference to an object that implements the Buffer interface. That object is created 
in man n (Fig. 5.5; lines 6-18) and passed to the constructor as the parameter shared 
(Fig. 5.2; line 10); the constructor initializes the Buffer reference sharedLocation 
(line 13) to be a reference to the parameter shared. The producer thread in this 
program executes the tasks specified in method run (lines 18-40). The for state
ment in lines 20-35 loops four times. Each iteration of the loop invokes Thread 
method s leep (line 25) to place the producer thread into the sleeping state for a 
random time interval between 0 and 3 seconds (to simulate a lengthy operation). 

[Note: Normally, a thread awakens when its sleep time expires. A sleeping 
thread can be awakened early if another thread calls the sleeping thread's i n te r rupt 
method. If this occurs, s leep "throws" an exception (of type Interrupt-edExcep-
t ion) to indicate that the thread was interrupted before its sleep time expired. In 
Java, this exception must be "handled," which requires the s leep method call to 
appear in a t r y block that is followed by a catch handler.The t r y block contains the 
code that might throw an exception. The catch handler specifies the type of excep
tion it handles. In this example, the catch handler prints a stack trace, then the pro
gram continues with the next statement after the t ry . . .ca tch sequence.] 

1 //Fig. 5.1: Buffer.Java 
2 // Buffer interface specifies methods to access buffer data. 
3 
4 public interface Buffer 

5 { | 

6 public void set( int value ); // place value into Buffer 

7 public int get(); // return value from Buffer 

8 } 

Figure 5.1 | Buffer interface used in producer/consumer examples. 
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When the thread awakens, line 26 passes the value of control variable count 
to the Buffer object's set method to change the shared buffer's value. When the 
loop completes, lines 37-38 display a message in the console window indicating that 
the thread finished producing data and that the thread is terminating. Next, method 
run terminates (line 40) and the producer thread enters the dead state. It is impor
tant to note that any method called from a thread's run method (such as Buffer 
method set in line 26) executes as part of that thread of execution. In fact, each 
thread has its own method-call stack. 

1 // Fig. 5,2: Producer.Java 
2 // Producer's run method controls a producer thread that 
3 // stores values from 1 to 4 in Buffer sharedLocation. 

4 
5 publ ic c lass Producer extends Thread 
6 { 
7 private Buffer sharedLocation; // reference to shared object 

8 
9 // Producer constructor 
10 public Producer( Buffer shared ) 
11 { 
12 super( "producer" ); // create thread named "Producer" 

13 sharedLocation = shared; // initialize sharedLocation 

14 } // end Producer constructor 

15 
16 // Producer method run stores values from 

17 // 1 to 4 in Buffer sharedLocation 

18 public void run() 

19 { 
20 for C int count = 1; count <= 4; count++ ) 

22 // sleep 0 to 3 seconds, then place value in Buffer 

23 try 

24 { 
25 Thread.sleep( ( int ) ( Math.random() * 3001 ) ); 
26 sharedLocation.set( count ); // write to the buffer 

27 } // end try 

28 
29 //if sleeping thread interrupted, print stack trace 
30 catch ( InterruptedException exception ) 

31 { 

32 exception.printStackTrace(); 

33 } // end catch 

34 
35 } // end for 

Figurv 5.2 | Producer class represents the producer thread in a producer/con-

sumer relationship. (Part 1 of 2.) 
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36 

37 System.err.println( getNameO + " done producing." + 
38 "\nTerminating " + getNameO + "." ); 
39 
40 } // end method run 
41 
42 } // end class Producer 

Figure 5.2 | Producer class represents the producer thread in a producer/con-
sumer relationship. (Part 2 of 2.) 

Class Consumer (Fig.5.3) contains instance variable sharedLocation (line 
7), a constructor (lines 9-14) and a run method (lines 16-41). The constructor ini
tializes Buffer reference sharedLocation (line 13) with a reference to an object 
that implements the Buffer interface. That object is created in main (Fig.5.5) and 
passed to the constructor as the parameter shared (Fig. 5.3; line 10). As we will see 
(Fig. 5.5; lines 12-13), this is the same UnsynchronizedBuffer object that is used 
to initialize the Producer object; thus, the producer and consumer threads share 
the object. The consumer thread in this program performs the tasks specified in 
method run (Fig. 5.3; lines 16-41). The loop in lines 22-36 loops four times. Each 
iteration of the loop invokes Thread method s leep (line 27) to put the consumer 
thread into the sleeping state for a random time interval between 0 and 3 seconds. 
Next, line 28 uses the Buffer's get method to retrieve the value in the shared 
buffer, then adds the value to variable sum. When the loop completes, lines 38-39 
display a line in the console window indicating the sum of the consumed values and 
the fact that the consumer thread is terminating. Then, method run terminates (line 
41), and the consumer thread enters the dead state. 

1 //Fig. 5.3: Consumer.Java 

2 // Consumer's run method controls a thread that loops four 
3 // times and reads a value from sharedLocation each time. 
4 
5 public class Consumer extends Thread 

6 { 
7 private Buffer sharedLocation; // reference to shared object 
8 
9 // Consumer constructor 
10 public Consumer( Buffer shared ) 

11 { 
12 super( "Consumer" ); // create thread named "Consumer" 
13 sharedLocation = shared; // initialize sharedLocation 
14 } // end Consumer constructor 

Figure 5.3 | Consumer class represents the consumer thread in a producer/con-
sumer relationship. (Part 1 of 2.) 
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15 

16 // read sharedLocation's value four times and sum the values 
17 public void run() 
18 { 
19 in t sum = 0; 
20 
21 // alternate between sleeping and getting Buffer value 
22 for (int count = 1; count <= 4; ++count ) 
23 { 
24 // sleep 0-3 seconds, read Buffer value and add to sum 
25 try 
26 { 
27 Thread.sleep( ( int ) ( Math.random() * 3001 ) ); 
28 sum += sharedLocation.get(); 
29 } 
30 

31 / / i f sleeping thread i n t e r r up ted , p r i n t stack t race 
32 catch ( InterruptedException exception ) 
33 { 
34 exception.printStackTrace(); 
35 } 
36 } // end for 
37 
38 System.err.println( getName() + " read values totaling: " 
39 + sum + "AnTerminating " + getName() + "." ); 
40 
41 } // end method run 
42 
43 } // end class Consumer 

Figure 5.3 | Consumer class represents the consumer thread in a producer/con-
sumer relationship. (Part 2 of 2.) 

[Note: We use a randomly generated interval with method sleep in method 
run of both the Producer and Consumer classes to emphasize the fact that, in mul
tithreaded applications, it is unclear when and for how long each thread will per
form its task. Normally, these thread-scheduling issues are the job of the operating 
system. In this program, our thread's tasks are quite simple—for the producer, loop 
four times, each time setting a value in the shared buffer; for the consumer, loop 
four times, each time retrieving a value from the shared buffer and adding the value 
to variable sum. Without the sleep method call, and if the producer were to execute 
first, it most likely would complete its task before the consumer got a chance to exe
cute; if the consumer were to execute first, most likely it would consume the "null" 
value ( -1 , specified in UnsynchronizedBuffer, line 6 of Fig. 5.4) four times, then 
terminate (displaying the invalid sum, -4) before the producer produced even its 
first value.] 
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Class UnsynchronizedBuffer (Fig. 5.4) implements interface Buffer (line 4) 
defined in Fig. 5.1 and declares the variable buffer (line 6), shared between the 
Producer and Consumer. Variable buffer is initialized with the value - 1 . This 
value is used to demonstrate the case in which the Consumer attempts to consume a 
value before the Producer places a value in buffer. Methods s e t (lines 8-15) and 
get (lines 17-24) do not synchronize access to field buffer (we will see how to do 
this shortly). Method s e t simply assigns its parameter to buffer (line 14) and 
method get simply returns the value of buffer (line 23). Note that each method 
uses class Thread's static method currentThread to obtain a reference to the cur
rently executing thread, then uses that thread's method getName to obtain the 
thread's name for output purposes (lines 11 and 20). 

Class SharedBufferTest (Fig. 5.5) contains method man n (lines 6-18), which 
launches the application. Line 9 instantiates a shared UnsynchronizedBuffer 
object and assigns it to Buffer reference sharedLocation. This object stores the 
data that will be shared between the producer and consumer threads. Lines 12-13 
create the Producer object producer and the Consumer object consumer. Each of 

1 / / F ig . 5.4: UnsynchronizedBuffer.Java 
2 // UnsynchronizedBuffer represents a s ing le shared in teger . 
3 
4 publ ic class UnsynchronizedBuffer implements Buffer 
5 { 
6 p r i va te i n t buffer = - 1 ; // shared by Producer and Consumer 
7 
8 / / place value i n t o buf fer 
9 publ ic void set( i n t value ) 

10 { 
11 System.err.println( Thread.currentThread().getName() + 
12 " writes " + value ); 
13 
14 buffer = value; 
15 } // end method set 
16 
17 // return value from buffer 
18 public int get() 

19 { 
20 System.err.println( Thread.currentThread().getName() + 
21 " reads " + buffer ); 
22 
23 return buf fer ; 
24 } // end method get 
25 
26 } // end class UnsynchronizedBuffer 

Figure 5.4 | UnsynchronizedBuffer class maintains the shared integer that is 
accessed by a producer thread and a consumer thread via methods set and get 
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the constructor calls in these lines passes sharedLocation as the argument to the 
constructor (lines 9-14 of Fig. 5.2 for Producer and lines 9-14 of Fig. 5.3 for Con
sumer), so that each thread accesses the same Buffer. Next, lines 15-16 of Fig. 5.5 
invoke method s t a r t on the producer and consumer threads, respectively, to 

place them in the ready state. This launches the execution of these threads by mak-
ing an implicit call to each thread's run method. A thread's run method will be 
called when the thread is dispatched to a processor for the first time. After the pro
ducer and consumer threads are started, method main (i.e., the main thread of exe
cution) terminates and the main thread enters the dead state. Once both the 
producer and consumer threads enter the dead state (which occurs when their run 
methods terminate), the program terminates. 

Recall from the overview of this example that the Producer thread must pro
duce a value before the Consumer thread consumes a value, and every value pro
duced by the producer must be consumed exactly once by the consumer. However, 
when we study the first output of Fig. 5.5, we see that the consumer retrieved the 
value -1 before the producer ever placed a value in the buffer. The first value pro
duced (1) was consumed three times. Furthermore, the consumer finished executing 
before the producer had an opportunity to produce the values 2, 3 and 4, so those 
three values were lost. An incorrect total of 2 was produced. 

In the second output, we see that the value 1 was lost, because the values 1 
and 2 were produced before the consumer thread could read the value 1 (so the 

1 // Fig. 5.5: SharedBufferTest.Java 
2 // SharedBufferTest creates producer and consumer threads, 
3 
4 public class SharedBufferTest 

5 { 
6 public stat ic void main( String [ ] args ) 
7 { 
8 // create shared object used by threads 
9 Buffer sharedLocation = new UnsynchronizedBuffer(); 
10 
11 // create producer and consumer objects 
12 Producer producer = new Producer( sharedLocation ); 
13 Consumer consumer = new Consumer( sharedLocation ); 
14 
15 producer.start(); // start producer thread 
16 consumer.start(); // start consumer thread 
17 
18 } // end main 
19 
20 } // end class SharedCell 

Figure 5.5 | Shared Buffer class enables threads to modify a shared object With
out synchronization. (Part 1 of 2.) 
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Sample Output 1. 
Consumer reads -1 

Producer writes 1 

Consumer reads 1 

Consumer reads 1 

Consumer reads 1 

Consumer read values totaling: 2. 

Terminating Consumer. 

Producer writes 2 

Producer writes 3 

Producer writes 4 

Producer done producing. 

Terminating Producer. 

Sample Output 2: 
Producer writes 1 

Producer writes 2 

Consumer reads 2 

Producer writes 3 

Consumer reads 3 

Producer writes 4 

Producer done producing. 

Terminating Producer. 

Consumer reads 4 

Consumer reads 4 

Consumer read values totaling: 13. 

Terminating Consumer. 

Sample Output 3: 
Producer wr i tes 1 
Consumer reads 1 

Producer wr i tes 2 
Consumer reads 2 
Producer wr i tes 3 
Consumer reads 3 
Producer wr i tes 4 
Producer done producing. 
Terminating Producer. 
Consumer reads 4 
Consumer read values t o t a l i n g : 10. 
Terminating Consumer. 

Ffffure 5.5 I Shared Buffer class enables threads to modify a shared object with-
out synchronization. (Part 2 of 2.) 

196 
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value 2 overwrote the value 1 in the buffer). Also, the value 4 was consumed twice. 
Once again, an incorrect total was produced. The last sample output demonstrates 
that it is possible, with some luck, to get a proper output; clearly, this behavior can
not be guaranteed. 

This example demonstrates that access to a shared object by concurrent 
threads must be controlled carefully; otherwise, a program may produce incorrect 
results. We provide a solution to this problem in the next chapter. The remainder of 
this chapter discusses how threads control concurrent access to shared data by 
enforcing mutually exclusive access to that data. 

5.2.2 Critical Sections 
Mutual exclusion needs to be enforced only when threads access shared modifiable 
data. When threads are performing operations that do not conflict with one another 
(e.g., reading variables), the system should allow the threads to proceed concur
rently. When a thread is accessing shared modifiable data, it is said to be in a critical 
section (or critical region).12 To prevent the kinds of errors we encountered earlier, 
the system should ensure that only one thread at a time can execute the instructions 
in its critical section for a particular resource. If one thread attempts to enter its 
critical section while another is in its own critical section, the first thread should 
wait until the executing thread exits the critical section. Once a thread has exited its 
critical section, a waiting thread (or one of the waiting threads, if there are several), 
may enter and execute its critical section. Any thread that does not need to enter its 
critical section may execute regardless of whether a critical section is occupied. 

A system that enforces mutual exclusion must carefully control access to, and 
execution in, critical sections. A thread in a critical section has exclusive access to 
shared, modifiable data, and all other threads currently requiring access to that data 
are kept waiting. Therefore, a thread should execute a critical section as quickly as 
possible. A thread must not block inside its critical section, and critical sections 
must be carefully coded to avoid—for example—the possibility of infinite loops. If a 
thread in a critical section terminates, either voluntarily or involuntarily, then the 

1. (T/F) In the producer/consumer example shown in Fig. 5.1-Fig. 5.5, the output would be 
correct and consistent if the calls to s leep were removed. 

2. What are the smallest and largest possible values of sum at the end of the execution of the 
example shown in Fig. 5.1-Fig. 5.5, and how would those values be achieved? 

Ans: 1) False. The s leep calls were put there simply to emphasize the fact that there is 
uncertainty within a system regarding the order and timing in which instructions are exe
cuted. Still, we cannot predict the speeds at which these threads will advance, so the outputs 
could still be incorrect. 2) The smallest value would occur if the consumer tried consuming 
four values before the producer produced any. In this case, sum would be -4. The largest 
value would occur if the producer produced four values before the consumer consumed any. 
In this case, the consumer would consume the value four times, and sum would be 16. 

Self Review 
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operating system, in performing its termination housekeeping, must release mutual 
exclusion so that other threads may enter their critical sections. 

Enforcing mutually exclusive access to critical sections is one of the key prob
lems in concurrent programming. Many solutions have been devised: some soft
ware solutions and some hardware solutions; some rather low-level and some high-
level; some requiring voluntary cooperation among threads and some demanding 
rigid adherence to strict protocols. We will examine a variety of these solutions in 
the upcoming sections. 

1. Why is it important for a thread to execute a critical section as quickly as possible? 
2. What might happen if the operating system did not perform termination housekeeping? 

Ans: 1) If other threads are waiting to execute their critical sections, they will be delayed 
from doing so while any thread is in its critical section. If critical sections do not execute 
quickly, overall system performance could suffer. 2) A thread could terminate while in its 
critical section, and never release mutual exclusion. The threads waiting to enter their critical 
sections would never be able to enter. As we will see in Chapter 7, Deadlock and Indefinite 
Postponement, these threads will deadlock. 

Self Review 

5.2.3 Mutual Exclusion Primitives 
The following pseudocode properly describes the e-mail counting mechanism of 
Section 5.2, Mutual Exclusion. Notice that we use the words enterMutualExclu-
s i o n ( ) and exitMutualExclusion() .These words are constructs that encapsulate 
the thread's critical section—when a thread wants to enter its critical section, the 
thread must first execute enterMutualExclusion() ; when a thread exits the criti
cal section, it executes exi tMutualExclus ion() . Because these constructs invoke 
the most fundamental operations inherent to mutual exclusion, they are sometimes 
called mutual exclusion primitives. 

while ( t rue) { 
Receive e-mail // executing outside critical section 
enterMutual Exclusion() // want to enter critical section 

Increment mailCount // executing inside critical section 
exitMutualExclusion() // leaving critical section 

} 

Let us consider how these primitives can provide mutual exclusion. For sim
plicity in the example presented in this and the next several sections, we shall 
assume only two concurrent threads and one processor. Handling n concurrent pro
cesses or threads is a considerably more complex topic, which we discuss in 
Section 5.4.3, N-Thread Mutual Exclusion: Lamport's Bakery Algorithm. We will 
also discuss how mutual exclusion is enforced on multiprocessor systems. 

Assume that threads T1 and T2 of the same process are both executing in the 
system. Each thread manages e-mail messages, and each thread contains instructions 
that correspond to the preceding pseudocode. When T1 reaches the enterMutual Ex-
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clusion() line, the system must determine whether T2 is already in its critical sec
tion. If T2 is not in its critical section, then T1 enters its critical section, increments 
shared variable mail Count and executes exitMutualExclusion() to indicate that 
T1 has left its critical section. If, on the other hand, when T1 executes enterMutual -
Exclusion(), T2 is in its critical section, then T1 must wait until T2 executes exitMu
tual Exclusion() , at which point T1 enters its critical section. If T1 and T2 

simultaneously execute enterMutualExclusion(), then only one of the threads will 
be allowed to proceed, and one will be kept waiting. For the moment, we shall assume 
that the system randomly selects the thread that will proceed. [As we will see, such a 
policy could lead to indefinite postponement of one of the threads if the other is 
always selected when the threads repeatedly try to enter their critical sections.] In the 
next several sections, we discuss various mechanisms for implementing the enterMu
tualExclusion() and exitMutualExclusion() mutual exclusion primitives. 

Self Review 

1. What will happen if a thread does not call enterMutualExclusionO before accessing 
shared variables in a critical section? 

2. What will happen if a thread that is in its critical section does not call exi tMutual Excl u-
sionO? 

Ans: 1) If other threads also enter their critical section, there could be indeterminate 
results that could have serious consequences. 2) All other threads that are waiting to enter 
their critical sections would never be allowed to do so. As we will see in Chapter 7, Deadlock 
and Indefinite Postponement, all of these other threads would eventually deadlock. 

5.3 Implementing Mutual Exclusion Primitives 
Each initial mutual exclusion solutions that we discuss provides an implementation 
of enterMutualExclusion() and exi tMutualExclusion() that exhibits the fol
lowing properties: 

1. The solution is implemented purely in software on a machine without spe
cially designed mutual exclusion machine-language instructions. Each 
machine-language instruction is executed indivisibly—i.e., once started, it 
completes without interruption. If a system contains multiple processors, 
several threads could try to access the same data item simultaneously. As 
we will see, many mutual exclusion solutions for uniprocessor systems rely 
on access to shared data, meaning that they might not work on multipro
cessor systems (see Section 15.9, Multiprocessor Mutual Exclusion). For 
simplicity, we will assume that the system contains one processor. Again, 
we will deal with multiprocessor systems later. 

2. No assumption can be made about the relative speeds of asynchronous 
concurrent threads. This means that any solution must assume that a thread 
can be preempted or resumed at any time during its execution and that the 
rate of execution of each thread may not be constant or predictable. 
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3. A thread that is executing instructions outside its critical section cannot 
prevent any other threads from entering their critical sections. 

4. A thread must not be indefinitely postponed from entering its critical 
section. [Note: Once inside an improperly coded critical section, a thread 
could certainly "misbehave" in ways that could lead to indefinite postpone
ment or even deadlock. We discuss these issues in depth in Chapter 7, 
Deadlock and Indefinite Postponement.] 

1. Why do you suppose that we cannot predict the relative speeds of asynchronous concur
rent threads? 

2. How can an improperly coded thread cause indefinite postponement or deadlock? 

Ans: 1) One reason is that hardware interrupts, which may be randomly distributed, can 
disrupt thread execution at any time. Over any given period, these interrupts may allow some 
threads to execute longer than others. In addition, biases in resource-scheduling algorithms 
may favor certain threads. 2) A thread that never left its critical section (e.g., by entering an 
infinite loop) would eventually indefinitely postpone or deadlock all other threads as they 
tried to enter their critical sections. 

Self Review 

An elegant software implementation of mutual exclusion was first presented by the 
Dutch mathematician Dekker. In the next section we follow Dijkstra's develop
ment of Dekker's Algorithm, an implementation of mutual exclusion for two 
threads.13 The arguments presented introduce many of the subtleties in concurrent 
programming that make this such an interesting field of study. Then, we discuss sim
pler and more efficient algorithms developed by G. L. Peterson14 and L. Lamport.15 

5.4 Software Solutions to the Mutual Exclusion Problem 

In this section we examine several attempts to implement mutual exclusion. Each 
implementation contains a problem that the subsequent one overcomes. The sec
tion culminates in the presentation of a correct software implementation to mutual 
exclusion that is free of deadlock and indefinite postponement. 

5.4.1 Dekker's Algorithm 

First Version (Introducing lockstep Synchronization and Busy Waiting) 
Figure 5.6 shows a first effort at specifying the code for enforcing mutual exclusion 
between two threads. The pseudocode is presented using a C-like syntax. Each 
thread's instructions can be broken into three parts: noncritical instructions (i.e., 
instructions that do not modify shared data), critical instructions (i.e., instructions 
that do modify shared data) and the instructions that ensure mutual exclusion (i.e., 
instructions that implement enterMutualExclusion() and exitMutualExclu
s ion( ) ) . Each thread repeatedly enters and exits its critical section until it is done. 

Under this version of mutual exclusion, the system uses a variable called 
threadNumber, to which both threads have access. Before the system starts execut-
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1 System: 
2 
3 int threadNumber = 1; 
4 
5 startThreads(); // initialize and launch both threads 
6 
7 Thread T1: 
8 
9 void main() { 
10 
11 while ( !done ) 
12 { 
13 while ( threadNumber == 2 ); // enterMutualExclusion 
14 
15 // critical section code 
16 
17 threadNumber = 2; // exitMutualExclusion 
18 
19 // code outside critical section 
20 
21 } // end outer while 
22 
23 } // end Thread Tl 
24 
25 Thread T2: 
26 \ 
27 void main() { 
28 
29 while ( !done ) 
30 { 
31 while ( threadNumber == 1 ); // enterMutualExclusion 
32 
33 // critical section code 
34 
35 threadNumber = 1; // exitMutualExclusion 
36 
37 // code outside critical section 
38 
39 } // end outer while 
40 
41 } // end Thread T2 

ing the threads, threadNumber is set to 1 (line 3). Then the system starts both 
threads.The enterMutualExclusion() primitive is implemented as a single while 
loop that loops indefinitely until variable threadNumber becomes equal to the 
number of the thread (see lines 13 and 31 in threads T1 and T2, respectively). The 

Figure 5.6 | Mutual exclusion implementation- version 1. 
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exi tMutualExclusion() primitive is implemented as a single instruction that sets 
threadNumber to the number of the other thread (see lines 17 and 35 in threads T1 

and T2, respectively). 

Consider one way in which execution might proceed under this implementa
tion. Assume T1 begins executing first. The thread executes the while loop (line 13) 
that acts as enterMutuaIExcIusion() . Because threadNumber is initially 1, T1 

enters its critical section (the code indicated by the comment in line 15). Now 
assume that the system suspends T1 and begins executing T2. The second thread 
finds threadNumber equal to 1 and remains "locked" in the while loop (line 31). 
This guarantees mutual exclusion, because T2 cannot enter its critical section until 
T1 exits its critical section and sets threadNumber to 2 (line 17). 

Eventually, T1 finishes executing in its critical section (recall that we are assum
ing that the critical sections contain no infinite loops and that threads do not die or 
block inside critical sections). At this point, T1 sets threadNumber to 2 (line 17) and 
continues to its "noncritical" instructions. Now T2 is free to enter its critical section. 

Although this implementation guarantees mutual exclusion, the solution has 
significant drawbacks. In the enterMutualExclusion() primitive, the thread uses 
the processor to perform essentially no work (i.e., the thread repeatedly tests the 
value of threadNumber. Such a thread is said to be busy waiting. Busy waiting can 
be an ineffective technique for implementing mutual exclusion on uniprocessor sys
tems. Recall that one goal of multiprogramming is to increase processor utilization. 
If our mutual exclusion primitive uses processor cycles to perform work that is not 
essential to the thread, then processor time is wasted. This overhead, however, is 
limited to short periods of time (i.e., when there is contention between the threads 
to enter their critical sections). 

A more damaging drawback of this implementation is that it violates one of 
the key constraints we identified in Section 5.3, Implementing Mutual Exclusion 
Primitives, namely that a thread that is not in its critical section should not affect a 
thread that desires to enter its own critical section. For example, T1 must enter the 
critical section first, because the system initially sets threadNumber to 1. If T2 tries 
to go first, it begins execution and unsuccessfully attempts to enter its critical sec
tion. Eventually, T1 executes, entering its critical section and setting threadNumber 
to 2. Thus, T2 may be delayed considerably before it may enter its critical section. In 
fact, the threads must enter and leave their critical sections in strict alternation. If 
one thread needs to enter its critical section more frequently than the other, the 
faster thread will be constrained to operate at the speed of the slower thread. This is 
called the lockstep synchronization problem.* The next mutual exclusion imple
mentation eliminates this problem but introduces another. 

Of course, the problem in Section 5.2.1 required lockstep synchronization because the 
buffer was of unit size. However, almost all buffers contain several entries, meaning that 
lockstep synchronization causes inefficient behavior if the producer and consumer 
operate at different speeds. 
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Second Version (Violating Mutual Exclusion) 
Figure 5.7 contains a solution that attempts to eliminate the lockstep synchroniza

tion of the previous implementation. In the first solution, the system maintained 
only a single global variable—this forced the lockstep synchronization. Version 2 
maintains two variables —t1Inside that is true if T1 is inside its critical section, and 
t2Ins ide that is true if T2 is inside its critical section. 

1 System: 
2 
3 boolean t l lns ide = false; 
4 boolean t2Inside = fa lse; 
5 
6 startThreads() ; / / i n i t i a l i z e and launch both threads 
7 
8 Thread T1: 
9 

10 void main() { 
11 
12 while ( !done ) 

13 { 
14 while ( t2Inside ); // enterMutualExclusion 
15 
16 t1Inside = true; // enterMutualExclusion 
17 
18 // critical section code 
19 
20 tllnside = false; // exitMutualExclusion 
21 
22 // code outside critical section 
23 
24 } // end outer while 
25 
26 } // end Thread Tl 
27 

28 Thread T2: 
29 
30 void main() { 
31 
32 while ( !done ) 
33 { 
34 while ( tllnside ); // enterMutualExclusion 
35 
36 t2Inside = true; // enterMutualExclusion 
37 
38 // c r i t i c a l sect ion code 

Figure 5.7 | Mutual exclusion implementation- version 2. (Part 1 of 2.) 
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39 
40 t2Inside = false; // exitMutualExclusion 
41 
42 // code outside critical section 
43 
44 } // end outer whi le 
45 
46 } // end Thread T2 

Figure5.7 | Mutual exclusion implementation- version 2. (Part 2 of 2) 

By using two variables to govern access to the critical sections (one for each 
thread), we are able to eliminate lockstep synchronization in our second mutual 
exclusion implementation. T1 will be able to continuously enter its critical section as 
many times as necessary while t 2 Ins ide is false. Also, if T1 enters the critical section 
and sets t 1 Ins ide to true, then T2 will busy wait. Eventually,T1 will finish its critical 
section and perform its mutual exclusion exit code, setting t l l n s i de to false. 

Although this solution eliminates the lockstep synchronization issue, it unfor
tunately does not guarantee mutual exclusion. Consider the following situation. 
Variables t l l n s i d e and t 2 I n s i d e are both false, and both threads attempt to 
enter their critical sections at the same time. T1 tests the value of t 2 I n s i d e (line 
14), determines that the value is false and proceeds to the next statement. Now sup
pose that the system preempts T1 before it can execute line 16 (which it needs to do 
to keep T2 out of its own critical section). T2 now executes, determines that 
t 1 I n s i d e is false and so T2 enters its critical section. While T2 is in its critical sec
tion, T2 is preempted and T1 resumes execution in line 16, setting t 1 I n s i d e to true 
and entering its critical section. Both threads are concurrently executing their criti
cal sections, violating mutual exclusion. 

Third Version (Introducing Deadlock) 
Version 2 failed because between the time a thread determines in its whi 1 e test that 
it can go ahead (lines 14 and 34) and the time the thread sets a flag to say that it is in 
its critical section (lines 16 and 36), there is the possibility that the other thread 
could gain control, pass its while test and enter its critical section. To correct this 
problem, once a thread attempts the while test, it must be assured that the other 
process cannot proceed past its own while test. Version 3 (Fig.5.8) attempts to 
resolve this problem by having each thread set its own flag prior to entering the 
while loop. Thus, T1 indicates its desire to enter its critical section by setting 
t1WantsToEnter to true. If t2WantsToEnter is false, then T1 enters its critical sec
tion and prevents T2 from entering its own critical section. Thus mutual exclusion is 
guaranteed, and it seems that we have a correct solution. We ensure that, once a 
thread signals its intent to enter the critical section, another thread cannot enter the 
critical section. 
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1 System: 
2 
3 boolean tlWantsToEnter = false; 
4 boolean t2WantsToEnter = false; 
5 
6 startThreads(); // initialize and launch both threads 
7 
8 Thread T1: 
9 
10 void main() 

11 { 
12 while ( !done ) 
13 { 
14 tlWantsToEnter = true; // enterMutuaiExclusion 
15 
16 while ( t2WantsToEnter ); // enterMutualExclusion 
17 
18 // critical section code 
19 
20 tlWantsToEnter = false; // exitMutualExclusion 
21 
22 // code outside critical section 
23 
24 } // end outer while 
25 
26 } // end Thread Tl 
27 
28 Thread T2: 
29 
30 vo id main() 
31 { 
32 whi le ( !done ) 
33 { 

34 t2WantsToEnter = true; // enterMutualExclusion 
35 
36 while ( tlWantsToEnter ); // enterMutualExclusion 
37 
38 // critical section code 
39 
40 t2WantsToEnter = false; // exitMutualExclusion 
41 
42 // code outside critical section 
43 
44 } // end outer while 
45 
46 } // end Thread T2 

Figure 5.8 | Mutual exclusion implmentation- version 3. 
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One problem has been solved, but another has been introduced. If each 
thread sets its flag before proceeding to the while test, then each thread will find 
the other's flag set and will loop forever in the while. This is an example of a two-
process deadlock, which is discussed in depth in Chapter 7, Deadlock and Indefinite 
Postponement. 

Version Fourth (Introducing Indefinite Postponement) 
To create an effective mutual exclusion implementation, we need a way to "break 
out" of the infinite loops we encountered in the previous version. Version 4 
(Fig. 5.9) accomplishes this by forcing each looping thread to repeatedly set its flag 
to false for brief periods. This allows the other thread to proceed through its while 
loop with its own flag set to true. 

1 System: 
2 
3 boolean tlWantsToEnter = false; 
4 boolean t2WantsToEnter = false; 
5 
6 startThreads(); // initialize and launch both threads 
7 
8 Thread T1: 
9 
10 void main() 

11 { 
12 while ( !done ) 
13 { 
14 t1WantsToEnter = true; // enterMutualExclusion 
15 
16 while ( t2WantsToEnter ) // enterMutualExclusion 
17 { 
18 t1WantsToEnter = false; // enterMutualExclusion 
19 
20 // wait for small, random amount of time 
21 
22 tlWantsToEnter = true; 
23 } // end while 
24 
25 // critical section code 
26 
27 tlWantsToEnter = false; // exitMutualExclusion 
28 
29 // code outside critical section 
30 
31 } // end outer while 
32 

Figure 5.9 | Mutual exclusion implementation- version 4. (Part 1 of 2.) 



33 } // end Thread Tl 
34 

35 Thread T2: 
36 
37 void main() 
38 { 
39 while ( !done ) 
40 { 
41 t2WantsToEnter = true; // enterMutualExclusion 
42 
43 while ( tlWantsToEnter ) // enterMutualExclusion 
44 { 
45 t2WantsToEnter = false; // enterMutualExclusion 
46 

47 // wait for small, random amount of time 
48 
49 t2WantsToEnter = true; 
50 } // end while 
51 
52 // critical section code 
53 
54 t2WantsToEnter = false; // exitMutualExclusion 
55 
56 // code outside critical section 
57 
58 } // end outer while 
59 
60 } // end Thread T2 

Figure 5.9 | Mutual exclusion implementation- version 4. (Part 2 of 2.) 

The fourth version guarantees mutual exclusion and prevents deadlock, but 
allows for another potentially devastating problem to develop, namely, indefinite 
postponement. Because we cannot make any assumptions about the relative speeds 
of asynchronous concurrent threads, we must consider all possible execution 
sequences. The threads could, for example, proceed in tandem. Each thread can set 
its flag to true (line 14), then make the while test (line 16), then enter the body of 
the while loop, then set its flag to false (line 18), then wait for a random amount of 
time (line 20), then set its flag to true (line 22), then repeat the sequence beginning 
with the while test. As the threads do this, the tested conditions (lines 18 and 45) 
will remain true. Of course, such an execution sequence would occur with low prob
ability—but nevertheless it could occur. If a system using this type of mutual exclu
sion were controlling a space flight, a heart pacemaker, or an air traffic control 
system, the possibility of indefinite postponement and subsequent system failure 
could put people's lives at risk. Therefore, version four, also, is an unacceptable 
solution to the mutual exclusion problem. 

5.4 Software Solutions to the Mutual Exclusion Problem 207 
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Dekker's Algorithm (A Proper Solution) 
Figure 5.10 illustrates Dekker's Algorithm—a correct, two-thread mutual exclusion 
solution implemented purely in software with no special-purpose hardware instruc
tions. Dekker's Algorithm still uses a flag to indicate a thread's desire to enter its 
critical section, but it also incorporates the concept of a "favored thread" that will 
enter the critical selection in the case of a tie (i.e., when each thread simultaneously 
wishes to enter its critical section). 

1 System: 
2 
3 int favoredThread = 1; 
4 boolean t1WantsToEnter = false; 
5 boolean t2WantsToEnter = false; 
6 
7 startThreads(); // initialize and launch both threads 
8 
9 Thread T1: 
10 
11 void main() 
12 { 
13 while ( !done ) 
14 { 
15 t1WantsToEnter = true; 
16 
17 while ( t2WantsToEnter ) 

18 { 
19 if ( favoredThread == 2 ) 
20 { 
21 t1WantsToEnter = false; 
22 while ( favoredThread == 2 ); // busy wait 
23 t1WantsToEnter = true; 
24 } // end if 
25 
26 } // end while 
27 
28 // critical section code 
29 
30 favoredThread = 2; 
31 t1WantsToEnter = false; 
32 

33 // code outside critical section 
34 
35 } // end outer while 
36 
37 } // end Thread T1 

Figure 5.10 | Dekker's Algorithm for mutual exclusion. (Part 1 of 2.) 
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38 
39 Thread T2: 
40 
41 void main() 
42 { 
43 whi le ( !done ) 
44 { 
45 t2WantsToEnter = true; 
46 
47 while ( t1WantsToEnter ) 
48 { 
49 if ( favoredThread == 1 ) 
50 { 
51 t2WantsToEnter = false; 
52 while ( favoredThread == 1 ); // busy wait 
53 t2WantsToEnter = true; 

54 } // end if 
55 
56 } // end while 
57 
58 // critical section code 
59 
60 favoredThread = 1; 
61 t2WantsToEnter = false; 
62 
63 // code outside critical section 
64 
65 } // end outer while 
66 
67 } // end Thread T2 

Figure 5.10 | Dekker's Algorithm for mutual exclusion. (Part 2 of 2.) 

Let us examine how Dekker's Algorithm eliminates the possibility of the 
indefinite postponement experienced in version 4. First note that in this algorithm, 
the enterMutualExclusion primitive is implemented by lines 15-26 and 45-56; 
the exitMutualExclusion primitive is implemented by lines 30-31 and 60-61.T1 

indicates its desire to enter its critical section by setting its flag to t r u e (line 15). 
The thread then proceeds to the while test (line 17) and determines whether T2 

also wants to enter its critical section. If T2's flag is set to f a l se , there is no conten
tion between threads attempting to enter their critical sections, so T1 skips the body 
of the while loop and enters its critical section (line 28). 

Suppose, however, that when T1 performs the whi 1 e test (line 17), it discovers 
that T2's flag is set to t rue . In this case, there is contention between threads 
attempting to enter their respective critical sections. Thread T1 enters the body of 
its while loop, where the thread examines the value of variable favoredThread, 
which is used to resolve such conflicts (line 19). If thread T1 is the favored thread, 
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then T1 skips the body of the i f and repeatedly executes the while test, waiting for 
T2 to set t2WantsToEnter to f a l se , which, as we will see, it must eventually do. If 
T1 determines that T2 is the favored thread (line 19), T1 is forced into the body of 
the if statement, where T1 sets tlWantsToEnter to f a l s e (line 21), then loops 
inside the ensuing while as long as T2 remains the favored thread (line 22). By set
ting tlWantsToEnter to f a l s e , T1 allows T2 to enter its own critical section. 

Eventually, T2 exits its critical section and executes its mutual exclusion exit 
code (lines 60-61). These statements set favoredThread back to T1 and set 
t2WantsToEnter to f a l se . T1 may now pass the inner whi 1 e test (line 22) and set 
tlWantsToEnter to t r u e (line 23).T1 then executes the outer while test (line 17). 
If t2WantsToEnter (which was recently set to f a l se ) is still f a l s e , then T1 enters 
its critical section (line 28) and is guaranteed exclusive access. If, however, T2 has 
quickly tried to reenter its own critical section, then t2WantsToEnter will be set to 
t rue , and T1 is once again forced into the body of the outer whi 1 e (line 19). 

This time, however, T1 is the favored thread. T1 therefore skips the body of 
the if and repeatedly executes the outer while test (line 17) until T2 sets 
t2WantsToEnter to f a l s e , allowing T1 to enter its critical section. 

Dekker's Algorithm guarantees mutual exclusion while preventing deadlock 
and indefinite postponement. However, the proof of this statement is not immedi
ately apparent, due to the complex nature of mutual exclusion. For example, con
sider the following interesting possibility. As T1 exits the inner busy wait loop (line 
22), the system might preempt T1 before it sets tlWantsToEnter to t rue . This 
would allow T2 to loop around and attempt to reenter its own critical section. T2 

would then set t2WantsToEnter to t r u e and reenter its critical section. When T1 

eventually resumes execution, it sets t1WantsToEnter to t rue . Because it is T1's 
turn (and because tlWantsToEnter is now set to t rue) , if T2 tries to reenter (line 
47), it must set t2WantsToEnter to fal se and enter its inner busy wait (line 52). T1 

now will be able to enter its critical section. Thus, this circumstance, which may 
seem complicated at first, does not result in indefinite postponement. A rigorous 
proof that the algorithm never results in indefinite postponement is a more compli
cated task (see the Anecdote, Why Should You Believe That Your Software Is 
Functioning Correctly?), and one which the reader will find in the literature.16 

1. Identify the key problem in each of our first four attempts at implementing mutual exclu
sion. 

2. (T/F) If the algorithm presented in Fig. 5.9 were modified such that the threads waited for 
different amounts of time (e.g.. T1 waits from 0 to 0.2 seconds while T2 waits from 0.5 to 
0.7 seconds), this algorithm would not suffer from indefinite postponement. 

Ans: 1) Version 1: Required T1 to go first and demanded strict alternation. Version 2: Vio
lated mutual exclusion; both threads could enter their critical sections at once. Version 3: 
Enabled the two threads to deadlock so that neither would ever enter its critical section. Ver
sion 4: Allowed the (albeit remote) possibility of the two threads indefinitely postponing one 

Self Review 
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another (if they operated in tandem). 2) False. The point is that no assumptions can be made 
about the relative speeds of asynchronous concurrent threads. Even though the random time 
intervals might indeed be different, we cannot assume how fast the rest of the algorithm will 
run. 

5.4.2 Peterson's Algorithm 
The development of Dekker's Algorithm in the previous section introduces some 
subtle problems that arise due to concurrency and asynchronism in multipro-
grammed systems. For many years, this algorithm represented the state of the prac-
tice in busy-wait solutions for enforcing mutual exclusion. In 1981, G. L. Peterson 
published a simpler algorithm for enforcing two-process mutual exclusion with busy 
waiting (Fig. 5.11).17 

To illustrate the correctness of Peterson's Algorithm, let us examine the algo-
rithm as executed by thread T1. Before entering its critical section, T1 indicates that 
it wishes to do so by setting tlWantsToEnter to t r u e (line 15). To avoid indefinite 
postponement, T1 sets favoredThread to 2 (line 16), allowing T2 to enter its critical 
section. T1 then busy waits while t2WantsToEnter is t r u e and favoredThread is 2. 
If either condition becomes false, it is safe for T1 to enter its critical section (line 20). 

Anecdote 

Why Should You Believe That Your Software Is Functioning 

211 

Correctly? 
Dijkstra was always thought-pro- software determines that the nal number. But what if the soft-

voking. Here is one of his best: number is not prime, it prints out ware says a number is prime? Why 

Suppose you have software that the factors of the number, which should you believe it? 

determines whether a very large you can multiply together to see 

number is prime or not. If the if the product is indeed the origi-

Lesson to operating systems designers: This is one of the most profound points about computing that you 

may ever ponder. We put remarkable trust in computers in our personal lives and in our careers. But how can 

we be sure that complex software really does what it is supposed to do? How can we certify that software is 

indeed correct, especially when we know that we cannot possibly exhaustively test complex software ? The 

answer may lie in the research field called "proving program correctness." This field still has many important 

unsolved problems—only small, relatively trivial programs have been proven correct to date. It is a wonder

ful topic for Ph.D. candidates in computer science. 
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After executing the instructions in its critical section, T1 sets t1WantsToEnter to 
f a l s e (line 22) to indicate that it has completed its critical section. 

Now let us consider how preemption affects the behavior of thread T1. If 
there is no contention for the critical section when thread T1 performs its mutual 
exclusion entry code, t2WantsToEnter is f a l s e when thread T1 executes line 18: 
thread T1 enters its critical section (line 20). Consider the case in which thread T1 is 
preempted immediately following entry into its critical section. Because thread T2 

must set favoredThread to 1 (line 37), the test that T2 performs in line 39 will 
cause T2 to busy wait until thread T1 has exited its critical section and set 
t1WantsToEnter to f a l se . 

However, if t2WantsToEnter is t r u e when thread T1 attempts to enter its 
critical section (line 18), then T2 must have been preempted while attempting to 
enter its critical section. One possibility is that T2 was preempted while executing 
code in its critical section, meaning favoredThread = 2 and t2WantsToEnter = 
t rue . In this case, T1 must simply busy wait at line 18 until T2 completes its critical 
section and sets t2WantsToEnter to f a l se , thereby causing the while condition to 
fail in line 18 and allowing T1 to proceed. 

If thread T1 discovers that both t2WantsToEnter is t rue and favoredThread 
to 2 in line 18, T1 will busy wait in its while loop (line 18), because it had set 
favoredThread to 2 immediately before executing line 18. Thread T1 will wait until 
T2 regains the processor and sets favoredThread to 1 (line 37). At this point, T2 

must busy wait because t1WantsToEnter is t rue and favoredThread is 1. When 
thread T1 regains control of a processor, it performs the test in its while loop and 
enters its critical section (line 20). 

If thread T1 discovers that t2WantsToEnter is t r u e and favoredThread to 1 
in line 18,T1 may safely enter its critical section, because tlWantsToEnter is t rue 
and favoredThread is 1; thread T2 must busy wait until T1 completes executing its 
critical section and sets tlWantsToEnter to f a l s e . 

We will now provide a formal proof that Peterson's Algorithm guarantees 
mutual exclusion. We do so by proving that T2 cannot execute while T1 is inside its 
critical section. Note that the algorithm is unchanged if every instance of the char
acters 1 and 2 is swapped. Consequently, if we prove that T2 cannot execute while 
T1 is inside its critical section, we have also proven that T1 cannot execute while T2 

is inside its critical section. 

1 System: 
2 
3 int favoredThread = 1; 
4 boolean tlWantsToEnter = false; 
5 boolean t2WantsToEnter = false; 
6 
7 startThreads(); // initialize and launch both threads 

Figure 5.11 | Peterson's Algorithm for mutual exclusion. (Part 1 of 2.) 
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8 
9 Thread! v 

10 
11 void main() 
12 { 
13 whi le ( !done ) 
14 { 
15 t1WantsToEnter = true; 
16 favoredThread = 2; 
17 
18 while ( t2WantsToEnter && favoredThread == 2 ); 
19 
20 // critical section code 
21 
22 t1WantsToEnter = false; 
23 
24 // code outside critical section 
25 
26 } // end while 
27 
28 } // end Thread T1 
29 

30 Thread T2: 
31 
32 void main() 
33 { 
34 while ( !done ) 
35 { 
36 t2WantsToEnter = true; 
37 favoredThread = 1; 
38 
39 while ( t1WantsToEnter && favoredThread == 1 ); 
40 
41 // critical section code 
42 
43 t2WantsToEnter = false; 
44 
45 / / code outside c r i t i c a l sect ion 
46 
47 } // end whi le 
48 
49 } // end Thread T2 

Figure 5.11 | Peterson's Algorithm for mutual exclusion. (Part 2 of 2.) 

To begin the proof, we observe that the value of favoredThread is set 
immediately before a thread executes its while loop. Furthermore, each thread 
sets the value in favoredThread such that the other thread is favored if both 
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threads wish to enter their critical sections. Also, t lWantsToEnter is controlled 
exclusively by thread T1; similarly, t2WantsToEnter is modified exclusively by 
thread T2. Now assume that T1 is the only thread executing inside its critical sec
tion—this implies that tlWantsToEnter = t r u e and either favoredThread = 1 or 
t2WantsToEnter = f a l s e . 

For T2 to enter its critical section (line 39), either 

• t1WantsToEnter must be f a l se , 

• favoredThread must be 2, or 

• both t1WantsToEnter is f a l s e and favoredThread is 2. 

This proof will assume that T2 has successfully entered its critical section while 
T1 executes inside its critical section and show that Peterson's Algorithm guaran
tees mutual exclusion because this cannot occur (i.e., proof by contradiction). In the 
first case (tlWantsToEnter is f a l s e ) , T2 has entered its critical section because 
tlWantsToEnter is f a l s e and favoredThread is either 1 or 2. However, as 
described earlier in this section, t1WantsToEnter must be t r u e if thread T1 is also 
executing inside its critical section—the only time t1WantsToEnter is f a l s e is 
after T1 has exited its critical section (line 22) and before it attempts to reenter it 
(line 15). Thus thread T2 could not have entered its critical section because 
tlWantsToEnter was f a l s e . This also implies that thread T2 could not have 
entered its critical section given the third condition (both t1WantsToEnter is 
f a l s e and favoredThread is 2). 

We now must show by contradiction that T2 cannot enter its critical section 
because favoredThread cannot be set to 2 while T1 executes inside its critical sec
tion. To enter its critical section, T2 must have set t2WantsToEnter to t r u e (line 
36), then favoredThread to 1 (line 37) before exiting the while loop in line 39. 
Therefore, if thread T2 executes in its critical section while thread T1 executes in its 
critical section, the value of favoredThread must have changed after thread T2 

executed line 37. Note that the only time favoredThread is set to 2 is when T1 exe
cutes line 16 of its mutual exclusion entry code, requiring that T1 exit its critical sec
tion. Note that thread T2 has already set t2WantsToEnter to t r u e in line 36. 
Consequently, when thread T1 attempts to enter its critical section in line 18, it will 
busy wait, because both t2WantsToEnter is t r u e and favoredThread is 2. 
Although T2 may enter its critical section, now T1 must wait until T2 exits its critical 
section. This contradicts the statement that T2 and T1 are both executing inside their 
critical sections. Because we have shown by contradiction that T2 and T1 cannot 
concurrently execute inside their critical sections, we have proven that Peterson's 
Algorithm ensures mutual exclusion. 

Deadlock and indefinite postponement are impossible in Peterson's Algo
rithm as long as no thread terminates unexpectedly. [Note: As always, we mean that 
deadlock and indefinite postponement could not be caused by the mutual exclusion 
entry and exit code. They nevertheless could occur if the threads misbehaved in 
their critical sections.] For deadlock to occur, both T1 and T2 must concurrently 
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busy wait in their whi 1 e loops. This will not occur, because f avoredTh read is either 
1 or 2 and is not modified during the while loop, meaning that the whi 1 e test will 
always fail for one thread, allowing it to enter its critical section. For indefinite post-
ponement to occur, one thread would have to be able to continually complete and 
reenter its critical section while the other thread busy waited. Because each thread 
sets the value of favoredThread to the number corresponding to the other thread 
before entering the while loop, Peterson's Algorithm ensures that the two threads 
will alternate execution of their critical sections, meaning that indefinite postpone
ment cannot occur. 

Self Review 

1. What major similarity is there between Dekker's Algorithm and Peterson's Algorithm? 
2. What variable is necessary to prevent indefinite postponement? 

Ans: 1) They both have the same three global variables. 2) Removing the favoredThread 
• ariable would allow for the possibility of indefinite postponement. 

5.4.3 N-Thread Mutual Exclusion: Lamport's Bakery Algorithm 
Dijkstra was the first to present a software implementation of n-thread mutual 
exclusion primitives.18 Knuth responded with a solution that eliminated the possi
bility of indefinite postponement in Dijkstra's algorithm, but still allowed a process 
to experience a (potentially) lengthy delay.19 This generated a series of efforts to 
rind algorithms with shorter delays. Eisenberg and McGuire presented a solution 
guaranteeing that a process will enter its critical section within n — \ tries.20 Lam
port developed a solution that is particularly applicable to networks of computers 
(see the Biographical Note, Leslie Lamport).21 The algorithm, which we discuss in 
depth in this section, uses a "take-a-ticket" system like those employed in busy bak
eries, and has been dubbed Lamport's Bakery Algorithm. Burns et al. offer a solu
tion to n-thread mutual exclusion that uses a single shared variable.22 Carvalho and 
Roucairol discuss enforcing mutual exclusion in computer networks.23 

Lamport was the first to introduce an algorithm that allows threads to enter 
critical sections quickly when access to the critical section is not contested (which is 
often the case).24 Such fast mutual exclusion algorithms tend to suffer from ineffi
ciency when the critical section is indeed a point of contention. Anderson and Kim 
present an algorithm that allows for fast entry into a critical section in the absence 
of contention and for good performance under contention.25 

Many of the early solutions to the n-thread mutual exclusion problem are dif
ficult to understand because they require a large number of shared variables and 
complicated loops that determine if a thread can enter its critical section. Lamport's 
algorithm provides a simpler solution that borrows from a common real-world sce
nario—waiting for service at a bakery. Moreover, Lamport's algorithm does not 
require that any operation occur atomically. 

Lamport's algorithm is modeled on a bakery in which one employee services 
customer requests for baked goods; this employee can service exactly one customer 
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at a time. If only one customer is present, the transaction is simple: the customer 

requests baked goods, the employee retrieves the items, the customer pays for the 

food and exits the bakery. However, when multiple customers concurrently request 

service, the employee must determine in what order to serve the customers. Many 

bakeries serve customers in first-come-first-served order by requiring that they take 

a numbered ticket from a ticket dispenser as they enter the bakery. The tickets are 

dispensed in ascending order (i.e., if the current ticket contains a value n, the next 
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ticket contains the value n + 1). After each transaction, the employee serves the cus-
tomer possessing the ticket with the lowest numerical value, which ensures that cus-
tomers are served in first-come-first-served order. 

Figure 5.12 presents an implementation of Lamport's algorithm for n threads. 
In Lamport's algorithm, each thread represents a customer that must "take a ticket" 
to determine when the thread can enter its critical section. When a thread possesses 
a ticket with the lowest numerical value, it can enter its critical section. Mutual 
exclusion is enforced by resetting the thread's ticket value when it exits its critical 
section. Unlike a real-world ticket dispenser, Lamport's algorithm allows multiple 
threads to obtain the same ticket number. As we will see, Lamport's algorithm 
includes a tie-breaking mechanism to ensure that only one thread can execute in its 
critical section at a time. 

1 System: 
2 
3 // array that records which threads are taking a ticket 
4 boolean choosing[n]; 
5 
6 // value of the ticket for each thread initialized to 0 
7 int ticket[n]; 
8 
9 startThreads(); // initialize and launch all threads 
10 
11 Thread Tx: 
12 
13 void main() 
14 { 
15 x = threadNumber(); // store current thread number 
16 
17 while ( !done ) 

18 { 
19 // take a ticket 
20 choosing[x] = t r u e ; / / begin t i c k e t se lec t ion process 
21 t icket [x ] = maxValue( t icket ) + 1; 
22 choosing[x] = f a l s e ; // end t i c k e t se lec t ion process 
23 
24 // wai t f o r number to be ca l led by comparing current 
25 / / t i c k e t value to other thread 's t i c k e t value 
2 6 for ( i n t i = 0 ; i < n ; i++) 
27 { 
28 i f ( i == x ) 
29 { 
30 continue; // no need to check own ticket 
31 } // end if 
32 

Figure 5.12 | Lamport's Bakery Algorithm. (Part 1 of 2.) 
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33 // busy wai t whi le t h r e a d [ i ] is choosing 
34 while ( choosing[i] != false ); 
35 
36 / / busy wai t u n t i l current t i c k e t value is lowest 
37 while ( t i c k e t [ i ] != 0 && t i c k e t [ i ] < t icket [x ] ); 
38 
39 // t i e -b reaker code favors smaller thread number 
40 if ( t i c k e t [ i ] == t i cke t [x ] && i < x ) 
41 
42 / / loop u n t i l t h r e a d [ i ] leaves i t s c r i t i c a l sect ion 
43 while ( t i c k e t [ i ] != 0 ); // busy wai t 
44 } / / end f o r 
45 
46 // critical section code 
47 
48 ticket[x] = 0; // exitMutualExclusion 
49 
50 // code outside critical section 
51 
52 } // end while 
53 
54 } // end Thread TX 

Figure 5.12 | Lamport's Bakery Algorithm. (Part 2 of 2.) 

Lines 3-7 declare two arrays that are shared among all n threads participating 
in mutual exclusion. The boolean array choosi ng (line 4) is of size n; if thread Tx is 
currently selecting a ticket value, then choosing[x] is t rue . Otherwise, choos
ing[x] is f a l s e . The integer array t i c k e t (line 7) contains values corresponding 
to each thread's ticket. Similar to choosi ng, thread Tx's ticket value is contained in 
ti cket [x] . In this example, the initial value for each thread's ticket is zero. 

Lines 13-54 represent the code executed by thread Tx, one of the n threads 
attempting to execute their critical sections. Each thread participating in the bakery 
algorithm executes the same enterMutualExclusion (lines 19-44) and exitMutu-
alExclusion (line 48) constructs. When a thread is started, it executes line 15, 
which stores an integer value in variable x to uniquely identify the thread. The 
thread uses this value to determine its corresponding entries in the choosing and 
t i c k e t arrays. 

Each thread "takes a ticket" by executing the code in lines 19-22. Line 20 indi
cates that the current thread is attempting to take a ticket by setting choosi ng [x] 
to t rue . As we will soon see, this step is necessary to ensure that mutual exclusion is 
enforced if multiple threads concurrently determine their ticket values. The thread 
calls method maxVal ue (line 21), which returns the largest value in the integer array 
t i c k e t . The thread then adds one to that value and stores it as its ticket value, 
ti cket [x] (line 21). Note that if there are numerous threads in the system, method 
maxValue can take substantial time to execute, increasing the likelihood that the 
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thread that calls maxValue will be preempted before the method completes. After 
the thread has assigned its ticket value to t i c k e t [ x ] (line 21), the thread sets 

choosing[x] to f a l s e (line 22), indicating that it is no longer selecting a ticket 
value. Note that when a thread exits its critical section (line 48), the ticket value is 
set to zero, meaning that a thread's ticket value is nonzero only if it wishes to enter 
its critical section. 

Unlike a real-world bakery, in which an employee calls each customer's num
ber in turn for service, the bakery algorithm requires that each thread determine 
when it can enter its critical section (lines 24-44). Before entering its critical sec
tion, a thread must execute the for loop (lines 26-44) that determines the state of 
all threads in the system. If thread Ti, the thread to examine, and thread Tx, the 
thread executing the for statement, are identical (line 28), Tx executes the con
t inue statement (line 30), which skips the remaining statements in the body of the 
for loop and proceeds directly to increment i in line 26. 

Otherwise, Tx determines if Ti is choosing a ticket value (line 34). If Tx does 
not wait until Ti has chosen its ticket before entering its critical section, mutual 
exclusion can be violated. To understand why, let us first examine the other two 
conditions that are tested in each iteration of the for loop. 

Line 37 tests if the current thread possesses a ticket value that is less than or 
equal to the ticket value for the thread it is examining. This condition is analogous 
to a real-world bakery—each thread must wait until it possesses the lowest nonzero 
ticket value. 

Unlike a real-world bakery, however, two or more threads in the system may 
obtain the same ticket value. For example, consider a thread Ta that is preempted 
after method maxValue returns and before the thread assigns a new value to 
t i c k e t [a] in line 21. If the next thread that executes calls maxVal ue, the method 
will return the same value as it did to Ta. As a result, any of the threads could obtain 
the same ticket value. Therefore, in the case of a tie, line 40 indicates that the thread 
with the lowest unique identifier proceeds first. 

Let us return to line 34 to examine how mutual exclusion is violated if thread 
Tx does not wait if Ti is selecting a ticket value. For example, consider what happens 
if thread Ta is preempted after returning from method maxVal ue but before adding 
one to the ticket value (line 21). Assume for this example that maxVal ue returns the 
value 215. After Ta is preempted, several other threads execute their mutual exclu
sion entry code. Consider two threads, Tb and Tc, that execute after Ta is preempted 
and complete the ticket selection code (lines 19-22), leaving thread Tb with ticket 
value 216 (note that Ta's ticket value is currently 0) and Tc with ticket value 217. It 
is possible for Tb to complete its mutual exclusion entry code (lines 19-14), execute 
its critical section (line 46) and exit its critical section (line 48) before Ta regains 
control of a processor. It is likewise possible for Tc to enter its critical section before 
Ta regains control of a processor. 

If Tc is preempted while executing code in its critical section and Ta regains 
control of a processor, Ta completes the instruction in line 21 by setting its ticket 
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value to 216, which is lower than that of Tc.Thus,Ta could execute its mutual exclu
sion entry code and enter its critical section before Tc exits its critical section, 
thereby violating mutual exclusion. For this reason, Tx must wait until Ti has com
pleted its ticket selection (line 34) before comparing ticket values in lines 36-43. 

When Tx has passed all of the tests for each thread (lines 28-43), Tx is guaran
teed exclusive access to its critical section. When Tx exits its critical section, it sets 
its ticket value to 0 (line 48) to indicate that it is no longer executing in its critical 
section nor is it attempting to enter its critical section. 

In addition to being one of the simplest n-thread mutual exclusion algorithms. 
Lamport's bakery algorithm exhibits several interesting properties. For example, it 
does not require its instructions to be executed atomically. Recall from Section 5.3, 
Implementing Mutual Exclusion Primitives, that we required instructions to exe
cute atomically. This was necessary because both Dekker's and Peterson's algo
rithms require multiple threads to modify a shared variable to control access to 
their critical sections. If each thread could read and modify this variable simulta
neously on different processors, the threads might read inconsistent values of their 
shared variables. This might allow both threads to enter their critical sections simul
taneously, violating mutual exclusion. Although many architectures provide a small 
set of atomic instructions (see Section 5.5, Hardware Solutions to the Mutual 
Exclusion Problem), it is rare to find a multiprocessor system that provides hard
ware to prevent threads from reading and writing data simultaneously. 

Lamport's Bakery Algorithm provides an elegant solution to mutual exclu
sion on multiprocessor systems, because each thread is assigned its own set of vari
ables that control access to its critical section. Although all threads in the system 
share the arrays choosing and ti cket, thread Tx is the only thread that can modify 
values in choosi ng [x] and ti cket [x] . This prevents threads from reading incon
sistent data, because the variables a thread examines while performing its mutual 
exclusion entry code cannot be simultaneously modified by another thread. 

Another interesting property of the bakery algorithm is that threads that are 
waiting to enter their critical sections are admitted in first-come-first-served (FCFS) 
order unless multiple threads possess the same ticket value. Finally, Lamport's algo
rithm can continue to enforce mutual exclusion even if one or more threads fail, 
provided that the system sets each failed thread's value in the choosi ng array to 
f a l s e and each thread's value in the ti cket array to 0. Given this final provision, 
Lamport's Bakery Algorithm cannot suffer from deadlock or indefinite postpone
ment, a property that is particularly important in multiprocessor and distributed 
systems, where the failure of a hardware device such as a processor does not neces
sarily result in system failure. 

1. Describe why n-thread mutual exclusion might be difficult in a distributed or networked 
system. 

2. What would happen if the system did not perform housekeeping tasks such as setting the 
ticket values to zero and choosi ng values to fal se for terminated threads? 

Self Review 
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3. Suppose multiple threads obtain the same ticket value. In the sample code provided, the 
thread with the lowest unique identifier enters its critical section first. Does it matter in 
what order these threads enter their critical sections? 

Ans: 1) There is latency between a computer's sending a message and the receiving com
puter's actually receiving it, meaning that mutual exclusion algorithms must account for delays 
between when a thread modifies a shared variable and when another thread attempts to enter 

its critical section. 2) The whole system could suffer from indefinite postponement. Suppose a 
thread terminated while choosing a ticket number, and therefore choosing for that thread 

would be set to true forever. Other threads wishing to enter mutual exclusion would wait for
ever for the terminated thread to set the choosing array entry to false. 3) Unless the pro
grammer wishes to assign priorities to threads that possess the same ticket value, the order in 
which threads with identical ticket values enter their critical section does not matter. Lines 34 
and 37 of Fig. 5.12 ensure that no thread with a higher or lower ticket value can enter its critical 
section before the threads with identical ticket values. The system need only ensure that each of 
the threads with the same ticket value eventually enters its critical section. 

5.5 Hardware Solutions to the Mutual Exclusion Problem 
In the preceding examples the software solutions to the mutual exclusion problem 
that make few assumptions about the system's instruction set and hardware capa
bilities. As discussed in Chapter 2, Hardware and Software Concepts, hardware 
designers tend to implement mechanisms previously handled by software to 
improve performance and reduce development time. This section presents several 
mechanisms provided in hardware to help solve the problem of mutual exclusion. 

5.5.1 Disabling Interrupts 
The reason mutual exclusion primitives are needed in a uniprocessor system is 
largely that preemption allows multiple threads to access shared data asynchro
nously, which can result in program errors. Threads are typically preempted by 
interrupts such as the interrupting clock (to signal quantum expiration). Therefore, 
a simple way to enforce mutual exclusion is to disable (or mask) interrupts. Unfor
tunately, the disabling of interrupts places limitations on what software can do 
inside a critical section. For example, a thread that enters an infinite loop in its criti
cal section after disabling interrupts will never yield its processor. On a uniproces
sor system, the operating system could no longer use timer interrupts to gain 
control of the processor, meaning that the system will hang. In real-time systems, 
such as an air traffic control system, such a result could put people's lives at risk. 

Disabling interrupts is not a viable solution for mutual exclusion in a multi
processor system. After all, its purpose is to ensure that preemption will not occur. 
However, in a multiprocessor system, two threads can execute at the same time, 
each on a different processor. If these threads are unsynchronized, disabling inter
rupts alone does not prevent them from simultaneously executing inside their criti
cal sections. Therefore, simply disabling interrupts on either processor (or both) is 
insufficient to enforce mutual exclusion. In general, operating system designers 
avoid disabling interrupts to provide mutual exclusion. However, there are a lim-
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ited set of solutions in which it is optimal for the kernel to disable interrupts for 
trusted code whose execution requires a short period of time. See the Linux and 
Windows XP case studies in Chapters 20 and 21, respectively, for examples of how 
current operating systems enforce mutual exclusion by disabling interrupts. 

1. (T/F) If a thread enters an infinite loop after disabling interrupts on a multiprocessor sys
tem, the operating system can no longer execute. 

2. Why should a thread avoid requesting blocking I/O in a critical section in a uniprocessor 
system while interrupts are disabled? 

Ans: 1) False. The operating system can execute on any processor on which interrupts are 
not disabled. The thread in the infinite loop can be aborted or restarted, but any data it shares 
with other threads may be left in an inconsistent state, which may cause program errors. 2) 
When a thread requests blocking I/O, the operating system places that thread in the blocked 
state until it receives an I/O completion event. Since such events are generated by hardware 
interrupts, but the operating system would never receive this signal while interrupts 
remained disabled. As a result, the thread will remain waiting in the blocked state for an 
event it will never receive. This is an example of deadlock, which is further discussed in 
Chapter 7, Deadlock and Indefinite Postponement. 

Self Review 

Disabling interrupts is rarely a practical solution to the synchronization problem, so 
other techniques include the use of special hardware instructions. Recall from our 
previous examples that shared data can become corrupted because the system may 
preempt a thread after it has read the value at a memory location, but before the 
thread can write a new value to the location. The test-and-set instruction enables a 
thread to perform this operation atomically (i.e., indivisibly).40, 41 Such operations 
are also described as atomic read-modify-write (RMW) memory operations. 
because the processor reads a value from memory, modifies its value in its registers 
and writes the modified value to memory without interruption.42 

The previous examples of software mutual exclusion required that a thread 
read a variable to determine that no other thread is executing a critical section, then 
set a variable, known as a lock, to indicate that the thread is executing its critical 
section. The difficulty in guaranteeing mutually exclusive access to critical sections 
in software was that a thread could be preempted between testing the availability of 
a critical section and setting a lock to keep other threads from entering their critical 
sections. The testAndSet instruction eliminates the possibility of preemption 
occurring during this interval. 

The instruction 

testAndSet( a, b ) 

works as follows. First the instruction reads the value of b, which may be either 
t r u e or f a l se . Then, the value is copied into a, and the instruction sets the value of 
b to t rue . 

5.5.2 Test-and-Set Instruction 
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Figure 5.13 shows how a thread can employ testAndSet to enforce mutual 
exclusion. The global boolean variable, occupied, is true if either thread is in its 
critical section. Thread T1 decides to enter its critical section based on its local bool
ean variable, plMustWait. If p1MustWait is true, T1 must wait; otherwise, the 
thread may enter its critical section. Thread T1 initially sets variable p1MustWait to 

true. Then the thread repeatedly calls testAndSet on p1MustWait and the global 
variable occupi ed. If T2 is not in its critical section, the value of occupied is f a l se . 
In this case, the testAndSet assigns f a l s e to variable p1MustWait and sets occu-
pied to t rue . The while fails at this point and T1 enters its critical section. Because 
the indivisible hardware instruction set occupied to t rue , T2 will be unable to 
enter its critical section until T1 has reset occupi ed to f a l s e . 

1 System: 
2 
3 boolean occupied = f a l s e ; 
4 
5 s ta r tThreads( ) ; / / i n i t i a l i z e and launch both threads 
6 
7 Thread T1: 
8 
9 void main() 

10 { 
11 boolean p1MustWait = t r u e ; 
12 
13 whi le ( !done ) 
14 { 
15 whi le ( p1MustWait ) 
16 { 
17 testAndSet( p1MustWait, occupied ); 
18 } 
19 
20 // critical section code 
21 
22 p1MustWait = true; 
23 occupied = false; 
24 
25 // code outside critical section 
26 
27 } // end while 
28 
29 } // end Thread T1 
30 
31 Thread T2: 
32 

Figure 5.13 | testAndSet instruction for mutual exclusion. (Part 1 of 2.) 
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33 void main() 
34 { 

35 boolean p2MustWait = true; 
36 
37 while ( !done ) 
38 { 
39 while ( p2MustWait ) 
40 { 
41 testAndSet( p2Mustwait, occupied ); 
42 } 
43 
44 // critical section code 
45 
46 p2MustWait = true; 
47 occupied = fa lse; 
48 
49 / / code outside c r i t i c a l sect ion 
50 
51 } // end whi le 
52 
53 } // end Thread T2 

Figure 5.13 | testAndSet instruction for mutual exclution. (Part 2 of 2.) 

Now suppose that T2 already is in its critical section when T1 wants to enter. In 
this case, occupied remains t r u e during T1's repeated while tests. Therefore, T1 

continues its busy waiting until T2 eventually leaves its critical section and sets 
occupied to f a l s e . At this point, the testAndSet assigns occupied's value to 
p1MustWait, thus allowing T1 to enter its critical section. 

Although testAndSet as used here does guarantee mutual exclusion, the 
solution may suffer from indefinite postponement. It is possible for a thread to exit 
the critical section and loop around to call testAndSet before the competing 
thread has a chance to execute again. 
. 

Self Review 

1. Does the algorithm in Fig. 5.13 prevent indefinite postponement? 
2. (T/F) The testAndSet instruction enforces mutual exclusion. 

Ans: 1) No, the algorithm in Fig. 5.13 requires a favoredProcess variable as discussed in 
Section 5.4.1, Dekker's Algorithm, to prevent indefinite postponement. 2) False. The 
testAndSet instruction is a tool that programmers use to simplify software solutions to 
mutual exclusion but the instruction itself does not enforce mutual exclusion. 
. 
5.5.3 Swap Instruction 

To simplify synchronization code and improve program efficiency, most architec
tures provide several atomic instructions. However, each architecture supports a 
different set of atomic operations, meaning the testAndSet instruction might not 
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be available to the application or system programmer. In this section, we demon
strate how another instruction that performs an atomic read-modify-write memory 
operation can provide functionality identical to the testAndSet instruction. 

It is common for programs to exchange (or swap) values stored in two differ
ent variables (consider, for example, the Quicksort algorithm). Although the con
cept is simple, a successful exchange of values between two variables in most high-
level programming languages requires three instructions and the creation of a tem
porary variable: 

temp = a; 
a = b; 
b = temp; 

Because such swapping operations are performed regularly, many architec
tures support a swap instruction that enables a thread to exchange the values of the 
two variables atomically. 

The instruction 

swap( a, b ) 

proceeds as follows. First the instruction loads the value of b, which may be either 
t rue or f a l se , into a temporary register. Then, the value of a is copied to b and the 
value of the temporary register is copied to a. 

Figure 5.14 shows how a thread can employ swap to enforce mutual exclusion. 
Similar to Fig. 5.13, the global boolean variable, occupi ed, is t r u e if either thread is 
in its critical section. Thread T1 decides to enter its critical section based on its local 
boolean variable, p1MustWai t. Similarly, thread T2 decides to enter its critical section 
based on its local variable p2MustWait. Note that the swap instruction can be used 
interchangeably with the testAndSet instruction in this algorithm. The only differ
ence between Fig. 5.13 and Fig. 5.14 is that we have created a "fast track" to the criti
cal section, in which control of the critical section can be obtained by the execution of 
one fewer instruction (i.e., by testing the loop condition after the swap instruction). 

1 System: 
2 
3 boolean occupied = f a l s e ; 
4 
5 s ta r tThreads( ) ; / / i n i t i a l i z e and launch both threads 
6 
7 Thread T1: 
8 
9 void main() 

10 { 
11 boolean plMustWait = t r u e ; 
12 

Figure 5.14 I swap instruction for mutual exclusion. (Part 1 of 2.) 
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13 while ( !done ) 

14 { 
15 do 
16 { 
17 swap( p1MustWait, occupied ); 
18 } while ( p1MustWait ); 
19 
20 // critical section code 
21 
22 p1MustWait = true; 
23 occupied = false; 
24 
25 // code outside critical section 
26 
27 } // end while 
28 
29 } // end Thread T1 
30 

31 Thread T2: 
32 
33 void main() 
34 { 
35 boolean p2MustWait = true; 
36 
37 while ( !done ) 
38 { 
39 do 
40 { 
41 swap( p2MustWait, occupied ); 
42 } while ( p2MustWait ); 
43 
44 // critical section code 
45 
46 p2MustWait = true; 
47 occupied = false; 
48 
49 // code outside critical section 
50 
51 } // end while 
52 
53 } // end Thread T2 

Figure 5.14 | swap instruction for mutual exclusion. (Part 2 of 2.) 

Self Review 

1. Why might it be more likely for a swap instruction to be on a system than a testAndSet? 

Ans: Many algorithms require some sort of swapping, so a hardware instruction, swap, is 
very useful for algorithms other than just those providing mutual exclusion. 
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5.6 Semaphores 
Another mechanism that a system can provide to implement mutual exclusion is 

the semaphore, as described by Dijkstra in his seminal paper on cooperating 
sequential processes (see the Biographical Note, Edsger W. Dijkstra).43 A sema-

Biographical Note 

One of computer science's most 

famous and prolific researchers 

was Edsger Wybe Dijkstra. Born in 

1930 in the Netherlands, he 

received his Ph.D. in Computing 

Science from the University of 

Amsterdam and worked as a pro

grammer at the Mathematisch 

Centrum in Amsterdam. He later 

served as a Professor of Mathe

matics at the Eindhoven Institute 

of Technology, then as a professor 

of Computer Science at the Uni

versity of Texas at Austin. Dijkstra 

died in 2002.44 

Perhaps his best-known con

tr ibut ion to computer science was 

his article that started the struc

tured programming revolution, 

"GOTO Considered Harmful,"45 a 

letter to the editor published in 

Communications of the ACM in 

March of 1968. Dijkstra claimed 

that the GOTO statement, unless 

used carefully, quickly results in 

"spaghetti code"—meaning the 

path of execution is nearly impos

sible to follow.46 

Dijkstra's main contribu

tions to operating system design 

were the semaphore construct 

(the first object invented for use 

in mutual exclusion algorithms) 

and the layered design (an 

improvement over the older 

monolithic approach, where com

ponents that provide similar func

tions are grouped together in 

layers). He implemented both 

concepts in his THE multipro

gramming system—an operat

ing system built for the Dutch EL 

X8 computer.47 He later expanded 

the concept of a layered system to 

enable the construction of a more 

general operating system, where 

the enhanced layered design 

could be used to build operating 

systems for any computer.48 In his 

description of the THE system, he 

described how semaphores could 

be used for synchronization. He is 

also known for posing the Dining 

Philosophers synchronization 

problem, which illustrates subtle 

difficulties in parallel program

ming (see Section 7.2.4, Example: 

Dining Philosophers). 

In 1972, Dijkstra received the 

Turing Award—computer science's 

top honor—for his work on the 

ALGOL programming language 

which introduced block structure 

(to define variable scopes and 

mark control structure bodies) and 

other concepts used by most mod

ern languages.49, 50, 51 Yet another 

achievement for Dijkstra was Dijk

stra's Algorithm. This efficient 

algorithm takes a weighted graph 

and finds the shortest paths from a 

given node to each of the other 

nodes. 

Dijkstra wrote over 1300 doc

uments, mostly in the form of his 

EWDs—short essays (named after 

his initials) that were numbered in 

sequence and distributed infor

mally to the computer science 

community.52 Some were technical 

and serious, while others, such as 

"How Do We Tell Truths That 

Might Hurt?" were mainly humor

ous.53 In another EWD—"The End 

of Computer Science?" written in 

2000—he attacked the quality of 

today's software and argued that 

more computer science research is 

needed to improve basic design 

concepts.54 

Edsger W. Dijkstra 
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phore contains a protected variable whose integer value, once initialized, can be 
accessed and altered by only one of two operations, P and V. [Note: P and V are 
short for the Dutch words, proberen, which means "to test," and verhogen, which 
means "to increment."] A thread calls the P operation (also called the wait opera
tion) when it wants to enter its critical section and calls the V operation (also called 
the signal operation) when it wants to exit its critical section. Before a semaphore 
can be used for synchronization, it must be initialized. Initialization sets the value of 
the protected variable to indicate that no thread is executing in its critical section. It 
also creates a queue that stores references to threads waiting to enter their critical 
sections protected by that semaphore. Note that P and V are simply abstractions 
that encapsulate and hide the details of mutual exclusion implementations. These 
operations can be applied to a system with any number of cooperating threads. 

5.6.1 Mutual Exclusion with Semaphores 
Figure 5.15 demonstrates how mutual exclusion is enforced using a semaphore. The 
system initializes the semaphore occupi ed to 1; such semaphores are called binary 
semaphores. This value indicates that the critical section is available. 

The program in Fig. 5.15 uses the P and V operations as the enterMutualEx-
c lus ion() and exitMutualExclusion() primitives from Section 5.2.3, Mutual 
Exclusion Primitives. When a thread wants to enter a critical section that is pro
tected by semaphore S, the thread calls P( S ), which operates as follows 

1 System: 
2 
3 // create semaphore and initialize value to 1 
4 Semaphore occupied = new Semaphore(1); 
5 
6 startThreadsO; // initialize and launch both threads 
7 
8 Thread Tx: 
9 

10 void main() 

11 { 
12 while ( !done ) 
13 { 
14 P( occupied ); // wait 
15 
16 // critical section code 
17 

18 V( occupied ); // signal 
19 
20 // code outside critical section 
21 } // end while 
22 } // Thread TX 

Figure 5.15 | Mutual exclusion with semaphores. 
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If S>0 
S = S-1 

Else 
The calling thread is placed in the semaphore's queue of waiting threads 

Because Fig. 5.15 initializes the semaphore value to 1, only one thread will be 
allowed into the critical section at a time. When this thread calls P, the semaphore's 
value is reduced to 0. When another thread calls P, that thread will be blocked. 

After a thread finishes executing in its critical section, the thread calls V( S ). 
This operation proceeds as follows 

If any threads are waiting on S 
Resume the "next" waiting thread in the semaphore's queue 

Else 
S = S+1 

Thus, if any threads are waiting on the semaphore, the "next" thread, which 
depends on the semaphore implementation, executes. Otherwise, the value of S is 
incremented, allowing one more thread to enter its critical section. 

A proper semaphore implementation requires that P and V be indivisible 
operations. Also, if several threads attempt a P(S) simultaneously, the implementa
tion should guarantee that only one thread will be allowed to proceed. The others 
will be kept waiting, but the implementation of P and V can guarantee that threads 
will not suffer indefinite postponement. For example, when a thread blocks on a 
semaphore, the system might place that thread in a queue associated with the sema
phore. When another thread calls P, the system can select one of the threads in the 
queue to release. We shall assume a first-in-first-out queuing discipline for threads 
blocked on a semaphore (to avoid indefinite postponement). 

Self Review 
1. What could potentially happen if a thread called the V without having called the P opera

tion? 
2. What could potentially happen if threads that blocked on a semaphore were not 

dequeued in a first-in-first-out order? 

Ans: 1) One scenario is that the semaphore is initially 1 and no threads are waiting. The V 
increments the semaphore's value to 2. Now two threads using P could both enter their criti
cal sections. 2) A thread could suffer from indefinite postponement. 

5.6.2 Thread Synchronization with Semphores 
In the previous section, we saw how a program can use a semaphore to protect 
access to a critical section. Semaphores also can be used to synchronize two or more 
concurrent threads. For example, suppose one thread,T1, wants to be notified about 
the occurrence of a particular event. Suppose some other thread, T2, is capable of 
detecting that this event has occurred. To synchronize these two threads, T1 exe
cutes some preliminary instructions, then calls P on a semaphore that has been ini-
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tialized to 0, causing T1 to block. Eventually, T2 executes V to signal that the event 
has occurred. This allows T1 to proceed (with the semaphore still zero). 

This mechanism succeeds even if T2 detects the event and signals it with V 
before T1 waits for the event by calling P. The semaphore will have been incre
mented from 0 to 1, so when T1 calls P, the operation will simply decrement the 
semaphore from 1 to 0, and T1 will proceed without waiting for the event. 

One example of thread synchronization is the producer/consumer relation
ship, introduced in Section 5.2.1, Java Multithreading Case Study, Part II. 
Figure 5.16 shows how to implement this relationship with semaphores. Both 
threads share a variable called sharedValue. The producer generates values and 
assigns them to this variable, and the consumer retrieves and processes the values 
the producer places in this variable. Each thread may need to wait for an event to 
occur before it can accomplish its task. The consumer may need to wait for a value 
to be produced (indicated by the producer signaling semaphore valueProduced): 
the producer must wait for a previously produced value to be consumed (indicated 
by the consumer signaling semaphore valueConsumed). 

1 System: 
2 //' semaphores that synchronize access to sharedValue 
3 Semaphore valueProduced = new Semaphore(O); 
4 Semaphore valueConsumed = new Semaphore(1); 
5 int sharedValue; // variable shared by producer and consumer 
6 
7 startThreads(); // initialize and launch both threads 
8 
9 Producer Thread: 
10 
11 void main() 
12 { 
13 int nextValueProduced; // variable to store value produced 
14 
15 while ( !done ) 
16 { 
17 nextValueProduced = generateTheValue(); // produce value 
18 P( valueConsumed ); // wait until value is consumed 
19 sharedValue = nextValueProduced; // critical section 
20 V( valueProduced ); // signal that value has been produced 
21 
22 } // end while 
23 
24 } // end producer thread 

Figure 5.16 | Producer/consumer relationship implemented with semaphores. 
(Part 1 of 2.) 
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25 
2 6 Consumer Thread: 
27 
28 void main() 

29 { 
30 int nextValue; // variable to store value consumed 
31 
32 while ( !done ) 

33 { 
34 P( valueProduced ); // wait until value is produced 
35 nextValueConsumed = sharedValue; // critical section 
36 V( valueConsumed ); // signal that value has been consumed 
37 processTheValue( nextValueConsumed ); // process the value 
38 
39 } // end while 
40 
41 } // end consumer thread 

Figure 5.16 | Producer/consumer relationship implemented with semaphores. 

(Part 2 of 2.) 

The implementation of each thread is straightforward. The producer gener
s a new value (line 17), then waits on semaphore valueConsumed (line 18). The 
semaphore's value is initially 1 (line 4), so the producer assigns the newly created 
value nextValueProduced to shared variable sharedValue (line 19). Then the 
producer signals semaphore val ueProduced (line 20). The consumer waits on this 
semaphore (line 34) and, when the producer signals val ueProduced (line 20), the 
consumer assigns the shared variable sharedVal ue to a local variable nextValue-
Consumed (line 35). The consumer then signals semaphore valueConsumed (line 
36). which allows the producer to create a new value, and so on. The semaphores 
ensure mutually exclusive access to shared variable sharedValue and ensure that 
the threads alternate so that the consumer always reads the value that the producer 
has just created. 

Self Review 
1. (T/F) A thread can be in only one semaphore's waiting queue at a time. 
2. What happens if semaphore valueProduced is initialized to a value of 1 instead of a value 

of 0? 

Ans: 1) True. A thread is blocked when placed in a semaphore's queue of waiting threads, 
meaning that thread is unable to execute code that waits on any other semaphore. 2) The 
consumer could potentially consume a value before the produced produces it. 

5.6.3 Counting Semaphores 
A counting semaphore (also called a general semaphore) is a semaphore that is ini
tialized to an integral value greater than zero and commonly greater than one. A 
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counting semaphore is particularly useful when a resource is to be allocated from a 
pool of identical resources. The semaphore is initialized to the number of resources 
in the pool. Each P operation decrements the semaphore by 1, indicating that 
another resource has been removed from the pool and is in use by a thread. Each V 
operation increments the semaphore by 1, indicating that a thread has returned a 
resource to the pool and the resource may be reallocated to another thread. If a 
thread attempts a P operation when the semaphore has been decremented to zero, 
then the thread must wait until a resource is returned to the pool by a V operation. 

5.6.4 Implementing Semaphores 
Semaphores can be implemented in user applications and in the kernel. Given Dek-
ker's algorithm or the availability of a testAndSet or swap machine instruction, it 
is straightforward to implement P and V with busy waiting. However, busy waiting 
wastes processor cycles that could be put to better use in a multiprogrammed sys
tem. In Chapter 3, Process Concepts, we studied the thread-state switching mecha
nisms implemented in the kernel. We noted that a thread requesting an I/O 
operation voluntarily blocks itself pending completion of the I/O. The blocked 
thread does not busy wait—it remains asleep until the system awakens it and moves 
it to the ready list. 

Semaphore operations can be implemented in the kernel by blocking waiting 
threads to avoid busy waiting.55 A semaphore is implemented as a protected variable 
and a queue in which threads can wait for V operations. When a thread attempts a P 
operation on a semaphore whose value is zero, the thread relinquishes the processor 
and blocks itself to await a V operation on the semaphore. The system places the 
thread in the queue of threads waiting on that semaphore. (We assume a first-in-first-
out queue discipline. Other disciplines have been investigated.)56 The system then 
reassigns the processor to the next ready thread. The thread in the semaphore queue 
eventually moves to the head of the queue. A subsequent V operation removes the 
thread from the semaphore queue and places it on the ready list.57 

Of course, threads attempting simultaneous P and V operations on a semaphore 
must be guaranteed exclusive access to the semaphore by the kernel. In the case of 
uniprocessor systems, because P and V are so short, their indivisibility can be ensured 
by simply disabling interrupts while P and V operations are executing. This prevents 
the processor from being usurped until the operation is complete (at which point 

1. Describe how to implement a binary semaphore with a counting semaphore. 
2. (T/F) The V operation on a counting semaphore always adds 1 to the count. 

Ans: 1) Just initialize the counting semaphore to a value of one. 2) False. If one or more 
threads are waiting, V lets one of the threads proceed and does not increment the count. 

Self Review 
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interrupts are again enabled). This should be done with care, or it could lead to poor 

performance or even deadlock (see the Anecdote, Unclear Requirements). 

In the kernel of a multiprocessor system, one of the processors can be given 

the job of controlling the ready list and determining which processors run which 

threads.58 Another approach to implementing a kernel for a multiprocessor system 

is to control access (via busy waiting) to a shared ready list.59 A distributed operat

ing system kernel could have one processor control the ready list, but normally 

each processor manages its own ready list and essentially has its own 

kernel.60, 61, 62, 63 As a thread migrates between various processors of a distributed 

system, control of that thread is passed from one kernel to another. 

Anecdote 

Unclear Requirements 
In his early years in industry, HMD 

worked for a company that devel

oped custom software solutions 

for a wide range of clients. One 

client-an actuarial firm-sent him 

the fol lowing requirements-

Develop a program that wi l l print 

a list of the "Connecticut pension

ers who died this year in alpha

betical order." This crossed his 

eyes, because pensioners, of 

course, rarely die in alphabetical 

order! His client was inaccessible 

for a few days, so HMD created a 

report program that worked as he 

thought it shou Id-one that 

printed a alphabetized list of all 

the Connecticut pensioners who 

died that year-which turns out to 

be what the client really wanted. 

That client was much more careful 

when specifying the requirements 

for future projects. 

Lesson to operating systems designers: Before you build a complex piece of software like a substantial com

ponent of an operating system, be sure that the requirements are absolutely clear. You not only need to 

"solve the problem right;" you need to "solve the right problem" in the first place. 

1. What is a major benefit of implementing semaphores in the kernel? 
2. Consider a semaphore allows the thread with the highest priority to proceed when V is 

called. What potential problem can this cause? 

Ans: 1) Semaphores can avoid busy waiting. The kernel can suspend a thread that attempts 
a P operation when the semaphore's current value is 0, and move it back to the ready queue 
when a V operation is called. This could increase performance. 2) Threads in the semaphore's 
wait queue may be indefinitely postponed by higher-priority threads. 

Self Review 
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www.ddj.com/documents/s=924/ddj9801g/9801g.htm 
Describes a method for implementing mutual exclusion in 
Java. It describes, both generally and specifically for Java, how 
a programmer might implement mutual exclusion between a 
number of threads. 

www.es.utexas.edu/users/EWD/ 
Contains electronic copies of manuscripts authored by E. W. 
Dijkstra, including his seminal paper that introduced sema
phores. 

www.osdata.com/topic/1anguage/asm/coproc.htm 
Describes several machine-language instructions for concur
rency, such as test-and-set and swap. 

Summary 
When more than one thread exists in a system at the same 
time, the threads are said to be concurrent. Two concurrent 
threads can execute completely independently of one 
another, or they can execute in cooperation. Processes that 
operate independently of one another but must occasion
ally communicate and synchronize to perform cooperative 
tasks are said to execute asynchronously. 

When one thread reads data that another thread is 
writing, or when one thread writes data that another thread 
is also writing, indeterminate results can occur. We can solve 
this problem by granting each thread exclusive access to the 
shared variable. While one thread increments the shared 
variable, all other threads desiring to do so will be made to 
wait. This is called mutual exclusion. When the executing 
thread finishes accessing the shared variable, the system will 
allow one of the waiting processes to proceed. This is called 
serializing access to the shared variable. In this manner, 
threads will not be able to access shared data simultaneously. 

In a producer/consumer relationship, the producer 
thread generates data and stores it in a shared object, and 
the consumer thread reads data from the shared object. We 
demonstrated how logic errors can arise with unsynchro-
nized access among multiple threads to shared data —data 
could be lost if the producer places new data into the 
shared buffer before the consumer consumes the previous 
data, and data could be incorrectly duplicated if the con
sumer consumes data again before the producer produces 
the next value. If this logic were part of an air traffic control 
application, people's lives could be at risk. 

Mutual exclusion needs to be enforced only when 
threads access shared modifiable data—when threads are 
performing operations that do not conflict with one 

developer.java.sun.com/developer/Books/ 
performance2/chap3.pdf 
Chapter from Sun's multithreaded and network programming 
book. It describes how to handle mutual exclusion in Java. The 
discussion is motivated by describing some circumstances that 
mutual exclusion helps avoid; then the article provides a thor
ough treatment of implementing mutual exclusion to avoid 
these unwanted circumstances. 

www.teamten.com/1awrence/242.paper/242.paper.html 
Provides a survey of mutual exclusion algorithms implemented 
by operating systems running in a multiprocessor environment. 

another (i.e., reading data), the system should allow the 
threads to proceed concurrently. When a thread is access
ing shared modifiable data, the thread is said to be in its 
critical section (or critical region). To prevent the kinds of 
errors we encountered earlier, the system should ensure 
that only one thread can execute the instructions in its criti
cal section at a time. If one thread attempts to enter its crit
ical section while another thread executes its critical 
section, the first thread should wait until the executing 
thread exits its critical section. Once a thread has exited its 
critical section, a waiting thread (or one of the waiting 
threads, if there are several), may enter and execute its crit
ical section. If a thread in its critical section terminates, 
either voluntarily or involuntarily, then the operating sys
tem, in performing its termination housekeeping, must 
release mutual exclusion so that other threads may enter 
their critical sections. 

We discussed the enterMutualExclusion() and e x i t -
Mutual Exclusion() primitives, which invoke the most fun
damental operations inherent to mutual exclusion. These 
primitives exhibit the following properties: each machine-
language instruction is executed indivisibly;no assumption is 
made about the relative speeds of asynchronous concurrent 
threads; a thread that is executing instructions outside its 
critical section cannot prevent other threads from entering 
their critical sections; and a thread cannot be indefinitely 
postponed from entering its critical section. 

An elegant software implementation of mutual exclu
sion primitives was first presented by Dekker. We followed 
Dijkstra's development of Dekker's Algorithm, which pro
vides mutual exclusion while addressing the problems of 
busy waiting, lockstep synchronization, deadlock and 

Web Resources 
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ndefinite postponement. We then discussed simpler and 
more efficient algorithms developed by G. L. Peterson and 
L. Lamport. Lamport's Bakery Algorithm, which is 
designed for distributed systems, demonstrates a software 
mutual exclusion algorithm for n threads that is valid in 
multiprocessor systems and that does not require its opera
tions to be performed atomically. 

Several hardware mechanisms have been developed 
to help implement mutual exclusion. A simple way to 
enforce mutual exclusion using hardware is to disable (or 
mask) interrupts. This solution benefits from simplicity: 
however, the disabling of interrupts can be disastrous if a 
thread misbehaves inside a critical section. Moreover, dis
abling interrupts is not a viable solution for mutual exclu
sion in a multiprocessor system. Other hardware 
techniques have been developed, including the use of spe
cial hardware instructions. The test-and-set and swap 
instructions enable a thread to perform atomic read-mod-
ify-write (RMW) memory operations. These instructions 
eliminate the possibility of preemption between the 
instruction that determines if a thread can enter its critical 
section and the instruction that sets a variable to indicate 
that no other thread may enter the critical section. 

Key Terms 
atomic operation—Operation performed without interruption. 

asynchronous concurrent threads—Threads that exist simulta
neously but operate independently of one another and 
that occasionally communicate and synchronize to per
form cooperative tasks. 

binary semaphore—Semaphore whose value can be no greater 
than one, typically used to allocate a single resource. 

busy waiting—Form of waiting where a thread continuously 
tests a condition that will let the thread proceed eventu
ally; while busy waiting, a thread uses processor time. 

concurrent—The description of a process or thread that exists 
in a system simultaneously with other processes and/or 
threads. 

consumer—Application that reads and processes data from a 
shared object. 

consumer thread—Thread whose purpose is to read and pro
cess data from a shared object. 

counting semaphore- Semaphore whose value may be greater 
than one, typically used to allocate resources from a pool 
of identical resources. 

critical region—See critical section. 
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Another mutual exclusion mechanism is semaphores, 
as described by Dijkstra. A semaphore contains a protected 
variable whose integer value, once initialized, can be 
accessed and altered only by calling one of two operations, 
P and V. A thread calls the P operation (also called the wait 
operation) when it wants to enter a critical section; the 
thread calls the V operation (also called the signal opera
tion) when it wants to exit the critical section. Before a 
semaphore can be used for synchronization, it must be ini
tialized. Initialization sets the value of the protected vari
able to indicate that no thread is executing in a critical 
section. A counting semaphore (also called a general sema
phore) may be initialized to a value greater than one. 
Counting semaphores are particularly useful when 
resources are to be allocated from a pool of identical 
resources. Semaphores can be implemented in user appli
cations and in the kernel. Given Dekker's Algorithm or the 
availability of a testAndSet or swap machine instruction, it 
is straightforward to implement P and V with busy waiting. 
However, busy waiting wastes processor cycles that could 
be put to better use in a multiprogrammed system. Sema
phore operations can also be implemented in the kernel to 
avoid busy waiting by blocking waiting threads. 

critical section—Section of code that performs operations on a 
shared resource (e.g., writing data to a shared variable). 
To ensure program correctness, at most one thread can 
simultaneously execute in its critical section. 

deadlock—State of a thread when it cannot continue execution 
because it is waiting for an event that will never occur. 

Dekker's Algorithm—Algorithm that ensures mutual exclu
sion between two threads and prevents both indefinite 
postponement and deadlock. 

Dijkstra's Algorithm—Efficient algorithm to find the shortest 
paths in a weighted graph. 

disable interrupts—To temporarily ignore interrupts to allow a 
thread on a uniprocessor system to execute its critical sec
tion atomically. 

fast mutual exclusion algorithm—Implementation of mutual 
exclusion that avoids the overhead of a thread performing 
multiple tests when no other thread is contending for its 
critical section. This first fast mutual exclusion algorithm 
was proposed by Lamport. 

general semaphore—See counting semaphore. 

indefinite postponement—Situation in which a thread waits 
for an event that might never occur. 
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indivisible operation—See atomic operation. 

Lamport's Bakery Algorithm—N-thread mutual exclusion 
algorithm based on a "take a ticket" system. 

lockstep synchronization—Situation where asynchronous 
threads execute code in strict alternation. 

mutual exclusion—Restriction whereby execution by a thread 
of its critical section precludes execution by other threads 
of their critical sections. Mutual exclusion is crucial to cor
rect execution when multiple threads access shared writ
able data. 

mutual exclusion lock—Variable that indicates if a thread is 
executing its critical section; if the lock indicates that a 
thread is in its critical section, other threads are locked 
out of their own critical sections. 

mutual exclusion primitives—Fundamental operations that are 
needed to implement mutual exclusion: enterMutual Ex
c lus ion ( ) and exi tMutualExclusion() . 

P operation—Operation on a semaphore. If the variable in the 
semaphore is 0, then the P operation blocks the calling 
thread. If the variable is greater than 0, the operation will 
decrement the variable by one and allow the calling 
thread to proceed. 

producer—Thread or process that creates and places data into 
a shared object. 

producer thread—Thread that creates and places data into a 
shared object. 

producer/consumer relationship—Interaction between threads 
that produce data (called producers) and threads that 
consume produced data (called consumers) that illus
trates many of the intricacies of asynchronous concurrent 
execution. 

protected variable (semaphores)—Integer variable storing the 
state of a semaphore that can be accessed and altered only 
by calling P or V on that semaphore. 

read-modify-write (RMW) memory operation—Operation that 
atomically reads the contents of a variable, changes the 
contents (possibly based on what it has read) and writes the 
new value to memory. These operations simplify mutual 
exclusion algorithms by providing atomic operations. 

5.1 Give several reasons why the study of concurrency is 
appropriate and important for students of operating systems. 

5.2 Explain why the following statement is false: When sev
eral threads access shared information in main memory, 

semaphore—Mutual exclusion abstraction that uses two 
atomic operations (P and V) to access a protected integer 
variable that determines if threads may enter their critical 
sections. 

serialize—To control access to a shared variable such that 
only one thread can access the variable at a time; 
another thread can access the variable only after the first 
has finished. 

signal (semaphores)—Operation on a semaphore that incre
ments the value of the semaphore's variable. If threads 
are sleeping on the semaphore, the signal wakes one and 
decrements the semaphore's value by 1. 

swap instruction—Operation that exchanges the values of two 
variables atomically. This instruction simplifies mutual 
exclusion implementations by eliminating the possibility 
that a thread will be preempted while performing a read-
modify-write memory operation. 

termination housekeeping—In the case of mutual exclusion 
algorithms, task performed by the operating system to 
ensure that mutual exclusion is not violated and that 
threads can continue to execute if a thread terminates 
while executing its critical section. 

test-and-set—Instruction implemented in hardware that atom
ically tests the value of a variable and sets the value of the 
variable to true. This instruction simplifies mutual exclu
sion implementations by eliminating the possibility that a 
thread will be preempted while performing a read-mod
ify-write memory operation. 

THE Multiprogramming System—First layered operating sys
tem architecture, created by Edsger Dijkstra. 

V operation—Operation on a semaphore that increments the 
value of the semaphore's variable if there are no threads 
waiting on the semaphore. If threads are waiting, the V 
operation wakes one of these. 

wait (semaphores)—If the variable in the semaphore is 0, then 
the operation blocks the calling thread. If the variable is 
greater than 0, the operation will decrement the variable 
by one and allow the calling thread to proceed. Wait is 
also called the P operation. 

mutual exclusion must be enforced to prevent the production 
of indeterminate results. 

5.3 Dekker's Algorithm, testAndSet, swap, and the sema
phore operations P and V may all be used to enforce mutual 

Exercises 
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exclusion. Compare and contrast these various schemes. Con
sider their respective advantages and disadvantages. 

5.4 When two threads simultaneously attempt enterMutu-
alExclus ion() , we have assumed that the "winner" is 
selected at random. Discuss the ramifications of this assump-
tion. Give a better method. Discuss how such a method might 
be implemented on a multiprocessor system where several 
threads could in fact attempt enterMutualExclusion() at 
precisely the same moment. 

5.5 Comment on the use of mutual exclusion primitives in 
Fig. 5.17. 

5.6 What is the real significance of Dekker's Algorithm? 

5.7 In Dekker's Algorithm (Fig. 5.10), it is possible for T2 to 
leave its critical section, execute its mutual exclusion exit code, 
execute its mutual exclusion entry code, and ultimately reenter 
its critical section before T1 gets the chance it has been waiting 
for to enter its own critical section. Could T2 actually reenter its 
own critical section many times before T1 got a chance? If it 
could, then explain precisely how this could happen and indicate 
if this situation is an example of indefinite postponement. If it 
could not happen, then explain precisely how it is prevented. 

5.8 Explain how the example concurrent program that 
enforces mutual exclusion with testAndSet (Fig. 5.13) could 
lead to indefinite postponement. Indicate why this possibility 
would nevertheless be highly unlikely. Under what circum
stances would it be acceptable to use this mutual exclusion 
technique? Under what circumstances would it be completely 
unacceptable? 

5.9 Perform an exhaustive analysis of Dekker's Algorithm. 
Does it have any weaknesses? If not, explain why. 

5.10 The solution for n-thread mutual exclusion presented by 
Eisenberg and McGuire64 guarantees that any single process 
will enter its critical section within n-1 tries in the worst case. 
Should one hope for better performance with n processes? 

5.11 Mutual exclusion primitives can be implemented with 
busy waiting or with blocking. Discuss the applicability and 
relative merits of each approach. 

5.12 Explain in detail how binary semaphores and binary 
semaphore operations can be implemented in the kernel of an 
operating system. 

5.13 Explain how the disabling and enabling of interrupts is 
useful in implementing mutual exclusion primitives on unipro
cessor systems. 

5.14 Show how to implement semaphore operations with 
testAndSet . 

5.15 Some computers have a swap instruction that, like 
testAndSet, simplifies the implementation of mutual exclu
sion primitives. The swap instruction simply exchanges the val
ues of two booleans and thus requires a temporary holding 
area; the swap instruction is executed indivisibly. 

a. Express swap as a procedure header in a high-level 
language. 

b. Show how your swap procedure (assuming it is exe
cuted indivisibly) may be used to implement the 
enterMutualExclusion() and exitMutualExclu
s ion ( ) primitives. 

1 // perform instructions outside of a c r i t i ca l section 
2 
3 enterMutualExclusion(); 
4 
5 // perform instructions inside a critical section 
6 
7 enterMutualExclusion(); 
8 
9 // perform instructions inside a nested c r i t i ca l section 

10 
11 exitMutualExclusion(); 
12 
13 // perform instructions inside a c r i t i ca l section 
14 
15 exi tMutualExclusion(); 
16 
17 // perform instructions outside of a c r i t i ca l section 

Figure 5.17 | Code for Exercise 5.5. 
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5.16 As mentioned in the text, critical sections that reference 
nonintersecting sets of shared variables may indeed be exe
cuted simultaneously. Suppose the mutual exclusion primitives 
are each modified to include a parameter list of the particular 
shared variables to be referenced in a critical section. 

a. Comment on the use of these new mutual exclusion 
primitives in Fig. 5.18. 

b. Suppose the two threads in Fig. 5.19 operate concur
rently. What are the possible outcomes? 

5.17 In Dekker's Algorithm, what (if anything) would hap
pen if the two assignment statements in the mutual exclusion 
exit code were reversed? 

5.18 Show that Peterson's Algorithm (Fig. 5.11) is bounded 
fair65; i.e., a thread cannot be delayed indefinitely on any delay 
condition that occurs with indefinite repetition. In particular, 

show that any thread waiting to enter its critical section will be 
delayed no longer than the time it takes for the other thread to 
enter and leave its own critical section once. 

5.19 Present a detailed analysis of Peterson's Algorithm to 
demonstrate that it works properly. In particular, show that 
deadlock cannot occur, that indefinite postponement cannot 
occur, and that mutual exclusion is enforced. 

5.20 Show that if a system implementing Lamport's Bakery 
Algorithm does not perform termination housekeeping, the 
system could suffer from indefinite postponement. 

5.21 Based on your understanding of the kernel and interrupt 
handling, describe how semaphore operations may be imple
mented on a uniprocessor system. 

1 // perform instructions outside of a critical section 
2 
3 enterMutualExclusion(a); 
4 
5 // perform instructions inside a critical section 
6 
7 enterMutualExclusion(b); 
8 
9 / / perform i ns t r uc t i ons ins ide a nested c r i t i c a l sect ion 

10 
11 exitMutualExclusion(b); 
12 
13 / / perform ins t ruc t i ons ins ide a c r i t i c a l sect ion 
14 
15 exitMutualExclusion(a); 
16 
17 / / perform ins t ruc t i ons outside of a c r i t i c a l sect ion 

Figure 5.18 | New mutual exclusion primitives for Exercise 5.16(a). 

Thread T1 Thread T2 

1 enterMutualExclusion(a); 
2 
3 enterMutualExclusion(b); 
4 
5 exitMutualExclusion(b); 
6 
7 exitMutualExclusion(a); 

1 enterMutualExclusion(b); 
2 
3 enterMutualExclusion(a); 
4 
5 exitMutualExclusion(a); 
6 
7 exitMutualExclusion(b); 

Figure 5.19 | Code for Exercise 5.16(b). 
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5.22 In the text we implied that busy waiting can be wasteful. 
Is it always wasteful? What alternatives exist? Discuss the pros 
and cons of busy waiting. 

5.23 If many threads attempt a P operation, which one should 
be allowed to proceed? What are the key issues here? What 
criteria might you use to decide which thread should proceed 
on a uniprocessor system? What criteria might you use on a 
multiprocessor system? 

5.24 A system supports only binary semaphores. Show that 
counting semaphores may be simulated on this system by using 
binary semaphores. 

5.25 One requirement in the implementation of a P and V is 
that each of these operations must be executed indivisibly; i.e., 
once started, each operation runs to completion without inter
ruption. Give an example of a simple situation in which, if 

these operations are not executed indivisibly, mutual exclusion 
may not be properly enforced. 

5.26 Suppose the only mutual exclusion primitive provided to 
user-level threads is a command that disables interrupts for the 
next 32 instructions, then reenables interrupts. Explain the 
benefits and drawbacks of this approach. 

5.27 How could cooperating threads implement mutual 
exclusion primitives in the system mentioned in the previous 
exercise? 

5.28 Does the code in Fig. 5.20 provide mutual exclusion? If 
not, show an interleaving in which mutual exclusion is not pre
served? 

5.29 Name one other mutual exclusion constraint the algo
rithm in Fig. 5.20 violates. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

System: 

int turn = 1; 
boolean t1WantsToEnter = false; 
boolean t2WantsToEnter = false; 

startThreads(); // initialize and launch both threads 

Thread T1: 

void main() 

{ 
while ( !done ) 

{ 
t1WantsToEnter = true; 

while ( turn != 1 ) 

{ 
while ( t2WantsToEnter ); 

turn = 1; 

} // end while 

// critical section code 

t1WantsToEnter = false; 

Figure 5.20 | Algorithm for Exercise 5.28 (Part 1 of 2.) 



240 Asynchronous Concurrent Execution 

28 // code outside critical section 
29 } // end outer while 
30 } // end Thread T1 
31 

32 Thread T2: 
33 
34 void main() 
35 { 
36 while ( !done ) 
37 { 
38 t2WantsToEnter = true; 
39 
40 while ( turn != 2 ) 

41 { 
42 while ( t1wantsToEnter ); 
43 
44 turn = 2; 
45 } // end while 
46 

47 // critical section code 
48 
49 t2WantsToEnter = false; 
50 
51 // code outside critical section 
52 } // end outer while 
53 } // end Thread T2 

Figure 5.20 | AAlgorithm for Exercise 5.28. (Part 2 of 2.) 

Suggested Projects 
5.30 Prepare a research paper on Lamport's "fast mutual 
exclusion" algorithm. How does it work? Where is it used? 

5.31 Research mutual exclusion in distributed systems. What 
research is currently being done in that field? 

5.32 Research mutual exclusion multiprocessor systems. Why 
might this be easier than mutual exclusion in distributed sys
tems? 

5.33 Many mutual exclusion algorithms are verified using 
computer programs. Research how these programs manage to 
verify that a certain algorithm is correct. 

5.34 Dijkstra is probably best known for his shortest-path 
algorithm. However, he also contributed greatly in other fields 
of computer science. For example, we know from the text that 
he invented semaphores. Prepare a biography of E. W Dijk
stra and the important contributions he made to the field of 
computer science. See, for example, www.cs.utexas.edu/ 
users/EWD/. 

5.35 Research the Ada concurrency primitives. How is 
mutual exclusion guaranteed in this language? 

Suggested Simulations 
5.36 Implement semaphores in Java. Then use them to pro
vide synchronization between two threads in a producer/con

sumer program. 

http://www.cs.utexas.edu/users/EWD/
http://www.cs.utexas.edu/users/EWD/
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Recommended Reading 
The problem of process synchronization was identified early 

and often in the literature.66, 67, 68 The related problem of 

mutual exclusion has been studied in detail, and many 

resources are available that present solutions.69, 70, 71 Dijkstra 

first described the problem on mutual exclusion, identified 

critical sections and applied Dekker's Algorithm to solve the 

problem.72 Subsequently, Peterson73 and Lamport74 presented 

novel approaches to implementing software mutual exclusion, 

both of which simplified code by introducing a more structured 

approach. Though Dijkstra first presented a solution to n-

thread mutual exclusion, Knuth,75 Eisenberg and McGuire76, 

Lamport,77 Anderson and Kim78 and others have continued to 

improve on the original algorithm. Dijkstra also introduced 

semaphores in his seminal paper on mutual exclusion.79 In 

response, researchers developed techniques to improve upon 

the concept of semaphores.80, 81, 82, 83 The bibliography for this 

chapter is located on our Web site at www.dentel.com/books/ 

os3e/Bibliography.pdf. 
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High thoughts must have high language. 
—Aristophanes— 

As writers become more numerous, it is natural for readers to become more indolent. 
—Oliver Goldsmith— 

When the last reader reads no more. 
—Oliver Wendell Holmes— 

The first precept was never to accept a thing as true until I knew it as such witkout a sin-

gle doubt. 
—Rene Descartes-

This shows how much easier it is to be critical than to be correct. 
—Benjamin Disraeli— 



Chapter 6 

Concurrent Programming 

After reading this chapter, you should understand: 

how monitors synchronize access to data. 

how condition variables are used with monitors. 

solutions for classic problems in concurrent programming such as readers 

and writers and circular buffer. 

Java monitors. 

remote procedure calls. 
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6.1 Introduction 
In the last chapter we presented Dekker's Algorithm and Peterson's Algorithm for 
the implementation of mutual exclusion primitives, and we studied Dijkstra's sema
phores. These mechanisms have a number of weaknesses. They are so primitive that 
it is difficult to use them to express solutions to more complex concurrency prob
lems, and their presence in concurrent programs increases the already difficult 
problem of proving program correctness. Their malicious or accidental misuse 
could lead to subtle bugs that might corrupt the operation of a concurrent system. 

The semaphore approach, in particular, has many weaknesses.1 If a P opera
tion is omitted, then mutual exclusion is not enforced. If a V operation is omitted, 
then threads waiting because of P operations could become deadlocked. Once the 
P operation begins, the thread cannol back out and take an alternate course of 
action while the semaphore remains in use. A thread may wait on only one sema
phore at a time: this could lead to deadlock in resource-allocation situations. For 
example, two threads may each hold a resource that the other thread is waiting to 
use. This is the classic case of two-thread deadlock, which we will discuss in 
Chapter 7, Deadlock and Indefinite Postponement. 

To combat this problem, researchers have developed higher-level mutual exclu
sion constructs that simplify solving complex concurrency problems, facilitate proving 
program correctness and are difficult for a programmer to misuse or corrupt. 

Concurrent programming is much more difficult than sequential program
ming. Concurrent programs are harder to write, debug, modify, and prove correct 
(see the Anecdote. Exhaustive Testing Is Impossible). So whv is the programming 
community so intent on concurrent programming? 

There has been a surge of interest in concurrent programming languages 
because they enable us to express more natural solutions to problems that are 
inherently parallel. Furthermore, the true hardware parallelism possible with multi
processors (see Chapter I?. Multiprocessor Management) and distributed systems 
(sec Chapter 17. Introduction to Distributed Systems) can only be harnessed 
through concurrent programming. The potential applications for concurrent pro
gramming are numerous. There has been much discussion on concurrency in com
puter networks.2 distributed systems3 , 5, 6, 7 and real-time systems.8, 9, 10 Certainly, 
operating systems themselves are important examples of concurrent systems. So are 
air traffic control systems, mission-critical systems, and real-time process control 
systems (such as those that control gasoline refineries, chemical manufacturing 
plants and food processing plants). It is widely believed that human vision is an 
inherently parallel task. Weather forecasting will almost certainly lake great strides 
forward when massive parallelism reaches the scale of billions or even trillions of 
concurrent processors. 

In this chapter, we consider high-level constructs and languages for concur
rent programming. In particular, we investigate monitors, condition variables, inter
process communication using remote procedure calls and the Java programming 
language's concurrent programming facilities. The pseudocode examples in 
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Section 6.2. Monitors, use a C-like syntax: the rest of the chapter uses complete 

Java programs. The chapter concludes with a lengthy literature section indicating 

the richness of concurrent programming as a research area. 

What approach should implementors take when building concurrent systems 

todav? Prior to the 1990s, high-level concurrent programming languages included 

to Ada.11 Concurrent Pascal.12, 13 Distributed Processes,14 Concurrent C.15 Commu

nicating Sequential Processes.16, 17 Modula-2.18, 19, 20 VAL21 and *MOD (for distrib

uted programming).22 With the exception of Ada. these languages were generally 

Testing is a hard problem. As you tester concludes that the software has been "thoroughly" tested, it 

may study in courses on automata is simply passing its input through could still contain "lurking bugs" 

theory, a computer may be to its output and seems to be that may not surface until long 

viewed as a finite state machine. working fine. But suppose the after the system has been 

How many states can a computer software actually contains a deployed. This places a huge bur-

have? One possible view is that if counter of the number of times it den on the shoulders of operating 

the machine stores n bits, then has been called, and when the systems developers. When can we 

the number of states is 2 raised to counter reaches a certain large truly say that a system is ready for 

the nth power. A machine that value, it performs some other deployment? Obviously, this deci-

has even a small main memory— (possibly devastating) action. If in sion depends on the nature of the 

perhaps tens of megabytes— testing that software, it is called system. Is it a mission-critical or 

could have far more states than fewer than that number of times, business-critical system? Are 

there are atoms in the universe! then that test case will not occur human lives at stake? Is it a special-

Consider this experiment: A com- and the software "problem" will purpose system whose use will be 

plex piece of software takes a 1 or not be detected. carefully confined to a narrow, 

0 as input and yields a 1 or 0 as Dijkstra emphasized that controlled audience, or is it a gen-

output. Each time the tester "testing reveals the presence of eral-purpose system that could be 

inputs a 1 for a large number of bugs, but not their absence." Since employed in a great diversity of 

test cases, the software outputs a it is simply not possible to exhaus- applications, many of which can-

1; each time the tester inputs a 0, tively test every system we build, not be determined when the sys-

the software outputs a 0. The this means that even after a system tern is under development. 

Lesson to operating systems designers: Since the systems you build cannot possibly be tested exhaustively, 

you must "design for testability," minimizing the chance of bugs and providing testing capabilities to help 

system testers certify that your system is ready for deployment. 

Anecdote 

Exhaustive Testing Is Impossible 
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developed by academics for research purposes and tend to lack many of the fea
tures needed to implement real systems. Today, many popular programming lan
guages support concurrency, including Java. C#. Visual C++ .NET. Visual Basic 
.NET and Python. Concurrent programming presents opportunities for computer 
science students as they prepare for careers in industry, where few people are expe
rienced in this complex subject. 

Self Review 
1. Why have researchers sought higher-level mutual exclusion constructs? 
2. What notable high-level concurrent programming language developed prior to the 1990s 

did indeed include the features needed to implement real systems? 

Ans: 1) These constructs facilitate proving program correctness and are difficult to misuse 
or corrupt. 2) Ada. 

6.2 Monitors 

A monitor is an object that contains both the data and procedures needed to per
form allocation of a particular serially reusable shared resource or group of serially 
reusable shared resources. The notion of a monitor was suggested by Dijkstra.23 

then by Brinch Hansen,24, 25 then refined by Hoare.26 There has been much discus
sion in the literature on this important topic.27, 28, 29, 30, 31, 32, 33, 34, 35 Monitors have 
become an important software construct —in fact, the Java programming language 
makes extensive use of monitors to implement mutual exclusion. 

To accomplish resource allocation using monitors, a thread must call a moni-
tor entry routine. Many threads may want to enter the monitor at the 

same time, but mutual exclusion is rigidly enforced at the monitor boundary —only one 
thread at a time is allowed to enter. A thread that tries to enter the monitor when it is in 
use is made to wait by the monitor. Because the monitor guarantees mutual exclu
sion, concurrency problems (such as indeterminate outcomes) are avoided. 

Data inside a monitor may be either global to all routines within the monitor 
or local to a specific routine. Monitor data is accessible only within the monitor: 
there is no way for threads outside the monitor to access monitor data. This is a 
form of information hiding a software architectural technique that improves mod
ularity and facilitates the development of more reliable software systems (see the 
Operating Svstems Thinking feature. Information Hiding). 

If a thread calls a monitor entry routine while no other threads are executing 
inside the monitor, the thread acquires a lock on the monitor and enters it. While 
the thread is in the monitor, other threads may not enter the monitor to acquire the 
resource. If a thread calls a monitor entry routine while the monitor is locked, the 
monitor makes the calling thread wait outside the monitor until the lock on the 
monitor is released (i.e.. when a thread is no longer executing inside the monitor). 
Once inside the monitor, a thread might need to wait because the resource has been 
allocated to another thread. Because mutual exclusion is enforced at the boundary 
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of the monitory, a thread waiting for a resource must do so outside the monitor to 

allow another thread into the monitor to return the resource. 

Eventually, the thread that has the resource will call a monitor entry routine 

to release the resource. This routine could merely free the resource and wait for 

another requesting thread to arrive. But there may be threads waiting for the 

resource, so the monitor entry routine calls signal to allow one of the waiting 

threads to enter the monitor and acquire the resource. If a thread signals the return 

(also called the release) of the resource, and no threads are waiting, then the signal 

has no effect (but. of course, the monitor has recaptured the resource, which it can 

now allocate to arriving threads). To avoid indefinite postponement, a monitor 

gives a higher priority to waiting threads than to newly arriving ones. 

1. Why must a thread wait for a resource outside a monitor? 
2. How does a monitor prevent multiple threads from concurrently executing inside the 

monitor? 

Ans: 1) If the thread were to wait inside a monitor for a resource, no other threads could 
enter the monitor to return the resource. As we will see in Chapter 7. Deadlock and 
Indefinite Postponement, this could cause all the threads waiting for the resource to dead
lock. 2) The monitor enforces mutual exclusion at its border using the kinds of techniques 
discussed in Chapter 5. Asynchronous Concurrent Execution. 

Self Review 

Operating Systems Thinking 

Information hiding is one of the ues are expected. Information Today's operating systems argu-

most fundamental techniques of hiding has many advantages. It ably have tens of thousands (or 

software engineering. It is imple- makes the caller's job easier. It more) components that are con-

mented in many ways in operat- does not need to be familiar wi th stantly being evolved to adapt to 

ing systems. When one function the (possibly enormous) complex- new hardware and software 

or method calls another, the caller ity of how the callee is imple- trends and tuned to perform bet-

does not need to know the details mented. It also makes it easier to ter. Information hiding places a 

of how the callee is implemented; modify systems—a called func- crucial role in making these enor-

the caller merely has to know the t ion can usually be replaced easily mous and highly modular systems 

interface to the callee—what wi thout requiring changes in the understandable and maintain-

arguments must be passed and in caller, as long as the interface to able. 

what order, and what return val- the callee remains the same. 

Information Hiding 



Monitors implement both mutual exclusion and synchronization between threads 
of execution. A thread currently inside a monitor may need to wait outside the 
monitor until another thread performs an action inside the monitor. For example, in 
the producer/consumer relationship, the producer finding that the consumer still 
has not read the value in a single shared buffer must wait outside the monitor gov
erning the shared buffer so that the consumer can consume the buffer contents. 
Similarly, a consumer finding that the shared buffer is empty must wait outside the 
monitor until the producer fills the buffer. A thread inside a monitor uses a condition 

variable to wait on a condition outside the monitor. A monitor assicuates a sep-
arate condition variable with each distinct situation that might cause a thread to 
have to wait. We define the wait and signal operations as: 

wait (condition Variable) 
signal (conditionVariable) 

Condition variables are different from '"conventional" variables. Every condi
tion variable has an associated queue. A thread calling wait on a particular condi
tion variable is placed into the queue associated with that condition variable (while 
in that queue, the thread is outside the monitor, so that another thread can eventu
ally enter the monitor and call s ignal ) . A thread calling signal on a particular 
condition variable causes a thread waiting on that condition variable to be removed 
from the queue associated with it and to reenter the monitor. We may assume a 
first-in-first-out (FIFO) queue discipline, although priority schemes can be useful in 
certain sit nations.36'37 

Before that thread can reenter the monitor, the thread calling signal must 
first exit the monitor. Brinch Hansen (see the Biographical Note. Per Brinch 
Hansen), noting that many signal statements immediately preceded a re turn 
statement (i.e.. the thread exits the monitor), proposed a signal-and-exit monitor, in 
which a thread immediately exits the monitor upon signaling.38 The monitors in the 
following examples are signal-and-cxit monitors. Alternatively, a signal-and-continue 

monitor allows a thread inside the monitor to signal that the monitor will soon 
become available, but still maintain a lock on the monitor until the thread exits the 
monitor. A thread can exit the monitor by waiting on a condition variable or bv 
completing execution of the code protected bv the monitor. The thread released bv 
a signal-and-continue monitor must wait until the signalling thread exits the moni
tor. As we discuss in Section 6.3. Java Monitors, the Java programming language 
implements signal-and-continue monitors. 

1. What problem might occur if a priority queue (instead of a FIFO queue) were used for a 
condition variable? 

2. (T/F) Each monitor contains exactly one condition variable. 

Self Review 

6.2 Monitors 251 

6.2.1 Condition Variables 
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Ans: 1) A lower-priority thread could be indefinitely postponed by a stream of higher-prior-
ity threads calling wait in the monitor enter the priority queue. 2) False. A monitor contains 
a separate condition variable for each distinct situation that might cause a thread to call wait 
in the monitor. 

6.2.2 Simple Resource Allocation with Monitors 

Suppose several threads are contending for a resource that requires exclusive 

access. A simple monitor for handling the allocation and deallocation of such a 

resource is shown in Fig. 6.1. 

Line 4 declares state variable inUse which keeps track of whether the 

resource is in use or not. Line 5 declares a condition variable that is waited on by a 

thread finding the resource unavailable and signaled by a thread returning the 

resource (and thus making it available). Lines 7-17 and 19-25 declare two monitor 

entry routines. To indicate that these are monitor entry routines (rather than rou

tines private to the monitor), we prefix each routine with the pseudocode keyword 

monitorEntry. 

Biographical Note 

Per Brinch Hansen 

Per Brinch Hansen has devoted his Hansen developed the RC 4000 allowed only sequential program-

research to concurrent program- Multiprogramming System for the ming), for users to define access 

ming, which is the technique of RC (RegneCentralen) 4000 com- controls on shared data so that 

designing software that has paral- puter. This operating system was programs writ ten in Concurrent 

lel paths of execution. He received the first to separate system func- Pascal could be checked at com-

his Masters in Electrical Engineer- tions into a kernel module.40 pile time for sharing violations.42 

ing from the Technical University Brinch Hansen introduced As a demonstration of Concurrent 

of Denmark in 1962 and has been the concept of the monitor con- Pascal, Brinch Hansen used it to 

a professor at the California Insti- struct—an object that encapsu- write Solo, a simple operating 

tute of Technology, the University lates both shared data and the system that was secure (meaning 

of Southern California and the procedures that operate on that that errors would be detected by 

University of Copenhagen, Den- shared data—in his book, Operat- the system instead of crashing the 

mark. He is currently a professor ing Systems Principles, published program—not the more common 

of Electrical Engineering and by Prentice Hall in 1973 (see meaning of safe from attacks) 

Computer Science at Syracuse Uni- Section 6.2, Monitors).41 He incor- wi thout using hardware 

versity.39 porated monitors into his Concur- support.43, 44, 45 He later designed 

While working at the Regne- rent Pascal language (an the concurrent programming lan-

centralen, Copenhagen, Brinch extension of Pascal, which guage Joyce.46 



1 // Fig. 6.1: Resource allocator monitor 
2 
3 // monitor initialization (performed only once) 

4 boolean inUse = false; // simple state variable 
5 Condit ion ava i l ab le ; // condition variable 
6 
7 // request resource 
8 monitorEntry void getResource() 

9 { 

10 if ( i n U s e ) // is resource in use? 

11 { 
1 2 w a i t ( a v a i l a b l e ) ; / / w a i t u n t i l a v a i l a b l e i s s i g n a l l e d 
13 } // end if 
14 

15 inUse = true; // indicates resource is now in use 
16 
17 } // end getResource 
18 
19 // return resource 
20 monitorEntry void returnResource() 

21 { 
2 2 inUse = false; // indicate resource is not in use 
23 signal( available ); // signal a waiting thread to process 
24 
2 5 } // end returnResource 

F i g u r e 6.1 | Simple resource allocation with a monitor in pseudocode. 

Line 8 begins method getResource. which a thread calls to request the 
resource associated with the condition variable ava i l ab le . Line 10 tests the state 
variable inUse to see whether the resource is in use. If this value is t rue , meaning 
that the resource has been allocated to another thread, the calling thread must wai t 
on condition variable a v a i l a b l e (line 12). After calling wait, the thread exits the 
monitor and is placed in the queue associated with the condition variable aval 1 -
able. As we will see. this allows the thread that is using the resource to enter the 
monitor and release the resource by signaling condition variable ava i l ab le . When 
the resource is not in use. the requesting thread executes line 15. which sets inUse 
to t rue , providing the thread exclusive access to the resource. 

Line 20 begins method returnResource. which a thread calls to release the 
resource. Line 22 sets the value of inUse to f a l s e to indicate that the resource is no 
longer in use and can be allocated to another thread. Line 23 calls signal on condi-
tion variable ava i l ab l e to alert any waiting thread that the resource is now free. If 
there are any threads waiting in the queue associated with ava i l ab l e (as a result of 
executing line 12). the next waiting thread reenters the monitor and executes line 
15. obtaining exclusive access to the resource. If there are no threads waiting on 
avai lable , s ignal has no effect. 

6.2 Monitors 253 
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The beauty of the monitor in Fig. 6.1 is that it performs exactly as a binary sema
phore: method getResource acts as the P operation: method returnResource acts 
as the V operation. Because the simple one-resource monitor can be used to imple
ment semaphores, monitors are at least as powerful as semaphores. Note that the 
monitor initialization (lines 3-5) is performed before threads begin using the monitor; 
in this case inUse is set to false to indicate that the resource is initially available. 

1. What would happen if returnResource() did not signal the condition variable 
a v a l a b l e ? 

2. What purpose does the keyword monitorEntry serve? 

Ans: 1) All of the threads waiting on condition variable a v a l a b l e would deadlock — they 
will wait forever. 2) Keyword monitorEntry distinguishes between monitor entry routines, 
which are accessible by all threads and can be executed by only one thread at a time, and pri
vate monitor methods, which are accessible only within the monitor. 

Self Review 

6.2.3 Monitor Example: Circular Buffer 
In this section we discuss the circular buffer (sometimes called the bounded buffer. ) 
and how it is useful in situations in which a producer thread passes data to a con
sumer thread. Because the producer and consumer access the same data and may 
operate at different rates, synchronization between the two threads is essential. 

We can use an array to implement the circular buffer. In the circular buffer 
implementation of the solution to the producer/consumer problem, the producer 
deposits data in the successive elements of the array. The consumer removes them 
in the order in which they were deposited (FIFO). The producer can be several 
items ahead of the consumer. Eventually, the producer fills the last element of the 
array. When it produces more data, it must "wrap around" and again begin deposit
ing data in the first element of the array (assuming, of course, that the consumer has 
removed the data previously put there by the producer). The array effectively 
closes in a circle, hence the term circular buffer. 

Because of the fixed size of the circular buffer, the producer will occasionally 
find all the array elements full: in this case the producer must wait until the consumer 
empties an array element. Similarly, there will be times when the consume]' wants to 
consume, but the array will be empty: in this case the consumer must wait until the 
producer deposits data into an array element. The monitor in Fig. 6.2 (based on the 
example presented by Hoare)47 implements a circular buffer and the appropriate syn
chronization mechanisms to handle the producer/consumer relationship. 

1 // Fig. 6.2: Circular buffer monitor 
2 

Figure 6.2 | Monitor pseudocode implementation of a circular buffer. (Part 1 of 
2.) 



6.2 Monitors 255 

3 char circularBuffer[] = new char[ BUFFER_SIZE ],; // buffer 
4 int writerPosition = 0; // next slot to write to 
5 int readerPosition = 0; // next slot to read from 
6 int occupiedSTots = 0; // number of slots with data 
7 Condition hasData; // condition variable 
8 Condition hasSpace; // condition variable 
9 
10 // monitor entry called by producer to write data 
11 monitorEntry void putChar( char slotData ) 
12 { 
13 // wait on condition variable hasSpace if buffer is f u l l 
14 if ( occupiedSTots == BUFFER_SIZE ) 
15 { 
16 wait( hasSpace ); // wait until hasSpace is signaled 
17 } // end if 
18 
19 // write character to buffer 
20 circularBuffer[ writerPosition ] = slotData; 
21 ++occupiedSlots; // one more slot has data 
22 writerPosition = (writerPosition + 1) % BUFFER_SIZE; 
23 signal( hasData ); // signal that data is available 
24 } // end putChar 
25 
26 // monitor entry called by consumer to read data 
27 monitorEntry void getChar( outputParameter slotData ) 
28 { 
29 // wait on condition variable hasData if the buffer is empty 
30 if ( occupiedSlots == 0 ) 

31 { 
32 wait( hasData ); // wait until hasData is signaled 
33 } // end if 
34 
35 // read character from buffer into output parameter slotData 
36 slotData = circularBuffer[ readPosition ]; 
37 occupiedSlots--; // one fewer slots has data 
38 readerPosition = (readerPosition + 1) % BUFFER_SIZE; 
39 signal( hasSpace ); // signal that character has been read 
40 } // end getChar 

Figure 6.2 | Monitor pseudocode implementation of a circular buffer. (Part 2 of 
2.) 

We shall assume that the array circularBuffer contains BUFFER_SIZE 
entries consisting of one character (line 3). Variables writerPosition and read-
erPosition (lines 4-5) indicate in which slot of the circular buffer the next item is 
to be placed by a producer and from which slot of the circular buffer the next item 
is to be removed by a consumer, respectively. 
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A producer adds data to the buffer by calling method putChar (lines 10-24). 
Line 14 tests if the buffer is full. If it is, the producer waits on the condition variable 
hasSpace (line 16). When it does this, the producer leaves the monitor and waits in 
the queue associated with the condition variable hasSpace. As we will soon see, 
this allows a consumer to enter the monitor, consume data in the circular buffer and 
signal condition variable hasSpace.This enables the producer to continue; it writes 
the data to the buffer (line 20), increments the number of occupied slots (line 21) 
and updates the w r i t e r P o s i t i o n variable (line 22). Finally, line 23 signals condi
tion variable hasData to enable a waiting consumer, if there is one, to proceed. 

A consumer reads data from the buffer by calling method getChar (lines 26-
40). Note the use of the output parameter s lotData in the pseudocode (indicated by 
keyword outputParameter in line 27). Many languages support such a capability. 
Data written to the output parameter is immediately available in the caller's argu
ment. Line 30 tests if the buffer is empty. If it is, the consumer waits on condition vari
able hasData (line 32). When the consumer can continue, it reads the data from the 
buffer directly into the output parameter s lo tData (line 36), immediately making 
the data available in the caller's argument. The consumer then decrements the num
ber of occupied slots (line 37) and updates readerPosi ti on (line 38). Line 39 signals 
condition variable hasSpace to enable a waiting producer, if there is one, to proceed. 

The beauty of the circular buffer is that it allows the producer to "get ahead" 
of the consumer. The producer can create a new value without waiting for the con-
sumer to read the previous value (as is necessary in the single buffer producer/con-
sumer relationship). These extra values are placed in the empty slots of the circular 
buffer. The consumer will still read the values in the correct order. The circular 
buffer reduces the amount of time the producer must wait before producing 
another value, thus improving system performance. The larger the circular buffer, 
the more values the producer can produce before it must wait for the consumer to 
empty the buffer. If the producer and consumer work at approximately the same 
speed, using the circular buffer can increase the average speed of the application. If 
there is a difference in the average speeds of the threads, this advantage is nullified. 
For example, if the producer works consistently faster than the consumer, the circu-
lar buffer will quickly become full and stay full, forcing the producer to wait each 
time for the consumer to free up space. Similarly, if the consumer works consis-
tently faster than the producer, then the consumer will typically find the circular 
buffer empty and will almost always have to wait for the producer to create a value. 
In these last two cases, using the circular buffer will simply waste memory rather 
than increasing the speed of the application. 

Operating systems can use a circular buffer to implement spooling control 
One common example of spooling occurs when a thread generates lines to be 
printed on a relatively slow output device such as a printer. Because the thread can 
produce the lines much faster than the printer can print them, and because we would 
like the thread to be able to complete its execution as quickly as possible, the 
thread's output lines can be directed to a circular buffer. The circular buffer may be 
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in primary storage, or more likely on disk. The thread creating the lines to be printed 
is often called a spooler. Another thread reads the lines from the c i rcu la rBuf fe r 
and writes them to the printer. But this second thread, often called a despooler, runs 
at the slower, speed of the printer. The c i rcu la rBuf fe r has sufficient storage to 
"take up the slack" resulting from the mismatch in the speeds of the spooler and 

despooler threads. Of course, we assume the system does not indefinitely generate 
print lines faster than the printer can print them; if it did, the buffer would always be 
full and would be of little value in "smoothing" the printing operation. 

Self Review 

1. Name the two situations in which a circular buffer is less efficient than a single-value 
buffer in the producer/consumer relationship. 

2. Would this monitor support one producer and two consumers such that each element that 
the producer produces is consumed by exactly one consumer? Why or why not? 

Ans: 1) If the difference in the average speeds of the producer and consumer is significant, 
the advantage of the circular buffer is nullified. If the producer consistently ran faster than 
the consumer, it would almost always find the buffer full and would have to wait each time 
for a consumer to consume. If the consumer consistently ran faster than the producer, it 

would almost always find the buffer empty and would have to wait each time for a producer 
to produce. In these cases, a single-value buffer can be used without loss of performance. 2) 

Yes. Mutual exclusion would still be enforced by the monitor. The producer would still pro-
duce values as normal. Only one consumer would read each piece of data from the producer. 

6.2.4 Monitor Example: Readers and Writers 
In computer systems, it is common to have some consumer threads (called readers) 
that read data and producer threads (called writers) that write it. For example, in an 
airline reservation system there may be many more readers than writers—many 
inquiries will be made against the database of available flight information before 
the customer actually selects and commits to a particular seat on a particular flight. 

Because readers do not change the contents of the database, many readers 
may access the database at once. But a writer can modify the data, so it must have 
exclusive access. When a writer is active, no other readers or writers may be active. 
This exclusion needs to be enforced only at the record level. It is not necessary to 
grant a writer exclusive access to the entire database —doing so could dramatically 
hurt performance. 

The problem of designing a concurrent program to control access of readers 
and writers to a database was first posed and solved by Courtois, Heymans, and Par-
nas.48 The solution in Fig. 6.3 is based on that developed by Hoare.49 

The monitor in Figure 6.3 may be used to control access to an entire database, 
a subset of the database consisting of many or few records, or even a single record. 
In any of these cases, the following discussion applies. Only one writer may be 
active at a time; when a writer is active, the boolean variable wri teLock (line 4) is 
true. No readers may be active when a writer is active.The integer variable, read
ers (line 3), indicates the number of active readers. When the number of readers is 
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1 // Fig. 6.3: Readers/writers problem 
2 
3 int readers = 0; // number of readers 
4 boolean writeLock = false; // true if a writer is writing 
5 Condition canWrite; // condition variable 
6 Condition canRead; // condition variable 
7 
8 // monitor entry called before performing read 
9 monitorEntry void beginRead() 
10 { 
11 // wait outside monitor i f wri ter is currently wri t ing or i f 
12 // writers are currently waiting to write 
13 if ( writeLock || queue( canWrite ) ) 
14 { 
15 wait( canRead ); // wait until reading is allowed 
16 } // end if 
17 
18 ++readers; // there is another reader 
19 
20 signal( canRead ); // allow waiting readers to proceed 
21 } // end beginRead 
22 
23 // monitor entry called after reading 
24 monitorEntry void endReadO 
25 { 
26 --readers; // there are one fewer readers 
27 
28 //if no more readers are reading, allow a writer to write 
29 if ( readers == 0 ) 
30 { 
31 signal ( canWrite ); // allow a writer to proceed 
32 } // end if 
33 
34 } // end endRead 
35 
36 // monitor entry called before performing write 
37 monitorEntry void beginWrite() 
38 { 
39 / / wai t i f readers are reading or i f a w r i t e r is w r i t i n g 
40 if ( readers > 0 || writeLock ) 
41 { 
42 wait( canWrite ) ; / / wai t u n t i l w r i t i n g is allowed 
43 } / / end i f 
44 

Figure 6.3 | Monitor pseudocode for solving the readers and writers problem. 
(Part 1 of 2.) 
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writeLock = true; // "lock out all readers and writers 
} // end beginWrite 

// monitor entry called after performing write 
monitorEntry void endWrite() 
{ 

writeLock = false; // release lock 

// if a reader is waiting to enter, signal a reader 
if ( queue( canRead ) ) 
{ 

signal( canRead ); // cascade in waiting readers 
} // end if 
else // signal a writer if no readers are waiting 
{ 

signal( canWrite ); // one waiting writer can proceed 
} // end else 

} // end endWrite 

45 
46 
47 
48 

49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

Figure 6.3 | Monitor pseudocode for solving the readers and Writers problem. 
(Part 2 of 2.) 

reduced to zero (line 29), then one waiting writer (if there is one) becomes active 
(line 31). If a new reader cannot proceed (line 13), it waits on the condition variable 
canRead (line 15). If a new writer cannot proceed (line 40), it waits on the condition 
variable canWrite (line 42). 

When a reader wishes to read, it calls monitor entry beginRead (lines 8-21); a 
reader that has finished calls endRead (lines 23-34). In beginRead, a new reader can 
proceed as long as no thread is writing and no writer thread is waiting to write (line 
13). The latter condition is important for preventing indefinite postponement of wait
ing writers; it is tested by using the boolean function, queue, which determines 
whether or not threads are waiting on the condition variable specified in its argument. 
Note that procedure begi nRead ends by signaling canRead (line 20) to allow another 
waiting reader to begin reading. This causes the next reader in the queue of waiting 
readers to become active and, in turn, signal the next waiting reader to proceed. This 
"chain reaction," also called a cascade, will continue until all waiting readers have 
become active. While this chaining is progressing, all arriving threads are forced to 
wait because the monitor observes the rule that signaled threads are serviced before 
arriving threads. If arriving readers were allowed to proceed, then a continuous 
stream of arriving readers would cause indefinite postponement of waiting writers. 
Since the readers do not interfere with one another and can be run in parallel on mul
tiprocessor systems, this is an efficient way to service these threads. 

When a thread is done reading, it calls monitor entry endRead (lines 23-34), 
which decrements the number of readers by 1 (line 26). Eventually, this decrement
ing causes the number of readers to become zero, at which point the thread signals 
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canWrite (line 31) to allow a waiting writer, if there is one, to proceed (preventing 
indefinite postponement of waiting writers). 

When a thread wishes to write, it calls monitor entry beginWrite (lines 36-
46). Because a writer must have exclusive access, if there are any readers or if there 
is an active writer (line 40), the new writer must wait on condition variable can-
Write (line 42). When the writer is able to proceed (because canWrite is signaled 
in line 31 or line 60), writeLock is set to t r u e (line 45). This keeps out any other 
readers and writers. 

When a writer finishes, it calls monitor entry endWrite (lines 48-63).This pro
cedure sets writeLock to f a l s e (line 51) so that either readers or another writer 
can become active. The monitor then must signal another waiting thread to proceed 
(lines 53-61). Should it give preference to a waiting reader or a waiting writer? If it 
gives preference to a waiting writer, then it will be possible for a steady stream of 
incoming writers to cause the indefinite postponement of waiting readers. There
fore, as a writer finishes, it first checks if there is a waiting reader (line 54). If so. 
then can Read is signaled (line 56) and the waiting reader proceeds (and this, of 
course, cascades in all waiting readers). If there is no waiting reader, then canWrite 
is signaled (line 60) and a waiting writer is allowed to proceed. 

Self Review 

1. Figure 6.3 cascades in waiting readers, but never cascades in waiting writers. Why? 
2. What safeguard is there against a steady stream of readers indefinitely postponing a 

writer? 

Ans: 1) Readers don't interfere with one another, so many readers can safely read at once. 
Each writer, however, must have exclusive access, or indeterminate results could occur. 2) In 
monitory entry beginRead, if there are any writers waiting to write (line 13), then a thread 
that wishes to read must wait on condition variable canRead (line 15). 

In the following sections, we present complete, working Java multithreaded solu
tions to common concurrent programming problems. Monitors are associated with 
every object created in Java. Monitors are also the primary mechanism to provide 
mutual exclusion and synchronization in multithreaded Java applications. The key
word synchronized imposes mutual exclusion on an object in Java. In this section, 
we explain how Java monitors differ from the pseudocode monitors discussed in the 
previous section. 

When a thread attempts to execute a method protected by a Java monitor 
(i.e., the method is declared synchronized), it must first enter that monitor's entry 
set (commonly referred to as an entry queue), which is a queue of threads awaiting 
entry into the monitor. If there is no contention for entry into the monitor, a thread 
will immediately enter the monitor. If a thread is already inside the monitor, other 
threads must remain in the entry set until the monitor becomes available. 

6.3 Java Monitors 
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Java monitors are typically referred to as signal-and-continue monitors.50 

Recall that a signal-and-continue monitor allows a thread inside the monitor to sig-
nal that the monitor will soon become available, but still maintain a lock on the 

monitor until it exits. A thread can exit the monitor by waiting on a condition vari-
able or by completing execution of the code protected by the monitor. 

A thread, executing in a monitor, that must wait on a condition variable issues 
the wait call. The wait method causes the thread to release the lock on the monitor 

and wait on an unnamed condition variable. After calling wai t, a thread is placed in 
the wait set (also commonly referred to as the wait queue), a queue of threads wait-

ing to reenter the monitor for the object. Threads remain in the wait set until sig
ed (notified) by another thread. Because the condition variable is implicit in 
Java. a thread may be signaled, reenter the monitor and find that the condition on 
which it waited has not been met. Consequently, a thread may be signaled several 
times before the condition on which it is waiting is met. 

Threads issue signals by calling method notify or notifyAll. The notify 
method wakes a single thread in the wait set. The algorithm that determines which 
thread will enter the monitor next varies, depending on the Java virtual machine 
(JVM) implementation. As a result, the programmer cannot rely on a particular 

queuing discipline when noti f y is called. 
Another pitfall of the notify method is that the order in which some JVM 

implementations remove threads from the entry and wait sets might introduce 
lengthy service delays for particular threads in these sets—creating the possibility 
of indefinite postponement. As a result, if more than two threads access a monitor, 

it is best to use the notifyAll method, which wakes all threads in the entry and 
wait sets. When all threads are awake, the thread scheduler determines which 
thread acquires the monitor. The thread scheduler employs a queue discipline that 

prevents indefinite postponement.51, 52 Because notifyAll wakes all threads wait
ing to enter the monitor (as opposed to notify, which wakes a single thread), 
notifyAll incurs more overhead than notify. In the simple case of two-thread syn
chronization, noti f y yields higher performance than notifyAll without suffering 
from indefinite postponement. 

Self Review 
1. What is the difference between signal-and-continue monitors and signal-and-exit moni

tors? Which type does Java use? 

Ans: 1) Java uses signal-and-continue monitors. They allow a thread to signal that it will 
soon be exiting the monitor, yet retain control of the monitor. Signal-and-exit monitors 
require that a thread release its lock on the monitor immediately after signaling. 

In this section, we present a Java implementation of the producer/consumer rela
tionship investigated in Section 5.2.1, Java Multithreading Case Study, Part II. The 

6.4 Java Multithreading Case Study, Part III: 
Producer/Consumer Relationship in Java 
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application in Fig. 6.4 and Fig. 6.5 demonstrates a producer and a consumer access
ing a single shared buffer, with synchronization provided by a monitor. In this case, 
the producer produces a new value only when the buffer is empty, making the 
buffer full; the consumer consumes a value only when the buffer is full, making the 
buffer empty. This example reuses interface Buffer (Fig. 5.1) and classes Producer 
(Fig. 5.2) and Consumer (Fig. 5.3) from the example of Section 5.2.1. Reusing these 
classes from the example without synchronization enables us to demonstrate that 
the threads accessing the shared object are unaware that they are being synchro
nized. The code that performs the synchronization is placed in the s e t and get 
methods of class SynchronizedBuffer (Fig. 6.4), which implements interface 
Buffer (line 4). Thus, the Producer's and Consumer's run methods simply call the 
shared object's s e t and get methods as in the example of Section 5.2.1. 

Class SynchronizedBuffer (Fig. 6.4) contains two fields—buffer (line 6) 
and occupiedBuffers (line 7). Method s e t (lines 9-43) and method get (lines 45-
79) are now synchronized methods (lines 10 and 46); thus, only one thread can 
enter any of these methods at a time on a particular SynchronizedBuffer object. 
Although occupiedBuffers (line 7) is logically a condition variable, it is of type 
i nt; there is no object or type in Java that directly represents a condition variable. 
The methods in SynchronizedBuffer use occupiedBuffers in conditional 
expressions (lines 16 and 52) to determine whether it is the producer's or the con
sumer's turn to perform a task. If occupiedBuffers is zero, buffer is empty and 
the producer can place a value into buffer (line 34). This condition (line 52) also 
means that the consumer must wait (line 59) in the get method to read the value of 
buffer (again, because it is empty). If occupi edBuffers is one, the consumer can 
read the value from buffer, because it contains new information. This condition 
(line 16) also means that the producer must wait to place a value into buffer, 
because it is currently full. 

1 // Fig. 6.4: SynchronizedBuffer.Java 

2 // SynchronizedBuffer synchronizes access to a shared integer. 
3 
4 public class SynchronizedBuffer implements Buffer 

5 { 
6 private int buffer = -1; // shared by producer and consumer 
7 private int occupiedBuffers = 0; // counts occupied buffers 
8 
9 // place value into buffer 
10 public synchronized void set( int value ) 

11 { 
12 // for display, get name of thread that called this method 
13 String name = Thread.currentThread() .getName() ; 
14 

Figure 6.4 I SynchronizedBuffer synchronizes access to a shared integer. 
(Part 1 of 3.) 
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15 // while no empty buffers, place thread in waiting state 
16 while ( occupiedBuffers == 1 ) 

17 { 
18 // output thread and buffer information, then wait 
19 try 
20 { 
21 System.err.println( name + " tries to write." ); 
22 displayState( "Buffer full. " + name + " waits." ); 
23 wait(); // wait until buffer is empty 
24 } // end try 
25 
26 // if waiting thread interrupted, print stack trace 
27 catch ( InterruptedException exception ) 
28 { 
29 exception.printStackTrace(); 
30 } // end catch 
31 
32 } // end while 

33 
34 buffer = value; // set new buffer value 
35 
36 // indicate producer cannot store another value 
37 // until consumer retrieves current buffer value 
38 ++occupiedBuffers; 
39 
40 displayStateC name + " writes " + buffer ); 
41 
42 notify(); // tell waiting thread to enter ready state 
43 } // end method set; releases lock on SynchronizedBuffer 
44 
45 // return value from buffer 
46 public synchronized int get() 
47 { 
48 // for display, get name of thread that called this method 
49 String name = Thread.currentThread().getName(); 
50 
51 // while no data to read, place thread in waiting state 
52 while ( occupiedBuffers == 0 ) 
53 { 
54 // output thread and buffer information, then wait 
55 try 
56 { 
57 System.err.println( name + " tries to read." ); 
58 displayStateC "Buffer empty. " + name + " waits." ); 

Figure 6.4 | SynchronizedBuffer synchronizes access to a shared integer. 
(Part 2 of 3.) 
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59 w a i t ( ) ; / / wai t u n t i l buf fer contains new values 
60 } / / end t r y 
61 
62 //if waiting thread interrupted, print stack trace 
63 catch ( InterruptedException exception ) 
64 { 
65 exception.printStackTrace(); 
66 } // end catch 
67 
68 } // end while 
69 
70 // indicate that producer can store another value 
71 // because consumer just retrieved buffer value 
72 --occupiedBuffers; 
73 
74 displayState( name + " reads " + buffer ); 
75 
76 notify(); // tell waiting thread to become ready 
77 
78 return buffer; 
79 } // end method get; releases lock on SynchronizedBuffer 
80 
81 // display current operation and buffer state 
82 public void displayState( String operation ) 
83 { 
84 StringBuffer outputLine = new StringBuffer( operation ); 
85 outputLine.setLength( 40 ); 
86 outputLine.append( buffer + "\t\t" + occupiedBuffers ); 
87 System.err.println( outputLine ); 
88 System.err.println(); 
89 } // end method displayState 
90 
91 } // end class SynchronizedBuffer 

Figure 6.4 | Synchronizedbuffer synchronizes access to a shared integer. 

(Part 3 of 3.) 

When the Producer thread's run method invokes synchronized method set 
(from line 26 of Fig. 5.2), the thread attempts to acquire a lock on the Synchro-
nizedBuffer monitor object. [Note:When we talk about "acquiring a lock" on a Java 
monitor, we mean "gaining mutually exclusive access to a monitor" in the generic dis
cussion of monitors in Section 6.2, Monitors.] If the lock is available, the Producer 
thread acquires the lock. Then the loop in method set (lines 16-32 of Fig. 6.4) deter
mines whether occupiedBuffers is equal to one. If so, buffer is full, so line 21 out
puts a message indicating that the Producer thread is trying to write a value, and line 
22 invokes method displayState (lines 81-89) to output another message indicating 
that the buffer is full and that the Producer thread is in the waiting state. Note that 
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method d i sp l ayS ta t e is not declared Synchronized because it is called in method 
main (line 18 of Fig. 6.5) before the producer and consumer threads are created and 
thereafter only from inside Synchronized methods get and se t (lines 10 and 46 of 

Fig.6.4). Only one thread can execute inside the SynchronizedBuffer's monitor at 
once and di spl ayState is accessed only from inside the monitor, so mutually exclu

sive access is enforced without needing to declare d i sp layS ta t e Synchronized. 

Line 23 invokes method wait (inherited from Object by Synchronized-
Buffer; all Java classes inherit from Object directly or indirectly) to place the 
thread that called method s e t (i.e., the Producer thread) in the waiting state for 
the SynchronizedBuffer object. The call to wait causes the calling thread to 

release the lock on the SynchronizedBuffer object. This is important because the 
nread cannot currently perform its task—and holding the lock would prevent other 
threads from accessing the object. This would result in deadlock, because the condi-

tion variable on which the first thread was waiting would never change. After the 
rroducer thread calls wait in line 23, another thread can attempt to acquire the 
SynchronizedBuffer object's lock and invoke the object's s e t or get methods— 
n particular, a consumer thread can now empty the buffer, eventually allowing the 

waiting producer to proceed. 
The producer thread remains in the waiting state until it is notified by another 

thread that it may proceed—at which point the producer thread returns to the 
ready state and waits for a processor. When the producer thread returns to the run
ning state, the thread implicitly attempts to reacquire the lock on the Synchro-
nizedBuffer object. If the lock is available, the producer reacquires the lock and 
method s e t continues executing with the next statement after wai t. Because wai t 
is called in a loop (lines 15-32), the loop continuation condition is tested to deter
mine whether the thread can proceed with its execution. If not, wai t is invoked 
again; otherwise, method s e t continues with the next statement after the loop. 

Line 34 in method s e t assigns the argument value to buffer. Line 38 incre
ments occupiedBuffers to indicate that the buffer now contains a value (i.e., a 
consumer can read the value, but a producer cannot put another value there yet). 
Line 40 invokes method di spl aySta te to output a line to the console window indi
cating that the producer is writing a new value into the buffer. Line 42 invokes 
method not i fy (inherited from Object). If the consumer thread is waiting, it 
enters the ready state, where it can attempt its task again (as soon as the thread is 
assigned a processor). Method not i fy returns immediately and method s e t 
returns to its caller. [Note: Invoking method noti f y works correctly in this program 
because only one thread calls method get at any time (the consumer thread). Pro
grams that have multiple threads waiting on a condition should invoke notifyAll 
to ensure that multiple threads receive notifications properly.] When method s e t 
returns, it implicitly releases the lock on the SynchronizedBuffer object. 

Methods get and se t are implemented similarly. When the consumer thread's 
run method invokes synch roni zed method get (from line 28 of Fig. 5.3), the thread 
attempts to acquire a lock on the SynchronizedBuffer object. When it acquires the 
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lock, the while loop (lines 51-68 of Fig. 6.4) determines whether occupiedBuffers 
is equal to 0. If so, the buffer is empty, so line 57 outputs a message indicating that the 
consumer thread is trying to read a value, and line 58 invokes method d i sp laySta te 
to output another message indicating that the buffer is empty and that the consumer 
thread waits. Line 59 invokes method want to place the consumer thread that called 
method get in the waiting state for the SynchronizedBuffer object. Again, the call 
to wait causes the calling thread to release the lock on the SynchronizedBuffer 
object, so another thread can attempt to acquire the lock and invoke the object's se t 
or get method. If the lock on the SynchronizedBuffer is not available (e.g., if the 
ProducerThread has not yet returned from method se t ) the consumer thread is 
blocked until the lock becomes available. 

The consumer thread object remains in the waiting state until it is notified by 
the producer thread that it may proceed—at which point the consumer thread returns 
to the ready state and waits a processor. When it returns to the running state, the 
thread implicitly attempts to reacquire the lock on the SynchronizedBuffer object. 
If the lock is available, the consumer thread reacquires it and method get continues 
executing with the next statement after the wait. Because wai t is called in a loop 
(lines 51-68), the loop continuation condition is tested to determine whether the 
thread can proceed. If not, wait is invoked again; otherwise, method get continues 
with the next statement after the loop. Line 72 decrements occupiedBuffers to indi
cate that buffer is now empty, line 74 outputs a line to the console window indicating 
the value the consumer just read and line 76 invokes method notify. If the producer 
thread is waiting for the lock on this SynchronizedBuf f er object, it enters the ready 
state. As soon as it is assigned a processor, the thread will attempt to reacquire the 
lock and continue performing its task. Method not i fy returns immediately, then 
method get returns the value of buffer to its caller (line 78). [Note: Again, invoking 
method not i fy works correctly in this program because only one thread calls 
method set at any time (the producer thread).] When method get returns, the lock on 
the SynchronizedBuffer object is released. 

Class SharedBufferTest2 (Fig. 6.5) is similar to class SharedBufferTest 
(Fig. 5.5). SharedBufferTest2 contains method main (lines 6-27), which launches 
the application. Line 9 instantiates a shared SynchronizedBuffer and assigns its 
reference to SynchronizedBuffer variable sharedLocation. We use a Synchro-
ni zedBuffer variable rather than a Buffer variable, so that mai n can invoke Syn-
chronizedBuffer method d i sp l ayS ta t e , which is not declared in interface 
Buffer. The SynchronizedBuffer object stores the data that is shared between 
the producer and consumer threads. Lines 11-18 display the column heads for the 
output. Lines 21-22 create a Producer object and a Consumer object, respectively, 
and pass sharedLocation to each constructor, so each object is initialized with a 
reference to the same SynchronizedBuffer. Next, lines 24-25 invoke method 
s t a r t on the producer and consumer threads to place them in the ready state.This 
launches these threads and sets up the initial call to each thread's run method. 
Finally, method main terminates and the mai n thread of execution dies. 
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Study the three sample outputs in Fig. 6.5. Observe that every integer produced 
is consumed exactly once. The synchronization and the variable occupiedBuffers 
ensure that the producer and consumer can execute only when it is their turn. The 
producer must go first; the consumer must wait if the producer has not produced 
since the consumer last consumed; the producer must wait if the consumer has not yet 
consumed the value that the producer most recently produced. In the first and second 
sample outputs, notice the comments indicating when the producer and consumer 
must wait to perform their respective tasks. In the third sample output, notice that the 
producer and consumer were fortuitously able to perform their tasks without waiting. 

Self Review 

1. Why does the displ ayState method not need to be declared as synchronized? 
2. (T/F) If the noti f y method is never called in the get method, the producer will never fin

ish producing because it will be indefinitely postponed at line 23 of Fig. 6.4. 

Ans: 1) Although occupi edBuffers is a shared resource, the only time that di spl ayState 
is called is inside synchronized methods or when the program contains only one thread. 2) 
False. It is possible that the buffer will never fill, in which case the producer will never exe
cute line 23. This is the case in the third output of Fig. 6.5. 

1 // Fig. 6.5: SharedBufferTest2.Java 
2 // SharedBufferTest2creates producer and consumer threads. 
3 
4 public class SharedBufferTest2 

5 { 
6 public s tat ic void main( String [] args ) 
7 { 
8 // create shared object used by threads 
9 SynchronizedBuffer sharedLocation = new SynchronizedBufferO; 
10 
11 // Display column heads for output 
12 StringBuffer columnHeads = 
13 new StringBuffer( "Operation" ); 
14 columnHeads.setLength( 40 ); 
15 columnHeads.appendC "Buffer\t\tOccupied Count" ); 
16 System.err.println( columnHeads ); 
17 System.err.println(); 
18 sharedLocation.displayStateC "Initial State" ); 
19 
20 // create producer and consumer objects 
21 Producer producer = new Producer( sharedLocation ); 
22 Consumer consumer = new Consumer( sharedLocation ); 
23 
24 producer.start(); // start producer thread 

Figure 6.5 | Threads modifying a shared object with synchronization. (Part 1 of 4.) 
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25 consumer.start(); // start consumer thread 
26 
27 } // end main 
28 
29 } // end class SharedBufferTest2 

Sample Output 1: 
Operation Buffer Occupied Count 

Initial State 

Consumer tries to read. 
Buffer empty. Consumer waits. 

Producer writes 1 

Consumer reads 1 

Consumer tries to read. 
Buffer empty. Consumer waits. 

Producer writes 2 

Consumer reads 2 

Producer writes 3 

Consumer reads 3 

Consumer tries to read. 
Buffer empty. Consumer waits. 

Producer writes 4 

Consumer reads 4 
Producer done producing. 
Terminating Producer. 

Consumer read values totaling: 10. 
Terminating Consumer. 

0 

0 

1 

0 

0 

1 

0 

1 

0 

0 

1 
0 

- 1 

- 1 

1 

1 

1 

2 

2 

3 

3 

3 

4 

4 

Figure 6.5 | Threads modifying a shared object with syncronization. (Part 2 of 4.) 
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Sample Output 2: 
Operation 

Initial State 

Consumer tries to read. 

Buffer empty. Consumer waits. 

Producer writes 1 

Consumer reads 1 

Producer writes 2 

Producer tries to write. 

Buffer full. Producer waits. 

Consumer reads 2 

Producer writes 3 

Consumer reads 3 

Producer writes 4 

Producer done producing, 

Terminating Producer. 

Consumer reads 4 

Consumer read values totaling: 10. 

Terminating Consumer. 

Buffer 

-1 

- 1 

1 

1 

2 

2 

2 

3 

3 

4 

4 

Occupied Count 

0 

0 

1 

0 

1 

1 

0 

1 

0 

1 

0 

Sample Output 3: 
Operation Buffer Occupied Count 

Initial State -1 0 

Producer writes 1 1 1 

Figure 6.5 | Threads modifying a shared object with synchronization. (Part 3 of 4.) 
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Sample Output 3 (Cont.): 
Operation 

Initial State 

Producer writes 1 

Consumer reads 1 

Producer writes 2 

Consumer reads 2 

Producer writes 3 

Consumer reads 3 

Producer writes 4 

Producer done producing. 

Terminating Producer. 

Consumer reads 4 

Consumer read values totaling: 10. 

Terminating Consumer. 

Buffer 

- 1 

1 

1 

2 

2 

3 

3 

4 

4 

Occupied Count 

0 

1 

0 

1 

0 

1 

0 

1 

0 

Figure 6.5 | Threads modifying a shared object with synchronization (Part 4 of 4.) 

6.5 Java Multithreading Case Study, Part IV: 
Circular Buffer in Java 

The program of Section 6.4 uses thread synchronization to guarantee that two 
threads manipulate data in a shared buffer correctly. However, the application may 
not perform optimally. If the two threads operate at different speeds, one of them 
will spend more (or even most) of its time waiting. If the producer thread produces 
values faster than the consumer can consume them, the producer will spend most of 
its time waiting for the consumer. Similarly, if the consumer consumes faster than 
the producer can produce them, the consumer will spend most of its time waiting 
for the producer. Even when the threads operate at the same relative speeds, over a 
period of time, occasionally those threads may become "out of sync," causing one of 
them to wait for the other. We cannot and should not make assumptions about the 
relative speeds of asynchronous concurrent threads. Too many interactions occur 
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with the operating system, the network, the user and other system components that 
. can cause the threads to operate at different and unpredictable speeds. When this 
happens in the producer/consumer example, one thread must wait. When threads 
spend a significant portion of their time waiting, programs may become less effi
cient, the system may become less responsive to interactive users and applications 
may suffer long delays because the processor is not used efficiently. 

To minimize the waiting time for threads that share resources and operate at 
the same average speeds, we know from earlier in this chapter that we can imple
ment a circular buffer that provides extra buffer slots into which the producer can 
place values at times when it is running faster than the consumer and from which 
the consumer can retrieve those values when it is running faster than the producer. 

The key to using a circular buffer is to provide it with sufficient buffer slots to 
handle the anticipated "extra" production. If, over a period of time, we determine 
that the producer often produces as many as three more values than the consumer 
can consume, we can provide a buffer of three or more slots to handle the extra pro
duction. If the number of buffer slots is too small, threads will wait more; if too 
large, that would waste memory. 

The Java program of Fig. 6.6-Fig. 6.7 demonstrates a producer and a con
sumer accessing a circular buffer (in this case, a shared array of three cells) with 
synchronization. In this version of the producer/consumer relationship, the con
sumer consumes a value only when the array is not empty and the producer pro
duces a value only when the array is not full. 

Class Producer is slightly modified from the version presented in Fig. 5.2; this 
version produces values from 11 to 20 (rather than 1-4). Class Consumer is slightly 
modified from the version in Fig. 5.3; this version consumes ten (rather than four) 
values from the circular buffer. 

The significant changes of Fig. 6.4-Fig. 6.5 occur in Ci rcularBuffer 
(Fig. 6.6), which replaces SynchronizedBuffer (Fig. 6.4). CircularBuffer con

tains four fields. Array buffers (line 8) implements the circular buffer as a three-
element integer array. Variable occupiedBuffers (line 11) is the condition vari
able that can be used to determine whether a producer can write into the circular 
buffer (i.e., when occupiedBuffers is less than the number of elements in buff
ers) and whether a consumer can read from the circular buffer (i.e., when occu-
piedBuffers is greater than 0). Variable readLocation (line 14) indicates the 
position in buffers from which the next value can be read by a consumer. Variable 
wr i teLoca t ion (line 15) indicates the next location in buffers in which a value 
can be placed by a producer. 

1 // Fig, 6.6: CircularBuffer.Java 
2 // CircularBuffer synchronizes access to an array of 
3 // shared buffers. 

Figure 6.6 | SynchronizedBuffer controls a access to a shared array of integers. 

(Part 1 of 5.) 
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4 
5 public class CircularBuffer implements Buffer 
6 { 
7 // each array element is a buffer 
8 private int buffers[] = { -1, -1, -1 }; 
9 
10 // occupiedBuffers maintains count of occupied buffers 
11 private int occupiedBuffers = 0; 
12 
13 // variables that maintain read and write buffer locations 
14 private int readLocation = 0; 
15 private int writeLocation = 0; 
16 
17 // place value into buffer 
18 public synchronized void set( int value ) 
19 { 
20 // get name of thread that called this method 
21 String name = Thread.currentThread().getName(); 
22 
23 // while buffer full, place thread in waiting state 
24 while ( occupiedBuffers == buffers.length ) 
25 { 
26 // output thread and buffer information, then wait 
27 try 
28 { 
29 System.err.println( "\nAll buffers full. " + 
30 name + " waits." ); 
31 wa i t ( ) ; / / wai t u n t i l space is ava i lab le 
32 } / / end t r y 
33 
34 // if waiting thread interrupted, print stack trace 
35 catch ( InterruptedException exception ) 

36 { 
37 exception.printStackTrace(); 
38 } // end catch 
39 
40 } // end while 
41 
42 // place value in writeLocation of buffers 
43 buffers[ writeLocation ] = value; 
44 
45 // output produced value 
46 System.err.println( "\n" + name + " writes " + 
47 buffers[ writeLocation ] + " " ) ; 
48 

Figure 6.6 | SynchronizedBuffe controls access to a shared array of integers. 

(Part 2 of 5.) 
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49 // indicate that one more buffer is occupied 
50 ++occupiedBuffers; 
51 
52 // update writeLocation for future write operation 
53 writeLocation = ( writeLocation + 1 ) % buffers.length; 
54 
55 // display contents of shared buffers 
56 System.err.println( createStateOutput() ); 
57 
58 notify(); // return a waiting thread to ready state 
59 } // end method set 
60 
61 // return value from buffer 

62 public synchronized int get() 
63 { 
64 // get name of thread that called this method 
65 String name = Thread.currentThread().getName(); 
66 
67 // while buffer is empty, place thread in waiting state 
68 while ( occupiedBuffers == 0 ) 
69 { 
70 // output thread and buffer information, then wait 
71 try 
72 { 
73 System.err.println( "\nAll buffers empty. " + 
74 name + " waits." ); 
75 wait(); // wait until buffer contains new data 
76 } // end try 
77 
78 // if waiting thread interrupted, print stack trace 
79 catch ( InterruptedException exception ) 
80 { 
81 exception.printStackTrace(); 
82 } // end catch 
83 
84 } // end while 
85 
86 // obtain value at current readLocation 
87 int readValue = buffers[ readLocation ]; 
88 
89 // output consumed value 
90 System.err.println( "\n" + name + " reads " + 
91 readValue + " " ); 
92 
93 // decrement occupied buffers value 

Figure 6.6 | SynchronizedBuffer controls access to a shared array of integers. 

(Fart 3 of 5.) 
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94 --occupiedBuffers; 
95 
96 // update readLocation for future read operation 
97 readLocation = ( readLocation + 1 ) % buffers.length; 
98 
99 // display contents of shared buffers 
100 System.err.println( createStateOutput() ); 
101 
102 notify(); // return a waiting thread to ready state 
103 
104 return readValue; 
105 } // end method get 
106 
107 // create state output 
108 public String createStateOutput() 
109 { 
110 // first line of state information 
111 String output = "(buffers occupied: " + 

112 occupiedBuffers + ")\nbuffers: "; 
113 
114 for ( int i = 0 ; i < buffers.length; ++i ) 
115 { 
116 output += " " + buffers[ i ] + " "; 
117 } // end for 
118 
119 // second line of state information 
120 output += "\n "; 
121 
122 for ( int i = 0; i < buffers.length; ++i ) 
123 { 
124 output += "---- "; 
125 } // end for 
126 

127 // third line of state information 
128 output += "\n "; 
129 
130 // append readLocation (R) and writeLocation (W) 
131 // indicators below appropriate buffer locations 
132 for ( int i = 0 ; i < buffers.length; ++i ) 
133 { 
134 if ( i == writeLocation && 
135 writeLocation == readLocation ) 
136 { 
137 output += " WR "; 
138 } // end if 

Figure 6.6 | SyncbronizedBuffer controls access to a shared array of integers. 
(Part 4 of 5.) 
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139 else if ( i == writeLocation ) 
140 { 
141 output += " W "; 
142 } // end if 
143 else if ( i == readLocation ) 
144 { 

145 output += " R "; 
146 } // end if 
147 else 
148 { 
149 output += " "; 
150 } // end else 
151 
152 } // end for 
153 

154 output += "\n"; 
155 
156 return output; 
157 } // end method createStateOutput 
158 
159 } // end class CircularBuffer 

Figure 6.6 | SynchronizedBuffer controls access to a shared array of integers. 

(Part 5 of 5.) 

CircularBuffer method s e t (lines 17-59) performs the same tasks as did the 
SynchronizedBuffer in Fig. 6.4, with a few modifications. The while loop in lines 
23-40 determines whether the producer must wait (i.e., all buffers are full). If so, 
lines 29-30 output that the producer is waiting to perform its task. Then line 31 
invokes method wai t to place the producer thread in the waiting state for the Ci r-
cularBuffer object. When execution eventually continues in line 43 after the whi 1 e 
loop, the value written by the producer is placed in the circular buffer at location 
writeLocation. Next, lines 46-47 output the value produced. Line 50 increments 
occupiedBuffers—there is now at least one value in the buffer that the consumer 
can read. Then, line 53 updates wri teLocat ion for the next call to CircularBuffer 
method se t . The output continues at line 56 by invoking method c rea teS ta teOut -
put (lines 107-157), which outputs the number of occupied buffers, the contents of 
the buffers and the current wri teLocat ion and readLocation. Finally, line 58 
invokes method not i fy to indicate that the consumer thread waiting on the Circu-
larBuffer object (if indeed the consumer is waiting) should proceed. 

Method get (lines 61-105) of class CircularBuffer also performs the same 
tasks as it did in Fig. 6.4, with a few minor modifications. The while loop in lines 
67-84 determines whether the consumer must wait (i.e., all buffer slots are empty). 
If the consumer thread must wait, lines 73-74 output that the consumer is waiting to 
perform its task. Then, line 75 invokes method wai t to place the consumer thread 
in the waiting state for the CircularBuffer object. When execution eventually 
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continues at line 87 after the while loop, readValue is assigned the value at loca
tion readLocation in the circular buffer. Lines 90-91 output the consumed value. 
Line 94 decrements the occupiedBuffers—there is now at least one open position 
in the buffer in which the producer thread can place a value. Then, line 97 updates 
readLocation for the next call to CircularBuffer method get. Line 100 invokes 
method c rea teSta teOutput to output the number of occupied buffers, the con
tents of the buffers and the current wri teLocat ion and readLocation. Finally, 
line 102 invokes method not i fy to indicate that the producer thread waiting for 
the CircularBuffer object (if indeed the producer is waiting) should proceed, and 
line 104 returns the consumed value to the calling method. Note that because Java 
implements signal-and-continue monitors, this program does not require the output 
parameter discussed in Section 6.2.3, Monitor Example: Circular Buffer. 

Class CircularBufferTes t (Fig. 6.7) contains the main method (lines 8—24) 
that launches the application. Line 13 creates the CircularBuff er object sharedLo-
cat ion . Lines 19-20 create the producer and consumer threads, and lines 22-23 
start them. The sample outputs include the current occupi edBuffers, the contents 
of the buffers and the current wri teLocat ion and readLocation. In the output, 
the letters W and R represent the current wri teLocat ion and readLocation. 
respectively. Notice that, after the third value is placed in the third element of the 
buffer, the fourth value is inserted back at the beginning of the array—this is the 
circular buffer effect. 

1 // Fig. 6.7: CircularBufferTest.Java 
2 // CircularBufferTest shows two threads manipulating a 
3 // circular buffer. 
4 
5 // set up the producer and consumer threads and start them 
6 public class CircularBufferTest 

7 { 
8 public stat ic void main ( String args[] ) 
9 { 
10 // create shared object for threads; use a reference 
11 // to a CircularBuffer rather than a Buffer reference 
12 // to invoke CircularBuffer method createStateOutput 
13 CircularBuffer sharedLocation = new CircularBuffer(); 
14 
15 // display initial state of buffers in CircularBuffer 
16 System.err.println( sharedLocation.createStateOutput() ); 
17 
18 // set up threads 
19 Producer producer = new Producer( sharedLocation ); 
20 Consumer consumer = new Consumer( sharedLocation ); 
21 

Figure 6.7 | CircularBufferTest instantiates producer and consumer threads. 

(Part 1 of 6.) 
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22 producer.start(); // start producer thread 
23 consumer.start(); // start consumer thread 
24 } // end main 
25 

26 } // end class CircularBufferTest 

Sample Output: 

Figure 6.7 | CircularBufferTest instantiates producer and consumer threads. 

(Part 2 of 6.) 
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Figure 6.7 | CircularBufferTest instantiates producer and consumer threads. 
(Part 3 of 6.) 
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Figure 6.7 | CircularBufferTest instantiates producer and consumer threads. 
(Part 4 of 6.) 
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Figure 6.7 | CircularBufferTest instantiates producer and consumer threads. 

(Part 5 of 6.) 
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Sample Output (Cont.): 

Consumer read values totaling: 155. 
Terminating Consumer. 

Figure 6.7 | CircularBufferTest instantiates producer and consumer threads. 
(Part 6 of 6.) 

Self Review 

1. What are the potential costs and benefits of making the circular buffer larger? 
1 What would happen if line 102 of Fig. 6.6 was omitted? 

Ans: 1) The potential benefit is that the producer can produce more and block less if the 
consumer is temporarily slower than the producer. However, this could result in wasted 
memory if both the consumer and producer work at the same speed, if one works much 
faster than the other or if the producer rarely, if ever, gets far enough ahead of the consumer 
to take advantage of the extra space. 2) The consumer thread would complete without issuing 
the notify. If the producer fortuitously never waits for the consumer (indeed a rare occur-
rence), then the system would function correctly. More commonly, however, if the producer 
were waiting it would never be able to proceed, i.e., the producer could be deadlocked. 

W e b R e s o u r c e s 
developer.java.sun.com/developer/Books/ 
performance2/chap4.pdf 

This page from Sun's Web site provides a detailed description 
of how to use Java monitors. 

hissa.nist.gov/rbac/5277/titlerpc.html 
Compares several popular RPC implementations. 

java.sun.com/docs/books/tutorial/essential/ 
threads/synchronization.html 
This is Sun's example of implementing mutual exclusion in the 
consumer/producer relationship in Java. 

Summary 
Concurrent programs are harder to write, debug, modify, 
and prove correct than non-concurrent programs. None
theless, there has been a surge of interest in concurrent 
programming languages because they enable us to express 
more naturally solutions to problems that are inherently 
parallel. The proliferation of multiprocessing systems, dis
tributed systems and massively parallel architectures has 
also fueled the surge. 

A monitor is an object that contains both the data 
and procedures needed to perform allocation one or more 
serially reusable shared resources. Monitor data is accessi
ble only within the monitor; there is no way for threads 
outside the monitor to access monitor data directly. To 
accomplish a resource allocation function using monitors, a 

thread must call a monitor entry routine. Many threads 
might want to enter the monitor at various times, but 
mutual exclusion is rigidly enforced at the monitor bound
ary. A thread that tries to enter the monitor when it is in 
use is made to wait by the monitor. 

Eventually, the thread that has the resource will call a 
monitor entry routine to return the resource. There might 
be threads waiting for the resource, so the monitor entry 
routine calls signal to allow one of the waiting threads to 
acquire the resource and enter the monitor. To avoid indef
inite postponement, a monitor gives higher priority to wait
ing threads than to newly arrived threads. 

Before a thread can reenter the monitor, the thread 
calling signal must first exit the monitor. A signal-and-exit 

http://developer.java.sun.com/developer/Books/performance2/chap4.pdf
http://developer.java.sun.com/developer/Books/performance2/chap4.pdf
http://hissa.nist.gov/rbac/5277/titlerpc.html
http://java.sun.com/docs/books/tutorial/essential/threads/synchronization.html
http://java.sun.com/docs/books/tutorial/essential/threads/synchronization.html
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monitor requires a thread to immediately exit the monitor 
upon signaling. Alternatively, a signal-and-continue monitor 
allows a thread inside the monitor to signal that the monitor 
will soon become available, but still maintain a lock on the 
monitor until the thread exits the monitor. A thread can exit 
the monitor by waiting on a condition variable or by com
pleting execution of the code protected by the monitor. 

A thread currently inside a monitor may need to wait 
outside the monitor until another thread performs an 
action inside the monitor. A monitor associates a separate 
condition variable with each distinct situation that might 
cause a thread to have to wait. Every condition variable has 
an associated queue. A thread calling wai t on a particular 
condition variable is placed into the queue associated with 
that condition variable; a thread calling signal on a partic
ular condition variable causes a thread waiting on that con
dition variable (if there is such a thread) to be removed 
from the queue associated with that condition variable and 
to enter the monitor. 

In the circular buffer implementation of the solution 
to the producer/consumer problem, the producer deposits 
data in the successive elements of the shared array. The 
consumer removes them in the order in which they were 
deposited (FIFO). The producer can be several items 
ahead of the consumer. Eventually, the producer fills the 
last element of the array. When it produces more data, it 
must "wrap around" and again begin depositing data in the 
first element of the array. 

Because of the fixed size of the circular buffer, the 
producer will occasionally find all the array elements full; 
in this case the producer must wait until the consumer emp
ties an array element. Similarly, there will be times when 
the consumer wants to consume, but the array will be 
empty; in this case the consumer must wait until the pro
ducer deposits data into an array element. 

If the two threads operate at different speeds, one of 
them will spend more (or even most) of its time waiting. If 
the producer thread produces values faster than the con
sumer can consume them, the producer thread spends most 
of its time waiting for the consumer to remove the next 
value from the array. Similarly, if the consumer thread con
sumes values faster than the producer can produce them, 
the consumer thread spends most of its time waiting for the 
producer to place the next value into the array. 

In computer systems, it is common to have some 
threads (called readers) that read data and others (called 
writers) that write it. Because readers do not change the 
contents of the database, many readers can access the data
base at once. But a writer can modify the data, so it must 
have exclusive access. A new reader can proceed as long as 
no thread is writing and no writer thread is waiting to write. 
Each new reader signals the next waiting reader to pro
ceed. This causes a "chain reaction" that continues until all 
waiting readers have become active. While this chaining is 
in progress, all arriving threads are forced to wait. During 
the chaining, arriving readers cannot enter the monitor, 
because the monitor observes the rule that signaled threads 
are serviced before arriving threads. If arriving readers 
were allowed to proceed, then a continuous stream of 
arriving readers would indefinitely postpone waiting writ
ers. When the last reader leaves the monitor, the thread sig
nals a waiting writer to proceed. When a writer finishes, it 
first checks if there is a waiting reader. If there is, the wait
ing reader proceeds (again cascading in all waiting read
ers). If there is no waiting reader, a waiting writer is 
allowed to proceed. 

Monitors are the primary mechanism providing 
mutual exclusion and synchronization in multithreaded Java 
applications. The keyword synchronized imposes mutual 
exclusion on an object in Java. Java monitors are signal-and-
continue monitors, allowing a thread to signal that the moni
tor will soon become available, but still maintain a lock on 
the monitor until the thread exits the monitor. 

In Java, the wai t method causes the calling thread to 
release the lock on the monitor and wait on an unnamed 
condition variable. After calling wai t, a thread is placed in 
the wait set. A thread remains in the wait set until signaled 
by another thread. Because the condition variable is implicit 
in Java, a thread may be signaled, reenter the monitor and 
find that the condition on which it waited has not been met. 

Threads issue signals by calling method notify or 
notifyAll. The noti f y method wakes a thread in the wait 
set. If more than two threads may access a monitor, it is best 
to use the notifyAll method, which wakes all threads in the 
wait set. Because notifyAll wakes all threads attempting to 
enter the monitor (instead of a single thread), notify can 
yield higher performance in some applications. 

Key Terms 
bounded buffer—See circular buffer. circular buffer—In the producer/consumer relationship, a 

fixed-size region of shared memory that stores multiple 
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values produced by a producer. If the producer occasion
ally produces values faster than the consumer, a circular 
buffer reduces the time the producer spends waiting for a 
consumer to consume the values, when compared to a 
buffer that stores a single value. If the consumer tempo
rarily consumes values faster than the producer, a circular 
buffer can similarly reduce the time a consumer spends 
waiting for the producer to produce values. 

condition variable—Variable that contains a value and an 
associated queue. When a thread waits on a condition 
variable inside a monitor, it exits the monitor and is 
placed in the condition variable's queue. Threads wait in 
the queue until signaled by another thread. 

entry queue—See entry set. 

entry set—In Java, a queue of threads waiting to enter a moni
tor after calling a synchronized method. 

information hiding—Software architectural technique that 
facilitates the development of more reliable software sys
tems by preventing direct access to data within an object 
by outside objects. 

monitor—Concurrency construct that contains both the data 
and procedures needed to provide mutual exclusion while 
allocating a serially reusable shared resource or group of 
serially reusable shared resources. 

monitor entry routine—Monitor routine that can be called by 
any thread, but that can be executed by only one thread at 
a time. Unlike private monitor routines, which can be 
called only by threads executing inside the monitor, moni
tor entry routines enforce mutual exclusion. 

notify—Java method that wakes one thread in a monitor's 
wait set. The thread that is awakened depends on the 
JVM implementation. 

notifyAll —Java method that awakens all threads in a moni
tor's wait and entry sets. Method notifyAll ensures that 
waiting threads are not indefinitely postponed, but incurs 
more overhead than notify. 

serially reusable shared resource—Resource that can be used 
by only one thread at a time. 

signal-and-continue monitor—Monitor that allows a thread to 
signal that the monitor is available, but does not require 
the thread to release the lock until it exits the monitor, at 
which point a signaled thread may enter the monitor. 

signal-and-exit monitor—Monitor that requires a thread to 
release the lock on the monitor as soon as the thread sig
nals another thread. 

Solo—Small operating system created by Per Brinch Hansen 
to demonstrate fail-safe concurrent programming. 

synchronization—Coordination between asynchronous con
current threads to sequentialize their access to shared 
resources. 

synchronized—Java keyword that imposes mutual exclusive 
access to code inside an object. 

wait queue—See wait set. 

wait set—In Java, a set of threads waiting to reacquire the lock 
on a monitor. 

Exercises 
6.1 Compare and contrast the use of monitors and sema
phore operations. 

6.2 When a resource is returned by a thread calling a moni
tor, the monitor gives priority to a waiting thread over a new 
requesting thread. Why? 

6.3 How do condition variables differ from conventional 
variables? Does it make sense to initialize condition variables? 

6.4 The text has stated repeatedly that no assumptions 
should be made about the relative speeds of asynchronous 
concurrent threads. Why? 

6.5 What factors, do you suppose, would affect a designer's 
choice of the number of slots a circular buffer should have? 

6.6 Why is it considerably more difficult to test, debug, and 
prove program correctness for concurrent programs than for 
sequential programs? 

6.7 The text states that information hiding is a system struc
turing technique that contributes to the development of more 
reliable software systems. Why, do you suppose, is this so? 

6.8 Refer to the monitor described in Fig. 6.2 and answer 
each of the following questions. 

a. Which procedure places data into the circular buffer? 

b. Which procedure removes data from the circular 
buffer? 

c. Which queuing discipline best describes the opera
tion of the circular buffer? 
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d. Is this true: wr i terPosi t ion >= readerPosition? 

e. Which statements perform monitor initialization? 

f. Which statement(s) can "wake up" a thread waiting 
on a condition variable? 

g. Which statement(s) can put a thread "to sleep"? 

h. Which statement(s) ensure that the buffer "wraps 
around"? 

i. Which statement(s) modify a shared critical variable 
to indicate that another slot in the buffer is available? 

6.9 In the readers and writers monitor presented in Fig. 6.3 
why does it make sense to cascade in all waiting readers? 
Could this cause indefinite postponement of waiting writers? 
Under what circumstances might you choose to limit the num
ber of waiting readers you would initiate when reading is 
allowed? 

6.10 (The Sleeping Barber Problem)53 A barbershop has a 
cutting room with one chair and a waiting room with n chairs. 
Customers enter the waiting room one at a time if space is 
available, otherwise they go to another shop. Each time the 
barber finishes a haircut the customer leaves to go to another 
store, and a waiting customer, if there is one, enters the cutting 
room and has a haircut. Customers may enter the waiting 
room one at a time, or waiting customers may enter the 
(empty) cutting room one at a time, but these events are mutu
ally exclusive. If the barber discovers that the waiting room is 
empty, the barber falls asleep in the waiting room. An arriving 
customer, finding the barber asleep, wakes the barber and has 
a haircut; otherwise the arriving customer waits. Use a monitor 
to coordinate the operation of the barber and the clients. If 
you know Java, also implement your monitor in Java. 

6.11 (The Cigarette Smokers Problem)54 [Note: One of the 
authors, HMD, worked with S. Patil and Jack Dennis in the 
Computation Structures Group at M.I.T.'s Project Mac] This 

has become one of the classic problems in concurrency control 
Three smokers are represented by threads S1, S2, and S3. 
Three vendors are represented by threads V1, V2, and V3. 
Each smoker requires tobacco, a wrapper, and a match to 
smoke; when these resources are available, the smoker smokes 
the cigarette to completion, then becomes eligible to smoke 
again. S1 has tobacco, S2 has wrappers, and S3 has matches. V1 
supplies tobacco and wrappers, V2 supplies wrappers anc 
matches, and V3 supplies matches and tobacco. V1, V2, and V3 
operate in mutual exclusion; only one of these threads car. 
operate at a time and the next vendor cannot operate until 
resources supplied by the previous vendor have been con
sumed by a smoker. Use a monitor to coordinate the operation 
of the smoker and vendor threads. 

6.12 Semaphores are at least as powerful as monitors. Show 
how to implement a monitor by using semaphores. 

6.13 Use semaphores to solve the readers and writers problem. 

6.14 Implement the readers and writers problem. Model your 
solution after the readers and writers solution in Fig. 6.2 and 
the Java-based circular-buffer solution in Fig. 6.6 and Fig. 6.7. 

6.15 Should a waiting thread receive priority over a thread 
first attempting to enter a monitor? What priority scheme. if 
any, should be imposed on waiting threads? 

Suggested Project 
6.16 Prepare a research paper on concurrent programming in 
video game consoles. Does the hardware provide mutual 
exclusion primitives to the application programmer? 

Suggested Simulation 
6.17 Extend the producer/consumer solution without a circu-
lar buffer presented in Fig. 6.1 to handle multiple producers. 

Recommended Reading 
Solutions to problems in concurrent programming have been 
known for quite some time. Dijkstra55 was the first to truly 
address such concerns, and he was soon followed by many oth
ers.56, 57, 58, 59 Recent developments in mutual exclusion algo
rithms pertain to distributed systems and are beyond the scope 
of this chapter. However, the reader is encouraged to study 
Lamport's survey of the mutual exclusion problem and some 
powerful results.60, 61 Initial development of the concept of a 

monitor has been attributed to Brinch Hansen62 and Hoare.63 

An excellent survey of monitors, which describes their history, 
taxonomy and usage, is presented by Buhr.64 For more detailed 
information about the Java programming language and concur-
rent programming, see Java How to Program65 and Concurrent. 
Programming in Java: Design Principles and Pattern, 2nd ed.66 

The bibliography for this chapter is located on our Web site at 
www.deitel.com/books/os3e/Bibliography.pdf. 

http://www.deitel.com/books/os3e/Bibliography.pdf
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We had better wait and see. 
- H . H . A s q u i t h -

Every man is the center of a circle, whose fatal circumference he cannot pass. 

—John James Ingalls— 

Hold me but safe within the bond 
Of one immortal look. 

— Robert Browning — 

Detection is, or ought to be, an exact science, and should be treated in the same cold and 

Unemotional manner. 
— Sir Arthur Conan Doyle — 

Delays have dangerous ends. 
—William Shakespeare — 



Chapter 7 

Deadlock and Indefinite 
Postponement 

Objectives 
After reading this chapter, you should understand: 

• the problem of deadlock. 

• the four necessary conditions for deadlock to exist. 

• the problem of indefinite postponement. 

• the notions of deadlock prevention, avoidance, detection and recovery. 

• algorithms for deadlock avoidance and detection. 

• how systems can recover from deadlocks. 
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7.1 Introduction 
In the previous four chapters, we discussed asynchronous, concurrent processes and 

threads. A multiprogrammed system provides many benefits, but as discussed in 
Chapter 6, Concurrent Programming, multiprogramming also introduces additional 

complexity. One problem that arises in multiprogrammed systems is deadlock. A 
process or thread is in a state of deadlock (or is deadlocked) if it is waiting for a par-
ticular event that will not occur. In a system deadlock, one or more processes are 

deadlocked.1'2 The remainder of this chapter will focus on processes, but most of 
the discussion applies to threads as well. 

In multiprogrammed computing systems, resource sharing is one of the pri-
mary goals. When resources are shared among a set of processes, each process 
maintaining exclusive control over particular resources allocated to it, deadlocks 
can develop in which some processes will never be able to complete execution. The 
result can be loss of work and reduced system throughput and system failure. 

This chapter discusses the problem of deadlock and summarizes the four major 
areas of deadlock research, namely deadlock prevention, avoidance, detection and 
recovery. It also considers the closely related problem of indefinite postponement, 
also called starvation, in which a process that is not deadlocked could wait for an 
event that might never occur or might occur unpredictably far in the future because 

of biases in the systems resource-scheduling policies. In some cases, the price for mak-
ing a system free of deadlock is high. For some systems, such as those that are mission 
critical, the price must be paid no matter how high, because allowing a deadlock to 
develop could be catastrophic, especially if it puts human life at risk.This chapter also 
discusses solutions to the problems of deadlock and indefinite postponement in terms 
of trade-offs between their overhead and their anticipated benefits. 

Self Review 
1. A system designer decides to try to avoid any possibility of deadlock by creating a multi-

programmed system that does not share resources. What is wrong with this idea? 
2. Compare and contrast deadlock with indefinite postponement. 

Ans: 1) It would be highly inefficient, because each process would need its own set of 
resources. Also, asynchronous concurrent programs often require shared resources such as 
semaphores. 2) Deadlock and indefinite postponement are similar in that they occur when 
rrocesses wait for an event. Deadlock occurs because the event will never occur; indefinite 
postponement occurs because it is uncertain when or even whether the event will ever occur 
(due to biases in a system's resource-scheduling policies). 

7.2 Examples of Deadlock 
Deadlocks can develop in many ways. If a process is given the task of waiting for an 
event to occur, and if the system includes no provision for signaling that event, then 
we have a one-process deadlock.3 Such deadlocks are extremely difficult to detect. 
Deadlocks in real systems often involve multiple processes competing for multiple 
resources of multiple types. Let us consider several common examples. 
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7.2.1 Traffic Deadlock 
Figure 7.1 illustrates a kind of deadlock that occasionally develops in cities. A num
ber of automobiles are attempting to drive through a busy neighborhood, and the 
traffic is completely snarled. The police have to unwind the jam by slowly and care
fully backing cars out of the congested area. Eventually the traffic begins to flow 
normally, but not without much annoyance, effort, and loss of time (see the Anec
dote, One-Lane Bridge). 

Self Review 
1. Assuming that there are no cars beyond the ellipses in Fig. 7.1, what minimum number of 

cars would have to back up to relieve the deadlock and which car(s) would they be? 
2. If cars could be removed by airlifting in Fig. 7.1, what minimum number of cars, and which 

one(s), would have to be removed to relieve the deadlock? 

Figure 7.1 | Traffic deadlock example.4 
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Ans: 1.) In Fig. 7.1, only two cars would need to back up to allow every other car to eventually 
move-any one of the cars abutting an ellipsis, then the car ahead of that one in the intersec-
tion. 2.) Only one car has to be removed—namely, any one of the four cars in the intersections. 

7.2.2 Simple Resource Deadlock 
Most deadlocks in operating systems develop because of the normal contention for 
dedicated resources (i.e., resources that may be used over time by many processes 
but by only one process at a time, sometimes called serially reusable resources). For 
example, a printer can print jobs for only one process at a time (otherwise pieces of 
many print jobs would be interwoven). A simple example of a resource deadlock is 
illustrated in Fig. 7.2. This resource allocation graph shows two processes as rectan-
gles and two resources as circles. An arrow from a resource to a process indicates 
that the resource belongs to, or has been allocated to, the process. An arrow from a 
process to a resource indicates that the process is requesting, but has not yet been 
allocated, the resource. The diagram illustrates a deadlocked system: Process P1 

holds resource R1 and needs resource R2 to continue. Process P2 holds resource R2 

and needs resource R1 to continue. Each process is waiting for the other to free a 
resource that the other process will not free. This circular wait is characteristic of 
deadlocked systems (see the Operating Systems Thinking feature, Waiting, Dead-
lock and Indefinite Postponement). Holding resources tenaciously in this way, a is 
sometimes referred to as a deadly embrace. 

Anecdote 
One-lane Bridge 
A former operating systems stu- drivers were approaching a one- said, "I don't back up for idiots." 
dent of HMD's was one of the lane bridge. They reached the The other driver calmly got back 
original designers of the IBM per- middle of the bridge at the same in his car and started backing up. 
sonal computer. When we studied time, forcing a confrontation. He said, "No problem—I do." 
deadlock in class, he shared a They got out of their cars and 
deadlock anecdote wi th me. Two went nose to nose. One driver 

Lesson to operating system designers: Processes are neither stubborn nor cooperative, so deadlock is a pain
ful experience at best. Usually, one or more processes will have to be "backed out" of the deadlock, losing 
some or all of their work. 
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Figure 7.2 | Resource deadlock example. This System is deadlocked because each 
process holds a resource being requested by the o ther process and neither process is 
willing to release the resource it holds. 

Self Review 
1. If the traffic deadlock in Fig. 7.1 were to be represented using a resource-allocation grapr 

what would the processes be? What would the resources be? 
2. Suppose several arrows are pointing from a process to resources in a resource-allocatk'-

graph. What does that mean? How does it affect the possibility of deadlock? 

Ans: l) The cars would be the processes. The resources would be the sections of the street th.. 
the cars occupy. Each car currently holds the section of the street directly below it and ts 
requesting the section in front of it. 2) It means that the process is requesting several resource-
The possibility of deadlock depends on whether those resources are allocated to other pro 
cesses, some of which, in turn, are requesting resources held by the process we are discussing. 

7.2.3 Deadlock in Spooling Systems 
A spooling system improves system throughput by disassociating a program from 
slow devices such as printers. For example, if a program sending lines to the printer 
must wait for each page to be printed before it can transmit the next page, then it 
will execute slowly. To speed the program's execution, a spooling system routes out
put pages to a much faster device, such as a hard disk, where they are temporarily 
stored until they can be printed. 

Spooling systems can be prone to deadlock. Some spooling systems require 
that the complete output from a program be available before printing can begin. 
Several partially completed jobs generating pages to a spool file can become dead
locked if the disk's available space fills before any job completes. The user or system 
administrator may kill one or more jobs to make sufficient spooling space available 
for the remaining jobs to complete. 
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Typically, the system administrator specifies the amount of space for spooling 
files. One way to make deadlocks less likely is to provide considerably more space 
for spooling files than is likely to be needed. This solution may not be feasible if 
space is at a premium. A more common solution is to restrain the input spoolers so 
that they do not accept additional print jobs when the spooling files begin to reach 
some saturation threshold, such as 75 percent full. This may reduce system through
put, but it is the price paid to reduce the likelihood of deadlock. 

Today's systems are more sophisticated than this. They might allow printing to 
begin before the job is completed so that a full, or nearly full, spooling file can begin 
emptying while a job is still executing. This concept has been applied to streaming 
audio and video clips, where the audio and video begin to play before the clips down
oad fully. In many systems spooling space allocation has been made more dynamic, 
so that if existing space starts to fill, then more space may be made available. 

Operating Systems Thinking 

Waiting, Deadlock and Indefinite Postponement 
Operating systems must manage becomes ful l , the producer cannot a t ime can use and that the other 
many different types of wait ing continue to produce more infor- process is holding. Both processes 
scenarios, which rely on an abun- mation, so it must wait for the cease progressing; this can be 
dant use of queues to do so. Pro- consumer to empty some data; fatal in mission-critical systems 
cesses and threads must wait for a when that region becomes empty where human lives may be at 
processor to become available the consumer must wait for the stake. Indefinite postponement 
before they can execute; they producer to generate more data. (also called starvation) typically 
often wait for I/O requests to You wil l see extensive exam- occurs when a process is wait ing 
complete and for requested pies of wait ing scenarios through- in line and other processes, per-
resourcesto become available. I/O out this book. Operating systems haps those of a higher priority, 
requests themselves must wait for must manage wait ing carefully to are allowed to get in line in f ront 
the I/O devices to become avail- avoid two serious problems, of the waiting process. A steady 
able. Processes and threads shar- namely deadlock and indefinite stream of arriving high-priority 
ing data may have to wait until a postponement, each of which is processes is said to indefinitely 
process or thread currently access- discussed in detail in this chapter. postpone the lower-priority pro-
ing that data finishes and leaves a In a deadlock scenario, processes cess. This could be as dangerous 
critical section. In the producer/ and threads are wait ing for as deadlock in a mission-critical 
consumer relationship, the pro- events that wi l l never happen; a system. So take wait ing seri-
ducer passes information to the simple two-process deadlock has ously—if it is mismanaged, system 
consumer via a shared region of each process wait ing on a failures could occur. 
memory; when that region resource that only one process at 
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Self Review 
1. Suppose a spooling system has a saturation threshold of 75 percent and limits the maxi

mum size of each file to 25 percent of the total spooling file size. Could deadlock occur in 
this system? 

2. Suppose a spooling system has a saturation threshold of 75 percent and limits the maxi
mum size of each file to 25 percent of the total spooling file size. Describe a simple way to 
ensure that deadlock will never occur in the system. Explain how this could lead to ineffi
cient resource allocation. 

Ans: 1) Yes, deadlock can still occur in this system. For instance, several jobs can begin 
transferring their outputs. When the spooling file reaches the 75 percent threshold, new jobs 
are not allowed. However, jobs that have begun are allowed to continue spooling, which may 
result in deadlock if there is insufficient space in the spooling file. 2) A simple adjustment 
would be to allow only one job to continue spooling data when the file reaches the threshold. 
This would be inefficient because it would limit the maximum job size to much less than the 
available spooling space. 

7.2.4 Example: Dining Philosophers 
Dijkstra's problem of the Dining Philosophers,5, 6 illustrates many of the subtle 
problems inherent in concurrent programming. The problem is this: 

Five philosophers sit around a circular table. Each leads a simple life alternating 
between thinking and eating spaghetti. In front of each philosopher is a dish of 
spaghetti that is constantly replenished by a dedicated wait staff. There are exactly 
five forks on the table, one between each adjacent pair of philosophers. Eating spa
ghetti (in the most proper manner) requires that a philosopher use both adjacent 
forks (simultaneously). Develop a concurrent program free of deadlock and 
indefinite postponement that models the activities of the philosophers. 
If the solution to this problem were not free of deadlock and indefinite post

ponement, one or more philosophers would starve. The program must, of course, 
enforce mutual exclusion—two philosophers cannot use the same fork at once. A 
typical philosopher behaves as shown in Fig. 7.3. 

The problems of mutual exclusion, deadlock and indefinite postponement lie 
in the implementation of method eat . Consider the simple, yet dangerous imple-
mentation in Fig. 7.4. Because the philosophers operate asynchronously and con-

1 void typicalPhilosopher() 
2 { 
3 while ( true ) 
4 { 
5 th ink ( ) ; 
6 eat() ; 
7 } // end whi le 
8 
9 } // end typ ica lPh i lospher 

Figure 7.3 | Dining philosopher behavior. 



1 void eat() 
2 { 
3 pickUpLeftFork(); 
4 pickUpRightFork(); 
5 eatForSomeTime(); 
6 putDownRightFork(); 
7 putDownLeftFork(); 
8 } // eat 
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Figure 7.4 | Implementation of method eat 

currently, it is possible for each philosopher to execute line 3 before any 
philosopher executes line 4. In this case, each philosopher will hold exactly one 
fork, and no forks will remain available on the table. The philosophers will all dead-
lock and starve. 

One way to break the deadlock when each philosopher holds a left fork is to 
force one or more philosophers to put their left fork down so that another philoso
pher may grab it as a right fork. To implement this rule, pickllpRightForkO can 
specify that a philosopher puts down the left fork if that philosopher cannot obtain 
the right fork. However, in this case, it is possible (albeit unlikely) that each philos
opher will pick up and put down its left fork repeatedly in tandem without ever 
obtaining the two forks it needs to eat spaghetti. In this case, the philosophers are 
not deadlocked, but "livelocked," suffering from indefinite postponement, and they 
will still starve. The solution must prevent deadlock (by forcing philosophers to put 
down forks) but also prevent livelock (indefinite postponement) by guaranteeing 
that each philosopher will obtain both forks from time to time. In the exercises, you 
will be asked to develop a complete solution to the Dining Philosophers problem. 

Self Review 
1. Could the implementation of the eat method in Fig. 7.4 allow the philosophers to live in 

harmony without starving? 
2. Consider the ea t method in Fig. 7.4. Suppose lines 3 and 4 were replaced with pickUp-

BothForksAtOnce(); would that implementation prevent deadlock? Would it prevent the 
philosophers from starving? 

Ans: 1) Yes. We cannot predict the relative speeds of asynchronous concurrent processes. It 
is possible that not all five philosophers will pick up their left fork at once. Various philoso
phers could acquire the two forks they need, then release them to give the other philosophers 
a chance to eat. 2) Yes, it would prevent deadlock, assuming that pickUpBothForksAt-
Once() can be performed atomically, but it would still allow indefinite postponement. This 
could occur, for example, if two of the philosophers were to continually pick up two forks, 
eat, put down the forks and pick them up again before any of the other philosophers could 
grab them; those other philosophers would starve. 
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7.3 Related Problem: Indefinite Postponement 
In any system that requires processes to wait as a result of resource-allocation and 
process scheduling decisions, a process may be delayed indefinitely while other pro
cesses receive the system's attention. This situation, called indefinite postponement, 
indefinite blocking, or starvation, can be as devastating as deadlock. 

Indefinite postponement may occur because of biases in a system's resource-
scheduling policies. When resources are scheduled on a priority basis, it is possible 
for a given process to wait for a resource indefinitely, as processes with higher prior
ities continue to arrive. Waiting is a fact of life and is certainly an important aspect 
of what goes on inside computer systems, so systems should be designed to manage 
waiting processes fairly and efficiently. Some systems prevent indefinite postpone
ment by increasing a process's priority gradually as it waits for a resource —this 
technique is called aging. Eventually, the waiting process's priority will exceed the 
priorities of all processes, and the it will be serviced. 

Self Review 
1. Dekker's Algorithm and Peterson's Algorithm prevented a process from being indefi

nitely postponed from entering its critical section. Describe how indefinite postponement 
was prevented. How is this related to aging? 

2. Suppose an interactive process appears to be "dead in the water." Does this mean that the 
process is definitely deadlocked? Could it be indefinitely postponed? Are there other pos
sibilities? 

Ans: 1) Both Dekker's Algorithm and Peterson's Algorithm made the waiting process the 
favored process when the resource was available again. This is similar to aging, because the 
waiting process earns a higher priority by waiting. 2) This is an interesting question. From the 
user's perspective, an interactive process would appear "dead in the water" if the system sim
ply stopped responding to the interactive user's requests. The process could be deadlocked, 
but it does not have to be. It could be suffering from indefinite postponement, but it does not 
have to be. It could also be waiting for an event that may happen shortly, it could be locked in 
an infinite loop or it could be doing a lengthy calculation that will soon finish. Anyone who 
has experienced a system that appears to "hang" knows how frustrating this can be. What ser
vices should the operating system provide to help the user in such situations? We address 
these issues throughout the book. 

7.4 Resource Concepts 
As a resource manager, the operating system is responsible for the allocation of a 
vast array of resources of various types; this is part of what makes operating system 
design so interesting. We consider resources that are preemptible, such as proces
sors and main memory. Processors are perhaps the most frequently preempted 
resources on a computer system. Processors must be rapidly switched (i.e., multi
plexed) among all active processes competing for system service to ensure that 
these processes progress at a reasonable rates. Whenever a particular process 
reaches a point at which it cannot effectively use a processor (such as during a long 
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wait for input/output completion), the operating system dispatches another process 
to that processor. As we will see in Chapters 9,10 and 11, a user program currently 

occupying a particular range of locations in main memory may be removed or pre-
empted by another program. Preemption is thus extremely critical to the success of 

multiprogrammed computer systems. 
Certain resources are nonpreemptible; they cannot be removed from the pro

es to which they are assigned until the processes voluntarily release them. For 
example, tape drives and optical scanners are normally assigned to a particular pro-
cess for periods of minutes or hours. 

Some resources may be shared among several processes, while others are ded
icated to a single process at a time. Although a single processor can normally belong 
to only one process at a time, its multiplexing among many processes creates the 

illusion of simultaneous sharing. Disk drives are sometimes dedicated to single pro-
cesses, but typically they contain files that can be accessed by many processes. Disks 

can be multiplexed among many processes requesting I/O. 
Data and programs certainly are resources that the operating system must 

control and allocate. On multiprogramming systems, many users may simulta-
neously want to use an editor program. If the operating system maintained in main 

memory a separate copy of the editor for each program, there would be a signifi
cant amount of redundant data, wasting memory. A better technique is for the 

operating system to load one copy of the code in memory and to make the copy 
available to each user. If a process were allowed to modify this shared code, other 

processes might behave unpredictably. As a result, this code must be reentrant, 
meaning the code is not modified as it executes. Code that may be changed but is 

reinitialized each time it is used is said to be serially reusable. Reentrant code may 
be shared by several processes simultaneously, whereas serially reusable code may 
be used correctly by only one process at a time. 

When we call particular resources shared, we must be careful to state whether 
they may be used by several processes simultaneously by only one process at a time. 
The latter kind—serially reusable resources —are the ones that tend to become 
involved in deadlocks. 

Self Review 
1. (T/F) Processes do not deadlock as a result of contending for the processor. 
2. (T/F) Nonpreemptible resources must be hardware. 

Ans: 1) True. The processor is a preemptible resource that can easily be taken from a pro
cess, assigned to other processes and returned to the original process, enabling it to proceed 
normally. 2) False. Certain software resources are nonpreemptible, e.g., monitors. 

7.5 F o u r Necessary Conditions for Deadlock 
Coffman, Elphick and Shoshani7 proved that the following four conditions are nec
essary for deadlock to exist: 
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1. A resource may be acquired exclusively by only one process at a time 
(mutual exclusion condition). 

2. A process that has acquired an exclusive resource may hold that resource 
while the process waits to obtain other resources (wait-for condition, also 
called the hold-and-wait condition). 

3. Once a process has obtained a resource, the system cannot remove it from 
the process's control until the process has finished using the resource (no-
preemption condition). 

4. Two or more processes are locked in a "circular chain" in which each pro
cess is waiting for one or more resources that the next process in the chair. 
is holding (circular-wait condition). 

Because these are necessary conditions, the existence of a deadlock implies that 
each of them must be in effect. As we will see later, this observation helps us develop 
schemes to prevent deadlocks. Taken together, all four conditions are necessary and 
sufficient for deadlock to exist (i.e., if they are all in place, the system is deadlocked). 

Self Review 
1. Describe how the four necessary conditions for deadlock apply to spooling systems. 
2. Which of the four conditions would be violated if a user could remove jobs from a spool

ing system? 

Ans: 1) No two jobs can simultaneously write data to the same location in the spooling file. 
Partially spooled jobs remain in the spooling file until more space is available. Jobs cannot 
remove other jobs from the spooling file. Finally, when the spooling file is full, each job waits for 
all of the other jobs to free up space. 2) This would violate the "no-preemption" condition. 

7.6 Deadlock Solutions 
Deadlock has been one of the more productive research areas in computer science 
and operating systems. There are four major areas of interest in deadlock 
research —deadlock prevention, deadlock avoidance, deadlock detection and dead
lock recovery. 

In deadlock prevention our concern is to condition a system to remove any pos
sibility of deadlocks occurring. Prevention is a clean solution as far as deadlock itself 
is concerned, but prevention methods can often result in poor resource utilization. 

In deadlock avoidance the goal is to impose less stringent conditions than in 
deadlock prevention in an attempt to get better resource utilization. Avoidance 
methods do not precondition the system to remove all possibility of deadlock. 
Instead, they allow the possibility to loom, but whenever a deadlock is approached, 
it is carefully sidestepped. 

Deadlock detection methods are used in systems in which deadlocks can 
occur. The goal is to determine if a deadlock has occurred, and to identify the pro
cesses and resources that are involved. 
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Deadlock recovery methods are used to clear deadlocks from a system so that it 
may operate free them, and so that the deadlocked processes may complete their exe-

cution and free their resources. Recovery is a messy problem at best, typically requir-
ing that one or more of the deadlocked processes be flushed from the system. The 
flushed processes are normally restarted from the beginning when sufficient resources 

are available, with much or all of the work done by these processes being lost. 

Self Review 
1. Compare and contrast deadlock prevention and deadlock avoidance. 
2. Some systems ignore the problem of deadlock. Discuss the costs and benefits of this 

approach. 

Ans: 1.) Deadlock prevention makes deadlock impossible but results in lower resource uti-
lization. With deadlock avoidance, when the threat of deadlock approaches, it is sidestepped 
and resource utilization is higher. Systems using either deadlock prevention or deadlock 

avoidance will be free of deadlocks. 2) Systems that ignore deadlock may fail when deadlock 
occurs. This is an unacceptable risk in mission-critical systems, but it may be appropriate in 

other systems where deadlocks rarely occur and the "cost" of dealing with an occasional 
deadlock is lower than the costs of implementing deadlock prevention or avoidance schemes. 

7.7 Deadlock Prevention 
This section considers various methods of deadlock prevention and examines the 
effects on both users and systems, especially from the standpoint of performance.8-9-10-
11, 12, 13 Havender,14 observing that a deadlock cannot occur if a system denies any of 
the four necessary conditions, suggested the following deadlock prevention strategies: 

• Each process must request all its required resources at once and cannot 
proceed until all have been granted. 

• If a process holding certain resources is denied a further request, it must 
release its original resources and, if necessary, request them again together 
with the additional resources. 

• A linear ordering of resources must be imposed on all processes; i.e., if a 
process has been allocated certain resources, it may subsequently request 
only those resources later in the ordering. 

In the sections that follow, we consider each strategy independently and discuss 
how each denies one of the necessary conditions (see the Anecdote, No Nuts, Bolts 
or Screws Allowed). Note that Havender presents three strategies, not four. The 
first necessary condition, namely that processes claim exclusive use of the resources 
they require, is not one that we want to break, because we specifically want to allow 
dedicated (i.e., serially reusable) resources. 

Self Review 
1. What is the basic premise of Havender's research on deadlock prevention? 

Ans: Deadlock cannot occur in systems in which any of the necessary conditions for dead
lock are precluded. 



302 Deadlock and Indefinite Postponement 

7.7.1 Denying the "Wait-For" Condition 
Havender's first strategy requires that all of the resources a process needs to com
plete its task must be requested at once. The system must grant them on an "all or 
none" basis. If all the resources needed by a process are available, then the system 
may grant them all to the process at once, and the process may continue to execute. 
If they are not all available, then the process must wait until they are. While the pro
cess waits, however, it may not hold any resources. Thus the "wait-for" condition is 
denied, and deadlocks cannot occur. 

Although this strategy successfully prevents deadlock, it wastes resources. For 
example, a program requiring four tape drives at one point in its execution must 
request, and receive, all four before it begins executing. If all four drives are needed 
throughout the execution of the program, then there is no serious waste. But, sup
pose the program needs only one tape drive to begin execution (or worse yet, none 

Anecdote 
No Nuts, Bolts or Screws Allowed 
Some years ago, HMD had the previous lines of printers to nuts, then proceeded to assemble one 
privilege of visiting one of the bolts and screws that had loos- of the printers by hand from the 
automated factories of one of the ened as a consequence of the pieces sitting on his table. At the 
largest computer vendors. At the mechanical motion. So when they end of the demo, he plugged the 
time, the factory—run almost designed the printer that was printer into a wall socket and 
exclusively by robots—was pro- being produced at this factory, printed several pages to show 
ducing small inexpensive printers the design team made a pact that that it was up and running. He 
for personal computers. The head all the parts of this printer (there mentioned that the "mean-time-
of the factory made a strong were about 80 of them including to-fai lure" of this type of printer 
point. He observed that printers the casing) would be designed to was proven to be miniscule corn-
have a significant number of mov- snap into place—no nuts, bolts or pared to previous lines. 
ing parts and that the company's screws would be allowed in the 
engineers had traced failures of design. The head of the factory 

Lesson to operating systems designers: One way to minimize the chance of system failure is to eliminate as 
many "points of failure" as possible at the design stage. This works well with another design heuristic—KIS 
(keep it simple). Both of these heuristics are appealing, but can be difficult to implement. As you read this 
book, keep this anecdote in mind, searching for points of failure that you may be able to eliminate in future 
operating systems designs. 
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at all) and then does not need the remaining tape drives for several hours. The 
requirement that the program must request, and receive, all four tape drives before 
execution begins means that substantial resources will sit idle for several hours. 

One approach to getting better resource utilization in these circumstances is 
to divide a program into several threads that run relatively independently of one 
another. Then resource allocation can be controlled by each thread rather than for 
the entire process. This can reduce waste, but it involves a greater overhead in 
application design and execution. 

This Havender strategy could cause indefinite postponement if, for example, it 
favored waiting processes with small resource needs over those attempting to accu
mulate many resources. A steady stream of processes arriving with small resource 
needs could indefinitely postpone a process with more substantial needs. One way 

to avoid this is to handle the needs of the waiting processes in first-come-first-
served order. Unfortunately, accumulating the full complement of resources for a 
process with substantial needs would cause considerable waste, as the gradually 
accumulating resources would sit idle until all were available. 

In large mainframe computer environments with expensive resources, there is 
some controversy over whom to charge for these unused resources. Because the 
resources are being accumulated for a specific user, some designers feel this user 
should pay for them, even while they sit idle. Other designers say this would destroy 
the predictability of resource charges; if the user tried to run the process on a busy 
day, the charges would be much higher than when the machine was lightly loaded. 

Self Review 
1. Explain how denying the "wait-for" condition can reduce the degree of multiprogram

ming in a system. 
2. Describe under what conditions a process can be indefinitely postponed when using Hav-

ender's scheme to deny the "wait-for" condition. 

Ans: 1) If processes in a system require more resources than are available to concurrently 
execute, the system must force some of those processes to wait until others finish and return 
their resources. In the worst case, the system may be limited to executing only one process at 
a time. 2) A process could request a substantial number of a system's resources. If the operat-
ing system gives higher priority to processes that require fewer of system resources, then the 

process requesting all of the system's resources will be postponed indefinitely while processes 
that require fewer resources proceed. 

7.7.2 Denying the "No-Preemption" Condition 
Havender's second strategy denies the "no preemption" condition. Suppose a sys
tem does allow processes to hold resources while requesting additional resources. 
As long as sufficient resources remain available to satisfy all requests, the system 
cannot deadlock. But consider what happens when a request for additional 
resources cannot be satisfied. Now a process holds resources that a second process 
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may need in order to proceed, while the second process may hold resources needed 
by the first process—a two-process deadlock. 

Havender's second strategy requires that when a process holding resources is 
denied a request for additional resources, it must release the resources it holds and, 
if necessary, request them again together with the additional resources. This strat
egy effectively denies the "no-preemption" condition—resources can indeed be 
removed from the process holding them prior to the completion of that process. 

Here, too, the means for preventing deadlock can be costly. When a process 
releases resources, it may lose all of its work to that point. This may seem to be a 
high price to pay, but the real question is, "How often does this price have to be 
paid?" If this occurs infrequently, then this strategy provides a relatively low-cost 
means of preventing deadlocks. If it occurs frequently, however, then the cost is 
substantial and the effects are disruptive, particularly when high-priority or dead-
line processes cannot be completed on time because of repeated preemptions. 

Could this strategy lead to indefinite postponement? It depends. If the system 
favors processes with small resource requests over those requesting substantial 
resources, that alone could lead to indefinite postponement. Worse yet, as the pro
cess requests additional resources, this Havender strategy requires the process to 
give up all the resources it has and request an even larger number. So indefinite 
postponement can be a problem in a busy system. Also, this strategy requires all 
resources to be preemptible, which is not always the case (e.g., printers should not 
be preempted while processing a print job). 

Self Review 
1. What is the primary cost of denying the "no-preemption" condition? 
2. Which of Ha vender's first two deadlock strategies do you suppose people find more palat-

able? Why? 

Ans: 1) A process may lose all of its work up to the point that its resources were preempted. 
Also, the process could suffer indefinite postponement, depending on the system's resource-
allocation strategy. 2) Most people probably would prefer the first strategy, namely, requiring 
a process to request all the resources it will need in advance. The second strategy requires the 
process to give up the resources it already has, possibly causing wasteful loss of work. Inter-
estingly, the first strategy could cause waste as well, as processes gradually acquire resources 
they cannot yet use. 

7.7.3 Denying the "Circular-Wait" Condition 
Havender's third strategy denies the possibility of a circular wait. In this strategy. 
we assign a unique number to each resource (e.g., a disk drive, printer, scanner, file) 
that the system manages and we create a linear ordering of resources. A process 
must then request its resources in a strictly ascending order. For example, if a pro
cess requests resource R3 (where the subscript, 3, is the resource number), then the 
process can subsequently request only resources with a number greater than 3. 
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Because all resources are uniquely numbered, and because processes must request 
resources in ascending order, a circular wait cannot develop (Fig. 7.5). [Note: A 
proof of of this property is straightforward. Consider a system that enforces a linear 
ordering of resources in which Ri and Rj are resources numbered by integers i and j, 
respectively (i ≠ j). If the system has a circular wait characteristic of deadlock, 
then according to Fig. 7.5, at least one arrow (or set of arrows) leads upward from 

Ri to Rj and an arrow (or set of arrows) exists leading down from Rj to Ri. How-
ever, the linear ordering of resources with the requirement that resources be 
requested in ascending order implies that no arrow can ever lead from Rj to Ri if j > 
i, Therefore deadlock cannot occur in this system.] 

Denying the "circular-wait" condition has been implemented in a number of 
legacy operating systems, but not without difficulties.15, 16, 17, 18 One disadvantage of 
this strategy is that it is not as flexible or dynamic as we might desire. Resources 
must be requested in ascending order by resource number. Resource numbers are 

assigned for the computer system and must be "lived with" for long periods (i.e., 
months or even years). If new resources are added or old ones removed at an instal
lation, existing programs and systems may have to be rewritten. 

Another difficulty is determining the ordering of resources in a system. 
Clearly, the resource numbers should be assigned to reflect the order in which most 

processes actually use the resources. For processes matching this ordering, more 
efficient operation may be expected. But for processes that need the resources in a 

different order than that specified by the linear ordering, resources must be 
acquired and held, possibly for long periods of time, before they are actually used. 
This can result in poor performance. 

An important goal in today's operating systems is to promote software porta-
bility across multiple environments. Programmers should be able to develop their 

applications without being impeded by awkward hardware and software restric-
tions. Havender's linear ordering truly eliminates the possibility of a circular wait, 
yet it diminishes a programmer's ability to freely and easily write application code 

that will maximize an application's performance. 

Self Review 
1. How does a linear ordering for resource allocation reduce application portability? 
2. (T/F) Imposing a linear ordering for resource requests yields higher performance than 

denying the "no-preemption" condition. 

Ans: 1) Different systems will normally have different sets of resources and may order 
resources differently, so an application written for one system may need to be modified to 
run effectively on another. 2) False. There are situations where each solution results in higher 
performance because the solution requires insignificant overhead. If a system's processes 
each request disjoint sets of resources, denying "no preemption" is quite efficient. If a process 
uses resources in an order corresponding to the system's linear ordering, then denying the 
"circular wait" condition can result in higher performance. 
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Process P1 has obtained resources R3, 
R4, R6 and R7, and is requesting 
resource R8 (as indicated by the 
dotted line). No circular wait can 
develop because all arrows must 
point upward. 

Figure 7.5 | Havender's linear ordering of of resources for preventing deadlock. 

7.8 Deadlock Avoidance with Dijkstra's Banker's Algorithm 
For some systems, it is impractical to implement the deadlock prevention strategies 
we discussed in the preceding section. However, if the necessary conditions for a 
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deadlock to occur are in place, it is still possible to avoid deadlock by carefully allo
ting system resources. Perhaps the most famous deadlock avoidance algorithm is 
Dijkstra's Banker's Algorithm, so named because the strategy is modeled after a 
banker who makes loans from a pool of capital and receives payments that are 
returned to that pool.19, 20, 21, 22, 23 We paraphrase the algorithm here in the context 
of operating systems resource allocation. Subsequently, much work has been done 

in deadlock avoidance.24, 25, 26, 27, 28, 29, 30, 31 

The Banker's Algorithm defines how a particular system can prevent dead
lock by carefully controlling how resources are distributed to users (see the Anec
dote, Acronyms). A system groups all the resources it manages into resource types. 
Each resource type corresponds to resources that provide identical functionality. To 
simplify our presentation of the Banker's Algorithm, we limit our discussion to a 
system that manages only one type of resource. The algorithm is easily extendable 
to pools of resources of various types; this is left to the exercises. 

The Banker's Algorithm prevents deadlock in operating systems that exhibit 
the following properties: 

• The operating system shares a fixed number of resources, t, among a fixed 
number of processes, n. 

• Each process specifies in advance the maximum number of resources that it 
requires to complete its work. 

• The operating system accepts a process's request if that process's maximum 
need does not exceed the total number of resources available in the system, 
t (i.e., the process cannot request more than the total number of resources 
available in the system). 

• Sometimes, a process may have to wait to obtain an additional resource, 
but the operating system guarantees a finite wait time. 

• If the operating system is able to satisfy a process's maximum need for 
resources, then the process guarantees that the resource will be used and 
released to the operating system within a finite time. 

Anecdote 
Acronyms 
Most computer folks are familiar which nicely describe the relation- what I want when I want it." The 
wi th the acronym WYSIWYG for ship between the process request- operating system responds, 
"what you see is what you get." ing resources and the operating "You'll get what I've got when I 
Few people have seen these two- system attempting to allocate get i t ." 
IWWIWWIWI and YGWIGWIGI, them. The process says, "I want 
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The system is said to be in a safe state if the operating system can guarantee 
that all current processes can complete their work within a finite time. If not, then 
the system is said to be in an unsafe state. 

We also define four terms that describe the distribution of resources among 
processes. 

• Let max(Pi) be the maximum number of resources that process Pi requires 
during its execution. For example, if process P3 never requires more than 
two resources, then max(P3) = 2. 

• Let loan(Pi) represent process Pi's current loan of a resource, where its 
loan is the number of resources the process has already obtained from the 
system. For example, if the system has allocated four resources to process 
P5, then loan(P5) = 4. 

• Let claim(Pi) be the current claim of a process, where a process's claim is 
equal to its maximum need minus its current loan. For example, if process 
P7 has a maximum need of six resources and a current loan of four 
resources, then we have 

claim(P7) = max( P7) - loan(P7) = 6 - 4 = 2 

• Let a be the number of resources still available for allocation. This is equiv
alent to the total number of resources (t) minus the sum of the loans to all 
the processes in the system, i.e., 

So, if the system has a total of three processes and 12 resources, and the sys
tem has allocated two resources to process P1, one resource to process P2 and four 
resources to process P3, then the number of available resources is 

a = 12 - (2 + 1 + 4) = 12 - 7 = 5 

Dijkstra's Banker's Algorithm requires that resources be allocated to pro
cesses only when the allocations result in safe states. In that way, all processes 
remain in safe states at all times, and the system will never deadlock. 

Self Review 
1. (T/F) An unsafe state is a deadlocked state. 
2. Describe the restrictions that the Banker's Algorithm places on processes. 

Ans: 1) False. A process in an unsafe state might eventually deadlock, or it might complete 
its execution without entering deadlock. What makes the state unsafe is simply that the oper
ating system cannot guarantee that from this state all processes can complete their work. 
From an unsafe state, it is possible but not guaranteed that all processes could complete their 
work, so a system in an unsafe state could eventually deadlock. 2) Each process, before it 
runs, is required to specify the maximum number of resources it may require at any point 
during its execution. Each process cannot request more than the total number of resources in 
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the system. Each process must also guarantee that once allocated a resource, the process will 
eventually return that resource to the system within a finite time. 

7.8.1 Example of a Safe State 
Suppose a system contains 12 equivalent resources and three processes sharing the 
resources, as in Fig. 7.6. The second column contains the maximum need for each 

process, the third column the current loan for each process and the fourth column 
the current claim for each process. The number of available resources, a, is two; this 

is computed by subtracting the sum of the current claims from the total number of 
resources, t= 12. 

This state is "safe" because it is possible for all three processes to finish. Note 
that process P2 currently has a loan of four resources and will eventually need a max-
imum of six, or two additional resources. The system has 12 resources, of which 10 are 
currently in use and two are available. If the system allocates these two available 

resources to P2, fulfilling P2's maximum need, then P2 can run to completion. Note 
that after P2 finishes, it will release six resources, enabling the system to immediately 
fulfill the maximum needs of P1 (3) and P3 (3), enabling both of those processes to fin-
ish. Indeed, all processes can eventually finish from the safe sate of Fig. 7.6. 

Self Review 
1. In Fig. 7.6, once P2 runs to completion, must P1 and P3 run sequentially one after the 

other, or could they run concurrently? 
2. Why did we focus initially on allowing P2 to finish rather than focusing on either P1 or P3? 

Ans: 1) P1 and P3 each need three more resources to complete. When P2 finishes, it will 
release six resources, which is enough to allow P1 and P3 to run concurrently. 2) Because P2 is 
the only process whose current claim can be satisfied by the two available resources. 

7.8.2 Example of an Unsafe State 
Assume a system's 12 resources are allocated as in Fig. 7.7. We sum the values of 

the third column and subtract from 12 to obtain a value of one for a. At this point, 
no matter which process requests the available resource, we cannot guarantee that 
all three processes will finish. In fact, suppose process P1 requests and is granted the 
last available resource. A three-way deadlock could occur if indeed each process 

Process 
max( Pi) 
(maximum need) 

loan ( Pi ) 
(current loan) 

claim( Pi ) 
(current claim) 

P1 

P2 

P3 

4 
6 
8 

1 
4 
5 

3 
2 
3 

Available resources, a, = 2 Total resources, X, = 12 

Figure 7.6 | Safe State. 



310 Deadlock and Indefinite Postponement 

max( Pi ) loan( Pi ) claim ( Pi ) 
Process (maximum need) (current loan) (current claim) 
P1 

p2 

p3 

10 
5 
3 

8 
2 
1 

2 
3 
2 

Available resources, a, = 1 Total resources, t, = 12 

Figure 7.7 | Unsafe state. 

needs to request at least one more resource before releasing any resources to the 
pool. It is important to note here that an unsafe state does not imply the existence of 
deadlock, nor even that deadlock will eventually occur. What an unsafe state does 
imply is simply that some unfortunate sequence of events might lead to a deadlock. 

1. Why is deadlock possible, but not guaranteed, when a system enters an unsafe state? 
2. What minimum number of resources would have to be added to the system of Fig. 7.7 to 

make the state safe? 

Ans: 1) Processes could give back their resources early, increasing the number of available 
resources to the point that the state of the system was once again safe and all other processes 
could finish. 2) By adding one resource, the number of available resources becomes two, 
enabling P1 to finish and return its resources, enabling both P2 and P3 to finish. Hence the 
new state is safe. 

7.8.3 Example of Safe-State-to-Unsafe-State Transition 
Our resource-allocation policy must carefully consider all resource requests before 
granting them, or a process in a safe state could enter an unsafe state. For example, 
suppose the current state of a system is safe, as shown in Fig. 7.6. The current value 
of a is 2. Now suppose that process P3 requests an additional resource. If the system 
were to grant this request, then the new state would be as in Fig. 7.8. Now, the cur
rent value of a is 1, which is not enough to satisfy the current claim of any process, 
so the state is now unsafe. 

max( Pi ) loan( Pi ) claim( Pi ) 
Process (maximum need) (current loan) (current claim) 

3 

2 

2 

1 
4 
6 

4 

6 

8 

P1 

P2 

P3 

Total resources, t, = 12 Available resources, a, = 1 

Figure 7.8 | Safe-state-to-unsafe-state transition. 
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Self Review 
1. If process P2 requested one additional resource in Fig. 7.6, would the system be in a safe 

or an unsafe state? 
2. (TIF) A system cannot transition from an unsafe state to a safe state. 

Ans: 1) The system would still be in a safe state because there is a path of execution that 
will not result in deadlock. For example, if P2 requests another resource, then P2 can com
plete execution. Then there will be six available resources, which is enough for P1 and P3 to 
finish. 2) False. As processes release resources, the number of available resources can become 
sufficiently large for the state of the system to transition from unsafe to safe. 

7.8.4 Banker's Algorithm Resource Allocation 
Now it should be clear how resource allocation operates under Dijkstra's Banker's 
Algorithm. The "mutual exclusion," "wait-for," and "no-preemption" conditions 
are allowed—processes are indeed allowed to hold resources while requesting and 
waiting for additional resources, and resources may not be preempted from a pro
cess holding those resources. As usual, processes claim exclusive use of the 
resources they require. Processes ease onto the system by requesting one resource 
at a time; the system may either grant or deny each request. If a request is denied, 
that process holds any allocated resources and waits for a finite time until that 
request is eventually granted. The system grants only requests that result in safe 
states. Resource requests that would result in unsafe states are repeatedly denied 
until they can eventually be satisfied. Because the system is always maintained in a 
safe state, sooner or later (i.e., in a finite time) all requests can be satisfied and all 
users can finish. 

Self Review 
1. (T/F) The state described by Figure 7.9 is safe. 
2. What minimum number of additional resources, when added to the system of Fig. 7.9, 

would make the state safe? 

Ans: 1) False. There is no guarantee that all of these processes will finish. P2 will be able to 
finish by using up the two remaining resources. However, once P2 is done, there are only 
three available resources left. This is not enough to satisfy either P1's claim of 4 or P3's claim 
of five. 2) By adding one more resource, we could allow P2 to finish and return three 
resources. These plus the added resource would enable P1 to finish, returning five resources 
and enabling P3 to finish. 

Process max( Pi ) loan( Pi ) claim( Pi ) 
4 
2 
5 

1 

1 

5 

5 
3 
10 

P1 

P2 

P3 

a = 2 

Figure 7.9 | State description of three processes. 
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7.8.5 Weaknesses in the Banker's Algorithm 
The Banker's Algorithm is compelling because it allows processes to proceed that 
might have had to wait under a deadlock prevention situation. But the algorithm 
has a number of weaknesses. 

• It requires that there be a fixed number of resources to allocate. Because 
resources frequently require service, due to breakdowns or preventive 
maintenance, we cannot count on the number of resources remaining fixed. 
Similarly, operating systems that support hot swappable devices (e.g., USB 
devices) allow the number of resources to vary dynamically. 

• The algorithm requires that the population of processes remains fixed. This, 
too, is unreasonable. In today's interactive and multiprogrammed systems. 
the process population is constantly changing. 

• The algorithm requires that the banker (i.e., the system) grant all requests 
within a "finite time." Clearly, much better guarantees than this are needed 
in real systems, especially real-time systems. 

• Similarly, the algorithm requires that clients (i.e., processes) repay all loans 
(i.e., return all resources) within a "finite time." Again, much better guaran
tees than this are needed in real systems. 

• The algorithm requires that processes state their maximum needs in 
advance. With resource allocation becoming increasingly dynamic, it is 
becoming more difficult to know a process's maximum needs. Indeed, one 
main benefit of today's high-level programming languages and "friendly" 
graphical user interfaces is that users are not required to know such low-
level details as resource use. The user or programmer expects the system to 
"print the file" or "send the message" and should not need to worry about 
what resources the system might need to employ to honor such requests. 

For the reasons stated above, Dijkstra's Banker's Algorithm is not imple
mented in today's operating systems. In fact, few systems can afford the overhead 
incurred by deadlock avoidance strategies. 

Self Review 
1. Why does the Banker's Algorithm fail in systems that support hot swappable devices? 

Ans: The Banker's Algorithm requires that the number of resources of each type remain 
fixed. Hot swappable devices can be added and removed from the system at any time, mean
ing that the number of resources of each type can vary. 

7.9 Deadlock Detection 
We have discussed deadlock prevention and avoidance —two strategies for ensuring 
that deadlocks do not occur in a system. Another strategy is to allow deadlocks to 
occur, locate them and remove them, if possible. Deadlock detection is the process 
of determining that a deadlock exists and identifying the processes and resources 
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involved in t h e d e a d l o c k . 3 2 , 33, 34, 35, 36, 37, 38, 39, 40 Deadlock detection algorithms gen-
erally focus on determining if a circular wait exists, given that the other necessary 
conditions for deadlock are in place. 

Deadlock detection algorithms can incur significant runtime overhead. Thus 
we again face the trade-offs so prevalent in operating systems—is the overhead 

involved in deadlock detection justified by the potential savings from locating and 
breaking up deadlocks? For the moment, we shall ignore this issue and concentrate 

instead on the development of algorithms capable of detecting deadlocks. 

7.9.1 Resource-Allocation Graphs 
To facilitate the detection of deadlocks, a popular notation (Fig. 7.10) is used in which 

a directed graph indicates resource allocations and requests.41 Squares represent pro
es and large circles represent classes of identical resources. Small circles drawn 
inside large circles indicate the separate identical resources of each class. For exam-

ple, a large circle labeled "R1" containing three small circles indicates that there are 
three equivalent resources of type R1 available for allocation in this system. 

Figure 7.10 illustrates the relationships that may be indicated in a resource-
allocation and request graph. In Fig. 7.10(a), process P1 is requesting a resource of 
type R1. The arrow from P1 touches only the extremity of the large circle, indicating 
that the resource request is under consideration. 

In Fig. 7.10(b), process P2 has been allocated a resource of type R2 (of which 
there are two).The arrow is drawn from the small circle within the large circle R2 to 

the square P2, to indicate that the system has allocated a specific resource of that 
type to the process. 

Figure 7.10(c) indicates a situation somewhat closer to a potential deadlock. 
Process P3 is requesting a resource of type R3, but the system has allocated the only 
R3 resource to process P4. 

Figure 7.10(d) indicates a deadlocked system in which process P5 is requesting 
a resource of type R4, the only one of which the system has allocated to process P6. 
Process P6, is requesting a resource of type R5, the only one of which the system has 
allocated to process P5. This is an example of the "circular wait" necessary for a 
deadlocked system. 

Resource-allocation and request graphs change as processes request 
resources, acquire them and eventually release them to the operating system. 

Self Review 
1. Suppose a process has control of a resource of type R1. Does it matter which small circle 

points to the process in the resource-allocation graph? 
2. What necessary condition for deadlock is easier to identify in a resource-allocation graph 

than it is to locate by analyzing the resource-allocation data of all the system's processes? 

Ans: 1) No; all resources of the same type must provide identical functionality, so it does 
not matter which small circle within the circle R1 points to the process. 2) Resource-alloca
tion graphs make it easier to identify circular waits. 
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Figure 7.10 | Resource-allocation and request graphs. 

7.9.2 Reduction of Resource-Allocation Graphs 
One technique useful for detecting deadlocks involves graph reductions, in which 
the processes that may complete their execution, if any, and the processes that will 
remain deadlocked (and the resources involved in that deadlock), if any, are deter
mined.42 

If a process's resource requests may be granted, then we say that a graph may 
be reduced by that process. This reduction is equivalent to showing how the graph 
would look if the process was allowed to complete its execution and return its 
resources to the system. We reduce a graph by a process by removing the arrows to 
that process from resources (i.e., resources allocated to that process) and by remov-
ing arrows from that process to resources (i.e., current resource requests of that 
process). If a graph can be reduced by all its processes, then there is no deadlock. If 
a graph cannot be reduced by all its processes, then the irreducible processes consti
tute the set of deadlocked processes in the graph. 

Figure 7.11 shows a series of graph reductions demonstrating that a particular set 
of processes is not deadlocked. Figure 7.10(d) shows an irreducible set of processes 
that constitutes a deadlocked system. It is important to note here that the order in 
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Figure 7.11 | Graph reductions determining that no deadlock exists 

which the graph reductions are performed does not matter: The final result will always 
be the same. We leave the proof of this result to the exercises (see Exercise 7.29). 
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Self Review 
1. Why might deadlock detection be a better policy than either deadlock prevention or 

deadlock avoidance? Why might it be a worse policy? 
2. Suppose a system attempts to reduce deadlock detection overhead by performing dead

lock detection only when there are a large number of processes in the system. What is one 
drawback to this strategy? 

Ans: 1) In general, deadlock detection places fewer restrictions on resource allocation, 
thereby increasing resource utilization. However, it requires that the deadlock detection 
algorithm be performed regularly, which can incur significant overhead. 2) Because deadlock 
can occur between two processes, the system might not ever detect some deadlocks if the 
number of processes in the system is small. 

Once a system has become deadlocked, the deadlock must be broken by removing 
one or more of the four necessary conditions. Usually, several processes will lose 
some or all of the work they have accomplished. However, this may be a small price 
to pay compared with leaving a system in a state where it cannot use some of its 
resources. 

Recovery from deadlock is complicated by several factors. First, it may not be 
clear that the system has become deadlocked. For example, most systems contain 
processes that wake periodically, perform certain tasks, then go back to sleep. 
Because such processes do not terminate until the system is shut down, and because 
they rarely enter the active state, it is difficult to determine if they are deadlocked. 
Second, most systems do not provide the means to suspend a process indefinitely, 
remove it from the system and resume it (without loss of work) at a later time. 
Some processes, in fact, such as real-time processes that must function continuously, 
are simply not amenable to being suspended and resumed. Assuming that effective 
suspend/resume capabilities did exist, they would most certainly involve consider
able overhead and might require the attention of a highly skilled system administra
tor. Such an administrator is not always available. Finally, recovery from deadlock is 
complicated because the deadlock could involve many processes (tens, or even hun
dreds). Given that recovering from deadlocks with even a small number of pro
cesses could require considerable work, dealing with deadlock among many 
hundreds (or even more) processes could be a monumental task. 

In current systems, recovery is ordinarily performed by forcibly removing a 
process from the system and reclaiming its resources.43, 44 The system ordinarily 
loses the work that the removed process has performed, but the remaining pro
cesses may now be able to complete. Sometimes it is necessary to remove several 
processes until sufficient resources have been reclaimed to allow the remaining pro
cesses to finish. Recovery somehow seems like an inappropriate term here, because 
some processes are in fact "killed" for the benefit of the others. 

Processes may be removed according to some priority order. Here, too, we 
face several difficulties. For example, the priorities of the deadlocked processes may 

7.10 Deadlock Recovery 
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not exist, so the system may need to make an arbitrary decision. The priorities also 
may be incorrect or somewhat muddled by special considerations, such as deadline 

scheduling, in which a relatively low-priority process has a high priority temporarily 
because of an impending deadline. Furthermore, it may require considerable effort 

to determine the right processes to remove. 
The suspend/resume mechanism allows the system to put a temporary hold on 

a process (temporarily preempting its resources), and, when it is safe to do so, to 
resume the held process without loss of work. Research in this area is important for 
reasons other than deadlock recovery. For example, a suspend/resume mechanism 
can be applied to a system as a whole, allowing a user to shut down the entire sys
tem and start it later without loss of work. Such technology has been incorporated 
into many laptop systems, where limited battery life requires users to minimize 

power consumption. The Advanced Configuration and Power Interface (ACPI), a 
popular specification for power management, defines a sleeping state in which the 
contents of memory, registers and other system state information are written to a 
nonvolatile medium (such as the hard disk) and the system is powered off. In Win
dows XP, this feature is known as "suspend to disk" or "hibernate." When the sys
tem starts up again, it resumes from the point at which it entered the sleeping state 
without loss of work.45 

Checkpoint/rollback, the precursor to suspend/resume, is widely used in cur
rent database systems. Checkpoint/rollback copes with system failures and dead
locks by attempting to preserve as much data as possible from each terminated 
process. Checkpoint/rollback facilitates suspend/resume capabilities by limiting the 
loss of work to the time at which the last checkpoint (i.e., saved state of the system) 

was taken. When a process in a system terminates (by accident or intentionally as 
the result of a deadlock recovery algorithm), the system performs a rollback by 
undoing every operation related to the terminated process that occurred since the 
last checkpoint. 

When databases may have many resources (perhaps millions or more) that 
must be accessed exclusively, there can be a risk of deadlock. To ensure that data in 
the database remains in a consistent state when deadlocked processes are termi
nated, database systems typically perform resource allocations using transactions. 
The changes specified by a transaction are made permanent only if the transaction 
completes successfully. We discuss transactions in more detail in Chapter 13, File 
and Database Systems. 

Deadlocks could have horrendous consequences in certain real-time systems. 
A real-time process control system monitoring a gasoline refinery must function 
without interruption for the refinery's safe and proper operation. A computerized 
heart pacemaker must literally not "miss a beat." Deadlocks cannot be risked in 
such environments. What would happen if a deadlock did develop? Clearly, it would 
have to be detected and removed instantaneously. But is this always possible? 
These are some of the considerations that keep operating systems designers from 
restful sleep. 
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Self Review 
1. (T/F) A system can eliminate deadlock by choosing at random an irreducible process in a 

resource-allocation graph. 
2. Why might a system that restarts a process it "kills" to break a deadlock suffer from poor 

performance? 

Ans: 1) False. There may be multiple circular waits within the system by the time a dead
lock is detected. 2) First, because killing a process causes loss of work. Second, because the 
restarted process will execute the same code that caused the initial deadlock, and if the sys
tem state has not changed, the system can become deadlocked repeatedly. 

7.11 Deadlock Strategies in Current and Future Systems 
In personal computer systems and workstations, deadlock has generally been 
viewed as a limited annoyance. Some systems implement the basic deadlock pre
vention methods suggested by Havender while others ignore the problem—these 
methods seem to be satisfactory. While ignoring deadlocks may seem dangerous, 
this approach can actually be rather efficient. Consider that today's systems can 
contain thousands or millions of serially reusable objects on which processes and 
threads can deadlock. The time required to execute a deadlock detection algorithm 
can rise exponentially with the number of serially reusable objects in the system. If 
deadlock is rare, then the processor time devoted to checking for deadlocks signifi
cantly reduces system performance. In systems that are neither mission critical nor 
business critical, the choice of ignoring deadlock to favor performance often out
weighs the need for a solution to the occasional deadlock. 

Although some systems ignore deadlock that occurs due to user processes, it is 
far more important to prevent deadlock in the operating system. Systems such as 
Microsoft Windows provide debugger support, allowing developers to thoroughly 
test drivers and applications to ensure that they acquire resources without causing 
deadlock (e.g., they do not attempt to acquire locks in recursive routines, or they 
specify lock acquisition in a certain order).46 Interestingly, once such programs are 
released, these testing mechanisms are often disabled to improve efficiency.47 

In real-time, mission-critical or business-critical systems the possibility of 
deadlock cannot be tolerated. Researchers have developed techniques that handle 
deadlock while minimizing data loss and maintaining good performance. For exam
ple, deadlock is commonly addressed in distributed database systems, which could 
provide concurrent access to billions of records for millions of users over thousands 
of sites.48 Due to the large size of distributed database systems, they often do not 
employ deadlock prevention or deadlock avoidance algorithms. Instead, they rely 
on deadlock detection and recovery via checkpoint/rollback (using transactions).49 

These techniques are beyond the scope of this chapter; see Chapter 17, Introduc
tion to Distributed Systems, for an introduction to such methods. 

Given current trends, deadlock will continue to be an important area of 
research for several reasons: 
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• Many large-scale systems are oriented more toward asynchronous parallel 
operations than toward the serial operations of the past. Multiprocessing is 
common, and parallel computation will be prevalent. Networks and distrib
uted systems are ubiquitous. There are, quite simply, more operations going 
on concurrently, more conflicts over resources and hence more chances of 
deadlock. Consequently, research on deadlock detection and recovery in 
distributed systems has become quite active. 

• With the increasing tendency of operating systems designers to view data 
as a resource, the number of resources that operating systems must manage 
is increasing dramatically. This is particularly evident in Web servers and 
database systems, which require high resource utilization and performance. 
This makes most deadlock prevention techniques impractical and deadlock 
recovery algorithms more important. Researchers have developed 
advanced transaction-based algorithms that ensure high resource utiliza
tion while maintaining a low cost of deadlock recovery.50 

• Hundreds of millions of computers are incorporated into common devices, 
particularly small, portable ones such as cell phones, PDAs and navigation 
systems. These systems, increasingly characterized as Systems-on-a-Chip 
(SoC), are limited by a small set of resources and the demands of real-time 
tasks.51, 52 Deadlock-free resource allocation in such systems is essential, 
because users cannot rely on an administrator to detect and rid the system 
of the deadlock. 

Self Review 
1. Why is deadlock prevention not a primary concern for many operating systems? 
2. Why might deadlock in distributed systems be more difficult to detect than in a single 

computer? 

Ans: 1) Deadlock is rare and is often considered a minor annoyance for most personal com
puter users, who are often more concerned with operating system performance and features. 
2) Deadlock in distributed systems can be difficult to detect because each computer is man
aged by a different operating system, requiring each operating system to collect information 
from other computers in order to construct its resource-allocation graph. 

Web Resources 
www.diee.unica.it/~giua/PAPERS/CONF/03smc_b.pdf 
Discusses an efficient approach to deadlock prevention in a 
real-time system. 
www.db.fmi.uni-passau.de/publications/techreports/ 
dda.html 
Describes a solution to deadlock detection in distributed sys
tems. 

www.linux-mag.com/2001-03/compi1e_01.html 
This Compile Time article describes how to deal with deadlock, 
using the Dining Philosophers example. The beginning of the 
article also reviews mutual exclusion primitives (e.g., sema
phores) and concurrent programming. 

http://www.diee.unica.it/~giua/PAPERS/CONF/03smc_b.pdf
http://www.db.fmi.uni-passau.de/publications/techreports/dda.html
http://http://www.db.fmi.uni-passau.de/publications/techreports/dda.html
http://www.linux-mag.com/2001-03/compi1e_01.html
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Summary 
One problem that arises in multiprogrammed systems is 
deadlock. A process or thread is in a state of deadlock (or is 
deadlocked) if the process or thread is waiting for a partic
ular event that will not occur. In a system deadlock, one or 
more processes are deadlocked. Most deadlocks develop 
because of the normal contention for dedicated resources 
(i.e., resources that may be used by only one user at a 
time). Circular wait is characteristic of deadlocked systems. 

One example of a system that is prone to deadlock is 
a spooling system. A common solution is to restrain the 
input spoolers so that, when the spooling files begin to 
reach some saturation threshold, they do not read in more 
print jobs. Today's systems allow printing to begin before 
the job is completed so that a full, or nearly full, spooling 
file can be emptied or partially cleared even while a job is 
still executing. This concept has been applied to streaming 
audio and video clips, where the audio and video begin to 
play before the clips are fully downloaded. 

In any system that keeps processes waiting while it 
makes resource-allocation and process scheduling decisions, 
it is possible to delay indefinitely the scheduling of a process 
while other processes receive the system's attention. This sit
uation, variously called indefinite postponement, indefinite 
blocking, or starvation, can be as devastating as deadlock. 
Indefinite postponement may occur because of biases in a 
system's resource scheduling policies. Some systems prevent 
indefinite postponement by increasing a process's priority as 
it waits for a resource—this technique is called aging. 

Resources can be preemptible (e.g., processors and 
main memory), meaning that they can be removed from a 
process without loss of work, or nonpreemptible meaning 
that they (e.g., tape drives and optical scanners), cannot be 
removed from the processes to which they are assigned. 
Data and programs certainly are resources that the operat
ing system must control and allocate. Code that cannot be 
changed while in use is said to be reentrant. Code that may 
be changed but is reinitialized each time it is used is said to 
be serially reusable. Reentrant code may be shared by sev
eral processes simultaneously, whereas serially reusable 
code may be used by only one process at a time. When we 
call particular resources shared, we must be careful to state 
whether they may be used by several processes simulta
neously or by only one of several processes at a time. The 
latter kind—serially reusable resources —are the ones that 
tend to become involved in deadlocks. 

The four necessary conditions for deadlock are: a 
resource may be acquired exclusively by only one process at 

a time (mutual exclusion condition); a process that has 
acquired an exclusive resource may hold it while waiting to 
obtain other resources (wait-for condition, also called the 
hold-and-wait condition); once a process has obtained a 
resource, the system cannot remove the resource from the 
process's control until the process has finished using the 
resource (no-preemption condition); and two or more pro
cesses are locked in a "circular chain" in which each process 
in the chain is waiting for one or more resources that the 
next process in the chain is holding (circular-wait condition). 
Because these are necessary conditions for a deadlock to 
exist, the existence of a deadlock implies that each of them 
must be in effect. Taken together, all four conditions are nec
essary and sufficient for deadlock to exist (i.e., if all these 
conditions are in place, the system is deadlocked). 

The four major areas of interest in deadlock research 
are deadlock prevention, deadlock avoidance, deadlock 
detection, and deadlock recovery. In deadlock prevention 
our concern is to condition a system to remove any possi
bility of deadlocks occurring. Havender observed that a 
deadlock cannot occur if a system denies any of the four 
necessary conditions. The first necessary condition, namely 
that processes claim exclusive use of the resources they 
require, is not one that we want to break, because we spe
cifically want to allow dedicated (i.e., serially reusable) 
resources. Denying the "wait-for" condition requires that 
all of the resources a process needs to complete its task be 
requested at once, which can result in substantial resource 
underutilization and raises concerns over how to charge for 
resources. Denying the "no-preemption" condition can be 
costly, because processes lose work when their resources 
are preempted. Denying the "circular-wait" condition uses 
a linear ordering of resources to prevent deadlock. This 
strategy can increase efficiency over the other strategies, 
but not without difficulties. 

In deadlock avoidance the goal is to impose less strin
gent conditions than in deadlock prevention in an attempt 
to get better resource utilization. Avoidance methods allow 
the possibility of deadlock to loom, but whenever a dead-
lock is approached, it is carefully sidestepped. Dijkstra's 
Banker's Algorithm is an example of a deadlock avoidance 
algorithm. In the Banker's Algorithm, the system ensures 
that a process's maximum resource need does not exceed 
the number of available resources. The system is said to be 
in a safe state if the operating system can guarantee that all 
current processes can complete their work within a finite 
time. If not, then the system is said to be in an unsafe state. 
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Checkpoint/rollback facilitates suspend/resume capabilities 
by limiting the loss of work to the time at which the last 
checkpoint (i.e., saved state of the system) was taken. 
When a process in a system terminates (by accident or 
intentionally as the result of a deadlock recovery algo
rithm), the system performs a rollback by undoing every 
operation related to the terminated process that occurred 
since the last checkpoint. To ensure that data in the data
base remains in a consistent state when deadlocked pro
cesses are terminated, database systems typically perform 
resource allocations using transactions. 

In personal computer systems and workstations, dead
lock has generally been viewed as a limited annoyance. 
Some systems implement the basic deadlock prevention 
methods suggested by Havender, while others ignore the 
problem—these methods seem to be satisfactory. While 
ignoring deadlocks may seem dangerous, this approach can 
actually be rather efficient. If deadlock is rare, then the pro
cessor time devoted to checking for deadlocks significantly 
reduces system performance. However, given current trends, 
deadlock will continue to be an important area of research as 
the number of concurrent operations and number of 
resources become large, increasing the likelihood of dead
lock in multiprocessor and distributed systems. Also, many 
real-time systems, which are becoming increasingly preva
lent, require deadlock-free resource allocation. 

Dijkstra's Banker's Algorithm requires that resources be 
allocated to processes only when the allocations result in 
safe states. It has a number of weaknesses (such as requir
ing a fixed number of processes and resources) that prevent 
it from being implemented in real systems. 

Deadlock detection methods are used in systems in 
which deadlocks can occur. The goal is to determine if a 
deadlock has occurred, and to identify those processes and 
resources involved in the deadlock. Deadlock detection 
algorithms can incur significant runtime overhead. To facili
tate the detection of deadlocks, a directed graph indicates 
resource allocations and requests. Deadlock can be 
detected using graph reductions. If a process's resource 
requests may be granted, then we say that a graph may be 
reduced by that process. If a graph can be reduced by all its 
processes, then there is no deadlock. If a graph cannot be 
reduced by all its processes, then the irreducible processes 
constitute the set of deadlocked processes in the graph. 

Deadlock recovery methods are used to clear dead
locks from a system so that it may operate free of the dead
locks, and so that the deadlocked processes may complete 
their execution and free their resources. Recovery typically 
requires that one or more of the deadlocked processes be 
flushed from the system. The suspend/resume mechanism 
allows the system to put a temporary hold on a process 
(temporarily preempting its resources), and, when it is safe 
to do so, resume the held process without loss of work. 

Key Terms 
Advanced Configuration and Power Interface (ACPI)—Power 

management specification supported by many operating 
systems that allows a system to turn off some or all of its 
devices without loss of work. 

aging—Method of preventing indefinite postponement by 
increasing a process's priority gradually as it waits. 

checkpoint—Record of a state of a system so that it can be 
restored later if a process must be prematurely terminated 
(e.g., to perform deadlock recovery). 

checkpoint/rollback—Method of deadlock and system recov
ery that undoes every action (or transaction) of a termi
nated process since the process's last checkpoint. 

circular wait—Condition for deadlock that occurs when two or 
more processes are locked in a "circular chain," in which 
each process in the chain is waiting for one or more 
resources that the next process in the chain is holding. 

circular-wait necessary condition for deadlock—One of the 
four necessary conditions for deadlock; states that if a 
deadlock exists, there will be two or more processes in a 

circular chain such that each process is waiting for a 
resource held by the next process in the chain. 

deadline scheduling—Scheduling a process or thread to com
plete by a definite time; the priority of the process or 
thread may need to be increased as its completion dead
line approaches. 

deadlock—Situation in which a process or thread is waiting for 
an event that will never occur. 

deadlock avoidance—Strategy that eliminates deadlock by 
allowing a system to approach deadlock, but ensuring that 
deadlock never occurs. Avoidance algorithms can achieve 
higher performance than deadlock prevention algorithms. 
(See also Dijktra's Banker's Algorithm.) 

deadlock detection—Process of determining whether or not a 
system is deadlocked. Once detected, a deadlock can be 
removed from a system, typically resulting in loss of work. 

deadlock prevention—Process of disallowing deadlock by 
eliminating one of the four necessary conditions for dead
lock. 
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deadlock recovery—Process of removing a deadlock from a 
system. This can involve suspending a process temporarily 
(and preserving its work) or sometimes killing a process 
(thereby losing its work) and restarting it. 

deadly embrace—See deadlock. 
dedicated resource—Resource that may be used by only one 

process at a time. Also known as a serially reusable 
resource. 

Dijkstra's Banker's Algorithm—Deadlock avoidance algo
rithm that controls resource allocation based on the 
amount of resources owned by the system, the amount of 
resources owned by each process and the maximum 
amount of resources that the process will request during 
execution. Allows resources to be assigned to processes 
only when the allocation results in a safe state. (See also 
safe state and unsafe state.) 

Dining Philosophers—Classic problem introduced by Dijkstra 
that illustrates the problems inherent in concurrent pro
gramming, including deadlock and indefinite postpone
ment. The problem requires the programmer to ensure 
that a set of n philosophers at a table containing n forks, 
who alternate between eating and thinking, do not starve 
while attempting to acquire the two adjacent forks neces
sary to eat. 

graph reduction—Altering a resource-allocation graph by 
removing a process if that process can complete. This also 
involves removing any arrows leading to the process (from 
the resources allocated to the process) or away from the 
process (to resources the process is requesting). A 
resource-allocation graph can be reduced by a process if all 
of that process's resource requests can be granted, enabling 
that process to run to completion and free its resources. 

Havender's linear ordering—See linear ordering. 
linear ordering (Havender)—Logical arrangement of 

resources that requires that processes request resources in 
a linear order. This method denies the circular-wait neces
sary condition for deadlock. 

maximum need (Dijkstra's Banker's Algorithm) —Characteris
tic of a process in Dijkstra's Banker's Algorithm that 
describes the largest number of resources (of a particular 
type) the process will need during execution. 

mutual exclusion necessary condition for deadlock—One of 
the four necessary conditions for deadlock; states that 
deadlock can occur only if processes cannot claim exclu
sive use of their resources. 

necessary condition for deadlock—Condition that must be 
true for deadlock to occur. The four necessary conditions 
are the mutual exclusion condition, no-preemption condi
tion, wait-for condition and circular-wait condition. 

no-preemption necessary condition for deadlock—One of the 
four necessary conditions for deadlock; states that dead
lock can occur only if resources cannot be forcibly 
removed from processes. 

nonpreemptible resource—Resource that cannot be forcibly 
removed from a process, e.g., a tape drive. Such resources 
are the kind that can become involved in deadlock. 

preemptible resource—Resource that may be removed from a 
process such as a processor or memory. Such resources 
cannot be involved in deadlock. 

reentrant code—Code that cannot be changed while in use and 
therefore can be shared among processes and threads. 

resource allocation graph—Graph that shows processes and 
resources in a system. An arrow pointing from a process 
to a resource indicates that the process is requesting the 
resource. An arrow pointing from a resource to a process 
indicates that the resource is allocated to the process. 
Such a graph helps determine if a deadlock exists and. if 
so, helps identify the processes and resources involved in 
the deadlock. 

resource type —Grouping of resources that perform a common 
task. 

safe state—State of a system in Dijkstra's Banker's Algorithm 
in which there exists a sequence of actions that will allow 
every process in the system to finish without the system 
becoming deadlocked. 

saturation threshold—A level of resource utilization above 
which the resource will refuse access. Designed to reduce 
deadlock, it also reduces throughput. 

serially reusable code—Code that can be modified but is reini
tialized each time it is used. Such code can be used by only 
one process or thread at a time. 

serially reusable resource—See dedicated resource. 

shared resource—Resource that can be accessed by more than 
one process. 

starvation—Situation in which a thread waits for an event that 
might never occur, also called indefinite postponement. 

sufficient conditions for deadlock—The four conditions-
mutual exclusion, no-preemption, wait-for and circular-
wait-which are necessary and sufficient for deadlock. 

suspend/resume—Method of halting a process, saving its state, 
releasing its resources to other processes, then restoring 
its resources after the other processes have released them. 

transaction—Atomic, mutually exclusive operation that either 
completes or is rolled back. Modifications to database 
entries are often performed as transactions to enable high 
performance and reduce the cost of deadlock recovery. 
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wait-for condition—One of the four necessary conditions for 
deadlock; states that deadlock can occur only if a process 
is allowed to wait for a resource while it holds another. 

unsafe state—State of a system in Dijkstra's Banker's Algo
rithm that might eventually lead to deadlock because 
there might not be enough resources to allow any process 
to finish. 

Exercises 
7.1 Define deadlock. 

7.2 Give an example of a deadlock involving only a single 
process and a single resource. 

7.3 Give an example of a simple resource deadlock involv
ing three processes and three resources. Draw the appropriate 
resource-allocation graph. 

7.4 What is indefinite postponement? How does indefinite 
postponement differ from deadlock? How is indefinite post
ponement similar to deadlock? 

7.5 Suppose a system allows for indefinite postponement of 
certain entities. How would you as a systems designer provide 
a means for preventing indefinite postponement? 

7.6 Discuss the consequences of indefinite postponement in 
each of the following types of systems. 

a. batch processing 
b. timesharing 
c. real-time 

7.7 A system requires that arriving processes must wait for 
service if the needed resource is busy. The system does not use 
aging to elevate the priorities of waiting processes to prevent 

indefinite postponement. What other means might the system 
use to prevent indefinite postponement? 

7.8 In a system of n processes, a subset of m of these pro
cesses is currently suffering indefinite postponement. Is it pos
sible for the system to determine which processes are being 
indefinitely postponed? 

7.9 (The Dining Philosophers) One of Dijkstra's more 
delightful contributions is his problem of the Dining Philoso
phers.53, 54 It illustrates many of the subtle problems inherent 
in concurrent programming. 

Your goal is to devise a concurrent program (with a 
monitor) that simulates the behavior of the philosophers. Your 
program should be free of deadlock and indefinite postpone
ment—otherwise one or more philosophers might starve. Your 
program must, of course, enforce mutual exclusion—two phi
losophers cannot use the same fork at once. 

Figure 7.12 shows the behavior of a typical philosopher. 
Comment on each of the following implementations of a typi
cal philosopher. 

a. See Fig. 7.13. 
b. See Fig. 7.14. 
c. See Fig. 7.15. 
d. See Fig. 7.16. 

1 typical Philosopher() 
2 { 
3 while ( true ) 
4 { 
5 th ink ( ) ; 
6 eat() ; 
7 } // end whi le 
8 } // end t yp i ca l Philosopher 

Figure 7.12 | Typical philosopher behavior for Exercise 7.9. 

1 typ ica lPhi losopher( ) 
2 { 
3 whi le ( t rue ) 
4 { 

Figure 7.13 | Philosopher behavior for Exercise 7.9(a) (Part 1 of 2.) 
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5 th ink( ) ; 
6 
7 pickUpLeftFork(); 
8 pickUpRightFork(); 
9 

10 eat(); 
11 
12 putDownLeftFork(); 
13 putDownRightFork(); 
14 } // end while 
15 
16 } // end typical Philosopher 

Figure 7.13 | Philosopher behavior for Exercise 7.9(a). (Part 2 of 2.) 

1 typ ica lPhi losopher( ) 
2 { 
3 whi le ( t rue ) 
4 { 
5 t h i n k ( ) ; 
6 
7 pickUpBothForksAtOnce(); 
8 
9 e a t ( ) ; 

10 
11 putDownBothForksAtOnce(); 
12 } // end while 
13 
14 } // end typical Philosopher 

Figure 7.14 | Phjlosopher behavior for Exercise 7.9(b). 

1 typ ica lPhi losopher( ) 
2 { 
3 whi le ( t rue ) 
4 { 
5 t h i n k ( ) ; 
6 
7 whi le ( notHoldingBothForks ) 
8 { 
9 p ickUpLef tFork() ; 

10 
11 if ( r ightForkNotAvai lable ) 
12 { 
13 putDownLeftFork(); 

Figure 7.15 | Philosopher behavior for Exercise 7.9(c). (Part 1 of 2.) 
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} / / end i f 
else 
{ 

pickUpRightFork(); 
} / / end whi le 

} // end else 

eat() ; 

putDownLeftFork() ; 
putDownRightFork(); 

} // end while 

} / / end t yp i ca l Philosopher 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Figure 7.15 | Philosopher behavior for Exercise 7.9(c). (Part 2 of 2.) 

1 typ ica lPhi losopher( ) 
2 { 
3 whi le ( t rue ) 
4 { 
5 t h i n k ( ) ; 
6 
7 if ( philosopherID mod 2 == 0 ) 
8 { 
9 p ickUpLef tFork() ; 

10 pickUpRightFork() ; 
11 
12 e a t ( ) ; 
13 
14 putDownLeftFork(); 
15 putDownRightFork(); 
16 } // end if 
17 else 
18 { 
19 pickUpRightFork(); 
20 pickUpLeftFork(); 
21 
22 eat(); 
23 
24 putDownRightFork(); 
25 putDownLeftFork(); 
26 } /,/ end else 
27 } // end while 
28 
29 } // end typical Philosopher 

Figure 7.16 | Philosopher behavior for Exercise 7.9(d). 
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7.10 Define and discuss each of the following resource concepts. 

a. preemptible resource 

b. nonpreemptible resource 

c. shared resource 

d. dedicated resource 
e. reentrant code 
f. serially reusable code 
g. dynamic resource allocation 

7.11 State the four necessary conditions for a deadlock to 
exist. Give a brief intuitive argument for the necessity of each 
individual condition. 

7.12 In the context of the traffic deadlock, illustrated in 
Fig. 7.1, discuss each of the necessary conditions for deadlock. 

7.13 What are the four areas of deadlock research mentioned 
in the text? Discuss each briefly. 

7.14 Havender's method for denying the "wait-for" condition 
requires that processes must request all of the resources they 
will need before the system may let them proceed. The system 
grants resources on an "all-or-none" basis. Discuss the pros 
and cons of this method. 

7.15 Why is Havender's method for denying the "no-preemp
tion" condition not a popular means for preventing deadlock? 

7.16 Discuss the pros and cons of Havender's method for 
denying the "circular-wait" condition. 

7.17 How does Havender's linear ordering for denying the 
"circular-wait" condition prevent cycles from developing in 
resource-allocation graphs? 

7.18 A process repeatedly requests and releases resources of 
types R1 and R2, one at a time and in that order. There is 
exactly one resource of each type. A second process also 
requests and releases these resources one at a time repeatedly. 
Under what circumstances could these processes deadlock? If 
so, what could be done to prevent deadlock? 

7.19 Explain the intuitive appeal of deadlock avoidance over 
deadlock prevention. 

7.20 In the context of Dijkstra's Banker's Algorithm discuss 
whether each of the states described in Fig. 7.17 and Fig. 7.18 is 
safe or unsafe. If a state is safe, show how it is possible for all 
processes to complete. If a state is unsafe, show how it is possi
ble for deadlock to occur. 

7.21 The fact that a state is unsafe does not necessarily imply 
that the system will deadlock. Explain why this is true. Give an 
example of an unsafe state and show how all of the processes 
could complete without a deadlock occurring. 

7.22 Dijkstra's Banker's Algorithm has a number of weak
nesses that preclude its effective use in real systems. Comment 
on why each of the following restrictions may be considered a 
weakness in the Banker's Algorithm. 

a. The number of resources to be allocated remains fixed. 
b. The population of processes remains fixed. 
c. The operating system guarantees that resource 

requests will be serviced in a finite time. 
d. Users guarantee that they will return held resources 

within a finite time. 
e. Users must state maximum resource needs in advance. 

7.23 (Banker's Algorithm for Multiple Resource Types) Con
sider Dijkstra's Banker's Algorithm as discussed in Section 7.8, 
Deadlock Avoidance with Dijkstra's Banker's Algorithm. Sup
pose that a system using this deadlock avoidance scheme has n 
processes and m different resource types; assume that multiple 
resources of each type may exist and that the number of 
resources of each type is known. Develop a version of the 
Banker's Algorithm that will enable such a system to avoid 
deadlock. [Hint: Under what circumstances could a particular 
process be guaranteed to complete its execution, and thus 
return its resources to the pool?] 

7.24 Could the Banker's Algorithm still function properly if 
resources could be requested in groups? Explain your answer 
carefully. 

Process max( Pi ) loan( Pi ) claim( Pi ) 
3 
2 
3 
2 

1 
4 
5 
0 
a = 1 

4 
6 
8 
2 

P1 

P2 

P3 

P4 

Figure 7.17 | Resource description for State A. 



Exercises 327 

Process max( Pi ) loan( Pi ) claim( Pi ) 
4 
5 
3 

4 

3 
5 
a = 2 

8 

8 
8 

P1 

p2 

P3 

Figure 7.18 | Resource description for State B. 

7.25 A system that uses Banker's-Algorithm deadlock avoid
ance has five processes (1, 2, 3, 4, and 5) and uses resources of 
four different types (A, B, C, and D). There are multiple 
resources of each type. Is the state of the system depicted by 
Fig. 7.19 and Fig. 7.20 safe? Explain your answer. If the system 
is safe, show how all the processes could complete their execu

tion successfully. If the system is unsafe, show how deadlock 
might occur. 

7.26 Suppose a system with n processes and m identical 
resources uses Banker's Algorithm deadlock avoidance. Write 
a function boolean i s S a f e S t a t e l ( i n t [ ] [ ] maximumNeed, 
i n t [ ] [ ] loans . i n t [ ] a v a i l a b l e ) that determines 
whether the system is in a safe state. 

7.27 Suppose a system uses the Banker's Algorithm with n 
processes, m resource types, and multiple resources of each 
type. Write a function boolean i sSafeSta te2 ( i nt [] [] max
imumNeed, i n t [ ] [] loans , i n t [ ] ava i l ab l e ) that deter
mines whether the system is in a safe state. 

7.28 In a system in which it is possible for a deadlock to 
occur, under what circumstances would you use a deadlock 
detection algorithm? 

7.29 In the deadlock detection algorithm employing the tech
nique of graph reductions, show that the order of the graph 
reductions does not matter, the same final state will result. 
[Hint: No matter what the order, after each reduction, the 
available resource pool increases.] 

7.30 Why is deadlock recovery such a difficult problem? 

7.31 Why is it difficult to choose which processes to "flush" in 
deadlock recovery? 

7.32 One method of recovering from deadlock is to kill the 
lowest-priority process (or processes) involved in the dead
lock. This (these) process(es) could then be restarted and once 
again allowed to compete for resources. What potential prob
lem might develop in a system using such an algorithm? How 
would you solve this problem? 

Process Current loan Maximum Need Current Claim 
A B C C 
2 2 2 2 
3 2 0 0 
0 3 2 4 
2 5 0 2 
2 0 0 1 

A B C D 

3 2 4 2 
3 5 1 2 
2 7 7 5 
5 5 0 8 

6 2 1 4 

A B C D 

1 0 2 0 
0 3 1 2 
2 4 5 1 
3 0 0 6 
4 2 1 3 

1 
2 
3 
4 
5 

Figure 7.19 | System state describing current loan, maximum need and current claim. 

Total Resources Resources Available 
A B C D 
3 4 0 1 

A B C D 

13 13 9 13 

Figure 7.20 | System state describing total number of resources and available resources. 
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7.33 Why will deadlock probably be a more critical problem 
in future operating systems than it is today? 

7.34 Do resource malfunctions that render a resource unus
able generally increase or decrease the likelihood of deadlocks 
and indefinite postponement? Explain your answer. 

7.35 The vast majority of computer systems in use today do 
allow at least some kinds of deadlock and indefinite postpone
ment situations to develop, and many of these systems provide 
no automatic means of detecting and recovering from these 
problems. In fact, many designers believe that it is virtually 
impossible to certify a system as absolutely free of the possibil
ities of deadlock and indefinite postponement. Indicate how 
these observations should affect the design of "mission-criti
cal" systems. 

7.36 The table in Fig. 7.21 shows a system in an unsafe state. 
Explain how all of the processes may manage to finish execu
tion without the system becoming deadlocked. 

7.37 A system has three processes and four identical 
resources. Each process requires at most two of the resources 
at any given time. 

a. Can deadlock occur in this system? Explain. 
b. If there are m processes, and each could request up to 

n resources, how many resources must be available in 
the system to ensure that deadlock will never occur? 

c. If there are m processes and r resources in the sys
tem, what maximum number of resources, n, could 
each process request, if all processes must have the 
same maximum? 

Suggested Projects 
7.38 Prepare a research paper on how current operating sys
tems deal with deadlock. 

7.39 Research how real-time systems ensure that deadlock 
never occurs. How do they manage to eliminate deadlock yet 
maintain performance? 

7.40 Determine how Web servers and other business-critical 
systems address the problem of deadlock. 

Suggested Simulations 
7.41 (Deadlock Detection and Recovery Project) Write a simu
lation program to determine whether a deadlock has occurred 
in a system of n identical resources and m processes. Have each 
process generate a set of resources that it wants (e.g., 3 of 
resource A, 1 of resource B and 5 of resource C). Then, from 
each set, request the resources one type at a time in a random 
order and with random pauses between types. Have each pro
cess hold onto all the resources that it has acquired until it can 
get all of them. Deadlocks should start developing. Now have 
another thread check for deadlocks every few seconds. It should 
report when a deadlock has occurred and start killing threads 
involved in the deadlock. Try different heuristics for choosing 
processes to kill and see which type of heuristic results in the 
best average time between deadlocks. 

7.42 (Deadlock Prevention Simulation Project) Write a simula
tion program to compare various deadlock prevention schemes 

discussed in Section 7.7, Deadlock Prevention. In particular, 
compare deadlock prevention by denying the "wait-for" condi
tion (Section 7.7.1, Denying the "Wait-For" Condition) with 
deadlock prevention by denying the "no-preemption" condition 
(Section 7.7.2, Denying the "No-Preemption" Condition). Your 
program should generate a sample user population, user arrival 
times, user resource needs (assume the system has n identical 
resources) in terms both of maximum needs and of when the 
resources are actually required, and so on. Each simulation 
should accumulate statistics on job turnaround times, resource 
utilization, number of jobs progressing at once (assume that jobs 
may progress when they have the portion of the n resources 
they currently need), and the like. Observe the results of your 
simulations and draw conclusions about the relative effective
ness of these deadlock prevention schemes. 

Process loan( Pi ) max( Pi ) claim( Pi ) 
4 
2 
5 

5 
3 
10 

1 

1 

5 

a = 1 

P1 

P2 

P3 

Figure 7.21 | Example of a system in an unsafe state. 
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7.43 (Deadlock Avoidance Simulation Project) Write a simu-
lation program to examine the performance of a system of n 
identical resources and m processes operating under banker's-
algorithm resource allocation. Model your program after the 
one you developed in Exercise 7.42. Run your simulation and 
compare the results with those observed in your deadlock pre-
vention simulations. Draw conclusions about the relative effec-
tiveness of deadlock avoidance vs. the deadlock prevention 

schemes studied. 

7.44 (Deadlock Prevention and Avoidance Comparison) Cre
ate a program that simulates arriving jobs with various 
resource needs (listing each resource that will be needed and 
the time at which it will be needed). This can be a random-
number-based driver program. Use your simulation to deter
mine how deadlock prevention and deadlock avoidance strate
gies yield higher resource utilization. 

Recommended Reading 
Though many operating systems simply ignore the problem of 
deadlock, there has been considerable research in the field to 
create effective algorithms to solve the problem. Dijkstra, 
Isloor and Marsland55 and Zobel56 characterize the problem of 
deadlock. Dijkstra was one of the first to document the prob
lem of deadlock in multiprogrammed systems, presenting both 
the Dining Philosophers problem and the banker's algorithm 
for deadlock avoidance.57, 58 Coffman, Elphick and Shoshani 
later provided a framework for research in this area by classi
fying the four necessary conditions for deadlock.59 Holt60, 61 

developed resource-allocation graphs to aid in deadlock pre
ention, while Habermann62 presented a family of deadlock 
avoidance techniques. In discussing the UNIX System V oper
ating system, Bach indicates how deadlocks may develop in 
areas such as interrupt handling.63 Kenah et al. discuss the 

detection and handling of deadlocks in Digital Equipment 
Corporation's VAX/VMS operating system.64 

Today's systems rarely implement deadlock prevention or 
avoidance mechanisms. In fact, in distributed systems, conven
tional deadlock prevention and avoidance mechanisms are not 
feasible, because each computer in a distributed system may be 
managed by a different operating system. Researchers have 
developed deadlock detection mechanisms65 coupled with 
checkpoint/rollback capabilities66 to reduce loss of work. 
Research into deadlock is currently focused on developing effi
cient deadlock detection algorithms and applying them to dis
tributed systems, networks and other deadlock-prone 
environments.67 The bibliography for this chapter is located on 
our Web site at www.deitel.com/books/os3e/Bibliogra-
phy.pdf. 
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The heavens themselves, the planets and this center observe degree, priority, and place, ... 
—William Shakespeare — 

Nothing in progression can, rest on its original plan. We may as well think of rocking a 

grows man in the cradle of an infant. 
—Edmund Burke — 

For every problen there is one solution which is simple, neat, and wrong. 
—H. L. Mencken— 

There is nothing more requisite in business than dispatch. 
—Joseph Addison— 



Chapter 8 

Processor Scheduling 
Objectives 
After reading this chapter, you should understand: 

• the goals of processor scheduling. 

• preemptive vs. nonpreemptive scheduling. 

• the role of priorities in scheduling. 

• scheduling criteria. 

• common scheduling algorithms. 

• the notions of deadline scheduling and real-time scheduling. 

• Java thread scheduling. 
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8.1 Introduction 
We have discussed how multiprogramming enables an operating system to use its 
resources more efficiently. When a system has a choice of processes to execute, it 
must have a strategy —called a processor scheduling policy (or discipline) —for 
deciding which process to run at a given time. A scheduling policy should attempt to 
satisfy certain performance criteria, such as maximizing the number of processes 
that complete per unit time (i.e., throughput), minimizing the time each process 
waits before executing (i.e., latency), preventing indefinite postponement of pro
cesses, ensuring that each process completes before its stated deadline, or maximiz
ing processor utilization. Some of these goals, such as maximizing processor 
utilization and throughput, are complementary; others conflict with one another —a 
system that ensures that processes will complete before their deadlines may not 
achieve the highest throughput, fn this chapter, we discuss the problems of deter
mining when processors should be assigned, and to which processes. Although we 
focus on processes, many of the topics we describe apply to jobs and threads as well. 

Self Review 
1. When might a system that ensures that processes will complete before their deadlines not 

achieve the highest throughput? 
2. Which performance criterion is the most important in an operating system? Why is this a 

hard question to answer? 

Ans: 1) This occurs, for example, when several short processes are delayed while the system 
dispatches a long process that must meets its deadline. 2) No one performance criterion is more 
important than the others for every operating system. It depends on the goals of the system. 
For example, in real-time systems, giving processes and threads immediate, predictable service 
is more important than high processor utilization. In supercomputers that perform lengthy cal

culations, processor utilization is typically more important than minimizing latency. 

8.2 Scheduling levels 
In this section we consider three levels of scheduling (Fig. 8.1). High-level schedul
ing—also called job scheduling or long-term scheduling—determines which jobs 
the system allows to compete actively for system resources. This level is sometimes 
called admission scheduling, because it determines which jobs gain admission to the 
system. Once admitted, jobs are initiated and become processes or groups of pro
cesses. The high-level scheduling policy dictates the degree of multiprogramming— 
the total number of processes in a system at a given time.1 Entry of too many pro
cesses into the system can saturate the system's resources, leading to poor perfor
mance. In this case, the high-level scheduling policy may decide to temporarily 
prohibit new jobs from entering until other jobs complete. 

After the high-level scheduling policy has admitted a job (which may contain 
one or more processes) to the system, the intermediate-level scheduling policy 
determines which processes shall be allowed to compete for processors. This policy 
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Figure 8.1 | Scheduling levels. 

responds to short-term fluctuations in system load. It temporarily suspends and 
resumes processes to achieve smooth system operation and to help realize certain 
systemwide performance goals. The intermediate-level scheduler acts as a buffer 
between the admission of jobs to the system and the assignment of processors to the 
processes representing these jobs. 

A system's low-level scheduling policy determines which active process the 
system will assign to a processor when one next becomes available. In many of 
today's systems, the low- and intermediate-level schedulers are the only schedulers. 
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(In this case, job initiation is performed by the intermediate-level scheduler.) High-
level schedulers are often limited to large mainframe systems that perform batch 

processing. 
Low-level scheduling policies often assign a priority to each process, reflecting 

its importance —the more important a process, the more likely the scheduling policy 
is to select it to execute next. We discuss priorities in Section 8.4, Priorities, and 
throughout this chapter. The low-level scheduler (also called the dispatcher) also 
assigns (i.e., dispatches) a processor to the selected process. The dispatcher operates 
many times per second and must therefore reside in main memory at all times. 

In this chapter we discuss many low-level scheduling policies. We present each 
in the context of certain scheduling objectives and criteria (which we discuss in 
Section 8.5, Scheduling Objectives, and Section 8.6, Scheduling Criteria), and we 
describe how they relate to one another. Coffman and Kleinrock discuss popular 
scheduling policies and indicate how users who know which one the system 
employs can actually achieve better performance by taking appropriate measures.2 

Ruschitzka and Fabry give a classification of scheduling algorithms, and they for
malize the notion of priority.3 

Self Review 
1. How should the intermediate scheduler respond to fluctuations in system load? 
2. Which level of scheduler should remain resident in main memory? Why? 

Ans: 1) The intermediate scheduler can prohibit processes from proceeding to the low-level 
scheduler when the system becomes overloaded and can allow these processes to proceed 
when the system load returns to normal. 2) The low-level scheduler should remain resident in 
main memory because it executes frequently, requiring it to respond quickly to reduce sched
uling overhead. 

8.3 Preemptive vs. Nonpreemtpive Scheduling 
Scheduling disciplines are either preemptive or nonpreemptive. A scheduling disci
pline is nonpreemptive if, once the system has assigned a processor to a process, the 
system cannot remove that processor from that process. A scheduling discipline is 
preemptive if the system can remove the processor from the process it is running. 
Under a nonpreemptive scheduling discipline, each process, once given a processor, 
runs to completion or until it voluntarily relinquishes its processor. Under a pre
emptive scheduling discipline, the processor may execute a portion of a process's 
code and then perform a context switch. 

Preemptive scheduling is useful in systems in which high-priority processes 
require rapid response. In real-time systems (discussed in Section 8.9, Real-Time 
Scheduling), for example, the consequences of not responding to an interrupt could 
be catastrophic.4, 5, 6, 7 In interactive timesharing systems, preemptive scheduling 
helps guarantee acceptable user response times. Preemption is not without c o s t -
context switches incur overhead (see the Operating Systems Thinking feature, 
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Overhead). To make preemption effective, the system must maintain many pro
cesses in main memory, so that the next process is ready when a processor becomes 
available. As we will see in Chapter 10, Virtual Memory Organization, only a por
tion of each process typically is in main memory at any time; the less active portions 
typically reside on disk. 

In nonpreemptive systems, short processes can experience lengthy service 
delays while longer processes complete, but turnaround times are more predictable, 
because incoming high-priority processes cannot displace waiting processes. 
Because a nonpreemptive system cannot remove a process from a processor until it 
completes, errant programs that never complete (e.g., by entering an infinite loop) 
may never relinquish control of the system. Also, in a nonpreemptive system, exe
cuting unimportant processes can make important processes wait. 

To prevent users from monopolizing the system (either maliciously or acciden
tally), a preemptive system can take the processor away from a process. As discussed 
in Chapter 3, Process Concepts, this is typically implemented by setting an interrupt
ing clock or interval timer that periodically generates an interrupt, which allows the 
operating system to execute. Once a processor is assigned to a process, the process 
executes until it voluntarily releases its processor, or until the clock interrupt or some 
other interrupt occurs. The operating system may then decide whether the running 
process should continue or some other "next" process should execute. 

The interrupting clock helps guarantee reasonable response times to interac
tive users, prevents the system from getting hung up on a user in an infinite loop. 

Operating Systems Thinking 
Overhead 
Ultimately, computer systems exist head while maximizing the become less of an issue. However, 
to run applications for users. portion of the systems resources designers should be aware of a 
Although operating systems cer- that can be allocated to user system's workload when consider-
tainly perform important tasks, applications. As we will see, over- ing overhead. For example, a 
they consume valuable system head can improve performance by large overhead for a small load 
resources in doing so; that improving resource util ization; it may become relatively small 
resource consumption is said to be can also reduce performance to under a heavy load; a small over-
overhead, because the resources provide a higher level of protec- head for a small load may become 
are not directly used by user t ion and security. As computer relatively large under a heavy 
applications to perform useful power continues to increase with load. 
work. Operating systems design- costs decreasing, the resource 
ers seek to minimize that over- consumption lost to overhead can 
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and allows processes to respond to time-dependent events. Processes that need to 
run periodically depend on the interrupting clock. 

In designing a preemptive scheduling mechanism, one must carefully consider 
the arbitrariness of priority schemes. It does not make sense to build a sophisticated 
mechanism to faithfully implement a priority preemption scheme when the priori-
ties themselves are not meaningfully assigned. 

Self Review 
1. When is nonpreemptive scheduling more appropriate than preemptive scheduling? 
2. Can a program that enters an infinite loop monopolize a preemptive system? 

Ans: 1) Nonpreemptive scheduling provides predictable turnaround times, which is impor-
tant for batch processing systems that must provide users with accurate job-completion times. 
2) This depends on the priority of the process and the scheduling policy. In general, a preemp-

tive system containing a process executing an infinite loop will experience reduced through-
put but will still be able to execute other processes periodically. A high-priority process that 

enters an infinite loop, however, may execute indefinitely if all other processes in the system 
have a lower priority. In general, preemptive systems are less affected by such programs than 

nonpreemptive systems. Operating systems typically deal with such situations by limiting the 
maximum time a process can use a processor. 

8.4 Priorities 
Schedulers often use priorities to determine how to schedule and dispatch pro-
cesses. Priorities may be statically assigned or may change dynamically. Priorities 
quantify the relative importance of processes. 

Static priorities remain fixed, so static-priority-based mechanisms are rela
tively easy to implement and incur relatively low overhead. Such mechanisms are 
not, however, responsive to changes in environment, even those that could increase 
throughput and reduce latency. 

Dynamic priority mechanisms are responsive to change. For example, the sys
tem may want to increase the priority of a process that holds a key resource needed 
by a higher-priority process. After the first process relinquishes the resource, the 
system lowers the priority, so that the higher-priority process may execute. 
Dynamic priority schemes are more complex to implement and have greater over
head than static schemes. Hopefully, the overhead is justified by the increased 
responsiveness of the system. 

In multiuser systems, an operating system must provide reasonable service to 
a large community of users but should also provide for situations in which a mem
ber of the user community needs special treatment. A user with an important job 
may be willing to pay a premium, i.e., to purchase priority, for a higher level of ser
vice. This extra charge is merited because resources may need to be withdrawn from 
other paying customers. If there were no extra charge, then all users would request 
the higher level of service. 
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Self Review 
1. Why is it worthwhile to incur the higher cost and increased overhead of a dynamic priority 

mechanism? 
2. Why would a dynamic scheduler choose to favor a low-priority process requesting an 

underutilized resource? 

Ans: 1) A carefully designed dynamic priority mechanism could yield a more responsive 
system than would a static priority mechanism. 2) The underutilized resource is likely to be 
available, allowing the low-priority process to complete and exit the system sooner than a 
higher-priority process waiting for a saturated resource. 

8.5 Scheduling Objectives 
A system designer must consider a variety of factors when developing a scheduling 
discipline, such as the type of system and the users' needs. For example, the schedul
ing discipline for a real-time system should differ from that for an interactive desk
top system; users expect different results from these kinds of systems. Depending 
on the system, the user and designer might expect the scheduler to: 

• Maximize throughput. A scheduling discipline should attempt to service the 
maximum number of processes per unit time. 

• Maximize the number of interactive processes receiving "acceptable" 
response times. 

• Maximize resource utilization. The scheduling mechanisms should keep the 
resources of the system busy. 

• Avoid indefinite postponement. A process should not experience an 
unbounded wait time before or while receiving service. 

• Enforce priorities. If the system assigns priorities to processes, the schedul
ing mechanism should favor the higher-priority processes. 

• Minimize overhead. Interestingly, this is not generally considered to be one 
of the most important objectives. Overhead often results in wasted 
resources. But a certain portion of system resources effectively invested as 
overhead can greatly improve overall system performance. 

• Ensure predictability. By minimizing the statistical variance in process 
response times, a system can guarantee that processes will receive predictable 
service levels (see the Operating Systems Thinking feature, Predictability). 

A system can accomplish these goals in several ways. In some cases, the sched
uler can prevent indefinite postponement of processes through aging—gradually 
increasing a process's priority as the process waits for service. Eventually, its prior
ity becomes high enough that the scheduler selects that process to run. 

The scheduler can increase throughput by favoring processes whose requests 
can be satisfied quickly, or whose completion frees other processes to run. One such 
strategy favors processes holding key resources. For example, a low-priority process 
may be holding a key resource that is required by a higher-priority process. If the 
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resource is nonpreemptible, then the scheduler should give the low-priority process 
more execution time than it ordinarily would receive, so that it will release the key 
resource sooner. This technique is called priority inversion, because the relative pri

es of the two processes are reversed so that the high-priority one will obtain the 
resource it requires to continue execution. Similarly, the scheduler may choose to 
favor a process that requests underutilized resources, because the system will be 
more likely to satisfy this process's requests in a shorter period of time. 

Many of these goals conflict with one another, making scheduling a complex 
problem. For example, the best way to minimize response times is to have sufficient 
resources available whenever they are needed. The price for this strategy is that 
overall resource utilization will be poor. In real-time systems, fast, predictable 

responses are crucial, and resource utilization is less important. In other types of 
systems, the economics often makes effective resource utilization imperative. 

Despite the differences in goals among systems, many scheduling disciplines 
exhibit similar properties: 

• Fairness. A scheduling discipline is fair if all similar processes are treated 
the same, and no process can suffer indefinite postponement due to sched
uling issues (see the Operating Systems Thinking feature, Fairness). 

• Predictability. A given process always should run in about the same 
amount of time under similar system loads. 

• Scalability. System performance should degrade gracefully (i.e., it should 
not immediately collapse) under heavy loads. 

Operating Systems Thinking 
Predictability 
Predictability is as important in inclined to go through the light, a for interactive users who demand 
your everyday life as it is in com- potentially dangerous action. prompt, consistent response times. 
puters. What would you do if you Similarly, you have a sense of Predictability is also important for 
stopped for a red traffic light, and how long common tasks should real-time jobs, where human lives 
the light stayed red for a long take to perform on your computer. may be at stake (we discuss real
time, much longer than any red It is challenging for operating sys- time scheduling in Section 8.9, 
light delay you had ever experi- terns to ensure predictability, espe- Real-Time Scheduling). We discuss 
enced. You would probably daily given that the load on a predictability issues throughout 
become annoyed and fidgety, and system can vary considerably based the book. 
after wait ing for what you on the system load and the nature 
thought was a reasonable of the tasks being performed. Pre-
amount of t ime; you might be dictability is especially important 
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Self Review 
1. How do the goals of reducing the variance in response times and enforcing priorities con

flict? 
2. Is scheduling overhead always "wasteful"? 

Ans: 1) In preemptive systems, high-priority processes can preempt lower-priority ones ai 
any time, thereby increasing the variance in response times. 2) No, the overhead incurred bj 
effective scheduling operations can increase resource utilization. 

8.6 Scheduling Criteria 
To realize a system's scheduling objectives, the scheduler should consider process 
behavior. A processor-bound process tends to use all the processor time that the 
system allocates for it. An I/O-bound process tends to use the processor only briefly 
before generating an I/O request and relinquishing it. Processor-bound processes 
spend most of their time using the processor; I/O-bound processes spend most of 
their time waiting for external resources (e.g., printers, disk drives, network connec
tions, etc.) to service their requests, and only nominal time using processors. 

A scheduling discipline might also consider whether a process is batch or 
interactive. A batch process contains work for the system to perform without inter
acting with the user. An interactive process requires frequent inputs from the user. 
The system should provide good response times to an interactive process, whereas a 
batch process generally can suffer reasonable delays. Similarly, a scheduling disci-
pline should be sensitive to the urgency of a process. An overnight batch process 

Operating Systems Thinking 

Fairness 
How many times have you strategies that yield good perfor- Operating systems must keep fair-
expressed annoyance saying, mance for most users, processes, ness in mind, but always in the 
"That's not fair !" You have proba- threads, I/O requests and the like, context of other considerations. 
bly heard the expression, "Life is but do so at the expense of other Fairness issues are particularly 
not fair." We all know what fair- users, processes, threads and I/O important in designing resource 
ness is and most people would requests that wind up being mis- scheduling strategies, as we will 
agree that it is a "good th ing" but treated. "That's not fair," you say, see when we investigate proces-
not universally achieved. We dis- yet it is hard to ignore how these sor scheduling in this chapter and 
cuss fairness issues in many chap- strategies achieve the system's disk scheduling in Chapter 12, 
ters throughout this book. We objectives, such as improving Disk Performance Optimization. 
will see priority-based scheduling overall system performance. 
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does not require immediate responses. A real-time process control system that 
monitors a gasoline refinery must be responsive, possibly to prevent an explosion. 

When the second edition of this book was published, users interacted with 
processes by issuing trivial requests using a keyboard. In this environment, a sched
uler could favor an interactive process with little effect on other processes, because 
the time required to service interactive processes (e.g., by displaying text) was nom-
inal. AS computers became more powerful, system designers and application pro-
grammers included features such as graphics and GUIs to improve user-
friendliness. Although some systems still use text-based interfaces, most of today's 

users interact via GUIs, using a mouse to perform actions such as opening, resizing, 
dragging and closing windows. Users expect systems to respond quickly so that 
these actions produce smooth movement. Unlike text display, this can be a compu-
tationally intensive task requiring the system to redraw the screen many times per 
second. Favoring these interactive processes can significantly reduce the level of 

service provided to other processes in the system. In the case of a batch process, this 
temporary reduction in service may be acceptable, though perhaps not for pro-
cesses that execute in real time (e.g., multimedia applications). 

In a system that employs priorities, the scheduler should favor processes with 
higher priorities. Schedulers can base their decisions on how frequently a higher 
priority process has preempted a lower-priority one. Under some disciplines, fre-
quently preempted processes receive less favored treatment. This is because the 

process's short runtime before preemption does not justify the overhead incurred 
by a context switch each time the process is dispatched. One can argue to the con
trary that such processes should receive more favored treatment to make up for 
previous "mistreatment." 

Preemptive scheduling policies often maintain information about how much 
real execution time each process has received. Some designers believe a process 
that has received little execution time should be favored. Others believe a process 
that has received much execution time could be near completion and should be 
favored to help it reach completion, free its resources for other processes to use and 
exit the system as soon as possible. Similarly, a scheduler may maintain an estimate 
of how much time remains before a process completes. It is easy to prove that aver

age waiting times can be minimized by running those processes first that require the 
minimum runtime until completion. Unfortunately, a system rarely knows exactly 
how much more time each process needs to complete. 

Self Review 
1. Are interactive processes generally processor bound or I/O bound? How about batch 

processes? 
2. The scheduler rarely knows exactly how much more time each process needs to complete. 

Consider a system that schedules processes based on this estimation. How can processes 
abuse this policy? 
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Ans: 1) Interactive processes often wait for input from users, so they are generally I/O 
bound, but an interactive process could certainly enter a phase during which it is primarily 
processor bound. Batch processes do not interact with users and are often processor bound. 
Batch processes that require frequent access to disk or other I/O devices are I/O bound. 
2) Processes would tend to underestimate their times to completion to receive favored treat-
ment from the scheduler. 

8.7 Scheduling Algorithms 
In previous sections we discussed scheduling policies, which specify the goal of the 
scheduler (e.g., maximizing throughput or enforcing priorities). In the subsections 
that follow we discuss scheduling algorithms that determine at runtime which pro-
cess runs next. These algorithms decide when and for how long each process runs; 
they make choices about preemptibility, priorities, running time, time-to-comple-
tion, fairness and other process characteristics. As we will see, some systems require 
the use of a particular type of scheduler (e.g., real-time systems typically require 
preemptive, priority-based schedulers). Others rely on process behavior when mak
ing scheduler decisions (e.g., favoring I/O-bound processes). 

8.7.1 First-In-First-Out (FIFO) Scheduling 
Perhaps the simplest scheduling algorithm is first-in-first-out (FIFO), also called 
first-come-first-served (FCFS) (Fig. 8.2). Processes are dispatched according to 
their arrival time at the ready queue. FIFO is nonpreemptive — once a process has a 
processor, the process runs to completion. FIFO is fair in that it schedules processes 
according to their arrival times, so all processes are treated equally, but somewhat 
unfair because long processes make short processes wait, and unimportant pro-
cesses make important processes wait. FIFO is not useful in scheduling interactive 
processes because it cannot guarantee short response times. 

FIFO is rarely used as a master scheme in today's systems, but it is often found 
within other schemes. For example, many scheduling schemes dispatch processes 
according to priority, but processes with the same priority are dispatched in FIFO 
order. 

Figure 8.2 | First-in-first out scheduling. 
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1. Can indefinite postponement occur in a system that uses a FIFO scheduler? Assume that 
all processes eventually run to completion (i.e., no process enters an infinite loop). 

2. (T/F) FIFO scheduling is rarely found in today's systems. 

Ans: 1) No, indefinite postponement cannot occur, because arriving processes must enter at 
the back of the queue, meaning they cannot prevent already waiting processes from execut-
ing. 2) False. FIFO can be found within many of today's scheduling algorithms (e.g., priority-

based schedulers that dispatch processes with the same priority in FIFO order). 

8.7.2 Round-Robin (RR) Scheduling 
In round-robin (RR) scheduling (Fig. 8.3), processes are dispatched FIFO but are 

given a limited amount of processor time called a time slice or a quantum.8 If a pro-
cess does not complete before its quantum expires, the system preempts it and gives 
the processor to the next waiting process. The system then places the preempted 

process at the back of the ready queue. In Fig. 8.3, process P1 is dispatched to a pro
cessor, where it executes either until completion, in which case it exits the system, 

or until its time slice expires, at which point it is preempted and placed at the tail of 
the ready queue. The scheduler then dispatches process P2. 

Round-robin is effective for interactive environments in which the system 
needs to guarantee reasonable response times. The system can minimize preemp-

tion overhead through efficient context-switching mechanisms and by keeping wait-
ing processes in main memory. 

Like FIFO, round-robin is commonly found within more sophisticated proces-
sor scheduling algorithms but is rarely the master scheme. As we will see through
out this section, many more sophisticated scheduling algorithms degenerate to 
either FIFO or round-robin when all processes have the same priority. For this rea
son, FIFO and round-robin are two of the three scheduling algorithms required by 
the POSIX specification for real-time systems (we discuss real-time scheduling in 
Section 8.9, Real-Time Scheduling).9 

Figure 8.3 | Round-robin Scheduling. 
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Selfish Round-Robin 
Kleinrock discussed a variant of round-robin called selfish round-robin (SRR) that 
uses aging to gradually increase process priorities over time.10 In this scheme, as 
each process enters the system, it first resides in a holding queue, where it ages until 
the its priority reaches the level of processes in the active queue. At this point, it is 
placed in the active queue and scheduled round-robin with other processes in the 
queue. The scheduler dispatches only processes in the active queue, meaning that 
older processes are favored over those that have just entered the system. 

In SRR. a process's priority increases at a rate a while in the holding queue, 
and at a rate b, where b ≤ a , in the active queue. When b < a, processes in the hold
ing queue age at a higher rate than those in the active queue, so they will eventually 
enter the active queue and contend for the processor. Tuning the parameters a and 
b impacts how a process's age affects average latency and throughput. For example, 
as a becomes much larger than b, then processes that enter the system will spend lit
tle, if any, time in the holding queue. If b << a, then processes spend an insignificant 
amount of time in the holding queue, so SRR degenerates to round-robin. If b = a, 
every process in the system ages at the same rate, so SRR degenerates to FIFO. 
Exercise 8.23 investigates some properties of the SRR scheme. 

Quantum Size 
Determination of quantum size, q, is critical to the effective operation of a com
puter system with preemptive scheduling.11 Should the quantum be large or small? 
Should it be fixed or variable? Should it be the same for all processes, or should it 
be determined separately for each process? 

First, let us consider the behavior of the system as the quantum gets either 
extremely large or extremely small. As the quantum gets large, processes tend to 
receive as much time as they need to complete, so the round-robin scheme degener
ates to FIFO. As the quantum gets small, context-switching overhead dominates; 
performance eventually degrades to the point that the system spends most of its 
time context switching with little, if any, useful work accomplished. 

Just where between zero and infinity should the quantum be set? Consider the 
following experiment. Suppose a circular dial is marked with values between q = 0 
and q = c, where c is an extremely large value. We begin with the dial positioned at 
zero. As we turn the dial, the quantum for the system increases. Assume that the 
system is operational and there are many interactive processes. As we initially 
rotate the dial, the quantum sizes are near zero, and the context-switching overhead 
consumes most of the processor's cycles. The interactive users experience a sluggish 
system with poor response times. As we increase the quantum, response times 
improve. The percentage of processor consumed by overhead is small enough that 
the processes receive some processor service, but response times are still not as fast 
as each user might prefer. 

As we turn the dial more, response times continue to improve. Eventually, we 
reach a quantum size for which most of the interactive processes receive promt 
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responses from the system, but it is still not clear if the quantum setting is optimal. 
We turn the dial a bit further, and response times become slightly better. As we con-
tinue to turn the dial, response times start to become sluggish again. The quantum, 

as it gets larger, eventually becomes large enough for each process to run to com-
pletion upon receiving the processor. The scheduling is degenerating to FIFO, in 

which longer processes make shorter ones wait, and the average waiting time 
increases as the longer processes run to completion before yielding the processor. 

Consider the supposedly optimal value of the quantum that yielded good 
response times. It is a small fraction of a second. Just what does this quantum repre

sent? It is large enough so that the vast majority of interactive requests require less 
time than the duration of the quantum. When an interactive process begins execut-
ing. it normally uses the processor only briefly—just long enough to generate an I/O 

request, then block—at which point the process then yields the processor to the 
next process. The quantum is larger than this compute-until-I/O time. Each time a 
process obtains the processor, there is great likelihood that the process will run 
until it generates an I/O request. This maximizes I/O utilization and provides rela
tively rapid response times for interactive processes. It does so with minimal impact 
to processor-bound processes, which continue to get the lion's share of processor 

time because I/O-bound processes block soon after executing. 
Just what is the optimal quantum in actual seconds? Clearly, the size varies from 

system to system and under different loads. It also varies from process to process, but 
our particular experiment is not geared to measuring differences in processes. 

In Linux, the default quantum assigned to a process is 100ms, but can vary from 
10 to 200ms, depending on process priority and behavior. High-priority and I/O-
bound processes receive a larger quantum than low-priority and processor-bound 
processes.12 In Windows XP, the default quantum assigned to a process is an architec
ture-specific value equalling 20ms on most systems. This value can vary depending on 
whether the process executes in the foreground or background of the GUI.13 

When all processes are processor bound, the additional overhead detracts 
from system performance. However, even when only processor-bound processes 
are active, preemption still is useful. For example, consider that processor-bound 
processes could be controlling a real-time, mission critical system—it would be dev
astating if a process entered an infinite loop or even a phase in which it demanded 
more processor time than expected. More simply, many processor-bound systems 
support occasional interactive processes, so preemption is needed to ensure that 
arriving interactive processes receive good response times. 

Self Review 
1. Imagine turning the quantum dial for a system that contains only I/O-bound processes. 

After a point q = c, increasing the quantum value results in little, if any, change in system 
performance. What does point c represent, and why is there no change in system perfor
mance when q > c? 

2. The text describes an optimal quantum value that enables each I/O-bound process to execute 
just long enough to generate an I/O request, then block. Why is this difficult to implement? 
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Ans: 1) This point would be the longest period of computation between I/O requests for 
any processes in the system. Increasing the value of q past c does not affect any processes. 
because each process blocks before its quantum expires, so the processes cannot take advan
tage of the additional processor time allocated to them. 2) In the general case, it is impossi
ble to predict the path of execution a program will take, meaning that the system cannot 
accurately determine when a process will generate I/O. Therefore, the optimal quantum size 
is difficult to determine, because it is different for each process and can vary over time. 

Shortest-process-first (SPF) is a nonpreemptive scheduling discipline in which the 
scheduler selects the waiting process with the smallest estimated run-time-to-com
pletion. SPF reduces average waiting time over FIFO.14 The waiting times, however, 
have a larger variance (i.e., are more unpredictable) than FIFO, especially for large 
processes. 

SPF favors short processes at the expense of longer ones. Many designers 
advocate that the shorter the process, the better the service it should receive. Other 
designers disagree, because this strategy does not incorporate priorities (as mea
sured by the importance of a process). Interactive processes, in particular, tend to 
be "shorter" than processor-bound processes, so this discipline would seem to still 
provide good interactive response times. The problem is that it is nonpreemptive, 
so, in general, arriving interactive processes will not receive prompt service. 

SPF selects processes for service in a manner ensuring the next one will com-
plete and leave the system as soon as possible. This tends to reduce the number of 
waiting processes and also the number of processes waiting behind large processes. 
As a result, SPF can minimize the average waiting time of processes as they pass 
through the system. 

A key problem with SPF is that it requires precise knowledge of how long a 
process will run, and this information usually is not available. Therefore, SPF must 
rely on user- or system-supplied run-time estimates. In production environments 
where the same processes run regularly, the system may be able to maintain reason
able runtime heuristics. In development environments, however, the user rarely 
knows how long a process will execute. 

Another problem with relying on user process duration estimates is that users 
may supply small (perhaps inaccurate) estimates so that the system will give their 
programs higher priority. However, the scheduler can be designed to remove this 
temptation. For example, if a process runs longer than estimated, the system could 
terminate it and reduce the priority of that user's other processes, even invoking 
penalties. A second method is to run the process for the estimated time plus a small 
percentage extra, then "shelve" it (i.e., preserve it in its current form) so that the 
system may restart it at a later time.15 

SPF derives from a discipline called short job first (SJF), which might have 
worked well scheduling jobs in factories but clearly is inappropriate for low-level 
scheduling in operating systems. SPF, like FIFO, is nonpreemptive and thus not 
suitable for environments in which reasonable response times must be guaranteed. 

8.7.3 Shortest-Process-First (SPF) Scheduling 



8.7 Scheduling Algorithms 349 

1. Why is SPF more desirable than FIFO when system throughput is a primary system 
objective? 

2. Why is SPF inappropriate for low-level scheduling in today's operating systems? 

Ans: 1) SPF reduces average wait times, which increases throughput. 2) SPF does not pro-
vide processes with fast response times, which is essential in today's user-friendly, multipro-
grammed, interactive systems. 

8.7.4 Highest-Response-Ratio-Next (HRRN) Scheduling 
Brinch Hansen developed the highest-response-ratio-next (HRRN) policy that cor
rects some of the weaknesses in SPF, particularly the excessive bias against longer 
processes and the excessive favoritism toward short processes. HRRN is a nonpre-
emptive scheduling discipline in which each process's priority is a function not only 
of its service time but also of its time spent waiting for service.16 Once a process 
obtains it, the process runs to completion. HRRN calculates dynamic priorities 
according to the formula 

Because the service time appears in the denominator, shorter processes 
receive preference. However, because the waiting time appears in the numerator, 
longer processes that have been waiting will also be given favorable treatment. This 
technique is similar to aging and prevents the scheduler from indefinitely postpon-
ing processes. 

1. (T/F) With HRRN scheduling, short processes are always scheduled before long ones. 
2. Process P1 has declared a service time of 5 seconds and has been waiting for 20 seconds. 

Process P2 has declared a service time of 3 seconds and has been waiting for 9 seconds. If 
the system uses HRRN, which process will execute first? 

Ans: 1) False. The longer a process waits, the more likely it will be scheduled before shorter 
processes. 2) In this case, process P1 has a priority of 5 and P2 has a priority of 4, so the sys
tem executes P1 first. 

8.7.5 Shortest-Remaining-Time (SRT) Scheduling 
Shortest-remaining-time (SRT) scheduling is the preemptive counterpart of SPF that 
attempts to increase throughput by servicing small arriving processes. SRT was effec
tive for job-processing systems that received a stream of incoming jobs, but it is no 
longer useful in most of today's operating systems. In SRT, the scheduler selects the 
process with the smallest estimated run-time-to-completion. In SPF, once a process 
begins executing, it runs to completion. In SRT, a newly arriving process with a shorter 
estimated run-time preempts a running process with a longer run-time-to-completion. 
Again, SRT requires estimates of future process behavior to be effective, and the 
designer must account for potential user abuse of this system scheduling strategy. 

Self Review 

Self Review 
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The algorithm must maintain information about the elapsed service time of 
the running process and perform occasional preemptions. Newly arriving processes 
with short run-times execute almost immediately. Longer processes, however, have 
an even longer mean waiting time and variance of waiting times than in SPF. These 
factors contribute to a larger overhead in SRT than SPF. 

The SRT algorithm offers minimum wait times in theory, but in certain situa
tions, due to preemption overhead, SPF might perform better. For example, con-
sider a system in which a running process is almost complete and a new process with 
a small estimated service time arrives. Should the running process be preempted? 
The SRT discipline would perform the preemption, but this may not be the optimal 
choice. One solution is to guarantee that a running process is no longer preemptible 
when its remaining run time reaches a low-end threshold. 

A similar problem arises when a newly arriving process requires slightly less 
time to complete than the running process. Although the algorithm would correctly 
preempt the running process, this may not be the optimal policy. For example, if the 
preemption overhead is greater than the difference in service times between the 
two processes, preemption results in poorer performance. 

As these examples illustrate, the operating systems designer must carefully 
weigh the overhead of resource-management mechanisms against the anticipated 
benefits. Also we see that relatively simple scheduling policies can yield poor per
formance for subtle reasons. 

1. Is SRT an effective processor scheduling algorithm for interactive systems? 
2. Why is SRT an ineffective scheduling algorithm for real-time processes? 

Ans: 1) At first glance, SRT may seem to be an effective algorithm for interactive processes 
if the tasks performed before issuing I/O are short in duration. However, SRT determines 
priority based on the run-time-to-completion, not the run-time-to-I/O. Some interactive pro
cesses, such as a shell, execute for the lifetime of the session, which would place the shell at 
the lowest priority level. 2) SRT can result in a large variance of response times, whereas 
real-time processes require a small variance in response times to ensure that they will always 
complete their tasks within a particular period of time. 

Self Review 

When a process obtains a processor, especially when the process has not as yet had a 
chance to establish a behavior pattern (e.g., how long it typically runs before generat
ing an I/O request, or which portions of memory the process is currently favoring), the 
scheduler cannot determine the precise amount of processor time the process will 
require. I/O-bound processes normally use the processor only briefly before generat
ing an I/O request. Processor-bound processes might use the processor for hours at a 
time if the system makes it available on a nonpreemptible basis. A scheduling algo
rithm should typically favor short processes, favor I/O-bound processes to get good I/O 
device utilization and good interactive response times and should determine the 
nature of a process as quickly as possible and schedule the process accordingly. 

8.7.6 Multilevel Feedback Queues 
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Multilevel feedback queues (Fig. 8.4) help accomplish these goals.17 A new pro
cess enters the queuing network at the tail of the highest queue. The process 
progresses through that queue in FIFO order until the process obtains a processor. If 
the process completes its execution, or if it relinquishes the processor to wait for I/O 
completion or the completion of some other event, exits the queuing network. If a 
process's quantum expires before the process voluntarily relinquishes the processor, 
the system places the process at the tail of the next lower-level queue. As long as the 
process uses the full quantum provided at each level, it continues to move to the tail 
of the next lower queue. Usually there is some bottom-level queue through which the 

Figure 8.4 | Multilevel feedback queues. 
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process circulates round-robin until it completes. The process that next gets a proces
sor is the one at the head of the highest nonempty queue in the multilevel feedback 
queue. A running process is preempted by one arriving in a higher queue. 

In this system, a process in a lower queue can suffer indefinite postponement, 
if a higher queue always contains at least one process. This can occur in systems that 
have a high rate of incoming processes to be serviced, or in which there are several 
I/O-bound processes consuming their quanta. 

In many multilevel feedback schemes, the scheduler increases a process's 
quantum size as the process moves to each lower-level queue. Thus, the longer a 
process has been in the queuing network, the larger the quantum it receives each 
time it obtains the processor. We will soon see why this is appropriate. 

Let us examine the treatment that processes receive by considering how this 
discipline responds to different process types. Multilevel feedback queues favor I/O-
bound processes and other processes that need only small bursts of processor time, 
because they enter the network with high priority and obtain a processor quickly. The 
discipline chooses for the first queue a quantum large enough so that the vast major
ity of I/O-bound processes (and interactive processes) issue an I/O request before 
that quantum expires. When a process requests I/O, it leaves the queuing network, 
having received the desired favored treatment. The process reenters the network 
when it next becomes ready. 

Now consider a processor-bound process. The process enters the network with 
high priority, and the system places it in the highest-level queue. At this point the 
queuing network does not "know" whether the process is processor bound or I/O 
bound—the network's goal is to decide this quickly. The process obtains the proces
sor quickly, uses its full quantum, its quantum expires, and the scheduler moves the 
process to the next lower queue. Now the process has a lower priority, and incoming 
processes obtain the processor first. This means that interactive processes will still 
continue to receive good response times, even as many processor-bound processes 
sink lower in the queuing network. Eventually, the processor-bound process does 
obtain the processor, receives a larger quantum than in the highest queue and again 
uses its full quantum. The scheduler then places the process at the tail of the next-
lower queue. The process continues moving to lower queues, waits longer between 
time slices and uses its full quantum each time it gets the processor (unless pre
empted by an arriving process). Eventually, the processor-bound process arrives at 
the lowest-level queue, where it circulates round-robin with other processor-bound 
processes until it completes. 

Multilevel feedback queues are therefore ideal for separating processes into 
categories based on their need for the processor. When a process exits the queuing 
network, it can be "stamped" with the identity of the lowest-level queue in which it 
resided. When the process reenters the queuing network, the system can place it 
directly in the queue in which it last completed operation—the scheduler here is 
employing the heuristic that a process's recent-past behavior is a good indicator of 
its near-future behavior. This technique allows the scheduler to avoid placing a 
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returning processor-bound process into the higher-level queues, where it would 
interfere with service to high-priority short processes or to I/O-bound processes. 

Unfortunately, if the scheduler always places a returning process in the lowest 
queue it occupied the last time it was in the system, the scheduler is unable to 
respond to changes in a process's behavior (e.g., the process may be transitioning 
from being processor bound to being I/O bound). The scheduler can solve this 
problem by recording not only the identity of the lowest-level queue in which the 
process resided, but also the amount of its quantum that was unused during its last 
execution. If the process consumes its entire quantum, then it is placed in a lower-
level queue (if one is available). If the process issues an I/O request before its quan

tum expires, it can be placed in a higher-level queue. If the process is entering a new 
phase in which it will change from being processor bound to I/O bound, initially it 
may experience some sluggishness as the system determines that its nature is chang
ing, but the scheduling algorithm will respond to this change. 

Another way to make the system responsive to changes in a process's behav-
ior is to allow the process to move up one level in the feedback queuing network 

each time it voluntarily relinquishes the processor before its quantum expires. Simi
larly, the scheduler—when assigning a priority—can consider the time a process has 
spent waiting for service. The scheduler can age the process by promoting it and 
placing it in the next higher queue after it has spent a certain amount of time wait
ing for service. 

One common variation of the multilevel feedback queuing mechanism is to 
have a process circulate round-robin several times through each queue before it 
moves to the next lower queue. Also, the number of cycles through each queue may 
be increased as the process moves to the next lower queue. This variation attempts 
to further refine the service that the scheduler provides to I/O-bound versus proces
sor-bound processes. 

Multilevel feedback queuing is a good example of an adaptive mechanism, 
i.e., one that responds to the changing behavior of the system it controls.18, 19 Adap
tive mechanisms generally require more overhead than nonadaptive ones, but the 
resulting sensitivity to changes in the system makes the system more responsive and 
helps justify the increased overhead. As we discuss in Section 20.5.2, Process Sched
uling, the Linux process scheduler employs an adaptive mechanism borrowing from 
multilevel feedback queues. [Note: In the literature, the terms "process scheduling" 
and "processor scheduling" have been used equivalently] 

Self Review 
1. What scheduling objectives should be evaluated when choosing the number of levels to 

use in a multilevel feedback queue? 
2. Why are adaptive mechanisms desirable in today's schedulers? 

Ans: 1) One major objective is the variance in response times. Increasing the number of 
levels can cause processor-bound processes to wait longer, which increases the variance in 
response times. Another objective to consider is resource utilization. As the number of levels 
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increases, many processes can execute and issue I/Os before their quanta expire, resulting in 
effective use of both processor time and I/O devices. 2) In today's computers, many applica
tions can be both computationally intensive and I/O bound. For example, a streaming video 
player must perform I/O to retrieve video clip data from a remote server, then must perform 
computationally intensive operations to decode and display the video images. Similarly, an 
interactive game such as a flight simulator must respond to user input (e.g., joystick move
ments) while rendering complicated 3D scenes. Adaptive mechanisms enable the system to 
provide alternate responses to these processes as they alternate between I/O-bound and pro
cessor-bound behavior. 

8.7.7 Fair Share Scheduling 
Systems generally support various sets of related processes. For example, UNIX (and 
other multiuser) systems group processes that belong to an individual user. Fair share 
scheduling (FSS) supports scheduling across such sets of processes.20, 21, 22, 23 Fair 
share scheduling enables a system to ensure fairness across groups of processes by 
restricting each group to a certain subset of the system resources. In the UNIX envi
ronment, for example, FSS was developed specifically to "give a pre-specified rate of 
system resources ... to a related set of users."24 

Let us consider an example in which fair share scheduling would be useful. 
Imagine a research group whose members all share one multiuser system. They are 
divided into two groups. The principal investigators —of which there are few—use 
the system to perform important, computationally intensive work such as running 
simulations. The research assistants—of which there are many—use the system for 
less intensive work such as aggregating data and printing results. Now imagine that 
many research assistants and only one principal investigator are using the system. 
The research assistants may consume a majority of the processor time, to the detri
ment of the principal investigator, who must perform the more important work. 
However, if the system allowed the research assistants group to use only 25 percent 
of the processor time and allowed the principal investigators group to use 75 per
cent, the principal investigator would not suffer such service degradation. In this 
way, fair share scheduling ensures that the performance of a process is affected only 
by the population of its process group, and not by the user population as a whole. 

Let us investigate how fair share scheduling operates in a UNIX system. Nor
mally, UNIX considers resource-consumption rates across all processes (Fig. 8.5). 
Under FSS, however, the system apportions the resources to various fair share 
groups (Fig. 8.6). It distributes resources not used by one fair share group to other 
fair share groups in proportion to their relative needs. 

UNIX commands establish fair share groups and associate specific users with 
them.25 For the purpose of this discussion, assume that UNIX uses a priority round-
robin process scheduler.26 Each process has a priority, and the scheduler associates 
processes of a given priority with a priority queue for that value. The process sched-
uler selects the ready process at the head of the highest-priority queue. Processes 
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Figure 8.5 | Standard UNIX process scheduler. The scheduler grants the processor 
to users, each of whom may have many processes. (Property of AT&T Archives. 
Reprinted with permission f AT&T)27 

within a given priority are scheduled round-robin. A process requiring further ser-
vice after being preempted receives a lower priority. Kernel priorities are high and 
apply to processes executing in the kernel; user priorities are lower. Disk events 
receive higher priority than terminal events. The scheduler assigns the user priority 
as the ratio of recent processor usage to elapsed real time; the lower the elapsed 
time, the higher the priority. 

The fair share groups are prioritized by how close they are to achieving their 
specified resource-utilization goals. Groups doing poorly receive higher priority; 
groups doing well, lower priority. 

1. In FSS, why should groups that are not achieving their resource-utilization goals be given 
higher priority? 

2. How does FSS differ from standard process scheduling disciplines? 

Ans: 1) Processes that are using fewer resources than specified by their resource-utilization 
goals are probably suffering from low levels of service. By increasing their priority, the sys
tem ensures that these processes execute long enough to use their required resources. 2) FSS 
apportions resources to groups of processes, whereas standard process schedulers allow all 
processes to compete for all resources on an equal footing. 

Self Review 
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Figure 8.6 | Fair share scheduler. The fair share scheduler divides system resource 
capacity into portions, which are then allocated by process schedulers assigned to 
various fair share groups. (Property of AT&T Archives. Reprinted with permission of 
AT&T)28 

8.8 Deadline Scheduling 
In deadline scheduling, certain processes are scheduled to be completed by a spe
cific time or deadline. These processes may have high value if delivered on time and 
little or no value otherwise.29, 30, 31 

Deadline scheduling is complex. First, the user must supply the precise 
resource requirements in advance to ensure that the process is completed by its 
deadline. Such information is rarely available. Second, the system should execute 
the deadline process without severely degrading service to other users. Also, the 
system must carefully plan its resource requirements through to the deadline. This 
may be difficult, because new processes may arrive, making unpredictable demands. 
Finally, if many deadline processes are active at once, scheduling could become 
extremely complex. 

The intensive resource management that deadline scheduling requires may 
generate substantial overhead (see the Operating Systems Thinking feature, Inten
sity of Resource Management vs. Relative Resource Value). Net consumption of 
system resources may be high, degrading service to other processes. 
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As we will see in the next section, deadline scheduling is important to real
time process scheduling. Dertouzos demonstrated that when all processes can meet 
their deadlines regardless of the order in which they are executed, it is optimal to 
schedule processes with the earliest deadlines first.32 However, when the system 
becomes overloaded, the system must allocate significant processor time to the 
scheduler to determine the proper order in which to execute processes so that they 
meet their deadlines. Recent research focuses on the speed33-34 or number35 of pro
cessors the system must allocate to the scheduler so that deadlines are met. 

1. Why is it important for the user to specify in advance the resources a process needs? 
2. Why is it difficult to meet a process's stated deadline? 

Ans: 1) This allows the scheduler to ensure that resources will be available for the process 
so that it can complete its task before its deadline. 2) New processes may arrive and place 
unpredictable demands on the system that prevent it from meeting a process's deadline, 
resources could fail, the process could dramatically change its behavior and so on. 

Self Review 

A primary objective of the scheduling algorithms that we presented in Section 8.7, 
scheduling Algorithms, is to ensure high resource utilization. Processes that must 
execute periodically (such as once a minute) require different scheduling algo-
rithms. For example, the unbounded wait times for SPF could be catastrophic for a 
process that checks the temperature of a nuclear reactor. Similarly, a system using 
SRT to schedule a process that plays a video clip could produce choppy playback. 
Real-time scheduling meets the needs of processes that must produce correct out-
put by a certain time (i.e., that have a timing constraint).36 A real-time process may 
divide its instructions into separate tasks, each of which must complete by a dead-

8.9 Real-Time Scheduling 

Operating Systems Thinking 
Intensity of Resource Management vs. Relative Resource Value 
Operating systems manage hard- the relative value of those devices. The operating systems 
ware and software resources. A resources, and to their scarcity designer must be aware of trends 
recurring theme you wil l see and intensity of use. For example, that could affect the relative 
throughout this book is that the the processor and high-speed value of system resources and 
intensity wi th which operating cache memories are managed people t ime and must respond 
systems need to manage particu- much more intensively than sec- quickly to change. 
lar resources is proportional to ondary storage and other I/O 
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line. Other real-time processes might perform a certain task periodically, such as 
updating the locations of planes in an air traffic control system. Real-time schedul
ers must ensure that timing constraints are met (see the Mini Case Study, Real-
Time Operating Systems). 

Real-time scheduling disciplines are classified by how well they meet a pro
cess's deadlines. Soft real-time scheduling ensures that real-time processes are dis
patched before other processes in the system, but does not guarantee which, if any, 
will meet their timing constraints.37-38 Soft real-time scheduling is commonly imple-
mented in personal computers, where smooth playback of multimedia is desirable, 
but occasional choppiness under heavy system loads is tolerated. Soft real-time sys
tems can benefit from high interrupting clock rates to prevent the system from get
ting "stuck" executing one process while others miss their deadlines. However, the 

Mini Case Study 
Real-Time Operating Systems 
A real-time system differs from a 
standard system in that every 
operation must give results that 
are both correct and returned 
within a certain amount of time.39 

Real-time systems are used in 
time-critical applications such as 
monitoring sensors. They are 
often small, embedded systems. 
Real-time operating systems 
(RTOSs) must be carefully 
designed to achieve these goals. 
(Real-time process scheduling is 
discussed in Section 8.9, Real-Time 
Scheduling.) 

The control program for the 
SAGE (Semi-Automatic Ground 
Environment) project may have 
been the first real-time operating 
system.40, 41 SAGE was an Air Force 
project to defend against possible 

bomber attacks in the Cold War.42 

Implemented in the end of the 
1950s, this system integrated 56 
IBM AN/FSQ-7 digital vacuum-
tube computers that monitored 
data from radar systems across 
the country to track all planes in 
the United States airspace.43, 44 It 
analyzed this information and 
directed the interceptor fighter 
planes, thus requiring real-time 
response.45 The operating system 
to handle this task was the largest 
computer program of its time.46 

In contrast, today's RTOSs 
aim for minimal size. There are 
many available, but QNX and 
VxWorks lead the field. QNX 
implements the POSIX standard 
APIs wi th its own microkernel and 
is tailored to embedded systems. 

It also uses message passing for 
interprocess communication.47 

Similarly, VxWorks is a microker
nel system that complies wi th the 
POSIX standard and is widely used 
in embedded systems.48 QNX per
forms better than VxWorks on 
Intel x86 platforms,49 but QNX 
was not available on other proces
sors until version 6.1 (the current 
version is 6.2).50 VxWorks, how
ever, has concentrated on the 
PowerPC processor and has a his
tory of cross-platform compatibil
ity.51 VxWorks is currently the 
most common RTOS for embed
ded systems.52 Additional RTOSs 
include Windows CE .NET,53 OS-
9,54 OSE,55 and Linux distributions 
such as uCLinux.56 
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system can incur significant overhead if the interrupt rate is too high, resulting in 
poor performance or missed deadlines.57 

Hard real-time scheduling guarantees that a process's timing constraints are 
always met. Each task specified by a hard real-time process must complete before 
its deadline; failing to do so could produce catastrophic results, including invalid 
work, system failure or even harm to the system's users.58, 59 Hard real-time systems 
may contain periodic processes that perform their computations at regular time 
intervals (e.g., gathering air traffic control data every second) and asynchronous 
processes that execute in response to events (e.g., responding to high temperatures 
in a power plant's core).60 

Static real-time scheduling algorithms do not adjust process priority over time. 
Because priorities are calculated only once, static real-time scheduling algorithms 
tend to be simple and incur little overhead. Such algorithms are limited because 
they cannot adjust to variable process behavior and depend on resources staying up 
and running to ensure that timing constraints are met. 

Hard real-time systems tend to use static scheduling algorithms, because they 
incur low overhead and it is relatively easy to prove that each process's timing con
straints will be met. The rate-monotonic (RM) algorithm, for example, is a preemp
tive, priority-based round-robin algorithm that increases a process's priority 
linearly (i.e., monotonically) with the frequency (i.e., the rate) with which it must 
execute. This static scheduling algorithm favors periodic processes that execute fre
quently.61 The deadline rate-monotonic algorithm can be used when a periodic pro
cess specifies a deadline that is not equal to its period.62 

Static Real-Time Scheduling Algorithms 

Dynamic real-time scheduling algorithms schedule processes by adjusting their pri
orities during execution, which can incur significant overhead. Some algorithms 
attempt to minimize the scheduling overhead by assigning static priorities to some 
processes and dynamic priorities to others.63 

Earliest-deadline-first (EDF) is a preemptive scheduling algorithm that dis
patches the process with the earliest deadline. If an arriving process has an earlier 
deadline than the running process, the system preempts the running process and 
dispatches the arriving process. The objective is to maximize throughput by satisfy
ing the deadlines of the largest number of processes per unit time (analogous to the 
SRT algorithm) and minimize the average wait time (which prevents short pro
cesses from missing their deadlines while long processes execute). Dertouzos 
proved that, if a system provides hardware preemption (e.g., timer interrupts) and 
the real-time processes being scheduled are not interdependent, EDF minimizes 
the amount of time by which the "most tardy" process misses its deadline.64 How
ever, many real-time systems do not provide hardware preemption, so other algo
rithms must be employed.65 

Dynamic Real-Time Scheduling Algorithms 
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The minimum-laxity-first algorithm is similar to EDF but bases priority on a 
process's laxity. Laxity is a measure of a process's importance based on the amount 
of time until its deadline and the remaining execution time until its task (which may 
be periodic) has completed. Laxity is computed using the formula 

L = D - (T+C), 

where L is the laxity, D the process's deadline, T the current time and C the pro
cess's remaining execution time. For example, if the current time is 5, the deadline 
for a process is 9 and the process requires 3 units of time to complete, the laxity is 1. 
If a process has 0 laxity, it must be dispatched immediately or it will miss its dead
line. Priorities in minimum-laxity-first are more accurate than those in EDF 
because they are determined by including the remaining processor time each pro
cess requires to complete its task. However, such information is often unavailable.66 

1. Why are most hard real-time scheduling algorithms static? 
2. When does the minimum-laxity-first algorithm degenerate to EDF? Can this ever occur? 

Ans: 1) Hard real-time systems must guarantee that processes' deadlines are met. Static 
scheduling algorithms facilitate proving this property for a particular system and reduce the 
implementation overhead. 2) The minimum-laxity-first algorithm degenerates to the EDF 
algorithm when C is identical for all processes at any given time. It is possible, though highly 
unlikely, that this would occur. 

Self Review 

As discussed in Section 4.6, Threading Models, operating systems provide various lev-
els of support for threads. When scheduling a multithreaded process that implements 
user-level threads, the operating system is unaware that the process is multithreaded 
and therefore dispatches the process as one unit, requiring a user-level library to 
schedule its threads. If the system supports kernel-level threads, it may schedule each 
thread independently from others within the same process. Still other systems support 
scheduler activations that assign each process to a kernel-level thread that enables the 
process's user-level library to perform scheduling operations. 

System designers must determine how to allocate quanta to threads, and in 
what order and with what priorities to schedule threads within a process. For exam
ple, a "fair-share" approach divides the quantum allocated to a process among its 
threads. This prevents a multithreaded process from receiving high levels of service 
simply by creating a large number of threads. Further, the order in which threads 
are executed can impact their performance if they rely on one another to continue 
their tasks. In this section, we present Java thread scheduling. Thread scheduling in 
Windows XP is discussed in Section 21.6.2, Thread Scheduling. The Linux scheduler 
(which dispatches both processes and threads) is discussed in Section 20.5.2, Pro
cess Scheduling. 

8.10 Java Thread Scheduling 
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One feature of the Java programming language and its virtual machine is that 
every Java applet or application is multithreaded. Each Java thread is assigned a 
priority in the range between Thread.MIN_PRIORITY (a constant of 1) and 
Thread. MAX_PRIORITY (a constant of 10). By default, each thread is given priority 
Thread. NORM_PRIORITY (a constant of 5). Each new thread inherits the priority of 
the thread that creates it. 

Depending on the platform, Java implements threads in either user or kernel 
space (see Section 4.6,Threading Models).67-68 When implementing threads in user 
space, the Java runtime relies on timeslicing to perform preemptive thread schedul-
ing. Without timeslicing, each thread in a set of equal-priority threads runs to com

pletion, unless it leaves the running state and enters the waiting, sleeping or blocked 
state, or it is preempted by a higher-priority thread. With timeslicing, each thread 
receives a quantum during which it can execute. 

The Java thread scheduler ensures that the highest-priority thread in the Java 
virtual machine is running at all times. If there are multiple threads at the priority 
level, those threads execute using round-robin. Figure 8.7 illustrates Java's multi
level priority queue for threads. In the figure, assuming a single-processor com
puter, threads A and B each execute for a quantum at a time in round-robin fashion 
until both threads complete execution. Next, thread C runs to completion. Threads 
D, E and F each execute for a quantum in round-robin fashion until they all com
plete execution. This process continues until all threads run to completion. Note 
that, depending on the operating system, arriving higher-priority threads could 
indefinitely postpone the execution of lower-priority ones. 

A thread can call the y ie ld method of class Thread to give other threads a 
chance to execute. Because the operating system preempts the current thread 
whenever a higher-priority one becomes ready, a thread cannot yi el d to a higher-
priority thread. Similarly, y i e ld always allows the highest-priority ready thread to 
run, so if all of the ready threads are of lower priority than the thread calling yi el d, 
the current thread will have the highest priority and will continue executing. There
fore, a thread yi el ds to give threads of an equal priority a chance to run. On a 
timesliced system this is unnecessary, because threads of equal priority will each 
execute for their quantum (or until they lose the processor for some other reason), 
and other threads of equal priority will execute round-robin. Thus yi el d is appro
priate for nontimesliced systems (e.g., early versions of Solaris69), in which a thread 
would ordinarily run to completion before another thread of equal priority would 
have an opportunity to run. 

1. Why does Java provide the yi el d method? Why would a programmer ever use yield? 
2. (T/F) A Java thread of lower priority will never run while a thread of higher priority is ready. 

Ans: 1) Method yi el d allows the current thread to voluntarily release the processor and let 
a thread of equal priority execute. Because Java applications are designed to be portable and 
because the programmer cannot be certain that a particular platform supports timeslicing, 
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Figure 8.7 | Java thread priority scheduling. 

programmers use y ie ld to ensure that their applications execute properly on all platforms. 
2) True. Java schedulers will execute the highest-priority ready thread. 

Web Resources 
www.linux-tutorial.info/cgi-bin/dis-
play.pl?85&0&0&0&3 
This portion of the Linux tutorial describes process scheduling 
in Linux. 
developer.apple.com/techpubs/mac/Processes/Pro-
cesses-16.html 
Describes process scheduling for the Apple Macintosh. 

www.oreilly.com/catalog/linuxkernel/chapter/ 
ch10.html 
Contains the online version of O'Reilly's Linux kernel book 
This page details process scheduling in Linux version 2.4. 
www.javaworld.com/javaworld/jw-07-2002/jw-0703-
javal01.html 
Describes thread scheduling in Java. 

http://www.linux-tutorial.info/cgi-bin/display.pl?85&0&0&0&3
http://www.linux-tutorial.info/cgi-bin/display.pl?85&0&0&0&3
http://developer.apple.com/techpubs/mac/Processes/Processes-16.html
http://developer.apple.com/techpubs/mac/Processes/Processes-16.html
http://www.oreilly.com/catalog/linuxkernel/chapter/ch10.html
http://www.oreilly.com/catalog/linuxkernel/chapter/ch10.html
http://www.javaworld.com/javaworld/jw-07-2002/jw-0703-javal01.html
http://www.javaworld.com/javaworld/jw-07-2002/jw-0703-javal01.html
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csl.cse.ucsc.edu/rt.shtml 
Mails the results of the real-time operating system scheduler 
search unit at the University of California, Santa Cruz. 

www.ittc.ku.edu/kurt/ 
Describes the Kansas University real-time scheduler that uses 
a modified Linux kernel. 
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When a system has a choice of processes to execute, it must 
have a strategy—called a processor scheduling policy (or dis-
cipline)—for deciding which process to run at a given time. 
High-level scheduling—sometimes called job scheduling or 
long-term scheduling—determines which jobs the system 

allows to compete actively for system resources. The high-
level scheduling policy dictates the degree of multiprogram
ming—the total number of processes in a system at a given 
time. After the high-level scheduling policy has admitted a 
job (which may contain one or more processes) to the sys
tem, the intermediate-level scheduling policy determines 
which processes shall be allowed to compete for a processor. 
This policy responds to short-term fluctuations in system 
load. A system's low-level scheduling policy determines 
which ready process the system will assign to a processor 

when one next becomes available. Low-level scheduling pol
icies often assign a priority to each process, reflecting its 
importance—the more important a process, the more likely 
the scheduling policy is to select it to execute next. 

A scheduling discipline can be preemptive or nonpre-
emptive. To prevent users from monopolizing the system 
(either maliciously or accidentally), preemptive schedulers 

set an interrupting clock or interval timer that periodically 
generates an interrupt. Priorities may be statically assigned 
or be changed dynamically during the course of execution. 

When developing a scheduling discipline, a system 
designer must consider a variety of objectives, such as the 
type of system and the users' needs. These objectives may 
include maximizing throughput, maximizing the number of 
interactive users receiving "acceptable" response times, 
maximizing resource utilization, avoiding indefinite post
ponement, enforcing priorities, minimizing overhead and 
ensuring predictability of response times. To accomplish 
these goals, a system can use techniques such as aging pro
cesses and favoring processes whose requests can be satis
fied quickly. Many scheduling disciplines exhibit fairness, 
predictability and scalability. 

Operating system designers can use system objectives 
to determine the criteria on which scheduling decisions are 
made. Perhaps the most important concern is how a pro
cess uses the processor (i.e., whether it is processor bound 
or I/O bound). A scheduling discipline might also consider 
whether a process is batch or interactive. In a system that 

employs priorities, the scheduler should favor processes 
with higher priorities. 

Schedulers employ algorithms that make choices 
about preemptibility, priorities, running time and other 
process characteristics. FIFO (also called FCFS) is a non-
preemptive algorithm that dispatches processes according 
to their arrival time at the ready queue. In round-robin 
(RR) scheduling, processes are dispatched FIFO but are 
given a limited amount of processor time called a time slice 
or a quantum. A variant of round-robin called selfish 
round-robin (SRR) initially places a process in a holding 
queue until its priority reaches the level of processes in the 
active queue, at which point, the process is placed in the 
active queue and scheduled round-robin with others in the 
queue. Determination of quantum size is critical to the 
effective operation of a computer system. The "optimal" 
quantum is large enough so that the vast majority of I/O-
bound and interactive requests require less time than the 
duration of the quantum. The optimal quantum size varies 
from system to system and under different loads. 

Shortest-process-first (SPF) is a nonpreemptive 
scheduling discipline in which the scheduler selects the 
waiting process with the smallest estimated run-time-to-
completion. SPF reduces average waiting time over FIFO 
but increases the variance in response times. Shortest-
remaining-time (SRT) scheduling is the preemptive coun
terpart of SPF that selects the process with the smallest 
estimated run-time-to-completion. The SRT algorithm 
offers minimum wait times in theory, but in certain situa
tions, due to preemption overhead, SPF might actually per
form better. Highest-response-ratio-next (HRRN) is a 
nonpreemptive scheduling discipline in which the priority 
of each process is a function not only of its service time but 
also of the amount of time it has been waiting for service. 

Multilevel feedback queues allow a scheduler to 
dynamically adjust to process behavior. The process that gets 
a processor next is the one that reaches the head of the high
est nonempty queue in the multilevel feedback queuing net
work. Processor-bound processes are placed at the lowest-
level queue, and I/O-bound processes tend to be located in 
the higher-level queues. A running process is preempted by a 
process arriving in a higher queue. Multilevel feedback 
queuing is a good example of an adaptive mechanism. 

http://csl.cse.ucsc.edu/rt.shtml
http://www.ittc.ku.edu/kurt/


The earliest-deadline-first (EDF) is a preemptive schedul
ing algorithm that favors the process with the earliest dead
line. The minimum-laxity-first algorithm is similar to EDF. 
but bases priority on a process's laxity, which measures the 
difference between the time a process requires to complete 
and the time remaining until that its deadline. 

The operating system may dispatch a process's 
threads individually or it may schedule a multithreaded 
process as a unit, requiring user-level libraries to schedule 
their threads. System designers must determine how to 
allocate quanta to threads, in what order, and what priori
ties to assign in scheduling threads within a process. In 
Java, each thread is assigned a priority in the range 1-10. 
Depending on the platform, Java implements threads in 
either user or kernel space (see Section 4.6, Threading 
Models). When implementing threads in user space, the 
Java runtime relies on timeslicing to perform preemptive 
thread scheduling. The Java thread scheduler ensures that 
the highest-priority thread in the Java virtual machine is 
running at all times. If there are multiple threads at the 
same priority level, those threads execute using round-
robin. A thread can call the yield method to give other 
threads of an equal priority a chance to run. 

Fair share scheduling (FSS) supports scheduling 
across related processes and threads. It enables a system to 
ensure fairness across groups of processes by restricting 
each group to a certain subset of system resources. In the 
UNIX environment, for example, FSS was developed spe
cifically to "give a prespecified rate of system resources ... 
to a related set of users." 

In deadline scheduling, certain processes are sched
uled to be completed by a specific time or deadline. These 
processes may have high value if delivered on time and be 
worthless otherwise. Deadline scheduling can be difficult to 
implement. 

Real-time scheduling must repeatedly meet pro
cesses' deadlines as they execute. Soft real-time scheduling 
ensures that real-time processes are dispatched before 
other processes in the system. Hard real-time scheduling 
guarantees that a process's deadlines are met. Hard real
time processes must meet their deadlines; failing to do so 
could be catastrophic, resulting in invalid work, system fail
ure or even harm to the system's users. The rate-monotonic 
(RM) algorithm is a static scheduling priority-based round-
robin algorithm in which priorities are increase (monotoni-
cally) with the rate at which a process must be scheduled. 
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adaptive mechanism—Control entity that adjusts a system in 
response to its changing behavior. 

admission scheduling—See high-level scheduling. 
aging of priorities—Increasing a process's priority gradually, 

based on how long it has been in the system. 
asynchronous real-time process—Real-time process that exe

cutes in response to events. 

batch process—Process that executes without user interaction. 

deadline rate-monotonic scheduling—Scheduling policy in 
real-time systems that meets a periodic process's deadline 
that does not equal its period. 

deadline scheduling—Scheduling policy that assigns priority 
based on processes' completion deadlines to ensure that 
processes complete on time. 

degree of multiprogramming—Total number of processes in 
main memory at a given time. 

dispatcher—Entity that assigns a processor to a process. 
dispatching—Act of assigning a processor to a process. 
dynamic real-time scheduling algorithm—Scheduling algo

rithm that uses deadlines to assign priorities to processes 
throughout execution. 

earliest-deadline-first (EDF)—Scheduling policy that gives a 
processor to the process with the closest deadline. 

fairness—Property of a scheduling algorithm that treats all 
processes equally. 

fair share group—Group of processes that receives a percent
age of the processor time under a fair share scheduling 
(FSS) policy. 

fair share scheduling (FSS)—Scheduling policy developed for 
AT&T's UNIX system that places processes in groups and 
assigns these groups a percentage of processor time. 

first-in-first-out (FIFO)—Nonpreemptive scheduling policy 
that dispatches processes according to their arrival time in 
the ready queue. 

job scheduling—See high-level scheduling. 

hard real-time scheduling—Scheduling policy that ensures 
processes meet their deadlines. 

highest-response-ratio-next (HRRN)—Scheduling policy that 
assigns priority based on a process's service time and the 
amount of time the process has been waiting. 

high-level scheduling—Determining which jobs a system 
allows to compete actively for system resources. 

Key Terms 



interactive process—Process that requires user input as it exe
cutes. 

intermediate-level scheduling—Determining which processes 
may enter the low-level scheduler to compete for a pro
cessor. 

I/O-bound—Process that tends to use a processor for a short 
time before generating an I/O request and relinquishing a 
processor. 

latency (process scheduling)—Time a task spends in a system 
before it is serviced. 

laxity—Value determined by subtracting the sum of the cur
rent time and a process's remaining execution time from 
the process's deadline. This value decreases as a process 
nears its deadline. 

long-term scheduling—See high-level scheduling. 
low-level scheduling—Determining which process will gain 

control of a processor. 
minimum-laxity-first—Scheduling policy that assigns higher 

priority to processes that will finish with minimal proces
sor usage. 

multilevel feedback queue—Process scheduling structure that 
groups processes of the same priority in the same round-
robin queue. Processor-bound processes are placed in 
lower-priority queues because they are typically batch 
processes that do not require fast response times. I/O-
bound processes, which exit the system quickly due to I/O, 
remain in high-priority queues. These processes often cor
respond to interactive processes that should experience 
fast response times. 

nonpreemptive scheduling—Scheduling policy that does not 
allow the system to remove a processor from a process 
until that process voluntarily relinquishes its processor or 
runs to completion. 

periodic real-time process—Real-time process that performs 
computation at a regular time interval. 

predictability—Goal of a scheduling algorithm that ensures 
that a process takes the same amount of time to execute 
regardless of the system load. 

preemptive scheduling—Scheduling policy that allows the sys
tem to remove a processor from a process. 

priority—Measure of a process's or thread's importance used 
to determine the order and duration of execution. 

processor-bound—Process that consumes its quantum when 
executing. These processes tend to be calculation inten
sive and issue few, if any, I/O requests. 

processor scheduling discipline—See processor scheduling 
policy. 

processor scheduling policy—Strategy used by a system to 
determine when and for how long to assign processors to 
processes. 

purchase priority—to pay to receive higher priority in a sys
tem. 

quantum—Amount of time that a process is allowed to run on 
a processor before the process is preempted. 

rate-monotonic (RM) scheduling—Real-time scheduling pol
icy that sets priority to a value that is proportional to the 
rate at which the process must be dispatched. 

real-time scheduling—Scheduling policy that bases priority on 
timing constraints. 

round-robin (RR) scheduling—Scheduling policy that permits 
each ready process to execute for at most one quantum 
per round. After the last process in the queue has exe
cuted once, the scheduler begins a new round by schedul
ing the first process in the queue, 

scalability (scheduler) —Characteristic of a scheduler that 
ensures system performance degrades gracefully under 
heavy loads. 

selfish round-robin (SRR) scheduling—Variant of round-robin 
scheduling in which processes age at different rates. Pro
cesses that enter the system are placed in a holding queue, 
where they wait until their priority is high enough for 
them to be placed in the active queue, in which processes 
compete for processor time. 

shortest-process-first (SPF) scheduling—Nonpreemptive sched
uling algorithm in which the scheduler selects a process 
with the smallest estimated run-time-to-completion and 
runs the process to completion. 

shortest-remaining-time (SRT) scheduling—Preemptive ver
sion of SPF in which the scheduler selects a process with 
the smallest estimated remaining run-time-to-completion. 

soft real-time scheduling—Scheduling policy that guarantees 
that real-time processes are scheduled with higher priority 
than non-real-time processes. 

static real-time scheduling algorithm—Scheduling algorithm 
that uses timing constraints to assign fixed priorities to 
processes before execution. 

throughput—Number of processes that complete per unit 
time. 

time slice— See quantum. 

timeslicing—Scheduling each process to execute for at most 
one quantum before preemption. 

timing constraint—Time period during which a process (or 
subset of a process's instructions) must complete. 
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iii. The system should admit processes to create a 
mix that will keep most devices busy. 

iv. The system should favor important processes. 

v. An important process arrives but cannot proceed 
because an unimportant process is holding the 
resources the important process needs. 

vi. During peak periods, the system should not col
lapse from the overhead it takes to manage a 
large number of processes. 

vii. The system should favor I/O-bound processes. 
viii. Context switches should execute as quickly as 

possible. 

8.5 The following are common scheduling criteria. 
a. I/O boundedness of a process 
b. processor boundedness of a process 
c. whether the process is batch or interactive 
d. urgency of a fast response 
e. process priority 
f. frequency of a process is being preempted by higher-

priority processes 
g. priorities of processes waiting for resources held by 

other processes 
h. accumulated waiting time 
i. accumulated execution time 
j . estimated run-time-to-completion. 
For each of the following, indicate which of the preced

ing scheduling criteria is most appropriate. 
i. In a real-time spacecraft monitoring system, the 

computer must respond immediately to signals 
received from the spacecraft. 

ii. Although a process has been receiving occasional 
service, it is making only nominal progress. 

iii. How often does the process voluntarily give up 
the processor for I/O before its quantum expires? 

iv. Is the user present and expecting fast interactive 
response times, or is the user absent? 

v. One goal of processor scheduling is to minimize 
average waiting times. 

vi. Processes holding resources in demand by other 
processes should have higher priorities. 

vii. Nearly complete processes should have higher 
priorities. 

8.1 Distinguish among the following three levels of schedul
ers. 

a. high-level scheduler 
b. intermediate-level scheduler 
c. dispatcher 

8.2 Which level of scheduler should make a decision on each 
of the following questions? 

a. Which ready process should be assigned a processor 
when one becomes available? 

b. Which of a series of waiting batch processes that have 
been spooled to disk should next be initiated? 

c. Which processes should be temporarily suspended to 
relieve a short-term burden on the processor? 

d. Which temporarily suspended process that is known 
to be I/O bound should be activated to balance the 
multiprogramming mix? 

8.3 Distinguish between a scheduling policy and a schedul
ing mechanism. 

8.4 The following are common scheduling objectives. 

a. to be fair 

b. to maximize throughput 

c. to maximize the number of interactive users receiv
ing acceptable response times 

d. to be predictable 

e. to minimize overhead 

f. to balance resource utilization 

g. to achieve a balance between response and utilization 

h. to avoid indefinite postponement 

i. to obey priorities 

j. to give preference to processes that hold key resources 

k. to give a lower grade of service to high overhead pro
cesses 

l. to degrade gracefully under heavy loads 

Which of the preceding objectives most directly applies 
to each of the following? 

i. If a user has been waiting for an excessive 
amount of time, favor that user. 

ii. The user who runs a payroll job for a 1000-
employee company expects the job to take about 
the same amount of time each week. 

Exercises 
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8.6 State which of the following are true and which false. 
Justify your answers. 

a. A process scheduling discipline is preemptive if the 
processor cannot be forcibly removed from a process. 

b. Real-time systems generally use preemptive proces
sor scheduling. 

c. Timesharing systems generally use nonpreemptive 
processor scheduling. 

d. Turnaround times are more predictable in preemp
tive than in nonpreemptive systems. 

e. One weakness of priority schemes is that the system 
will faithfully honor the priorities, but the priorities 
themselves may not be meaningful. 

8.7 Why should processes be prohibited from setting the 
interrupting clock? 

8.8 State which of the following refer to "static priorities" 
and which to "dynamic priorities." 

a. are easier to implement 
b. require less runtime overhead 
c. are more responsive to changes in a process's envi

ronment 
d. require more careful deliberation over the initial pri

ority value chosen 

8.9 Give several reasons why deadline scheduling is complex. 

8.10 Give an example showing why FIFO is not an appropri
ate processor scheduling scheme for interactive users. 

8.11 Using the example from the previous problem, show 
why round-robin is a better scheme for interactive users. 

8.12 Determining the quantum is a complex and critical task. 
Assume that the average context-switching time between pro
cesses is s, and the average amount of time an I/O-bound pro
cess uses before generating an I/O request is t (t >> s). Discuss 
the effect of each of the following quantum settings, q. 

a. q is slightly greater than zero 
b. q = s 
c. s <q <t 
d. q-t 
e. q>t 
f. q is an extremely large number 

8.13 Discuss the effect of each of the following methods of 
assigning q. 

a. q fixed and identical for all users 
b. q fixed and unique to each process 
c. q variable and identical for all processes 
d. q variable and unique to each process 

i. Arrange the schemes above in order from lowest 
to highest runtime overhead. 

ii. Arrange the schemes in order from least to most 
responsive to variations in individual processes 
and system load. 

iii. Relate your answers in (i) and (ii) to one another. 

8.14 State why each of the following is incorrect. 
a. SPF never has a higher throughput than SRT. 
b. SPF is fair. 
c. The shorter the process, the better the service it 

should receive. 
d. Because SPF gives preference to short processes, it is 

useful in timesharing. 

8.15 State some weaknesses in SRT. How would you modify 
the scheme to get better performance? 

8.16 Answer each of the following questions about Brinch 
Hansen's HRRN strategy. 

a. How does HRRN prevent indefinite postponement? 

b. How does HRRN decrease the favoritism shown by 
other strategies to short new processes? 

c. Suppose two processes have been waiting for about 
the same time. Are their priorities about the same? 
Explain your answer. 

8.17 Show how multilevel feedback queues accomplish each 
of the following scheduling goals. 

a. favor short processes. 

b. favor I/O-bound processes to improve I/O device uti
lization. 

c. determine the nature of a process as quickly as possi
ble and schedule the process accordingly. 

8.18 One heuristic often used by processor schedulers is that a 
process's past behavior is a good indicator of its future behavior. 
Give several examples of situations in which processor schedul
ers following this heuristic would make bad decisions. 

8.19 An operating systems designer has proposed a multilevel 
feedback queuing network in which there are five levels. The 
quantum at the first level is 0.5 seconds. Each lower level has a 
quantum twice the size of the quantum at the previous level. A 
process cannot be preempted until its quantum expires. The sys
tem runs both batch and interactive processes, and these consist 
of both processor-bound and I/O-bound processes. 

a. Why is this scheme deficient? 
b. What minimal changes would you propose to make 

the scheme more acceptable for its intended process 
mix? 
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8.28 When are static real-time scheduling algorithms more 
appropriate than dynamic real-time scheduling algorithms? 

8.29 Before Sun implemented its current Solaris operating 
system, Sun's UNIX system,70 primarily used for workstations, 
performed process scheduling by assigning base priorities 
(a high of -20 to a low of +20 with a median of 0), and making 
priority adjustments. Priority adjustments were computed in 
response to changing system conditions. These were added to 
base priorities to compute current priorities; the process with 
the highest current priority was dispatched first. 

The priority adjustment was strongly biased in favor of 
processes that had recently used relatively little processor 
time. The scheduling algorithm "forgot" processor usage 
quickly to give the benefit of the doubt to processes with 
changing behavior. The algorithm "forgot" 90 percent of 
recent processor usage in 5 * n seconds; n is the average num
ber of runnable processes in the last minute.71 Consider this 
process scheduling algorithm when answering each of the fol
lowing questions. 

a. Are processor-bound processes favored more when 
the system is heavily loaded or when it is lightly 
loaded? 

b. How will an I/O-bound process perform immediately 
after an I/O completion? 

c. Can processor-bound processes suffer indefinite post
ponement? 

d. As the system load increases, what effect will proces
sor-bound processes have on interactive response 
times? 

e. How does this algorithm respond to changes in a pro
cess's behavior from processor bound to I/O bound 
or vice versa? 

8.30 The VAX/VMS72 operating system ran a wide variety of 
computers, from small to large. In VAX/VMS, process priori
ties range from 0-31, with 31 being the highest priority 
assigned to critical real-time processes. Normal processes 
receive priorities in the range 0-15; real-time processes receive 
priorities in the range 16-31. The priorities of real-time pro
cesses normally remain constant; no priority adjustments are 
applied. Real-time processes continue executing (without suf
fering quantum expirations) until they are preempted by pro
cesses with higher or equal priorities, or until they enter 
various wait states. 

Other processes are scheduled as normal processes with 
priorities 0-15. These include interactive and batch processes, 
among others. Normal process priorities do vary. Their base 
priorities normally remain fixed, but they receive dynamic pri
ority adjustments to give preference to I/O-bound over proces
sor-bound processes. A normal process retains the processor 

8.20 The SPF strategy can be proven to be optimal in the sense 
that it minimizes average response times. In this problem, you 
will demonstrate this result empirically by examining all possi
ble orderings for a given set of five processes. In the next prob
lem, you will actually prove the result. Suppose five different 
processes are waiting to be processed, and that they require 1,2, 
3, 4 and 5 time units, respectively. Write a program that pro
duces all possible permutations of the five processes (5! = 120) 
and calculates the average waiting time for each permutation. 
Sort these into lowest to highest average waiting time order and 
display each average time side by side with the permutation of 
the processes. Comment on the results. 

8.21 Prove that the SPF strategy is optimal in the sense that it 
minimizes average response times. [Hint: Consider a list of 
processes each with an indicated duration. Pick any two pro
cesses arbitrarily. Assuming that one is larger than the other, 
show the effect that placing the smaller process ahead of the 
longer one has on the waiting time of each process. Draw an 
appropriate conclusion.] 

8.22 Two common goals of scheduling policies are to mini
mize response times and to maximize resource utilization. 

a. Indicate how these goals are at odds with one 
another. 

b. Analyze each of the scheduling policies presented in 
this chapter from these two perspectives. Which are 
biased toward minimizing user response times? 
Which are biased toward maximizing resource utili
zation? 

c. Develop a new scheduling policy that enables a sys
tem to be tuned to achieve a good balance between 
these conflicting objectives. 

8.23 In the selfish round-robin scheme, the priority of a pro
cess residing in the holding queue increases at a rate a until the 
priority is as high as that of processes in the active queue, at 
which point the process enters the active queue and its priority 
continues to increase, but now at the rate b. Earlier we stated 
that b ≤ a . Discuss the behavior of an SRR system if b > a . 

8.24 How does a fair share scheduler differ in operation from 
a conventional process scheduler? 

8.25 In a uniprocessor system with n processes, how many 
different ways are there to schedule an execution path? 

8.26 Suppose a system has a multilevel feedback queue 
scheduler implemented. How could one adapt this scheduler 
to form the following schedulers? 

a. FCFS 
b. round-robin 

8.27 Compare and contrast EDF and SPF. 
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until it is preempted by a more important process, until it 
enters a special state such as an event wait, or until its quan-
tum expires. Processes with the same current priorities are 
scheduled round-robin. 

Normal processes receive priority adjustments of 0 to 6 
above their base priorities. Such positive increments occur, for 
example, when requested resources are made available, or 
when a condition on which a process is waiting is signaled. I/O-
bound processes tend to get positive adjustments in priority, 
while processor-bound processes tend to have current priori-
ties near their base priorities. Answer each of the following 
questions with regard to the VAX/VMS process scheduling 
mechanisms. 

a. Why are the priorities of real-time processes nor
mally kept constant? 

8.31 Prepare a research paper that compares and contrasts 
how Windows XP, Linux, and Mac OS X schedule processes. 

8.32 Although the operating system is typically responsible 
for scheduling processes and threads, some systems allow user 

processes to make scheduling decisions. Research how this is 
done for process scheduling in exokernel operating systems 
(see www.pdos.lcs.mit.edu/pubs.html#Exokernels) and 

for thread scheduling in user-level threads and scheduler acti
vations. 
8.33 Research how real-time scheduling is implemented in 
embedded systems. 
8.34 Research the scheduling policies and mechanisms that 
are commonly used in database systems. 

b. Why are real-time processes not susceptible to quan
tum expirations? 

c. Which normal processes, I/O bound or processor 
bound, generally receive preference? 

d. Under what circumstances can a real-time process 
lose the processor? 

e. Under what circumstances can a normal process lose 
the processor? 

f. How are normal processes with the same priorities 
scheduled? 

g. Under what circumstances do normal processes 
receive priority adjustments? 
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8.35 One solution to the problem of avoiding indefinite post
ponement of processes is aging, in which the priorities of wait-
ing processes increase the longer they wait. Develop several 
aging algorithms and write simulation programs to examine 
their relative performance. For example, a process's priority 
may be made to increase linearly with time. For each of the 
aging algorithms you choose, determine how well waiting pro
cesses are treated relative to high-priority arriving processes. 

8.36 One problem with preemptive scheduling is that the 
context-switching overhead may tend to dominate if the sys
tem is not carefully tuned. Write a simulation program that 
determines the effects on system performance of the ratio of 
context-switching overhead to typical quantum time. Discuss 
the factors that determine context-switching overhead and the 
factors that determine the typical quantum time. Indicate how 
achieving a proper balance between these (i.e., tuning the sys
tem) can dramatically affect system performance. 

Suggested Simulations 

Coffman and Kleinrock discuss popular scheduling policies 
and indicate how users who know which scheduling policy the 
system employs can actually achieve better performance by 
taking appropriate measures.73 Ruschitzka and Fabry give a 
classification of scheduling algorithms, and they formalize the 
notion of priority.74 Today's schedulers typically combine sev
eral techniques described in this chapter to meet particular 
system objectives. Recent research in the field of processor 
scheduling focuses on optimizing performance in settings such 
as Web servers, real-time systems and embedded devices. 

Stankovic et al. present a discussion of real-time scheduling 
concerns,75 Pop et. al present scheduling concerns in embed
ded systems76 and Bender et al. discuss scheduling techniques 
for Web server transactions.77 SMART (Scheduler for Multi
media And Real-Time applications), which combines real-time 
and traditional scheduling techniques to improve multimedia 
performance, was developed in response to increasing popu
larity of multimedia applications on workstations and personal 
computers.78 

Recommended Reading 
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Dertouzos demonstrated that when all processes can 
meet their deadlines regardless of the order in which they are 
executed, it is optimal to schedule processes with the earliest 
deadlines first.79 However, when the system becomes over
loaded, the optimal scheduling policy cannot be implemented 
without allocating significant processor time to the scheduler. 

Recent research focuses on the speed80, 81 or number82 of pro
cessors the system must allocate to the scheduler so that it 
meets its deadlines. The bibliography for this chapter is located 
on our Web site at www.deitel.com/books/osBe/Bibliog
raphy.pdf. 
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Real and Virtual 
Memory 
Lead me from the unreal to the real! 

—The Upanishads — 

Part 3 



Memory is second only to processors in importance 
and in the intensity with which it is managed by 
the operating system. The next three chapters fol
low the elegant evolution in memory organiza
tions from the earliest simple single-user, real 
memory systems to today's popular virtual mem
ory multiprogramming systems. You will learn the 
motivation for virtual memory and you will focus 
on schemes for implementing it—paging, segmen
tation and a combination of the two. You will 
study the three key types of memory management 
strategies: fetch (both demand and anticipatory), 
placement and replacement. You will see that a 
crucial factor for performance in virtual memory 
systems is an effective page replacement strategy 
when available memory becomes scarce, and you 
will learn a variety of these strategies and Den-
ning's working set model. 

The fancy is indeed no other than a mode of memory 

emancipated from the order of time and space. 
— Samuel Taylor Coleridge— 



Nothing ever becomes real till it is experienced—even a proverb is no proverb to yon till 
your life has illustrated it 

—John Keats— 

Let him in whose ears the low-voiced 
Best is killed by the clash of the First, 
Who holds that if way to the 
Better there be, it exacts a full look at the worst, ... 

—Thomas Hardy— 

Remove not the landmark on the boundary of the fields. 
—Amenemope— 

Protection is not a principle, but an expedient. 
—Benjamin Disraeli— 

A great memory does not make a philosopher, any more than a dictionary can be called a 

grammar. 
—John Henry Cardinal Newman— 



Chapter 9 

Objectives 
After reading this chapter, you should understand: 

• the need for real (also called physical) memory management. 

• the memory hierarchy. 

• contiguous and noncontiguous memory allocation. 

• fixed- and variable-partition multiprogramming. 

• memory swapping. 

• memory piacement strategies. 

Real Memory 
Organization and 
Management 
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Historically, main memory has been viewed as a relatively expensive resource. As 
such, systems designers have attempted to optimize its use. Although its cost has 

declined phenomenally over the decades (roughly according to Moore's Law, as 
discussed in Chapter 2; see the Operating Systems Thinking feature, There Are No 
Upper Limits to Processing Power, Memory, Storage and Bandwidth), main mem-

ory is still relatively expensive compared to secondary storage. Also, today's operat-
ing systems and applications require ever more substantial quantities (Fig. 9.1). For 
example, Microsoft recommends 256MB of main memory to efficiently run Win-
dows XP Professional. 

We (as operating system designers) view main memory in terms of memory 
organization. Do we place only a single process in main memory, or do we place 
several processes in memory at once (i.e., do we implement multiprogramming)? If 
main memory contains several processes simultaneously, do we give each the same 
amount of space, or do we divide main memory into portions (called partitions) of 

different sizes? Do define partitions rigidly for extended periods, or dynamically, 
allowing the system to adapt quickly to changes in the needs of processes? Do we 

require that processes run in a specific partition, or anywhere they will fit? Do we 
require the system to place each process in one contiguous block of memory loca-
tions, or allow it to divide processes into separate blocks and place them in any 
available slots in main memory? Systems have been based on each of these 
schemes. This chapter discusses how each scheme is implemented. 

The organization and management of the real memory (also called main memory, 
physical memory or primary memory) of a computer system has been a major influ-
ence on operating systems design.1 Secondary storage—most commonly disk and 
tape - provides massive, inexpensive capacity for the abundance of programs and 

. data that must be kept readily available for processing. It is, however, slow and not 
directly accessible to processors. To be run or referenced directly, programs and 
data must be in main memory. 
In this and the next two chapters, we discuss many popular schemes for orga-
nizing and managing a computer's memory. This chapter deals with real memory; 
Chapters 10 and 11 discuss virtual memory. We present the schemes approximately 
as they evolved historically. Most of today's systems are virtual memory systems, so 
this chapter is primarily of historical value. However, even in virtual memory sys-
tems, the operating system must manage real memory. Further, some systems, such 
as certain types of real-time and embedded systems, cannot afford the overhead of 

virtual memory—so to them, real memory management remains crucial. Many of 
the concepts presented in this chapter lay the groundwork for the discussion of vir-
tual memory in the next two chapters. 

9.1 Introduction 

9.2 Memory Organization 
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Self Review 
1. Why is it generally inefficient to allow only one process to be in memory at a time? 
2. What would happen if a system allowed many processes to be placed in main memory, but 

did not divide memory into partitions? 

Ans: 1) If the single process blocks for I/O, no other processes can use the processor 2) The 
processes would share all their memory. Any malfunctioning or malicious process could dam-
age any or all of the other processes. 

9.3 Memort Management 

Storage and Bandwith 
Computing is indeed a dynamic 
field. Processors keep getting 
faster (and cheaper per executed 
instruction), main memories keep 
getting larger (and cheaper per 
byte), secondary storage media 
keep getting larger (and cheaper 
per bit), and communications 
bandwidths keep getting wider 
(and cheaper per bit transferred)— 
all kinds of new devices are being 
created to interface with, or be 
integrated into, computers. 

Operating systems design
ers must stay apprised of these 
trends and the relative rates at 

which they progress; these trends 
have an enormous impact on 
what capabilities operating sys
tems need to have. Early operat
ing systems did not provide 
capabilities to support computer 
graphics, graphical user inter
faces, networking, distributed 
computing, Web services, multi
processing, multithreading, mas
sive parallelism, massive virtual 
memories, database systems, mul
timedia, accessibility for people 
wi th disabilities, sophisticated 
security capabilities and so on. All 
of these innovations over the last 

few decades have had a profound 
impact on the requirements for 
building contemporary operating 
systems, as you will see when you 
read the detailed case studies on 
the Linux and Windows XP oper-
ating systems in Chapters 20 and 
21. All of these capabilities have 
been made possible by improving 
processing power, storage and 
bandwidth. These improvements 
wil l continue, eventually enabling 
even more sophisticated applica-
tions and the operating systems 
capabilities to support them. 

Regardless of which memory organization scheme we adopt for a particular system, 
we must decide which strategies to use to obtain optimal memory performance.2 

Memory management strategies determine how a particular memory organization 
performs under various loads. Memory management is typically performed by both 
software and special-purpose hardware. 

There Are No Upper limits to Processing Power, Memory, 

Operating Systems Thinking 
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Recommended 
Memory Requirement Release Date Operating System 

Windows 1.0 

Windows 2.03 

Windows 3.0 
Winndows 3.1 

Windows 95 
Windows NT 4.0 

Windows 98 

Windows ME 

Windows 2000 Professional 

Windows XP Home 

Windows XP Professional 

November 1985 

November 1987 

March 1990 

April 1992 

August 1995 
August 1996 

June 1998 

September 2000 

February 2000 

October 2001 

October 2001 

256KB 

320KB 

896KB 

2.6MB 

8MB 
32MB 

24MB 

32MB 

64MB 

64MB 

128MB 

1MB 

4MB 

16MB 
96MB 

64MB 

128MB 

128MB 

128MB 

256MB 

Figure 9.1 | Microsoft Windows operating system memory requirements.3, 4, 5 

The memory manager is an operating system component concerned with the 
system's memory organization scheme and memory management strategies. The 
memory manager determines how available memory space is allocated to processes 
and how to respond to changes in a process's memory usage. It also interacts with 
special-purpose memory management hardware (if any is available) to improve 
performance. In this and the next two chapters, we describe several different mem
ory management and organization strategies. 

Each memory management strategy differs in how it answers certain ques
tions. When does the strategy retrieve a new program and its data to place in mem
ory? Does the strategy retrieve the program and its data when the system 
specifically asks for it, or does the strategy attempt to anticipate the system's 
requests? Where in main memory does the strategy place the next program to be 
run and that program's data? Does it minimize wasted space by packing programs 
and data as tightly as possible into available memory areas, or does it minimize exe
cution time, placing programs and data as quickly as possible? 

If a new program or new data must be placed in main memory and if main 
memory is currently full, which programs or data already in memory does the strat
egy replace? Should it replace those that are oldest, those that are used least fre
quently, or those that were used least recently? Systems have been implemented 
using these and other memory management strategies. 

Self Review 
1. When is it appropriate for a memory manager to minimize wasted memory space? 
2. Why should memory management organizations and strategies be as transparent as possi

ble to processes? 

Memory 
Minimum 
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Ans: 1) When memory is more expensive than the processor-time overhead incurred by 
placing programs as tightly as possible into main memory. Also, when the system needs to 
keep the largest possible contiguous memory region available for large incoming programs 
and data. 2) Memory management transparency improves application portability and facili-
tates development, because the programmer is not concerned with memory management 
strategies. It also allows memory management strategies to be changed without rewriting 
applications. 

9.4 Memory Hierarchy 
In the 1950s and 1960s, main memory was extremely expensive —as much as one 
dollar per bit! To put that in perspective, Windows XP Professional's recommended 
256MB of memory would have cost over 2 billion dollars! Designers made careful 
decisions about how much main memory to place in a computer system. An instal-
lation could buy no more than it could afford but had to buy enough to support the 
operating system and a given number of processes. The goal was to buy the mini-
mum amount that could adequately support the anticipated workloads within the 
economic constraints of the installation. 

Programs and data must be in main memory before the system can execute or 
reference them. Those that the system does not need immediately may be kept in sec-
ondary storage until needed, then brought into main memory for execution or refer 
ence. Secondary storage media, such as tape or disk, are generally far less costly per 
bit than main memory and have much greater capacity. However, main memory may 
generally be accessed much faster than secondary storage—in today's systems, disk 
data transfer may be six orders of magnitude slower than that of main memory.6, 7 

The memory hierarchy contains levels characterized by the speed and cost of 
memory in each level. Systems move programs and data back and forth between 
the various levels.8, 9 This shuttling can consume system resources, such as processor 
time, that could otherwise be put to productive use. To increase efficiency, current 
systems include hardware units called memory controllers that perform memory 
transfer operations with virtually no computational overhead. As a result, systems 
that exploit the memory hierarchy benefit from lower costs and enlarged capacity. 

In the 1960s, it became clear that the memory hierarchy could achieve dramatic 
improvements in performance and utilization by adding one higher level.10, 11 This 
additional level, called cache, is much faster than main memory and is typically 
located on each processor in today's systems.12, 13 A processor may reference pro-
grams and data directly from its cache. Cache memory is extremely expensive com-
pared to main memory, and therefore only relatively small caches are used. Figure 9.2 
shows the relationship between cache, primary memory and secondary storage. 

Cache memory imposes one more level of data transfer on the system. Pro-
grams in main memory are transferred to the cache before being executed—execut-
ing programs from cache is much faster than from main memory. Because many 
processes that access data and instructions once are likely to access them again in 
the future (a phenomenon known as temporal locality), even a relatively small 
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Figure 9.2 | Hierarchical memory organization 

cache can significantly increase performance (when compared to running programs 
in a system without cache). Some systems use several levels of cache. 

Self Review 
1. (T/F) The low cost of main memory coupled with the increase in memory capacity in most 

systems has obviated the need for memory management strategies. 
2. How does a program executing a loop benefit from cache memory? 

Ans: 1) False. Despite the low cost and high capacity of main memory, there continue to be 
environments that consume all available memory. Also, memory management strategies 

should be applied to cache, which consists of more expensive, low-capacity memory. In either 
case, when memory becomes full, a system must implement memory management strategies 
to obtain the best possible use of memory. 2) A program executing a loop repeatedly exe-
cutes the same set of instructions and may also reference the same data. If these instructions 
and data fit in the cache, the processor can access those instructions and data more quickly 
from cache than from main memory, leading to increased performance. 

9.5 Memory Management Strategies 
Memory management strategies are designed to obtain the best possible use of 
main memory. They are divided into: 

1. Fetch strategies 

2. Placement strategies 

3. Replacement strategies 

Fetch strategies determine when to move the next piece of a program or data 
to main memory from secondary storage. We divide them into two types—demand 
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fetch strategies and anticipatory fetch strategies. For many years, the conventional 
wisdom has been to employ a demand fetch strategy, in which the system places the 
next piece of program or data in main memory when a running program references 
it. Designers believed that because we cannot in general predict the paths of execu-
tion that programs will take, the overhead involved in making guesses would far 
exceed expected benefits. Today, however, many systems have increased perfor-
mance by employing anticipatory fetch strategies, which attempt to load a piece of 
program or data into memory before it is referenced. 

Placement strategies determine where in main memory the system should 
place incoming program or data pieces.14-15 In this chapter we consider the first-fit, 
best-fit, and worst-fit memory placement strategies. When we discuss paged virtual 
memory systems in Chapters 10 and 11, we will see that program and data can be 
divided into fixed-size pieces called pages that can be placed in any available "page 
frame." In these types of systems, placement strategies are trivial. 

When memory is too full to accommodate a new program, the system must 
remove some (or all) of a program or data that currently resides in memory. The 
system's replacement strategy determines which piece to remove. 

Self Review 

1. Is high resource utilization or low overhead more important to a placement strategy? 
2. Name the two types of fetch strategies and describe when each one might be more appro-

priate than the other. 

Ans: 1) The answer depends on system objectives and the relative costs of resources and over-
head. In general, the operating system designer must balance overhead with high memory utili-
zation to meet the system's goals. 2) The two types are demand fetch and anticipator fetch. If 
the system cannot predict future memory usage with accuracy, then the lower overhead of 
demand fetching results in higher performance and utilization (because the system does not 
load from disk information that will not be referenced). However, if programs exhibit predict 
able behavior, anticipatory fetch strategies can improve performance by ensuring that pieces of 
programs or data are located in memory before processes reference them. 
9.6 Contiguous vs. Noncontigues Memory Allocation 

To execute a program in early computer systems, the system operator or the operat-
ing system had to find enough contiguous main memory to accommodate the entire 
program. If the program was larger than the available memory, the system could 
not execute it. In this chapter, we discuss the early use of this method, known as 
contiguous memory allocation, and some problems it entailed. When researchers 
attempted to solve these problems, it became clear that systems might benefit from 
noncontiguous memory allocation.16 

In noncontiguous memory allocation, a program is divided into blocks or seg-
ments that the system may place in nonadjacent slots in main memory. This allows 
making use of holes (unused gaps) in memory that would be too small to hold 
whole programs. Although the operating system thereby incurs more overhead, this 
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9.7 Single-User Contiguous Memory Allocation 
Early computer systems allowed only one person at a time to use a machine. All the 
machine's resources were dedicated to that user. Billing was straightforward—the 
user was charged for all the resources whether or not the user's job required them. In 
fact, the normal billing mechanisms were based on wall clock time. The system opera-
tor gave the user the machine for some time interval and charged a flat hourly rate. 

Figure 9.3 illustrates the memory organization for a typical single-user contig-
uous memory allocation system. Originally, there were no operating systems—the 
programmer wrote all the code necessary to implement a particular application, 
including the highly detailed machine-level input/output instructions. Soon, system 

Figure 9.3 | Single-user contiguous memory allocation. 

1. When is noncontiguous preferable to contiguous memory allocation? 
2. What sort of overhead might be involved in a noncontiguous memory allocation scheme? 

Ans: 1) When available memory contains no area large enough to hold the incoming pro-
gram is one contiguous piece, but sufficient smaller pieces of memory are available that, in 
total, are large enough. 2) There would be overhead in keeping track of available blocks and 
blocks that belong to separate processes, and where those blocks reside in memory. 

Self Review 

can be certified by the increase in the level of multiprogramming (i.e., the number 
of processes that can occupy main memory at once). In this chapter we present the 

techniques that led to noncontiguous physical memory allocation. In the next two 
chapters we discuss the virtual memory organization techniques of paging and seg-

mentation, each of which requires noncontiguous memory allocation. 
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designers consolidated input/output coding that implemented basic functions into 
an input/output control system (IOCS).17 The programmer called IOCS routines to 
do the work instead of having to "reinvent the wheel" for each program. The IOCS 
greatly simplified and expedited the coding process. The implementation of input/ 
output control systems may have been the beginning of today's concept of operat-
ing systems. 

9.7.1 Overlays 
We have discussed how contiguous memory allocation limited the size of programs 
that could execute on a system. One way in which a software designer could over-
come the memory limitation was to create overlays, which allowed the system to 
execute programs larger than main memory. Figure 9.4 illustrates a typical overlay. 
The programmer divides the program into logical sections. When the program does 
not need the memory for one section, the system can replace some or all of it with 
the memory for a needed section.18 

Overlays enable programmers to "extend" main memory. However, manual 
overlay requires careful and time-consuming planning, and the programmer often 

Figure 9.4 | Overlay structure. 
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must have detailed knowledge of the system's memory organization. A program 
with a sophisticated overlay structure can be difficult to modify. Indeed, as pro-
grams grew in complexity, by some estimates as much as 40 percent of program-
ming expenes were for organizing overlays.19 It became clear that the operating 
system needed to insulate the programmer from complex memory management 
tasks such as overlays. As we will see in subsequent chapters, virtual memory sys-
tems obviate the need for programmer-controlled overlays, in the same way that 
the IOCS freed the programmer from repetitive, low-level I/O manipulation. 

Self review 
1. How did the IOCS facilitate program development? 
2. Describe the costs and benefits of overlays. 

Ans: 1) Programmers were able to perform I/O without themselves having to write the low-
level commands that were now incorporated into the IOCS, which all programmers could use 
instead of having to "reinvent the wheel." 2) Overlays enabled programmers to write pro-
grams larger than real memory, but managing these overlays increased program complexity, 
which increased the size of programs and the cost of software development. 

9.7.2 Protection in a Single-User System 
In single-user contiguous memory allocation systems, the question of protection is 
simple. How should the operating system be protected from destruction by the 
user's program? 

A process can interfere with the operating system's memory—either inten-
tionally or inadvertently—by replacing some or all of its memory contents with 
other data. If it destroys the operating system, then the process cannot proceed. If 
the process attempts to access memory occupied by the operating system, the user 
can detect the problem, terminate execution, possibly fix the problem and relaunch 

the program. 
Without protection, the process may alter the operating system in a more sub-

the, nonfatal manner. For example, suppose the process accidentally changes certain 
input/output routines, causing the system to truncate all output records. The process 

could still run, but the results would be corrupted. If the user does not examine the 
results until the process completes, then the machine resource has been wasted. 

Worse yet, the damage to the operating system might cause outputs to be produced 
that the user cannot easily determine to be inaccurate. Clearly, the operating system 

must be protected from processes. 
Protection in single-user contiguous memory allocation systems can be imple-

mented with a single boundary register built into the processor, as in Fig. 9.5, and 
which can be modified only by a privileged instruction. The boundary register con-

tains the memory address at which the user's program begins. Each time a process 
references a memory address, the system determines if the request is for an address 
greater than or equal to that stored in the boundary register. If so, the system ser
 the memory request. If not, then the program is trying to access the operating 
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Figure 9.5 | Memory protection with single-user contiguous memory allocation. 

system. The system intercepts the request and terminates the process with an 
appropriate error message. The hardware that checks boundary addresses operates 
quickly to avoid slowing instruction execution. 

Of course, the process must access the operating system from time to time to 
obtain services such as input/output. Several system calls (also called supervisor calls) 
are provided that may be used to request services from the operating system. When a 
process issues a system call (e.g., to write data to a disk), the system detects the call 
and switches from the user mode to the kernel mode (or executive mode) of execu-
tion. In kernel mode, the processor may execute operating system instructions and 
access data to perform tasks on behalf of the process. After the system has performed 
the requested task, it switches back to user mode and returns control to the process.20 

The single boundary register represents a simple protection mechanism. As 
operating systems have become more complex, designers have implemented more 
sophisticated mechanisms to protect the operating system from processes and to 
protect processes from one another. We discuss these mechanisms in detail later. 

Self Review 
1. Why is a single boundary register insufficient for protection in a multiuser system? 
2. Why are system calls necessary for an operating system? 
Ans: 1) The single boundary would protect the operating system from being corruted by 
user processes, but not protect processes from corrupting each other. 2) System calls enable 
processes to request services from the operating system while ensuring that the operating 
system is protected from its processes. 
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9.7.3 Single-Stream Batch Processing 
Early single-user real memory systems were dedicated to one job for more than the 
job's execution time. Jobs generally required considerable setup time during which 
the operating system was loaded, tapes and disk packs were mounted, appropriate 

formsplaced in the printer, time cards "punched in," and so on. When jobs com-
pleted, they required considerable teardown time as tapes and disk packs were 

removed, forms removed, time cards "punched out." During job setup and tear-
down the computer sat idle. 

Designers realized that if they could automate various aspects of job-to-job 
transition, they could reduce considerably the amount of time wasted between jobs. 

This led to the development of batch-processing systems (see the Operating Sys-
tems Thinking feature, Change Is the Rule Rather Than the Exception). In single-
stream batch processing, jobs are grouped in batches by loading them consecutively 

onto tape or disk. A job stream processor reads the job control language statements 
(that define each job) and facilitates the setup of the next job. It issues directives to 
the system operator and performs many functions that the operator previously per-

formed manually. When the current job terminates, the job stream reader reads in 
the control-language statements for the next job and performs appropriate house-

keeping chores to facilitate the transition to the next job. Batch-processing systems 
greatly improved resource utilization and helped demonstrate the real value of 
operating systems and intensive resource management. Single-stream batch-pro-

cessing systems were the state of the art in the early 1960s. 

Self Review 

1. (T/F) Batch-processing systems removed the need for a system operator. 
2. What was the key contribution of early batch-processing systems? 

Operating Systems Thinking 

Change Is the Rule Rather Than the Exception 
Historically, change is the rule 1960s and 1970s; today many of out the book we discuss many 
rather than the exception and those companies are gone or have architectural issues and many 

that those changes happen faster far less prominent positions in the software engineering issues that 
than anticipated and often are far industry. Look at the way comput- designers must consider as they 
more wrenching than imagined. ers and operating systems were create operating systems that 
You see this in the computer field designed in those decades; today adapt well to change. 
all the time. Just look at who the those designs, in many cases, are 
leading companies were in the profoundly different. Through-
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Ans: 1) False. A system operator was needed to set up and "tear down" the jobs and control 
them as they executed. 2) They automated various aspects of job-to-job transition, consider-
ably reducing the amount of wasted time between jobs and improved resource utilization. 

9.8 Fixed-Partition Multiprogramming 
Even with batch-processing operating systems, single-user systems still waste a 
considerable amount of the computing resource (Fig. 9.6). A typical process would 
consume the processor time it needed to generate an input/output request; the pro-
cess could not continue until the I/O finished. Because I/O speeds were extremely 
slow compared with processor speeds (and still are), the processor was severely 
underutilized. 

Designers saw that they could further increase processor utilization by imple-
menting multiprogramming systems, in which several users simultaneously compete 
for system resources. The process currently waiting for I/O yields the processor if 
another process is ready to do calculations. Thus, I/O operations and processor cal-
culations can occur simultaneously. This greatly increases processor utilization and 
system throughput. 

To take maximum advantage of multiprogramming, several processes must 
reside in the computer's main memory at the same time. Thus, when one process 
requests input/output, the processor may switch to another process and continue to 
perform calculations without the delay associated with loading programs from sec-
ondary storage. When this new process yields the processor, another may be ready 

Figure 9.6 | Procssor utilization on a single-user s y s t e m . [Note: In many single-
user jobs, I/O waits are much longer relative to processor utilization periods indicated 
in this diagram.] 
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to use it. Many multiprogramming schemes have been implemented, as discussed in 
this and the next several sections. 

The earliest multiprogramming systems used fixed-partition multiprogram
ming.21 Under this scheme, the system divides main memory into a number of fixed-
size partitions. Each partition holds a single job, and the system switches the proces
sor rapidly between jobs to create the illusion of simultaneity.22 This technique 
enables the system to provide simple multiprogramming capabilities. Clearly, multi-
programming normally requires more memory than does a single-user system. 
However, the improved resource use for the processor and the peripheral devices 
justifies the expense of the additional memory. 

In the earliest multiprogramming systems, the programmer translated a job 
using an absolute assembler or compiler (see Section 2.8, Compiling, Linking and 
loading). While this made the memory management system relatively straightfor-
ward to implement, it meant that a job had its precise location in memory determined 
before it was launched and could run only in a specific partition (Fig. 9.7).This restric-
tion led to wasted memory If a job was ready to run and the program's partition was 
occupied, then that job had to wait, even if other partitions were available. Figure 9.8 

shows an extreme example. All the jobs in the system must run in partition 3 (i.e., the 
prrograms' instructions all begin at address c). Because this partition currently is in 
use. all other jobs are forced to wait, even though the system has two other partitions 
in which the jobs could run (if they had been compiled for these partitions). 

To overcome the problem of memory waste, developers created relocating 
compilers, assemblers and loaders. These tools produce a relocatable program that 
can run in any available partition that is large enough to hold that program 
(Fig. 9.9). This scheme eliminates some of the memory waste inherent in multipro-

Figure 9.7 | Fixed-partition multiprogramming with absolute translation and 
loading. 



392 Real Memory Organization and Management 

Figure 9.8 | Memory waste under fixed-partition multiprogramming with absolute 
translation and loading. I 

Figure 9.9 | Fixed-partition multiprogramming with relocatable translation and 
loading. 

gramming with absolute translation and loading; however, relocating translators 
and loaders are more complex than their absolute counterparts. 

As memory organization increased in complexity, designers had to augment 
the protection schemes. In a single-user system, the system must protect only the 
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operating system from the user process. In a multiprogramming system, the system 
must protect the operating system from all user processes and protect each process 
from all the others. In contiguous-allocation multiprogramming systems, such as 
those discussed in this section, protection often is implemented with multiple 
boundary registers. The system can delimit each partition with two boundary regis-
ters-- low and high, also called the base and limit registers (Fig. 9.10). When a pro-

Figure 9.10 | Memory protection in contiguous-allocation multiprogramming sys-
tems. 

Anecdote 

Compartmentalization 
When HMD was interviewing for offered the job, HMD was enthu- smiled and said, "Harvey, I'm not 
a job in computer security at the siastic: "Yes sir, if I come to the that concerned about the enemy, 
Pentagon, his last interview of the Pentagon you can count on me to 1 just want to make sure that the 
day was wi th the person ult i- work day and night to ensure that Navy doesn't know what the Air 
mately responsible for all Penta- the enemy can't compromise our Force is doing." 
gon computer systems. When computer systems." The employer 

Lesson to operating systems designers: A key goal of operating systems is compartmentalization. Operating 
systems must provide a working environment in which a great diversity of users can operate concurrently, 
knowing that their work is private and protected from other users. 

0 

a 

b 

c 

d 
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cess issues a memory request, the system checks whether the requested address is 
greater than or equal to the process's low boundary register value and less than the 
process's high boundary register value (see the Anecdote, Compartmentalization). 
If so, the system honors the request; otherwise, the system terminates the program 
with an error message. As with single-user systems, multiprogramming systems pro-
vide system calls that enable user programs to access operating system services. 

One problem prevalent in all memory organizations is that of fragmenta-
tion —the phenomenon wherein the system cannot use certain areas of available 
main memory (see the Operating Systems Thinking feature, Spatial Resources and 
Fragmentation).23 Fixed-partition multiprogramming suffers from internal frag-
mentation, which occurs when the size of a process's memory and data is smaller 
than that of the partition in which the process executes.24 (We discuss external frag-
mentation in Section 9.9, Variable-Partition Multiprogramming.) 

Figure 9.11 illustrates the problem of internal fragmentation. The system's 
three user partitions are occupied, but each program is smaller than its correspond-
ing partition. Consequently, the system may have enough main memory space in 
which to run another program but has no remaining partitions in which to run the 
program. Thus, some of the system's memory resources are wasted. In the next sec-
tion we discuss another memory organization scheme that attempts to solve the 
problem of fixed partitions. We shall see that, although this scheme makes improve-
ments, the system can still suffer from fragmentation. 

Operating Systems Thinking 

Spatial Resources and Fragmentation 
Consider a common scenario: A the walls are built to delineate using several noncontiguous, 
restaurant in a shopping mall the separate office spaces. When smaller spaces. This is called frag-
wants to expand, but no larger a customer wants to expand its mentation and it is a recurrirg 
unoccupied stores are available in space, it may be difficult to do so theme in operating systems.In 
the mall, so the mall owners must because no larger space may be this book, you wil l see how main 
wait for adjacent stores to available and the adjacent spaces memory and secondary storage 
become available, and then knock may not be available. In both of can each suffer various forms of 
down some walls to create a these cases the units desiring to fragmentation and how operat 
larger space. An office building expand may not be able to f ind a ing systems designers deal with 
may initially start off as en empty sufficiently large contiguous these problems. 
"shell;" as customers rent spaces, space and may have to settle for 
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Figure 9.11 | Internal fragmentation in a fixed-partition multiprogramming system. 

Self Review 
1. Explain the need for relocating compilers, assemblers and loaders. 

2. Describe the benefits and drawbacks of large and small partition sizes. 

Ans: 1) Before such tools, programmers manually specified the partition into which their 
program had to be loaded, which potentially wasted memory and processor utilization, and 
reduced application portability. 2) Larger partitions allow large programs to run, but result in 
internal fragmentation for small programs. Small partitions reduce the amount of internal 
fragmentation and increase the level of multiprogramming by allowing more programs to 

reside in memory at once, but limit program size. 

9.9 Variable-Partition Multiprogramming 
Fixed-partition multiprogramming imposes restrictions on a system that result in 
inefficient resource use. For example, a partition may be too small to accommodate 
a waiting process, or so large that the system loses considerable resources to inter-
nal fragmentation. An obvious improvement, operating system designers decided, 
would be to allow a process to occupy only as much space as needed (up to the 
amount of available main memory). This scheme is called variable-partition multi-
programming.25 26 27 

9.9.1 Variable-Partition Characteristics 
Figure 9.12 shows how a system allocates memory under variable-partition multi-
programming. We continue to discuss only contiguous-allocation schemes, where a 
process must occupy adjacent memory locations. The queue at the top of the figure 

contains available jobs and information about their memory requirements. The 
operating system makes no assumption about the size of a job (except that it does 
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Figure 9.12 | Initial partition assignments in variable partition programming 

not exceed the size of available main memory). The system progresses through the 
queue and places each job in memory, where there is available space, at which point 
it becomes a process. In Fig. 9.12, main memory can accommodate the first four 
jobs; we assume the free space that remains after the system has placed the job cor-
responding to process P4 is less than 14KB (the size of the next available job). 

Variable-partition multiprogramming organizations do not suffer from inter-
nal fragmentation, because a process's partition is exactly the size of the process. 
But every memory organization scheme involves some degree of waste. In variable 
partition multiprogramming, the waste does not become obvious until processes 
finish and leave holes in main memory, as shown in Fig. 9.13. The system can con-
tinue to place new processes in these holes. However, as processes continue to com-
plete, the holes get smaller, until every hole eventually becomes too small to hold a 
new process. This is called external fragmentation, where the sum of the holes is 
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Figure 9.13 | Memory "holes" in variable-partition multiprogramming. 

enough to accommodate another process, but the size of each hole is too small to 
accomodate any available process.28 

The system can take measures to reduce some of its external fragmentation. 
When a process in a variable-partition multiprogramming system terminates, the 

system can determine whether the newly freed memory area is adjacent to other 
free memory areas. The system then records in a free memory list either (1) that the 
system now has an additional hole or (2) that an existing hole has been enlarged 

(reflecting the merging of the existing hole and the new adjacent hole).29-30 The pro-
(reflecting the merging adjacent holes to form a single, larger hole is called coalescing and 
is illustrated in Fig. 9.14. By coalescing holes, the system reclaims the largest possi-
ble contiguous blocks of memory. 

Even as the operating system coalesces holes, the separate holes distributed 
throughout main memory rnay still constitute a significant amount of memory— 

enough in total to satisfy a process's memory requirements, although no individual 
hole is large enough to hold the process. 

Another technique for reducing external fragmentation is called memory 
compaction (Fig. 9.15), which relocates all occupied areas of memory to one end or 

the other of main memory.31 This leaves a single large free memory hole instead of 
the numerous small holes common in variable-partition multiprogramming. Now 
all of the available free memory is contiguous, so that an available process can run if 
its memory requirement is met by the single hole that results from compaction. 

Sometimes memory compaction is colorfully referred to as burping the memory. 
More conventionally, it is called garbage collection.32 
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Figure 9.14 | Coalescing memory "holes" in variable partition multiprogramming 

Figure 9.15 | Memory compaction in variable-partition multiprogramming. 

Compaction is not without drawbacks. Compaction overhead consumes sys-
tem resources that could otherwise be used productively. The system also must 
cease all other computation during compaction. This can result in erratic response 
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times for interactive users and could be devastating in real-time systems. Further-
more, compaction must relocate the processes that currently occupy the main mem-

ory. This means that the system must now maintain relocation information, which 
ordinary is lost when the system loads a program. With a normal, rapidly changing 
job mix, the system may compact frequently. The consumed system resources might 
not justify the benefits of compaction. 

Self Review 
1. Explain the difference between internal fragmentation and external fragmentation, 

2. Describe two techniques to reduce external fragmentation in variable-partition multipro-
gramming systems. 

Ans: 1) Internal fragmentation occurs in fixed-partition environments when a process is 
allocated more space than it needs, leading to wasted memory space inside each partition. 
External fragmentation occurs in variable-partition environments when memory is wasted 

due to holes developing in memory between partitions. 2) Coalescing merges adjacent free 
memory blocks into one larger block. Memory compaction relocates partitions to be adjacent 
to one another to consolidate free memory into a single block. 

9.9.2 Memory Placement Strategies 
In a variable-partition multiprogramming system, the system often has a choice as 
to which memory hole to allocate for an incoming process. The system's memory 

placement strategy determines where in main memory to place incoming programs 
and data.33, 34, 35 Three strategies frequently discussed in the literature are illus-

trated in Fig. 9.16.36 

First-fit strategy—The system places an incoming job in main memory in 
the first available hole that is large enough to hold it. First-fit has intuitive 
appeal in that it allows the system to make a placement decision quickly. 
Best-fit strategy—The system places an incoming job in the hole in main 
memory in which it fits most tightly and which leaves the smallest amount 
of unused space. To many people, best fit is the most intuitive strategy, but 
it requires the overhead of searching all of the holes in memory for the best 
fit and tends to leave many small, unusable holes. Note in Fig. 9.16 that we 
maintain the entries of the free memory list in ascending order; such sort
ing is relatively expensive. 
Worst-fit strategy—At first this appears to be a whimsical choice. Upon 
closer examination, though, worst-fit also has strong intuitive appeal. Worst 
fit says to place a job in main memory in the hole in which it fits worst (i.e., 
in the largest possible hole). The intuitive appeal is simple: After the job is 
placed in this large hole, the remaining hole often is also large and thus 
able to hold a relatively large new program. The worst-fit strategy also 
requires the overhead of finding the largest hole and tends to leave many 
small, unusable holes. 

• 

• 

• 
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Figure 9.16 | First-fit, best-fit and worst-fit memory placement strategies. 
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A variation of first-fit, called the next-fit strategy, begins each search for an 
available hole at the point where the previous search ended.37 Exercise 9.20 at the 

end of this chapter examines the next-fit strategy in detail. 

Self Review 
1. Why is first-fit an appealing strategy? 
2. (T/F) None of the memory placement strategies in this section result in internal fragmen-

Ans: 1) First-fit is intuitively appealing because it does not require that the free memory list 
be sorted, so it incurs little overhead. However, it may operate slowly if the holes that are too 
small to hold the incoming job are at the front of the free memory list. 2) True. 

9.10 Multiprogramming with Memory Swapping 
In all the multiprogramming schemes we have discussed in this chapter, the system 

maintains a process in main memory until it completes. An alternative to this 
scheme is swapping, in which a process does not necessarily remain in main mem-
ory throughout its execution. 

In some swapping systems (Fig. 9.17), only one process occupies main memory 
at a given time. That process runs until it can no longer continue (e.g., because it must 
wait for I/O completion), at which time it relinquishes both the memory and the pro-
cessor to the next process. Thus, the system dedicates the entire memory to one pro-
cess for a brief period. When the process relinquishes the resource, the system swaps 
(or rools) out the old process and swaps (or rolls) in the next process. To swap a pro-
cess out, the system stores the process's memory contents (as well as its PCB) in sec-
ondary storage. When the system swaps the process back in, the process's memory 

contents and other values are retrieved from secondary storage. The system normally 
swap a process in and out many times before the process completes. 

Many early timesharing systems were implemented with this swapping tech-
nique. Response times could be guaranteed for a few users, but designers knew that 
they needed better techniques to handle large numbers of users. The swapping sys-

tems of the early 1960s led to today's paged virtual memory systems. Paging is con-
sidered in detail in the next two chapters on virtual memory systems. 

More sophisticated swapping systems have been developed that allow several 
processes to remain in main memory at once.38'39 In these systems, the system swaps a 

process out only when an incoming process needs that memory space. With a suffi-
cient amount of main memory, these systems greatly reduce the time spent swapping. 

Self Review 
1. Explain the overhead of swapping in terms of processor utilization. Assume that memory 

can hold only one process at a time. 
2. Why were swapping systems in which only a single process at a time was in main memory 

insufficient for multiuser interactive systems? 
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1. Only one process at a time resides in main memory. 

2. That process runs until 
a) I/O is issued, 
b) timer runs out or 
c) voluntary termination. 

3. System then swaps out the process by copying the 
swapping area (main memory) to secondary storage. 

4. System swaps in next process by reading that process's 
main memory image into the swapping area. The new 
process runs until it is eventually swapped out and the 
next user is swapped in, and so on. 

Figure 9.17 | Multiprogramming in a swapping system in which only a single pro-
cess at a time is in main memory. 

Ans: 1) Enormous numbers of processor cycles are wasted when swapping a program 
between disk and memory. 2) This type of swapping system could not provide reasonable 
response times to a large number of users, which is required for interactive systems. 

Web Resources 
www.kingston.com/tools/umg/default.asp www.memorymanagement.org 
Describes the role of memory in a computer. Although the dis- Presents memory management techniques and garbage collec-
cussion is geared toward today's computers (which use virtual tion. The site also contains a glossary of over 400 memory man-
memory, a topic introduced in the next chapter), it describes agement terms and a beginner's guide to memory management. 
many fundamental memory concepts. 
www.1inux-mag.com/2001-06/compile_01.html 
Describes the working of the mallocO function in C, which 
allocates memory to newly created variables. The article also 
considers some basic allocation strategies that were discussed 
above (including first-fit, next-fit and worst-fit). 

www.kingston.com/tools/umg/default.asp
http://www.memorymanagement.org
www.1inux-mag.com/2001-06/compile_01.html


The organization and management of the real memory (also 
called main memory, physical memory or primary memory) of 
a computer system has been one of the most important influ
es upon operating systems design. Although most of 
today's systems implement virtual memory, certain types of 
real-time and embedded systems cannot afford the overhead 
of virtual memory—real memory management remains crucial 
to such systems. 

Regardless of which memory organization scheme we 
adopt for a particular system, we must decide which strategies to 
use to obtain optimal memory performance. Memory manage
ment strategies determine how a particular memory organiza-
tion performs under various policies. Memory management is 
typically performed by both software and special-purpose hard-
ware. The memory manager is a component of the operating 
system that determines how available memory space is allocated 
to processes and how to respond to changes in a process's mem-
ory usage. The memory manager also interacts with special-pur-
pose memory management hardware (if any is available) to 
improve performance. 

Programs and data must be in main memory before the 
system can execute or reference them. The memory hierarchy 
contains levels characterized by the speed and cost of memory 
in each level. Systems with several levels of memory perform 
transfers that move programs and data back and forth between 
the various levels. Above the main memory level in the hierar-

I chy is cache, which is much faster than main memory and is 
typically located on each processor in today's systems. Pro-
grams in main memory are transferred to the cache, where 
they are executed much faster than they would be from main 
memory. Because many processes that access data and instruc-
tions once are likely to access them again in the future (a phe-
nomenon known as temporal locality), even a relatively small 
cache can significantly increase performance (when compared 
to running programs in a system without cache). 

Memory management strategies are divided into fetch 
strategies, which determine when to move the next piece of a 
program or data to main memory from secondary storage, 
placement strategies, which determine where in main memory 
the system should place incoming program or data pieces, and 
replacement strategies, which determine which piece of a pro-
gram or data to replace to accommodate incoming program 
and data pieces. 

Contiguous memory allocation systems store a program 
in contiguous memory locations. In noncontiguous memory 

Sunmary 
allocation, a program is divided into blocks or segments that 
the system may place in nonadjacent slots in main memory. 
This allows the memory management system to make use of 
holes (unused gaps in memory) that would otherwise be too 
small to hold programs. Although the operating system incurs 
more overhead in managing noncontiguous memory alloca
tion, this can be justified by the increase in the level of multi
programming (i.e., the number of processes that can occupy 
main memory at once). 

Early computer systems allowed only one person at a 
time to use a machine. These computer systems typically did 
not contain an operating system. Later, system designers con
solidated input/output coding that implemented basic func
tions into an input/output control system (IOCS), so the 
programmer no longer had to code input/output instructions 
directly. With overlays, the system could execute programs 
larger than main memory. However, manual overlay requires 
careful and time-consuming planning, and the programmer 
often must have detailed knowledge of the system's memory 
organization. 

Without protection in a single-user system, a process can 
interfere with the operating system's memory—either intention
ally or inadvertently—by replacing some or all of its memory 
contents with other data. Protection in single-user contiguous 
memory allocation systems can be implemented with a single 
boundary register built into the processor. Processes must 
access the operating system from time to time to obtain services 
such as input/output. The operating system provides several sys
tem calls (also called supervisor calls) that may be used to 
request such services from the operating system. 

Early single-user real memory systems were dedicated 
to one job for more than the job's execution time. Jobs gener
ally required considerable setup and teardown time, during 
which the computer sat idle. The development of batch-pro
cessing systems improved utilization. In single-stream batch-
processing, jobs are grouped in batches by loading them con
secutively onto tape or disk. Even with batch-processing oper
ating systems, single-user systems still wasted a considerable 
amount of the computing resource. Therefore, designers chose 
to implement multiprogramming systems, in which several 
users simultaneously compete for system resources. 

The earliest multiprogramming systems used fixed-parti
tion multiprogramming, in which the system divides main 
memory into a number of fixed-size partitions., each holding a 
single job. The system switches the processor rapidly between 

Summary 403 
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jobs to create the illusion of simultaneity. To overcome the 
problem of memory waste, developers created relocating com
pilers, assemblers and loaders. 

In contiguous-allocation multiprogramming systems, 
protection often is implemented with multiple boundary regis
ters, called the base and limit registers, for each process. One 
problem prevalent in all memory organizations is that of frag
mentation—the phenomenon wherein the system is unable to 
make use of certain areas of available main memory. Fixed-
partition multiprogramming suffers from internal fragmenta
tion, which occurs when the size of a process's memory and 
data is smaller than the partition in which the process executes. 

Variable-partition multiprogramming allows a process to 
occupy only as much space as needed (up to the amount of avail
able main memory). Waste does not become obvious until pro
cesses finish and leave holes in main memory, resulting in 
external fragmentation. The system can take measures to reduce 
some of its external fragmentation by implementing a free mem
ory list to coalesce holes, or perform memory compaction. 

The system's memory placement strategy determines 
where in main memory to place incoming programs and data. 

The first-fit strategy places an incoming job in main memory in 
the first available hole that is large enough to hold it. The best- I 
fit strategy places the job in the hole in main memory in which 
it fits most tightly and which leaves the smallest amount of 
unused space. The worst-fit strategy places the job in main 
memory in the hole in which it fits worst (i.e., in the largest 
possible hole). A variation of the first-fit, called the next-fir 
strategy, begins each search for an available hole at the point 
where the previous search ended. 

Memory swapping is a technique in which a process does 
not necessarily remain in main memory throughout its execu-
tion. When a process in memory cannot execute, the system 
swaps (or rolls) out the old process and swaps (or rolls) in the 
next process. More sophisticated swapping systems have been 
developed that allow several processes to remain in main 
memory at once. In these systems, the system swaps a process 
out only when an incoming process needs that memory space 
With a sufficient amount of main memory, these system 
greatly reduce the time spent swapping. 

Key Terms 
anticipatory fetch strategy—Method of bringing pages into 

main memory before they are requested so they will be 
immediately available when they are requested. This is 
accomplished by predicting which operations a program 
will perform next. 

base register—Register containing the lowest memory address 
a process may reference. 

best-fit memory placement strategy—Memory placement 
strategy that places an incoming job in the smallest hole in 
memory that can hold the job. 

boundary register—Register for single-user operating systems 
that was used for memory protection by separating user 
memory space from kernel memory space. 

burping the memory—See memory compaction. 
cache memory—Small, expensive, high-speed memory that 

holds copies of programs and data to decrease memory 
access times. 

coalescing memory holes—Process of merging adjacent holes 
in memory in variable partition multiprogramming sys
tems. This helps create the largest possible holes available 
for incoming programs and data. 

contiguous memory allocation—Method of assigning memory 
such that all of the addresses in the process's entire 
address space are adjacent to one another. 

demand fetch strategy—Method of bringing program parts or 
data into main memory as they are requested by a process 

executive mode—Protected mode in which a processor can 
execute operating system instructions on behalf of a user 
(also called kernel mode). 

external fragmentation—Phenomenon in variable-partition 
memory systems in which there are holes distributed 
throughout memory that are too small to hold a process. 

fetch strategy—Method of determining when to obtain the 
next piece of program or data for transfer from secondary 
storage to main memory. 

first-fit memory placement strategy—Memory placement 
strategy that places an incoming process in the first hole 
that is large enough to hold it. 

fixed-partition multiprogramming—Memory organization that 
divides main memory into a number of fixed-size parti-
tions, each holding a single job. 

fragmentation (of main memory)—Phenomenon wherein a 
system is unable to make use of certain areas of available 
main memory. 

free memory list — Operating system data structure that points 
to available holes in memory. 

garbage collection — See memory compaction. 
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overlay—Concept created to enable programs larger than 
main memory to run. Programs are broken into pieces 
that do not need to exist simultaneously in memory. An 
overlay contains one such piece of a program. 

partition—Portion of main memory allocated to a process in 
fixed- and variable-partition multiprogramming. Pro
grams are placed into partitions so that the operating sys
tem can protect itself from user processes and so that 
processes are protected from each other. 

physical memory—See main memory. 

placement strategy (main memory)—Strategy that determines 
where in the main memory to place incoming programs 
and data. 

replacement strategy (main memory)—Method that a system 
uses to determine which piece of program or data to dis
place to accommodate incoming programs or data. 

roll — See swap. 

setup time—Time required by a system operator and the oper
ating system to prepare the next job to be executed. 

single-stream batch-processing system—Batch-processing sys
tem that places ready jobs in available partitions from one 
queue of pending jobs. 

single-user contiguous memory allocation system—System in 
which programs are placed in adjacent memory addresses 
and the system services only one program at a time. 

supervisor call—Request by a user process to the operating 
system to perform an operation on its behalf (also called a 
system call). 

swap—Method of copying a process's memory contents to sec
ondary storage, removing the process from memory and 
allocating the freed memory to a new process. 

teardown time—Time required by a system operator and the 
operating system to remove a job from a system after the 
job has completed. 

temporal locality—Property of events that are closely related 
over time. In memory references, temporal locality occurs 
when processes reference the same memory locations 
repeatedly within a short period. 

variable-partition multiprogramming—Method of assigning 
partitions that are the exact size of the job entering the 
system. 

wall clock time—Measure of time as perceived by a user. 

worst-fit strategy—Memory placement strategy that places an 
incoming job in the largest hole in memory. 

hole - An unused area of memory in a variable-partition mul
tiprogramming system. 

input/output control system (IOCS)—Precursor to modern 
operating systems that provided programmers with a 
basic set of functions to perform I/O. 

intensive resource management—Notion of devoting substan
tial resources to managing other resources to improve 
overall utilization. 

internal fragmentation—Phenomenon in fixed-partition multi
programming systems in which there holes occur when 
the size of a process's memory and data is smaller than the 
partition in which the process executes. 

job control language—Commands interpreted by a job stream 
processor that define and facilitate the setup of the next 
job in a single-stream batch-processing system. 

job stream processor—Entity in single-stream batch-process
ing systems that controls the transition between jobs. 

job-to-job transition—Time during which jobs cannot execute 
in single-stream batch-processing systems while one job is 
purged from the system and the next job is loaded and 
prepared for execution. 

limit register—Register used in fixed-partition multiprogram
ming systems to mark where a process's memory partition 
ends. 

memory compaction—Relocating all partitions in a variable-
partition multiprogramming system to one end of main 
memory to create the largest possible memory hole. 

memory hierarchy—Model that classifies memory into levels 
corresponding to speed, size and cost. 

memory management strategy—Specification of how a partic
ular memory organization performs operations such as 
fetching, placing and replacing memory. 

memory manager—Component of an operating system that 
implements the system's memory organization and mem
ory management strategies. 

memory organization—Manner in which the system views 
main memory, addressing concerns such as how many 
processes exist in memory, where to place programs and 
data in memory and when to replace those pieces with 
other pieces. 

next-fit memory placement strategy—Variation of the first-fit 
memory placement strategy that begins each search for an 
available hole at the point where the previous search ended. 

noncontiguous memory allocation—Method of memory allo
cation that divides a program into several, possibly non-
adjacent, pieces that the system places throughout main 
memory. 
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Exercises 
9.1 In hierarchical memory systems, a certain amount of 
overhead is involved in moving programs and data between 
the various levels of the hierarchy. Discuss why the benefits 
derived from such systems justify the overhead involved. 

9.2 Why did demand fetching endure as the conventional wis
dom for so long? Why are anticipatory fetch strategies receiving 
so much more attention today than they did decades ago? 

9.3 Discuss how memory fragmentation occurs in each of 
the memory organization schemes presented in this chapter. 

9.4 In what circumstances are overlays useful? When may a 
section of main memory be overlayed? How does overlaying 
affect program development time? How does overlaying affect 
program modifiability? 

9.5 Discuss the motivations for multiprogramming. What 
characteristics of programs and machines make multiprogram
ming desirable? In what circumstances is multiprogramming 
undesirable? 

9.6 You are given a hierarchical memory system consisting of 
four levels—cache, primary memory, secondary memory and 
tertiary memory. Assume that programs may be executed in any 
of the memory levels. Each level consists of an identical amount 
of memory, and the range of memory addresses in each level is 
identical. Cache runs programs the fastest, primary memory is 
ten times slower than the cache, secondary memory is ten times 
slower than primary memory and tertiary memory is ten times 
slower than secondary memory. There is only one processor and 
it may execute only one program at a time. 

a. Assume that programs and data may be shuttled 
from any level to any other level under the operating 
system's control. The time it takes to transfer items 
between two particular levels is dependent upon the 
speed of the lowest (and slowest) level involved in 
the transfer. Why might the operating system choose 
to shuttle a program from cache directly to secondary 
memory, thus bypassing primary memory? Why 
would items be shuttled to slower levels of the hierar
chy? Why would items be shuttled to faster levels of 
the hierarchy? 

b. The scheme above is somewhat unconventional. It is 
more common for programs and data to be moved only 
between adjacent levels of the hierarchy. Give several 
arguments against allowing transfers directly from the 
cache to any level other than primary memory. 

9.7 As a systems programmer in a large computer installa
tion using a fixed-partition multiprogramming system, you 
have the task of determining if the current partitioning of the 
system should be altered. 

a. What information would you need to help you make 
your decision? 

b. If you had this information readily available, how 
would you determine the ideal partitioning? 

c. What are the consequences of repartitioning such a 
system? 

9.8 A simple scheme for relocating programs in multipro-
gramming environments involves the use of a single relocation 
register. All programs are translated to locations beginning at 
zero, but every address developed as the program executes is 
modified by adding to it the contents of the processor's reloca-
tion register. Discuss the use and control of the relocation reg-
ister in variable-partition multiprogramming. How might the 
relocation register be used in a protection scheme? 

9.9 Placement strategies determine where in the main mem-
ory incoming programs and data should be loaded. Suppose a 
job waiting to begin execution has a memory requirement that 
can be fulfilled immediately. Should the job be loaded and 
begin execution immediately? 

9.10 Charging for resources in multiprogramming system 
can be complex. 

a. In a dedicated system, the user is normally charged for 
the entire system. Suppose that in a multiprogram-
ming system only one user is currently on the system. 
Should the user be charged for the entire system? 

b. Multiprogramming operating systems generally con-
sume substantial system resources, as they manage 
multiple-user environments. Should users pay for this 
overhead, or should it be "absorbed" by the operat-
ing system? 

c. Most people agree that charges for computer system 
usage should be fair, but few can define precisely what 
"fairness" is. Another attribute of charging schemes, 
but one which is easier to define, is predictability. We 
want to know that if a job costs a certain amount to 
run once, running it again in similar circumstances will 
cost approximately the same amount. Suppose that in 
a multiprogramming environment we charge by wall 
clock time, i.e., the total real time involved in running 
the job from start to completion. Would such a schemes 
yield predictable charges? Why? 

9.11 Discuss the advantages and disadvantages of noncontig-
uous memory allocation. 

9.12 Many designers believe that the operating system shold 
always be given a "most trusted" status. Some designers fell 
that even the operating system should be curtailed, particularly 



in its ability to reference certain areas of memory. Discuss the 
pros and cons of allowing the operating system to access the full 
range of real addresses in a computer system at all times. 

9.13 Developments in operating systems have generally 
occurred in an evolutionary rather than revolutionary fashion. 

For each of the following transitions, describe the primary 
motivations that led operating systems designers to produce 
the new type of system from the old. 

a. Single-user dedicated systems to multiprogramming 
b. Fixed-partition multiprogramming systems with 

absolute translation and loading to fixed-partition 
multiprogramming systems with relocatable transla
tion and loading 

c. Fixed-partition multiprogramming to variable-parti
tion multiprogramming 

d. Contiguous memory allocation systems to noncontig
uous memory allocation systems 

e. Single-user dedicated systems with manual job-to-job 
transition to single-user dedicated systems with sin
gle-stream batch-processing systems 

9.14 Consider the problem of jobs waiting in a queue until 
sufficient memory becomes available for them to be loaded 
and executed. If the queue is a simple first-in-first-out struc
ture, then only the job at the head of the queue may be consid
ered for placement in memory. With a more complex queuing 
mechanism, it might be possible to examine the entire queue 
to choose the next job to be loaded and executed. Show how 
the latter discipline, even though more complex, might yield 
better throughput than the simple first-in-first-out strategy. 
What problem could the latter approach suffer from? 

9.15 One pessimistic operating systems designer says it really 
does not matter what memory placement strategy is used. 
Sooner or later a system achieves steady state and all of the 
strategies perform similarly. Do you agree? Explain. 

9.16 Another pessimistic designer asks why we go to the 
trouble of defining a strategy with an official-sounding name 
like first-fit. This designer claims that a first-fit strategy is 
equivalent to nothing more than random memory placement. 
Do you agree? Explain. 

9.17 Consider a swapping system with several partitions. The 
absolute version of such a system would require that programs 
be repeatedly swapped in and out of the same partition. The 
relocatable version would allow programs to be swapped in 
and out of any available partitions large enough to hold them, 
possibly different partitions on successive swaps. Assuming 
that main memory is many times the size of the average job, 
discuss the advantages of this multiple-user swapping scheme 
over the single-user swapping scheme described in the text. 

9.18 Sharing procedures and data can reduce the main mem
ory demands of jobs, thus enabling a higher level of multipro
gramming. Indicate how a sharing mechanism might be 
implemented for each of the following schemes. If you feel 
that sharing is inappropriate for certain schemes, say so and 
explain why. 

a. fixed-partition multiprogramming with absolute 
translation and loading 

b. fixed-partition multiprogramming with relocatable 
translation and loading 

c. variable-partition multiprogramming 
d. multiprogramming in a swapping system that enables 

two jobs to reside in main memory at once, but that 
multiprograms more than two jobs. 

9.19 Much of the discussion in this chapter assumes that main 
memory is a relatively expensive resource that should be man
aged intensively. Imagine that main memory eventually 
becomes so abundant and so inexpensive, that users could 
essentially have all they want. Discuss the ramifications of such 
a development on 

a. operating system design and memory management 
strategies 

b. user application design. 
9.20 In this exercise, you will examine the next-fit strategy 
and compare it to first-fit. 

a. How would the data structure used for implementing 
next-fit differ from that used for first-fit? 

b. What happens in first-fit if the search reaches the 
highest-addressed block of memory and discovers it 
is not large enough? 

c. What happens in next-fit when the highest-addressed 
memory block is not large enough? 

d. Which strategy uses free memory more uniformly? 

e. Which strategy tends to cause small blocks to collect 
at low memory addresses? 

f. Which strategy does a better job keeping large blocks 
available? 

9.21 (Fifty-Percent Rule) The more mathematically inclined 
student may want to attempt to prove the "fifty-percent rule" 
developed by Knuth.40, 41 The rule states that at steady state a 
variable-partition multiprogramming system will tend to have 
approximately half as many holes as there are occupied mem
ory blocks. It assumes that the vast majority of "fits" are not 
exact (so that fits tend not to reduce the number of holes). 
9.22 A variable-partition multiprogramming system uses a 
free memory list to track available memory. The current list 

Exercises 407 



iii. unsorted linked list 
iv. linked list sorted by size of hole 
v. binary tree 
vi. balanced binary tree 

b. Discuss the efficiency of best-fit when locating the 
appropriate memory hole in a free memory list 
stored in the following data structures. 
i. unsorted array 
ii. array sorted by size of hole 
iii. unsorted linked list 
iv. linked list sorted by size of hole 
v. binary tree 
vi. balanced binary tree 

c. Comparing your results from parts a and b, it might 
appear that one algorithm is more efficient than the 
other. Why is this an invalid conclusion? 

9.25 Prepare a research paper describing variations on the 
traditional memory hierarchy. 

e. Based on your observations, suggest some other mem-
ory placement strategy that you think would be more 
effective than the ones you have investigated here 
Simulate its behavior. What results do you observe? 

For each of your simulations, assume that the time it 
takes to make the memory placement decision is negligible. 

9.27 Simulate a system that initially contains 100MB of free 
memory, in which processes frequently enter and exit the sys-
tem. The arriving processes are between 2MB and 35MB in 
size, and their execution times vary between 2 and 5 seconds. 
Vary the rate of arrival between two processes per second and 
one process every 5 seconds. Evaluate memory utilization and 
throughput when using the first-fit, best-fit and worst-fit strate-
gies. Keeping each placement strategy constant, vary the pro-
cess scheduling algorithm to evaluate its effect on throughout 
and average wait times. Incorporate scheduling algorithms 
from Chapter 8, such as FIFO and SPF, and evaluate other 
algorithms, such as smallest-process-first and largest-process-
first. Be sure to determine which, if any, of these algorithms 
can suffer from indefinite postponement. 

contains entries of 150KB, 360KB, 400KB, 625KB, and 200KB. 
The system receives requests for 215KB, 171KB, 86KB, and 
481KB. in that order. Describe the final contents of the free 
memory list if the system used each of the following memory 
placement strategies. 

a. best-fit 

b. first-fit 

c. worst-fit 

d. next-fit 

9.23 This exercise analyzes the worst-fit and best-fit strategies 
discussed in Section 9.9, Variable-Partition Multiprogram
ming, with various data structures. 

a. Discuss the efficiency of worst-fit when locating the 
appropriate memory hole in a free memory list 
stored in the following data structures. 
i. unsorted array 
ii. array sorted by size of hole 

Suggested Projects 
9.24 Prepare a research paper on the use of real memory 
management in real-time systems. 

Suggested Simulations 
9.26 Develop a simulation program to investigate the relative 
effectiveness of the first-fit, best-fit, and worst-fit memory 
placement strategies. Your program should measure memory 
utilization and average turnaround time for the various mem
ory placement strategies. Assume a real memory system with 
1GB capacity, of which 300MB is reserved for the operating 
system. New processes arrive at random intervals between 1 
and 10 minutes (in multiples of 1 minute), the sizes of the pro
cesses are random between 50MB and 300MB in multiples of 
10MB, and the durations range from 5 to 60 minutes in multi
ples of 5 minutes in units of 1 minute. Your program should 
simulate each strategy over a long enough interval to achieve 
steady-state operation. 

a. Discuss the relative difficulties of implementing each 
strategy. 

b. Indicate any significant performance differences you 
observed. 

c. Vary the job arrival rates and job size distributions 
and observe the results for each strategy. 

d. Based on your observations, state which strategy you 
would choose if you were actually implementing a 
physical memory management system. 

408 Real Memory Organization and Management 



Recommended Reading 
As a result of the widespread usage of virtual memory, many 
of the techniques in this chapter are no longer discussed in the 
literature. Belady et al.42 provided a thorough treatment of the 
history of memory management in IBM systems. Mitra43 and 
Pohm and Smay44 give a description of the memory hierarchy 

that has become the standard in architectures for decades. 
Bayes45 and Stephenson46 presented the primary strategies for 
memory allocation and placement. Denning47 presented the 
pitfalls of single-user contiguous memory allocation, while 
Knight48 and Coffman and Ryan49 investigated the implemen-
tation of partitioned memory. Memory placement algorithms 

were presented by Knuth,50 Stephenson51 and Oldehoeft and 
Allan;52 memory swapping concepts, which are vital to virtual 
memory, are presented in further detail in the next chapter. 

Recent research has focused on optimizing the use of 
the memory hierarchy. Several memory management strate

gies have focused on a faster and more expensive resource, 
cache.53 The literature also reports application-specific tuning 
of the memory architecture to improve performance.54, 55 

Embedded systems are designed differently than general-
purpose systems. Whereas general-purpose systems will provide 
enough resources to perform a wide variety of tasks concur
rently, embedded systems provide the bare minimum necessary 
to meet their design goals. Due to size and cost considerations, 
resources in embedded systems are much more scarce than in 
general-purpose systems. The ACM Transactions on Embedded 
Computing Systems, in their November 2002 and February 2003 
issues, explored a great deal of research on the topic of memory 
management in embedded systems.56 The bibliography for this 
chapter is located on our Web site at www.deitel.com/books/ 

os3e/Bibliography.pdf. 
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The fancy is indeed no other than a mode of memory emancipated from the order of time 
and space. 

— Samuel Taylor Coleridge— 

Lead me from the unreal to the real! 
— The Upanishads— 

O happy fault, which has deserved to have such and so mighty a Redeemer. 
—The Missal—The Book of Common Prayer— 

But every page having an ample marge, 
And every marge enclosing in the midst 
A square of text that looks a little blot. 

—Alfred, Lord Tennyson— 

Addresses are given to us to conceal our whereabouts. 
-Saki(H.H.Munro)-



Chapter 10 

Virtual Memory 
Organization 

Objectives 
After reading this chapter, you should understand: 

• the concept of virtual memory. 

• paged virtual memory systems. 

• segmented virtual memory systems. 

• combined segmentation/paging virtual memory systems. 

• sharing and protection in virtual memory systems. 

• the hardware that makes virtual memory systems feasible. 

• the IA-32 Intel architecture virtual memory implementation. 
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In the preceding chapter, we discussed basic memory management techniques, each 
of which ultimately must contend with limited memory space. One solution is larger 
main memories; however, it is often prohibitively expensive to build systems with suf-
ficiently large fast-access memory. Another solution would be to create the illusion 
that more memory exists. This is a fundamental idea behind virtual memory,1, 2, 3 

which first appeared in the Atlas computer system constructed at the University of 
Manchester in England in 1960 (see the Mini Case Study, Atlas).4, 5, 6, 7 Figure 10.1 
shows how memory organizations have evolved from single-user real memory sys-
tems to multiuser, segmentation/paging virtual memory systems. 

This chapter describes how a system implements virtual memory (see the 
Operating Systems Thinking feature, Virtualization). Specifically, we present the 

techniques the operating system and the hardware use to convert virtual addresses 
to physical addresses; and we discuss the two most common noncontiguous alloca-

10.1 Introduction 

Mini Case Study 
Atlas 
The Atlas project began in 1956 at 
the University of Manchester, 
England. The project, originally 
called the MUSE (short for micro-
SEcond; "micro" is represented by 
the Greek letter "mu") , was 
launched to compete wi th the 
high-performance computers 
being produced by the United 
States.8 In 1959, Ferranti Ltd. 
joined the project as a corporate 
sponsor, and the first Atlas com
puter was completed at the end 
of 1962.9 Though the Atlas com
puter was produced for only 
about 10 years, it made significant 
contributions computing technol
ogy. Many of these appeared in 
the computer's operating system, 
the Atlas Supervisor. 

The Atlas Supervisor operat
ing system was the first to imple
ment virtual memory.10 Setting a 
new standard for job throughput, 
the Atlas Supervisor was able to 
execute 16 jobs at once.11 It also 
provided its operators wi th 
detailed runtime statistics, 
whereas most other systems 
required operators to determine 
them manually. The Atlas Supervi
sor was also one of the earliest 
computers to design detailed 
hardware guidelines in early 
stages of development to simply 
systems programming.12 

Although Atlas was the most 
powerful computer when it was 
completed in 1962, it was mostly 
ignored by the industry.13 Only 

three Atlas computers were ever 
sold, the last in 1965, only three 
years after its completion.14 A 
contributing factor to Atlas's 
short lifetime was that its pro
grams had to be wri t ten in Atlas 
Autocode, a language much like 
Algol 60, but not accepted by 
most programmers.15 Atlas's 
designers were eventually forced 
to implement more popular lan
guages such as Fortran.16 Another 
reason for Atlas's quick demise 
was that limited resources were 
devoted to developing it. A year 
after Atlas's release, ICT bought 
Ferranti's computer projects. ICT 
discontinued Atlas in favor of its 
own series of computers known as 
the 1900s.17 
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tion techniques—paging and segmentation. Address translation and noncontiguous 
allocation enable virtual memory systems to create the illusion of a larger memory 
and to increase the degree of multiprogramming. In the next chapter we focus on 
how a system manages the processes in virtual memory to optimize performance. 
Much of the information is based on Denning's survey on virtual memory (see the 
Biographical Note, Peter Denning).18 

Figure 10.1 | Evolution of memory organizations. 

Operating Systems Thinking 
Virtualization 
We wil l see many examples in this 
book of how software can be 
used to make resources appear 
different than they really are. This 
is called virtualization. We will 
study virtual memories that 
appear to be far larger than the 
physical memory that is installed 
on the underlying computer. We 
wil l study virtual machines, which 
create the illusion that the com
puter being used to execute appli
cations is really quite different 

from the underlying hardware. 
The Java virtual machine enables 
programmers to develop porta
ble applications that wil l run on 
different computers running dif
ferent operating systems (and 
hardware). Virtualization is yet 
another way of using abundant 
processor power to provide 
intriguing benefits to computer 
users. As computers become more 
complex, virtualization tech
niques can help hide that com-

plexity from users, who instead 
see a simpler, easier-to-use virtual 
machine defined by the operating 
system. Virtualization is common 
in distributed systems, which we 
cover in detail in Chapters 17 and 
18. Distributed operating systems 
create the illusion of there being 
a single large machine when in 
fact massive numbers of comput
ers and other resources are inter
connected in complex ways across 
networks like the Internet. 



At the end of this chapter (just before the Web Resources section), you will 
find two operating systems Mini Case Studies—IBM Mainframe Operating Systems 
and Early History of the VM Operating System. As you finish reading this chapter, 
you will have studied the evolution of both real memory and virtual memory orga

nizations. The history of IBM mainframe operating systems closely follows this evo-
lution. 
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1. Give an example of when it might be inefficient to load an entire program into memory 
before running it. 

2. Why is increasing the size of main memory an insufficient solution to the problem of lim
ited memory space? 

Ans: 1) Many programs have error-processing functions that are rarely, if ever, used. Load-
ing these functions into memory reduces space available to processes. 2) Purchasing addi
tional main memory is not always economically feasible. As we will see, a better solution is to 
create the illusion that the system contains more memory than the process will ever need. 

Self Review 

Peter J. Denning is best known for 
his work on virtual memory in the 
1960s. One of his most important 
papers, "The Working Set Model 
for Program Behavior," was pub
lished in 1968, the same year he 
received his Ph.D. in Computer 
Science from MIT.19 This paper 
introduced the concept of work
ing sets (discussed in Section 11.7, 
Working Set Model) for use in vir
tual memory management and 
explained why the use of working 
sets leads to a page-replacement 
could improve performance over 
other replacement schemes.20 

Denning's theory is based on 
observations that programs spend 

most of their t ime using only a 
small subset of their virtual mem
ory pages, which he called the 
working set. A program's working 
set changes from time to time as 
program execution moves along 
its phases. He proposed that a 
program wil l run efficiently if its 
current working set is kept in 
main memory at all times. 

Denning has since taught at 
Princeton University, founded the 
Research Institute for Advanced 
Computer Science at the NASA 
Ames Research Center and led the 
computer science departments of 
Purdue, George Mason University 
and now the Naval Postgraduate 

School. He has published hun
dreds of articles and several books 
on computer science topics and 
was president of the ACM from 
1980-1982.21 

Denning has made signifi
cant contributions to computer 
science education. He won several 
teaching awards, managed the 
creation of the ACM Digital 
Library (an online collection of 
articles from ACM journals) and 
chaired the ACM Education Board 
which publishes the ACM curricu
lum.22 He has also been recog
nized for his efforts to educate 
the nontechnical community 
about computer science topics.23 

Peter Denning 

Biographical Note 



As we discussed in the previous section, virtual memory systems provide processes 
with the illusion that they have more memory than is built into the computer (see 
the Anecdote, Virtual Memory Unnecessary). Thus, there are two types of 
addresses in virtual memory systems: those referenced by processes and those 
available in main memory. The addresses that processes reference are called virtual 
addresses. Those available in main memory are called physical (or real) addresses. 
[Note: In this chapter we use the terms "physical address," "real address" and "main 
memory address" interchangeably] 

Whenever a process accesses a virtual address, the system must translate it to 
a real address. This happens so often that using a general-purpose processor to per
form such translations would severely degrade system performance. Thus, virtual 
memory systems contain special-purpose hardware called the memory manage
ment unit (MMU) that quickly maps virtual addresses to real addresses. 

A process's virtual address space, V, is the range of virtual addresses that the 
process may reference. The range of real addresses available on a particular com
puter system is called that computer's real address space, R. The number of 
addresses in V is denoted |V|, and the number of addresses in R is denoted |R|. In 
virtual memory systems, it is normally the case that |V| >> \R\ (i.e., the virtual 
address space is much larger than the real address space). 

If we are to permit a user's virtual address space to be larger than its real 
address space, we must provide a means for retaining programs and data in a large 
auxiliary storage. A system normally accomplishes this goal by employing a two-
level storage scheme (Fig. 10.2). One level is the main memory (and caches) in 
which in which instructions and data must reside to be accessed by a processor run
ning a process. The other level is secondary storage, which consists of large-capacity 
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Anecdote 
Virtual Memory Unnecessary 
When the concept of virtual mem
ory was first introduced, designers 
mused that virtual memory sys
tems would never be needed if 
computers could be built wi th a 

million words of memory. That 
was thought to be absurd, so 
work proceeded on building vir
tual memory systems. Many of 
today's desktop systems have a 

thousand times that much main 
memory and the vast majority of 
these systems employ virtual 
memory. 

Lesson to operating systems designers: Take Moore's Law seriously. Hardware capabilities will continue to 
improve at an exponential pace and software requirements will increase as fast. 



storage media (typically disks) capable of holding the programs and data that can
not all fit into the limited main memory. 

When the system is ready to run a process, the system loads the process's code 
and data from secondary storage into main memory. Only a small portion of these 
needs to be in main memory at once for the process to execute. Figure 10.3 illus
trates a two-level storage system in which items from various processes' virtual 
memory spaces have been placed in main memory. 

A key to implementing virtual memory systems is how to map virtual 
addresses to physical addresses. Because processes reference only virtual addresses, 
but must execute in main memory, the system must map (i.e., translate) virtual 
addresses to physical addresses as processes execute (Fig. 10.4). The system must 
perform the translation quickly, otherwise the performance of the computer system 
would degrade, nullifying the gains associated with virtual memory. 

Dynamic address translation (DAT) mechanisms convert virtual addresses to 
physical addresses during execution. Systems that use dynamic address translation 
exhibit the property that the contiguous addresses in a process's virtual address 
space need not be contiguous in physical memory —this is called artificial contiguity 
(Fig. 10.5).24 Dynamic address translation and artificial contiguity free the program
mer from concerns about memory placement (e.g., the programmer need not create 
overlays to ensure the system can execute the program). The programmer can con
centrate on algorithm efficiency and program structure, rather than on the underly
ing hardware structure. The computer is (or can be) viewed in a logical sense as an 
implementor of algorithms rather than in a physical sense as a device with unique 
characteristics, some of which may impede the program development process. 

Figure 10.2 | Two-level storage. 

10.2 Virtual Memory: Basic Concepts 419 



420 Virtual Memory Organization 

Figure 10.3 | Pieces of address spaces exist in memory and in secondary storage. 

1. Explain the difference between a process's virtual address space and the system's physical 
address space. 

2. Explain the appeal of artificial contiguity. 

Ans: 1) A process's virtual address space refers to the set of addresses a process may refer
ence to access memory when running on a virtual memory system. Processes do not see phys
ical addresses, which locate physical locations in main memory. 2) Artificial contiguity 
simplifies programming by enabling a process to reference its memory as if it were contigu
ous, even though its data and instructions may be scattered throughout main memory. 

Self Review 

Dynamic address translation mechanisms must maintain address translation maps 
indicating which regions of a process's virtual address space, V, are currently in 
main memory and where they are located. If this mapping had to contain entries for 
every address in V, then the mapping information would require more space than is 
available in main memory, so this is infeasible. In fact, the amount of mapping infor
mation must be only a small fraction of main memory, otherwise it would take up 
too much of the memory needed by the operating system and user processes. 

10.3 Block Mapping 



The most widely implemented solution is to group information in blocks; the 
system then keeps track of where in main memory each virtual memory block has 
been placed. The larger the average block size, the smaller the amount of mapping 
information. Larger blocks, however, can lead to internal fragmentation and can 
take longer to transfer between secondary storage and main memory. 

There is some question as to whether the blocks should be all the same size or 
of different sizes. When blocks are a fixed size (or several fixed sizes), they are 
called pages and the associated virtual memory organization is called paging. When 
blocks may be of different sizes, they are called segments, and the associated virtual 
memory organization is called segmentation.25-26 Some systems combine the two 
techniques, implementing segments as variable-size blocks composed of fixed-size 
pages. We discuss paging and segmentation in detail in the following sections. 

In a virtual memory system with block mapping, the system represents 
addresses as ordered pairs. To refer to a particular item in the process's virtual 
address space, a process specifies the block in which the item resides and the displace
ment (or offset) of the item from the start of the block (Fig. 10.6). A virtual address, v, 
is denoted by an ordered pair (b, d), where b is the block number in which the refer-
enced item resides, and d is the displacement from the start of the block. 
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Figure 10.4 | Mapping virtual addresses to real addresses. 



Figure 10.5 | Artificial contiguity. 
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Figure 10. 6 | Virtual address format in a block mapping system. 

The translation from a virtual memory address v = (b, d) to a real memory 
address, r, proceeds as follows (Fig. 10.7). The system maintains in memory a block 
map table for each process. The process's block map table contains one entry for each 
block of the process, and the entries are kept in sequential order (i.e., the entry for 
block 0 precedes that for block 1, etc.). At context-switch time, the system determines 
the real address, a, that corresponds to the address in main memory of the new pro
cess's block map table. The system loads this address into a high-speed special-pur
pose register called the block map table origin register. During execution, the process 
references a virtual address v = (b, d). The system adds the block number, b, to the 
base address, a, of the process's block map table to form the real address of the entry 
for block b in the block map table. [Note: For simplicity, we assume that the size of 
each entry in the block map table is fixed and that each address in memory stores an 
entry of that size.] This entry contains the address, b', for the start of block b in main 
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Figure 10.7 | Virtual address translation with block mapping. 

memory. The system then adds the displacement, d, to the block start address, b', to 
form the desired real address, r. Thus, the system computes the real address, r, from 
the virtual address, v = (b, d), through the equation r = b' + d, where b' is stored in the 
block map table cell located at real memory address a + b. 

The block mapping techniques employed in segmentation, paging and com
bined segmentation/paging systems are all similar to the mapping shown in 
Fig. 10.7. It is important to note that block mapping is performed dynamically by 
high-speed, special-purpose hardware as a process runs. If not implemented effi-
ciently, this technique's overhead could cause performance degradation that would 
negate much of the benefit of using virtual memory. For example, the two additions 
indicated in Fig. 10.7 must execute much faster than conventional machine-lan-
guage add instructions. They are performed within the execution of each machine-
language instruction for each virtual address reference. If the additions took as long 

as machine-language adds, then the computer might run at only a small fraction of 
the speed of a purely real-memory-based computer. Similarly, the block address 
translation mechanism must access entries in the block mapping table much faster 

than other information in memory. The system normally places entries from the 
block mapping table in a high-speed cache to dramatically decrease the time 
needed to retrieve them. 



1. Suppose a block mapping system represents a virtual address v = (b, d) using 32 bits. If 
block displacement, d, is specified using n bits, how many blocks does the virtual address 
space contain? Discuss how setting n = 6, n = 12 and n = 24 affects memory fragmentation 
and the overhead incurred by mapping information. 

2. Why is the start address of a process's block map table, a, placed in a special high-speed 
register? 

Ans: 1) The system will have 232-n blocks. If n = 6, then the block size would be small and 
there would be limited internal fragmentation, but the number of blocks would be so large as 
to make implementation infeasible. If n = 24, then the block size would be large and there 
would be significant internal fragmentation, but the block mapping table would not consume 
much memory at all. If n = 12, the system achieves a balance between moderate internal frag
mentation and a reasonably sized block map table. Over the years, n = 12 has been quite pop
ular in paging systems, yielding a page size of 212 = 4,096 bytes, as we will see in Chapter 11. 
Virtual Memory Management. 2) Placing a in a high-speed register facilitates fast address 
translation, which is crucial in making the virtual memory implementation feasible. 

Self Review 
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A virtual address in a paging system is an ordered pair (p, d), where p is the number 
of the page in virtual memory on which the referenced item resides, and d is the dis
placement within page p at which the referenced item is located (Fig. 10.8). A pro
cess may run if the page it is currently referencing is in main memory. When the 
system transfers a page from secondary storage to main memory, it places the page 
in a main memory block, called a page frame, that is the same size as the incoming 
page. In discussing paging systems in this chapter, we assume that the system uses a 
single fixed page size. As we will explain in Chapter 11, Virtual Memory 
Management, it is common for today's systems to provide more than one page 
size.27 Page frames begin at physical memory addresses that are integral multiples 
of the fixed page size, ps (Fig. 10.9). The system may place an incoming page in any 
available page frame. 

Dynamic address translation under paging proceeds as follows (Fig. 10.10). A 
running process references a virtual memory address v - (p,d). A page mapping 
mechanism, looks up page p in the process's page map table (often simply called 
the page table) and determines that page p is in page frame p'. Note that/?' is a page 
frame number, not a physical memory address. Assuming page frames are num-

Figure 10.8 | Virtual address format in a pure paging system. 
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Figure 10.9 | Main memory divided into page frames. 

10.4 Paging 425 

bered {0,1, 2 , . . . , n], the physical memory address at which page frame p' begins is 
the product of p' and the fixed page size, p x ps. The referenced address is formed 
by adding the displacement, d, to the physical memory address at which page frame 
p' begins. Thus, the real memory address is r - (p' x ps ) + d . 

Consider a system using n bits to represent both real and virtual addresses; the 
page number is represented by the most-significant n-m bits and the displacement 
is represented by m bits. Each real address can be represented as the ordered pair, 
r = (p', d), where p' is the page frame number and d is the displacement within page 
p' at which the referenced item is located. The system can form a real address by 

concatenating p' and d, which places p' in the most-significant bits of the real mem-
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Figure 10.10 | Correspondence between virtual memory addresses and physical 
memory addresses in a pure paging system. 

ory address and places d in the least-significant bits of the real memory address. For 
example, consider a 32-bit system (n = 32) using 4KB pages (m - 12). Each page 
frame number is represented using 20 bits, so that page frame number 15 would be 
represented as the binary string 00000000000000001111. Similarly, a displacement 
of 200 would be represented as the 12-bit binary string 000011001000. The 32-bit 
address of this location in main memory is formed simply by concatenating the two 
strings, yielding 00000000000000001111000011001000. This demonstrates how 



paging simplifies block mapping by using the concatenation operation to form a 
real memory address. On the contrary, with variable-size blocks, the system must 
perform an addition operation to form the real memory address from the ordered 
pair r = (b',d). 

Now let us consider dynamic address translation in more detail. One benefit of a 
paged virtual memory system is that not all pages belonging to a process must reside 
in main memory at the same time—main memory must contain only the page (or 
pages) in which the process is currently referencing an address (or addresses). The 
advantage is that more processes may reside in main memory at the same time. The 
disadvantage comes in the form of increased complexity in the address translation 
mechanism. Because main memory normally does not contain all of a process's pages 
at once, the page table must indicate whether or not a mapped page currently resides 
in main memory. If it does, the page table indicates the number of the page frame in 
which it resides. Otherwise, the page table yields the location in secondary storage at 
which the referenced page can be found. When a process references a page that is not 
in main memory, the processor generates a page fault, which invokes the operating 
system to load the missing page into memory from secondary storage. 

Figure 10.11 shows a typical page table entry (PTE). A resident bit, r, is set to 
0 if the page is not in main memory and 1 if it is. If the page is not in main memory, 

then s is its secondary storage address. If the page is in main memory, then p' is its 
frame number. Over the next several subsections we consider several implementa-
tions of the page mapping mechanism. 
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1. Does the page mapping mechanism require that s and p' be stored in separate cells of a 
PTE, as shown in Fig. 10.11? 

2. Compare and contrast the notions of a page and a page frame. 

Ans: 1) No. To reduce the amount of memory consumed by PTEs, many systems contain 
only one cell to store either the page frame number or the secondary storage address. If the 

Figure 10.11 | Page table entry. 

Self Review 



resident bit is on. the PTE stores a page frame number, but not a secondary storage address. 
If the resident bit is off, the PTE stores a secondary storage address, but not a page frame 
number. 2) Pages and page frames are identical in size; a page refers to a fixed-size block of 
a process's virtual memory space and a page frame refers to a fixed-size block of main mem
ory. A virtual memory page must be loaded into a page frame in main memory before a pro
cessor can access its contents. 
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In this section we consider the direct-mapping technique for translating virtual 
addresses to physical addresses in a pure paging system. Direct mapping proceeds 
as illustrated in Fig. 10.12. 

A process references virtual address v = (p, d). At context-switch time the 
operating system loads the main memory address of a process's page table into the 
page table origin register. To determine the main memory address that corresponds 
to the referenced virtual address, the system first adds the process's page table base 
address, b, to the referenced page number, p (i.e., p is the index into the page table). 
This result, b + p, is the main memory address of the PTE for page p. [Note: For 
simplicity, we assume that the size of each entry in the page table is fixed and that 
each address in memory stores an entry of that size.] This PTE indicates that virtual 
page p corresponds to page frame p'. The system then concatenates p' with the dis
placement, d, to form the real address, r. This is an example of direct mapping. 

Figure 10.12 | Paging address translation by direct mapping. 

10.4.1 Paging Address Translation by Direct Mapping 



because the page table contains one entry for every page in this process's virtual 
memory space, V. If the process contains n pages in V, then the direct-mapped page 
table for the process contains entries successively for page 0, page 1, page 2, ..., 
page n — 1. Direct mapping is much like accessing an array location via subscripting; 
the system can locate directly any entry in the table with a single access to the table. 

The system maintains the virtual address being translated and the base 
address of the page table in high-speed registers on each processor, which enables 
operations on these values to be performed quickly (within a single instruction exe
cution cycle). However, a system typically keeps the direct-mapped page table — 
which can be quite large—in main memory. Consequently, a reference to the page 
table requires one complete main memory cycle. Because the main memory access 
time ordinarily represents the largest part of an instruction execution cycle, and 
because we require an additional main memory access for page mapping, the use of 
direct-mapping page address translation can cause the computer system to run pro-
grams at about half speed (or even worse for machines that support multiple 
address instructions)! To achieve faster translation, one may implement the com
plete direct-mapped page table in high-speed cache memory. Due to the cost of 
nigh-speed cache memory and the potentially large size of virtual address spaces, 
maintaining the entire page table in cache memory is typically not viable. We dis
cuss a solution to this problem in Section 10.4.3, Paging Address Translation with 
Direct/Associative Mapping. 
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1. Why should the size of page table entries be fixed? 
2. What type of special-purpose hardware is required for page address translation by direct 

mapping? 

Ans: 1) The key to virtual memory is that address translation must occur quickly. If the size 
of page table entries is fixed, the calculation that locates the entries is simple, which facilitates 

fast page address translation. 2) A high-speed processor register is needed to store the base 
address of the page table. 

Self Review 

One way to increase the performance of dynamic address translation is to place the 
entire page table into a content-addressed (rather than location-addressed) associa
tive memory, which has a cycle time greater than an order of magnitude faster than 
main memory.28, 29, 30, 31 Figure 10.13 illustrates how dynamic address translation 
proceeds with pure associative mapping. A process refers to virtual address 
v = (p,d). Every entry in the associative memory is searched simultaneously for 
page p. The search returns p' as the page frame corresponding to page p, and p' is 
concatenated with d, forming the real address, r. Note that the arrows into the asso
ciative map enter every cell of the map, indicating that every cell of the associative 
memory is searched simultaneously for a match on p. This is what makes associative 
memory prohibitively expensive, even compared to direct-mapped cache. Because 

10.4.2 Paging Address Translation by Associative Mapping 
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Figure 10.11 | Paging address translation with pure associative mapping. 

of this expense, pure associative mapping is not used; we show it here in case its 
economics eventually becomes more favorable. 

In the vast majority of systems, using a cache memory to implement pure 
direct mapping or an associative memory to implement pure associative mapping is 
too costly. As a result, many designers have chosen a compromise scheme that 
offers many of the advantages of the cache or associative memory approach at a 
more modest cost. We consider this scheme in the next section. 

1. Why is page address translation by pure associative mapping not used? 
2. Does page address translation by pure associative mapping require any special-purpose 

hardware? 

Ans: 1) Associative memory is even more expensive than direct-mapped cache memory. 
Therefore, it would be prohibitively expensive to build a system that contained enough asso
ciative memory to store all of a process's PTEs. 2) This technique requires an associative 
memory; however, it does not require a page table origin register to store the location of the 
start of the page table, because associative memory is content addressed, rather than location 
addressed. 

Self Review 

Much of the discussion to this point has dealt with the computer hardware required to 
implement virtual memory efficiently. The hardware view presented has been a logi
cal rather a than physical one. We are concerned not with the precise structure of the 
devices but with their functional organization and relative speeds. This is the view the 
operating systems designer must have, especially as hardware designs evolve. 

10.4.3 Paging Address Translation with Direct/Associative Mapping 

http://10.fr


Historically, hardware has improved at a much more dramatic pace than 
improvements in software. Designers have become reluctant to commit themselves 

to a particular hardware technology because they expect that a better one will soon 
be available. Operating systems designers, however, must use the capabilities and 
economics of today's hardware. High-speed cache and associative memories simply 
are far too expensive to hold the complete address mapping data for full virtual 
address spaces. This leads to a compromise page-mapping mechanism. 

the compromise uses an associative memory, called the translation lookaside 
buffer (TLB), capable of holding only a small percentage of the complete page 
table for a process (Fig. lO.f 4). The TLB's contents may be controlled by the oper-
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Figure 10.14 | Paging address translation with combined associative/direct mapping. 
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ating system or by hardware, depending on the architecture.32 In this chapter, we 
assume that the TLB is managed by hardware. The page table entries maintained in 
this map typically correspond to the more-recently referenced pages only, using the 
heuristic that a page referenced recently is likely to be referenced again in the near 
future. This is an example of locality (more specifically of temporal locality—local
ity in time), a phenomenon discussed in detail in Chapter 11, Virtual Memory 
Management (see the Operating Systems Thinking feature, Empirical Results. 
Locality-Based Heuristics). The TLB is an integral part of today's MMUs. 

Dynamic address translation under this scheme proceeds as follows. A process 
references virtual address v = (p, d). The page mapping mechanism first tries to find 
page p in the TLB. If the TLB contains p, then the search returns p' as the frame 
number corresponding to virtual page p, and p' is concatenated with the displace
ment d to form the real address, r. When the system locates the mapping for p in the 
TLB, it experiences a TLB hit. Because the TLB stores entries in high-speed asso
ciative memory, this enables the translation to be performed at the fastest possible 
speed for the system. The problem, of course, is that because of prohibitive cost, the 
associative map can hold only a small portion of most virtual address spaces. The 
challenge is to pick a size within design's economic parameters that holds enough 
entries so that a large percentage of references will result in TLB hits. 

If the TLB does not contain an entry for page p (i.e., the system experiences a 
TLB miss), the system locates the page table entry using a conventional direct map 
in slower main memory, which increases execution time. The address in the page 
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Operating Systems Thinking 
Empirical Results: Locality-Based Heuristics 
Some fields of computer science 
have significant bodies of theory, 
built from a mathematical frame
work. There are indeed aspects of 
operating systems to which such 
theoretical treatments apply. But 
for the most part, operating sys
tems design is based on empirical, 
(i.e., observed) results and the 
heuristics that designers and 
implementers have developed the 
first operating systems were 
deployed in the 1950s. For exam-

pie, we will study the empirical 
phenomena of spatial locality and 
temporal locality (i.e., locality in 
time), which are observed phe
nomena. If it is sunny in your 
town, it is likely—but not guaran
teed—to be sunny in nearby 
towns. Also, if it is sunny in your 
town now, it is likely—but not 
guaranteed—that is was sunny in 
your town a short while ago and 
it wil l be sunny in your town a 
short while into the future. We 

wil l see many examples of locality 
in computer systems and we will 
study many locality-based heuris
tics in various areas of operating 
systems such as virtual memory 
management. Perhaps the most 
famous locality-based heuristic in 
operating systems is Peter Den-
ning's working set theory of pro
gram behavior, which we discuss 
in Chapter 11. 



table origin register, b, is added to the page number, p, to locate the appropriate 
entry for page p in the direct-mapped page table in main memory. The entry con
tains p', the page frame corresponding to virtual page p\p' is concatenated with the 
displacement, d, to form the real address, r. The system then places the PTE in the 
TLB so that references to page/? in the near future can be translated quickly. If the 
TLB is full, the system replaces an entry (typically the one least-recently refer
enced) to make room for the entry for current page. 

Empirically, due to the phenomenon of locality, the number of entries in the 
TLB does not need to be large to achieve good performance. In fact, systems using 
this technique with only 64 or 128 TLB entries (which, assuming a 4KB page size, 

covers 256-512KB of virtual memory space) often achieve 90 percent or more of 
the performance possible with a complete associative map. Note that on a TLB 

miss, the processor must access main memory to obtain the page frame number. 
Depending on the hardware and memory management strategy, such misses can 
cost tens or hundreds of processor cycles, because main memory typically operates 
at slower speeds than processors do.33-34-35 

Using a combined associative/direct mapping mechanism is an engineering 
decision based on the relative economics and capabilities of existing hardware tech
nologies. Therefore, it is important for operating systems students and developers 

to be aware of such technologies as they emerge. The Recommended Reading and 
Web Resources sections provide several resources documenting these technologies. 
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1. (T/F) The majority of a process's PTEs must be stored in the TLB to achieve high perfor
mance. 

2. Why does the system need to invalidate a PTE in the TLB if a page is moved to secondary 
storage? 

Ans: 1) False. Processes often achieve 90 percent or more of the performance possible 
when only a small portion of a process's PTEs are stored in the TLB. 2) If the system does not 
invalidate the PTE, a reference to the nonresident page will cause the TLB to return a page 

frame that might contain invalid data or instructions (e.g., a page belonging to a different 
sprocess). 

Self Review 

One limitation of address translations using direct mapping is that all of the PTEs 
of a page table must be in the map and stored contiguously in sequential order by 
page number. Further, these tables can consume a significant amount of memory. 
For example, consider a 32-bit virtual address space using 4KB pages. In this sys
tem, the page size is 212 bytes, leaving 232 - 12, or 220, page numbers. Thus, each vir
tual address space would require approximately one million entries, one for each 
page, for a total addressability of about four billion bytes. A 64-bit virtual address 
space using 4MB pages would require approximately four trillion entries! Holding 
such a large page table in memory (assuming that there was enough memory to do 
so) can severely limit the memory available for actual programs; it also does not 

10.4.4 Multilevel Page Tables 



makes sense, because processes may need to access only small portions of their 
address spaces at any given time to run efficiently. 

Multilevel (or hierarchical) page tables enable the system to store in discon
tiguous locations in main memory those portions of a process's page table that the 
process is actively using. The remaining portions of can be created the first time 
they are used and moved to secondary storage when they cease being actively used. 
Multilevel page tables are implemented by creating a hierarchy—each level con
taining a table that stores pointers to tables in the level below. The bottom-most 
level is comprised of tables containing the page-to-page-frame mappings. 

For example, consider a system that uses two levels of page tables (Fig. 10.15). 
The virtual address is the ordered triplet v = (p,t, d), where the ordered pair (p, t) is 
the page number and d is the displacement into that page. The system first adds the 
value of p to the address in main memory of the start of the page directory, a, stored 
in the page directory origin register. The entry at location a+p contains the address 
of the start of the corresponding page table, b. The system adds t to b to locate the 
page table entry that stores a page frame number, p'. Finally, the system forms the 
real address by concatenating p' and the displacement, d. 

In most systems, each table in the hierarchy is the size of one page, which 
enables the operating system to transfer page tables between main memory and 
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Figure 10.15 | Multilevel page address translation. 



secondary storage easily. Let us examine how a two-level page table reduces mem
ory consumption compared to direct mapping in a system that provides a 32-bit vir-
tual address space using 4KB pages (which, again, requires 20-bit page numbers). 
Each page table would contain 220, or 1,048,576, entries for each process. Consider-
ing that typical systems contain tens, if not hundreds, of processes, and that high-
end systems can contain thousands of processes, this could lead to considerable 
memory overhead. If each page table entry were 32 bits, this would consume 4MB 
of contiguous memory for each process's virtual address space. If the space were 
sparsely populated (i.e., few page table entries were in use), much of the page table 
would be unused, resulting in significant memory waste called table fragmentation. 

Observe how table fragmentation is reduced using a two-level page table as 
follows. Each 32-bit virtual address is divided into a 10-bit offset into the page 
directory, p, a 10-bit offset into a page table, t, and a 12-bit displacement into the 
page, d. In this case, the page directory contains pointers to 210 tables (one entry for 
each number specified by the 10-bit offset into the page directory, p), each of which 
holds 210 PTEs (one entry for each number specified by the 10-bit offset into a page 
table, t). The first 10 bits of the virtual address is used as an index into the first table. 
The entry at this index is a pointer to the next table, which is a page table containing 
PTEs. The second 10 bits of the virtual address is used as an index into the page 
table that locates the PTE. Finally, the PTE provides the page frame number, p', 
which is concatenated with the last 12 bits of the virtual address to determine the 
real address. 

If a process uses no more than the first 1,024 pages in its virtual address space, 
the system need only maintain 1,024 (210) entries for the page directory and 1,024 
page table entries, whereas a direct-mapped page table must maintain over one mil
lion entries. Multilevel page tables enable the system to reduce table fragmentation 
by over 99 percent. 

The overhead incurred by multilevel page tables is the addition of another 
memory access to the page mapping mechanism. At first, it may appear that this addi
tional memory cycle would result in worse performance than a direct-mapped page 
table. Due to locality of reference and the availability of a high-speed TLB, however, 
once a virtual page has been mapped to a page frame, future references to that page 
do not incur the memory access overhead. Thus, systems that employ multilevel page 
tables rely on an extremely low TLB miss rate to achieve high performance. 

Multilevel page tables have become common in paged virtual memory sys
tems. For example, the IA-32 architecture supports two levels of page tables (see 
Section 10.7, Case Study: IA-32 Intel Architecture Virtual Memory).36 

10.4 Paging 435 

1. Discuss the benefits and drawbacks of using a multilevel paging system instead of a direct-
mapped paging system. 

2. A designer suggests reducing the memory overhead of direct-mapped page tables by 
increasing the size of pages. Evaluate the consequences of such a decision. 

Self Review 



Ans: 1) Multilevel paging systems require considerably less main memory space to hold 
mapping information than direct-mapped paging systems. However, multilevel paging sys
tems require more memory accesses each time a process references a page whose mapping is 
not in the TLB, and potentially can run more slowly. 2) Assuming that the size of each virtual 
address remains fixed, page address translation by direct mapping using large pages reduces 
the number of entries the system must store for each process. The solution also reduces mem
ory access overhead compared to a multilevel page table. However, as page sizes increase, so 
do the possibility and magnitude of internal fragmentation. It is possible that the amount of 
wasted memory due to internal fragmentation could be equal to or greater than the tabic 
fragmentation due to storing entries for smaller pages. 
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As we discussed in the preceding section, multilevel page tables reduce the number 
of page table entries that must reside in main memory at once for each process 
when compared to direct-mapped page tables. In this case, we assumed that pro
cesses use only a small, contiguous region of their virtual address spaces, meaning 
that the system can reduce memory overhead by storing page table entries only for 
the region of a process's virtual address space that is in use. However, processes in 
scientific and commercial environments that modify large quantities of data might 
use a significant portion of their 32-bit virtual address spaces. In this case, multilevel 
page tables do not necessarily decrease table fragmentation. In 64-bit systems that 
contain several levels of page tables, the amount of memory consumed by mapping 
information can become substantial. 

An inverted page table solves this problem by storing exactly one PTE for each 
page frame in the system. Consequently, the number of PTEs that must be stored in 
main memory is proportional to the size of physical memory, not to the size of a vir
tual address space. The page tables are inverted relative to traditional page tables 
because the PTEs are indexed by page frame number rather than virtual page num
ber. Note that inverted page tables do not store the secondary storage location of 
nonresident pages. This information must be maintained by the operating system, and 
need not be in tables. For example, an operating system might use a binary tree to 
store the locations of nonresident pages so that they may be found quickly. 

Inverted page tables use hash functions to map virtual pages to PTEs.37'38 A 
hash function is a mathematical function that takes a number as an input and out
puts a number, called a hash value, within a finite range. A hash table stores each 
item in the cell corresponding to the item's hash value. Because the domain of a 
hash function (e.g., a process's virtual page numbers) is generally larger than its 
range (e.g., the page frame numbers), multiple inputs can result in the same hash 
value —these are called collisions. To prevent multiple items from overwriting each 
other when mapped to the same cell of the hash table, inverted page tables can 
implement a variant of a chaining mechanism to resolve collisions as follows. When 
a hash value maps an item to a location that is occupied, a new function is applied 
to the hash value. The resulting value is used as the position in the table where the 
input is to be placed. To ensure that the item can be found when referenced, a 
pointer to this position is appended to the entry in the cell corresponding to the 

10.4.5 Inverted Page Tables 



item's original hash value. This process is repeated each time a collision occurs. 
Inverted page tables typically use linked lists to chain items. 

In a paging system implementing inverted page tables, each virtual address is 
represented by the ordered pair v = (p,d). To quickly locate the hash table entry 
corresponding to virtual page p, the system applies a hash function to p, which pro
duces a value q (Fig. 10.16). If the qth cell in the inverted page table contains p, then 
the requested virtual address is in page frame q. If page number in the qth cell of 
the inverted page table does not match p, the system checks the value of the chain
ing pointer for that cell. If the pointer is null, then the page is not in memory, so the 
processor issues a page fault. The operating system can then retrieve the page from 
secondary storage. Otherwise, there has been a collision at that index in the 
inverted page table, so the page table entry stores a pointer to the next entry in the 
chain. The system follows the pointers in the chain until it finds an entry containing 
p or until the chain ends, at which point the processor issues a page fault to indicate 
that the page is not resident. The operating system can then retrieve the page from 
secondary storage. In Fig. 10.16, the system locates an entry corresponding to p 
after following one chaining pointer to cell p', so p is located in page frame p'. 

Although a careful choice of hash functions can reduce the number of colli
sions in the hash table, each additional chaining pointer requires the system to 
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Figure 10.16 | Page address translation using inverted page tables. 



access main memory, which can substantially increase address translation time. To 
improve performance, the system can attempt to reduce the number of collisions by 
increasing the range of hash values produced by the function. Because the size of 
the inverted page table must remain fixed to provide direct mappings to page 
frames, most systems increase the range of the hash function using a hash anchor 
table, which is a hash table containing pointers to entries in the inverted page table 
(Fig. 10.17). The hash anchor table imposes an additional memory access to virtual-
to-physical address translation using inverted page tables and increases table frag
mentation. If the hash anchor table is sufficiently large, however, the number of col
lisions in the inverted page table can be significantly reduced, which can speed 
address translation. The size of the hash anchor table must be chosen carefully to 
balance address translation performance with memory overhead.39-40 

Inverted page tables are typically found in high-performance architectures, such 
as the Intel IA-64 and the HP PA-RISC architectures, but are also implemented in 
the PowerPC architecture, which is found in the consumer line of Apple computers. 
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Figure 10.17 | Inverted page table using a hash anchor table. 



1. Compare and contrast inverted page tables (without a hash anchor table) to direct-
mapped page tables in terms of memory efficiency and address translation efficiency. 

2. Why are PTEs larger in inverted page tables than in direct-mapped page tables? 

Ans: 1) Inverted page tables incur less memory overhead than direct-mapped page tables 
because an inverted page table contains only one PTE for each physical page frame, whereas 
a direct-mapped page table contains one PTE for each virtual page. However, address trans
lation may be much slower using an inverted page table than when using a direct-mapped 
table because the system may have to access memory several times to follow a collision chain. 
2) A PTE in an inverted page table must store a virtual page number and a pointer to the 
next PTE in the collision chain. A PTE in a direct-mapped page table need only store a page 
frame number and a resident bit. 
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In multiprogrammed computer systems, especially in timesharing systems, it is com
mon for many users to execute the same programs concurrently. If the system allo
cated individual copies of these programs to each user, much of main memory 
would be wasted. The obvious solution is for the system to share those pages com
mon to individual processes. 

The system must carefully control sharing to prevent one process from modi
fying data that another process is accessing. In most of today's systems that imple
ment sharing, programs are divided into separate procedure and data areas. 
Nonmodifiable procedures are called pure procedures or reentrant procedures. 
Modifiable data cannot be shared without careful concurrency control. Nonmodifi-
able data can be shared. Modifiable procedures cannot be shared (although one 
might envision an esoteric example where doing this with some form of concur
rency control would make sense). 

All this discussion points to the need to identify each page as either sharable 
or nonsharable. Once each process's pages have been categorized in this fashion, 
then sharing in pure paging systems can be implemented as in Fig. 10.18. If the page 
table entries of different processes point to the same page frame, then this page 
frame is shared by each of the processes. Sharing reduces the amount of main mem
ory required for a group of processes to run efficiently and can make it possible for 
a given system to increase its degree of multiprogramming. 

One example in which page sharing can substantially reduce memory consump
tion is with the UNIX fork system call. When a process forks, the data and instruc
tions for both the parent process and its child are initially identical. Instead of 
allocating an identical copy of data in memory for the child process, the operating sys
tem can simply allow the child process to share its parent's virtual address space while 
providing the illusion that each process has its own, independent virtual address 
space. This improves performance because it reduces the time required to initialize 
the child process and reduces memory consumption between the two processes (see 
the Operating Systems Thinking feature, Lazy Allocation). However, because the 

10.4.6 Sharing in a Paging System 

Self Review 
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Figure 10.18 | Sharing in a pure paging system. 

parent and child are unaware of the sharing, the operating system must ensure that 
the two processes do not interfere with each other when modifying pages. 

Many operating systems use a technique called copy-on-write to address this 
problem. Initially, the system maintains one copy of each shared page in memory, as 
described previously, for processes P1 through Pn. If P1 attempts to modify a page 
of shared memory, the operating system creates a copy of the page, applies the 
modification and assigns the new copy to process P1's virtual address space. The 
unmodified copy of the page remains mapped to the address space of all other pro
cesses sharing the page. This ensures that when one process modifies a shared page, 
no other processes are affected. 

Many architectures provide each PTE with a read/write bit that the processor 
checks each time a process references an address. When the read/write bit is off, the 
page can be read, but not modified. When the bit is on, the page can be both read 



and modified. Copy-on-write can thus be implemented by marking each shared 
page as read-only. When a process attempts to write to a page, the processor on 
which it executes will cause a page fault, which invokes the kernel. At this point, the 
kernel can determine that the process is attempting to write to a shared page and 
perform the copy-on-write. 

Copy-on-write speeds process creation and reduces memory consumption for 
processes that do not modify a significant amount of data during execution. How
ever, copy-on-write can result in poor performance if a significant portion of a pro
cess's shared data is modified during program execution. In this case, the process 
will suffer a page fault each time it modifies a page that is still shared. The overhead 
associated with invoking the kernel for each exception can quickly outweigh the 
benefits of copy-on-write. In the next chapter, we consider how sharing affects vir
tual memory management. 
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1. Why might it be difficult to implement page sharing when using inverted page tables? 
2. How does page sharing affect performance when the operating system moves a page from 

main memory to secondary storage? 

Self Review 

Operating Systems Thinking 
Lazy Allocation 
Lazy resource allocation schemes 
allocate resources only at the last 
moment, when they are explicitly 
requested by processes or threads. 
For resources that ultimately wil l 
not be needed, lazy allocation 
schemes are more efficient than 
anticipatory resource allocation 
schemes, which might attempt to 
allocate those resources that 
would not be used, thus wasting 
the resources. For resources that 
ultimately wil l be needed, antici
patory schemes help processes 
and threads run more efficiently 
by having the resources they need 
available when they need them. 

so those processes and threads do 
not have to wait for the resources 
to be allocated. We discuss lazy 
allocation in various contexts in 
the book. One classic example of 
lazy allocation is demand paging, 
which we study in this chapter 
and the chapter that follows. 
With pure demand paging, a pro
cess's or thread's pages are 
brought to memory only as each 
is explicitly referenced. The 
advantage of demand paging is 
that the system never incurs the 
overhead of transferring a page 
from secondary storage to main 
memory unless that page wil l 

truly be needed. On the other 
hand, because such a scheme 
waits until a page is referenced 
before bringing it to main mem
ory, the process wil l experience a 
significant execution delay as it 
waits for the disk I/O operation to 
complete. And while the process 
or thread is wait ing, the portion 
of that process or thread memory 
that is in memory is tying up space 
that could otherwise be used by 
other running processes. Copy-on-
write is another example of lazy 
allocation. 



Ans: 1) The type of page sharing discussed in this section is accomplished by having PTEs 
from different process's page tables point to the same page frame number. Because inverted 
page tables maintain exactly one PTE in memory for each page frame, the operating system 
must maintain sharing information in a data structure outside the inverted page table. One 
challenge of this type of page sharing is determining if a shared page is already in memory, 
because it was recently referenced by a different process, when another process first refer
ences it. 2) When the operating system moves a shared page to secondary storage, it must 
update the corresponding PTE for every process sharing that page. If numerous processes 
share the page, this could incur significant overhead compared to that for an unshared page. 

In the preceding chapter, we discussed how a variable-partition multiprogramming 
system can place a program in memory on a first-fit, best-fit or worst-fit basis. Under 
variable-partition multiprogramming, each program's memory and data occupy one 
contiguous section of memory called a partition. An alternative is physical memory 
segmentation (Fig. 10.19). Under this scheme, a program's data and instructions are 
divided into blocks called segments. Each segment consists of contiguous locations; 
however, the segments need not be the same size nor must they be placed adjacent 
to one another in main memory. 

One advantage of segmentation over paging is that it is a logical rather than a 
physical concept. In their most general form, segments are not arbitrarily con
strained to a certain size. Instead, they are allowed to be (within reasonable limits) 
as large or as small as they need to be. A segment corresponding to an array is as 
large as the array. A segment corresponding to a procedural code unit generated by 
a compiler is as large as it needs to be to hold the code. 

In a virtual memory segmentation system, we have the ability to maintain in 
main memory only those segments that a program requires to execute at a certain 
time; the remainder of the segments reside on secondary storage.41 A process may 
execute while its current instructions and data are located in a segment that resides 
in main memory. If a process references memory in a segment that does not cur
rently reside in main memory, the virtual memory system must retrieve that seg
ment from secondary storage. Under pure segmentation, the system transfers a 
segment from secondary storage as a complete unit and places all the locations 
within that segment in contiguous locations in main memory. An incoming segment 
may be placed in any available area in main memory that is large enough to hold it. 
The placement strategies for segmentation are identical to those used in variable-
partition multiprogramming.42 

A virtual memory segmentation address is an ordered pair v = (s, d), where s is 
the segment number in virtual memory in which the referenced item resides, and d is 
the displacement within segment s at which the referenced item is located (Fig. 10.20). 

10.5 Segmentation 

1. (T/F) Segmented virtual memory systems do not incur fragmentation. 
2. How does segmentation differ from variable-partition multiprogramming? 

Self Review 
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Figure 10.19 | Noncontiguous memory allocation in a real memory segmentation 
system. 

Figure 10.20 | Virtual address format in a pure segmentation system. 

Ans: 1) False. Segmented virtual memory systems can incur external fragmentation, exactly 
as in variable-partition multiprogramming systems. 2) Unlike programs in a variable-parti
tion multiprogramming system, programs in a segmented virtual memory system can be 
larger than main memory and need only a portion of their data and instructions in memory to 
execute. Also, in variable-partition multiprogramming systems, a process occupies one con
tiguous range of main memory, whereas in segmentation systems this need not ne so. 



444 Virtual Memory Organization 

There are many strategies for implementing segmented address translation. A system 
can employ direct mapping, associative mapping or combined direct/associative map
ping. In this section we consider segmented address translation using direct mapping 
and maintaining the complete segment map table in a fast-access cache memory. 

We consider first the case in which the address translation proceeds normally 
and consider several problems that may arise. Dynamic address translation under 
segmentation proceeds as follows. A process references a virtual memory address v 
= (s, d) to determine where in main memory the referenced segment resides. The 
system adds the segment number, s, to the segment map table's base address value, 
b, located in the segment map table origin register (Fig. 10.21). The resulting value, 
b + s, is the location of the segment's table map entry. [Note: For simplicity, we 
assume that the size of each entry in the segment map table is fixed and that each 
address in memory stores an entry of that size.] Each entry contains several pieces 
of information about the segment, which the mapping mechanism uses to translate 
the virtual address to a physical address. If the segment currently resides in main 
memory, the entry contains the segment's main memory starting address, s'. The 
system adds the displacement, d, to this address to form the referenced location's 
real memory address, r = s' + d. We cannot simply concatenate d to s', as we do in a 
pure paging system, because segments are of variable size. 

Figure 10.21 | Virtual address translation in a pure segmentation system. 

10.5.1 Segmentation Address Translation by Direct Mapping 



Figure 10.22 shows a typical segment map table entry in detail. A resident bit, 
r, indicates whether or not that segment is currently in main memory. If it is, then s' 
is the main memory address at which the segment begins. Otherwise a is the sec
ondary storage address from which the segment must be retrieved before the pro
cess may proceed. All references to the segment are checked against the segment 
length, l, to ensure that they fall within the range of the segment. Each reference to 
the segment is also checked against the protection bits to determine if the operation 
being attempted is allowed. For example, if the protection bits indicate that a seg
ment is read-only, no process is allowed to modify that segment. We discuss protec
tion in segmented systems in detail in Section 10.5.3, Protection and Access Control 
in Segmentation Systems. 

During dynamic address translation, once the segment map table entry for 
segment s has been located, the resident bit, r, is examined to determine if the seg
ment is in main memory. If it is not, then a missing-segment fault is generated, caus
ing the operating system to gain control and load the referenced segment which 
begins at secondary storage address a. Once the segment is loaded, address transla
tion proceeds with checking that the displacement, d, is less than or equal to the 
segment length, l. If it is not, then a segment-overflow exception is generated, caus
ing the operating system to get control and potentially terminate the process. If it is, 
the protection bits are checked to ensure that the operation being attempted is 
allowed. If it is, then the base address, s', of the segment in main memory is added 
to the displacement, d, to form the real memory address r = s' + d corresponding to 
virtual memory address v = (s, d). If the operation being attempted is not allowed, 
then a segment-protection exception is generated, causing the operating system to 
gain control of the system and terminate the process. 
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Figure 10.22 | Segment map table entry. 



1. Why is it incorrect to form the real address, r, by concatenating s' and d? 
2. Does the page mapping mechanism require that a and s' be stored in separate cells of a 

segment map table entry, as shown in Fig. 10.22? 

Ans: 1) Unlike the page frame number p', the segment base address s' is an address in main 
memory. Concatenating s' and d would result in an address beyond the limit of main memory. 
Again, concatenation works with paging because the page size is a power of two and the 
number of bits reserved for the displacement on a page and the number of bits reserved for 
the page frame number add up to the number of bits in the virtual address. 2) No. To reduce 
the amount of memory consumed by segment map table entries, many systems use one cell to 
store either the segment base address or the secondary storage address. If the resident bit is 
on, the segment map table entry stores a segment base address, but not a secondary storage 
address. If the resident bit is off, the segment map table entry stores a secondary storage 
address, but not a segment base address. 

S e l R e v i e w 
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Sharing segments can incur less overhead than sharing in a direct-mapped pure 
paging system. For example, to share an array that is stored in three and one-half 
pages, a pure paging system must maintain separate sharing data for each page on 
which the array resides. The problem is compounded if the array is dynamic, 
because the sharing information must be adjusted at execution time to account for 
the growing or shrinking number of pages that the array occupies. In a segmenta
tion system, on the other hand, data structures may grow and shrink without chang
ing the sharing information associated with the structure's segment. 

Figure 10.23 illustrates how a pure segmentation system accomplishes sharing. 
Two processes share a segment when their segment table entries point to the same 
segment in main memory. 

Although sharing provides obvious benefits, it also introduces certain risks. 
For example, one process could intentionally or otherwise perform an operation on 
a segment that negatively affects other processes sharing that segment. Therefore, a 
system that provides sharing also should provide appropriate protection mecha
nisms, to ensure that only authorized users may access or modify a segment. 

10.5.2 Sharing in a Segmentation System 

1. How does segmentation reduce sharing overhead compared to sharing under pure paging? 
2. Can copy-on-write be implemented using segments, and, if so, how? 

Ans: 1) Segmentation enables an entire block of shared memory to fit inside one segment. 
so the operating system maintains sharing information for one segment. Under paging, this 
segment might consume several pages, so the operating system would have to maintain shar
ing information for each page. 2) Yes. Copy-on-write can be implemented by allocating a 
copy of the parent's segment map table to its child. If process P1 (which can be a parent or 
child process) attempts to modify segment s, the operating system must create a new copy of 
the segment, located at main memory address s'. The operating system then changes entry s 
in P1's segment map table to contain the address s'. 

Self Review 
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Figure 10.23 | Sharing in a pure segmentation system. 

Segmentation promotes program modularity and enables better memory use 
through noncontiguous allocation and sharing. With these benefits, however, comes 
increased complexity. For example, a single pair of bounds registers no longer suf
fices to protect each process from destruction by other processes. Similarly, it 
becomes more difficult to limit the range of access of any given program. One 
scheme for implementing memory protection in segmentation systems is the use of 
memory protection keys (Fig. 10.24). In this case, each process is associated with a 
value, called a protection key. The operating system strictly controls this key, which 
can be manipulated only by privileged instructions. The operating system employs 
protection keys as follows. At context-switch time, the operating system loads the 
process's protection key into a processor register. When the process references a 
particular segment, the processor checks the protection key of the block containing 
the referenced item. If the protection key for the process and the requested block 
are the same, the process can access the segment. For example, in Fig. 10.24, Process 
2 can access only those blocks with a protection-key value of 2. If the process 
attempts to access a block with a different protection key, the hardware prevents 
the memory access and vectors into the kernel (caused by a segment-protection 
exception). Although memory protection keys are not the most common protection 
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mechanism in today's systems, they are implemented in the IA-64 Intel architecture 
(i.e., the Itanium line of processors) and are generally intended for systems contain
ing one virtual address space.43 

The operating system can exercise further protection control by specifying 
how a segment may be accessed and by which processes. This is accomplished by 
assigning each process certain access rights to segments. Figure 10.25 lists the most 
common access control types in use in today's systems. If a process has read access 
to a segment, then it may read data from any address in that segment. If it has write 
access to a segment, then the process may modify any of the segment's contents and 
may add further information. A process given execute access to a segment may pass 
program control to instructions in that segment for execution on a processor. Exe
cute access to a data segment is normally denied. A process given append access to 
a segment may write additional information to the end of the segment, but may not 
modify existing information. 

Figure 10.24 | Memory protection with keys in noncontiguous memory allocation 
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By either allowing or denying each of these four access types, it is possible to 
create 16 different access control modes. Some of these are interesting, while others 
do not make sense. For simplicity, consider the eight different combinations of read, 
write, and execute access shown in Fig. 10.26. 

In mode 0, no access is permitted to the segment. This is useful in security 
schemes in which the segment is not to be accessed by a particular process. In mode 1, 
a process is given execute-only access to the segment. This mode is useful when a pro
cess is allowed to execute instructions in the segment, but may not copy or modify it. 
Modes 2 and 3 are not useful—it does not make sense to give a process the right to 
modify a segment without also giving it the right to read the segment. Mode 4 allows 
a process read-only access to a segment. This is useful for accessing nonmodifiable 
data. Mode 5 allows a process read/execute access to a segment. This is useful for 
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Type of access Abbreviation Description 
Read 
Write 
Execute 
Append 

R 

W 

E 

A 

This segment may be read. 

This segment may be modified. 
This segment may be executed. 

This segment may have information added to its end. 

Figure 10.25 | Access control types. 

Mode Read Write Execute Description Application 

Mode 0 

Mode 1 

Mode 2 
Mode 3 

Mode 4 

Mode 5 

Mode 6 

Mode 7 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

No 

No 

Yes 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No access 
permitted 
Execute only 

Write only 

Write/execute 
but cannot be 
read 

Read only 

Read/execute 

Read/write but 
no execution 

Unrestricted 
access 

Security. 

A segment made available to 
processes that cannot modify 
it or copy it, but that can run 
it. 

These possibilities are not 
useful, because granting 
write access without read 
access is impractical. 

Information retrieval. 

A program can be copied or 
executed but cannot be 
modified. 

Protects data from an errone
ous attempt to execute it. 

This access is granted to 
trusted users. 

Figure 10.26 | Combining read, write and execute access to yiels useful access 
control modes. 



reentrant code. A process may make its own copy of the segment which it may then 
modify. Mode 6 allows a process read/write access to a segment. This is useful when 
the segment contains data that may be read or written by the process but that must be 
protected from accidental execution (because the segment does not contain instruc
tions). Mode 7 allows a process unrestricted access to a segment. This is useful for 
allowing a process complete access to its own segments (such as self-modifying code) 
and for giving it most-trusted status to access other processes' segments. 

The simple access control mechanism described in this section is the basis of 
segment protection implemented in many systems. Figure 10.27 shows one way a 
system can implement access control, namely by including protection bits in a seg
ment's map table entry. The entry includes four bits —one for each type of access 
control. The system can now enforce protection during address translation. When a 
process makes a reference to a segment in virtual memory, the system checks the 
protection bits to determine if the process has proper authorization. For example, if 
a process is attempting to execute a segment that has not been granted execution 
rights, then it does not have authorization to perform its task. In this case, a seg
ment-protection exception is generated, causing the operating system to gain con
trol and terminate the process. 
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1. Which access rights are appropriate for a process's stack segment? 
2. What special-purpose hardware is required to implement memory protection keys? 

Self Review 

Figure 10.27 | Segment map table entry with protection bits. 



Ans: 1) A process should be able to read and write data in its stack segment and append 
new stack frames to the segment. 2) A high-speed register is required to store the current 
process's memory protection key. 
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Both segmentation and paging offer significant advantages as virtual memory orga
nizations. Beginning with systems constructed in the mid-1960s, in particular Mul-
tics and IBM's TSS, many computer systems have been built that combine paging 
and segmentation.44, 45, 46, 47, 48, 49 These systems offer the advantages of the two vir
tual memory organization techniques we have presented in this chapter. In a com
bined segmentation/paging system, segments are usually arranged across multiple 
pages. All the pages of a segment need not be in main memory at once, and virtual 
memory pages that are contiguous in virtual memory need not be contiguous in 
main memory. Under this scheme, a virtual memory address is implemented as an 
ordered triple v = (s,p,d), where s is the segment number, p the page number 
within the segment and d the displacement within the page at which the desired 
item is located (Fig. 10.28). 

10.6 Segmentation/Paging Systems 

Consider the dynamic address translation of virtual addresses to real addresses in a 
paged and segmented system using combined associative/direct mapping, as illus-
trated in Fig. 10.29. 

A process references virtual address v = (s, p, d). The most recently referenced 
rages have entries in the associative memory map (i.e., the TLB). The translation 
mechanism performs an associative search to attempt to locate (s, p). If the TLB 
contains (s,p), then the search returns p', the page frame in which page p resides. 
This value is concatenated with the displacement, d, to form the real memory 
address r. 

If the TLB does not contain an entry for (s,p), the processor must perform a 
complete direct mapping as follows. The base address, b, of the segment map table (in 
main memory) is added to the segment number, s, to form the address, b+s. This 
address corresponds to the physical memory location of the segment's entry in the 
segment map table. The segment map table entry indicates the base address, s', of the 
page table (in main memory) for segment s. The processor adds the page number, p, 
to the base address, s', to form the address of the page table entry for page p of seg
ment s. This table entry indicates that p' is the page frame number corresponding to 

10.6.1 Dynamic Address Translation in a Segmentation/Paging System 

Figure 10.28 | Virtual address format in a segmentation/paging system. 



452 Virtual Memory Organization 

Figure 10.29 | Virtual address translation with combined associative/direct map-
ping in a segmentation/paging system. 

virtual page p. This frame number, p', is concatenated with the displacement, d, to 
form the real address, r. The translation is then loaded into the TLB. 

This translation scheme assumes that the process has made a valid memory 
reference and that every piece of information required for the process is located in 
main memory. Under many conditions however, the address translation may 
require extra steps or will fail. The segment map table search may indicate that seg
ment s is not in main memory, thus generating a missing-segment fault and causing 



the operating system to locate the segment on secondary storage, create a page 
table for the segment, and load the appropriate page into main memory. If the seg
ment is in main memory, then the reference to the page table may indicate that the 
desired page is not in main memory, initiating a page fault. This would cause the 
operating system to gain control, locate the page on secondary storage, and load it 
into main memory. It is also possible that a process has referenced a virtual memory 
address that extends beyond the range of the segment, thus generating a segment-
overflow exception. Or the protection bits may indicate that the operation to be 
performed on the referenced virtual address is not allowed, thus generating a seg
ment-protection exception. The operating system must handle all these possibilities. 

The associative memory (or, similarly, a high-speed cache memory) is critical to 
the efficient operation of this dynamic address translation mechanism. If a purely 
direct mapping mechanism were used, with the complete map being maintained in 
main memory, the average virtual memory reference would require a memory cycle 
to access the segment map table, a second one to reference the page table and a third 
to reference the desired item in main memory. Thus every reference to an item would 
involve three memory cycles, and the computer system would run only at a small frac
tion of its normal speed; this would invalidate the benefits of virtual memory. 

Figure 10.30 indicates the detailed table structure required by segmentation/ 
paging systems. At the top level is a process table that contains an entry for every 
process in the system. Each process table entry contains a pointer to its process's 
segment map table. Each entry of a process's segment map table points to the page 
table for the associated segment, and each entry in a page table points either to the 
page frame in which that page resides or to the secondary storage address at which 
the page may be found. In a system with a large number of processes, segments and 
pages, this table structure can consume a significant portion of main memory. The 
benefit of maintaining all the tables in main memory is that address translation pro
ceeds faster at execution time. However, the more tables a system maintains in 
main memory, the fewer processes it can support, and thus productivity declines. 
Operating systems designers must evaluate many such trade-offs to achieve the del
icate balance needed for a system to run efficiently and to provide responsive ser
vice to system users. 
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1. What special-purpose hardware is required for segmentation/paging systems? 
2. In what ways do segmentation/paging systems incur fragmentation? 

Ans: 1) Segmentation/paging systems require a high-speed register to store the base 
address of the segment map table, a high-speed register to store the base address of the cor
responding page table and an associative memory map (i.e., a TLB). 2) Segmentation/paging 
systems can incur internal fragmentation when a segment is smaller than the page(s) in which 
it is placed. They also incur table fragmentation by maintaining both segment map tables and 
page tables in memory. Segmentation/paging systems do not incur external fragmentation 
(assuming the system uses one page size), because ultimately the memory is divided into 
fixed-size page frames, which can accommodate any page of any segment. 

Self Review 
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Figure 10.30 | Table structure for a segmentation/paging system. 



Segmentation/paging virtual memory systems take advantage of the architectural 
simplicity of paging and the access control capabilities of segmentation. In such a 
system the benefits of segment sharing become important. Two processes share 
memory when each process has a segment map table entry that points to the same 
page table, as is indicated in Fig. 10.31. 

Sharing, whether in paged systems, segmented systems, or segmentation/pag
ing systems, requires careful management by the operating system. In particular, 
consider what would happen if an incoming page were to replace a page shared by 
many processes. In this case, the operating system must update the resident bit in 
the corresponding page table entries for each process sharing the page. The operat
ing system can incur substantial overhead determining which processes are sharing 
the page and which PTEs in their page tables must be changed. As we discuss in 
Section 20.6.4, Swapping, Linux reduces this overhead by maintaining a linked list 
of PTEs that map to a shared page. 

10.6.2 Sharing and Protection in a Segmentation/Paging System 
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1. Why are segmentation/paging systems appealing? 
2. What are the benefits and drawbacks of maintaining a linked list of PTEs that map to a 

shared page? 

Ans: 1) Segmentation/paging systems offer the architectural simplicity of paging and the 
access control capabilities of segmentation. 2) A linked list of PTEs enables the system to 
update PTEs quickly when a shared page is replaced. Otherwise, the operating system 
would need to search each process's page table to determine if any PTEs need to be 
updated, which can incur substantial overhead. A drawback to the linked list of PTEs is 
that it incurs memory overhead. In today's systems, however, the cost of accessing main 
memory to search page tables generally outweighs the memory overhead incurred by 
maintaining the linked list. 

Self Review 

In this section, we discuss the virtual memory implementation of the IA-32 Intel 
architecture (i.e., the Intel Pentium line of processors), which supports either a pure 
segmentation or a segmentation/paging virtual memory implementation.50 The set 
of addresses contained in each segment is called a logical address space, and its size 
depends on the size of the segment. Segments are placed in any available location 
in the system's linear address space, which is a 32-bit (i.e., 4GB) virtual address 
space. Under pure segmentation, the processor uses linear addresses to access main 
memory. If paging is enabled, the linear address space is divided into fixed-size page 
frames that are mapped to main memory. 
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Figure 10.31 | Two processes sharing a segment in a segmentation/paging system. 
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The first stage of dynamic address translation maps segmented virtual addresses 
to the linear address space. Because there is no way to disable segmentation in the 
IA-32 specification, this translation occurs for every memory reference. Each seg
mented virtual address can be represented by the ordered pair v = (s, d), as discussed 
in Section 10.5.1. In the IA-32 architecture, s is specified by a 16-bit segment selector 
and d by a 32-bit offset (i.e., the displacement within segment s' at which the refer
enced item is located). The segment index, which is the 13 most-significant bits of the 
segment selector, specifies an 8-byte entry in the segment map table. 

To speed address translation under segmentation, the IA-32 architecture 
provides six segment registers, named CS, DS, SS, ES, FS and GS, to store a pro
cess's segment selectors. The operating system normally uses the CS register to 
store a process's code segment selector (which typically corresponds to the seg
ment containing its executable instructions), the DS register to store a process's 
data segment selector (which typically corresponds to the segment containing the 
process's data) and the SS register to store a process's stack segment selector 
(which typically corresponds to the segment containing its execution stack). The 

ES, FS and GS registers can be used for any other process segment selectors. 
Before a process can reference an address, the corresponding segment selector 
must be loaded into a segment register. This enables the process to reference 
addresses using the 32-bit offset, so that it does not have to specify the 16-bit seg
ment selector for each memory reference. 

To locate a segment map table entry, the processor multiplies the segment 
index by 8 (the number of bytes per segment map table entry) and adds that value 
to b, the address stored in the segment map table origin register. The IA-32 archi
tecture provides two segment map table origin registers, the global descriptor table 
register (GDTR) and the local descriptor table register (LDTR). The values of the 
GDTR and LDTR are loaded at context-switch time. 

The system's primary segment map table is the global descriptor table 
(GDT) which contains 8,192 (213) 8-byte entries. The first entry is not used by the 
processor—references to a segment corresponding to this entry will generate an 
exception. Operating systems load the value corresponding to this entry into 
unused segment registers (e.g., ES, FS and GS) to prevent processes .from access
ing an invalid segment. If the system uses one segment map table for all of its pro
cesses, then the GDT is the only segment map table in the system. For operating 
systems that must maintain more than 8,192 segments, or that maintain a separate 
segment map table for each process, the IA-32 architecture provides local 
descriptor tables (LDTs), each containing 8,192 entries. In this case, the base 
address of each LDT must be stored in the GDT, because the processor places the 
LDT in a segment. To perform address translation quickly, the base address of the 
LDT, b, is placed in the LDTR. The operating system can create up to 8,191 sepa
rate segment map tables using LDTs (recall that the first entry in the GDT is not 
used by the processor). 
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Each segment map table entry, called a segment descriptor, stores a 32-bit 
base address, s', that specifies the location in the linear address space of the start of 
the segment. The system forms a linear address by adding the displacement, d, to 
the segment base address, s'. Under pure segmentation, the linear address, s' + d, is 
the real address. 

The processor checks each reference against the segment descriptor's resident 
and protection bits before accessing main memory. The segment descriptor's 
present bit indicates whether the segment is in main memory; if it is, the address 
translation proceeds normally. If the present bit is off, the processor generates a 
segment-not-present exception, so that the operating system can load the segment 
from secondary storage. [Note: The terms "fault" and "exception" are used differ
ently in the IA-32 specification than in the rest of the text (see Section 3.4.2, Inter
rupt Classes). The segment-not-present exception corresponds to a missing-
segment fault.] The processor also checks each reference against the segment 
descriptor's 20-bit segment limit, l, which specifies the size of the segment. The sys
tem uses the segment descriptor's granularity bit to determine how to interpret the 
value specified in the segment's limit. If the granularity bit is off, segments can 
range in size from 1-byte (l = 0) to 1MB (l = 220 - 1), in 1 byte increments. In this 
case, if d > l, the system generates a general protection fault (GPF) exception, indi
cating that a process has attempted to access memory outside of its segment. [Note: 
Again, the term "fault" is used differently in the IA-32 specification than in the rest 
of the text.] If the granularity bit is on, segments can range in size from 4KB (l = 0) 
to 4GB (l = 220 - 1), in 4KB increments. In this case, if d > (l x 2 ), the processor 
generates a GPF exception, indicating that a process has attempted to access mem
ory outside of its segment. 

The IA-32 architecture maintains a process's access rights to a segment in the 
type field of each segment map table entry. The type field's code/data bit determines 
whether the segment contains executable instructions or program data. Execute 
access is enabled when this bit is on. The type field also contains a read/write bit 
that determines whether the segment is read-only or read/write. 

If paging is enabled, the operating system can divide the linear address space 
(i.e., the virtual address space in which segments are placed) into fixed-size pages. 
As we discuss in the next chapter, page size can significantly impact performance: 
thus, the IA-32 architecture supports 4KB, 2MB and 4MB pages. When 4KB pages 
are used, the IA-32 architecture maps each linear address to a' physical address 
using a two-level page address translation mechanism. In this case, each 32-bit lin
ear address is represented as V = (t,p, d), where t is a 10-bit page table number, p is 
a 10-bit page number, and d is a 12-bit displacement. Page address translation 
occurs exactly as described in Section 10.4.4. To locate the page directory entry, t is 
added to the value of the page directory origin register (analogous to the page table 
origin register). Each 4-byte page directory entry (PDE) specifies b, the base 
address of a page table containing 4-byte page table entries (PTEs). To form the 
physical address at which the page table entry resides, the processor multiplies p by 
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4 (because each PTE occupies 4 bytes) and adds b. The most active PTEs and PDEs 
are stored in a processor's TLB to speed virtual-to-physical address translations. 

When 4MB pages are used, each 32-bit linear address is represented as 
v' - (p, d), where p is a 10-bit page directory number and d is a 22-bit displace
ment. In this case, page address translation occurs exactly as described in 
Section 10.4.3. 

Each page reference is checked against its PDE's and PTE's read/write bit. 
When the bit is on, all of the pages in the PDE's page table are read-only; otherwise 
they are read/write. Similarly, each PTE's read/write bit specifies the read/write 
access right for its corresponding page. 

One limitation of a 32-bit physical addresses space is that the system can access 
at most 4GB of main memory. Because some systems contain more than that, the IA-
32 architecture provides the Physical Address Extension (PAE) and Page Size Exten
sion (PSE) features, which enable a system to reference 36-bit physical addresses, 
supporting a maximum memory size of 64GB. The implementation of these features 
is beyond the scope of the discussion; the reader is encouraged to study these and 
other features of the IA-32 specification, which can be found online in the IA-32 Intel 
Architecture Software Developer's Manual, Vol. 3, located at deve loper . in te l . com/ 
design/Pentium4/manuals/. The Web Resources section contains links to several 
manuals that describe virtual memory implementations in other architectures, such as 
the PowerPC and PA-RISC architectures. 
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Mini Case Study 
IBM Mainframe Operating System 
The first commercial computer 
wi th transistor logic for general 
use was the IBM 7090 which was 
released in 1959. Its operating 
system was called IBSYS.51, 52 

IBSYS had roughly two dozen 
components, which included 
modules for the FORTRAN and 
COBOL programming languages, 
in addition to the resource man
agers.53 

In 1964 IBM announced its 
next set of systems, the System/ 
360 line, which consisted of sev
eral different models of varying 
processor power, all running on 
the same architecture.54,55 The 
smallest models ran under the 
Disk Operating System or DOS, 
while the rest came wi th OS/ 
360.56, 57, 58 Having one operating 
system run on several different 

models of computer was a rela
tively new concept at the time.59 

OS/360 had three different con
trol options: PCP, MFT, and MVT. 
60,61 OS/360-PCP (for Principal 
Control Program) was single-task
ing and designed for the smallest 
System/360 models; however, in 
practice DOS (or TOS for systems 
wi th tape drives only) was used 
(continued) 
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IBM Mainframe Operating Systems (Cont . ) 
on these computers.62, 63 OS/360-
MFT and OS/360-MVT were both 
multitasking, wi th a "Fixed num
ber of Tasks" and a "Variable 
number of Tasks," respectively, 
which meant that a system run
ning the MFT option had its mem
ory divisions preset by the 
operator, while under MVT mem
ory could be divided by the sys
tem automatically as new jobs 
arrived.64, 65 A large project called 
TSS (Time-Sharing System) to 
build a multiuser operating sys
tem to compete wi th Multics was 
eventually cancelled when TSS 
proved to be too large and to 
crash too often.66 Its functionality 
was implemented as TSO (the 
Time-Sharing Option) in 1971.67, 68 

IBM announced the System/ 
370 hardware in 1970, which now 
included virtual memory sup
port.69 To utilize this new capabil
ity, OS/360-MFT was updated and 
renamed OSA/S1, while the MVT 
option was similarly upgraded 
and named OS/VS2 SVS (Single 
Virtual Storage), so named 
because it had only one 16MB vir
tual address space shared among 
all users.70, 71 It was later updated 
again to allow any number of 

such address spaces, and so was 
renamed 0S/VS2 MVS, or simply 
MVS (for Multiple Virtual 
Storages).72.73 

MVS was updated to MVS/ 
370, which soon supported the 
new cross-memory feature of the 
System/370 hardware; cross-mem
ory is a mechanism to separate 
data and code in memory 
space.74-75 Additionally, because 
16MB of memory space had 
quickly been fil led by expanding 
system programs, the processors 
now used a 26-bit address, allow
ing for 64MB of real memory; 
however, while MVS/370 sup
ported this real memory capacity, 
it still used a 24-bit address and 
therefore only used 16MB virtual 
memory spaces.76-77 

Two years later, IBM moved 
on to the 3081 processors running 
on the 370-XA "Extended 
Architecture."78- 79 MVS/370 was 
updated, new functionality was 
added, and the resulting package 
was subsequently released as 
MVS/XA in 1983.80-81 This OS now 
allowed for 2GB of virtual mem
ory, much more easily satisfying 
any program's space require
ments.82 

In 1988 IBM upgraded the 
hardware yet again, moving to 
the ES/3090 processors on the 
ESA/370 (Enterprise System Archi
tecture).83 ESA introduced mem
ory spaces that were used only for 
data, making it easier to move 
data around for processing.84 

MVS/XA was moved up to MVS/ 
ESA for these new systems.85-86 

MVS/ESA was significantly 
updated in 1991 for the new ESA/ 
390 hardware, which included 
mechanisms for linking IBM 
machines into a loose cluster (SYS-
PLEX)87 and changing the settings 
on I/O devices wi thout the need 
to take the machine offline 
(ESCON).88 

MVS is still the root of IBM's 
mainframe operating systems, as 
MVS/ESA was upgraded to OS/390 
in 1996 for the System/390 hard
ware;89 it is now named z/OS and 
runs on the zSeries mainframes.90 

In addition, IBM's mainframe 
operating systems have remained 
backward compatible wi th earlier 
versions; OS/390 can run applica
tions wri t ten for MVS/ESA, MVS/ 
XA, OSA/S2, or even OS/360.91 
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multiprograms complete virtual 
machines rather than individual 
tasks or processes. CMS is an 
applications system wi th powerful 
features for interactive develop
ment of programs. It contains edi
tors, language translators, various 
applications packages and debug
ging tools. Virtual machines run
ning under CP perform much as if 
they were real machines, except 
that they operate more slowly, 
since VM runs many virtual 
machines simultaneously. 

VM's ability to run multiple 
operating systems simultaneously 
has many applications.95' 96 It 
eases migration between differ
ent operating systems or different 
versions of the same operating 
system. It enables people to be 
trained simultaneously wi th run
ning production systems. System 
development can occur simulta
neously wi th production runs. 
Customers can run different oper
ating systems simultaneously to 
exploit each system's benefits. 
Running multiple operating sys
tems offers a form of backup in 
case of failure; this increases avail
ability. Installations may run 
benchmarks on new operating 
(continued) 

process sees a machine smaller in 
size and capabilities than the real 
machine executing the process. 

Virtual machine multipro
gramming systems (Fig. 10.32) 
share the resources of a single 
machine in a different manner. 
They create the illusion that one 
real machine is actually several 
machines. They create virtual pro
cessors, virtual storage and virtual 
I/O devices, possibly wi th much 
larger capacities than those of the 
underlying real machine. 

The main components of VM 
are the Control Program (CP), 
the Conversational Monitor 
System (CMS), the Remote 
Spooling Communications 
Subsystem (RSCS), the Interac
tive Problem Control System 
(IPCS) and the CMS Batch Facil
ity. CP creates the environment in 
which virtual machines can exe
cute. It provides the support for 
the various operating systems 
normally used to control System/ 
370 and compatible computer sys
tems. CP manages the real 
machine underlying the virtual 
machine environment. It gives 
each user access to the facilities of 
the real machine such as the pro
cessor, storage and I/O devices. CP 

A virtual machine is an illusion of 
a real machine. 'It is created by a 
virtual machine operating sys
tem, which makes a single real 
machine appear to be several real 
machines. From the user's view
point, virtual machines can 
appear to be existing real 
machines, or they can be dramati
cally different. The concept has 
proven valuable, and many virtual 
machine operating systems have 
been developed—one of the most 
widely used is IBM's VM. 

VM managed the IBM Sys
tem/37092- 93 computer (or com
patible hardware), creating the 
illusion that each of several users 
had a complete System/370, 
including many input/output 
devices. Each user could choose a 
different operating system. VM 
can run several operating systems 
simultaneously, each of them on 
its own virtual machine. Today's 
VM users can run versions of the 
operating systems OS/390, z/OS, 
TPF, VSE/ESA, CMS and Linux.94 

Conventional multiprogram
ming systems share the resources 
of a single computer among sev
eral processes. These processes are 
each allocated a portion of the 
real machine's resources. Each 
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appropriate, so they split the 
resource management portion 
from the user support portion of 
the operating system, resulting in 
CP and CMS, respectively. CP pro
vides separate computing envi
ronments that give each user 
complete access to a full virtual 
machine; CMS runs on a CP-cre-
ated virtual machine as a single-
user interactive system. 

The most significant decision 
made in the design of CP was that 
each virtual machine would repli
cate a real machine. It was clear 
that the 360 family concept would 
create a long lifetime for 360 pro
grams; users requiring more 
power would simply move up in 
the family to a compatible system 
wi th more storage, devices and 
processor speed. Any decision to 
produce virtual machines differ
ent in structure from a real 360 
probably would have resulted in 
the failure of the CP/CMS system. 
Instead, the'concept has been suc
cessful, making VM one of IBM's 
two leading mainframe operating 
systems in the 1990s. IBM contin
ues to create new versions of VM 
for use on its mainframe servers, 
the latest being zA/M, which sup
ports IBM's 64-bit architecture.100 

The first operational version 
appeared in 1966, consisting of 
CP-40 and CMS. These compo
nents were designed to run on a 
modified IBM 360/40 wi th newly 
incorporated dynamic address 
translation hardware. At about 
this time, IBM announced an 
upgrade to its powerful 360/65. 
The new system, the 360/67, incor
porated dynamic address transla
t ion hardware and provided the 
basis for a general-purpose time
sharing, multiprogramming com
puter util ity called TSS/360.98 The 
TSS effort, performed indepen
dently of the work on CP/CMS, 
encountered many difficulties 
(typical of the large-scale soft
ware efforts of the mid-1960s). 
Meanwhile CP/CMS was success
fully moved to the 360/67, and 
eventually it superseded the TSS 
effort. CP/CMS evolved into VM/ 
370, which became available in 
1972 for the virtual storage mod
els of the IBM 370 series." 

CTSS, successfully used at 
MIT through 1974, most strongly 
influenced the design of CP/CMS. 
The CP/CMS designers found that 
the CTSS design was difficult to 
work wi th. They felt that a more 
modular approach would be 

systems to determine if upgrades 
are worthwhile; this may be done 
in parallel wi th production activity. 

Processes running on a vir
tual machine are not controlled 
by CP, but rather by the actual 
operating system running on that 
virtual machine. The operating 
systems running on virtual 
machines perform their full range 
of functions, including storage 
management, processor schedul
ing, input/output control, protect
ing users from one another, 
protecting the operating system 
from the users, spooling, multi
programming, job and process 
control, error handling, and so on. 

VM simulates an entire 
machine dedicated to one user. A 
user at a VM virtual machine sees 
the equivalent of a complete real 
machine, rather than many users 
sharing one set of resources. 

CP/CMS began as an experi
mental system in 1964. It was to 
be a second-generation timeshar
ing system based on IBM System/ 
360 computers.97 Originally devel
oped for local use at the IBM 
Cambridge Scientific Center, it 
soon gained favor as a tool for 
evaluating the performance of 
other operating systems. 

Early History of the VM Operating System (Cont.) 
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Figure 10.32 | Virtual machine multiprogramming. 

Web Resources 
www.redhat .com/docs/manuals/ l inux/RHL-8.O-Manual / 
admin-pr imer/s1-memory-concepts.html 
Overview of virtual memory from Red Hat (a Linux vendor). 
www.howstuffworks.com/virtual-memory.htm 
Overview of virtual memory. 
www.memorymanagement.org 
Provides a glossary and guide to physical and virtual memory 
management. 
deve lope r . i n te l . com 
Provides technical documentation regarding Intel products, 
including Pentium and Itanium processors. Their system pro
grammer guides (e.g., for the Pentium 4 processor, devel
oper . in te l .com/design/Pent ium4/manuals / ) provide 
information on how memory is organized and accessed in Intel 
systerns. 

www-3.ibm.com/chips/techlib/techlib.nsf/product-
fami l ies / 
PowerPC_Microprocessors_and_Embedded_Processors 
Provides technical documentation regarding PowerPC proces
sors, found in Apple computers. Descriptions of virtual mem
ory management in these processors is located in the software 
reference manuals (e.g., the PowerPC 970, found in Apple G5 
computers, www-3. ibm.com/chips/ techl ib / techl ib .nsf / 
products/PowerPC_970_Microprocessor). 

h21007.www2.hp.com/dspp/tech/ 
tech_TechDocumentDetai1Page_IDX/ 
1,1701,958!13!253,00.html 
Describes virtual memory organization for PA-RISC proces
sors. PA-RISC is primarily used in high-performance environ
ments. See also cpus .hp .com/ technica l_references / 
pari´sc.shtml. 

addresses. Whenever a process accesses a virtual address, it 
must translate the virtual addresses to a physical address; 
this is done by the memory management unit (MMU). 

A process's virtual address space, V, is the range of 
virtual addresses that it may reference. The range of physi
cal addresses available on a particular computer system is 
called that computer's real address space, R. If we are to 

Virtual memory solves the problem of limited memory space 
by creating the illusion that more memory exists than is 
available in the system. There are two types of addresses in 
virtual memory systems: those referenced by processes and 
those available in main memory. The addresses that pro
cesses reference are called virtual addresses. The addresses 
available in main memory are called physical (or real) 
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block table to form the real address of the entry for block b 
in the block map table. This entry contains the address, b'. 
for the start of block b in main memory. The system then 
adds the displacement, d, to the block start address, b', to 
form the desired real address, r. 

Paging uses a fixed-size block mapping; pure paging 
systems do not combine segmentation with paging. A virtual 
address in a paging system is an ordered pair (p, d), where p 
is the number of the page in virtual memory on which the 
referenced item resides, and d is the displacement within 
page p at which the referenced item is located. When the sys
tem transfers a page from secondary storage to main mem
ory, the system places the page in a main memory block, 
called a page frame, that is the same size as the incoming 
page. Page frames begin at physical memory addresses that 
are integral multiples of the fixed page size. The system may 
place an incoming page in any available page frame. 

Dynamic address translation under paging is similar 
to block address translation. A running process references 
a virtual memory address v = (p,d).A page mapping mech
anism uses the value of the page table origin register to 
locate the entry for page p in the process's page map table 
(often simply called the page table). The corresponding 
page table entry (PTE) indicates that page p is in page 
frame p' (p' is not a physical memory address). The real 
memory address, r, corresponding to v is formed by concat
enating p' and the displacement into the page frame, d. 
which places p' in the most-significant bits of the real mem
ory address and d in the least-significant bits. 

When a process references a page that is not in main 
memory, the processor generates a page fault, which 
invokes the operating system to load the missing page into 
memory from secondary storage. In the PTE for this page, 
a resident bit, r, is set to 0 if the page is not in main memory 
and 1 if the page is in main memory. 

Page address translation can be performed by direct 
mapping, associative mapping or combined direct/associa
tive mapping. Due to the cost of high-speed, location-
addressed cache memory and the relatively large size of 
programs, maintaining the entire page table in cache mem
ory is often not viable, which limits the performance of 
direct-mapping page address translation because the page 
table must then be stored in much slower main memory. 
One way to increase the performance of dynamic address 
translation is to place the entire page table into a content-
addressed (rather than location-addressed) associative 
memory, which has a cycle time perhaps an order of magni
tude faster than main memory. In this case, every entry in 
the associative memory is searched simultaneously for page 

permit a user's virtual address space to be larger than its 
real address space, we must provide a means for retaining 
programs and data in a large auxiliary storage. A system 
normally accomplishes this by employing a two-level stor
age scheme consisting of main memory and secondary stor
age. When the system is ready to run a process, the system 
loads the process's code and data from secondary storage 
into main memory. Only a small portion of a process's code 
and data needs to be in main memory for that process to 
execute. 

Dynamic address translation (DAT) mechanisms 
convert virtual addresses to physical addresses during exe
cution. Systems that use DAT exhibit the property that the 
contiguous addresses in a process's virtual address space 
need not be contiguous in physical memory—this is called 
artificial contiguity. Dynamic address translation and artifi
cial contiguity free the programmer from concerns about 
memory placement (e.g., the programmer need not create 
overlays to ensure the system can execute the program). 
Dynamic address translation mechanisms must maintain 
address translation maps indicating which regions of a pro
cess's virtual address space, V, are currently in main mem
ory, and where they are located. 

Virtual memory systems cannot afford to map 
addresses individually, so information is grouped into 
blocks, and the system keeps track of where in main mem
ory the various virtual memory blocks have been placed. 
When blocks are the same size, they are called pages and 
the associated virtual memory organization technique is 
called paging. When blocks may be of different sizes, they 
are called segments, and the associated virtual memory 
organization technique is called segmentation. Some sys
tems combine the two techniques, implementing segments 
as variable-size blocks composed of fixed-size pages. 

In a virtual memory system with block mapping, the 
system represents addresses as ordered pairs. To refer to a 
particular item in the process's virtual address space, the 
process specifies the block in which the item resides, and 
the displacement (or offset) of the item from the start of 
the block. A virtual address, v, is denoted by an ordered 
pair (b, d), where b is the block number in which the refer
enced item resides, and d is the displacement from the start 
of the block. The system maintains in memory a block map 
table for each process. The real address, a, that corresponds 
to the address in main memory of a process's block map 
table is loaded into a special processor register called the 
block map table origin register. During execution, the pro
cess references a virtual address v = (b, d).The system adds 
the block number, b, to the base address, a, of the process's 
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p. In the vast majority of systems, using a cache memory to 
implement pure direct mapping or an associative memory 
to implement pure associative mapping is too costly. 

As a result, many designers have chosen a compro
mise scheme that offers many of the advantages of the 
cache or associative memory approach but at a more mod
est cost. This approach uses an associative memory, called 
the translation lookaside buffer (TLB), capable of holding 
only a small percentage of the complete page table for a 
process. The page table entries maintained in this map typi
cally correspond to the rhost-recently referenced pages 
only, using the heuristic that a page referenced recently in 
the past is likely to be referenced again in the near future. 
This is an example of locality (more specifically of temporal 
locality —locality in time). When the system locates the 
mapping for p in the TLB, it experiences a TLB hit; other
wise a TLB miss occurs, requiring the system to access 
slower main memory. Empirically, due to the phenomenon 
of locality, the number of entries in the TLB does not need 

to be large to achieve good performance. 
Multilevel (or hierarchical) page tables enable the 

system to store in discontiguous locations in main memory 
those portions of a process's page table that the process is 
using. These layers form a hierarchy of page tables, each 
level containing a table that stores pointers to tables in the 
level below. The bottom-most level is comprised of tables 
containing address translations. Multilevel page tables can 
reduce memory overhead compared to a direct-mapping 
system, at the cost of additional accesses to main memory 
to perform address translations that are not contained in 
the TLB. 

An inverted page table stores exactly one PTE in 
memory for each page frame in the system. The page tables 
are inverted relative to traditional page tables because the 
PTEs are indexed by page frame number rather than vir
tual page number. Inverted page tables use hash functions 
and chaining pointers to map a virtual page to an inverted 
page table entry, which yields a page frame number. The 
overhead incurred by accessing main memory to follow 
each pointer in an inverted page table's hash collision chain 
can be substantial. Because the size of the inverted page 
table must remain fixed to provide direct mappings to page 
frames, most systems employ a hash anchor table that 
increases the range of the hash function to reduce colli
sions, at the cost of an additional memory access. 

Enabling sharing in multiprogramming systems 
reduces the memory consumed by programs that use com
mon data and/or instructions, but requires that the system 
identify each page as either sharable or nonsharable. If the 
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page table entries of different processes point to the same 
page frame, the page frame is shared by each of the pro
cesses. Copy-on-write uses shared memory to reduce pro
cess creation time by sharing a parent's address space with 
its child. Each time a process writes to a shared page, the 
operating system copies the shared page to a new page that 
is mapped to that process's address space. The operating 
system can mark these shared pages as read-only so that 
the system generates an exception when a process attempts 
to modify a page. To handle the exception, the operating 
system allocates an unshared copy of the page to the pro
cess that generated the exception. Copy-on-write can result 
in poor performance if the majority of a process's shared 
data is modified during program execution. 

Under segmentation, a program's data and instruc
tions are divided into blocks called segments. Each seg
ment contains a meaningful portion of the program, such as 
a procedure or an array. Each segment consists of contigu
ous locations; however, the segments need not be the same 
size nor must they be adjacent to one another in main 
memory. A process may execute while its current instruc
tions and referenced data are in segments in main memory. 
If a process references memory in a segment not currently 
resident in main memory, the virtual memory system must 
retrieve that segment from secondary storage. The place
ment strategies for segmentation are identical to those used 
in variable-partition multiprogramming. 

A virtual memory segmentation address is an ordered 
pair v = (s, d), where s is the segment number in which the 
referenced item resides, and d is the displacement within 
segment s at which the referenced item is located. The sys
tem adds the segment number, s, to the segment map table's 
base address value, b, located in the segment map table ori
gin register. The resulting value, b + s, is the location of the 
segment map table entry. If the segment currently resides in 
main memory, the segment map table entry contains the seg
ment's physical memory address, s'. The system then adds 
the displacement, d, to this address to form the referenced 
location's real memory address, r = s' + d. We cannot simply 
concatenate s' and d, as we could in a paging system, because 
segments are of variable size. If the segment is not in main 
memory, then a missing-segment fault is generated, causing 
the operating system to gain control and load the referenced 
segment from secondary storage. 

Each reference to a segment is checked against the 
segment length, /, to ensure that it falls within the seg
ment's range. If it does not, then a segment-overflow excep
tion is generated, causing the operating system to gain 
control and terminate the process. Each reference to the 



the displacement into the page table to locate the PTE con
taining the page frame number p'. The displacement, d, is 
then concatenated to p' to form the real memory address. 
This translation scheme assumes that the process has made 
a valid memory reference and that every piece of informa
tion required for the process is located in main memory. 
Under many conditions however, the address translation 
may require extra steps or may fail. 

In segmentation/paging systems, two processes share 
memory when each process has a segment map table entry 
that points to the same page table. Sharing, whether in paged 
systems, segmented systems, or segmentation/paging sys
tems, requires careful management by the operating system. 

The IA-32 Intel architecture supports either pure seg
mentation or segmentation/paging virtual memory. The set 
of addresses contained in each segment is called a logical 
address space; segments are placed in any available loca
tion in the system's linear address space, which is a 32-bit 
(i.e., 4GB) virtual address space. Under pure segmentation, 
a referenced item's linear address is its address in main 
memory. If paging is enabled, the linear address space is 
divided into fixed-size page frames that are mapped to 
main memory. Segment address translation is performed by 
a direct mapping that uses high-speed processor registers to 
store segment map table origin registers in the global 
descriptor table register (GDTR) or in the local descriptor 
table register (TDTR), depending on the number of seg
ment map tables in the system. The processor also stores 
segment numbers called segment descriptors in high-speed 
registers to improve address translation performance. 
Under segmentation/paging, segments are placed in the 
4GB linear address space, which is divided into page 
frames that map to main memory. The IA-32 architecture 
uses a two-level page table to perform translations from 
page numbers to page frame numbers, which are concate
nated with the page offset to form a real address. 

segment is also checked against the protection bits in the 
segment map table entry to determine if the operation is 
allowed. If it is not, then a segment-protection exception is 
generated, causing the operating system to gain control and 
terminate the process. Sharing segments can incur less 
overhead than sharing in a direct-mapped pure paging sys
tem, because sharing information for each segment (which 
may consume several pages of memory) is maintained in 
one segment map table entry. 

One scheme for implementing memory protection in 
segmentation systems is the use of memory protection 
keys. In this case, each process is associated with a value, 
called a protection key. When the process references a par
ticular segment, it checks the protection key of the block 
containing the referenced item. If the protection key for 
the processor and the requested block are the same, the 
process can access the segment. The operating system can 
exercise further protection control by specifying how a seg
ment may be accessed and by which processes. This is 
accomplished by assigning each process certain access 
rights, such as read, write, execute and append. By either 
allowing or denying each of these access types, it is possible 
to create different access control modes. 

In a combined segmentation/paging system, segments 
occupy one or more pages. All the pages of a segment need 
not be in main memory at once, and pages contiguous in 
virtual memory need not be contiguous in main memory. 
Under this scheme, a virtual memory address is imple
mented as an ordered triple v = (s,p, d), where s is the seg
ment number, p the page number within the segment and d 
is the displacement within the page at which the desired 
item is located. When a process references a virtual address 
v = (s,p,d), the system attempts to find the corresponding 
page frame number p' in the TLB. If it is not present, the 
system first searches the segment map table, which points 
to the base of a page table, then uses the page number p as 
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Key Terms 
access control mode—Set of privileges (e.g., read, write, exe

cute and/or append) that determine how a page or seg
ment of memory can be accessed. 

access right—Privilege that determines which resources a pro
cess may access. In memory, access rights determine which 
pages or segments a process can access, and in what man
ner (i.e., read, write, execute and/or append). 

address translation map—Table that assists in the mapping of 
virtual addresses to their corresponding real memory 
addresses. 

append access—Access right that enables a process to write 
additional information at the end of a segment but not to 
modify its existing contents; see also execute access, read 
access and write access. 

artificial contiguity—Technique employed by virtual memory 
systems to provide the illusion that a program's instruc
tions and data are stored contiguously when pieces of 
them may be spread throughout main memory; this sim
plifies programming. 



associative mapping—Content-addressed associative memory 
that assists in the mapping of virtual addresses to their 
corresponding real memory addresses; all entries of the 
associative memory are searched simultaneously. 

associative memory—Memory that is searched by content, not 
by location; fast associative memories can help implement 
high-speed dynamic address translation mechanisms. 

block—Portion of a memory space (either real or virtual) 
defined by a range of contiguous addresses. 

block map table—Table containing entries that map each of a 
process's virtual blocks to a corresponding block in main 
memory (if there is one). Blocks in a virtual memory sys
tem are either segments or pages. 

block map table origin register—Register that stores the 
address in main memory of a process's block map table; 
this high-speed register facilitates rapid virtual address 
translation. 

block mapping—Mechanism that, a virtual memory system, 
reduces the number of mappings between virtual memory 
addresses and real memory addresses by mapping blocks 
in virtual memory to blocks in main memory. 

chaining (hash tables)—Technique that resolves collisions in a 
hash table by placing each unique item in a data structure 
(typically a linked list). The position in the hash table at 
which the collision occurred contains a pointer to that 
data structure. 

CMS Batch Facility ( V M ) - V M Component that allows the 
user to run longer jobs in a separate virtual machine so 
that the user can continue interactive work. 

virtual machine operating system—Software that creates the 
virtual machine. 

collision (hash tables)—Event that occurs when a hash function 
maps two different items to the same position in a hash 
table. Some hash tables use chaining to resolve collisions. 

Conversational Monitor System (CMS) (VM) — Component of 
VM that is an interactive application development envi
ronment. 

Control Program (CP) (VM) —Component of VM that runs 
the physical machine and creates the environment for the 
virtual machine. 

copy-on-write—Mechanism that improves process creation 
efficiency by sharing mapping information between par
ent and child until a process modifies a page, at which 
point a new copy of the page is created and allocated to 
that process. This can incur substantial overhead if the 
parent or child modifies many of the shared pages. 

direct mapping—Address translation mechanism that assists in 
the mapping of virtual addresses to their corresponding 

real addresses, using an index into a table stored in loca
tion-addressed memory. 

displacement—Distance of an address from the start of a 
block, page or segment, also called offset. 

dynamic address translation (DAT)—Mechanism that con
verts virtual addresses to physical addresses during execu
tion; this is done at extremely high speed to avoid slowing 
execution. 

execute access—Access right that enables a process to execute 
instructions from a page or segment; see also read access, 
write access and append access. 

general protection fault (GPF) (IA-32 Intel architecture) — 
Occurs when a process references a segment to which it 
does not have appropriate access rights or references an 
address outside of the segment. 

global descriptor table (GDT) (IA-32 Intel architecture) — 
Segment map table that contains mapping information for 
process segments or local descriptor table (LDT) seg
ments, which contain mapping information for process 
segments. 

granularity bit (IA-32 Intel architecture)—Bit that determines 
how the processor interprets the size of each segment, 
specified by the 20-bit segment limit. When the bit is off, 
segments range in size from 1 byte to 1MB, in 1-byte 
increments. When the bit is on, segments range in size 
from 4KB to 4GB, in 4KB increments. 

hash anchor table—Hash table that points to entries in an 
inverted page table. Increasing the size of the hash anchor 
table decreases the number of collisions, which improves 
the speed of address translation, at the cost of the 
increased memory overhead required to store the table. 

hash function—Function that takes a number as input and 
returns a number, called a hash value, within a specified 
range. Hash functions facilitate rapidly storing and 
retrieving information from hash tables. 

hash value—Value returned by a hash function that corre
sponds to a position in a hash table. 

hash table—Data structure that indexes items according to 
their hash values; used with hash functions to rapidly 
store and retrieve information. 

IBSYS —Operating system for the IBM 7090 mainframe. 
Interactive Problem Control System (IPCS) ( V M ) - V M com

ponent that provides online analysis and correction of VM 
software problems. 

inverted page table—Page table containing one entry for each 
page frame in main memory. Inverted page tables incur 
less table fragmentation than traditional page tables, 
which typically maintain in memory a greater number of 
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of Tasks." OS/360-MVT evolved into MVS, the ancestor 
of the current IBM mainframe operating system z/OS. 

page—Fixed-size set of contiguous addresses in a process's vir
tual address space that is managed as one unit. A page 
contains portions of a process's data and/or instructions 
and can be placed in any available page frame in main 
memory. 

page directory entry (IA-32 Intel architecture) — Entry in a 
page directory that maps to the base address of a page 
table, which stores page table entries. 

page fault—Fault that occurs as the result of an error when a 
process attempts to access a nonresident page, in which 
case the operating system can load it from disk. 

page frame—Block of main memory that can store a virtual 
page. In systems with a single page size, any page can be 
placed in any available page frame. 

page global directory—In a two-tiered multilevel page table, 
the page global directory is a table of pointers to portions 
of a process's page table. Page global directories are the 
top level of a multilevel page table hierarchy. 

page map table—See page table. 
page table origin register—Register that holds the location of 

a process's page table in main memory; having this infor
mation accessible in a high-speed register facilitates rapid 
virtual-to-physical address translation. 

page table—Table that stores entries that map page numbers 
to page frames. A page table contains an entry for each of 
a process's virtual pages. 

page table entry (PTE)—Entry in a page table that maps a vir-
tual page number to a page frame number. Page table 
entries store other information about a page, such as how 
the page may be accessed and whether the page is resi
dent. 

paging—Virtual memory organization technique that divides 
an address space into fixed-size blocks of contiguous 
addresses. When applied to a process's virtual address 
space, the blocks are called pages, which store process 
data and instructions. When applied to main memory, the 
blocks are called page frames. A page is stored on second-
ary storage and loaded into a page frame if one is avail
able. Paging trivializes the memory placement decision 
and does not incur external fragmentation (for systems 
that contain a single page size); paging does incur internal 
fragmentation. 

physical address—Location in main memory. 
Physical Address Extension (PAE) (IA-32 Intel architec-

ture)—Mechanism that enables IA-32 processors to 
address up to 64GB of main memory. 

page table entries than page frames. Hash functions map 
virtual page numbers to an index in the inverted page 
table. 

linear address space (IA-32 Intel architecture)—32-bit (4GB) 
virtual address space. Under pure segmentation, this 
address space is mapped directly to main memory. Under 
segmentation/paging, this address space is divided into 
page frames that are mapped to main memory. 

local descriptor table (LDT) (IA-32 Intel architecture)—Seg
ment map table that contains mapping information for 
process segments. The system may contain up to 8,191 
LDTs, each containing 8,192 entries. 

locality—Empirical phenomenon describing events that are 
closely related in space or time. When applied to memory 
access patterns, spatial locality states that when a process 
references a particular address, it is also likely to access 
nearby addresses; temporal locality states that when a 
process references a particular address, it is likely to refer
ence it again soon. 

logical address space (IA-32 Intel architecture) —Set of 
addresses contained in a segment. 

Memory Management Unit (MMU)—Special-purpose hard
ware that performs virtual-to-physical address translation. 

missing-segment fault—Fault that occurs when a process refer
ences a segment that is not currently in main memory. The 
operating system responds by loading the segment from 
secondary storage into main memory when space is avail
able. 

multilevel paging system—Technique that enables the system 
to store portions of a process's page table in discontiguous 
locations in main memory and store only those portions 
that a process is actively using. Multilevel page tables are 
implemented by creating a hierarchy of page tables, each 
level containing a table that stores pointers to tables in the 
level below. The bottom-most level is comprised of tables 
containing the page-to-page-frame mappings. This 
reduces memory waste compared to single-level page 
tables, but incurs greater overhead due to the increased 
number of memory accesses required to perform address 
translation when corresponding mappings are not con
tained in the TLB. 

Multiple Virtual Spaces (MVS)—IBM operating system for 
System/370 mainframes allowing any number of 16MB 
virtual address spaces. 

offset—See displacement. 
OS/360—Operating system for the IBM System/360 main

frames. OS/360 had two major options, MFT and MVT, 
which stood for "Multiprogramming with a Fixed number 
of Tasks" and "Multiprogramming with a Variable number 
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segment-overflow exception—Exception that occurs when a 
process attempts to access an address that is outside a seg
ment. 

segment-protection exception—Exception that occurs when a 
process attempts to access a segment in ways other than 
those specified by its access control mode (e.g., attempting 
to write to a read-only segment). 

segment selector (IA-32 Intel architecture) — 16-bit value indi
cating the offset into the segment map table at which the 
corresponding segment descriptor (i.e., segment map 
table entry) is located. 

table fragmentation—Wasted memory consumed by block 
mapping tables; small blocks tend to increase the number 
of blocks in the system, which increases table fragmenta
tion. 

translation lookaside buffer (TLB)—High-speed associative 
memory map that holds a small number of mappings 
between virtual page numbers and their corresponding 
page frame numbers. The TLB typically stores recently 
used page table entries, which improves performance for 
processes exhibiting locality. 

virtual address—Address that a process accesses in a virtual 
memory system; virtual addresses are translated to real 
addresses dynamically at execution time. 

virtual address space—Range of virtual addresses that a pro
cess may reference. 

virtual memory—Technique that solves the problem of limited 
memory by providing each process with a virtual address 
space (potentially larger than the system's physical 
address space) that the process uses to access data and 
instructions. 

write access—Access right that enables a process to modify the 
contents of a page or segment; see also execute access, 
read access and append access. 

z/OS—IBM operating system for zSeries mainframes and the 
latest version of MVS. 

physical address space—Range of physical addresses corre
sponding to the size of main memory in a given computer. 
The physical address space may be (and is often) smaller 
than each process's virtual address space. 

process table—Table of known processes. In a segmentation/ 
paging system, each entry points to a process's virtual 
address space, among other items. ' 

pure paging—Memory organization technique that employs 
paging only, not segmentation. 

read access—Access right that enables a process to read data 
from a page or segment; see also execute access, write 
access and append access. 

real address—See physical address. 
Remote Spooling Communications Subsystem (RSCS) 

(VM) — Component of VM that provides the capability to 
send and receive files in a distributed system. 

segment—Variable-size set of contiguous addresses in a pro
cess's virtual address space that is managed as one unit. A 
segment is typically the size of an entire set of similar 
items, such as a set of instructions in a procedure or the 
contents of an array, which enables the system to protect 
such items with fine granularity using appropriate access 
rights. For example, a data segment typically is assigned 
read-only or read/write access, but not execute access. Sim
ilarly, a segment containing executable instructions typi
cally is assigned read/execute access, but not write access. 
Segments tend to create external fragmentation in main 
memory but do not suffer from internal fragmentation. 

segment descriptor (IA-32 Intel architecture) — Segment map 
table entry that stores a segment's base address, present 
bit, limit address and protection bits. 

segment map table origin register—Register that holds the 
location of a process's segment map table in main mem
ory; having this information accessible in a high-speed 
register facilitates rapid virtual-to-physical address trans
lation. 
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10.3 Explain the various techniques used for mapping virtual 
addresses to physical addresses under paging. 

10.4 Discuss the relative merits of each of the following vir
tual memory mapping techniques. 

a. direct mapping 
b. associative mapping 
c. combined direct/associative mapping 

10.1 Give several reasons why it is useful to separate a pro
cess's virtual memory space from its physical memory space. 

10.2 One attraction of virtual memory is that users no longer 
have to restrict the size of their programs to make them fit into 
physical memory. Programming style becomes a freer form of 
expression. Discuss the effects of such a free programming 
style on performance in a multiprogramming virtual memory 
environment. List both positive and negative effects. 
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b. How do virtual memory systems with dynamic mem
ory allocation greatly reduce the amount of chunk 
fragmentation over that experienced in real memory 
systems? 

c. What effect would smaller page sizes have on chunk 
fragmentation? 

d. What considerations, both practical and theoretical, 
prevent the complete elimination of chunk fragmen
tation? 

e. What can each of the following do to minimize chunk 
fragmentation? 
i. the programmer 
ii. the hardware designer 
iii. the operating system designer 

10.12 Explain the mapping of virtual addresses to physical 
addresses under combined segmentation/paging. 

10.13 In multiprogramming environments, code and data shar
ing can greatly reduce the main memory needed by a group of 
processes to run efficiently. For each of the following types of 
systems, outline briefly how sharing can be implemented. 

a. fixed-partition multiprogramming 
b. variable-partition multiprogramming 
c. paging 
d. segmentation 
e. combined segmentation/paging 

10.14 Why is sharing of code and data so much more natural in 
virtual memory systems than in real memory systems? 

10.15 Discuss the similarities and differences between paging 
and segmentation. 

10.16 Compare and contrast pure segmentation with segmen-
tation/paging combined. 

10.17 Suppose you are asked to implement segmentation on a 
machine that has paging hardware but no segmentation hard
ware. You may use only software techniques. Is this possible? 
Explain your answer. 

10.18 Suppose you are asked to implement paging on a 
machine that has segmentation hardware but no paging hard
ware. You may use only software techniques. Is this possible? 
Explain your answer. 

10.19 As the chief designer of a new virtual memory system you 
have been given the choice of implementing either paging or 
segmentation, but not both. Which would you choose? Why? 

10.20 Suppose that economical associative memory were to 
become available. How might such associative memory be 
incorporated into future computer architectures to improve 

10.5 Explain the mapping of virtual addresses to physical 
addresses under segmentation. 

10.6 Consider a pure paging system that uses 32-bit addresses 
(each of which specifies one byte of memory), contains 128MB 
of main memory and has a page size of 8KB. 

a. How many page frames does the system contain? 
b. How many bits does the system use to maintain the 

displacement, d? 
c. How many bits does the system use to maintain the 

page number,p? 

10.7 Consider a pure paging system that uses three levels of 
page tables and 64-bit addresses. Each virtual address is the 
ordered set v = (p,m, t, d), where the ordered triple (p, m, t) is 
the page number and d is the displacement into the page. Each 
page table entry is 64 bits (8 bytes). The number of bits that 
store p is np, the number of bits that store m is nm and the 
number of bits to store t is nt. 

a. Assume np = nm = nt= 18. 
i. How large is the table at each level of the multi

level page table? 
ii. What is the page size, in bytes? 

b. Assume np = nm = nt = 14. 
i. How large the table at each level of the multi

level page table? 
ii. What is the page size, in bytes? 

c. Discuss the trade-offs of large and small table sizes. 

10.8 Explain how memory protection is implemented in vir
tual memory systems with segmentation. 

10.9 Discuss the various hardware features useful for imple
menting virtual memory systems. 

10.10 Discuss how fragmentation manifests itself in each of 
the following types of virtual memory systems. 

a. segmentation 
b. paging 
c. combined segmentation/paging 

10.11 In any computer system, regardless of whether it is a real 
memory system or a virtual memory system, the computer will 
rarely reference all the instructions or data brought into main 
memory. Let us call this chunk fragmentation, because it is the 
result of handling memory items in blocks or chunks rather 
than individually. Chunk fragmentation might actually account 
for more waste of main memory than all other types of frag
mentation combined. 

a. Why, then, has chunk fragmentation not been given 
the same coverage in the literature as other forms of 
fragmentation? 
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the performance of the hardware, the operating system, and 
user programs? 

10.21 Give as many ways as you can in which executing a pro
gram on a virtual memory system differs from executing the 
same program on a real memory system. Do these observa
tions lead you to favor real memory approaches or virtual 
memory approaches? 

10.22 Give as many reasons as you can why locality is a rea
sonable phenomenon. Give as many examples as you can of 
situations in which locality simply does not apply. 

10.23 One popular operating system provides separate virtual 
address spaces to each of its processes, while another has all 
processes share a single large address space. Compare and 
contrast these two different approaches. 

10.24 Virtual address translation mechanisms are not without 
their costs. List as many factors as you can that contribute to 
the overhead of operating a virtual-address-to-physical-
address translation mechanism. How do these factors tend to 
"shape" the hardware and software of systems that support 

such address translation mechanisms? 

10.25 The Multics system, as originally designed, provided for 
two page sizes. It was believed that the large number of small 
data structures could occupy small pages, and that most other 
procedures and data structures would best occupy one or more 
large pages. How does a memory organization scheme that 
supports multiple page sizes differ from one that supports a 
single page size? Suppose a system were designed to support n 
page sizes. How would it differ from the Multics approach? Is 
a system that supports a large number of page sizes essentially 
equivalent to a segmentation system? Explain. 

10.26 With multilevel page tables, a process's PTE can be ini
tialized when the process is first loaded, or each PTE can be 
initialized the first time its corresponding page is referenced. 

Similarly, the entire multilevel page table structure can be 
maintained in main memory, or parts of it can be sent to sec-

ondary storage. What are the costs and benefits of each 
approach? 

10.27 Why did virtual memory emerge as an important 
scheme? Why did real memory schemes prove inadequate? 
What current trends could conceivably negate the usefulness 
of virtual memory? 

10.28 What aspect of paging with a single page size makes 
page-replacement algorithms so much simpler than segment-
replacement algorithms? What hardware or software features 
might be used in support of segment replacement that could 
make it almost as straightforward as page replacement in a sys
tem with a single page size? 

10.29 What aspect of content-addressed associative memory 
will probably ensure that such memory will remain far more 
costly than location-addressed cache memory? 

10.30 Suppose you are designing a portion of an operating sys
tem that requires high-speed information retrieval (such as a 
virtual address translation mechanism). Suppose that you have 
been given the option of implementing your search-and-
retrieval mechanism with either pure direct mapping, using a 
high-speed cache, or pure associative mapping. What factors 
would influence your choice? What interesting kind(s) of ques
tion(s) could conceivably be answered by an associative search 
(in one access) that cannot be answered in a single direct-
mapped search? 

10.31 Deciding what entries to keep in the TLB is crucial to 
the efficient operation of a virtual memory system. The per
centage of references that get "resolved" via the TLB is called 
the TLB hit ratio. Compare and contrast the performance of 
virtual address translation systems that achieve a high (near 
100 percent) hit ratio versus those that achieve a low (near 0 
percent) hit ratio. List several heuristics not mentioned in the 
text that you believe would achieve high hit ratios. Indicate 
examples of how each might fail, i.e., under what circum
stances would these heuristics place the "wrong" entries into 
the TLB? 
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10.34 Compare and contrast the 64-bit Hewlett-Packard PA-
RISC architecture virtual memory implementation with that of 
the 32-bit Intel IA-32 architecture. See deve loper . in te l . com/ 
design/Pentium4/manuals/ and cpus.hp.com/technical_ 
r e fe rences /pa r i sc . shtml. 

10.35 Survey the differences between the virtual memory 
implementation in the 32-bit Intel IA-32 architecture and in 
the 64-bit IA-64 Intel architecture. See devel
oper . in te l .com/des ign/Pent ium4/manuals / and devel
oper . in te l . com/des ign / i t an ium/manuals / i i asdmanual . 
htm (select Volume 2: System Architecture). 

10.32 Describe how the IA-32 architecture enables processes 
to access up to 64GB of main memory. See devel-
oper .i ntel .com/design/Pentium4/manuals/ . 

10.33 Compare and contrast the IBM/Motorola PowerPC 
architecture virtual memory implementation with that of the 
IA-32 Intel architecture. Discuss how 64-bit processing affects 
memory organization in the PowerPC. See devel
oper . inte l .com/design/Pent ium4/manuals / and www-
3 . ibm.com/ch ips / t ech l ib / t ech l ib .ns f /p roduc t fami -
lies/PowerPC_Microprocessors_and_Embedded_ 
Processors. 
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tion, such as combined segmentation and paging, can be found 
in papers by Daley and Dennis106 and Denning.107 Jacob and 
Mudge108 provide an excellent survey of virtual memory orga
nization techniques and their implementations in modern sys
tems. Two popular textbooks on computer architecture that 
describe the implementations of MMUs are Patterson and 
Hennessy's Computer Organization and Design109 and Blaauw 
and Brooks's Computer Architecture.110 The bibliography for 
this chapter is located on our Web site at www.deitel.com/ 
books/os3e/Bibliography.pdf. 

The concept of virtual memory has been around for decades; 
an early comprehensive survey was produced by Denning.101 

The benefits of virtual memory systems spurred the develop
ment of specialized hardware to increase their performance 
and feasibility.102 Associative memories for dynamic address 
translation were presented by Hanlon,103 and their role in stor
ing TLB entries has been studied thoroughly.104 

Denning discusses paging in his work on virtual mem
ory; an in-depth treatment of segmentation is provided by 
Dennis.105 Further discussions on virtual memory organiza-
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What we anticipate seldom occurs; what we least expect generally happens. 
—Benjamin Disraeli— 

Time will run back and fetch the Age of Gold. 
—John Milton — 

Faultless to a fault. 
—Robert Browning— 

Condemn the fault and not the actor of it? 
—William Shakespeare— 

Gather up the fragments that remain, that nothing be lost. 
-John 6:12-
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Management 

Objectives 
After reading this chapter, you should understand: 

• the benefits and drawbacks of demand and anticipatory paging. 

• the challenges of page replacement. 

• several popular page-replacement strategies and how they compare to opti
mal page replacement. 

• the impact of page size on virtual memory performance. 

• program behavior under paging. 
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Chapter 9 discussed fetch, placement and replacement memory management strat
egies for real memory systems. Chapter 10 discussed virtual memory organization, 
focusing on pure paging systems, pure segmentation systems and hybridized seg
mentation/paging systems. In this chapter we discuss memory management in vir
tual memory systems. 

Virtual memory fetch strategies determine when a page or segment should be 
moved from secondary storage to main memory. Demand fetch strategies wait for a 
process to reference a page or segment before loading it into main memory. Antici
patory fetch strategies use heuristics to predict which pages or segments a process 
will soon reference—if the likelihood of reference is high and if space is available, 
then the system brings the page or segment into main memory before the process 
explicitly references it, thus improving performance when the reference occurs. 

Paging systems—either pure paging or segmentation/paging systems—that 
use only one page size trivialize the placement decision because an incoming page 
may be placed in any available page frame. Segmentation systems require place
ment strategies similar to those used in variable-partition multiprogramming (see 
Section 9.9, Variable-Partition Multiprogramming). 

Replacement strategies determine which page or segment to replace to pro
vide space for an incoming page or segment. In this chapter, we concentrate on 
page-replacement strategies that, when properly implemented, help optimize per
formance in paging systems. The chapter includes a discussion of Denning's Work
ing Set Model of program behavior, which provides a framework for observing, 
analyzing and improving program execution in paging systems.1 

11.1 Introduction 
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1. Explain the difference between demand fetch strategies and anticipatory fetch strategies 
in virtual memory systems. Which one requires more overhead? 

2. Why are placement strategies trivial in paging systems that use only one page size? 

Ans: 1) Demand fetch strategies load pages or segments into main memory only when a 
process explicitly references them. Anticipatory fetch strategies attempt to predict which 
pages or segments a process will need and load them ahead of time. Anticipatory fetch strat
egies require more overhead because the system must spend time determining the likelihood 
that a page or segment will be referenced; as we will see, this overhead can often be small. 
2) Because any incoming page can be placed into any available page frame. 

Self Review 

Central to most memory management strategies is the concept of locality—that a 
process tends to reference memory in highly localized patterns.2'3 Locality mani
fests itself in both time and space. Temporal locality is locality over time. For exam
ple, if the weather is sunny in a certain town at 3 p.m., then there is a good chance 
(but certainly no guarantee) that the weather in that town was sunny at 2:30 p.m. 

11.2 Locality 



and will be sunny at 3:30 p.m. Spatial locality means that nearby items tend to be 
similar. Again, considering the weather, if it is sunny in one town, then it is likely, 
but not guaranteed, to be sunny in nearby towns. 

Locality is also observed in operating systems environments, particularly in 
the area of memory management. It is an empirical (i.e., observed) property rather 
than a theoretical one. It is never guaranteed but is often highly likely. In paging 
systems, for example, we observe that processes tend to favor certain subsets of 
their pages, and that these pages tend to be near one another in a process's virtual 
address space. This behavior does not preclude the possibility that a process may 
make a reference to a new page in a different area of its virtual memory. 

Actually, locality is quite reasonable in computer systems, when one considers 
the way programs are written and data is organized. Loops, functions, procedures 
and variables used for counting and totalling all involve temporal locality. In these 
cases, recently referenced memory locations are likely to be referenced again in the 
near future. Array traversals, sequential code execution and the tendency of pro
grammers (or compilers) to place related variable definitions near one another all 
involve spatial locality—they all tend to generate clustered memory references. 
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1. Does locality favor anticipatory paging or demand paging? Explain. 
2. Explain how looping through an array exhibits both spatial and temporal locality. 

Ans: 1) Locality favors anticipatory paging because it indicates that the operating system 
should be able to predict with reasonable probability the pages that a process will use. 
2) Looping through an array exhibits spatial locality because the elements of an array are 
contiguous in virtual memory. It exhibits temporal locality because the elements are gener
ally much smaller than a page. Therefore, references to two consecutive elements usually 
result in the same page being referenced twice within a short period of time. 

Self Review 

The simplest fetch policy implemented in virtual memory systems is demand pag
ing.4 Under this policy, when a process first executes, the system loads into main 
memory the page that contains its first instruction. Thereafter, the system loads a 
page from secondary storage to main memory only when the process explicitly ref
erences the page. There are several reasons for the appeal of this strategy. Comput-
ability results, specifically the Halting Problem, tell us that, in the general case, it is 
impossible to predict the path of execution a program will take (see the Operating 
Systems Thinking feature, Computer Theory in Operating Systems).5-6 Therefore, 
any attempt to preload pages in anticipation of their use might result in the wrong 
pages being loaded. The overhead incurred by preloading the wrong pages can 
impede the performance of the entire system. 

Demand paging guarantees that the system brings into main memory only 
those pages that processes actually need. This potentially allows more processes to 

11.3 Demand Paging 



occupy main memory—the space is not "wasted" by pages that may not be refer
enced for some time (or ever). 

Demand paging is not without its problems. A process in a demand-paged sys-
tem must accumulate pages one at a time. As it references each new page, the pro-
cess must wait while the system transfers that page to main memory. If the process 
already has many pages in main memory, then this wait time can be particularly 
costly, because a large portion of main memory is occupied by a process that cannot 
execute. This factor often affects the value of a process's space-time product—a 
measure of its execution time (i.e., how long it occupies memory) multiplied by the 
amount of space in main memory the process occupies (see the Operating Systems 
Thinking feature, Space-Time Trade-offs).7 The space-time product illustrates not 
only how much time a process spends waiting, but how much main memory cannot 
be used while it waits. Figure 11.1 illustrates the concept. The y-axis represents the 
number of page frames allocated to a process and the x-axis represents "wall clock" 
time. The space-time product corresponds to the area under the "curve" in the fig
ure; the dotted lines indicate that a process has referenced pages that are not in 
main memory and must be loaded from the backing store. The shaded region repre-
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Operating Systems Thinking 
Computer Theory in Operating Systems 
Computer science is rich in ele
gant theoretical fields. Computa-
bility theory helps us determine 
what kinds of things computer 
software, such as operating sys
tems, can and cannot do. The 
Halting Problem of computability 
theory tells us that in the general 
case, we cannot wri te a program 
to determine the execution path 
of another program. This has 
many ramifications in operating 
systems. If we could predict the 
execution path of a program, 

then we could for example, imple
ment perfect anticipatory 
resource allocation, so that the 
resources are ready (if at all possi
ble) when the process needs 
them, avoiding lengthy delays. 
Once we know what computers 
can and cannot do, complexity 
theory helps us determine 
whether those tasks can be per
formed efficiently and to charac
terize just how efficiently (or 
inefficiently) they can be per
formed. Automata theory helps 

us understand the power of dif
ferent classes of computing 
devices; as we discussed in 
Chapter 6, this helps us realize 
that modern computer systems 
are far too complex to allow 
exhaustive testing of all possible 
states of computer hardware and 
software. This last observation is 
truly a point to ponder, especially 
if you must build highly reliable 
systems. 



sents the process's space-time product while it is performing productive work. The 
unshaded region represents its space-time product while it waits for pages to be 
loaded from secondary storage. [Note: The wait period, F, is much larger than indi-
cated by the figure.] Thus, the unshaded region indicates the amount of time during 
which the process's memory allocation cannot be used. Reducing the space-time 
product of a process's page waits, in order to improve memory utilization, is an 
important goal of memory management strategies. As the average page-wait time 
increases, the benefit of demand paging decreases.8 
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1. Why is the space-time product of demand paging higher than that of anticipatory paging? 
2. How could demand paging (as compared to anticipatory paging) increase the degree of 

multiprogramming in a system? How could demand paging decrease the degree of multi-
programming in a system? 

A n s : 1) The reason is that the process has pages in memory that it is not using while it waits 
for its pages to be painstakingly demand-paged in, one at a time. Anticipatory paging also has a 
space-time product with associated waste. Pages brought into memory before they are refer-
enced occupy page frames that go unused, thus preventing other processes from using them. As 

Self Review 

Operating Systems Thinking 
Space-Time Trade-offs 

in Chapter 12, that maintaining 
redundant copies of data can 
result in improved system 
throughput. We wil l see, however 
that increasing the amount of 
memory available to a process 
does not always increase the 
speed at which it runs—we wil l 
study Belady's Anomaly which 
shows that in some circumstances, 
giving a process more memory 
could actually degrade perfor
mance. Fortunately, this occurs 
only in rare circumstances. 

operating system allocates more 
main memory to an executing 
program, for example, the pro
gram may run significantly faster. 
With less, more-expensive mem
ory, the operating system must 
manage the memory more exten
sively, incurring more processing 
overhead. With more abundant, 
cheaper memory, the operating 
system can manage the memory 
less intensively, perhaps making 
cruder decisions while consuming 
less processor power. We wil l see 
in the discussion of RAID systems 

Examples of the space-time trade
off are common in computing and 
other areas. When moving to a 
new apartment, if you have a 
larger truck, you can complete the 
move in less t ime, but you wil l 
have to pay more to rent the 
larger truck. When you study 
searching and sorting algorithms 
in data structures and algorithms 
classes, you see how performance 
can improve when more memory 
is available (e.g., hash tables). 
These trade-offs are common in 
operating systems as wel l . If the 



we will see, anticipatory paging brings these pages into main memory in groups, which gener
ally reduces the page-wait time compared to loading pages individually using demand paging. 
2) Demand paging could increase the degree of multiprogramming because the system brings 
into main memory only those pages that processes actually needed. Therefore, more processes 
can fit into physical memory. However, processes require more execution time because they 
need to retrieve pages from secondary storage more often (compared with being brought in as 
a group with anticipatory paging). While the operating system is retrieving pages from second
ary storage, the memory that the process takes up is wasted, and thus the degree of multipro-
gramming might decrease (over what is possible with anticipatory paging). 
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Figure 11.1 | Space-time product under demand paging. 

A central theme in resource management is that a resource's relative value influ
ences just how intensively the resource should be managed.9 As hardware costs 
continue their dramatic decline, the relative value of machine time to people time is 
reduced. Operating systems designers are constantly focused on reducing the 
amount of time people must wait for results from computers.10 

As we demonstrated in the preceding section, one way to reduce wait times is 
to avoid the delays in a demand-paged system. In anticipatory paging (also called 
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prefetching and prepaging), the operating system tries to predict the pages a pro
cess will need and to preload them when memory space is available. If the system is 
able to make correct decisions about future page use, the process's total runtime 
can be reduced.11-12 

Important criteria that determine the success of a prepaging strategy include: 
• prepaged allocation—the amount of main memory allocated to prepaging 
• the number of pages that are preloaded at once 
• the policy—the heuristic that determines which pages are preloaded (e.g., 

those predicted by spatial locality or those predicted by temporal locality).13 

Anticipatory paging strategies should be designed with care. A strategy that 
requires significant resources (such as processor time, page frames and disk I/O), or 
that inaccurately determines which pages a process will need, might result in worse 
performance than in a demand paging system. 

Anticipatory paging strategies often are combined with demand paging; the 
system preloads a few of the process's pages when the process references a nonresi
dent page. These strategies typically exploit spatial locality; i.e., a process referenc
ing a nonresident page will likely reference contiguous pages in its virtual address 
space in the near future. When a process generates a page fault, the system loads 
the faulting page and several nearby nonresident pages that are contiguous in the 
process's virtual address space. 

Pages contiguous in a process's virtual address space, however, might not be 
contiguous on secondary storage. Unlike main memory, secondary storage devices 
(e.g., hard disks) do not provide uniform access times to data stored at different loca
tions, so the time required to load multiple pages from secondary storage may be sig
nificantly greater than that required to load a single page. In this case, processes could 
suffer greater page-wait times due to anticipatory paging than in demand paging. 

One solution is to group pages on secondary storage that are contiguous in a 
process's virtual address space.14 As we discuss in Chapter 12, Disk Performance 
Optimization, the difference between the page-wait times for loading several pages 
that are contiguous on disk and for loading a single page is relatively small, so antic
ipatory paging can be performed without significantly increasing the page-wait time 
compared to demand paging. In Linux, for example, when a process references a 
nonresident page containing its program instructions or data, the kernel attempts to 
exploit spatial locality by loading from disk the nonresident page and a small num
ber of pages that are contiguous in the process's address space. By default, the sys
tem loads from disk four contiguous pages (16KB on the IA-32 architecture) if 
main memory is smaller than 16MB, or eight contiguous pages (32KB on the IA-32 
architecture) otherwise.15 This technique can yield good performance for processes 
that exhibit spatial locality. 
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1. In which scenarios is the Linux anticipatory paging strategy inappropriate? 



2. Why is anticipatory paging likely to yield better performance than demand paging? How 
might it yield poorer performance? 

Ans: 1) If processes exhibit random page-reference behavior, Linux would likely load 
pages that a process will not reference, leading to memory waste. If main memory is small 
(on the order of kilobytes), this could significantly reduce the amount of memory available to 
other processes, tending to increase the number of page faults the system experiences. 2) It 
could yield better performance because it is more efficient to bring in several contiguous 
pages in one I/O transfer than to do several I/O operations (as would be the case in demand 
paging). Performance could be worse, though, if the process does not actually use the pages 
that were prepaged in. 

In a virtual memory system with paging, all of the page frames might be occupied 
when a process references a nonresident page. In this case, the system must not only 
bring in a new memory page from auxiliary storage, but must first decide which 
page in main memory should be replaced (i.e., removed or overwritten) to make 
room for the incoming page. In this and the next several sections, we investigate 
page-replacement strategies. 

Recall that a page fault occurs if a running process references a nonresident 
page. In this case, the memory management system must locate the referenced page 
in secondary storage, load it into main memory and update the appropriate page 
table entry. Page-replacement strategies typically attempt to reduce the number of 
page faults a process experiences as it runs from start to finish, hopefully reducing 
the process's execution time. 

If the page chosen for replacement has not been modified since it was last 
paged in from disk, then the new page can simply overwrite it. If the page has been 
modified, it must first be written (or evicted) to secondary storage to preserve its 
contents. A modified bit, or dirty bit, in the page table entry is set to 1 if the page 
has been modified and 0 otherwise. 

Writing (or flushing) a modified page to disk, which requires a disk I/O opera
tion, increases page-wait times if it is performed when a page is replaced. Some 
operating systems, such as Linux and Windows XP, periodically flush dirty pages to 
secondary storage to increase the likelihood that the operating system can perform 
page replacement without first having to write a modified page to disk. Because this 
periodic flushing can occur asynchronously with process execution, the system 
incurs little overhead by doing so. If a process references a modified page before 
the flush is completed, then it is recaptured, thus saving an expensive page-in oper
ation from secondary storage. 

When we evaluate a page-replacement strategy, we often compare it to the so-
called optimal page replacement strategy (also called OPT or MIN), which states 
that, to obtain optimum performance, replace the page that will not be referenced 
again until furthest in the future.16, 17, 18, 19, 20 Thus, the strategy increases perfor
mance by minimizing the number of page faults. This strategy can be demonstrated 
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to be optimal, but it is not realizable, because we cannot, in general, accurately pre
dict the behavior of processes. Instead, the strategy serves as a benchmark to which 
we compare realizable strategies. A well-designed replacement strategy balances 
the goals of minimal future page faults with the overhead incurred by attempting to 
predict future page use. 
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1. What other factor complicates replacement strategies on systems that use pure segmenta
tion (as compared with systems that use pure paging)? 

2. Is it possible to perform optimal page replacement for certain types of processes? If so, 
give an example. 

Ans: 1) Such systems must consider the size of the segment being replaced compared to the 
size of the incoming segment. 2) Yes, a trivial example is a process with one data page that is 
intensively referenced and whose data and instructions are referenced purely sequentially. 

Self Review 

In the subsections that follow, we discuss several strategies that determine which 
page to replace to accommodate an incoming page. Each strategy is characterized 
by the heuristic it uses to select a page for replacement and the overhead it incurs. 
Some replacement strategies are intuitively appealing but lead to poor performance 
due to poor choice of heuristic. Other strategies predict future page usage well, but 
their overhead can degrade performance. We also discuss how special-purpose 
hardware can reduce the overhead incurred by page-replacement strategies. 

11.6 Page-Replacement Strategies 

Random (RAND) page replacement is an easy-to-implement, low-overhead page-
replacement strategy. Under this strategy, each page in main memory has an equal 
likelihood of being selected for replacement. One problem with RAND is that it 
may accidentally select as the next page to replace the page that will be referenced 
next (which is, of course, the worst page to replace). A benefit of RAND is that it 
makes replacement decisions quickly and fairly. Since typically there are many page 
frames from which to choose, there is only a small probability of replacing a page 
likely to be referenced again almost immediately. Because of its hit-or-miss 
approach, RAND is rarely used. 

11.6.1 Random Page Replacement 

1. How is RAND fair? Why is this type of fairness inappropriate for replacement strategies? 
2. Could RAND ever operate exactly as OPT? 

Ans: 1) RAND is fair in that all pages in memory are equally likely to be replaced. This is 
inappropriate for replacement strategies, which, to reduce page faults, must try not to replace 
pages that will be referenced soon. 2) Yes, it could accidentally make all the right page-

Self Review 



In the first-in-first-out (FIFO) page-replacement strategy, we replace the page that 
has been in the system the longest. Figure 11.2 provides a simple example of the 
FIFO strategy for a process which has been allocated three page frames. The left
most column contains the process's page-reference pattern. Each row in the figure 
shows the state of the FIFO queue after each new page arrives; pages enter the tail 
of the queue on the left and exit the head on the right. 

Under FIFO page replacement, the system keeps track of the order in which 
pages enter main memory. When a page must be replaced, the strategy chooses the 
one that has been in main memory the longest. The intuitive appeal of this strategy 
seems reasonable—namely, that this page has had its chance and it is time to give 
another page a chance. Unfortunately, first-in-first-out can replace heavily used 
pages. For example, on large timesharing systems it is common for many users to 
share a copy of a text editor as they enter and correct programs. FIFO page replace
ment on such a system might choose to replace a heavily used editor page. This 
would be a poor choice, because the page would be recalled to main memory 
almost immediately, resulting in an increased page-fault rate. Although FIFO can 
be implemented with relatively low overhead using a queue, it is impractical for 
most systems. But, as we will see in Section 11.6.7, Modifications to FIFO: Second-
Chance and Clock Page Replacement, FIFO forms the basis of various imple
mented page-replacement schemes. 

replacement decisions, but it would do this with such miniscule probability that it would be 
better to answer this question, "No." 
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11.6.2 First-In-First-Out (FIFO) Page Replacement 

Figure 11.2 | First-in-first-ot (FIFO) page replacement. 



1. Why does FIFO page replacement lead to poor performance for many processes? 
2. How does FIFO page replacement compare to OPT for a process executing a loop that ref

erences n pages when main memory can hold no more than n -1 of that process's pages? 

Ans: 1) FIFO replaces pages according to their age, which, unlike locality, is not a good pre
dictor of how pages will be used in the future. 2) Assume that the pages are numbered from 
zero to n - 1 . In this case, when the process references page n — 1, FIFO replaces the first page 
the process referenced in the loop. However, the next page the process references after com
pleting one iteration of the loop is the page that was just replaced. To make room for that page. 
FIFO replaces the second page the process referenced in the previous iteration of the loop. This 
is, of course, the next page the process will reference in the current iteration. The optimal strat
egy would be to replace the page that will be referenced the furthest in the future, which is the 
page that was just referenced. In this case, OPT would result in one page fault per iteration of 
the loop, whereas FIFO would result in n page faults per iteration of the loop. 
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It would seem reasonable that the more page frames allocated to a process, the 
fewer page faults the process would experience. Belady, Nelson and Shedler discov
ered that, under FIFO page replacement, certain page reference patterns actually 
cause more page faults when the number of page frames allocated to a process is 
increased.21 This phenomenon is called the FIFO Anomaly or Belady's Anomaly. 

Figure 11.3 illustrates an example of the anomaly. The first table demonstrates 
how the reference pattern causes the system to load and replace pages (using 
FIFO) when the system allocates three page frames to the process. The second table 
shows how the system behaves in response to the same reference pattern, but when 
four page frames have been allocated. To the left of each table, we indicate whether 
the new page reference causes a page fault or not. When the process executes with 
four pages in memory, it actually experiences one more page fault than when it exe
cutes with only three pages. 

The FIFO Anomaly is more of a curiosity than an important result. Perhaps 
its real significance to the student is to serve as a warning that operating systems are 
complex entities that sometimes defy intuition. 

11.6.3 FIFO Anomaly 

1. (T/F) When using the FIFO page-replacement strategy, the number of page faults a pro
cess generates always increases as the number of page frames allocated to that process 
increases. 

Ans: False. The normal behavior is that page faults will decrease because more of the pro
cess's pages can be available in memory, decreasing the chance that a referenced page will not 
be available. Belady's observation is an anomaly; the behavior he observed occurs infrequently. 
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The least-recently-used (LRU) page-replacement strategy (Fig. 11.4) relies on the 
locality heuristic that a process's recent past behavior is a good indicator of the pro
cess's near future behavior (temporal locality). When the system must replace a 
page, LRU replaces the page that has spent the longest time in memory without 
being referenced. 

Although LRU can provide better performance than FIFO, the benefit comes 
at the cost of system overhead.22 LRU can be implemented with a list structure that 
contains one entry for each occupied page frame. Every time a page frame is refer
enced, the system places that page's entry at the head of the list (indicating that the 
page has been "most-recently referenced"). Older entries migrate toward the tail of 
the list. When an existing page must be replaced to make room for an incoming one, 
the system replaces the entry at the tail of the list. The system frees the correspond
ing page frame (possibly requiring a modified page to be written to secondary stor-

Figure 11.3 | FIFO anomaly-page faults can increase with page frame allocation. 

11.6.4 Least-Recently Used (LRU) Page Replacement 
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Figure 11.4 | Least-recently-used (LRU) page-replacement strategy. 

age), places the incoming page into that page frame and moves the entry for that 
frame to the head of the list (because that page is now the one that has been most 
recently referenced). This scheme would faithfully implement LRU; however, it 
incurs substantial overhead, because the system must update the list every time a 
page is referenced. 

We must always be careful when applying heuristic reasoning in operating sys
tem design; the heuristic—such as LRU here—could fail in certain common situa
tions. For example, the page least recently used could be the next page to be 
referenced by a program that is iterating inside a loop that references several pages. 
If the page is replaced, the system will be required to reload it almost immediately. 

1. (T/F) LRU is designed to benefit processes that exhibit spatial locality. 
2. Why is "pure" LRU rarely implemented? 

Ans: 1) False. LRU benefits processes that exhibit temporal locality. 2) LRU incurs the 
overhead of maintaining an ordered list of pages and reordering that list. 
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The least-frequently-used (LFU) page-replacement strategy makes replacement 
decisions based on how intensively each page is being used. Under LFU, the system 
replaces the page that is least frequently used or least intensively referenced. This 
strategy is based on the intuitively appealing heuristic that a page that is not being 
intensively referenced is not as likely to be referenced in the future. LFU can be 
implemented using a counter that is updated each time its corresponding page is 
referenced, but this can incur substantial overhead. 

The LFU page-replacement strategy, too, could easily select incorrect pages 
for replacement. For example, the least-frequently used page could be the page 
brought into main memory most recently. This page has been used once, whereas all 
other pages in main memory may have been used more than once. In this case, the 
page-replacement mechanism replaces the new page, when in fact the page would 
be highly likely to be used immediately. Next, we consider a low-overhead page-
replacement strategy that makes reasonable decisions most of the time. 

11.6.5 Least-Frequentlu-Used (LFU) Page Replacement 
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1. Why is frequency of page usage a poor heuristic for reducing the number of future page 
faults? 

2. Which page-replacement strategy incurs more execution overhead: LRU or LFU? 

Ans: 1) Frequency measures the number of times a page is referenced, but it does not indi
cate how many of those references generated page faults. Because page faults require the 
process to wait for a page to be loaded from secondary storage, they should be treated with 
greater weight than references to resident pages. If a reference to a page frequently generates 
a page fault, then that page is being actively used, and keeping it in memory is likely to 
reduce future page faults. The same is not always true for resident pages that have been refer
enced frequently, because frequency does not indicate whether a page is still being actively 
referenced. 2) The answer depends on the implementation. Both strategies, in their "pure" 
form, must update page usage on every memory reference, meaning that the two strategies 
incur similar overhead. LFU updates a counter, while LRU could be rethreading a linked list; 
the latter would probably involve more overhead. 

A popular scheme for approximating LRU with little overhead is the not-used-
recently (NUR) page-replacement strategy. NUR is based on the idea that a page 
that has not been used recently is not likely to be used in the near future. The NUR 
strategy is implemented using the following two hardware bits per page table entry: 

• referenced bit—set to 0 if the page has not been referenced and set to one 
if the page has been referenced. 

• modified bit—set to 0 if the page has not been modified and set to 1 if the 
page has been modified. 

The referenced bit is sometimes called the accessed bit. The NUR strategy 
works as follows. Initially, the system sets the referenced bits of all pages to 0. When 

11.6.6 Not-Used-Recently (NUT) Page Replacement 
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a process references a particular page, the system sets the referenced bit of that 
page to 1. The modified bits on all pages also are initially set to 0. Whenever a page 
is modified, the system sets the page's modified bit to 1. When the system must 
replace a page, NUR first attempts to find a page that has not been referenced 
(because NUR is intended to approximate LRU). If no such page exists, the system 
must replace a referenced page. In this case, NUR checks the modified bit to deter
mine whether the page has been modified. If the page has not been modified, the 
system selects it for replacement. Otherwise, the system must replace a page that 
has been modified. Recall that replacing a modified page incurs the substantial 
delay of an additional I/O operation as the modified page is written to secondary 
storage to preserve its contents. Note, however, that periodic flushing of dirty pages 
can, on average, reduce or eliminate this delay. 

Of course, main memory will likely be actively referenced in a multiuser sys
tem, so eventually most or all of the pages' referenced bits will be set to 1. When 
this is the case, NUR loses the ability to identify the most desirable pages to 
replace. A technique that has been widely implemented to avoid this problem is for 
the system periodically to set all the referenced bits to 0, then continue as usual. 
Unfortunately, this makes even active pages vulnerable to replacement, but only for 
a brief moment after the bits are reset—active pages will have their referenced bits 
set to 1 again almost immediately. 

Pages can be classified into four groups in the NUR scheme (Fig. 11.5). The 
pages in the lowest-numbered groups should be replaced first, and those in the 
highest-numbered groups last. Pages within a group are selected randomly for 
replacement. Note that Group 2 seems to describe an unrealistic situation—namely, 
pages that have been modified but not referenced. This occurs because of the peri
odic resetting of the referenced bits (but not of the modified bits). 

Schemes like NUR also can be implemented on machines that lack a hard
ware referenced bit, and even on machines that lack a hardware modified bit.23 The 
referenced and modified bits are typically implemented in hardware and set as part 
of the execution of each machine instruction. Each of these bits can be simulated by 
intercepting an operating system's fault handlers and exception handlers as follows. 

The referenced bit can be simulated by implementing a corresponding soft
ware bit and by initializing each entry in the page table to indicate that the page is 
not present. When a process references a page and causes a page fault, control 
reverts to the page fault handler, which sets the referenced bit to 1 and resumes 
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Group 1 
Group 2 
Group 3 
Group 4 

Figure 11.5 | Page types under NUR. 

Group Referenced Modified Description 
Best choice to replace 

[Seems unrealistic] 

Worst choice to replace 

0 
1 
0 
1 

0 
0 
1 
1 



normal processing. The modified bit is simulated by marking each page as read
only. When a process attempts to modify the page, a memory-access exception 
occurs; the exception handler gains control, sets the (software-controlled) modified 
bit on and changes the access control on that page to read/write. Of course, the 
mechanism that implements the modified bit must still protect genuine read-only 
pages from being modified, so the operating system must keep track of which pages 
are truly read-only and which are truly read/write. The operating system must also 
periodically set each resident page's referenced bit to zero; the size of this interval is 
crucial to the performance of NUR. The instructions necessary to perform these 
actions are most likely to be a small set that can execute quickly. Almost all of 
today's processors include both a referenced and modified bit to boost the perfor
mance of memory managers. 
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1. How does the modified bit improve performance in the NUR replacement strategy? 
2. How could NUR replace the worst possible page? 
3. How can an NUR page be modified but not referenced? 

Ans: 1) The modified bit enables the operating system to determine which pages can be 
overwritten without first being flushed to disk. Selecting unmodified pages first reduces I/O 
when performing page replacement. Note that NUR—to implement its heuristic—neverthe
less replaces an unreferenced modified page before it replaces a referenced unmodified page. 
2) The next page that is about to be referenced could have its referenced bit reset to zero just 
before a page-replacement decision is made. 3) It truly would be referenced, but NUR peri
odically resets the referenced bits. 

Self Review 

A clear weakness of the FIFO strategy is that it may choose to replace a heavily 
used page that has been in memory for a long time. This possibility can be avoided 
by implementing FIFO with a referenced bit for each page and replacing a page 
only if its referenced bit is set to zero. 

The second-chance variation of FIFO examines the referenced bit of the old
est page; if this bit is off, the strategy immediately selects that page for replacement. 
If the referenced bit is on, the algorithm turns off the bit and moves the page to the 
tail of the FIFO queue. Such a page is treated essentially the same as a new arrival. 
Over time, the page gradually moves to the head of the queue. When it reaches the 
head, it will be selected for replacement only if the referenced bit is still off. 

Active pages will be selected to return to the tail of the list, because their ref
erenced bits will be set, and will thus remain in main memory. A modified page 
must be flushed to secondary storage before the system can replace it; so when its 
referenced bit is set off, the page remains "temporarily unreplaceable" until the sys
tem completes the transfer. If a process references this page before the flush is com
pleted, then it is recaptured, thus saving an expensive page-in operation from 
secondary storage. 

11.6.7 Modifications to FIFO: Second.Chance and Clock Page Replacement 



The clock page replacement strategy, which produces essentially the same 
results as the second-chance algorithm, arranges the pages in a circular list instead 
of a linear list.24 Each time a page fault occurs, a list pointer moves around the cir
cular list much as the hand of a clock rotates. When a page's referenced bit is turned 
off, the pointer is moved to the next element of the list (simulating the movement of 
this page to the rear of a FIFO queue). The clock algorithm places new arrivals in 
the first page it encounters with the referenced bit turned off. 

1. Which strategy incurs more overhead, second chance or clock? 
2. Why are second-chance and clock page replacement more efficient than LRU? 

Ans: 1) Second chance requires the system to dequeue and requeue a page each time its 
resident bit is turned off. Clock generally incurs less overhead, because it modifies the value 
of a pointer each time a page's resident bit is turned off. 2) These algorithms reduce the num
ber of times the system updates page usage information. 
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When programs execute, they tend to reference functions and data in predictable 
patterns. The far page-replacement strategy uses graphs to make replacement deci
sions based on these predictable patterns. The far strategy has been shown mathe
matically to perform at near-optimal levels, but it is complex to implement and 
incurs significant execution-time overhead.25-26-27 

The far strategy creates an access graph (Fig. 11.6) that characterizes a pro
cess's reference patterns. Each vertex in the access graph represents one of the pro
cess's pages. An edge from vertex v to vertex w means that the process can 
reference page w after it has referenced page v. For example, if an instruction on 
page v references data on page w, there will be a directed edge from vertex v to ver
tex w. Similarly, if a function call to page x returns to page y, there will be an edge 
from vertex x to vertex y. The graph, which can become quite complex, describes 
how a process can reference pages as it executes. Access graphs can be created by 
analyzing a compiled program to determine which pages can be accessed by each 
instruction on each page, which can require significant execution time. [Note: Most 
studies of the far strategy assume the access graph is constructed before a process is 
run, although graph construction at runtime has been investigated.]28 The access 
graph in Fig. 11.6 indicates that, after the process references page B, it will next ref
erence either page A, C, D or E, but it will not reference page G before it has refer
enced page E. 

The replacement algorithm operates in phases much like the clock algorithm. 
Far initially marks all vertices in the access graph as unreferenced. When the process 
accesses a page, the algorithm marks as referenced the vertex that corresponds to that 
page. When the algorithm must select a page for replacement, it chooses the unrefer
enced page that is furthest away (hence the name "far") from any referenced page in 

11.6.8 Far Page Replacement 
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Figure 11.6 | Far page-replacement-strategy access graph. 

the access graph (in Fig. 11.6, this corresponds to page Q).The intuitive appeal of this 
strategy is that the unreferenced page that is furthest from any referenced page is 
likely to be referenced furthest in the future. If the graph does not contain an unrefer
enced vertex, the current phase is complete, and the strategy marks all the vertices as 
unreferenced to begin a new phase.29 At this point, the algorithm replaces the page 
furthest in the graph from the most-recently referenced page. 

The field of graph theory provides algorithms for building and searching the 
the kinds of graphs in the far strategy. However, largely due to its complexity and 
execution-time overhead, far has not been implemented in real systems. 

1. Despite providing near-optimal performance, what hinders the far page-replacement 
strategy from being widely implemented? 

2. When might the far strategy replace a page that will be referenced soon? 

Ans: 1) Far is complex to implement and it incurs substantial execution-time overhead. 
2) The process may subsequently "walk" the access graph directly to the page that was 
replaced, at which point it would experience a page fault. This could occur, for example, when a 
process referenced error-processing routines or issued a series of nested procedure calls. 
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Locality of reference implies that a program can run efficiently even though only a 
relatively small subset of its pages resides in main memory at any given time. Den-
ning's working set theory of program behavior focuses on determining what that 
favored subset is and maintaining it in main memory to achieve the best 
performance.30'31 

Many studies have been performed that illustrate the phenomenon of locality. 
Figure 11.7 shows a graph of a process's memory reference pattern across its 
pages.32 The darkened areas show which memory areas the process referenced dur
ing consecutive time intervals. The figure vividly illustrates how this process tends 
to favor a subset of its pages during certain execution intervals. 

The hypothetical process behaviors in Fig. 11.8 also support the existence of 
the phenomenon of locality. This figure demonstrates how a process's page fault 
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Figure 11.7 | Storage reference pattern exhibiting locality. (Reprinted by permission 
from IBM Systems Journal. © 1971 by International Business Machines Corporation.) 



rate depends on the amount of main memory available for its pages. The straight 
line shows how this relationship would appear if the process exhibited a random 
reference pattern uniformly distributed over all its pages. The curved line shows 
how processes typically behave. As the number of page frames available to a pro
cess decreases, there is an interval over which it does not dramatically affect the 
page fault rate. But at a certain point, when the number of page frames decreases 
further, the number of page faults experienced by the running process rises dramat-
ically. The graph shows that the process's page fault rate remains stable as long as its 
favored subset remains in main memory. However, when the system cannot allocate 
enough page frames to the process for its favored subset to remain in memory, the 
process's page fault rate increases dramatically (because the process is constantly 
referencing the pages that have been replaced). 

The principle of locality and the behavior of processes exhibited in the previ
ous figures all support Denning's working set theory of program behavior.33'34 This 
theory asserts that for a program to run efficiently, the system must maintain the 
program's favored subset (i.e., its working set) of pages in main memory. Otherwise, 
the system might experience excessive paging activity causing low processor utiliza
tion, called thrashing, as the process repeatedly requests the same pages from sec
ondary storage.35 One way to avoid thrashing might be to give each process enough 
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Figure 11.8 | Dependency of page fault rate on amount of memory for a process's 
pages. 



page frames to hold half its virtual space. Unfortunately, rules like this often result 
in excessively conservative virtual memory management, ultimately limiting the 
number of processes that may effectively share physical memory space. 

A working set memory management policy seeks to maintain in main memory 
only the pages that comprise each process's current working set.36, 37, 38, 39 The deci
sion to add a new process to the active set of processes (i.e., to increase the level of 
multiprogramming) is based on whether the system has a sufficient main memory 
space to accommodate the new process's working set of pages. This decision —espe
cially in the case of freshly initiated processes—-is typically made with heuristics, 
because it is generally impossible for the system to know in advance how large a 
given process's working set will be. 

Figure 11.9 provides a precise definition of the term working set. The x-axis 
represents process time (i.e., the time during which the process uses a processor as 
distinguished from "wall clock" time) and the value t corresponds to the current 
process time. The value w is the process's working set window size, which deter
mines how far into the past the system should consider when calculating the pro
cess's working set. The process's working set of pages W(t, w), is then defined as the 
set of pages referenced by the process during the process-time interval t - w to t. 

An effective working set memory management strategy must make careful 
decisions about the size, w, of its process's working set window. Figure 11.10 illustrates 
how working set size increases as w increases. This is a consequence of the mathemat
ical definition of working set and is not necessarily an indication of empirically 
observable working set sizes. The "true" working set of a process is simply the set of 
pages that must reside in main memory for the process to execute efficiently. 

Figure 11.9 | Definition of a process's working set of pages. 
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Figure 11.10 | Working set size as a function of window size. 

Working sets change as a process executes.40 Sometimes pages are added or 
deleted. Sometimes dramatic changes occur when the process enters a new phase 
(i.e., execution requiring a different working set). Thus, any assumptions about the 
size and content of a process's initial working set do not necessarily apply to subse
quent working sets that the process will accumulate. This complicates precise mem
ory management under a working set strategy. 

Figure 11.11 shows how a process running under a working set memory man
agement strategy might use main memory. First, as the process demand pages in its 
initial working set one page at a time, the system gradually allocates it enough 
memory to hold the working set. At this point, the process's memory use stabilizes 

Figure 11.11 | Main memory allocation under working set memory management. 



as it actively references the pages in its first working set. The process eventually 
makes a transition to the next working set, as indicated by the curved line from first 
to second working set. Initially, the curved line rises above the number of pages in 
the first working set because the process is rapidly demand-paging in its new work-
ing set. The system has no way of knowing whether this process is expanding its cur
rent working set or changing working sets. Once the process stabilizes in its next 
working set, the system sees fewer page references in the window and reduces the 
process's main memory allocation to the number of pages in its second working set. 
Each time a transition between the working sets occurs, this rising and falling 
curved line shows how the system adapts. One goal of working set memory man-
agement is to reduce the height of each curved portion of the graph to that of the 
next working set in the graph as quickly as possible. This would, of course, require 
that the system rapidly determine which pages from the previous working set (if 
any) are not part of the process's new working set. 

The figure illustrates one of the difficulties with a working set memory man
agement strategy, namely that working sets are transient, and a process's next work
ing set may differ substantially from its current one. A memory management 
strategy must carefully consider this to avoid overcommitting main memory, which 
can lead to thrashing. Implementing a true working set memory management policy 
can incur substantial overhead, especially because the composition of working sets 
can and does change quickly. Morris discusses the use of custom hardware to make 
working set storage management more efficient.41 

1. Why is it difficult to determine the size of a process's working set? 
2. What trade-offs are inherent in choosing a window size, w? 

/4nf: 1) If we adhere strictly to Denning's definition, then it is trivial to determine the work
ing set size—it is exactly the number of unique pages that have been referenced within the 
window, w. If we are concerned with the "true" working set, i.e., the set of pages the process 
needs to have in memory to run efficiently, then things become more complex. One indica
tion that a process has its working set in memory is a low (or even zero) page fault rate. This 
could mean that the process has too many pages in memory. If we reduce the number of page 
frames allocated to the process, at some point the page fault rate will increase, possibly dra
matically. Just before it does is the point at which the working set (only) is in memory. 2) If w 
is too small, a process's true working set might not be in memory at all times, leading to 
thrashing. If w is too large, memory might be wasted because pages outside of a process' 
working set might still be in memory, possibly limiting the degree of multiprogramming. 
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One measure of how well a process is executing in a paging environment is its page-
fault rate. A process that faults constantly may be thrashing because it has too few 
page frames and cannot maintain its working sets in memory. A process that almost 
never faults may have too many page frames and thus may be impeding the 
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progress of other processes in the system (or preventing the operating system from 
increasing the degree of multiprogramming). Ideally, processes should operate at 
some point between these extremes. The page-fault-frequency (PFF) algorithm 
adjusts a process's resident page set (i.e., those pages which are currently in mem
ory), based on the frequency at which the process is faulting.42, 43, 44, 45, 46 Alterna
tively, PFF may adjust a process's resident page set based on the time between page 
faults, called the process's interfault time. 

PFF has a lower overhead than working set page replacement because it adjusts 
the resident page set only after each page fault; a working set mechanism must oper
ate after each memory reference. Under PFF, when a process makes a request that 
results in a page fault, the strategy calculates the time since the last page fault. If that 
time is larger than an upper threshold value, then the system releases all pages unref
erenced in that interval. If the time is less than a lower threshold value, the incoming 
page becomes a member of the process's resident page set. 

A benefit of PFF is that it adjusts a process's resident page set dynamically, in 
response to the process's changing behavior. If a process is switching to a larger work
ing set, then it will fault frequently, and PFF will allocate more page frames. Once the 
process has accumulated its new working set, the page fault rate will stabilize and PFF 
will either maintain the resident page set or reduce it. A key to the proper and effi
cient operation of PFF is maintaining the thresholds at appropriate values. 

Some systems might increase performance by adjusting their process schedul
ing algorithms to the frequency with which a process generates page faults. Presum
ably, processes generating few page faults have accumulated their working sets in 
main storage. Processes experiencing large numbers of page faults have not yet 
established their working sets. The conventional wisdom is to favor processes that 
have established their working sets. Another viewpoint is that processes with high 
page fault rates should receive priority because they use a processor only briefly 
before generating an I/O request. A process that is faulting in its next working set 
appears to be an I/O-bound process. Once the working set is accumulated, the pro
cess will "settle down" to "regular" behavior—some processes will be processor 
bound and others will be I/O bound. 
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1. How does PFF approximate the working set model? 
2. What problems could arise if the PFF upper threshold is too small? What if the lower 

threshold is too large? 

Ans: 1) Both PFF and the working set model change the size of a process's allocation space 
dynamically to prevent thrashing. However, the working set model readjusts after every 
memory access, whereas PFF readjusts only after each page fault. 2) If the lower threshold 
were too large, the system would allocate more pages to a process than it needs, which would 
result in wasted memory. If the upper threshold were too small, the system would release a 
process's working set pages, leading to thrashing. 
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Under working set memory management, a process indicates which pages it wants 
to use by explicitly referencing the pages. Pages that a process no longer requires 
should be removed from its working set. Under existing memory management 
strategies, however, needless pages often remain in memory until the management 
strategy can detect that the process no longer needs them. An alternative strategy 
would be for the process to issue a voluntary page release command to free a page 
it no longer needs. This would eliminate the delay period caused by letting the pro
cess gradually pass the page from its working set. 

Voluntary page release could speed program execution for the entire system. 
One hope in this area is for compilers and operating systems to detect page-release 
situations, and to do so much sooner than is possible under working set strategies. 
Realistically, users cannot make such decisions, but applications programmers and 
systems programmers can. 

11.9 Page Release 

1. Why could voluntary page release yield better performance than a pure working set page-
replacement strategy? 

2. Why, then, is voluntary page release not widely implemented in today's systems? 

Ans: 1) There is a latency in the working set strategy (i.e., the window size, w) that causes 
pages no longer needed to "hang around" before being replaced. Voluntary page release 
could release those pages sooner, leading to more efficient use of memory. 2) The real issue is 
whether it is indeed possible to choose the right pages to release. This is hard to do, because 
we know that we cannot, in the general case, predict the path of execution a program will 
take. 

Self Review 

An important characteristic of a paged virtual memory system is the size of the 
pages and page frames that the system supports. In today's systems, there is no one 
"industry standard" page size, and many architectures support multiple page sizes, 
with demonstrable improvements in performance.47 When choosing a page size (or 
page sizes), the system designer should evaluate several concerns, based on the 
goals and limitations of the system to be designed. 

Many early results in the literature, both theoretical and empirical, point to 
the need for small pages.48-4950 As both memory and program sizes increase rap
idly, larger page sizes have become more desirable. What considerations determine 
whether a page should be large or small? Several are summarized here: 

• A large page size increases the range of memory that the TLB can refer
ence with each entry. This increases the likelihood of TLB hits, which 
improves dynamic address translation performance.51 

• In general, a large page size can reduce the number of time-consuming I/O 
operations that transfer information between main memory and secondary 
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storage. A system transferring such information using a small page size may 
require several separate I/O operations, which would increase a process's 
space-time product (see Section 11.3). However, anticipatory paging and 
(as we discuss in the next chapter) disk scheduling algorithms can reduce 
this overhead. 

• Processes tend to exhibit locality of reference over a small portion of their 
address spaces, so a smaller page size would help a process establish a 
smaller, tighter working set, leaving more memory available to other pro
cesses.52 

• A small page size leads to a large number of pages and page frames and 
correspondingly larger page tables. As discussed in Section 10.4.4, Multi
level Page Tables, these tables can consume a significant portion of main 
memory (i.e., table fragmentation). Large page sizes reduce table fragmen
tation by decreasing the number of page table entries (at the cost of 
increased internal fragmentation). 

• In a combined segmentation/paging organization the system may experi
ence internal fragmentation, because procedure and data units rarely com
prise an integral number of pages, so a segment is just as likely to have its 
last page nearly full as nearly empty (Fig. 11.12). Thus, each segment con
tains, on average, one-half page of internal fragmentation. More fragmen
tation results in a larger average working set size for programs.53 The 
system can reduce the amount of internal fragmentation by employing 
smaller page sizes.54 
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Figure 11.12 | Internal fragmentation in a paged and segmented system. 



Although supporting multiple page sizes can address many of the limitations 
of both large and small page sizes, it has several disadvantages. First, operating sys
tems require hardware support for multiple page sizes to provide efficient dynamic 
address translation. This means that the page address translation hardware must be 
able to accommodate large and small pages. In the Intel Pentium 4 processor, this is 
accomplished using multiple TLBs, each of which is dedicated to storing PTEs for 
one page size. This added hardware complexity increases cost. Also, multiple page 
sizes introduces the possibility of external fragmentation similar to that in segmen
tation systems, because blocks are of variable size.55 

Figure 11.13 lists the page sizes used by several systems. Note the relatively 
small single page sizes chosen for earlier computers, whereas more recent comput
ers support larger page sizes and multiple page sizes. 
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1. Why are large page sizes more favorable in today's systems than they were decades ago? 
2. What are the negatives of having multiple page sizes? 

Ans: 1) The cost of memory has become cheaper, leading to systems that contain large 
memories and applications that require increasingly large amounts of memory. In today's sys
tems, the cost of internal fragmentation due to larger page sizes is of less concern than it was 
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decades ago, when memory was far more expensive. Large pages also require the system to 
perform fewer costly I/O operations to load a large portion of a process's virtual address 
space into memory. However, there are many cases in which the operating system must store 
data which is only a fraction of the page size. In this case, multiple page sizes might improve 
memory utilization, at the cost of additional memory management overhead. 2) Both the 
operating system and hardware must support multiple page sizes to provide efficient memory 
management. Operating systems must be rewritten so that they efficiently manage multiple 
page sizes, which requires costly software development. Processors must increase in com
plexity to support multiple page sizes, which tends to increase their cost. 

Many studies have been performed examining the behavior of processes in paging 
e n v i r o n m e n t s . 5 9 , 60 , 61 , 6 2 , 6 3 , 64 , 6 5 , 66 , 67 , 68 , 69 , 7 0 , 7 1 , 7 2 , 73 , 74 , 7 5 , 7 6 , 7 7 , 7 8 , 7 9 , 8 0 In this section we 

present some qualitative results of these studies. 
Figure 11.14 shows the percentage of a hypothetical process's pages that have 

been referenced, starting from the time the process begins execution. The initial 
sharp upward slope indicates that a process tends to reference a significant portion 
of its pages immediately after execution begins. With time, the slope diminishes, and 
the graph asymptotically approaches 100 percent. Certainly some processes refer
ence 100 percent of their pages, but the graph is drawn to reflect that many pro
cesses may execute for a long time without doing so. This is the case, for example, 
when certain error-processing routines are rarely invoked. 

The number of faults a process experiences depends on the size and behavior 
of the system's processes. If they have small working sets, the number of page faults 
experienced by a running process tends to increase as the page size increases. This 
phenomenon occurs because, as page size increases, more procedures and data that 
will not be referenced are brought into a fixed-size main memory. Further, as page 

Figure 11.14 | Percentage of a process's pages referenced with time. 
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size continues to increase, the system incurs more internal fragmentation. Thus, a 
smaller percentage of a process's limited main memory is occupied by procedures 
and data that will be referenced. A process with a large working set requires a 
greater number of small page frames, which can lead to a large number of page 
faults each time the process runs. If a process's working set contains pages that are 
contiguous in the process's virtual address space, the number of page faults tends to 
decrease as the page size increases. This occurs because each page fault loads into 
memory a significant portion of the process's working set. 

Figure 11.15 shows how the average interfault time (i.e., the time between 
page faults) varies as the number of page frames allocated to a process increases. 
The graph is nondecreasing—the more page frames a process has, the longer the 
time between page faults (subject, of course, to occasional strange behavior such as 
the FIFO anomaly).81 At one point, the graph bends, and its slope declines sharply. 
At this point the process has its entire working set in main memory. Initially, the 
interfault time grows quickly, as more of the working set resides in main memory. 
Once the physical memory allotment is sufficient to hold the process's working set. 
the curve bends sharply, indicating that the effect of allocating additional page 
frames on increasing the interfault time is not as great. Again, the goal of a memory 
management strategy should be to maintain the working set in main memory. 

The qualitative discussions of this section generally point to the validity of the 
working set concept. As computer architecture and software design evolves, these 
results will need to be reevaluated. 

Figure 11.15 | Dependency of interfault time on the number of page frames allo-
cated to a process. 
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1. How does program behavior under paging support the notion of lazy allocation, whereby 
the operating system does not allocate page frames to a process until the process explicitly 
references its pages? 

2. (T/F) The interfault time for a particular process always increases as the number of page 
frames allocated to a process increases. 

Ans: 1) Figure 11.14 demonstrates that the operating system would waste considerable 
memory if it reserved memory that a process would not use until later in its execution. How
ever, if a process references its pages with predictable patterns, anticipatory paging could 
improve performance by reducing page-wait times. 2) False. This is indeed the normal behav
ior, but if the algorithm is subject to Belady's Anomaly, the interfault time might decrease. 

Self Review 
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When evaluating the page-replacement strategies presented in the previous sec
tions, we provided reference patterns for a single, arbitrary process. In most real 
systems, the operating system must provide a page-replacement strategy that yields 
good performance for a number of diverse processes. 

When implementing a paged virtual memory system, the operating system 
designer must decide whether page-replacement strategies should be applied to all 
processes as a unit (i.e., global strategies) or consider each process individually (i.e., 
local strategies). Global page-replacement strategies tend to ignore the characteris
tics of individual process behavior; local page-replacement strategies enable the 
system to adjust memory allocation according to the relative importance of each 
process to improve performance. 

As we will see, a heuristic that yields good results when applied to individual 
process behavior can lead to poor performance when applied to the system as a 
whole.There is no conventional wisdom on this—Linux, for example, implements a 
global page-replacement strategy and Windows XP implements a local page-
replacement strategy (see Section 20.6.3, Page Replacement, and Section 21.7.3, 
Page Replacement, respectively).82 

The global LRU (gLRU) page-replacement strategy replaces the least-
recently-used page in the entire system. This simple strategy does not attempt to 
analyze individual process behavior or the relative importance of processes when 
selecting a page to replace. Consider, for example, a system that schedules pro
cesses using round robin—the next process to run is the process that has waited the 
longest. In this case, pages belonging to the next process to run are often the least-
recently-used pages, so gLRU is likely to replace the next page to be used. Note 
that gLRU can result in poor performance regardless of individual process behavior 
if the system implements a variant of the round-robin scheduling algorithm. 

Glass and Cao suggest the SEQ (sequence) global replacement strategy, 
which is a modified version of LRU that adjusts its strategy based on process behav
ior.83 In general, the SEQ strategy uses the LRU strategy to replace pages. As dis
cussed in Section 11.6.4, LRU performs poorly when processes enter loops that 
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reference a sequence of pages that cannot all fit in memory at once. In this case, the 
optimal page to replace is the page that was most-recently used because it will be 
referenced furthest in the future (i.e., during the next iteration of the loop). 
Accordingly, the SEQ strategy uses the heuristic that a process experiencing a 
sequence of page faults when referencing a series of contiguous pages is exhibiting 
looping behavior. When such behavior is detected, it applies the most-recently u s e d 
(MRU) strategy, which is optimal for that reference pattern. If a process experi
ences page fault when referencing a noncontiguous page, SEQ uses the LRU strat
egy until another sequence of page faults to contiguous pages is detected. 

In this section we discuss the page-replacement strategy implemented in Linux. 
More information about memory management in Linux can be found in 
Section 20.6, Memory Management. When physical memory is full and nonresident 
data is requested by processes or the kernel, page frames must be freed to fill the 
request. Pages are divided into active pages and inactive pages. To be considered 
active, a page must have been referenced recently. One goal of the memory man
ager is to maintain the current working set inside the collection of active pages.84 

Linux uses a variation of the clock algorithm to approximate an LRU page-
replacement strategy (Fig. 11.16). The memory manager uses two linked lists: the 
active list contains active pages, the inactive list contains inactive pages. The lists are 
organized such that the most-recently used pages are near the head of the active 
list, and the least-recently used pages are near the tail of the inactive list.85 

When a page is first brought into memory, it is placed in the inactive list and is 
marked as having been referenced by setting its referenced bit. The memory man
ager periodically determines whether the page has been subsequently referenced. 
such as during a page fault. If the page is active or inactive and its referenced bit is 
off, the bit is turned on. Similar to the clock algorithm, this technique ensures that 
recently referenced pages are not selected for replacement. 

Otherwise, if the page is inactive and is being referenced for the second time 
(its referenced bit is already on), the memory manager moves the page to the head 
of the active list, then clears its referenced bit.86 This allows the kernel to determine 
whether a page has been referenced more than once recently. If so, the page is 
placed in the active list so that it is not selected for replacement. To ensure that the 
active list contains only pages that are being heavily referenced, the memory man
ager periodically moves any unreferenced pages in the active list to the head of the 
inactive list. 

This algorithm is repeated until the specified number of pages have been 
moved from the tail of the active list to the head of the inactive list. A page in the 
inactive list will remain in memory until it is selected for replacement. While a page 
is in the active list, however, it cannot be selected for replacement.87 

11.13 Case Study: Linux Page Replacement 
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fied, so that it can improve the performance by avoiding 
the cost of writing (or flushing) a modified page to disk 
after a page fault. 

The optimal page replacement strategy states that, to 
obtain optimal performance, replace the page that will not 
be referenced again until furthest into the future. It is possi
ble to demonstrate the optimality of this strategy (called 
OPTorMIN). 

Random (RAND) page replacement is a low-over
head page-replacement strategy that does not discriminate 
against particular processes. Under this strategy, each page 
in main memory has an equal likelihood of being selected 
for replacement. A problem it entails is that it could easily 
select as the next page to replace the page that will be ref
erenced next. 

In the first-in-first-out (FIFO) page-replacement 
strategy, we replace the page that has been in the system 
the longest. Unfortunately, first-in-first-out is likely to 
replace heavily used pages, because the reason that a page 
has been in main memory for a long time may be that pro
cesses reference it often. Although FIFO can be imple-
mented with relatively low overhead, it is impractical for 
most systems. Under FIFO page replacement, certain page-
reference patterns actually cause more page faults when 
the number of page frames allocated to a process is 
increased—a counterintuitive phenomenon called the 
FIFO Anomaly or Belady's Anomaly. 

The least-recently-used (TRU) page-replacement 
strategy exploits temporal locality by replacing the page that 
has spent the longest time in memory without being refer
enced. Although LRU can provide better performance than 
FIFO, the benefit comes at the cost of increased system over
head. Unfortunately, the page least-recently used could be 
the next page to be referenced by a program that is iterating 
inside a loop that references several pages. 

The least-frequently-used (LFU) page-replacement 
strategy replaces the page that is least intensively refer
enced. This strategy is based on the heuristic that a page 
not referenced often is not likely to be referenced in the 
future. LFU could select the wrong page for replacement; 
for example, the least-frequently-used page could easily be 
the page brought into main memory most recently —a page 
that any reasonable page-replacement strategy would like 
to keep in main memory. 

The not-used-recently (NUR) replacement strategy 
approximates LRU with little overhead by using a refer
enced bit and a modified bit to determine which page has 

The technique a system employs to select pages for replace
ment when memory is full is called a replacement strategy. 
A system's fetch strategy determines when pages or seg
ments should be loaded into main memory. Demand fetch 
strategies wait for a process to reference a page or segment 
before loading it. Anticipatory fetch strategies use heuris
tics to predict which pages a process will soon reference 
and load those pages or segments. A placement strategy 
determines where in main memory to place an incoming 
page or segment. Paging systems with a single page size 
trivialize the placement decision, because an incoming 
page may be placed in any available page frame. Segmenta
tion systems require placement strategies similar to those 
used in variable-partition multiprogramming. 

Central to most memory management strategies is 
the concept of locality—that a process tends to reference 
memory in highly localized patterns. In paging systems, 
processes tend to favor certain subsets of their pages, and 
these pages often tend to be adjacent to one another in a 
process's virtual address space. The simplest fetch policy is 
demand paging—when a process first executes, the system 
loads into main memory the page that contains its first 
instruction. After that, the system loads a page from sec
ondary storage to main memory only when the process 
explicitly references that page. Demand paging requires a 
process to accumulate pages one at a time, which often 
increases a process's space-time product—a measure of its 
execution time (i.e., the duration for which a process occu
pies memory) multiplied by the amount of space in main 
memory it occupies. 

In anticipatory paging, the operating system attempts 
to predict the pages a process will need and preloads these 
pages when memory space is available. Anticipatory paging 
strategies must be carefully designed so that overhead 
incurred by the strategy does not reduce system perfor
mance. A demand prepaging strategy preloads a group of 
pages into memory when a process references a nonresi
dent page, which can be effective when processes exhibit 
spatial locality. 

When a process generates a page fault, the memory 
management system must locate the referenced page in 
secondary storage, load it into a page frame in main mem
ory and update the corresponding page table entry. Most 
modern architectures support a modified (or dirty) bit in 
their page table entries; this bit is set to 1 if the page has 
been modified and 0 otherwise. The operating system uses 
this bit to quickly determine which pages have been modi-

Summary 
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not been used recently and can be replaced quickly. 
Schemes like NUR also can be implemented on machines 
that lack a hardware referenced bit and/or modified bit. 

The second-chance variation of FIFO examines the 
referenced bit of the oldest page; if this bit is off, the strat
egy selects that page for replacement. If the referenced bit 
is on, the strategy turns off the bit and moves the page to 
the tail of the FIFO queue. This ensures that active pages 
are the least likely to be replaced. The clock variation of 
the second-chance algorithm arranges the pages in a circu
lar list instead of a linear list. When a page's referenced bit 
is turned off, the pointer is moved to the next element of 
the list (simulating the movement of this page to the rear of 
a FIFO list). Second chance and clock produce essentially 
the same results. 

The far strategy creates an access graph that charac-
terizes a process's reference patterns. The algorithm 
chooses to replace the unreferenced page that is furthest 
away from any referenced page in the access graph. 
Although the strategy performs at near-optimal levels, it 
has not been implemented in real systems, because the 
access graph is complex to search and manage without 
hardware support. 

Denning's working set theory of program behavior 
asserts that for a program to run efficiently, the system 
must maintain that program's favored subset of pages—its 
working set—in main memory. Otherwise, the system 
might experience excessive paging activity causing low pro
cessor distillation called thrashing as the program repeat
edly requests pages from secondary storage. A working set 
memory management policy seeks to maintain in main 
memory only the pages that comprise each process's cur
rent working set. The decision to add a new process to the 
active set of processes is based in part on whether the sys-
tem has sufficient main memory space to accommodate the 
new process's working set of pages. A process's working set 
window size specifies how far into the past the system 
should consider when calculating the process's working set. 
One challenge of working set memory management is that 
working sets are transient, and a process's next working set 
may differ substantially from its current one. 

The page-fault-frequency (PFF) algorithm adjusts a 
process's resident page set (i.e., those pages which are cur
rently in memory), based on the frequency at which the 
process is faulting. Alternatively, PFF may adjust a pro
cess's resident page set based on the time between page 
faults, called the process's interfault time. An advantage of 
PFF over working set page replacement is lower over
head—PFF adjusts the resident page set only after each 

page fault, whereas a working set mechanism must operate 
after each memory reference. If a process is switching to a 
larger working set, then it will fault frequently and PFF will 
allocate more page frames. Once the process has accumu
lated its new working set, the page fault rate will stabilize 
and PFF will either maintain the resident page set or 
reduce it. The key to the proper and efficient operation of 
PFF is maintaining the thresholds at appropriate values. 

Under all memory management strategies, needless 
pages can remain in main memory until the management 
strategy detects that the process no longer needs them, 
which can be well after the page is no longer needed. One 
way to solve this problem would be for the process to issue 
a voluntary page release to free a page frame that it knows 
it no longer needs, eliminating the delay period caused by 
letting the process gradually pass the page from its working 
set. The real hope in this area is for compilers and operat
ing systems to detect page-release situations, and to do so 
much sooner than is possible under working set strategies. 

An important characteristic of a paged virtual mem
ory system is the size of the pages and page frames that the 
system supports. Some systems improve performance and 
utilization by providing multiple page sizes. Small page 
sizes reduce internal fragmentation and can reduce the 
amount of memory required to contain a process's working 
set, leaving more memory available to other processes. 
Large page sizes reduce wasted memory from table frag
mentation, enable each TLB entry to map a larger region 
of memory, and reduce the number of I/O operations the 
system performs to load a process's working set into mem
ory. The use of multiple page sizes requires both hardware 
and software support, which can be costly to implement, 
and introduces the possibility of external fragmentation 
due to variable page sizes. 

Processes tend to reference a significant portion of 
their pages within a short time after execution begins, then 
access most (or all) of their remaining pages at a slower 
rate. The average interfault time (i.e., the time between 
page faults) monotonically increases in general—the more 
page frames a process has, the longer the time between 
page faults (subject, of course, to strange behavior such as 
that observed in the FIFO Anomaly). 

When implementing a paged virtual memory system, 
the operating system designer must decide whether page-
replacement strategies should be applied to all processes as a 
unit (i.e., global strategies) or consider each process individ
ually (i.e., local strategies). Global page-replacement strate
gies tend to ignore the characteristics of individual process 
behavior; local page-replacement strategies enable the sys-
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tem to adjust memory allocation according to the relative 
importance of each process to improve performance. The 
global LRU (gLRU) page-replacement strategy replaces the 
least-recently-used page in the entire system. The SEQ 

(sequence) global replacement strategy, uses the LRU strat
egy to replace pages until sequence of page faults to contigu
ous pages is detected, at which point it uses the most-
recently-used (MRU) page-replacement strategy. 

not been referenced for the longest time in the entire sys
tem. LRU can perform poorly because variants of round-
robin scheduling cause the system to exhibit a large-scale 
looping reference pattern. The SEQ variant of gLRU 
page replacement attempts to improve performance by 
replacing the most-recently-used page when it detects a 
looping reference pattern. 

interfault time—Time between a process's page faults. This is 
used in the page-fault-frequency page-replacement strat
egy to determine when to increase or decrease a pro
gram's page frame allocation. 

least-frequently-used (LFU) page replacement—Page-
replacement strategy that replaces the page that is least 
frequently used or least intensively referenced. LFU is 
easy to implement, but generally does not predict future 
page usage well. 

least-recently-used (LRU) page replacement—Page-replace
ment strategy that replaces the page that has not been ref
erenced for the longest time. LRU generally predicts 
future page usage well but incurs significant overhead. 

modified bit —Page table entry bit that indicates whether a 
page has been modified and hence must be copied to sec
ondary storage before being replaced (also known as the 
dirty bit). 

not-used-recently (NUR) page replacement—Low-overhead 
approximation to the LRU page-replacement strategy: 
uses referenced bits and dirty bits to replace a page. NUR 
first attempts to replace a page that has not been refer
enced recently and that has not been modified. If no such 
page is available, the strategy replaces a dirty page that 
has not been referenced recently, a clean page that has 
been referenced recently or a referenced page that has 
been referenced recently, in that order. 

optimal (OPT) page replacement—Unrealizable page-
replacement strategy that replaces the page that will not 
be used until furthest in the future. This strategy has been 
shown to be optimal. 

page-fault-frequency (PFF) page replacement—Algorithm 
that adjusts a process's resident page set based on the fre
quency with which the process is faulting. If a process is 

accessed bit—See referenced bit. 
anticipatory paging—Technique that preloads a process's non

resident pages that are likely to be referenced in the near 
future. Such strategies attempt to reduce the number of 
page faults a process experiences. 

Belady's Anomaly—See FIFO Anomaly. 
clock page-replacement strategy—Variation of the second-

chance page-replacement strategy that arranges the pages 
in a circular list instead of a linear list. A list pointer 
moves around the circular list, much as the hand of a 
clock rotates, and replaces the page nearest the pointer 
(in circular order) that has its referenced bit turned off. 

demand paging—Technique that loads a process's nonresident 
pages into memory only when the process explicitly refer
ences the page. 

dirty bit—Page table entry bit that specifies whether the page 
has been modified (also known as the modified bit). 

far page-replacement strategy—Graph-based page-replace
ment strategy that analyzes a program's reference pat
terns to determine which page to replace. This strategy 
replaces the page that is furthest from any referenced 
page in the graph and that has not been referenced 
recently. 

FIFO Anomaly—Phenomenon in FIFO page-replacement 
strategy whereby increasing a process's page frame alloca
tion increases the number of page faults it experiences; 
normally, page faults should decrease as more page 
frames become available. 

first-in-first-out (FIFO) page replacement—Page-replace
ment strategy that replaces the page that has been in 
memory longest. FIFO incurs low overhead but generally 
does not predict future page usage accurately. 

flushing a page—Copying the contents of a modified page in 
main memory to secondary storage so another page can 
be placed in its frame. When this occurs, the page's dirty 
bit is cleared, which enables the operating system to 
quickly determine that the page can be overwritten by an 
incoming page, which can reduce page-wait times. 

global least-recently-used (gLRU) page replacement—Global 
page-replacement strategy that replaces the page that has 

Key Terms 
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switching to a larger working set, then it will fault fre
quently, and PFF will allocate more page frames. Once the 
process has accumulated its new working set, the page 
fault rate will stabilize, and PFF will either maintain the 
resident page set or reduce it. The key to the proper and 
efficient operation of PFF is maintaining the thresholds at 
appropriate values. 

page-replacement strategy—Strategy that determines which 
page to replace to provide space for an incoming page. 
Page replacement strategies attempt to optimize perfor
mance by predicting future page usage. 

prefetching—See anticipatory paging. 

prepaging—See anticipatory paging. 

random (RAND) page replacement—Page-replacement strat
egy in which each page in main memory has an equal like
lihood of being selected for replacement. Although this 
strategy is fair and incurs little overhead, it does not 
attempt to predict future page usage. 

referenced bit—Page table entry bit indicating whether a page 
has been referenced recently. Several strategies reset this 
bit to more accurately determine how recently a page has 
been referenced. 

resident page set —Set of a process's pages that are currently in 
memory; these pages may be referenced without generat
ing a page fault. The resident page set might differ in size 
from a process's working set, which is the set of pages that 
must be in memory for a process to execute efficiently. 

second-chance page-replacement strategy—Variation of FIFO 
page replacement that uses the referenced bit and a FIFO 
queue to determine which page to replace. If the oldest 
page's referenced bit is off, second chance replaces the 
page; otherwise it turns off the referenced bit on the old
est page and moves it the tail of the FIFO queue. If its ref
erenced bit is on, the strategy turns off the bit and 
examines the next page or pages until it locates a page 
with its referenced bit turned off. 

space-time product—Value that measures the product of a 
process's execution time (i.e., the duration for which a 
process occupies memory) and the amount of real-mem
ory space the process occupies. Ideally, memory manage
ment strategies should reduce this quantity to increase a 
system's degree of multiprogramming. 

spatial locality—Empirical property that, in paging systems, 
states that processes tend to favor certain subsets of their 
pages, and that these pages tend to be near one another in 
a process's virtual address space. A process accessing 
sequential indices of an array exhibits spatial locality. 

thrashing—Excessive paging activity causing low processor 
utilization that occurs when a process's memory alloca
tion is smaller than its working set. This results in poor 
performance, as the process spends most of its time wait
ing as pages are transferred between secondary storage 
and main memory. 

voluntary page release — Occurrence when a process explicitly 
releases a page frame that it no longer needs. This can 
improve performance by reducing the number of unused 
page frames allocated to a process, leaving more memory 
available. 

working set—A program's favored subset of pages in main 
memory. Given a working set window, w, the process's 
working set of pages W(t, w), is defined as the set of pages 
it references during the process-time interval t - w to t. 

working set theory of program behavior—Theory presented 
by Denning; which asserts that for a program to run effi
ciently, the system must maintain that program's favored 
subset (i.e., its working set) of pages in main memory. 
Given a working set window, w, the process's working set 
of pages W(t, w), is defined as the set of pages referenced 
by the process during the process-time interval t - w to t. 
Choosing the window size, w, is a crucial aspect of imple
menting working set memory management. 

working set window size—Value that determines how far into 
the past the system should consider to determine what 
pages are in the process's working set. 
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11.1 Discuss the goals of each of the following memory man
agement strategies in the context of virtual memory systems 
with paging. 

a. fetch strategy 

b. placement strategy 

c. replacement strategy 

11.2 Explain why memory management in pure segmenta
tion systems is quite similar to memory management in vari
able-partition multiprogramming systems. 

11.3 One particular virtual memory computer system with 
combined segmentation and paging supports a degree of mul
tiprogramming of 10. Instruction pages (reentrant code) are 
maintained separately from data pages (which are modifiable). 
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11.8 Suppose a memory manager decides which page to 
replace solely on the basis of examining the referenced and 
modified bits for each page frame. List several incorrect deci
sions the memory manager might make. 

11.9 List several reasons why it is necessary to prevent cer
tain pages from being paged out of main memory. 

11.10 Why is it generally more desirable to replace an unmod
ified page rather than a modified one? In what circumstances 
might it be more desirable to replace a modified page? 

11.11 For each of the following pairs of replacement strategies, 
explain how a page-reference sequence could result in both 
strategies choosing (1) the same page for replacement and (2) 
a different page for replacement. 

a. LRU,NUR 

b. LRU,LFU 

c. LRU, FIFO 

d. NUR,LFU 

e. LFU,FIFO 

f. NUR,FIFO. 

11.12 The optimal (MIN) page-replacement strategy is unreal
izable because the future cannot be predicted. There are cir
cumstances, however, in which MIN can be implemented. 
What are they? 

11.13 Suppose a memory manager has chosen a modified page 
for replacement. This page must be sent to secondary storage 
before the new page may be placed in its page frame. There
fore, the memory manager requests an I/O operation to write 
this page to secondary storage. An entry is made in a list of I/O 
requests waiting to be serviced. Thus the page will remain in 
main memory for some time before the requested I/O opera
tion is performed. Now suppose that, while the other I/O 
requests are serviced, a running process requests the page to 
be replaced. How should the memory manager react? 

11.14 Design an experiment for a paged system to demon
strate the phenomena of temporal and spatial locality. 

11.15 A programmer who writes programs specifically to 
exhibit good locality can expect marked improvement in their 
execution efficiency. List several strategies a programmer can 
use to improve locality. In particular, what high-level language 
features should be emphasized? 

11.16 Suppose the bus between memory and secondary stor
age is experiencing heavy page traffic. Does this imply thrash
ing? Explain. 

11.17 Why might a global page-replacement policy (in which 
an incoming page may replace a page of any process) be more 
susceptible to thrashing than a local page-replacement policy 

You have studied the system in operation and have made the 
following observations: (1) Most procedure segments are 
many pages long and (2) most data segments use only a small 
fraction of a page. 

Your associate has proposed that one way to get better 
utilization out of memory is to pack several of each user's data 
segments onto an individual page. Comment on this proposal 
considering issues of: 

a. memory use 

b. execution efficiency 

c. protection 

d. sharing 

11.4 Today there is much interest in anticipatory paging and 
in anticipatory resource allocation in general. What useful 
information might each of the following supply to an anticipa
tory paging mechanism? 

a. the programmer 

b. the compiler 

c. the operating system 

d. a log of past executions of the program 

11.5 It is known that in the general case we cannot predict 
the path of execution of an arbitrary program. If we could, 
then we would be able to solve the Halting Problem—which is 
known to be unsolvable. Explain the ramifications for the 
effectiveness of anticipatory resource-allocation mechanisms. 

11.6 Suppose a memory manager has narrowed its page-
replacement decision to one of two pages. Suppose that one of 
the pages is shared by several processes, and the other is in use 
by only a single process. Should the memory manager always 
replace the nonshared page? Explain. 

11.7 Discuss each of the following unconventional (if not 
whimsical) page-replacement schemes in the context of a vir
tual memory multiprogramming system servicing both batch 
and interactive processes. 

a. "Global LIFO"—The page brought into main mem
ory most recently is replaced. 

b. "Local LIFO"—The page brought in most recently 
by the process which requested the incoming page is 
replaced. 

c. "Tired Page"—The most heavily referenced page in 
the system is replaced. 

d. "Battered Page"—The most heavily modified page in 
the system is replaced. One variant would count the 
number of writes to the page. Another would consider 
the percentage of the page that has been modified. 
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(in which an incoming page may replace only a page belonging 
to the same process)? 

11.18 Discuss the trade-offs between giving each process more 
page frames than it needs (to prevent thrashing) and the 
resulting fragmentation of main memory. 

11.19 Suggest a heuristic that a memory manager might use to 
determine if main memory has become overcommitted. 

11.20 The working set of a process may be defined in several 
ways. Discuss the merits of each of the following schemes for 
deciding which pages constitute a process's working set. 

a. those pages that the process has referenced in the last 
w seconds of wall-clock time 

b. those pages that the process has referenced in the last 
w seconds of virtual time (i.e., time during which the 
process was running on a processor) 

c. the last k different pages referenced by the process 

d. those pages on which a process made its last r instruc
tion or data references 

e. those pages that the process has referenced in the last 
w seconds of virtual time with a frequency greater 
than/times per virtual second. 

11.21 Give an example in which a working set page-replace
ment strategy would replace: 

a. the best possible page 

b. the worst possible page 

11.22 One difficulty in implementing a working set memory 
management strategy is that when a process requests a new 
page, it is difficult to determine whether that process is transi
tioning to a new working set or is expanding its current work
ing set. In the first case it is better for the memory manager to 
replace one of the process's pages; in the latter it is better for 
the memory manager to increase the process's page frame 
allocation. How might a memory manager decide which case is 
appropriate? 

11.23 Suppose all active processes have established their 
working sets in main memory. As localities change, working 
sets could grow and main memory could become overcommit
ted, causing thrashing. Discuss the relative merits of each of 
the following preventive strategies for preventing this. 

a. Never initiate a new process if main memory is 
already 80 percent or more committed. 

b. Never initiate a new process if main memory is 
already 97 percent or more committed. 

c. When a new process is initiated, assign it a maximum 
working set size beyond which it will not be allowed 
to grow. 

11.24 The interaction between the various components of an 
operating system is critical to achieving good performance. 
Discuss the interaction between the memory manager and the 
job initiator (i.e., admission scheduler) in a virtual-memory 
multiprogramming system. In particular, suppose the memory 
manager uses a working set memory-management approach. 

11.25 Consider the following experiment and explain the 
observations. 

A process is run by itself on a paged machine. It begins 
execution with its first procedure page. As it runs, the pages it 
needs are demand-paged into available page frames. The num
ber of available page frames far exceeds the number of pages 
in the process. But there is a dial external to the computer that 
allows a person to set the maximum number of page frames 
the process may use. 

Initially, the dial is set at two frames, and the program is 
run to completion. The dial is then set at three frames, and 
again the program is run to completion. This continues until 
the dial is eventually set to the number of available page 
frames in main memory, and the process is run for the last 
time. For each run, the run time of the process is recorded. 

Observations: 
As the dial is changed from two to three to four, the run 

times improve dramatically. From four to five to six, the run 
times still improve each time, but less dramatically. With the 
dial settings of seven and higher, the run time remains essen
tially constant. 

11.26 An operating systems designer has proposed the "PD 
memory management strategy" that operates as follows. 
Exactly two page frames are allocated to each active process. 
These frames hold the most recently referenced procedure 
page, called the P-page, and the most recently referenced data 
page, called the D-page. When a page fault occurs, if the refer
enced page is a procedure page, the strategy replaces the P-
page, and if the referenced page is a data page, the strategy 
replaces the D-page. 

The designer says that the chief virtue of the scheme is 
that it trivializes all aspects of memory management and thus 
has low overhead. 

a. How are each of the following memory management 
strategies handled under the PD scheme? 
i. fetch 
ii. placement 
iii. replacement 

b. In what circumstances would PD actually yield better 
results than working set memory management? 

c. In what circumstances would PD yield poor results? 

11.27 Summarize the arguments for and against (1) small page 
sizes and (2) large page sizes. 
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a. What are the consequences of selecting too large an 
upper value? 

b. What are the consequences of selecting too small a 
lower value? 

c. Should the values remain fixed, or should they be 
adjusted dynamically? 

d. What criteria would you use to adjust the values 
dynamically? 

11.32 Compare and contrast the page-fault-frequency (PFF) 
page-replacement strategy with the working set (WS) page-
replacement strategy. Be sure to consider each of the following: 

a. execution-time overhead 
b. memory overhead for holding the information neces

sary to support the strategy 

11.33 A possible weakness of the second-chance page-replace-
ment strategy is that if the list of pages is short, then an active 
page that has just moved to the back of the list after having had 
its referenced bit set off could quickly move to the front of the 
list and be selected for replacement before its referenced bit is 
set on. Comment on this phenomenon. Is it an anomaly in sec
ond-chance page replacement? Defend your answer carefully. 

11.34 Suppose a system is not currently thrashing. List as 
many factors as you can that might cause it to begin thrashing. 
What measures should the operating system take, once thrash-
ing is detected? Can thrashing be absolutely prevented? If so, 
at what cost? If not, explain why not. 

11.35 A- system receives a series of page references in the fol
lowing order: 1, 1, 3, 5, 2, 2, 6, 8, 7, 6, 2, 1, 5, 5, 5, 1, 4, 9, 7, 7. 
The system has five page frames. If all of the frames are ini
tially empty, calculate the number of page faults using each of 
these algorithms: 

a. FIFO 
b. LRU 
c. second chance 
d. OPT 

11.36 Should a process be penalized for generating excessive 
page faults? 

11.37 Consider a process experiencing a large number of page 
faults. Describe the effect, if any, of increasing this process's 
scheduling priority. 

n .28 The Multics system was originally designed to manage 
64-word pages and 1024-word pages (the dual-page-size 
scheme was eventually abandoned). 

a. What factors do you suppose motivated this design 
decision? 

b. What effect does this dual-page-size approach have 
on memory management strategies? 

11.29 Discuss the use of each of the following hardware fea
tures in virtual memory systems. 

a. dynamic address mapping mechanisms 
b. associative memory 
c. direct-mapped cache memory 
d. "page-referenced" bit 
e. "page-modified" bit 
f. "page-in-transit" bit (signifying that a page is cur

rently being input to a particular page frame) 

11.30 If programs are carefully organized in a paged system so 
that references are highly localized to small groups of pages, 
the resulting performance improvements can be impressive. 
Most programs today are being written in high-level lan
guages, however, so the programmer does not generally have 
access to information rich enough to aid in producing pro
grams with good organization. Because the path of execution a 
program will take cannot be predicted, it is difficult to know 
precisely which sections of code will be used intensively. 

One hope for improving program organization is called 
dynamic program restructuring. Here, the operating system 
monitors the execution characteristics of a program, rearrang
ing the code and data so that the more active items are placed 
together on pages. 

a. What execution characteristics of a large program 
should be monitored to facilitate dynamic program 
restructuring? 

b. How would a dynamic program restructuring mecha
nism use this information to make effective restruc
turing decisions? 

11.31 The key to the proper and efficient operation of the 
page-fault-frequency (PFF) page-replacement strategy is the 
selection of the threshold interfault time values. Answer each 
of the following questions. 
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11.38 Some types of processes perform well under certain 
page-replacement strategies and poorly under others. Discuss 
the possibility of implementing a memory manager that would 

dynamically determine a process's type and then select and use 
the appropriate page-replacement strategy for that process. 
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11.39 Suppose you are aware of the page-replacement strategy 
used by the multiuser timesharing system on which you are run
ning. For each of the page-replacement strategies discussed in 
this chapter, what countermeasures might you take to force the 
operating system to give your process(es) favored treatment, 
when in fact the operating system might normally do otherwise? 
What measures might an operating system take to detect such 
processes and prevent them from obtaining such preferred 
treatment? Prepare a paper describing your solution. 

11.42 Develop a simulator program that will enable you to 
compare and contrast the operation of each of the page-
replacement strategies discussed in this chapter. Your simula
tor needs to be concerned with transitions between pages in 
virtual space, but not with the instruction-by-instruction exe
cution of programs. Assign a random but high probability to 
the event of remaining on the same page on which the previ
ous instruction was executed. When page transitions occur, the 
probability of transferring to the next page (or the previous 
page) in virtual space should be higher than that of transfer
ring to some remote page. Assume a moderately loaded sys
tem so that page-replacement decisions are common. Assume 
that the same replacement strategy applies to all processes on 
the system for a given run of the simulation. Your simulator 
should maintain statistics on the performance of each replace
ment strategy. Include features to enable you to fine-tune the 
simulator; i.e., you should be able to adjust the working set 
window size, the page-fault-frequency threshold values, and so 
on. When the simulator is completed, develop a new page-
replacement strategy and compare the results to those of the 
other strategies in the text. 

11.43 Develop a simulation program to investigate how chang
ing the number of pages allocated to a process affects the num
ber of page faults it experiences. Use reference strings that 
simulate spatial locality over both large and small regions of 
memory and temporal locality over both large and small peri
ods. Also test the simulation using reference strings that are 

Owing to its wide application in operating system design, vir-
:ual memory management is a rich field. Seminal papers, such 
as Denning's discussion of the working set model88 and his 
nummary of virtual memory concepts,89 offer a clear presenta
tion of the concerns in virtual memory management, most of 
which are still valid today. Fetch policies were discussed by 
Aho et al.90 and further analyzed by Kaplan et al.91 

Optimal page replacement was discussed by Belady,92 

who also discovered the FIFO anomaly.93 Though common 

algorithms such as FIFO and approximations to LRU can be 
found as pieces of some memory management algorithms, typ
ically they are not used alone. More sophisticated algorithms 
involving graphs and coloring have been developed in the lit
erature.94- 95 Morris discusses the use of custom hardware to 
make working set storage management more efficient.96 

The question of the most appropriate page size has been 
studied in the literature.97- 9 8-" To meet different application 
needs, modern general-purpose processors have begun to sup-

essentially random. Describe the optimal page-replacement 
algorithm for each reference string. You might also wish to 
simulate the effect of multiprogramming by interleaving dif
ferent reference patterns. 

11.44 Develop a program that simulates page-fault-frequency 
(PFF) page replacement for a particular reference string. 
Determine the effect of changing the threshold values each 
time the program runs. Use reference strings that simulate spa
tial locality over both large and small regions of memory and 
temporal locality over both large and small periods. Also test 
the simulation using reference strings that are essentially ran
dom. Describe the optimal page-replacement algorithm for 
each reference string. Enhance your simulation so that it 
dynamically adjusts these values in response to the reference 
string it encounters. 

11.45 Develop a program that compares page-fault-frequency 
(PFF) page replacement and working set (WS) page replace
ment for a particular reference string. Determine the effect of 
changing the threshold values for PFF and window size for WS 
each time the program runs. Use reference strings that simu
late spatial locality over both large and small regions of mem
ory and temporal locality over both large and small periods. 
Also test the simulation using reference strings that are essen
tially random. Describe the optimal page-replacement algo
rithm for each reference string. 

11.40 Prepare a research paper that describes how Intel's Pen
tium 4 supports three different page sizes. How does the pro
cessor choose which size to use? Also, is there any 
communication between the TLBs? 

11.41 Prepare a research paper on hardware support for the 
working set model. 
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Secondary Storage, Files 
and Databases 

A fair request should be followed by the deed in silence. 
—Dante — 

Part 4 



Computers store programs and vast amounts of 
data as files and databases on secondary storage 
devices. The following two chapters explain how 
operating systems organize and manage data on 
these devices. We explain the operation of the enor
mously popular moving-head disk storage device 
and show how to achieve maximum performance 
with seek and rotational optimization strategies. 
RAID (Redundant Arrays of Independent Disks) 
systems, which achieve high levels of performance 
and fault tolerance, are presented. We discuss file 
systems and examine how files are allocated on 
disk, how free space is managed and how file data 
is accessed and protected. File servers, and how 
they are used in distributed systems, are explained. 
We introduce database systems, and discuss rela
tional databases and the kinds of operating sys
tems services that support database systems. 

'Tis in my memory lock'd, And you yourself shall keep the key of it. 
—William Shakespeare — 



The path of duty lies in what is near, and man seeks for it in what is remote. 
—Mencius— 

A fair request should be followed by the deed in silence. 
—Dante— 

... the latter, in search of the hard latent value with which it alone is concerned, sniffs 
round the mass as instinctively and unerringly as a dog suspicious of some buried bone. 

—William James— 

Go where we will on the surface of things, men have been there before us. 
—Henry David Thoreau— 

The wheel that squeaks the loudest is the one that gets the grease. 
—Josh Billings (Henry Wheeler Shaw) — 



Chapter 12 

Disk Performance 
Optimization 

Objectives 
After reading this chapter, you should understand: 

• how disk input/output is accomplished. 

• the importance of optimizing disk performance. 

• seek optimization and rotational optimization. 

• various disk scheduling strategies. 

• caching and buffering. 

• other disk performance improvement techniques. 

• key schemes for implementing redundant arrays of independent disks 
(RAID). 
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In recent years, processor and main memory speeds have increased more rapidly 
than those of secondary storage devices, such as hard disks. As a result, processes 
requesting data on secondary storage tend to experience relatively long service 
delays. In this chapter, we discuss the characteristics of moving-head disk storage 
and consider how operating system designers can manage such devices to provide 
better service to processes. We explain how to optimize disk performance by reor
dering disk requests to increase throughput, decrease response times and reduce 
the Variance of response times. We also discuss how operating systems reorganize 
data on disk and exploit buffers and caches to boost performance/Finally, we dis
cuss Redundant Arrays of Independent Disks (RAIDs), which improve disk access 
times and fault tolerance by servicing requests using multiple disks at once. 

12.1 Introduction 
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In early computers, persistent data was stored on punched cards and punched paper 
tape, which used the absence or presence of holes to represent bits of data.1 Writing 
software and loading it into the computer using such media was both labor inten
sive and slow. The need for an inexpensive, rewritable persistent storage device led 
researchers to develop magnetic storage, which records bits of data by changing the 
direction of magnetization of regions on the medium's surface. To access data, a 
current-carrying device called a read-write head hovers above the medium as it 
moves. The head reads data by measuring how the magnetized medium changes the 
current; it "writes" data by using the current to change the magnetization on the 
medium. A challenge in building these devices is that the head must float extremely 
close to the medium's surface without touching it. 

In 1951, the designers of UNIVAC 1 (UNIVersal Automatic Computer) intro
duced magnetic tape storage, which was both persistent and rewritable.2 Magnetic 
tape is a form of sequential access storage, like audio or video cassettes. Such a 
medium is inappropriate for transaction-processing applications, where, for exam
ple, the system must be able to locate and update any record in a fraction of a sec
ond. To address this problem, IBM introduced the first commercial hard disk drive. 
the RAMAC (Random Access Method of Accounting and Control), in 1957. Hard 
disk drives are random access (also called direct access) devices because they are 
not limited to accessing data sequentially. RAMAC's capacity totalled five mega
bytes, and its cost was $50,000; it was generally rented to installations for hundreds 
of dollars per month.34 Although hard disks provided better performance than 
magnetic tape storage, their high cost limited their use to large installations. 

As the decades passed, hard drive capacity and performance increased, while 
costs declined. Typical personal computer hard disk capacity increased from hun
dreds of megabytes to several gigabytes during the 1990s while prices fell to a few 
pennies per megabyte. By 2003, hard drive capacity had exceeded 200GB and cost 
less than a dollar per gigabyte.5 Due to mechanical constraints that we discuss in the 
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next section, hard disk speeds have improved more slowly than their capacity. As 
processor speeds increased and applications consumed larger amounts of data, sys
tems became increasingly I/O bound.6 

Research in persistent storage technology continues to focus on increasing 
capacity and performance. Some solutions attempt to improve the performance of 
existing magnetic disk devices; others employ novel techniques and media. 
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1. Why have many of today's systems become I/O bound? 
2. Why are disks more appropriate than tapes for secondary storage? 

Ans: 1) Processor speeds have increased faster than hard disk speeds. 2) Magnetic tape per
forms well only in an application in which data is accessed sequentially. In transaction-pro
cessing applications and in multiprogrammed systems, requests to access secondary storage 
from multiple processes can lead to essentially random access patterns. In this case, direct 
access storage devices are essential. 

Self Review 

Unlike main memory, which provides (nearly) uniform access speed to all of its 
contents, moving-head disk storage exhibits variable access speed that depends on 
the relative positions of the read-write head and the requested data. Figure 12.1 
shows a simplified view of a moving-head disk.7-8-9 Data is recorded on a series of 

12.3 Characteristics of Moving-Head Disk Storage 

Figure 12.1 | Schematic side view of a moving-head disk. 



magnetic disks, or platters, connected to a spindle that rotates at high speed (typi
cally thousands of revolutions per minute10). 

The data on each disk surface is accessed by a read-write head that is sepa
rated by a small amount of space from the surface (much smaller than a particle of 
smoke). For example, the disk in Fig. 12.1 contains two platters, each having two 
surfaces (top and bottom) and four read-write heads, one for each surface. A read-
write head can access data immediately below (or above) it. Therefore, before data 
can be accessed, the portion of the disk surface at which the data is to be read (or 
written) must rotate until it is immediately below (or above) the read-write head. 
The time it takes for data to rotate from its current position to the beginning of the 
read-write head is called rotational latency time. A disk's average rotational latency 
is simply half the time it takes to complete one revolution. Most hard disks exhibit 
average rotational latency on the order of several milliseconds (Fig. 12.2). 

As the platters spin, each read-write head sketches out a circular track of data 
on a disk surface. Each read-write head is positioned at the end of a disk arm, which 
is attached to an actuator (also called a boom or moving-arm assembly). The disk 
arm moves parallel to the surface of the disk. When the disk arm moves the read-
write heads to a new position, a different vertical set of circular tracks, or cylinder. 
becomes accessible. The process of moving the disk arm to a new cylinder is called a 
seek operation.1112 To locate small units of data, disks divide tracks into several 
sectors, often 512 bytes (Fig. 12.3).13 Therefore, an operating system can locate a 
particular data item by specifying the head (which indicates which disk surface to 
read from), the cylinder (which indicates which track to read from), and the sector 
in which the data is located. 

To access a particular record of data on a moving-head disk, several opera
tions are usually necessary (Fig. 12.4). First, the disk arm must move to the appro
priate cylinder (i.e., perform a seek operation). The time it takes for the head to 
move from its current cylinder to the one containing the data record is called the 
seek time. Then the portion of the disk on which the data record is stored must 
rotate until it is immediately under (or over) the read-write head. Then the record, 
which is of arbitrary size, must be made to spin by the read-write head. This is called 
transmission time. Because each of these operations involves mechanical move
ment, the total time a disk access takes is often an appreciable fraction of a second 
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Figure 12.2 | Hard disk track-to-track seek times and latency times. 14, 15, 16, 17, 18 



(several milliseconds at least). During this same period of time, a processor can exe
cute tens or even hundreds of millions of instructions. 

1. One focus of research in the field of storage technology is on increasing a hard disk's 
areal density (i.e., amount of data per unit area). How does increasing the areal density 
alone affect disk access times? 

2. (T/F) Rotational latency is identical for every disk access. 

Ans: 1) As the amount of data per unit area increases, then the amount of data contained in 
each track increases. If a particular data record is located on a single track, the transmission 
time decreases compared to that for a lower areal density because more data can be read per 
unit time. 2) False. The rotational latency depends on the location of the beginning of the 
requested sector relative to the position of the arm. 

Many processes can generate requests for reading and writing data on a disk simul
taneously. Because these processes sometimes make requests faster than they can 
be serviced by the disk, waiting lines or queues build up to hold disk requests. Some 
early computing systems simply serviced these requests on a first-come-first-served 
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Figure 12.3 | Schematic top view of a disk surface. 
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Figure 12.4 | Components of a disk access. 
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(FCFS) basis, in which the earliest arriving request is serviced first.19 FCFS is a fair 
method of allocating service, but when the request rate (i.e., the load) becomes 
heavy, can be long waiting times. 

FCFS exhibits a random seek pattern in which successive requests can cause 
time-consuming seeks from the innermost to the outermost cylinders. To reduce the 
time spent seeking records, it seems reasonable to order the request queue in some 
manner other than FCFS.20 This process, called disk scheduling, can significantly 
improve throughput.21 

Disk scheduling involves a careful examination of pending requests to deter
mine the most efficient way to service them. A disk scheduler examines the posi
tional relationships among waiting requests, then reorders the queue so that the 
requests will be serviced with minimum mechanical motion. 

Because FCFS does not reorder requests, it is considered by many to be the 
simplest disk scheduling algorithm. The two most common types of scheduling are 
seek optimization and rotational optimization. Because seek times tend to be 
greater than latency times, most scheduling algorithms concentrate on minimizing 
total seek time for a set of requests. As the gap between rotational latency and seek 
times narrows, minimizing the rotational latency of a set of requests can also 
improve overall system performance, especially under heavy loads. 



1. Indicate which type of disk scheduling algorithm is most appropriate in the following sce
narios: seek time is significantly greater than latency time, seek time and latency time are 
nearly equal, seek time is significantly shorter than latency time. 

2. Which characteristics of disk geometry are most important to seek optimization and rota
tional optimization? 

Ans: 1) When seek time is significantly greater than latency time, access times are most 
affected by seek operations, so the system should implement seek optimization. When seek 
times and latency times are nearly equal, the system can benefit from combining both seek and 
rotational optimization techniques. If seek time is much shorter than latency time, then access 
times are most affected by latency time, so the system should concentrate on rotational optimi
zation. Because today's processors are so fast, both forms of optimization should be employed 
to improve overall performance. 2) Cylinder locations are most important when optimizing 
seek times, and sector locations are most important when optimizing latency times. 

Self Review 
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A system's disk scheduling strategy depends on the system objectives, but most 
strategies are evaluated by the following criteria 

• throughput—the number of requests serviced per unit time 
• mean response time—the average time spent waiting for a request to be 

serviced 

• variance of response times—& measure of the predictability of response 
times. Each disk request should be serviced within an acceptable time 
period (i.e., the strategy should prevent indefinite postponement). 

Clearly, a scheduling policy should attempt to maximize throughput and mini
mize the mean response time. Many scheduling policies attempt to accomplish 
these goals by minimizing the time spent performing lengthy seeks. When through
put and mean response time are optimized, average system performance improves, 
nut individual requests may be delayed. 

Variance measures how individual requests are serviced relative to average 
system performance. The smaller the variance, the more likely it is that most disk 
requests are serviced after waiting for a similar amount of time. Therefore, variance 
can be seen as a measure of fairness and of predictability. We desire a scheduling 
policy that minimizes variance (or at least keeps it at reasonable levels) to avoid 
erratic service times. In a business-critical system, such as a Web server, a high vari
ance of response times could result in loss of sales if, for example, users' requests to 
purchase products were indefinitely postponed or suffer lengthy waits. In mission-
critical systems, the result of such a delay could be catastrophic. 

The following sections describe several common scheduling policies. We use 
the set of disk requests in Fig. 12.5 to demonstrate the result of each policy on an 
arbitrary series of requests. The arbitrary series of requests is intended to demon
strate how each policy orders disk requests, it does not necessarily indicate the rela
tive performance of each policy in a real system. In the examples that follow, we 
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Figure 12.5 | Disk request pattern. 
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assume that the disk contains 100 cylinders, numbered 0-99, and that the read/write 
head is initially located at cylinder 63, unless stated otherwise. For simplicity, we 
also assume that the disk scheduler has already determined the cylinder number 
corresponding to each request. 

1. Why is minimizing the variance of response times an important goal in disk scheduling? 
2. We mentioned that FCFS is a fair scheduling algorithm. Which of the criteria mentioned 

in this section most directly relates to fairness? 

Ans: 1) Otherwise the system could experience erratic response times. In a business-critical 
system, this could cause a company to lose customers; in a mission-critical system, it could 
put people's lives at risk. 2) FCFS is fair in the sense that arriving requests cannot get in line 
ahead of waiting requests. This helps reduce the variance of response times. 

Self Review 



FCFS scheduling uses a FIFO queue so that requests are serviced in the order in 
which they arrive.22'23-24 FCFS is fair in the sense that a request's position in the 
queue is unaffected by arriving requests. This ensures that no request can be indefi
nitely postponed, but it also means that FCFS might perform a lengthy seek opera
tion to service the next waiting request, even if another request in the queue is 
closer and can be serviced faster. Although this technique incurs low execution-
time overhead, it can result in low throughput due to lengthy seeks. 

When requests are uniformly distributed over the disk surfaces, FCFS sched
uling leads to a random seek pattern because it ignores positional relationships 
among the pending requests (Fig. 12.6).This is acceptable when the load on a disk is 
light. However, as the load grows, FCFS tends to saturate (i.e., overwhelm) the 
device, and response times become large. The random seek pattern of FCFS results 
in low variance (because arriving requests cannot get ahead of waiting requests), 
but this is of little solace to the request sitting at the back of the disk queue while 
the disk arm rambles around in a torrid "disk dance." 

12.5.1 First-Come-First-Served (FCFS) Disk Scheduling 
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1. One measure of fairness is a low variance in response times. In this sense, is FCFS disk 
scheduling fair? 

2. Can indefinite postponement occur with FCFS disk scheduling? Explain. 

Ans: 1) Yes, in this sense it is fair, but because no attempt is made to minimize response times, 
average response times tend to be longer than necessary. 2) No. Indefinite postponement can
not occur because arriving requests can never be placed ahead of requests in the queue. 

Self Review 

Figure 12.6 | Seek pattern under the FCFS strategy. 



Shortest-seek-time-first (SSTF) scheduling next services the request that is closest 
to the read-write head's current cylinder (and thus incurs the shortest seek time). 
even if that is not the first one in the queue.25, 26, 27, 28 SSTF does not ensure fairness 
and can lead to indefinite postponement because its seek pattern tends to be highly 
localized, which can lead to poor response times for requests to the innermost and 
outermost tracks (Fig. 12.7). 

By reducing average seek times, SSTF achieves higher throughput rates than 
FCFS, and mean response times tend to be lower for moderate loads. One significant 
drawback is that it leads to higher variances of response times because of the discrim
ination against the outermost and innermost tracks; in the extreme, starvation (see 
Chapter 7) of requests far from the read/write heads could occur if new arrivals tend 
to be clustered near the middle cylinders. The high variance is acceptable in batch-
processing systems, where throughput and mean response times are more important 
goals. However, SSTF is inappropriate for interactive systems, where the system must 
ensure that each user experiences prompt, predictable response times (see the Anec
dote, Every Problem Has a Solution and Every Solution Has a Problem). 

12.5.2 Shortest-Seek-Time-First (SSTF) Disk Scheduling 
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Anecdote 
Every Problem Has a Solution and Every Solution Has a 
Problem 
This true story happened to a 
neighbor who is in no way 
involved wi th the computer 
industry. Her husband left for 
work shortly before she did and 
he forgot to close the garage 
door that day. When she was leav
ing her home to go to work, she 
walked into her garage and 
found a skunk had pushed over a 
garbage pail and was sitting next 
to the door to her car merrily 

chomping on the garbage. She 
called the town's animal control 
department, but they had a back
log and said they would not be 
able to come out for a few hours. 
They told her, though, that skunks 
love bacon, so she should fry up a 
batch of bacon and throw it out 
on her front lawn. The skunk 
would smell the bacon and go out 
on the front lawn to eat it. She 
could then hop in her car, pull out 

of the garage, close the garage 
door wi th her remote control and 
head off to work. She fol lowed 
that advice. But much to her cha
grin, when she threw the bacon 
onto the front lawn, another 
skunk came out of the woods to 
eat the bacon, while the first 
skunk continued eating the gar
bage in her garage. She got to 
work a few hours late that day. 

Lesson to operating systems designers: Always try to anticipate the consequences of your design choices. 
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Figure 12 .7 | Seek pattern under the SSTF strategy. 

1. To which scheduling algorithm from Chapter 8 is SSTF most similar? How do they differ? 
2. Compare the overhead incurred by SSTF and FCFS. 

Ans: 1) SSTF is most similar to the shortest-process-first (SPF) strategy. Unlike SPF, SSTF 
does not require future knowledge (such as runtime-to-completion)—the request's location 
is sufficient information to determine which request to service next. 2) Both FCFS and SSTF 
must maintain a queue of waiting requests in memory. Because FCFS maintains a simple 
FIFO queue, the execution time required to determine which request to service next is small 
and is unaffected by the number of requests in the queue. SSTF incurs overhead by either 
maintaining a sorted list (or lists) of requests or by searching the entire request queue for the 
appropriate request to service. In this case, the overhead incurred by SSTF is proportional to 
the number of requests in the queue (whereas the overhead of FCFS is constant—simply the 
amount of time it takes to insert entries at the back of the queue and remove them from the 
front). 

Self Review 

Denning developed the SCAN disk scheduling strategy to reduce the unfairness 
and variance of response times exhibited by SSTF.29 SCAN chooses the request that 
requires the shortest seek distance in a preferred direction (Fig. 12.8). Thus, if the 
preferred direction is currently outward, the SCAN strategy chooses the shortest 
seek distance in the outward direction. SCAN does not change its preferred direc
tion until it reaches the outermost cylinder or the innermost cylinder. In this sense, 
it is called the elevator algorithm, because an elevator continues in one direction 
servicing requests before reversing direction. 

SCAN behaves much like SSTF in terms of high throughput and good mean 
response times. However, because SCAN ensures that all requests in a given direction 
will be serviced before the requests in the opposite direction, it offers a lower variance 
of response times than SSTF. SCAN, like SSTF, is a cylinder-oriented strategy. 

12.5.3 SCAN Disk Scheduling 



Figure 12.8 | Seek pattern under the SCAN strategy. 

Because the read-write heads oscillate between opposite ends of each platter in 
SCAN, the outer tracks are visited less often than the midrange tracks, but generally 
more often than they would be using SSTF. Because arriving requests can be serviced 
before waiting requests, both SSTF and SCAN can suffer indefinite postponement. 

1. One limitation of the SCAN algorithm is that it might perform unnecessary seek opera
tions. Indicate where this occurs in Fig. 12.8. 

2. Can requests be indefinitely postponed under SCAN? 

Ans: 1) The unnecessary seek operation occurs after servicing the request to cylinder 8. 
Because there are no further requests in the preferred direction, it would be more efficient to 
change direction after servicing that request. We examine a modification to the SCAN strat
egy that addresses this limitation in Section 12.5.6, LOOK and C-LOOK Disk Scheduling. 2) 
One could imagine a scenario in which processes issue continuous requests to the same cylin
der, so that the read/write head becomes "stuck" on that cylinder. 

Self Review 
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In the Circular SCAN (C-SCAN) modification to the SCAN disk scheduling strat
egy, the arm moves from the outer cylinder to the inner cylinder, servicing requests 
on a shortest-seek basis (Fig. 12.9). When the arm has completed its inward sweep, 
it jumps (without servicing requests) to the outermost cylinder, then resumes its 
inward sweep, processing requests. C-SCAN maintains high levels of throughput 
while further limiting variance of response times by avoiding discrimination against 
the innermost and outermost cylinders.30-31 As in SCAN, requests in C-SCAN can 
be indefinitely postponed if requests to the same cylinder continuously arrive 
(although this is less likely than with SCAN or SSTF). In the sections that follow, 
we discuss modifications to SCAN that address this problem. 

12.5.4 C-SCAN Disk Scheduling 
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Simulation results in the literature indicate that the best disk scheduling pol
icy might operate in two stages.32 Under a light load, the SCAN policy is best. 
Under medium to heavy loads, C-SCAN and other adaptations to the SCAN policy 
vield better results. C-SCAN with rotational optimization handles heavy loading 
conditions effectively.33 

Figure 12.9 | Seek pattern under the C-SCAN strategy. 

1. Which criteria of disk scheduling strategies does C-SCAN improve upon? 
2. (T/F) C-SCAN incurs essentially the same execution-time overhead as SCAN. 

Ans: 1) C-SCAN reduces variance of response times compared to SCAN because it is less 
biased against the outermost and innermost cylinders. 2) False. C-SCAN incurs overhead 
over SCAN when it finishes its inward sweep and skips requests while moving the head to the 

outermost cylinder. 

Se l Rev iew 

The FSCAN and TV-Step SCAN modifications to the SCAN strategy eliminate the 
possibility of indefinitely postponing requests.34, 35 FSCAN uses the SCAN strategy 
to service only those requests waiting when a particular sweep begins (the "F" 
stands for "freezing" the request queue at a certain time). Requests arriving during 
a sweep are grouped together and ordered for optimum service during the return 
sweep (Fig. 12.10). 

TV-Step SCAN services the first n requests in the queue using the SCAN strat-
egy. When the sweep is complete, the next n requests are serviced. Arriving requests 
are placed at the end of the request queue (Fig. 12.11). TV-Step SCAN can be tuned 
by varying the value for n. When n-1, N-Step SCAN degenerates to FCFS. As n 
approaches infinity, TV-Step SCAN degenerates to SCAN. 

12.5.5 FSCAN and N-Step SCAN Disk Scheduling 
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Figure 12.10 | Seek pattern under the FSCAN strategy. 

Figure 12.11 | Seek pattern under the N-Step SCAN strategy (n = 3). 

FSCAN and TV-Step SCAN offer good performance due to high throughput 
and low mean response times. Because they prevent indefinite postponement, their 
distinguishing characteristic is a lower variance of response times than with SSTF 
and SCAN, especially when requests would be indefinitely postponed under the lat
ter two strategies. 



1. Explain how FSCAN can lead to lower throughput than SCAN. 
2. Compare and contrast FSCAN and JV-Step SCAN. 

Ans: 1) If a request to a cylinder in the preferred direction arrives after FSCAN freezes the 
queue, the disk head will pass by the cylinder without servicing the request until the next 
pass. 2) Both strategies use SCAN to service a portion of the request queue to prevent indef
inite postponement. FSCAN services all the requests in the queue before beginning a sweep 
in a new preferred direction; TV-Step SCAN services only the next n requests in the queue. 

Sel Review 
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The LOOK variation of the SCAN strategy "looks" ahead to the end of the current 
sweep to determine the next request to service. If there are no more requests in the 
current direction, LOOK changes the preferred direction and begins the next 
sweep (Fig. 12.12). In this sense, it is appropriate to call this the elevator algorithm, 
because an elevator continues in one direction until it reaches the last request in 
that direction, then reverses direction. This strategy eliminates unnecessary seek 
operations exhibited by other variations of the SCAN strategy (compare the left 
side of Fig. 12.12 to the corresponding location in Fig. 12.8). 

Circular LOOK (C-LOOK) variation of the LOOK strategy uses the same 
technique as C-SCAN to reduce the bias against requests located at the extreme 
ends of the platters. When there are no more requests on a current inward sweep, 
the read/write head moves to the request closest to the outer cylinder (without ser
vicing requests in between) and begins the next sweep. The C-LOOK policy is char
acterized by a potentially lower variance of response times compared to LOOK and 
nigh throughput (although generally lower than LOOK).36 Figure 12.13 summa
rizes each of the disk scheduling strategies we have discussed. 

12.5.6 LOOK and C-LOOK Disk Scheduling 

Figure 12.12 | Seek pattern under the LOOK strategy. 



Services requests in the order in which they arrive. 

Services the request that results in the shortest seek distance first. 

Head sweeps back and forth across the disk, servicing requests according to 
SSTF in a preferred direction. 

Head sweeps inward across the disk, servicing requests according to SSTF in 
the preferred (inward) direction. Upon reaching the innermost track, the 
head jumps to the outermost track and resumes servicing requests on the 
next inward pass. 

Requests are serviced the same as SCAN, except newly arriving requests are 
postponed until the next sweep. Avoids indefinite postponement. 
Services requests as in FSCAN, but services only n requests per sweep. 
Avoids indefinite postponement. 

Same as SCAN except the head changes direction upon reaching the last 
request in the preferred direction. 

Same as C-SCAN except the head stops after servicing the last request in the 
preferred direction, then services the request to the cylinder nearest the 
opposite side of the disk. 

FCFS 

SSTF 

SCAN 

C-SCAN 

FSCAN 

N-Step 
SCAN 

LOOK 

C-LOOK 

Strategy Description 
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Figure 12.13 | Seek optimization strategies summary. 

1. Why does C-LOOK typically exhibit throughput lower than that of LOOK? 
2. Under C-LOOK, in what order would the requests presented in Fig. 12.5 be serviced? 

Ans: 1) The time spent seeking from one end of the platter to the furthest request from the 
position of the read/write head at the end of the sweep increases the mean response time, 
which decreases throughput. 2) 52, 47, 33, 8, 99, 75, 74, 72 

Because the dominant component of access time in early hard drives was seek time, 
research focused on seek optimization. However, today's hard disks exhibit seek 
times and average latencies that are of the same order of magnitude, meaning that 
rotational optimization can often improve performance.37 Processes that access data 
sequentially tend to access entire tracks of data and thus do not benefit much from 
rotational optimization. However, when there are numerous requests to small pieces 
of data randomly distributed throughout the disk's cylinders, rotational optimization 
can improve performance significantly. In this section, we discuss how to combine 
seek and rotational optimization strategies to achieve maximum performance. 

Self Review 

12.6 Rotational Optimization 

Once the disk arm arrives at a particular cylinder, there might be many requests 
pending on the various tracks of that cylinder. The shortest-latency-time-first 

12.6.1 SLTF Scheduling 



(SLTF) strategy examines all of these requests and services the one with the short
est rotational delay first (Fig. 12.14). This strategy has been shown to be close to the 
theoretical optimum and is relatively easy to implement.38 Rotational optimization 
is sometimes referred to as sector queuing; requests are queued by sector position 
around the disk, and the nearest sectors are serviced first. 
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1. Why is sector queuing easy to implement? 
2. Is rotational optimization appropriate for today's hard disks? Why? 

Ans: 1) Sector queuing determines the best access pattern for sectors on a track. Assuming 
that sectors are at fixed locations and that the disk can spin only in one direction, sector 
queuing simply is a sorting problem. 2) Yes, rotational optimization is appropriate. Today's 
hard disks exhibit seek times and average latencies that are of the same order of magnitude. 

The shortest-positioning-time-first (SPTF) strategy next services the request that 
requires the shortest positioning time, which is the sum of the seek time and rota-
tional latency time. Like SSTF, SPTF results in high throughput and a low mean 

12.6.2 SPTF and SATF Scheduling 
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Figure 12.14 | SLTF scheduling. The requests will be serviced in the indicated order 
regardless of the order in which they arrived. 



response time, and it can also indefinitely postpone requests to the innermost and 
outermost cylinders.39 

A variation of SPTF is the shortest-access-time-first (SATF) strategy, which 
next services the request that requires the shortest access time (i.e., positioning time 
plus transmission time). SATF exhibits higher throughput than SPTF, but large 
requests can be indefinitely postponed by a series of smaller requests, and requests 
to the innermost or outermost cylinders can be indefinitely postponed by requests 
to midrange cylinders. Both SPTF and SATF can improve performance by imple
menting the "look-ahead" mechanisms described in Section 12.5.6.40 

Figure 12.15 demonstrates the difference between SPTF and SATF. In 
Fig. 12.15(a), the disk receives two requests for data records of the same size, A and 
B, that are located on adjacent cylinders. Data record A is located in the same cylin
der as the read/write head, but approximately one-half rotation away from the 
read/write head. Data record B is near the read/write head but is located on an 
adjacent cylinder. In this case, the transmission time is identical for A and B 
because A and B are the same size, so SATF reduces to SPTF. Thus, for this particu
lar disk, both SATF and SPTF would service the request for data record B first, 
because the disk takes less time to perform a single-cylinder seek operation than to 
rotate the platter 180 degrees. If the seek time is adequately small, the disk can ser
vice the request for B, then reposition the head to service the request for A within 
one disk rotation. On the contrary, SSTF would service A first, requiring more than 
one revolution of the platter to service both requests. Thus, SATF and SPTF can 
increase throughput compared to SSTF 

Now consider that data record B consumes an entire track whereas A is stored 
in one sector, as shown in Fig. 12.15(b). Assume that the location of the first byte of 
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Figure 12.15 | SPTF (a) and SATF (b) disk scheduling examples. 



each record is the same as in the previous example. In this case, SPTF would service 
requests in exactly the same order as in the previous example, because the position
ing times are the same. However, SATF would service request A first, because 
request A requires one half of a rotation plus nominal transmission time, whereas 
request B requires a nominal rotational latency time plus a transmission time equal 
to the time required for the platter to complete one revolution. 

SPTF and SATF require knowledge of disk characteristics including latency 
time, track-to-track seek times and relative locations of sectors. Unfortunately, 
many of today's hard drives expose misleading geometry. For example, many disks 
hide error-checking and correcting data from the operating system (so that it can
not be unintentionally or maliciously modified), so consecutively numbered sectors 
may not precisely correspond to contiguous physical locations on disk. On some 
systems, when bad sectors are detected, alternate ones are assigned. For example, if 
sector 15 becomes unusable, the disk might send its requests to a reserved sector 
other than 14 or 16. These alternate sectors can be widely dispersed over the disk 
surfaces, causing seeks where none might actually be expected. 

These features, such as using alternate sectors, which improve data integrity, 
tend to counteract efforts to improve disk performance using scheduling strategies, 
because the disk provides the operating system with incomplete or misleading posi
tional information.41 Although some architectures and hard disks provide com
mands to retrieve the real geometry of the disk, this feature is not supported by all 
disks. Other hard disk architectural features complicate disk scheduling strategies; 
for more information, see the links provided in the Web Resources section at the 
end of the chapter. 

A straightforward performance enhancement technique is to decrease rota-
tional latency by increasing the rotational speed of the disk. However, designers 
have encountered significant problems when increasing the rotations per minute 
RPM) of a hard disk. Faster-rotating disks consume greater amounts of energy (a 

key concern on laptop computers with limited battery power), radiate more heat, 
make more noise and require more costly mechanical and electrical mechanisms to 
control them.42 Given these and other problems, RPM speed has increased only 
modestly (only a few percent a year over the past decade) to approximately 5,400 to 
7.200 RPM for PCs and 10,000-15,000 RPM for servers and high-end machines.43 
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1. What is the difference between the SPTF and SATF algorithms? Why would a designer 
choose one over the other? 

2. What factors prevent operating systems from obtaining accurate knowledge of hard disk 
geometries? 

Ans: 1) SPTF services the request that it can begin accessing within the shortest period of 
time. SATF services the request that it can complete accessing within the shortest time. 
Although SATF has higher throughput, it favors requests to small amounts of data over 
requests to large amounts of data. Thus, SATF is more appropriate for systems that issue 
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many requests for small data records. SPTF is more appropriate for systems that generate 
requests for both large and small data records, because it does not consider the size of a 
request. 2) Some types of hard disk hide information, such as the location of error-protection 
data and bad sectors. 

When is disk scheduling useful? When might it degrade performance? These ques
tions must be answered in the context of the overall system. The sections that follow 
discuss several considerations that might influence a designer's decisions. 

12.7 System Considerations 

When disk storage proves to be a bottleneck, some designers recommend adding 
more disks to the system (see the Operating Systems Thinking feature, Saturation 
and Bottlenecks). This does not always solve the problem, because the bottleneck 
could be caused by a large request load on a relatively small number of disks. When 
this situation is detected, disk scheduling may be used as a means of improving per
formance and eliminating the bottleneck. 

Storage as Limiting Resource 

Disk scheduling might not be useful in a batch-processing system with a relatively 
low degree of multiprogramming. Scheduling becomes more effective as the ran
domness of multiprogramming increases, which increases the system load and leads 
to erratic disk request patterns. For example, file servers in local area networks can 
receive requests from hundreds of users, which normally results in the kind of ran-

System Load 

Operating Systems Thinking 

Saturation and Bottlenecks 
Operating systems often manage 
hardware and software configu
rations. When a system is per
forming poorly, you might be 
inclined to speak of the problem 
"in the whole"—the "whole sys
t em" is performing poorly. In fact, 
its often the case that only one or 

a few resources have become sat
urated, i.e., they have reached 
their capacity and cannot service 
requests any faster. Such resources 
are called bottlenecks. Locating 
bottlenecks and dealing wi th 
them by adding resources in only 
one or a few areas of the system, 

could result in overall system 
improvement at a relatively mod
est cost. Systems should be built in 
ways that make it easy to locate 
bottlenecks. Chapter 14 presents 
a thorough treatment of perfor
mance issues, including saturation 
and bottlenecks. 
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dom request patterns that are best serviced using disk scheduling. Similarly, online 
transaction processing (OLTP) systems, such as Web and database servers, typically 
receive many disk requests to randomly distributed locations containing small 
amounts of data (e.g., HTML files and database records). Research has shown that 
disk scheduling algorithms such as C-LOOK and SATF (with look-ahead) can 
improve performance in this type of environment.44-45 
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Much of the analytical work in the literature assumes that request distributions are 
uniform. Conclusions based on the assumption of uniformity may be invalid on sys
tems whose request distributions are not uniformly distributed over the disk sur
faces. Nonuniform request distributions are common in certain situations, and their 
consequences have been investigated.46 In one study, Lynch determined that the 
vast majority of disk references are to the same cylinder as the immediately preced
ing reference.47 

One common cause of highly localized nonuniform request distributions is the 
use of large sequential files on dedicated disks. When an operating system allocates 
space for the adjacent records of a user's sequential file, it usually places adjacent 
records on the same track. When a track is full, additional records are placed on 
adjacent tracks within the same cylinder; when a cylinder is full, additional records 
are placed on adjacent cylinders. Thus requests for successive records in a sequen
tial file often cause no seeking at all. When needed, seeks are short, because they 
are usually to immediately adjacent cylinders. Obviously, an FCFS disk scheduling 
policy would be adequate in this situation. In fact, overhead incurred in more com
plex scheduling strategies might actually result in degraded performance. 

File Organization Techniques 
As we discuss in Chapter 13, File and Database Systems, sophisticated file organiza
tion techniques can cause a proliferation of requests with large seek times. In some 
cases, file data retrieval may involve reference to a master index, reference to a cyl
inder index, and then location of the actual record, a process that could incur sev
eral seek delays. Because the master index and cylinder index are normally stored 
on disk (but separate from the main data area), these seeks can be costly. Such file 
organization techniques are convenient for the applications designer but can 
degrade performance. 

1. Why do many systems exhibit nonuniform request distributions? 
2. Why does disk scheduling become more effective as system load increases? 

Ans: 1) File data is often stored and accessed sequentially, so a request to a particular cylin
der is likely to be followed by a request to the same cylinder, or to an adjacent cylinder.2) As 
system load increases, request patterns tend to become more random, which could lead to 
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substantial seek activity. Disk scheduling improves performance by reducing the number of 
wasteful seek operations. 
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Many systems maintain a disk cache buffer, which is a region of main memory that 
the operating system reserves for disk data. In one context, the reserved memory 
acts as a cache, allowing processes quick access to data that would otherwise need 
to be fetched from disk. The reserved memory also acts as a buffer, allowing the 
operating system to delay writing modified data until the disk experiences a light 
load or until the disk head is in a favorable position to improve I/O performance. 
For example, an operating system may delay writing modified data to disk to allow 
time for multiple requests to contiguous locations to enqueue, so that they can be 
serviced with one I/O request. 

The disk cache buffer presents several challenges to operating system design
ers. Because the size of the disk cache must be limited to allow enough memory for 
active processes, the designer must implement some replacement strategy. The 
cache-replacement question is similar to the page-replacement question, and 
designers use many of the same heuristics. Most commonly, designers choose a 
strategy that replaces the least-recently used item in the disk cache buffer. 

A second concern arises because disk caching can lead to inconsistencies. Disk 
cache buffers are maintained in volatile memory, so if the system fails or loses power 
while modified data is in the cache buffer, those changes are lost. To safeguard data 
against such problems, the contents of the disk cache buffer are periodically flushed 
to the hard disk; this reduces the probability of data loss if the system crashes. 

A system that employs write-back caching does not write modified data to 
disk immediately. Instead, the cache is written to disk periodically, enabling the 
operating system to batch multiple I/Os that are serviced using a single request, 
which can improve system performance. A system that employs write-through cach
ing writes data both to the disk cache buffer and to disk each time cached data is 
modified. This technique prevents the system from batching requests, but reduces 
the possibility of inconsistent data in the event of a system crash.48 

Many of today's hard disk drives maintain an independent high-speed buffer 
cache (often called an on-board cache) of several megabytes.49 If requested data is 
stored in the on-board cache, the hard drive can deliver the data at or near the 
speed of main memory. Additionally, some hard disk interface controllers (e.g., 
SCSI and RAID controllers) maintain their own buffer caches separate from main 
memory. When requested data is not located in the main memory buffer cache, on
board buffer caches improve I/O performance by servicing requests without per
forming relatively slow mechanical operations.50 However, one study showed that 
disks that include on-board caches typically use replacement strategies that adapt 
poorly to random request patterns, leading to suboptimal performance.51 It is also 
likely that on-board buffer caches and main memory buffer caches will contain the 
same data, which leads to inefficient resource utilization. 

12.8 Caching and Buffering 



1. What are the trade-offs when selecting the size of the system's disk cache buffer? 
2. State when write-back caching and write-through caching are appropriate, and why. 

Ans: 1) A small disk cache buffer allows enough memory for active processes, but is likely to 
contain only a small portion of requested data, so many requests must be serviced using the 
disk. A small cache buffer also limits the number of write requests that can be buffered simulta
neously, which means that data will need to be flushed frequently. A large cache buffer reduces 
the number of I/O operations the system performs, but can reduce the memory available to 
store process instructions and data, which could lead to thrashing. 2) Write-back caching 
enables the system to batch modified data to reduce the number of disk requests, but does not 
prevent loss of buffered data in the event of a power or system failure. Thus, write-back caching 
is appropriate for systems where performance is more important than reliability (e.g., some 
supercomputers). Because write-through caching immediately sends modified data to disk, it is 
appropriate for systems that cannot tolerate loss of data (e.g., database systems). 
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We have considered optimizing the performance of rotational storage devices using 
scheduling policies and optimizing system architecture. In this section we analyze 
several other disk performance optimization techniques. 

As files and records are added and deleted, a disk's data tends to become dis
persed throughout the disk, or fragmented. Even sequential files, which one would 
expect to exhibit low access latency, become severely fragmented, which increases 
access time. Many operating systems provide defragmentation (or disk reorganiza
tion) programs that can be used periodically to reorganize files. This allows the con
secutive records of sequential files to be placed contiguously on the disk. Systems 
that use noncircular variations of the SCAN strategy tend to visit the midrange cyl
inders more frequently than the outermost ones. For these systems, frequently ref
erenced items can be placed on the midrange tracks to reduce average access times. 

Also, operating systems can place files that are likely to be modified near free 
space to reduce future fragmentation—as the files grow, new data can be placed in 
the adjacent free space instead of elsewhere on disk. Some operating systems allow 
users to partition a disk into separate areas. Files are then restricted to these parti
tions, so fragmentation is reduced.52 However, partitions can lead to wasted mem
ory similar to internal fragmentation in paged virtual memory systems. 

Some systems use data compression techniques to reduce the amount of space 
required by information on disk (see the Operating Systems Thinking feature, 
Compression and Decompression). Data compression decreases the size of a record 
by replacing common bit patterns with shorter ones. Therefore, compressed data 
consumes less space without losing information. This can ultimately reduce the 
number of seeks, latency times and transmission times. However, it can require sub
stantial processor time to compress the data and later to decompress it to make it 
available to applications. 

Systems that need to access certain information quickly benefit from placing 
multiple copies of that data at different positions on the disk (see the Operating 
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Systems Thinking feature, Redundancy). This can substantially reduce seek and 
rotation times, but the redundant copies can consume a significant portion of the 
disk. This technique is more useful for read-only data, or for data that changes nom
inally. Frequent changes degrade the performance of the scheme, because each of 
the copies must be updated regularly; another danger is that a system crash could 
leave the multiple copies in an inconsistent state. 

In a multiple-disk system in which only one disk request may be serviced at a 
time, performance can be improved by replicating frequently referenced data on 
separate drives, which enables higher throughput. Some RAID techniques, dis-
cussed in Section 12.10, implement this concept. 

Additionally, record blocking can yield significant performance improve
ments. When contiguous records are read or written as a single block, only a single 
seek is required; if these records are read or written individually, then one seek per 
record could be required. 

Systems that monitor disk access attempts can try to keep frequently accessed 
data in a favorable position in the memory hierarchy (i.e., in main or cache mem
ory) while transferring infrequently referenced data to slower storage (such as a 
hard disk or compact disk). This yields an overall performance improvement, but it 
might provide poor response to users of infrequently accessed data. This is unac
ceptable if the infrequently accessed data belongs to high-priority applications. It 
might also be helpful to dedicate a disk to a single high-performance application. 

In many environments, there are often short periods when there are no wait
ing requests for the disk to service and the disk arm sits idle, waiting for the next 

550 Disk Performance Optimization 

An excellent use of abundant, 
cheap processor power is com
pression and decompression of 
data. On hard disks, this helps 
reduce the space required to store 
files. It is also important in net
work transmissions. The world's 
networking infrastructure band-
widths tend to increase much 
slower than processor power 
does. The capital investment in 

networking infrastructure, espe
cially transmission lines, is enor
mous. It simply is not feasible to 
keep upgrading the entire world's 
networking infrastructure every 
time a faster transmission tech
nology becomes available. This 
means that the ratio of processor 
speeds to transmission speeds wil l 
tend to increase over time, wi th 
processor power remaining rela-

tively cheap compared to trans
mission bandwidth. Compression 
enables messages to be shrunk for 
transmission over relatively slow 
networks, essentially increasing 
network throughput. Com
pressed messages must be decom
pressed at the receiving end to be 
usable. Operating systems wil l 
increasingly include compression 
and decompression mechanisms. 

Compression and Decompression 

Operating Systems Thinking 



request.53 If the disk arm is currently at one edge of the disk, it is likely that a long 
seek will be required to process the next request. By contrast, if the disk arm is in 
the center of the disk, or at some hot spot of disk activity, the average seek time will 
be less. Moving the disk arm to a location that will minimize the next seek is known 
as disk arm anticipation.54 

Disk arm anticipation can be useful in environments where the disk request 
patterns of processes exhibit locality. For best results, the arm should move to the 
hot spot of disk activity (rather than simply the center of the disk). When processes 
issue requests to sequential locations on disk, however, moving the head to the cen
ter of the disk after servicing each request can lead to excessive seek activity. In this 
case, disk arm anticipation might degrade performance.55 
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1. How do defragmentation and disk reorganization improve performance? 
2. Why might data compression techniques become more practical in the future? 
3. Under what conditions is it inappropriate to move the read/write head to the center of the 

disk during idle periods? 
4. Why does multiprogramming complicate efforts to anticipate the next request? 

Ans: 1) Defragmentation places file data in contiguous blocks on disk, which improves 
access times by reducing seek activity when accessing sequential data. Disk reorganization 
places frequently or heavily used data in favorable locations on disk (e.g., midrange tracks 
for noncircular scheduling strategies) to reduce average seek times. 2) There is a growing gap 
between processor speed and disk speed. The reduced access time due to data compression 
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Operating Systems Thinking 
Redundancy 
We will see many examples of 
redundancy being employed in 
operating systems for a variety of 
reasons. A common use of redun
dancy is creating backups to 
ensure that if one copy of infor
mation is lost, it can be restored. A 
multiprocessing system can have a 
pool of identical processors avail
able to assign to processes and 
threads as needed. Such redun
dancy has several advantages. 
Although the system could still 

function wi th only a single proces
sor, having the extra processors 
yields better performance because 
the processors can all work in par
allel. It is also effective for fault 
tolerance—if one processor fails, 
the system can continue operat
ing. RAID reduces access times to 
data on disks by placing redun
dant copies of that data on sepa
rate disks that may function in 
parallel. We can also place redun
dant copies of the data on differ-

ent regions of the same disk, so 
that we can minimize the move
ment of the read/write head and 
the amount of rotational move
ment of the disk before the data 
becomes accessible, thus increas
ing performance. Redundancy, of 
course, has its price. The resources 
costs money and the hardware 
and the software to support them 
can become more complex. This is 
yet another example of trade-offs 
in operating systems. 



might outweigh the overhead incurred by compressing and decompressing data. 3) If pro
grams generally exhibit spatial locality, and the area of locality is not at the center of the disk, 
then moving the head to the center of the disk during each idle period requires a wasteful 
seek to return to the disk's hot spot when requests resume. 4) A multiprogramrned system 
can service requests from multiple concurrent processes, which may lead to several hot spots 
on the disk. In this case, it is difficult to determine which, if any, hot spot the read/write head 
should move to when it is idle. 
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RAID (Redundant Arrays of Independent Disks) is a family of techniques that use 
multiple disks (called an array of disks) that are organized to provide high perfor
mance and/or reliability. RAID was originally proposed by Patterson, Gibson and 
Katz; in their paper, the "I" in RAID denotes "Inexpensive," but this has been 
changed to "Independent" because many RAID systems employ expensive, high-
performance disks.56 

Patterson et al. recognized that processor speed, main memory size and sec
ondary storage size were increasing rapidly while I/O transfer rates (particularly in 
hard disks) were growing at a much slower pace. Computer systems were becoming 
increasingly I/O bound—they could not service I/O requests as quickly as they were 
generated, and could not transfer data as quickly as it was capable of being con
sumed. To improve throughput and transfer rates, the authors recommended creat
ing arrays of disks that could be accessed simultaneously.57 

12.10 Redundant Arrays of Independent Disk (RAID) 

In their original paper, Patterson et al. proposed five different organizations, or lev
els, of disk arrays.58 Each RAID level is characterized by data striping and redun
dancy. Data striping entails dividing storage into fixed-size blocks called strips. 
Contiguous strips of a file are typically placed on separate disks so that requests for 
file data can be serviced using multiple disks at once, which improves access times. 
A stripe consists of the set of strips at the same location on each disk in the array. In 
Fig. 12.16, a portion of a file is divided into four strips of identical length, each on a 
different disk in the array. Because each strip is placed at the same location on each 
disk, the four strips form one stripe. Striping distributes a system's data across mul
tiple disks, which enables higher throughput than a single-disk system because data 
can be accessed from multiple disks simultaneously. 

When selecting a strip size, the system designer should consider the average 
size of disk requests. Smaller strip sizes, also called fine-grained strips, tend to 
spread file data across several disks. Fine-grained strips can reduce each request's 
access time and increase transfer rates, because multiple disks simultaneously 
retrieve portions of the requested data. While these disks service a request, they 
cannot be used to service other requests in the system's request queue. 

Large strip sizes, also called coarse-grained strips, enable some files to fit 
entirely within one strip. In this case, some requests can be serviced by only a por-

12.10.1 RAID Overview 
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Figure 12.16 | Strips and stripe created from a single file in RAID systems. 

tion of the disks in the array, so it is more likely that multiple requests can be ser
viced simultaneously. However, smaller requests are serviced by one disk at a time, 
which reduces transfer rates for individual requests compared to fine-grained strips. 

Systems such as Web servers and databases, which typically access multiple 
small records simultaneously, benefit from coarse-grained strips, because several 1/ 
O operations can occur concurrently. Systems such as supercomputers that require 
fast access to a small number of records benefit from fine-grained strips, which pro
vide high transfer rates for individual requests.59 

The increased transfer rate provided by RAID systems have a price. As the 
number of disks in the array increases, so does the likelihood of disk failure. For 
example, if the mean-time-to-failure (MTTF) of a single disk is 200,000 hours 
(roughly 23 years), the MTTF for a 100-disk array would be 2,000 hours (about 
three months).60 If one disk in an array fails, any files containing strips on that disk 
are lost. In business-critical and mission-critical systems, this loss of data could be 
catastrophic (see the Operating Systems Thinking feature, Mission-Critical Sys
tems). As a result, most RAID systems store information that enables the system to 
recover from errors, a technique called redundancy. RAID systems use redundancy 
to provide fault tolerance (i.e., to sustain failures without loss of data; see the Oper
ating Systems Thinking feature, Fault Tolerance). 

A straightforward way to provide redundancy is disk mirroring, a technique 
that places each unique data item on two disks. A drawback to mirroring is that 
only half of the storage capacity of the array can be used to store unique data. As 
we discuss in the sections that follow, some RAID levels employ a more sophisti
cated approach that reduces this overhead.61 



To realize the improved performance of striped disks with redundancy, the 
system must efficiently divide files into strips, form files from strips, determine the 
locations of strips in the array and implement the redundancy scheme. Using a gen
eral-purpose processor for this purpose can significantly degrade the performance 
of processes competing for processor time. Thus, many RAID systems contain spe-
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Operating Systems Thinking 
Mission-Critical Systems 
There are systems where the cost 
of failure is so high that enor
mous investment must be made in 
resources to ensure that the sys
tems do not fail and perform well 
enough to meet their require
ments. Such systems are often 
called mission-critical or business-
critical systems. If an air traffic 
control system were to fail. 

human lives could be lost. If the 
New York Stock Exchange systems 
were to fai l , the world's stock 
markets could crash. Thus, operat
ing systems must be designed to 
meet the unique reliability and 
performance requirements of par
ticular applications systems. In 
some cases, the operating system 
must make extraordinary resource 

commitments to particular appli
cations, far greater than what 
general-purpose applications 
would normally receive. In the 
Linux and Windows XP case stud
ies, we wil l see, for example, that 
real-time applications can be 
given special treatment. 

Operating Systems Thinking 
Fault Tolerance 
Computer systems are employed 
in many key aspects of our per
sonal and professional lives. We 
depend on computers not to fail. 
Fault tolerant systems are 
designed to keep operating, even 
in the presence of problems that 
might typically cause system fail
ure. Redundancy is a popular 
means of achieving fault toler-

ance—if a component fails, 
another "equal" component 
takes over. It is costly to design 
fault tolerance into a system, but 
the costs can be small compared 
to the costs of system failure, 
especially in business-critical or 
mission-critical systems. We dis
cuss issues of fault tolerance in 
many parts of the book, wi th par-

ticular emphasis on these tech
niques in our treatments of RAID, 
multiprocessing in Chapter 15, 
computer networking in 
Chapter 16, distributed systems in 
Chapter 17, distributed file sys
tems in Chapter 18 and computer 
security in Chapter 19. 



cial-purpose hardware called a RAID controller to perform such operations 
quickly. RAID controllers also simplify RAID implementation by enabling the 
operating system simply to pass read and write requests to the RAID controller, 
which then performs striping and maintains redundant information as necessary. 
However, RAID controllers can significantly increase the cost of a RAID system. 

A systems designer choosing to adopt a RAID system must balance cost, per
formance and reliability. Typically, improving one characteristic worsens the other 
two. For example, to reduce the cost of the RAID system, one might reduce the 
number of disks in the array. A smaller number of disks often reduces performance 
by limiting transfer rates and can reduce reliability by limiting the array's capacity 
to store redundant information. 
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1. Explain when fine-grained and coarse-grained strips are appropriate in RAID systems. 
2. Why should RAID systems provide some degree of fault tolerance? 

Ans: 1) Fine-grained strips are appropriate for systems requiring individual I/O operations to 
be performed quickly. Coarse-grained strips are appropriate for systems that must fulfill many 
I/O requests simultaneously. 2) The greater the number of disks in an array, the more likely it is 
that one of them will fail. Thus, RAID systems should provide additional fault tolerance. 

RAID level 0 uses a striped disk array with no redundancy. Figure 12.17 illustrates a 
RAID 0 configuration containing four striped disks. If an application requests to read 
data stored in strips A and B of the array data from both strips can be read simulta
neously, because they are on separate disks (Di and D2). Further, the RAID control
ler can simultaneously service a write request to strip K, located on disk D3. 

RAID level 0 was not one of the five original levels of RAID and is not con
sidered a "true" RAID level because it does not provide fault tolerance. If one of 
the disks fails, all the data in the array that depend on the failed disk are lost. 
Depending on the array's strip size, all data stored in the array could become unus
able with the loss of a single disk.62 

RAID level 0 is simple to implement and does not incur storage overhead to 
provide fault tolerance. Further, a RAID 0 system with n disks performs reads and 
writes at a rate up to n times greater than that of a single disk. RAID 0 systems are 
appropriate for systems where high performance and low cost are more important 
than reliability.63, 64 

12.10.2 Level 0 (Striping) 

Self Review 

1. Why is RAID level 0 not considered a "true" RAID level? 
2. What are the benefits of RAID level 0? 

Ans: 1) RAID level 0 does not provide fault tolerance through redundancy. 2) RAID level 
0 provides high transfer rates, is simple to implement and does not incur storage overhead to 
provide fault tolerance. 

Self Review 



RAID level 1 employs disk mirroring (also called shadowing) to provide redun
dancy, so each disk in the array is duplicated. Stripes are not implemented in level 1, 
reducing both hardware complexity and system performance. Figure 12.18 displays 
a RAID 1 array. Notice that disks D1 and D2 contain the same data, and disks D3 

and D4 contain the same data. Level 1 arrays permit multiple I/O operations to be 
serviced simultaneously. For example, in Fig. 12.18, requests to read data stored on 
blocks A and B can be serviced concurrently by each disk of the mirrored pair, D1 

and D2. To ensure consistency, modified data must be written to a pair of mirrored 
disks, so multiple write requests to the same mirrored pair must be serviced one at a 
time. Note that in Fig. 12.18, read requests for blocks A and B can be serviced by 
disks D1 and D2 while a write request to block I is serviced by disks D3 and D4 . 

Although RAID level 1 provides the highest degree of fault tolerance of any 
RAID level, only half of the array's disk capacity can be used to store unique data. 
Thus, the cost per unit storage in a RAID 1 array is twice that in a RAID 0 array. 
Because each block of data is stored on a pair of disks, the system can sustain multi
ple disk failures without loss of data. For example, if disk D3 fails, the system can 
continue to operate using the mirrored data on D4 . A new disk can subsequently be 
installed to replace D3 . Recovering and rebuilding data from a failed disk, called 
data regeneration, entails copying the redundant data from the mirrored disk. 
However, if both disks in a mirrored pair fail, their data is unrecoverable.65 

12.10.3 Level 1 (Mirroring) 

Figure 12.17 | RAID level 0 (striping). 
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Some RAID systems contain "spare" disks (also called hot spare disks or online 
spares) that can replace failed disks, much like a spare tire for an automobile. Some 
systems also feature hot swappable disk drives that can be replaced while the system 
is online, which allows data regeneration to occur as the system runs—necessary in 
high-availability environments such as online transaction-processing systems.66 

Level 1 arrays are characterized by the following advantages and disadvantages: 

• High storage overhead—only half of the array's storage capacity can be 
used to store unique data. 

• Fast average read transfer rates—two different read requests to data stored 
in the same mirrored pair can be serviced simultaneously. 

• Slower average write transfer rates—multiple write requests to a mirrored 
pair must be performed one at a time. However, write requests to different 
mirrored pairs can be performed simultaneously. 

• High fault tolerance—RAID level 1 can sustain multiple drive failures 
without loss of data or availability. It provides the highest degree of fault 
tolerance among the most popular RAID levels. 

• High cost—the storage overhead increases cost per unit capacity. 

Figure 12.18 | RAID level 1 (mirroring). 
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RAID 1 is best suited for environments in which reliability is a higher priority than 
cost or performance.67 

1. Compare and contrast RAID 0 and RAID 1 in terms of cost, performance and reliability. 
2. Why is RAID 1 appropriate for business- and mission-critical systems? 

Ans: 1) RAID 0 costs less than RAID 1 when capacity is held fixed. Read and write perfor
mance is dependent on system load and strip sizes, but both RAID 0 and RAID 1 can service 
read requests for data on different disks simultaneously. RAID 0 can service write requests for 
data on different disks simultaneously; RAID 1 can perform write requests simultaneously 
only if they are to data stored on different mirrored pairs. RAID 0 is much more likely to fail 
than a single disk; RAID 1 is much less likely to fail than a single disk. 2) In these systems, per
formance, reliability and availability are more important than cost. RAID 1 offers high perfor
mance for read requests and extremely high reliability, and it can continue to operate without 
loss of data if one or more disks fail (but at reduced performance levels). 
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RAID level 2 arrays are striped at the bit level, so each strip stores one bit. Level 2 
arrays are not mirrored, which reduces the storage overhead incurred by level 1 
arrays. When a disk in a RAID system fails, it is analogous to a portion of a message 
that has been corrupted during data transfer, such as during network transmission. 
The problem of unreliable transmission has been well researched and several solu
tions have been proposed (for examples of solutions to the problem of unreliable 
transmission, see www. eccpage. com). RAID level 2 borrows from a technique that 
is commonly implemented in memory modules called Hamming error-correctins 
codes (Hamming ECCs), which uses parity bits to check for errors in data transmit
ted from disks and to correct them, if possible.68 

Parity bits can be calculated as follows. Consider an array in which each stripe 
stores four bits. When the RAID system receives a request to write the data 0110 to 
a stripe, it determines the parity of the sum of the bits, i.e., whether the sum is odd 
or even. In this case, the parity sum (2) is even, so the system writes the stripe to the 
corresponding four data disks of the array and a 0, representing even parity, to a 
parity disk. [Note: Although data is striped at the bit level, most requests corre
spond to data in multiple stripes that can be written at once to improve perfor
mance.] RAID systems generally place parity bits on a separate disk, so that reads 
and writes to each stripe can be performed by all disks simultaneously. When the 
stripe is next accessed, the system reads the stripe and its corresponding parity bit. 
calculates the stripe's parity and compares it to the value read from the parity disk. 
If a disk error causes the third bit of the stripe to change from 1 to 0 (i.e., the stripe 
stores 0100), the stripe will have odd parity, and the system can detect the error by 
comparing the parity to the value stored on the parity disk. 

A limitation of this particular form of parity is that it cannot detect an even 
number of errors. For example, if both the second and third bits change from 1 to 0 

12.10.4 Level 2 (Bit-Level Hamming ECC Parity) 



(i.e., the stripe stores 0000), the stripe will still have even parity. Further, this tech
nique does not enable the system to determine which, if any, bits have errors. 

Hamming error-correcting codes (Hamming ECCs) use a more sophisticated 
approach to enable the system to detect up to two errors, correct up to one error 
and determine the location of the error in a stripe (the algorithm behind Hamming 
ECC parity generation is beyond the scope of this book; it is described at 
www2.rad.com/networks/1994/err_con/hamming.htm). The size of Hamming 
ECC codes, and thus the number of parity disks, increases according to the loga
rithm of the number of data disks. For example, an array of 10 data disks requires 
four parity disks; an array of 25 data disks requires five parity disks.69 Thus, level 2 
arrays containing a large number of disks incur significantly less storage overhead 
than level 1 arrays. 

Figure 12.19 illustrates a level 2 array containing four data disks and three 
parity disks. Stripe A is composed of the strips A0-A3, which occupy the first strips 
on the data disks D1-D4. Stripe As corresponding Hamming ECC is composed of 
the bits Ax-A z , which occupy the first strips on the parity disks P1-P3. 

Consider a write request to store data in strips A0, A1, A2, A3, B0 and B1. In 
this case, because the Hamming ECC code is computed for each write, the control
ler must write stripes A and B, and the Hamming ECC code for each stripe. Even 
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Figure 12.19 | RAID level 2 (bit-level ECC parity). 

http://rad.com/networks/1994/err_con/hamming.htm


though only two of the four bits in stripe B are modified, the entire B stripe must be 
read and its Hamming ECC code calculated and written to disk. This process, which 
degrades performance because the system must access the array twice for each 
write, is called a read-modify-write cycle. 

Although the ECC disks reduce the overhead associated with redundancy 
when compared to mirroring, they can degrade performance because multiple 
requests cannot be serviced simultaneously. Each read request requires the array to 
access all disks, compute the ECC, and compare it with the value retrieved from the 
parity disks. Some systems reduce this bottleneck by computing parity information 
only for write requests. However, the system must access all disks to maintain parity 
information when performing a write, meaning that write requests must be serviced 
one at a time. 

One way to increase the maximum number of concurrent reads and writes 
using a RAID level 2 array is to divide the system's disks into several small RAID 
level 2 arrays. Unfortunately, this technique increases storage overhead, because 
smaller groups require a a larger ratio of parity disks to data disks. For example, a 
32-data-disk level 2 array requires six parity disks. If the system were divided into 
eight groups of four data disks, the resulting arrays would require 24 parity disks.70 

The primary reason that RAID 2 is not implemented in today's systems is that 
modern disk drives maintain Hamming ECCs or comparable fault-tolerance mech
anisms transparently in hardware. Almost all current SCSI and IDE drives contain 
built-in error detection and disk monitoring.71 

1. How does dividing a large RAID level 2 array into subgroups affect cost, performance 
and reliability? 

2. Why is RAID level 2 rarely implemented? 

Ans: 1) Dividing a level 2 array into subgroups improves performance because multiple 
requests can be serviced simultaneously. Subgroups do not affect reliability, because the 
same error-checking routines are performed for each subgroup. As a whole, the subgroups 
require more parity disks than a single large array, which increases cost. 2) Because modern 
hardware devices have built-in error detection and disk monitoring that perform the same 
checks as level 2 arrays, designers seek a lower-cost and higher-performance alternative to 
providing fault tolerance. 

Self Review 

RAID level 3 stripes data at the bit or byte level. Instead of using Hamming ECC 
for parity generation, RAID 3 uses XOR (exclusive or) error-correcting codes 
(XOR ECCs). The XOR ECC algorithm is much simpler than the Hamming ECC. 
It is called XOR ECC because it uses the logical XOR operation: 

(a XOR b) = 0 when a and b are both zero or both one; 
= 1 otherwise. 

12.10.5 level 3 (Bit-level XOR ECC Parity) 
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It follows that (a XOR (b XOR c) ) = 0 only when an even number of the argu
ments are 1 or 0. RAID level 3 exploits this fact to perform nested XOR operations 
on each byte to generate its XOR ECC. For example, consider stripe A in 
Fig. 12.20. Let A0 = 1, A1 = 0, A2 = 0 and A3 = 1; or, more succinctly, A = 1001. The 
system uses nested XOR operations to compute A's parity. If the number of l's or 
0's is even, the parity bit, Ap, is 0; otherwise, Ap is 1. In this case there are two l's, so 
Ap = 0. If the system stripes at the byte level, the XOR ECC is calculated for each 
bit, so each parity strip stores 8 bits. 

XOR ECC uses only one disk to hold parity information, regardless of the 
size of the array. Note that, unlike Hamming ECCs, XOR ECCs do not enable the 
system to detect which bit contains erroneous data. This is acceptable, because most 
parity errors in RAID systems result from the failure of an entire disk, which is easy 
to detect. For example, assume that disk D2 has failed (Fig. 12.20). In this case, 
when the system attempts to read stripe A, it finds A = 1x01 (where x is the 
unknown bit) and Ap - 0. Because Ap = 0, stripe A must have stored an even num
ber of l's. Thus, the system can determine that A2 = 0 and regenerate the lost data. 
This technique can be applied to recover from any single data disk failure; if the 
parity disk fails, recovery entails recomputing the parity from the data disks.72 
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Figure 12. 20 | RAID level 3 (bit-level, single parity disk). 



Due to fine-grained striping, most reads require access to the entire array. 
Further, due to parity generation, only one write can be performed at a time. Simi
lar to RAID level 2, this yields high transfer rates when reading and writing large 
files, but, in general, only one request can be serviced at a time.73 The primary 
advantage of RAID level 3 is that it is easy to implement, offers reliability similar to 
RAID level 2, and entails significantly lower storage overhead than RAID level 2.74 
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1. Compare and contrast RAID levels 2 and 3. 
2. Why is XOR ECC parity, instead of Hamming ECC parity, sufficient for most RAID systems? 

Ans: 1) Both RAID levels 2 and 3 provide fault tolerance using parity to reduce the over
head of mirroring, both use dedicated parity disks and, in general, both cannot service multi
ple requests simultaneously. RAID level 2 incurs greater storage overhead than level 3. 2) 
Although XOR ECCs cannot determine which disk has failed, the system can easily deter
mine this, because failed disks do not respond to requests.Therefore, the system can regener
ate one failed disk using a single parity disk. 

Self Review 

RAID level 4 systems are striped using fixed-size blocks (typically much larger than 
a byte) and use XOR ECC to generate parity data, which requires a single parity 
disk. Figure 12.21 depicts a RAID 4 array. Note that the only organizational differ
ence between level 3 and level 4 arrays is that each data strip in a level 4 array 
stores more data. 

In RAID levels 2 and 3, each request's data is typically stored on each data 
disk in the array. However, because RAID level 4 permits coarse-grained strips, it is 
possible that requested data might be stored on a small fraction of the disks in the 
array. Thus, if parity is not determined for each read, the system can potentially ser
vice multiple read requests simultaneously. Because the ECC codes are used prima
rily for data regeneration as opposed to error checking and correcting, many 
systems eliminate the parity calculation when reads are performed so that multiple 
read requests can be serviced simultaneously.75 

When servicing a write request, however, the system must update parity infor
mation to ensure that no data is lost in the event of a disk failure. When coarse
grained strips are employed, write requests rarely modify data on each disk in the 
array. Again, accessing each disk in the array to compute parity information can 
lead to substantial overhead. Fortunately, the system can calculate the new parity 
bit, Ap', simply by using the data block before modification, Ad, the modified data 
block, Ad', and the corresponding parity block on disk, Ap: 

Ap' = (Ad XOR Ad') XOR Ap.76 

12.10.6 Level 4 (Block-Level XOR ECC Parity) 



You will be asked to prove this relation in the exercises. This technique elimi
nates wasteful disk I/O operations, because writes do not require access to the 
entire array. However, because each write request must update the parity disk, 
write requests must be performed one at a time, creating a write bottleneck. As we 
discuss in the next section, RAID level 5 removes the write bottleneck, so RAID 
level 4 is rarely implemented.77-78-79-80 
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Figure 12.21 | RAID level 4 (block-level parity). 

1. How does RAID level 4 offer higher performance than RAID level 3? 
2. Why can RAID level 4 perform only one write at a time? 

Ans: 1) RAID level 4 permits coarse-grained striping, which enables multiple read requests 
to be performed simultaneously and reduces the number of disks accessed for each write 
request. 2) RAID level 4 uses one parity disk that must be accessed to update parity informa-
tion each time data in the array is modified. 

Self Review 

RAID level 5 arrays are striped at the block level and use XOR ECC parity, but 
parity blocks are distributed throughout the array of disks (Fig. 12.22).81 Note that 
in Fig. 12.22, the parity for the first stripe is placed on disk D5, while the parity for 
the second stripe is placed on disk D4. Because parity blocks are distributed across 
many disks, multiple parity strips can be accessed simultaneously, removing the 
write bottleneck for many requests. For example, consider how RAID level 5 ser
vices write requests to strips A1 and C2. The controller accesses disk D2 to write 
strip A1 and disk D5 to update the corresponding parity block, Ap. The controller 
can simultaneously access disk D4 to write strip C2 and access disk D3 to update its 
corresponding parity block, Cp. 

Although RAID level 5 improves write performance by distributing parity, 
level 5 arrays must still perform a read-modify-write cycle for each write request, 

12.10.7 Level 5 (Block-Level Distributed XOR ECC Parity) 
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Figure 12.22 | RAID level 5 (block-level distributed parity). 

requiring at least four I/O operations to service each write request. If a system con
sistently writes small amounts of data, the number of costly I/O operations can sig
nificantly degrade performance.82 

Several methods have been developed to address this issue. Caching recently 
accessed data and parity blocks can reduce the number of I/O operations in the 
read-modify-write cycle. Parity logging can improve RAID level 5 performance by 
storing the difference between the old parity and new parity (called the update 
image) in memory instead of performing a read-modify-write cycle. Because a sin
gle update image can store parity information corresponding to multiple write 
requests, the system can reduce I/O overhead by performing a single update to the 
parity block in the array after several writes have been performed.83 A similar per
formance-enhancing technique is called AFRAID (A Frequently Redundant Array 
of Independent Disks). Instead of performing the read-modify-write cycle with 
every write, parity data generation is deferred to times when system load is light. 
This can greatly improve performance in environments characterized by intermit
tent bursts of requests generating small writes.84 

Although RAID level 5 increases performance relative to RAID levels 2-4, it 
is complex to implement, which increases its cost. Also, because parity is distributed 
throughout the array, data regeneration is more complicated than in other RAID 
levels.85 Despite its limitations, RAID level 5 is frequently adopted due to its effec
tive balance of performance, cost and reliability. Level 5 arrays are considered gen
eral-purpose arrays and are often found in file and application servers, enterprise 
resource planning and other business systems.86 Figure 12.23 compares the six lev
els of RAID presented in this chapter. 
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Figure 12.23 | Comparison of RAID levels 0-5. 

Many other RAID levels exist, each borrowing from one or more of the RAID levels 
we discussed in the preceding sections.87 Unfortunately, there is no standard naming 
convention for RAID levels, which often leads to confusing or misleading names. 
Some of the more notable RAID levels include 

• RAID level 6—extends RAID 5 by distributing two parity blocks per 
stripe for higher reliability upon disk failure.88 

• RAID level 0+1 — a set of striped disks (level 0) whose image is mirrored to 
a second set of disks (level 1). 

• RAID level 10—a set of mirrored data (level 1) that is striped across 
another set of disks (level 0), requiring a minimum of four disks. 

Other RAID arrays that have been developed include levels 0+3, 0+5, 50,1+5, 
51 and 53.89 RAID level 7, which is a high-performance, high-cost solution, is a propri
etary technique whose name is trademarked by the Storage Computer Corporation.90 

Other RAID levels 

1. How does RAID level 5 address the write bottleneck in RAID level 4? 
2. What techniques have been implemented to improve performance in RAID systems that 

receive many requests for small writes? 

Ans: 1) RAID level 5 distributes parity information across all disks in the array so that mul
tiple write operations can be performed simultaneously. 2) Caching recently accessed data 
improves write performance by reducing the number of I/O operations generated by read-
modify-write cycles. Delaying the update of parity information improves performance by 
reducing the number of disks accessed to perform each write operation. 

Self Review 



www.microsoft.com/windows2000/techinfo/administra
t ion/ f i leandpr in t /def rag.asp 
Describes how to use the disk defragmenting utilities in Win-
dows 2000. 
www.pcguide.com/ref/hdd/perf/raid/ 
Provides an in-depth introduction to RAID. 
www.acne.com/04_00.html 
Provides a summary of most RAID levels. 
l inas.org/ l inux/ ra id .html 
Contains articles about RAID and its implementation in Linux 
systems. 
www.pdl.emu.edu/RAID/ 
Overviews RAID and provides links to current RAID 
research. 

www.disk-tape-data-recovery.com/storage-history.htm 
Provides a short history of persistent data storage media. 
www.almaden.ibm.com/sst/storage/index.shtml 
Describes physical limitations of storage technology and 
promising fields of research IBM has pursued to solve them. 
colossalstorage.net/colossalll.htm 
Provides links to sites describing evolving storage technologies. 
www.cose.brocku.ca/~cspress/Hel1oWorld/1999/03-
mar/disk_scheduling_algori thms.html 
Contains an article from Hello World, a magazine for com
puter science students; the article overviews disk scheduling 
algorithms. 
www.peguide.com/ref/hdd/index.htm 
Discusses hard disk characteristics. 
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As processor and main memory speeds increase more rap
idly than those of secondary storage devices, optimizing disk 
performance has become important to realizing optimal per
formance. Magnetic storage records data by changing the 
direction of magnetization of regions, each representing a 1 
or a 0. To access data, a current-carrying device called a 
read/write head hovers above the medium as it moves. 

Most modern computers use hard disks as secondary 
storage. As the platters spin, each read-write head sketches 
out a circular track of data on a disk surface. All read-write 
heads are attached to a single disk arm (also called an actu
ator, boom or moving-arm assembly). When the disk arm 
moves the read/write heads to a new position, a different 
set of tracks, or cylinder, becomes accessible. The process 
of moving the disk arm to a new cylinder is called a seek 
operation. The time it takes for the head to move from its 
current cylinder to the one containing the data record 
being accessed is called the seek time. The time it takes for 
data to rotate from its current position to a position adja
cent to the read/write head is called latency time. Then the 
record, which is of arbitrary size, must be made to spin by 
the read/write head so that the data can be read from or 
written to the disk. This is called transmission time. 

Many processes can generate requests for reading and 
writing data on a disk simultaneously. Because these pro
cesses sometimes make requests faster than they can be ser
viced by the disk, queues build up to hold disk requests. 
Some early computing systems simply serviced these 
requests on a first-come-first-served (FCFS) basis, in which 
the earliest arriving request is serviced first. FCFS is a fair 
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method of allocating service, but when the request rate (i.e., 
the load) becomes heavy, FCFS results in long waiting times. 

FCFS exhibits a random seek pattern in which suc
cessive requests can cause time-consuming seeks from the 
innermost to the outermost cylinders. To reduce the time 
spent seeking records, it seems reasonable to order the 
request queue in some other manner than FCFS. This reor
dering is called disk scheduling. The two most common 
types of scheduling are seek optimization and rotational 
optimization. Disk scheduling strategies often are evalu
ated by comparing their throughput, mean response time 
and variance of response times. 

First-come-first-served scheduling uses a FIFO queue 
so that requests are serviced in the order they arrive. 
Although this technique incurs low execution-time over
head, it can result in low throughput due to lengthy seeks. 

Shortest-seek-time-first (SSTF) scheduling next ser
vices the request that is closest to the read-write head's cur
rent cylinder (thus incurring the shortest seek time), even if 
that is not the first one in the queue. By reducing average 
seek times, SSTF achieves higher throughput rates than 
FCFS, and mean response times tend to be lower for mod
erate loads. One significant drawback is that higher vari
ances occur on response times because of the 
discrimination against the outermost and innermost tracks: 
in the extreme, indefinite postponement of requests far 
from the read-write heads could occur. 

The SCAN scheduling strategy reduces unfairness and 
variance of response times by choosing the request that 
requires the shortest seek distance in a preferred direction. 



Thus, if the preferred direction is currently outward, the 
SCAN strategy chooses the shortest seek distance in the out
ward direction. SCAN behaves much like SSTF in terms of 
high throughput and good mean response time. However, 
because SCAN ensures that all requests in a given direction 
will be serviced before the requests in the opposite direction, 
it offers a lower variance of response times than SSTF. 

The circular SCAN (C-SCAN) modification to the 
SCAN strategy moves the arm from the outer cylinder to 
the inner cylinder, servicing requests on a shortest-seek 
basis. When the arm has completed its inward sweep, it 
jumps (without servicing requests) to the outermost cylin
der, then resumes its inward sweep processing requests. C-
SCAN maintains high levels of throughput while further 
limiting variance of response times by avoiding the discrim
ination against the innermost and outermost cylinders. 
SCAN is often called the elevator algorithm. 

The FSCAN and JV-Step SCAN modifications to the 
SCAN strategy eliminate the possibility of indefinitely post
poning requests. FSCAN uses the SCAN strategy to service 
only those requests waiting when a particular sweep begins 
(the "F" stands for "freezing" the request queue at a certain 
time). Requests arriving during a sweep are grouped 
together and ordered for optimum service during the return 
sweep. jV-Step SCAN services the first n requests in the 
queue using the SCAN strategy. When the sweep is com
plete, the next n requests are serviced. Arriving requests are 
placed at the end of the request queue, which prevents 
requests in the current sweep from being indefinitely post
poned. FSCAN and N-Step SCAN offer good performance 
due to high throughput, low mean response times and a 
lower variance of response times than SSTF and SCAN. 

The LOOK variation of the SCAN strategy (also 
called the elevator algorithm) "looks" ahead to the end of 
the current sweep to determine the next request to service. 
If there are no more requests in the current direction, 
LOOK changes the preferred direction and begins the next 
sweep, stopping when passing a cylinder that corresponds 
to a request in the queue. This strategy eliminates unneces
sary seek operations experienced by other variations of the 
SCAN strategy by preventing the read/write head from 
moving to the innermost or outermost cylinders unless it is 
servicing a request to those locations. 

The circular LOOK (C-LOOK) variation of the 
LOOK strategy uses the same technique as C-SCAN to 
reduce the bias against requests located at extreme ends of 
the platters. When there are no more requests on a current 
sweep, the read/write head moves to the request closest to 
the outer cylinder (without servicing requests in between) 

and begins the next sweep. The C-LOOK strategy is char
acterized by potentially lower variance of response times 
compared to LOOK, and by high throughput, although 
lower than that of LOOK. 

In many environments, there are often short periods 
when there are no waiting requests for the disk to service 
and the disk arm sits idle, waiting for the next request. If 
the disk arm is in the center of the disk, or at some hot spot 
of disk activity, the average seek time will be less. Moving 
the disk arm to a location that will hopefully minimize the 
next seek is known as disk arm anticipation. It can be use
ful in environments where processes's disk request patterns 
exhibit locality and where there is typically enough time to 
move the disk arm between disk requests. If a request is 
received during anticipatory movement, moving the head 
to the originally specified location and then to the 
requested cylinder increases response time. Allowing the 
seek to a hot spot to be interrupted to adjust to requests 
provides the greatest performance boost. 

Rotational optimization was used extensively with 
early fixed-head devices such as drums, and can improve 
performance in today's hard disks, which exhibit seek times 
and average latencies of the same order of magnitude. The 
shortest-latency-time-first (SLTF) strategy examines all 
pending requests and services the one with the shortest 
rotational delay first. Rotational optimization is sometimes 
referred to as sector queuing; requests are queued by sec
tor position around the disk, and the nearest sectors are 
serviced first. 

The STLF strategy works well for fixed-head disks 
but does not incorporate the positioning time, which is the 
seek time plus latency, of moving-head disks. The shortest-
positioning-time-first (SPTF) strategy next services the 
request that requires the shortest positioning time. SPTF 
results in high throughput and a low mean response time, 
similar to SSTF, and can also indefinitely postpone requests 
to the innermost and outermost cylinders. 

A variation of SPTF is the shortest-access-time-first 
(SATF) strategy, which next services the request that 
requires the shortest access time (i.e., positioning time plus 
transmission time). SATF exhibits higher throughput than 
SPTF, but large requests can be indefinitely postponed by a 
series of smaller requests. Requests to the innermost or out
ermost cylinders can be indefinitely postponed by requests 
to intermediate cylinders. SPTF and SATF can improve per
formance by implementing the "look-ahead" mechanisms 
employed by the LOOK and C-LOOK strategies. 

One reason why SPTF and SATF are rarely imple
mented is that they require knowledge of disk characteris-
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or near the speed of main memory. However, one study 
showed that disks that include on-board caches typically 
use replacement strategies that adapt poorly to random 
request patterns, leading to suboptimal performance. 

Disks tend to become fragmented as files and records 
are added and deleted. Many operating systems provide 
defragmentation (or disk reorganization) programs that 
can be used periodically to reorganize files. This allows the 
consecutive records of sequential files to be placed contigu
ously on the disk. Also, operating systems can place files 
that are likely to be modified near free space to reduce 
future fragmentation. Some operating systems allow users 
to partition a disk into separate areas. Files are then 
restricted to these areas, so fragmentation is reduced. Some 
systems use data compression techniques to reduce the 
amount of space required by information on disk. Data 
compression decreases the size of a record by replacing 
common bit patterns with shorter ones. This can reduce 
seeks, latency times and transmission times, but may 
require substantial processor time to compress the data for 
storage on the disk, and to decompress the data to make it 
available to applications. 

Systems that need to access certain information 
quickly benefit from placing multiple copies of that data at 
different positions on the disk. This can substantially 
reduce seek and rotation times, but the redundant copies 
can consume a significant portion of the disk. Also, if one 
copy is modified, all other copies must be modified, which 
can degrade performance. Additionally, record blocking 
can yield significant performance improvements by reading 
contiguous records as a single block, requiring only a single-
seek. Systems that monitor disk access attempts can try to 
keep frequently accessed data in a favorable position in the 
memory hierarchy (i.e., in main or cache memory) while 
transferring infrequently referenced data to slower storage 
(such as a hard disk or compact disk). 

Redundant Arrays of fndependent Disks (RAID) is a 
family of techniques that use arrays of disks to address the 
problem of relatively slow disk transfer speeds. Each array 
organization, called a level, is characterized by data striping 
and redundancy. Storage is divided into fixed-size strips; con
tiguous strips on each disk generally store noncontiguous 
data or data from different files. A stripe consists of the set of 
strips at the same location on each disk in the array. 

When selecting a strip size, the system designer 
should consider the average size of disk requests. Smaller 
strip sizes, also called fine-grained strips, tend to spread file 
data across several disks. Fine-grained strips can reduce 
each request's access time and increase transfer rates 

tics including latency, track-to-track seek times and relative 
locations of sectors. Unfortunately, many of today's hard 
drives hide such geometry or expose misleading geometries 
due to hidden error-checking data and bad sectors. 

When disk storage proves to be a bottleneck, some 
designers recommend adding more disks to the system. 
This does not always solve the problem, because the bottle
neck could be caused by a large request load on a relatively 
small number of disks. When this situation is detected, disk 
scheduling may be used as a means of improving perfor
mance and eliminating the bottleneck. Disk scheduling 
might not be useful in a batch-processing system with a rel
atively low degree of multiprogramming. Scheduling 
becomes more effective as the degree of multiprogram
ming increases, which increases the system load and leads 
to unpredictable disk request patterns. 

Nonuniform request distributions are common in cer
tain situations and their consequences have been investi
gated. One study determined that the vast majority of disk 
references are to the same cylinder as the immediately pre
ceding reference. Sophisticated file organization techniques 
can cause a proliferation of requests with large seek times. 
Such techniques are convenient for the applications 
designer but can complicate implementation and degrade 
performance. 

Many systems maintain a disk cache buffer, which is a 
region of main memory that the operating system reserves 
for disk data. In one context, the reserved memory acts as a 
cache, allowing processes quick access to data that would 
otherwise need to be fetched from disk. The reserved mem
ory also acts as a buffer, allowing the operating system to 
delay writing the data to improve I/O performance. The 
disk cache buffer presents several challenges to operating 
system designers, because memory allocated to the cache 
buffer reduces the amount allocated to processes. Also, 
because memory is volatile, power or system failures can 
lead to inconsistencies. 

Write-back caching writes buffered data to disk peri
odically, enabling the operating system to use a single 
request to batch multiple I/Os, which can improve system 
performance. Write-through caching writes data both to 
the disk cache buffer and to disk each time cached data is 
modified. This technique prevents the system from batch
ing requests but reduces the possibility of inconsistent data 
in the event of a system crash. 

Many of today's hard disk drives maintain an inde
pendent high-speed buffer cache (often called an on-board 
cache) of several megabytes. If data requested is stored in 
the on-board cache, the hard drive can deliver the data at 
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because multiple disks simultaneously retrieve portions of 
the requested data. While these disks service a request, 
they cannot be used to service other requests in the sys
tem's request queue. 

Large strip sizes, also called coarse-grained strips, 
enable more files to fit entirely within one strip. In this case, 
some requests can be serviced by only a portion of the disks 
in the array, so it is more likely that multiple requests can 
be serviced simultaneously. However, smaller requests are 
serviced by one disk at a time, which reduces transfer rates 
for individual requests. 

Systems such as Web servers and databases, which 
typically access multiple small records simultaneously, ben
efit from coarse-grained strips because several I/O opera
tions can occur concurrently; systems such as 
supercomputers that require fast access to a small number 
of records benefit from fine-grained strips, which provide 
high transfer rates for individual requests. 

As the number of disks in the array increases, so does 
the likelihood that one of those disks will fail, measured by 
the mean-time-to-failure (MTTF). Most RAID systems 
maintain copies of data to help enable them to recover 
from errors and failures, a technique called redundancy. 
Disk mirroring is a redundancy technique that maintains 
copies of each data item on two disks. A drawback to mir
roring is that only half of the storage capacity of the array 
can be used to store unique data. 

To realize the improved performance of striped disks 
with redundancy, the system must efficiently divide files 
into strips, form files from strips, determine the locations of 
strips in the array and implement redundancy. Many RAID 
systems contain special-purpose hardware called a RAID 
controller to perform such operations quickly. The designer 
must balance cost, performance and reliability when select
ing a RAID level. Typically, improving one characteristic 
worsens the other two. 

RAID level 0 uses a striped disk array with no redun
dancy. Level 0 arrays are not fault tolerant; if one disk fails, 
all the data in the array that depend on the failed disk are 
lost. Depending on the array's strip size, all data stored in 
the array could become unusable with the loss of a single 
disk. Although RAID 0 is not fault tolerant, it is simple to 
implement, yields high transfer rates and does not incur 
any storage overhead. 

RAID level 1 employs disk mirroring (also called 
shadowing) to provide redundancy, so each disk in the 
array is duplicated. Stripes are not implemented in level 1, 
reducing both hardware complexity and system perfor
mance. While this results in the highest degree of fault tol-

erance of any RAID level, only half of the array's capacity 
can be used to store unique data, which increases cost. For 
each mirrored pair, two read requests can be serviced 
simultaneously, but only one request can be serviced at a 
time during a write. Recovering and rebuilding data from a 
failed disk, called data regeneration, entails copying the 
redundant data from the mirrored disk. If both disks in a 
mirrored pair fail, their data is unrecoverable. 

Some RAID systems contain "spare" disks (also called 
hot spare disks or online spares) that can replace failed disks, 
much like a spare tire for an automobile. Some systems also 
feature hot swappable disk drives that can to be replaced 
while the system is online. In these systems, data regenera
tion can occur while the system continues to run, which is 
necessary in high-availability environments such as online 
transaction processing systems. RAID 1 is best suited for 
business-critical and mission-critical environments in which 
reliability has higher priority than cost or performance. 

RAID level 2 arrays are striped at the bit level, so 
each strip stores one bit. Level 2 arrays are designed to 
reduce the storage overhead incurred by implementing 
fault tolerance using mirroring. Instead of maintaining 
redundant copies of each data item, RAID level 2 uses a 
technique of storing parity information called Hamming 
error-correcting codes (Hamming ECCs), which allow the 
system to detect up to two errors, correct up to one error 
and determine the location of the error in a stripe. The size 
of Hamming ECC codes, and thus the number of parity 
disks, increases in proportion to the logarithm (base 2) of 
the number of data disks. Thus, level 2 arrays containing a 
large number of disks incur significantly less storage over
head than level 1 arrays. 

Although the ECC disks reduce the overhead associ
ated with redundancy when compared to mirroring, they 
can degrade performance, because multiple requests can
not be serviced simultaneously. Each read request requires 
the array to access all disks, compute the ECC, and com
pare it with the value retrieved from the parity disks. Simi
larly, when servicing a write request, the Hamming ECC 
must be calculated for each stripe that is written. Further, 
the system must perform a read-modify-write cycle, which 
degrades performance because the system must access the 
entire array twice for each write. One way to enable con
currency using a RAID level 2 array is to divide the sys
tem's disks into several small RAID level 2 arrays, but this 
increases storage overhead and cost. The primary reason 
that RAID 2 is not implemented in today's systems is that 
modern disk drives perform Hamming ECCs or compara
ble protection transparently in hardware. 
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formance by distributing parity, level 5 arrays must still per
form a read-modify-write cycle for each write request, 
requiring at least four I/O operations to service each write 
request. 

Caching recently accessed data and parity blocks can 
reduce the number of I/O operations in the read-modify-
write cycle. Parity logging can improve RAID level 5 per
formance by storing the difference between the old parity 
and new parity (called the update image) in memory 
instead of performing a read-modify-write cycle. A Fre
quently Redundant Array of Independent Disks 
(AFRAID) improves performance by deferring parity data 
generation to times at which the system load is light. 

Although RAID level 5 increases performance rela
tive to RAID levels 2-4, it is complex to implement, which 
increases its cost. Also, because parity is distributed 
throughout the array, data regeneration is more compli
cated than in other RAID levels. Despite its limitations. 
RAID level 5 is frequently adopted for its effective balance 
of performance, cost and reliability. Level 5 arrays are con
sidered general-purpose arrays and are often found in file 
and application servers, enterprise resource planning 
(ERP) and other business systems. 

Many other RAID levels exist, each borrowing from 
one or more of RAID levels 0-5. Unfortunately, there is no 
standard naming convention for RAID levels, which often 
leads to confusing or misleading names. 

RAID level 3 stripes data at the bit or byte level. 
RAID 3 uses XOR (exclusive or) error-correcting codes 
(XOR ECCs), which use the logical XOR operation to 
generate parity information. XOR ECC uses only one disk 
to hold parity information, regardless of the size of the 
array. The system can use the parity bits to recover from 
any single disk failure; if the parity disk fails, it can be 
rebuilt from the array's data disks. Due to parity checking 
RAID level 3 reads and writes require access to the entire 
array. Similar to RAID level 2, this yields high transfer 
rates when reading and writing large files, but only one 
request can be serviced at a time. 

RAID level 4 systems are striped using fixed-size 
blocks (typically larger than a byte) and use XOR ECC to 
generate parity data that is stored on a single parity disk. 
Because level 4 arrays enable coarse-grained striping, the 
system can potentially service multiple read requests simul
taneously, if parity is not determined for each read. When 
servicing a write request, however, the system must update 
parity information to ensure that no data is lost in the event 
of a disk failure. This means that write requests must be 
performed one at a time, creating a write bottleneck. 

RAID level 5 arrays are striped at the block level and 
use XOR ECC for parity, but parity blocks are distributed 
throughout the array of disks. Because parity blocks are 
distributed across many disks, multiple parity blocks can be 
accessed simultaneously, removing the write bottleneck for 
many requests. Although RAID level 5 improves write per-
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A Frequently Redundant Array of Independent Disks 
(AFRAID) (RAID)—RAID implementation that defers 
parity data generation to times when the system's load is 
light to improve performance when a system performs 
many small writes. 

actuator—See disk arm. 
anticipatory movement—Movement of the disk arm during 

disk arm anticipation. 
block—Fixed-size unit of data, typically much larger than a 

byte. Placing contiguous data records in blocks enables 
the system to reduce the number of I/O operations 
required to retrieve them. 

blocking—Grouping of contiguous records into larger blocks 
that can be read using a single I/O operation. This tech
nique reduces access times by retrieving many records 
with a single I/O operation. 

boom—See disk arm. 

bottleneck—Condition that occurs when a resource recerves 
requests faster than it can process them, which can slow 
process execution and reduce resource utilization. Hard 
disks are a bottleneck in most systems. 

circular LOOK (C-LOOK) disk scheduling—Disk scheduling 
strategy that moves the arm in one direction, servicing 
requests on a shortest-seek basis. When there are no more 
requests on a current sweep, the read-write head moves to 
the request closest to the cylinder opposite its current 
location (without servicing requests in between) and 
begins the next sweep. The C-LOOK policy is character-
ized by potentially lower variance of response times com-
pared to LOOK; it offers high throughput (although 
lower than that of LOOK). 

circular SCAN (C-SCAN) disk scheduling—Disk scheduling 
strategy that moves the arm in one direction, servicing 
requests on a shortest-seek basis. When the arm has com-
pleted its a sweep, it jumps (without servicing requests) to 

Key Terms 



the cylinder opposite its current location, then resumes its 
inward sweep processing requests. C-SCAN maintains 
high levels of throughput while further limiting variance 
of response times by avoiding the discrimination against 
the innermost and outermost cylinders. 

coarse-grained strip (RAID)—Strip size that enables average 
files to be stored in a small number of strips. In this case, 
some requests can be serviced by only a portion of the 
disks in the array, so it is more likely that multiple 
requests can be serviced simultaneously. If requests are 
small, they are serviced by one disk at a time, which 
reduces their average transfer rates. 

cylinder—Set of tracks that can be accessed by the read-write 
heads for a specific position of the disk arm. 

data compression—Technique that decreases the size of a data 
record by replacing repetitive patterns with shorter bit 
strings. This can reduce seeks, and transmission times, but 
may require substantial processor time to compress the 
data for storage on the disk, and to decompress the data 
to make it available to applications. 

data regeneration (RAID)—Reconstruction of lost data (due 
to disk errors or failures) in RAID systems. 

data striping (RAID)—Technique in RAID systems that 
divides contiguous data into fixed-size strips that can be 
placed on different disks. This enables multiple disks to 
service requests for data. 

defragmentation— Moving parts of files so that they are 
located in contiguous blocks on disk. This can reduce 
access times when reading from or writing to files 
sequentially. 

disk arm—Moving-head disk component that moves read-
write heads linearly, parallel to disk surfaces. 

disk arm anticipation—Moving the disk arm to a location that 
will minimize the next seek. Disk arm anticipation can be 
useful in environments where process disk request pat
terns exhibit locality and when the load is light enough 
that there is sufficient time to move the disk arm between 
disk requests without degrading performance. 

disk cache buffer—A region of main memory that the operat
ing system reserves for disk data. In one context, the 
reserved memory acts as a cache, allowing processes quick 
access to data that would otherwise need to be fetched 
from disk. The reserved memory also acts as a buffer, 
allowing the operating system to delay writing the data to 
improve I/O performance by batching multiple writes into 
a small number of requests. 

disk mirroring (RAID)—Data redundancy technique in 
RAID that maintains a copy of each disk's contents on a 
separate disk. This technique provides high reliability and 

simplifies data regeneration but incurs substantial storage 
overhead, which increases cost. 

disk reorganization—Technique that moves file data on disk to 
improve its access time. One such technique is defragmen-
tation, which attempts to place sequential file data contig
uously on disk. Another technique attempts to place 
frequently requested data on tracks that result in low 
average seek times. 

disk scheduling—Technique that orders disk requests to maxi
mize throughput and minimize response times and the 
variance of response times. Disk scheduling strategies 
improve performance by reducing seek times and rota
tional latencies. 

elevator algorithm—See SCAN disk scheduling. 

first-come-first-served (FCFS) disk scheduling—Disk schedul
ing strategy in which the earliest arriving request is ser
viced first. FCFS is a fair method of allocating service, but 
when the request rate (i.e., the load) becomes heavy, 
FCFS can result in long waiting times. FCFS exhibits a 
random seek pattern in which successive requests can 
cause time-consuming seeks from the innermost to the 
outermost cylinders. 

fine-grained strip (RAID)—Strip size that causes average files 
to be stored in multiple stripes. Fine-grained strips can 
reduce each request's access time and increase transfer 
rates because multiple disks simultaneously retrieve por
tions of the requested data. 

FSCAN disk scheduling—Disk scheduling strategy that uses 
SCAN to service only those requests waiting when a par
ticular sweep begins (the "F" stands for "freezing" the 
request queue at a certain time). Requests arriving during 
a sweep are grouped together and ordered for optimum 
service during the return sweep. 

fragmented disk—Disk that stores files in discontinuous blocks 
as the result of file creation and deletion. Such disks 
exhibit high seek times when reading files sequentially. 
Disk defragmentation can reduce or eliminate the prob
lem. 

Hamming error-correcting codes (Hamming ECCs)—Tech
nique of generating parity bits that enables systems to 
detect and correct errors in data transmission. 

hard disk drive—Magnetic, rotational secondary storage 
device that provides persistent storage for, and random 
access to, data. 

hot spare disk (RAID)—Disk in a RAID system that is not 
used until a disk fails. Once the system regenerates the 
failed disk's data, the hot spare disk replaces the failed 
disk. 
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parity—Technique that detects an even number of errors in 
data transmission. Parity information is generated by 
determining whether the data contains an even (or odd) 
number of l's (or O's). This parity information is gener
ated after transmission and compared to the value gener
ated before transmission. Error-correction codes (ECCs). 
such as Hamming or XOR, use the parity of a string of 
bits to detect and correct errors. Parity enables RAID sys
tems to provide fault tolerance with lower storage over
head than mirrored systems. 

parity logging (RAID)—Technique that increases write per
formance in RAID systems using parity by postponing 
writes to the parity disk while the system is busy. Because 
parity logging stores information in volatile memory, par
ity information could be lost if the system loses power. 

platter—Magnetic disk medium that stores bits on its surfaces. 
positioning time—Access time plus latency. Positioning time is 

used by the SPTF strategy to order requests. 
preferred direction—Direction in which the disk head is mov

ing in SCAN-based scheduling algorithms. 
RAID (Redundant Array of Independent Disks)—Family of 

techniques that use an array of disks to improve disk 
transfer rates while providing fault tolerance. 

RAID controller—Special-purpose hardware that efficiently 
performs operations such as dividing files into strips. 
forming files from strips, determining the locations of 
strips in the array and implementing the array's fault-tol
erance mechanism. 

RAID level 0—RAID system that uses a striped disk array 
with no redundancy. Level 0 arrays are not fault tolerant: 
if one disk fails, all the data in the array that depend on 
the failed disk are lost. Depending on the array's strip 
size, all data stored in the array could become unusable 
with the loss of a single disk. Although RAID 0 is not 
fault tolerant, it is simple to implement, yields high trans
fer rates and does not incur any storage overhead. Level 0 
arrays are implemented in systems where performance is 
more important than fault tolerance, such as supercom
puters. 

RAID level 1—RAID system that employs disk mirroring 
(also called shadowing) to provide redundancy, so that 
each disk in the array is duplicated. Stripes are not imple
mented in level 1, reducing both hardware complexity and 
system performance. While this results in the highest 
degree of fault tolerance of any RAID level, only half of 
the array's capacity can be used to store unique data, 
which increases cost. Level 1 arrays are implemented in 
systems where high availability is more important than 
cost, such as database systems. 

hot spot—Disk cylinder that contains frequently requested 
data. Some disk arm anticipation techniques move the 
disk head to hot spots to reduce average seek times. 

load—See request rate. 
level (RAID) —A particular organization of a RAID system, 

such as level 1 (mirroring) or level 2 (Hamming ECC par
ity). See also RAID level 0, RAID level 1, RAID level 2, 
RAID level 3, RAID level 4 and RAID level 5. 

LOOK disk scheduling—Variation of the SCAN disk schedul
ing strategy that "looks" ahead to the end of the current 
sweep to determine the next request to service. If there 
are no more requests in the current direction, LOOK 
changes the preferred direction and begins the next 
sweep, stopping when passing a cylinder that corresponds 
to a request in the queue. This strategy eliminates unnec
essary seek operations experienced by other variations of 
SCAN by preventing the read-write head from moving to 
the innermost or outermost cylinder unless it needs to ser
vice a request at those cylinders. 

magnetic tape storage—Rewritable magnetic storage medium 
that accesses data sequentially. Its sequential nature 
makes it unsuitable for direct access applications. 

mean response time (disk scheduling)—Average time a system 
spends waiting for a disk request to be serviced. 

mean-time-to-failure (MTTF) (RAID)—Average time before 
a single-disk failure. 

mirroring (RAID) —See disk mirroring. 
moving-arm assembly—See disk arm. 
nonuniform request distribution—Set of disk requests that are 

not uniformly distributed across disk surfaces. This occurs 
because processes exhibit spatial locality, leading to local
ized request patterns. 

N-Step SCAN disk scheduling—Disk scheduling strategy that 
services the first n requests in the queue using the SCAN 
strategy. When the sweep is complete, the next n requests 
are serviced. Arriving requests are placed at the end of 
the request queue. N-Step SCAN offer good performance 
due to high throughput, low mean response times and a 
lower variance of response times than SSTF and SCAN. 

online spare—See hot spare disk. 
online transaction processing (OLTP)—Type of system that 

typically receives many disk requests to randomly distrib
uted locations containing small amounts of data (e.g., 
databases and Web servers). Such systems significantly 
improve performance using disk scheduling algorithms. 

partition—Area of a disk whose boundaries cannot be crossed 
by file data. Partitions can reduce disk fragmentation. 
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RAID level 2—RAID system that is striped at the bit level 
(i.e., each strip stores one bit). Level 2 arrays are designed 
to reduce the storage overhead incurred by implementing 
fault tolerance using mirroring. Instead of maintaining 
redundant copies of each data item, RAID level 2 uses a 
version of Hamming error-correcting codes (Hamming 
ECCs) to store parity information that allows the system 
to detect up to two errors, correct up to one error and 
determine the location of the error in a stripe. The size of 
Hamming ECC codes, and thus the number of parity 
disks, increases according to the logarithm (base 2) of the 
number of data disks. Thus, level 2 arrays containing a 
large number of disks incur significantly less storage over
head than level 1 arrays. 

RAID level 3—RAID system that stripes data at the bit or 
byte level. RAID 3 uses XOR (exclusive or) error-cor
recting codes (XOR ECCs), which use the logical XOR 
operation to generate parity information. XOR ECC uses 
only one disk to hold parity information, regardless of the 
size of the array. The system can use the parity bits to 
recover from any single disk failure. Due to parity check
ing, RAID level 3 reads and writes require access to the 
entire array. Similar to RAID level 2, this yields high 
transfer rates when reading and writing large files, but 
only one request can be serviced at a time. 

RAID level 4—RAID system that is striped using fixed-size 
blocks (typically larger than a byte) and uses XOR ECC 
to generate parity data that is stored on a single parity 
disk. Because level 4 arrays enable coarse-grained strip
ing, the system can potentially service multiple read 
requests simultaneously, if parity is not determined for 
each read. When servicing a write request, however, the 
system must update parity information to ensure that no 
data is lost in the event of a disk failure. This means that 
write requests must be performed one at a time, creating a 
write bottleneck. 

RAID level 5—RAID system that is striped at the block level 
and uses XOR ECC for parity, but distributes parity 
blocks throughout the array of disks. Because parity 
blocks are distributed across many disks, multiple parity 
strips can be accessed simultaneously, removing the write 
bottleneck for many requests. Although RAID level 5 
increases performance relative to RAID levels 2-A, it is 
complex to implement and more costly. Level 5 arrays are 
considered general-purpose arrays and are often found in 
file and application servers, enterprise resource planning 
(ERP) and other business systems. 

RAMAC (Random Access Method of Accounting and Con
trol—First commercial hard drive produced by IBM. 

random seek pattern—Series of requests to cylinders ran
domly distributed across disk surfaces. FCFS causes ran
dom seek patterns that result in high response times and 
low throughput. 

read-modify-write cycle (RAID) —Operation that reads a 
stripe, modifies its contents and parity, then writes the 
stripe to the array. It is performed for each write request 
in RAID systems that use parity. Some systems reduce the 
cost of read-modify-write cycles by caching strips or by 
updating parity information only periodically. 

read-write head—Moving-head disk component that hovers 
over a disk surface, reading and writing bits as the disk 
moves. 

redundancy—Technique that maintains multiple identical 
resources to enable recovery upon failure. 

Redundant Array of Independent Disks (RAID) -See RAID. 

reliability—Measure of fault tolerance. The more reliable a 
resource, the less likely it is to fail. 

request rate—Measure of request frequency. The higher the 
request rate, the greater the system load. Systems experi
encing a high disk request rate tend to benefit from disk 
scheduling. 

rotational latency—Time required for a disk to rotate a 
requested data item from its current position to a position 
adjacent to the read-write head. 

rotational optimization—Disk scheduling technique that 
reduces access times by next servicing the request to the 
nearest sector in the read-write head's current cylinder. 

SCAN disk scheduling—Disk scheduling strategy that reduces 
unfairness and variance of response times as compared to 
SSTF by servicing the request that requires the shortest 
seek distance in a preferred direction. SCAN behaves 
much like SSTF in terms of high throughput and good 
mean response times. However, because SCAN ensures 
that all requests in a given direction will be serviced 
before the requests in the opposite direction, it offers a 
lower variance of response times than SSTF. Also called 
the elevator algorithm. 

sector—Smallest portion of a track that can be accessed by an 
I/O request. 

sector queuing—See rotational optimization. 

seek operation—Operation that moves the disk head to a dif
ferent cylinder. 

seek time—Time it takes for the read/write head to move from 
its current cylinder to the cylinder containing the 
requested data record. 
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spindle—Moving-head disk component that spins platters at 
high speeds. 

strip (RAID)—Smallest unit of data operated on by a RAID 
system. The set of strips at the same location on each disk 
is called a stripe. 

stripe (RAID)—Set of strips at the same location on each disk 
in a RAID system. Striping enables RAID systems to 
access files using multiple disks at once, which improves 
transfer times. 

track—Circular region of data on a platter. Sequential file data 
is typically placed contiguously on one track to improve 
access time by reducing seeking activity. 

transmission time—Time required for a data record to pass by 
the read-write head. 

UNIVAC 1 (UNIVersal Automatic Computer)—First com
puter to introduce a magnetic storage tape. 

update image (RAID)—Method to reduce parity computation 
time by storing the difference between new and old pari
ties in memory instead of performing a read-modify-
write cycle. 

write-back caching—Technique that writes buffered data to 
disk periodically, enabling the operating system to batch 
multiple I/Os that are serviced using a single request, 
which can improve system performance. 

write-through caching—Technique that writes data both to the 
disk cache buffer and to disk each time cached data is 
modified. This technique prevents the system from batch
ing requests, but reduces the possibility of inconsistent 
data in the event of a system crash. 

XOR (exclusive-or) operation—Operation on two bits that 
returns 1 if the two bits are not the same, 0 otherwise. 
RAID levels 3-5 use the XOR operation to generate par
ity bits. 

12.4 Disk scheduling disciplines that are not fair generally 
have a larger variance of response times than FCFS. Why is 
this true? 

12.5 Under light loading conditions, virtually all the disk 
scheduling disciplines discussed in this chapter degenerate to 
which scheme? Why? 

12.6 One criterion that influences the desirability of imple
menting disk scheduling is the disk scheduling mechanism's 
runtime overhead. What factors contribute to this overhead? 
Suppose t is the average seek time on a system with FCFS disk 

12.1 What are the essential goals of disk scheduling? Why is 
each important? 

12.2 Suppose that on a particular model of disk drive, aver
age seek times approximately equal average latency times. 
How might this affect a designer's choice of disk scheduling 
strategies? 

12.3 What makes a given disk scheduling discipline fair? Just 
how important is fairness compared to other goals of disk 
scheduling disciplines? 

seek optimization—Disk scheduling technique that reduces 
seek times by generally servicing requests to the cylinder 
near the read-write head. 

shadowing (RAID)—See mirroring. 
shortest-access-time-first (SATF) disk scheduling—Disk 

scheduling strategy that next services the request that 
requires the shortest access time (i.e., positioning time 
plus transmission time). SATF exhibits higher throughput 
than SPTF, but large requests can be indefinitely post
poned by a series of smaller requests, and requests to the 
innermost or outermost cylinders can be indefinitely post
poned by requests to intermediate cylinders. 

shortest-latency-time-first (SLTF) disk scheduling—Disk 
scheduling strategy that examines all of the waiting 
requests and services the one with the shortest rotational 
delay first. This strategy has been shown to be close to the 
theoretical optimum and is relatively easy to implement. 

shortest-positioning-time-first (SPTF) disk scheduling—Disk 
scheduling strategy that next services the request that 
requires the shortest positioning time. SPTF results in 
high throughput and a low mean response time, similar to 
SSTF, and can also indefinitely postpone requests to the 
innermost and outermost cylinders. 

shortest-seek-time-first (SSTF) disk scheduling—Disk sched
uling strategy that next services the request that is closest 
to the read-write head's current cylinder (and thus incurs 
the shortest seek time), even if that is not the first one in 
the queue. By reducing average seek times, SSTF achieves 
higher throughput rates than FCFS, and mean response 
times tend to be lower for moderate loads. One significant 
drawback is that higher variances occur on response times 
because of the discrimination against the outermost and 
innermost tracks; in the extreme, starvation of requests 
far from the read-write heads could occur. 

574 Disk Performance Optimization 

Exercises 



scheduling. Suppose s is the approximate time it would take to 
schedule an average disk request if another form of disk sched
uling were in use. Assume all other factors are favorable to 
incorporating disk scheduling on this system. For each of the 
following cases, comment on the potential effectiveness of 
incorporating disk scheduling on the system. 

a. 5 = 0.01t 

b. s = 0.1t 

c. s = t 

d. s = 10r 

12.7 Latency optimization usually has little effect on system 
performance except under extremely heavy loads. Why? 

12.8 On interactive systems it is essential to ensure reason
able response times to users. Reducing the variance of 
response times is still an important goal, but it is not sufficient 
to prevent an occasional user from suffering indefinite post
ponement. What additional mechanism would you 
incorporate into a disk scheduling discipline on an interactive 
system to help ensure reasonable response times and to avoid 
the possibility of indefinite postponement? 

12.9 Argue why some people refuse to consider FCFS to be a 
disk scheduling discipline. Is there a scheme for servicing disk 
requests that we would be even less inclined to call disk sched
uling than FCFS? 

12.10 In what sense is LOOK fairer than SSTF? In what sense 
is C-LOOK fairer than LOOK? 

12.11 Give a statistical argument for why FCFS offers a small 
variance of response times. 

12.12 Argue why SSTF tends to favor requests to midrange 
tracks at the expense of the requests to the innermost and out
ermost tracks. 

12.13 Chapter 7, Deadlock and Indefinite Postponement, sug
gests a scheme for avoiding indefinite postponement. Suggest 
an appropriate modification to the SSTF scheme to create a 
"nonstarving SSTF." Compare this new version with regular 
SSTF with regard to throughput, mean response times, and 
variance of response times. 

12.14 It is possible that while a disk request for a particular 
cylinder is being serviced, another request for that cylinder will 
arrive. Some disk scheduling disciplines would service this new 
request immediately after processing the current request. 
Other disciplines preclude the servicing of the new request 
until the return sweep of the disk arm. What dangerous situa
tion might occur in a disk scheduling discipline that allowed 

immediate servicing of a new request for the same cylinder as 
the previous request? 

12.15 Why does SCAN have a lower variance of response 
times than SSTF? 

12.16 Compare the throughput of FSCAN with that of SCAN. 

12.17 Compare the throughput of C-SCAN with that of SCAN. 

12.18 How does a latency optimization scheme operate? 

12.19 A disk storage bottleneck may not always be removed 
by adding more disk drives. Why? 

12.20 How does the level of multiprogramming affect the need 
for disk scheduling? 

12.21 Suppose controller saturation is indicated. Might disk 
scheduling be useful? What other actions should be taken? 

12.22 Why is it desirable to assume uniform request distribu
tions when considering disk scheduling disciplines? In what 
types of systems might you expect to observe relatively uni
form request distributions? Give several examples of systems 
that tend to have nonuniform request distributions. 

12.23 Would disk scheduling be useful for a single-user, dedi
cated disk in a sequential file processing application? Why? 

12.24 The VSCAN scheduling strategy combines SSTF and 
SCAN according to a variable R.91 VSCAN determines the 
next request to service using SSTF, but each request to a cylin
der that requires the read/write head to change direction is 
weighted by a factor R. The "distances" to requests in the 
opposite direction are computed as follows. If C is the number 
of cylinders on the disk and S is the number of cylinders 
between the current location of the head and the next request, 
then VSCAN uses the distance, D = S + R x C. Thus, 
VSCAN uses R to add an extra cost to the requests in the 
unpreferred direction. 

12.25 If R = 0, to which disk scheduling policy does VSCAN 
degenerate? 

12.26 If R = 1, to which disk scheduling policy does VSCAN 
degenerate? 

12.27 Discuss the benefit of choosing a value, R, somewhere 
between 0 and 1. 

12.28 In what circumstances might disk scheduling actually 
result in poorer performance than FCFS? 

12.29 Compare the essential goals of disk scheduling with 
those of processor scheduling. What are the similarities? What 
are the differences? 

12.30 What factors contribute to the need for seeking? 
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12.35 The SCAN strategy often exhibits significantly higher 
throughput than the C-SCAN algorithm. However, system 
designers sometimes choose C-SCAN over SCAN. Why might 
this decision be justified? 

12.36 In Section 12.10.6, we said that a RAID system can 
reduce the number of I/O operations when calculating parity 
by using the formula Ap' = (Ad XOR Ad') XOR Ap. Prove 
that this relation holds for all strips Ad,, Ad' and Ap. 

12.37 For each of the following applications, indicate whether 
the system should use RAID level 0, RAID level 1, or RAID 
level 5 and explain why. 

12.38 Storing account transactions for a financial institution 

12.39 Storing high-resolution telescope images (that have 
been transferred from a tape drive) before processing on a 
supercomputer 

12.40 Running a personal Web server 

12.42 Prepare a research paper discussing the techniques that 
hard disk manufacturers employ to improve performance. See 
the links in the Web Resources section. 

12.43 Prepare a report briefly describing five RAID levels 
other than the 6 covered in detail in this chapter. 

number generation to simulate the arrival time of each request 
as well as the actual cylinder for each request. 

12.46 The availability of moving-head disk storage has con
tributed greatly to the success of modern computing systems. 
Disks offer relatively fast and direct access to enormous 
amounts of information. Industry forecasters see a solid future 
for disk-based secondary storage systems, and researchers con
tinue developing new and improved disk scheduling disci
plines. Propose several new disk scheduling schemes and 
compare them with those presented in this chapter. 

Develop a program that simulates a disk that contains 
two platters (i.e., four surfaces), four read/write heads, 25 cyl
inders and 20 sectors per track. This disk should store the cur
rent position of the read/write head and provide functions such 
as read, write and seek. These functions should return the 
number of milliseconds required to service each request 
(track-to-track seek times of 2 ms, average seek times of 10 ms 
and average latencies of 5 ms are reasonable). Then create a 
simulation program that generates a uniform distribution of 
requests specifying a location by platter, cylinder and sector 
and a size by the number of requested sectors. These requests 

12.31 A sequential file "properly" stored on an empty disk can 
be retrieved with minimal seeking. But disks tend to become 
heavily fragmented as files are added and deleted. Thus, suc
cessive references to "adjacent" records in a disk file can result 
in substantial seeking throughout the disk. Discuss the notion 
of file reorganization as a scheme for minimizing seeks. Under 
what circumstances should a file be reorganized? Should every 
file on the disk be reorganized or should this operation be lim
ited to certain files only? 

12.32 A designer has proposed the use of multiple disk arms to 
greatly improve the response times of a disk subsystem. Dis
cuss the advantages and disadvantages of such a scheme. 

12.33 We mentioned that the LOOK algorithm is like the algo
rithm followed by elevators in buildings. In what ways is this 
an appropriate analogy? 

12.34 Suggest other techniques besides disk scheduling and 
file reorganization for minimizing seeks. 
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12.41 Research disk scheduling in Linux. What scheduling 
strategies does Linux use? How are these strategies imple
mented? For an introduction to Linux disk scheduling, see 
Section 20.8.3, Block Device I/O. 

Suggested Projects 

12.44 Develop monitors (see Chapter 6, Concurrent Program
ming) to implement each of the following disk scheduling 
disciplines. 

a. FCFS 

b. SSTF 

c. SCAN 

d. N-Step SCAN 

e. C-SCAN 

12.45 In this chapter, we have investigated several cylinder-
oriented disk scheduling strategies including FCFS, SSTF, 
SCAN, TV-Step SCAN, and C-SCAN, F-SCAN, LOOK and C-
LOOK. Write a simulation program to compare the perfor
mance of these scheduling methods under light, medium, and 
heavy loads. Define a light load as one in which there is usually 
either 0 or 1 requests waiting for the entire disk. Define a 
medium load as one in which each cylinder has either 0 or 1 
request waiting. Define a heavy load as one in which many cyl
inders are likely to have many requests pending. Use random 
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should be sent to your disk scheduler, which then orders them 
and sends them to the disk for service by calling its read, write 
and seek functions. Use the values returned by the disk to 
determine each scheduling algorithm's throughput, response 
time and variance of response times. 

12.47 Extend the simulation in the previous exercise to incor
porate rotational latency. For each strategy, did performance 
increase or decrease as a result? 

Because disks are a bottleneck in most systems, disk perfor
mance optimization continues to be an active area of research 
and analysis in the literature. Denning discussed how disk 
scheduling algorithms can improve performance.92 As hard 
disks became the dominant form of secondary storage, research 
into improving their performance continued.93, 94, 95, 96, 97, 98, 99 

Researchers regularly perform comparative analyses of disk 
scheduling algorithms, often using sophisticated simulations of 
hard disk activity.36-39 Patterson et al. introduced the notion of 

RAID in their seminal paper;100 subsequent research has fur
ther explored the trade-offs between various RAID levels.101-102 

As the gap between main memory and hard disk speeds grows 
at an increasing pace, microelectromechanical storage (MEMS) 
devices, which access a rectangular media using chips containing 
thousands of read/write heads, show promise as a technology to 
replace the hard disk as high-capacity, low-cost storage.103104 

The bibliography for this chapter is located on our Web site at 
www.deitel.com/books/os3e/Bibliography.pdf. 
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'Tis in my memory lock'd, And you yourself shall keep the key of it. 
— William Shakespeare— 

E pluribus unus. (One composed of many.) 
—Virgil— 

I can only assume that a "Do Not File" document is filled in a "Do Not File" file. 
—Senator Frank Church, Senate Intelligence Subcommittee Hearing, 1975— 

A form of government that is not the result of a long sequence of shared experiences, 
efforts, and endeavors can never take root. 

—Napoleon Bonaparte— 



Chapter 13 

File and Database Systems 
Objectives 
After reading this chapter, you should understand: 

• the need for file systems. 

• files, directories and the operations that can be performed on them. 

• organizing and managing a storage device's data and free space. 

• controlling access to data in a file system. 

• backup, recovery and file system integrity mechanisms. 

• database systems and models. 
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Most computer users are familiar with the concept of file as a named collection of 
data that is manipulated as a unit. Files typically reside on secondary storage 
devices such as disks, CDs or tapes, though they can exist exclusively in volatile 
main memory. In this chapter, we discuss how systems organize and access file data 
so that it can be retrieved quickly from high-latency secondary storage devices. We 
also discuss how operating systems can create an interface that facilitates naviga
tion of a user's files. Because secondary storage often contains files storing sensitive 
information for several users, we discuss how systems control access to file data. 
Many systems use files to store important information such as inventories, payrolls 
and account balances; we discuss how file systems can protect such data from cor
ruption or total loss from disasters such as power and disk failures. Finally, we dis
cuss how systems that manage large amounts of shared data can benefit from 
databases as an alternative to files. 

13.1 Introduction 
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Information is stored in computers according to a data hierarchy. The lowest level 
of the data hierarchy is composed of bits. Bits are grouped together in bit patterns 
to represent all data items of interest in computer systems. There are 2" possible bit 
patterns for a string of n bits. 

The next level in the data hierarchy is fixed-length patterns of bits such as 
bytes, characters and words. When referring to storage, a byte is typically 8 bits. A 
word is the number of bits a processor can operate on at once. Thus, a word is 4 
bytes on a 32-bit processor and 8 bytes on a 64-bit processor. 

Characters map bytes (or groups of bytes) to symbols such as letters, numbers, 
punctuation and new lines. Many systems use 8-bit characters and thus can have 2s. or 
256, possible characters in their character sets. The three most popular character sets 
in use today are ASCII (American Standard Code for Information Interchange). 
EBCDIC (Extended Binary-Coded Decimal Interchange Code) and Unicode®. 

ASCII stores characters as 8-bit bytes and thus can have 256 possible charac
ters in its character set. Due to ASCII's small character size, it does not support 
international character sets. EBCDIC is often used for representing data in main-
frame computer systems, particularly systems developed by IBM; it also stores 
characters as 8-bit bytes.1 

Unicode is an internationally recognized standard that is popular in Internet 
and multilingual applications. Its goal is to use a unique number to represent every 
character in all the world's languages.2 Unicode provides 8-, 16- and 32-bit repre
sentations of its character set. To simplify conversion from ASCII to Unicode char
acters, the 8-bit representation of Unicode, called UTF-8 (Unicode character set 
Translation Format-8 bit), corresponds directly to the ASCII character set. HTML 
files are typically encoded using UTF-8. UTF-16 and UTF-32 each provide larger 
character sets, enabling applications to store information containing characters 

13.2 Data Hierarchy 



from multiple alphabets, such as Greek, Cyrillic, Chinese and a great many others. 
However, they require larger files to store the same number of characters when 
compared to UTF-8. For example, the 12-character string "Hello, world" 
requires 12 bytes of storage using 8-bit characters, 24 bytes using 16-bit characters 
and 48 bytes using 32-bit characters. 

A field is a group of characters (e.g., a person's name, street address or tele
phone number). A record is a group of fields. A student record may contain, for 
example, separate fields for identification number, name, address, telephone number, 
cumulative grade point average, major field of study, expected date of graduation and 
so on. A file is a group of related records. For example, a student file might contain 
one record for each student in a university; a payroll file might contain one record for 
every employee in a company. The highest level of the data hierarchy is a file system 
or database. File systems are collections of files, and databases are collections of data 
(database systems are discussed in Section 13.12, Database Systems). 

The term volume is a unit of data storage that may hold multiple files. A phys-
ical volume is limited to one storage device; a logical volume —such as one that 
might be used in a virtual machine —could be draped across many devices. Exam
ples of volumes include CDs, DVDs, tapes and hard disks. 
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1. What are the trade-offs of large character sets? 
2. How many possible character can be stored using a 16-bit, 32-bit and 64-bit character set? 

Why do you suppose that 64-bit character sets are not implemented? 

Ans: 1) Large character sets such as Unicode enable users to store and transmit data in 
multiple languages. However, large character sets require a large number of bits to represent 
each character, which increases the size of data they store. 2) A 16-bit character set can repre-
sent 216, or 65,536, possible characters; a 32-bit character set can represent 232, or over 4 bil
lion characters; a 64-bit character set can represent 264, or over 16 quintillion characters. As 
yet, 64-bit character sets have not been implemented, because they consume a significant 
amount of space per character to provide a range of characters far beyond what users are 
likely to need well into future. 

Self Review 

A file is a named collection of data that may be manipulated as a unit by operations 
such as 

• open —Prepare a file to be referenced. 

• close —Prevent further reference to a file until it is reopened. 

• create — Create a new file. 

• destroy —Remove a file. 

• copy—Copy the contents of one file to another. 

• rename—Change the name of a file. 

• list—Print or display the contents of a file. 

13.3 Files 



Individual data items within the file may be manipulated by operations like 

• read—Copy data from a file to a process's memory. 

• write —Copy data from a process's memory to a file. 

• update—Modify an existing data item in a file. 

• insert—Add anew data item to a file. 

• delete —Remove a data item from a file. 

Files may be characterized by attributes such as 

• size —the amount of data stored in the file. 

• location—the location of the file (in a storage device or in the system's log
ical file organization). 

• accessibility—restrictions placed on access to file data. 

• type—how the file data is used. For example, an executable file contains 
machine instructions for a process. A data file may specify the application 
that is used to access its data. 

• volatility—the frequency with which additions and deletions are made to a 
file. 

• activity—the percentage of a file's records accessed during a given period 
of time. 

Files can consist of one or more records. A physical record (or physical block) 
is the unit of information actually read from or written to a storage device. A logical 
record (or logical block) is a collection of data treated as a unit by software. When 
each physical record contains exactly one logical record, the file is said to consist of 
unblocked records. When each physical record may contain several logical records, 
the file is said to consist of blocked records. In a file with fixed-length records, all 
records are the same length; the block size is ordinarily an integral multiple of the 
record size. In a file with variable-length records, records may vary in size up to the 
block size. 

1. Compare physical records to logical records. 
2. Why do you suppose variable-length records incur more storage overhead than fixed-

length records? 

Ans: 1) A physical record corresponds to the unit of information read from or written to a 
storage device. A logical record corresponds to a collection of data treated as a unit by soft
ware. 2) The system needs to determine the length of each record. Two common ways to do 
this are to end each record with an end-of-record marker, or to precede each record with a 
length field—each of these takes space. A system that processes fixed-length records need 
have the length recorded only once. 
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A file system organizes files and manages access to data.3 File systems are responsi
ble for: 

• File management—providing the mechanisms for files to be stored, refer
enced, shared, and secured. 

• Auxiliary storage management —allocating space for files on secondary or 
tertiary storage devices. 

• File integrity mechanisms —ensuring that the information stored in a file is 
uncorrupted. When file integrity is assured, files contain only the informa
tion that they are intended to have. 

• Access methods—how the stored data can be accessed. 

The file system is concerned primarily with managing secondary storage space, par
ticularly disk storage, but it can access file data stored on other media (e.g., main 
memory). 

File systems enable users to create, modify, and delete files; they should also 
be able to structure files in a manner most appropriate for each application and ini
tiate data transfer between files. Users should also be able to share each other's files 
in a carefully controlled manner to build upon each other's work. The mechanism 
tor sharing files should provide various types of controlled access such as read 
access, write access, execute access or various combinations of these. 

File systems should exhibit device independence —users should be able to refer 
to their files by symbolic names rather than having to use physical device names. Sym
bolic names are logical, user-friendly names, such as myDi rec tory :myFi le . tx t . 
Physical device names specify where a file can be found on a device, e.g., disk 2, 
blocks 782-791. Symbolic names allow file systems to give users a logical view of their 
data by assigning meaningful names to files and file operations. A physical view is 
concerned with the layout of file data on its storage device and the device-specific 
operations that manipulate the data. The user should not have to be concerned with 

the particular devices on which data is stored, the form the data takes on those 
devices or the physical means of transferring data to and from them. 

Designing a file system requires knowledge of the user community, including 
the number of users, the average number and size of files per user, the average 
duration of user sessions, the nature of applications to be run on the system, and the 
like. These factors must be carefully considered to determine the most appropriate 
file organizations and directory structures. 

To prevent either accidental loss or malicious destruction of information, file 
systems should also provide backup capabilities that facilitate the creation of 
redundant copies of data and recovery capabilities that enable users to restore any 
lost or damaged data. In sensitive environments in which information must be kept 
secure and private, such as in electronic funds transfer systems, criminal records sys-
tems, medical records systems, and so on, the file system may also provide encryp-

13.4 File Systems 
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tion and decryption capabilities. This makes information useful only to its intended 
audience—those who possess the decryption keys (encryption and decryption are 
discussed in Section 19.2, Cryptography; see the Operating Systems Thinking fea
ture, Encryption and Decryption). 

1. (T/F) File systems manage data only on secondary storage. 
2. In what ways is file system management similar to virtual memory management? 

Ans: 1) False. File systems manage files, which represent named collections of data that can 
be stored on any medium, including main memory. 2) File system management entails allo
cating storage, hiding the physical view of storage from applications and controlling access to 
storage. 

Self Review 

590 File and Database Systems 

Consider a large-scale timesharing system supporting a large community of users. 
Each user may have several accounts; each account may have many files. Some files 
may be small, such as e-mail messages. Other files may be large, such as a master list 
of parts in an inventory control application. 

It is common for user accounts to contain hundreds and even thousands of files. 
With a user community of several thousand users, a system's disks might easily con
tain millions of files. These files need to be accessed quickly to limit response times. 

To organize and quickly locate files, file systems use directories, which are file-
containing the names and locations of other files in the file system. Unlike other files, 
a directory does not store user data. Figure 13.1 lists several common directory fields. 

13.4.1 Directories 

Operating Systems Thinking 
Encryption and Decryption 
Years ago information processed 
by a computer was largely con
fined to one local computer sys
tem and access to it could be 
t ightly controlled. Operating sys
tems running on today's high-
powered computer systems pass 
massive amounts of information 
between computers on networks. 

especially the Internet. Transmis
sion media are insecure and vul
nerable, so to protect that 
information, operating systems 
software often provides capabili
ties for encryption and decryp
t ion. Both of these operations can 
be so processor intensive, that it 
was impractical to employ them 

on a wide scale years ago. As pro
cessor power continues to dra
matically increase, more systems 
wil l incorporate encryption and 
decryption into more applica
tions, especially applications that 
involve vulnerable network trans
mission. 



Name 
Location 

Size 

Type 

Access time 
Modified time 
Creation time 

Character string representing the file's name. 

Physical block or logical location of the file in the file system (i.e., 
a pathname). 

Number of bytes consumed by the file. 

Description of the file's purpose (e.g., data file or directory file). 

Time the file was last accessed. 

Time the file was last modified. 
Time the file was created. 
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Directory Field Description 

Figure 13.1 | Directory file contents example. 4, 5, 6 

The simplest file system organization is a single-level (or flat) directory structure. In 
this implementation, the file system stores all of its files using one directory.7 In a 
single-level file system, no two files can have the same name. Because most environ
ments contain a large number of files, many of which use the same name, single-
level file systems are rarely implemented. 

Single-Level File System 

A more appropriate file system for most environments may be organized as follows 
(Fig. 13.2). A root indicates where on the storage device the root directory begins. 
Directories are files that can point to other directories and files. In Fig. 13.2, the 
root directory points to the various user directories. A user directory contains an 
entry for each of that user's files; each entry points to the location of the corre-
sponding file on the storage device. 

File names need be unique only within a given user directory. In such hierar
chically structured file systems, each directory may contain several subdirectories 
but no more than one parent directory. The name of a file is usually formed as the 
pathname from the root directory to the file. For example, in a two-level file system 
with users SMITH, JONES and DOE, in which JONES has files PAYROLL and 
INVOICES, the pathname for file PAYROLL might be formed as 
ROOT:JONES:PAYROLL. In this example, ROOT indicates the root directory, 
and the use of a colon (:) delimits different pieces of the pathname. 

Hierarchical file systems are implemented by most general-purpose file sys
tems, but the name of the root directory and the type of delimiter can vary between 
file systems. A Windows file system's root directory is specified by a letter followed 
by a colon (e.g., C:), and a UNIX-based file systems uses a slash (/). Windows sys
tems use a backslash (e.g., C : \ Jones \Payro l l ) as a delimiter and UNIX-based sys-
tems use a slash (e.g., / j o n e s / p a y r o l l ) . Various Linux and Windows XP file 
systems are considered in depth in the case studies (see Section 20.7.3, Second 
Extended File System (ext2fs), and Section 21.8.2, NTFS). 

Hierarchically Structured File System 

file://C:/Jones/PayroTI
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Figure 13.2 | Two-level hierarchical file system. 

Many file systems support the notion of a working directory to simplify navigation 
using pathnames. The working directory (represented by the directory entry " . " in 
Windows and UNIX-based file systems) enables users to specify a pathname that 
does not begin at the root directory. For example, suppose the current working 
directory has been set to /home/hmd/ in the file system in Fig. 13.3. The relative 
path to /home/hmd/os/chapter13 would be os / chap te r l3 . 8 This feature reduces 
the size of the pathname when accessing files. When a file system encounters a rela
tive pathname, it forms the absolute path (i.e., the path beginning at the root) by 
concatenating the working directory and the relative path. The file system then 
traverses the directory structure to locate the requested file. 

The file system typically maintains a reference to the working directory's par
ent directory, the directory one level higher in the file system hierarchy. For exam
ple, in Fig. 13.3, home is the parent directory for the hmd, pjd and drc directories. In 
Windows and UNIX-based systems,". ." is a reference to the parent directory.9 

Relative Pathnames 

A link is a directory entry that references a data file or directory that is typically 
located in a different directory.10 Users often employ links to simplify file system 

Links 
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Figure 13.3 | Example hierarchical file system contents. 

navigation and to share files. For example, suppose that a user's working directory is 
/home/drc/ and the user shares another user's files located in the /home/hmd/os/ 

directory. By creating a link to /home/hmd/os/ in the user's working directory, the 
user can access the shared files simply using the relative pathname os / . 

A soft link (also called a symbolic link in UNIX-based systems, a "shortcut" 
on Windows systems and "alias" on MacOS systems) is a directory entry containing 

the pathname for another file. The file system locates the target of the soft link by 
traversing the directory structure using the specified pathname.11 

A hard link is a directory entry that specifies the location of the file (typically 
a block number) on the storage device. The file system locates a hard link's file data 
by directly accessing the physical block it references.12 

Figure 13.4 illustrates the difference between soft links and hard links. Files 
foo and bar are located at block numbers 467 and 843, respectively. The directory 
entry foo_hard is a hard link because it specifies the same block number (467) as 
foo's directory entry. The directory entry f oo_sof t is a soft link because it specifies 
the pathname for f oo (in this case, . /f oo). 

Recall from Section 12.9 that disk reorganization and defragmentation can be 
used to improve disk performance. During such operations, the physical location of 
a file can change, requiring the file system to update the file's location in its direc-
tory entry. Because a hard link specifies a physical location of a file, the hard link 
references invalid data when the physical location of the corresponding file 
changes. To address this issue, a file system can store in a file a pointer to each of its 
hard links. When the file's physical location changes, the file system can use these 
pointers to find hard links that require updating. 
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Because soft links store the logical location of the file in the file system, which 
does not change during defragmentation or disk reorganization, they do not require 
updating when file data is moved. However, if a user moves a file to a different direc
tory or renames the file, any soft links to that file are no longer valid. This behavior 
can be useful in some cases. For example, a user may wish to replace a program file 
with a new version of the program with the same name. In this case, the file that was 
originally linked can be moved, renamed or replaced, but the soft link will continue to 
reference a valid file (the new version of the program). Traditionally, file systems do 
not update soft links when a file is moved to a different directory. 

When a user destroys a link to a file, the file system must determine whether 
to destroy the corresponding file as well. For this purpose, file systems typically 
maintain a count of the number of hard links to a file. When the count reaches zero, 
the file system contains no references to the file data, so the file can be safely 
removed. Because soft links do not reference the physical location of file data, they 
are not considered when determining whether a file should be destroyed. 

Figure 13.4 | Links in a file system. 

1. Why are single-level file systems inappropriate for most systems? 
2. Describe the difference between hard links and soft links. 

Ans: 1) The reason is that most systems require that the file system support multiple files of 
the same name, a feature that single-level file systems do not provide. 2) Hard links are direc
tory entries that specify the location of a file on its storage device; soft links specify a file's 
pathname. Hard links reference the same data even if the file name changes. Soft links locate 
a file according to its logical location in the file system. Thus, the data referenced by a soft 
link's pathname can change when a new file is assigned that pathname. 

Self Review 

Most file systems store data other than user data and directories, such as the loca
tions of a storage device's free blocks (to ensure that new file data does not over-
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write blocks that are being used) and the time at which a file was last modified (for 
accounting purposes). This information, called metadata, protects the integrity of 
the file system and cannot be modified directly by users. 

Before a file system can access data, its storage device is typically formatted. 
Formatting is a system-dependent operation, but typically entails inspecting the stor
age device for any unusable sectors, erasing any data on the device and creating the 
file system's root directory. Many file systems also create a superblock to store infor
mation that protects the integrity of the file system. A superblock might contain: 

• a file system identifier that uniquely identifies the type of file system 

• the number of blocks in the file system 

• the location of the storage device's free blocks 

• the location of the root directory 

• the date and time at which the file system was last modified 

• information indicating whether the file system needs to be checked (e.g., 
due to a system failure that prevented buffered data from being written to 
secondary storage).13'14'15 

If the superblock is corrupted or destroyed, the file system might be unable to 
access file data. Subtle errors in superblock data (such as the location of the storage 
device's free blocks) could cause the file system to overwrite existing file data. To 
reduce the risk of lost data, most file systems distribute redundant copies of the 
superblock throughout the storage device. Thus, the file system can use redundant 
copies of the superblock to determine whether the primary superblock is damaged 
and, if so, replace it. 
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When a file is opened, the operating system first locates information about the file 
by traversing the directory structure. To avoid further (possibly lengthy) traversals, 
the system maintains a table in main memory that keeps track of open files. In many 
systems, the file open operation returns a file descriptor, a non-negative integer that 
indexes into the open-file table. From this point on, access to the file is directed 
through the file descriptor. 

The open-file table often contains file control blocks. These specify the informa
tion that the system needs to manage a file, sometimes called file attributes. They are 
highly system-dependent structures. A typical file control block might include a file's 

• symbolic name 

• location in secondary storage 

• organization structure (e.g., sequential, direct access, and so on) 

• device type (e.g., hard disk, CD-ROM) 

• access control data (such as which users can access the file and the type of 
access that is permitted) 

File Descriptors 



• type (data file, object program, C source program, and so on) 

• disposition (permanent vs. temporary) 

• creation date and time 

• date and time last modified 

• access activity counts (number of reads, for example). 
Ordinarily, file control blocks are maintained on secondary storage. They are 

brought to main memory when a file is opened to improve the efficiency of file 
operations. 

1. Why should the file system maintain redundant copies of critical metadata such as super-
blocks? 

2. Why do file systems prevent users from accessing metadata directly? 

ANS: 1) Because metadata such as superblocks store information that identify the file sys
tem and provide the location of its files and free space, file system data could be lost if the 
superblock is damaged. Maintaining multiple copies of the superblock data enables the sys
tem to recover if the superblock is damaged, which reduces the risk of data loss. 2) If access 
were not tightly controlled, accidental misuse of file system metadata could lead to inconsis
tencies and loss of data. 
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Users often require access to information that is not part of the native file system (i.e.. 
the file system that is permanently mounted on a particular system and whose root is 
referenced by the root directory). For example, many users store data on a second 
hard disk, DVD or another workstation in a network in computers. For this reason, 
operating systems provide the ability to mount multiple file systems. Mounting com
bines multiple file systems into one namespace—a set of files that can be identified by 
a single file system. The unified namespace allows users to access data from different 
locations as if all files were located inside the native file system.16 

The mount command assigns a directory, called the mount point, in the native 
file system to the root of the mounted file system. Early Windows file systems pro
vided a flat mounting structure; each mounted file system was assigned a letter and 
was located at the same level of the directory structure. Typically for example, the 
file system containing the operating system was mounted at C: and the next file sys
tem at D:. 

UNIX-compatible file systems (such as the UNIX File System, the Fast File 
System and the Second Extended File System), and versions of Microsoft's NTFS 
5.0 and greater, feature mount points that can be located anywhere in the file sys
tem. The contents of the native file system's directory at the mount point are tem
porarily hidden while another file system is mounted at that directory.17-18 

In UNIX systems, some file systems are mounted at one of the directories 
located in /mnt/ . Consider in Fig. 13.5. The mount command places the root of file 
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system B over the directory /mnt/newfs/ of file system A. After the mount opera
tion, files from file system B can be accessed from /mnt/newf s/ in file system A. 
For example, one can access the file system B's / u s r / b i n / directory from file sys
tem As /mn t /newfs /us r /b in / directory. When a file system is mounted, the con
tents of the directory at the mount point are unavailable to users until the file 
system is unmounted. 

File systems manage mounted directories with mount tables. These contain 
information about mount point pathnames and the device that stores each mounted 
file system. When the native file system encounters a mount point, it uses the mount 
table to determine the device and type of file system that is mounted at that direc
tory. Most operating systems support multiple file systems for removable storage, 
such as Universal Disk Format (UDF) for DVDs and the ISO 9660 file system for 
CDs. Once the operating system has determined the device's file system type, it uses 
the appropriate file system to access the file on the specified device. The unmount 
command allows the user to disconnect mounted file systems. This call updates the 
mount table and enables users to access any files that were hidden by the mounted 
system.19 

Users can create soft links to files in mounted file systems. When the file sys
tem encounters the soft link, it uses the specified pathname to traverse the directory 

Figure 13.5 | Mounting a file system. 
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structure. When the file system encounters a mount point, it begins the directory 
traversal from the root of the file system mounted at the mount point. A hard link, 
however, specifies a block number that is associated with the device that stores the 
link. In general, users cannot create hard links between two file systems, because 
they are often associated with different storage devices. 

1. (T/F) The mounted file system and the native file system must be of the same type. 
2. Can a file system create a hard link to a file in a mounted file system? 

Ans: 1) False. A primary advantage to mounting file systems is that they enable multiple 
heterogeneous file systems to be accessed via a single file system interface. 2) No, hard links 
reference device-specific block numbers corresponding to the file system on which they are 
stored, so they cannot be used to specify physical locations in other file systems. 
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File organization refers to the manner in which the records of a file are arranged on 
secondary storage.20 Several file organization schemes have been implemented: 

• Sequential—Records are placed in physical order. The "next" record is the 
one that physically follows the previous record. This organization is natural 
for files stored on magnetic tape, an inherently sequential medium. Disk 
files may also be sequentially organized, but for various reasons discussed 
later in this chapter, records in a sequential disk file are not necessarily 
stored contiguously. 

• Direct—Records are directly (randomly) accessed by their physical 
addresses on a direct access storage device (DASD). The application user 
places the records on DASD in any order appropriate for a particular 
application.21 

• Indexed sequential—Records on disk are arranged in logical sequence 
according to a key contained in each record. The system maintains an index 
containing the physical addresses of certain principal records. Indexed 
sequential records may be accessed sequentially in key order, or they may 
be accessed directly, by a search through the system-created index. 

• Partitioned—This is essentially a file of sequential subfiles. Each sequential 
subfile is called a member. The starting address of each member is stored in 
the file's directory. Partitioned files have been used to store program librar
ies or macro libraries. 

13.5 File Organization 

1. Which file organization technique is most appropriate for tape storage? Why? 
2. For which media is direct file organization most appropriate? 
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The problem of allocating and freeing space on secondary storage is somewhat like 
that experienced in main memory allocation under variable-partition multipro
gramming. As files are allocated and freed, it is common for the space on secondary 
storage to become increasingly fragmented, with files being spread throughout 
widely dispersed blocks; this can cause performance problems.22 As discussed in 
Section 12.9, the system can perform defragmentation, but doing so while the file 
system is in use can lead to poor response times. 

Because processes often access portions of a file sequentially, this leads us to 
try to store all the data in a file contiguously to improve performance. For example, 
users searching a file for information often use file scan options to locate the next 
record or the previous record. These scans should result in minimal seek activity 
when possible. 

Spatial locality tells us that once a process has referred to a data item on a 
page, it is likely to reference additional data items on that page; it is also likely to 
reference data items on pages contiguous to that page in the user's virtual address 
space. Therefore it is desirable to store nonresident, logically contiguous pages of a 
user's virtual memory space as physically contiguous pages on secondary storage, 
especially if several pages are stored per physical block. 

Because files often grow or shrink over time, and because users rarely know in 
advance how large their files will be, contiguous storage allocation systems have 
generally been replaced by more dynamic noncontiguous storage allocation sys-
tems. As we will see, these systems attempt to allocate parts of files contiguously to 
exploit locality, but enable files to change in size with minimal overhead. 

13.6 File Allocation 

Ans: 1) Sequential file organization is most appropriate for tape storage because it is a 
sequential access medium. 2) Direct file organization is most appropriate for random access 
devices, such as main memory and moving-head disks. 
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1. Compare the problem of fragmentation in file systems to that in virtual memory systems. 
2. Why is it beneficial to allocate storage in blocks of a system's page size or a multiple of the 

page size? 

Ans: 1) In both systems, fragmentation can lead to wasted storage if no data is small 
enough to fit in the storage "holes." Unlike main memory, which provides essentially uniform 
access time for each of its addresses, secondary storage devices such as disks can exhibit high 
access times if data is fragmented, because the storage device is likely to perform many seek 
operations to access file data. 2) This enables the system to exploit spatial locality by using a 
single I/O operation to load into memory several pages that are likely to be referenced in the 
near future. 
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File systems that employ contiguous allocation place file data at contiguous 
addresses on the storage device. The user specifies the amount of space needed to 
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store the file in advance. If the desired amount of contiguous space is not available, 
the file cannot be created. 

An advantage of contiguous allocation is that successive logical records typi
cally are physically adjacent to one another. This speeds access compared to systems 
in which successive logical records are dispersed throughout secondary storage, 
requiring additional seek operations. Locating file data is straightforward, because 
the directories need store only the address of the start of the file and the file's length. 

A disadvantage to contiguous allocation schemes is that they exhibit the same 
types of external fragmentation problems inherent in memory allocation for vari
able-partition multiprogramming systems (see Section 9.9). Also, contiguous alloca-
tion can result in poor performance as files grow and shrink over time. If a file 
grows beyond the size originally specified and there are no adjacent free blocks, the 
file must be transferred to a new area of adequate size, leading to additional I/O 
operations. To provide for anticipated expansion, users might overestimate their 
storage needs, leading to inefficient storage allocation. Contiguous allocation is par
ticularly useful for write-once CDs and DVDs, which do not allow files to grow or 
shrink over time. 
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1. Explain the benefits of using a contiguous file allocation scheme. 
2. Explain the disadvantages of using a contiguous file allocation scheme. 

Ans: 1) Locating file data is straightforward. Also, files can be accessed quickly, because the 
storage device does not need to perform lengthy seeks after it locates the first block. 
2) Contiguous allocation schemes can lead to significant external fragmentation and poor 
performance when a file grows too large to be stored contiguously at its current location and 
must be moved. 

Self Review 

Most file systems implemented on rewritable secondary storage media use noncon
tiguous allocation. One approach to noncontiguous file allocation is to implement a 
sector-based linked list. In this scheme, each directory entry points to the first sector 
of a file on a moving-head storage device such as a hard disk. The data portion of a 
sector stores the contents of the file; the pointer portion stores a pointer to the file's 
next sector. Because files often occupy multiple sectors, a disk's read/write head 
must sequentially access each file sector until it finds the requested record. 

Noncontiguous allocation solves some of the problems inherent in contiguous 
allocation schemes, but it has its own drawbacks. Because a file's records may be 
dispersed throughout the disk, direct and sequential access to logical records can 
involve many additional seeks besides the first seek to the file. Pointers in the list 
structure also reduce the amount of space available for file data in each sector. 

One scheme used to manage secondary storage more efficiently and reduce file-
traversal overhead is called block allocation. In this scheme, instead of allocating indi
vidual sectors, blocks (often called extents) of contiguous sectors are allocated. The 
system tries to allocate new blocks to a file by choosing free blocks as close as possible 
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to existing file data blocks, preferably on the same cylinder. Each access to the file 
involves determining the appropriate block and sector within the block. 

In block chaining, each entry in a directory points to the first block of a file 
(Fig. 13.6). The blocks comprising a file each contain two portions: a data block and 
a pointer to the next block. The smallest unit of allocation is a fixed-size block that 
ordinarily consists of many sectors. Locating a particular record requires searching 
the block chain until the appropriate block is found, then searching that block until 
the appropriate record is found. The chain must be searched from the beginning, 
and if the blocks are dispersed throughout the disk (which is normal), the search 
process can be slow, as block-to-block seeks occur. Insertion and deletion are per
formed simply by modifying the pointer in the previous block. Some systems use 
doubly linked lists to facilitate searching; the blocks are threaded both forward and 
backward so that a search may proceed in either direction. 

Block size can significantly impact file system performance. If blocks are split 
between files (e.g., a file that requires 2.5 blocks occupies three blocks on disk), 
large block sizes can result in a considerable amount of internal fragmentation. 
Large block sizes, however, reduce the number of I/O operations required to access 
file data. Small block sizes may cause file data to be spread across multiple blocks, 
which tend to be dispersed throughout the disk. This could lead to poor perfor
mance. In practice, block sizes typically range from one to eight kilobytes.23-24>25 
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Figure 13.6 | Noncontiguous file allocation using a linked list. 
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1. What is the primary disadvantage of linked-list noncontiguous file allocation? 
2. What are the trade-offs between choosing a large block size and a small block size? 

A n s : 1) In the worst case, the file system must access each of the file's blocks (when using a 
singly linked list) or half of the file's blocks (when using a doubly linked list) to locate file 
data, which could lead to long access times. As we discuss in the next sections, several popu
lar file allocation techniques place a lower limit on access times, which tends to improve per
formance. 2) A large block size generally reduces the number of I/O operations required to 
retrieve a particular record, at the cost of wasted storage due to internal fragmentation. A 
small block size reduces the amount of internal fragmentation but if file data is scattered 
throughout a device such as a hard disk, it can lead to poor access times. 

Self Review 

Tabular noncontiguous file allocation stores pointers to file blocks contiguously in 
tables to reduce the number of lengthy seeks required to access a particular record 
(Fig. 13.7). Directory entries indicate the first block of a file. For example, the first 
block of file C in Fig. 13.7 is 2. The current block number is used as an index into the 
block allocation table to determine the location of the next block. Therefore, the 
value of file C's next block number is stored in location 2 in the block allocation 
table. In this case, file C's next block is 5. The block allocation table's entry for a 
file's last block stores the value null. 

Because the pointers that locate file data are stored in a central location, the 
table can be cached so that the chain of blocks that compose a file can be traversed 
quickly, which improves access times. Locating the last record of a file may require 
the file system to follow many pointers in the block allocation table. To reduce 
access times, the block allocation table should be stored contiguously on disk and 
cached in main memory. When a file system contains a small number of blocks, this 
can be accomplished relatively easily. For example, a 1.44MB floppy disk using 1KB 
blocks contains 1,440 blocks, which can be addressed using an 11-bit number. The 
size of the corresponding block allocation table is the size of each block address 
multiplied by the number of blocks—in this case, approximately 2,000 bytes. 

For file systems that contain a greater number of blocks, the size of each file 
allocation table entry, and thus the size of the table, is greater. For example, a 
200GB disk using 4KB blocks contains 50,000,000 blocks, which can be addressed 
using a 26-bit number. In this case, the block allocation table consumes over 
160MB. In the preceding example, the file allocation table was stored in only two 
blocks; however, in this case the file allocation table is spread across tens of thou
sands of blocks, which could lead to fragmentation. If file data is dispersed across 
the storage device, the file's table entries will be spread throughout the block table. 
Thus, the system might need to load into memory several blocks of the block alloca
tion table, which could lead to poor access times. Also, if the block allocation table 
is cached, it can consume significant memory. 

A popular implementation of tabular noncontiguous file allocation is 
Microsoft's FAT file system. Microsoft first incorporated a file allocation table 

13.6.3 Tabular Noncontiguous File Allocation 
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Figure 13.7 | Tabular noncontiguous file allocation. 

(FAT) into its release of MS-DOS 1.0 (see the Mini Case Study, MS-DOS).26 The 
FAT stores information about each block, including whether the block is currently 
allocated and the number of the next block in the file. The first version of the FAT 
file system, called FAT12, allocated 12 bits per entry in the FAT. This meant that a 
disk managed by FAT12 could contain no more than 212 (4,096) blocks. This was 
sufficient for small disks containing few files, but FAT12 resulted in significant 



wasted memory for larger disks. For example, to address an entire 64MB disk, the 
file system required a minimum block size of 8KB. In this case, small files could 
incur significant internal fragmentation. As disks grew larger, Microsoft created 
FAT16 and FAT32, which increased the number of addressable blocks and enabled 
the file system to access large disks using small block sizes.27-28 

When Microsoft introduced FAT in the early 1980s, disk drives were small. 
allowing the FATs to be small and efficient. FAT continues to be effective for low-
capacity storage media such as floppy disks.29 
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1. How is tabular file allocation more efficient than linked-list file allocation? 
2. What was the primary limitation of FAT12? How did later versions of FAT solve this 

problem? Why is FAT no longer appropriate to manage today's hard disks? 

Self Review 

Mini Case Study 
MS-DOS 
Microsoft MS-DOS was based on 
a disk operating system wri t ten by 
Tim Paterson for Seattle Comput
ing Products (SCP) in 1980.30 At 
the t ime, SCP needed an operat
ing system for their memory 
board for the new Intel 16-bit 
8086 processor.31 Digital 
Research's (CP/M) Control Pro
gram for Microcomputers was the 
major microcomputer operating 
system at the time, but an 
updated version for the 8086 pro
cessor was not ready when SCP's 
memory boards went on sale.32 

Paterson was asked to write a 
new operating system, which was 
named QDOS (Quick and Dirty 
Operating System). As the name 
implies, it was completed in just a 
few months but had not been 
thoroughly tested and debugged. 

For the remainder of the year, 
Paterson improved the operating 
system, which was released as 86-
DOS.33 

Several important goals 
guided the design of 86-DOS. 
First, it had to be compatible wi th 
programs writ ten for CP/M to 
exploit its large application base, 
requiring 86-DOS to have a similar 
application programming inter
face (API).34, 35, 36 To make 86-DOS 
more efficient than CP/M, Pater
son wrote it in assembly language 
and incorporated the File Alloca
t ion Table (FAT) disk management 
system, based on Microsoft's 
Stand-Alone Disk BASIC system 
(see Section 13.6.3, Tabular Non
contiguous File Allocation).37, 38, 39 

In 1981, IBM solicited ven
dors for an operating system to 

run their first line of personal 
computers.40 They attempted to 
license the popular CP/M from 
Digital Research, but CP/M creator 
Gary Kildall refused to sign IBM's 
highly restrictive nondisclosure 
agreements.41 In the meantime, 
IBM worked with Microsoft to 
produce software for the new 
IBM PCs.42 Microsoft had been 
licensing 86-DOS from SCP for sev
eral months for development pur
poses and was asked by IBM to 
purchase all rights to DOS. 43, 44, 45 

SCP accepted the offer and 86-
DOS, renamed MS-DOS, became 
the de facto operating system for 
the IBM Personal Computer and 
compatible microcomputers.46 



Ans: 1) Block allocation tables can store the locations of the file system's data contiguously, 
reducing the number seeks required to locate a particular record. 2) FAT12 could not address 
more than 4,096 blocks, which necessitated large block sizes to address large disks, leading to 
internal fragmentation. FAT16 and FAT32 addressed this issue by increasing the number of 
blocks the file allocation table could reference by allowing more bits per entry. This increased 
the size of the file allocation table, which led to increased file access times and wasted mem
ory in file system caches. 
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Another popular noncontiguous allocation strategy is to use index blocks to point to 
data in a file. Each file has one or more index blocks. An index block contains a list of 
pointers that point to file data blocks. A file's directory entry points to its index block. 
To locate a record, the file system traverses the directory structure to determine the 
location of the file's index block on disk. It then loads the index block into memory 
and uses the pointers to determine the physical location of a particular block. Often, 
large files will consume more blocks than the number of pointers that a single index 
block can store. Most index block implementations reserve the last few entries to 
store pointers to more index blocks, a technique called chaining (Fig. 13.8). 

The primary advantage of index block chaining over simple linked-list imple
mentations is that searching may take place in the index blocks themselves. They may 
be kept close together in secondary storage to minimize seeking. To speed file tra
versal, index blocks are typically cached in main memory. Once the appropriate 
record is located via the index blocks, the data block containing that record is read 
into main memory. Index block chaining is analogous to storing a separate block allo
cation table for each file, which can be more efficient than systemwide block alloca
tion tables, because references to each file's blocks are stored contiguously in each of 
its index blocks. File systems typically place index blocks near the data blocks they 
reference, so the data blocks can be accessed quickly after their index block is loaded. 

Index blocks are called inodes (i.e., index nodes) in UNIX-based operating 
systems.47 A file's inode stores the file's attributes, such as the its owner, size, time of 
creation and the time of last modification. It also stores the addresses of some of the 
file's data blocks and pointers to continuation index blocks called indirect blocks. 
Inode structures support up to three levels of indirect blocks (Fig. 13.9). The first 
indirect block points to data blocks; these data blocks are singly indirect. The sec
ond indirect block contains pointers that reference only other indirect blocks. These 
indirect blocks point to data blocks that are doubly indirect. The third indirect 
block points only to other indirect blocks that point only to more indirect blocks 
that point to data blocks; these data blocks are triply indirect. The power of this 
hierarchical structure is that it places a relatively low limit on the maximum number 
of pointers that must be followed to locate file data—it enables inodes to locate any 
data block by following at most four pointers (the inode and up to three levels of 
indirect blocks). 

Inodes are investigated in detail in the Linux case study in Section 20.7.3, Sec
ond Extended File System (ext2fs). Another file system that uses index blocks is 

13.6.4 Indexed Noncontiguous File Allocation 
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Microsoft's NTFS, which is discussed in the Windows XP case study in 
Section 21.8.2, NTFS. Indexed noncontiguous allocation yields good performance 
with low overhead for many environments and has been implemented in many gen
eral-purpose computer systems. 

Figure 13.8 | Index block chaining. 
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1. How does placing index blocks near the data they reference improve access time? 
2. Compare indexed noncontiguous file allocation to tabular noncontiguous file allocation 

when files are, on average, small (e.g., less than or equal to one block). 

Self Review 

Figure 13.9 | Inode structure. 



Figure 13.10 | Free space management using a free list. 

As files grow and shrink, file systems maintain a record of the location of blocks 
that are available to store new data (i.e., free blocks). A file system may use a free-
list to keep track of free space (Fig. 13.10). The free list is a linked list of blocks con
taining the locations of free blocks. The last entry of a free list block stores a pointer 
to the next free list block; the last entry of the last free list block stores a null 
pointer to indicate that there are no further free list blocks. When the system needs 
to allocate a new block to a file, it finds the address of a free block in the free list. 
writes the new data to a free block and removes that block's entry from the free list. 

The file system typically allocates blocks from the beginning of the free list 
and appends freed blocks to the end of the list. Pointers to the head and tail of the 
free list can be stored in the file system's superblock. A free block can be located by 
following a single pointer; likewise, adding a block to the free list requires the sys
tem to follow one pointer. Therefore, this technique requires little overhead to per
form free list maintenance operations. As files are created and deleted, however, 
the storage device's free space can become fragmented, and adjacent entries in the 
free list will point to noncontiguous blocks. As a result, sequential file data will be 
allocated noncontiguous blocks, which generally increases file access time. Alterna-

Ans: 1) When the file system reads an index block, the disk arm will be near the data it ref
erences, reducing or even eliminating seeks. 2) In tabular noncontiguous file allocation, a 
small file will consume one data block and one entry in the block allocation table. In indexed 
noncontiguous file allocation, a small file requires a block for the index block and one data 
block, which results in substantial storage overhead. Further, several small files can be 
located by loading a single block of the file allocation table into memory. A file system usinsg 
indexed file allocation must access a different index block for each file that it references, 
which can slow access time due to many seeks. 

13.7 Free Space Management 
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tively, the file system can attempt to allocate contiguous blocks by searching or sort
ing the free list, both of which incur significant overhead.48 

Another common method of free space management is the bitmap 
(Fig. 13.11). A bitmap contains one bit for each block in the file system, where the 
ith bit corresponds to the ith block in the file system. In one implementation, a bit in 

the bitmap is 1 when the corresponding block is in use and 0 when it is not.49 The 
bitmap generally spans multiple blocks. Thus, if each block stores 32 bits, the 15th 
bit of the third bitmap corresponds to block 79. One of the primary advantages to 
bitmaps over free lists is that the file system can quickly determine if contiguous 
blocks are available at certain locations on secondary storage. For example, if a user 
appends data to a file that ends at block 60, the file system can directly access the 

61st entry of the bitmap to determine if the block is free. A disadvantage to bitmaps 
is that the file system may need to search the entire bitmap to find a free block, 
resulting in execution overhead. In many cases this overhead is trivial, because pro
cessor speeds are so much faster than I/O speeds in today's systems. 
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1. Compare free lists to free space bitmaps in terms of time required to find the next free 
block, reclaim a free block and allocate a contiguous group of blocks. 

2. Which free space management technique mentioned in this section results in lowest stor
age overhead? 

Ans: 1) Free lists are more efficient for allocating one free block, because the file system 
need only follow the pointer to the head of the free list. Bitmaps require an exhaustive search 
until a free block is found. Given a particular block, file systems can use bitmaps to deter
mine if there are contiguous free blocks by directly inspecting their entries. To find contigu
ous blocks in a free list, the file system must search or sort the free list, requiring significant 
execution time on average. 2) Often a bitmap is smaller than a free list, because a bitmaprep-

Self Review 

Figure 13.11 | Free space management using a bitmap. 



resents each block using a single bit, but a free list uses a block number, which can be as large 
as 32 or 64 bits. A file system's bitmap size is constant, while the free list's size depends on the 
number of free blocks in the system. Thus, when a file system contains few free blocks, a free 
list consumes less space than a bitmap. 
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Files are often used to store sensitive data such as credit card numbers, passwords, 
social security numbers and more, so file systems should include mechanisms to 
control user access to data (see the Operating Systems Thinking feature, Security). 
In the sections that follow, we discuss common techniques for implementing file 
access control. 

13.8 File Access Control 

One way to control access to tiles is to create a two-dimensional access control 
matrix (Fig. 13.12) listing all the users and all the files in the system. The entry aij is 
1 if user i is allowed access to file j; otherwise aij - 0. For example, in Fig. 13.12, user 
5 can access all ten files and user 4 can access only file 1. In an installation with a 
large number of users and a large number of files, this matrix would be quite large. 
Further, allowing one user access to another user's files is the exception rather than 
the rule, so the matrix would be extremely sparse. To make such a matrix concept 
useful, it would be necessary to use codes to indicate various kinds of access such as 
read-only, write-only, execute-only, read/write, and so on. This could substantially 
increase the size of the matrix. 

13.8.1 Access Control Matrix 

Operating Systems Thinking 

Security 
Computer security has always 
been an important concern, espe
cially for people responsible for 
business-critical and mission-criti
cal systems. But the nature of the 
security problems changes wi th 
advances in technology, so oper
ating systems designers must 
always be evaluating new tech
nology trends and their suscepti
bility to attack. Early computer 
systems often weighed many tons 

and were kept in secure rooms; 
there was no networking. Today's 
systems, especially hand-held 
computers, laptops and even 
desktop machines can easily be 
stolen. Now, virtually all systems 
are capable of being networked, 
which creates numerous chal
lenges as proprietary information 
is transmitted over insecure trans
mission media. Early encryption/ 
decryption schemes have become 

easy to "crack" wi th today's high-
powered computers, so much 
more sophisticated schemes have 
been developed. We discuss secu
rity issues throughout the book 
and devote all of Chapter 19 to 
this crucial topic. The case study 
chapters on Linux and Windows 
XP discuss security considerations 
and capabilities in those popular 
operating systems. 
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Figure 13.12 | Access control matrix. 

1. Why is file access control necessary? 
2. Why are access control matrices inappropriate for most systems? 

Ans: 1) Any user can reference any pathname in a file system. File systems control access to 
files to protect personal and sensitive information from users that do not have proper autho-
rization. 2) Access control matrices are generally large and sparsely populated, leading to 
wasted storage and inefficient access times when enforcing access control policies. 

Self Review 

A technique that requires considerably less space than the uses of an access control 
matrix is the control of access to various user classes. A common file access classifi-
cation scheme is 

• Owner—Normally, this is the user who created the file. The owner has 
unrestricted access to the file and typically can change file permissions. 

• Specified user—The owner specifies that another individual may use the file. 
• Group (or project) —Users are often members of a group working on a 

particular project. In this case the various members of the group may all be 
granted access to each other's project-related files. 

• Public—Most systems allow a file to be designated as public so that it may be 
accessed by any member of the system's user community. By default, public 
access rights typically allow users to read or execute a file, but not to write it. 

13.8.2 Access Control by User Classes 



This access control data can be stored as part of the file control block and 
often consumes an insignificant amount of space. Security is an important issue in 
operating system design and is covered in greater detail in Chapter 19, Security. 
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1. How do user classes reduce the storage overhead incurred by access control information? 
2. Describe the advantages and disadvantages of storing access control data as part of the 

file control block. 

Ans: 1) User classes enable the file owner to grant permissions to a group of users using one 
entry. 2) The advantage is that there is essentially no overhead if the user is granted access to 
a file, because the file system needs to read the file control block before opening the file any-
way. However, if access is denied, the file system will have wastefully performed several 
lengthy seeks to access the file control block for a file that the user cannot open. 

Self Review 

In many systems, several processes may be requesting file data from various files 
spread across the storage device, leading to many seeks. Instead of instantly 
responding to immediate user I/O demands, the operating system may use several 
techniques to improve performance. 

Today's operating systems generally provide many access methods. These are 
sometimes grouped as queued access methods and basic access methods. The 
queued methods provide more powerful capabilities than the basic methods. 

Queued access methods are used when the sequence in which records are to be 
processed can be anticipated, such as in sequential and indexed sequential accessing. 
The queued methods perform anticipatory buffering and scheduling of I/O opera
tions. Such methods attempt to have the next record available for processing as soon 
as the previous record has been processed. More than one record at a time is main
tained in main memory; this allows processing and I/O operations to be overlapped, 
improving performance. 

The basic access methods are normally used when the sequence in which 
records are to be processed cannot be anticipated, particularly with direct access
ing. Also there are many situations, such as database applications, in which user 
applications want to control record accesses without incurring the overhead of 
anticipatory buffering. In the basic methods, the access method reads and writes 
physical blocks; blocking and deblocking (if appropriate to the application) is per
formed by the user application. 

Memory-mapped files map file data to a process's virtual address space 
instead of using a file system cache.50 Because references to memory-mapped files 
occur in a process's virtual address space, the virtual memory manager can make 
page-replacement decisions based on each process's reference pattern. Memory-
mapped files also simplify application programming, because developers can access 
file data using pointers instead of specifying read, write and seek operations. 

13.9 Data Access Techniques 



When a process issues a write request, the data is typically buffered in main 
memory (to improve I/O performance) and its corresponding page is marked as 
dirty. When a memory-mapped file's modified page is replaced, the page is written 
to its corresponding file on secondary storage. When the file is closed, the system 
flushes all dirty pages to secondary storage. To reduce the risk of data loss due to a 
system failure, dirty memory-mapped pages are flushed typically to secondary stor
age periodically.51 
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1. Compare and contrast queued access methods and basic access methods. 
2. How do memory-mapped files simplify application programming? 

Ans: 1) Queued access methods perform anticipatory buffering, which attempts to load 
into memory a block that is likely to be used in the near future. Basic access methods do not 
attempt to schedule or buffer I/O operations, which is more appropriate when the system 
cannot predict future requests or when the file system must reduce the risk of losing data dur
ing a system failure. 2) Memory-mapped files enable programmers to access file data using 
pointers instead of file operations such as read, write and seek. 

Self Review 

Computer systems often store critical information, such as inventories, financial 
records and/or personal information. System crashes, natural disasters and mali
cious programs can destroy this information. The results of such events can be cata-
strophic.52 Operating systems and data storage systems should be fault tolerant in 
that they account for the possibility of disasters and provide techniques to recover 
from them. 

13.10 Data Integrity Protection 

Most systems implement backup techniques to store redundant copies of informa
tion and recovery techniques that enable the system to restore data after a system 
failure. Backup and recovery strategies can also protect systems against user-gener
ated events, such as an unintentional deletion of important data (see the Operating 
Systems Thinking feature, Backup and Recovery). 

Physical safeguards are the lowest level of data protection. Physical obstacles 
such as locks and alarm systems can prevent unauthorized access to computers that 
store sensitive data. Because main memory typically is volatile (i.e., it loses its con
tents when the power is shut off), power outages can result in the loss of data not 
yet transferred to secondary storage. An uninterruptable power supply (UPS) can 
be used to protect data from being lost due to a power outage.53 

Natural disasters such as fires and earthquakes can destroy all data at a site. 
Thus, some organizations maintain a backup site, geographically removed from the 
primary site to protect data in case of a site failure.54 Although these precautions 

13.10.1 Backup and Recovery 



are important, they do not protect data from operating system crashes or disk-head 
malfunctions. 

Performing periodic backups is the most common technique used to prevent 
data loss. Physical backups duplicate a storage device's data at the bit level. In some 
cases, the system copies only allocated blocks of data. Physical backups are simple 
to implement, but they store no information about the logical structure of the file 
system. The file system's data may be stored in different formats, depending on the 
system architecture, so physical backups cannot easily be restored on computers 
using different architectures. Also, because a physical backup does not read the file 
system's logical structure, it cannot distinguish among the files it contains. Thus, 
physical backups must record and restore the entire file system to ensure that all 
data has been duplicated, even if most of a file system's data has not been modified 
since the last physical backup.55 

A logical backup stores file system data and its logical structure. Thus, logical 
backups inspect the directory structure to determine which files need to be backed 
up, then write these files to a backup device (e.g., a tape, CD or DVD) in a common, 
often compressed, archival format. For example, the tape archive (tar) format is 
commonly used to store, transport and back up multiple files on UNIX-based sys
tems (see www.gnu.org/software/tar/tar.html).Because logical backups store 
data in a common format using a directory structure, they permit operating systems 
with different native file formats to read and restore the backup data, so file data 
can be restored on multiple heterogeneous systems. Logical backups also enable 
the user to restore a single file from the backup (e.g., an accidentally deleted file), 
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Operating Systems Thinking 
Backup and Recovery 
Have you ever lost several hours 
work because of a system failure? 
HMD was working on a massive 
project wi th hundreds of software 
engineers when lightning struck 
our building and we lost all of the 
system updates for the last week. 
Fortunately, each of us had back
ups of our own work, but it still 
took us several days to recover—a 
painful and costly experience. 

Should users be responsible for 
performing (potentially time-con
suming) backups or should these 
be done automatically by the sys
tem? Backups consume significant 
resources. How often should 
backups be done? How much data 
should be backed up each time? 
Should backups be done as ful l 
system bit images or should they 
be done wi th incremental logging 

of each change to the system? 
Answering these questions 
requires the system administrator 
to balance the overhead of per
forming frequent backups wi th 
the risk of lost work due to infre
quent backups. Incorporating 
backup and recovery features into 
operating systems is crucial. 
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which is typically faster than restoring the entire file system. However, because log
ical backups can read only data exposed by the file system, they may omit informa
tion such as hidden files and metadata that are copied by a physical backup when 
copying each bit on the file system's storage device. Saving files in a common format 
can be inefficient due to the overhead incurred when translating between the native 
file format and the archival format.56 

Incremental backups are logical backups that store only file system data that 
has changed since the previous backup. The system can record which files have been 
modified and write them to the backup file periodically. Because incremental back
ups require less time and fewer resources than backing up an entire file system, they 
can be performed more often, reducing the risk of lost data due to disasters. 

1. Compare and contrast logical backups and physical backups. 
2. Why are physical safeguards insufficient for preventing loss of data in the event of a disas

ter? 

Ans: 1) Logical backups are readable by file systems with different file formats, support 
incremental backups and enable fine-grained recovery, such as restoring a single file. Physical 
backups are typically easier to create, because the file system structure does not need to be 
traversed. However, physical backups do not support incremental or partial backups and are 
typically incompatible with different systems. 2) Physical safeguards prevent access to data 
but do not prevent loss of data due to natural disasters, such as fires and earthquakes, or to 
hardware and power failures. In fact, there is no way to guarantee absolute security of files. 

Self Review 

None of the techniques discussed so far address the possibility that significant activ
ity may occur between the time of the last backup and the time at which a failure 
occurs (see the Operating Systems Thinking feature, Murphy's Law and Robust 
Systems). Further, backups often require a lengthy restoration process, during 
which time the system is not operational. 

In systems that cannot tolerate data loss or downtime, RAID and transaction-
based file systems are appropriate. In Section 12.10, Redundant Arrays of Indepen
dent Disks (RAID), we discussed how RAID levels 1-5 improve a system's mean-
time-to-failure and can restore data in the event of a single disk failure. We also dis
cussed how mirroring and hot swappable disks enable RAID systems to continue to 
operate when disks fail, providing high availability. 

13.10.2 Data Integrity and Log-Structured File Systems 

If a system failure occurs during a write operation, the file system data may be left 
in an inconsistent state. For example, an electronic transfer of funds might require a 
banking system to withdraw money from one account and deposit it in another. If 
the system fails between withdrawing and depositing the funds, it could lose the 
money. Transaction-based logging reduces the risk of data loss by using atomic 
transactions, which perform a group of operations in their entirety, or not at all. If 

Logging and Shadow Paging 



an error occurs that prevents a transaction from completing, it is rolled back by 
returning the system to the state before the transaction began.57 

Atomic transactions can be implemented by recording the result of each oper
ation in a log file instead of modifying existing data. Once the transaction has com
pleted, it is committed by recording a special value in the log. At some time in the 
future, the log is transferred to permanent storage. If the system fails before the 
transaction completes, any operations recorded after the previous committed trans
action are ignored. When the system recovers, it reads the log file and compares it 
to the data in the file system to determine the state of the file system at the last conm-
mit point. 

To enable the system to undo any number of operations, in many systems the 
log file is not deleted after its operations are written to permanent storage. Because 
logs can become large, reprocessing transactions to find the state of the system at 
the last commit point can be time consuming. To reduce the time spent reprocessing 
transactions in the log, most transaction-based systems maintain checkpoints that 
point to the last transaction that has been transferred to permanent storage. If the 
system crashes, it need only examine transactions after the checkpoint. 

Shadow paging implements atomic transactions by writing modified data to a 
free block instead of the original block. Once the transaction commits, the file sys
tem updates its metadata to point to the new block and releases the old block, or 
shadow page, as free space. If the transaction fails, the file system rolls back the 
transaction by releasing the new blocks as free space.58 
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Operating Systems Thinking 
Murphy's Law and Robust Systems 
Most everyone is familiar wi th 
one form or another of Murphy's 
Law, named for U.S. Air Force 
Capt. Edward Murphy who cursed 
one of his error-prone technicians 
by saying, "If there is any way to 
do it wrong, he'll f ind it." 
Today's most common variant is 
"If something can go wrong, it 
w i l l . " Often, "and at the most 

inopportune t ime" is appended 
to the law. Operating system 
designers are well advised to keep 
Murphy's Law in mind. They need 
to constantly ask questions like, 
"What can go wrong?" "What is 
the likelihood of such problems?" 
"What are the consequences of 
such problems?" "How can the 
operating system be designed to 

prevent such problems?" "If cer
tain problems cannot be pre
vented, how should the operating 
system deal wi th them?" A robust 
system deals wi th a wide range of 
inputs and unexpected situations 
in a manner that allows the sys
tem to keep operating. 



Transaction logging and shadow paging prevent file system data from entering an 
inconsistent state but do not necessarily guarantee that the file system itself will be 
in a consistent state. For example, moving a file from one directory to another 
requires the file system to delete the file's original directory entry and create an 
entry in its new directory. A system failure (e.g., due to a power failure) that occurs 
between deleting the original directory entry and creating the new one can result in 
loss of file data. To address this limitation, a log-structured file system (LFS), also 
called a journaling file system, performs file system operations as logged transac
tions.59 Examples of log-structured file systems include Microsoft's NTFS Journal
ing File System and the Red Hat's ext3 file system for Linux.60-61 

In an LFS, the entire disk serves as a log file to record transactions. New data 
is written sequentially in the log file's free space. For example, in Fig. 13.13, the LFS 
receives a request to create files f oo and bar in a new directory. The file system per
forms the requested operation first by writing f oo's data to the log, then by writing 
foo's metadata (e.g., an inode), which enables the file system to locate foo's data. 
Similarly, the LFS writes bar's data and corresponding file metadata. Finally, the 
file system writes the new directory entry to the log. Note that if the file system 
writes a file's metadata before writing file data to the log, the system could fail 
before the file's data is written. This could leave the file system in an inconsistent 
state, because metadata will reference invalid data blocks (i.e., those that were not 
written before the system failed). 

Because modified directories and metadata are always written to the end of 
the log, an LFS might need to read the entire log to locate a particular file, leading 
to poor read performance. To reduce this problem, an LFS caches locations of file 
system metadata and occasionally writes inode maps or superblocks, which indicate 
the location of other metadata (Fig. 13.13). This enables the operating system to 
locate and cache file metadata quickly when the system boots. Subsequently, file 
data can be accessed quickly by determining its location from the file system's 
caches. As the size of the file system cache increases, its performance improves at 
the cost of reducing the amount of memory available to user processes.62 

To reduce overhead, some file systems store only metadata in the log. In this 
case, the file system modifies metadata first by writing an entry to the log, then by 
updating the entry in the file system. The operation commits only after the meta
data has been updated both in the log and in the file system. This ensures file system 
integrity with relatively low overhead but does not ensure file integrity in the event 
of a system failure.63 

Because data is written sequentially in an LFS, each write request is per
formed sequentially, which can substantially reduce write times. By comparison, 
noncontiguous file allocation implementations might require the file system to 
traverse the directory structure, which may be distributed throughout the disk, 
leading to long access times. 

Log-Structured File Systems (LFS) 
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When the log fills, an LFS must determine how to recover free space for incom
ing data. An LFS can inspect the content of the log periodically to determine which 
blocks can be freed because the log contains a modified copy of their data. The LFS 
can thread new data through these blocks, which are likely to be highly fragmented. 
Unfortunately, threading can reduce read and write performance to levels lower than 
those in conventional file systems, because the disk might need to perform many 
seeks to access data. To address this issue, an LFS can create contiguous free space in 
the log by copying data to a contiguous region at the end of the log. While performing 
this I/O-intensive operation, however, users will experience poor response times.64 

Figure 13.13 | Log-structured file system. 
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1. Explain how data stored by a RAID level 1 array, which offers a high level of redundancy, 
could enter an inconsistent state. 

2. Explain the difference between logging and shadow paging. 

Ans: 1) If a power failure occurs while data in a mirrored pair is being written, the array 
may contain incomplete copies of file data or file system metadata on both disks. 2) Logging 
keeps track of when a transaction was started, and when it completed. If the transaction fails, 
it rolls back to the last commit point. Shadow paging involves allocating new data blocks to 
write the new data, then freeing the old data blocks when the transaction is complete. 

One approach to handling nonlocal file references in a computer network is to 
route all such requests to a file server, i.e., a computer system dedicated to resolving 
intercomputer file references.65, 66, 67, 68, 69 This approach centralizes control of these 
references, but the file server could become a bottleneck, because all client comput
ers would send all requests to the server. A better approach is to let the separate 
computers communicate directly with one another; this is the approach taken by 
Sun Microsystem's Network File System (NFS). In an NFS network, each computer 
maintains a file system that can act as a server and/or a client. 

Through the 1970s, file systems generally stored and managed the files of a 
single computer system. On multiuser timesharing systems the files of all users were 
under the control of a centralized file system. Today, the trend is toward distributed 
file systems in computer networks.70, 71, 72, 73 A real complication is that such net
works often connect a wide variety of computer systems with different operating 
systems and file systems. 

A distributed file system enables users to perform operations on remote files in 
a computer network in much the same manner as on local files.74, 75, 76, 77, 78 NFS pro
vides distributed file system capabilities for networks of heterogeneous computer sys
tems; it is so widely used that it has become an international standard.79 File servers 
and distributed file systems are discussed in Section 18.2, Distributed File Systems. 

13.11 File Servers and Distributed Systems 

1. Why is a single file server impractical for environments such as large organizations? 
2. What is the primary advantage to having each client in a distributed file system also be a 

server? 

Ans: 1) If the file server fails, the whole file system becomes unavailable. A central file 
server can also become a bottleneck. 2) This removes the bottleneck of central file servers 
and can enable the file system to be operational even if one or more clients fail. 

Self Review 

A database is a centrally controlled, integrated collection of data; a database system 
involves the data, the hardware on which the data resides and the software that 
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controls access to data (called a database management system or DBMS). Data
bases are commonly implemented on Web servers and in online transaction-pro
cessing environments, where multiple processes require quick access to a large 
store of shared data. 

In conventional file systems, multiple applications often store the same information 
at different pathnames and in different formats (e.g., a text file stored as a Postscript 
and as a PDF file). To eliminate this redundancy, database systems organize data 
according to its content instead of by pathname. For example, a Web site may con
tain separate applications to charge orders to customer credit cards, send bills to 
those customers and print labels for packages to be delivered to customers. All of 
these applications must access customer information such as name, address, phone 
number, and the like. However, each application must format the information dif
ferently to perform its task (e.g., send credit card information or print a label). A 
database would store only one copy of each customer's information and enable 
each application to access the information and format it as required. To enable this 
access to shared data, databases incorporate a querying mechanism that allows 
applications to specify which information to retrieve. 

Database systems use standardized data organization techniques (e.g., hierar
chical, relational, object oriented), the structure of which cannot be altered by 
applications. Database systems are susceptible to attack due to centralized control 
and location of data, so they are designed with elaborate security mechanisms.80, 81 

13.12.1 Advantages of Database Systems 
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1. How do database systems reduce redundant data typically stored by traditional file sys
tems? 

2. Why is security extremely important in database systems? 

Ans: 1) Database systems address data according to its content so that no two records con
tain the same information. For example, a database might store a single copy of customer 
information and enable multiple applications to access that information using queries. 
2) Databases provide centralized control to large stores of data, which may contain sensitive 
information. If a malicious user gains unauthorized access to a database, that user may be 
able to access all data stored by the system. This is more serious than in traditional file sys
tems, because access rights are typically stored for each file, so a user that obtains unautho
rized access to a file system may not be able to access all of its files. 

Self Review 

Database systems exhibit data independence, because a database's organizational 
structure and access techniques are hidden from applications. Unlike a hierarchi
cally structured file system, which requires all applications to access data using 
pathnames, a data-independent system enables multiple applications to access the 
same data using different logical views. Consider the customer information stored 
by the Web site in the preceding section. In this case, a credit card transaction pro-

13.12.2 Data Access 



cessing application may view customer information as a list of credit card number 
and expiration dates; the application that performs billing may view customer infor
mation as names, addresses and dollar amounts. Data independence makes it possi
ble for the system to modify its storage structure and data access strategy in 
response to the installation's changing requirements without needing to modify 
functioning applications. 

Database languages facilitate data independence by providing a standard way 
to access information. A database language consists of a data definition language 
(DDL), a data manipulation language (DML) and a query language. A DDL speci
fies how data items are organized and related and a DML is used to modify data. A 
query language allows users to create queries, which search the database for data 
that meets certain criteria. Database languages can be executed directly from a 
command line or through programs written using higher-level host languages, such 
as C++ or Java. The Structured Query Language (SQL), which consists of a DDL, 
DML and a query language, is a popular query language that enables users to find 
data items that have certain properties, create tables, specify integrity constraints, 
manage consistency and enforce security.82, 83, 84 

A distributed database is a database that is spread throughout the computer 
systems of a network. Distributed databases facilitate efficient data access across 
many sets of data that reside on different computers.85 In such systems each data 
item is typically stored at the location at which it is most frequently used, while 
remaining accessible to other network users. Distributed systems provide the con
trol and efficiency of local processing with the advantages of information accessibil
ity over a geographically dispersed organization. They can be costly to implement 
and operate, however, and they can suffer from increased vulnerability to security 
attacks and breaches. 
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1. How do databases facilitate access to data for application developers? 
2. Explain the difference between a DDL and a DML. 

Ans: 1) Database languages facilitate data independence, so programmers can access data 
according to a logical view that is most appropriate for their applications. 2) A DDL defines 
the organization of and relationships between data elements. A DML is used to modify data. 

Self Review 

Databases are based on models that describe how data and their relationships are 
viewed. The relational model developed by Codd is a logical structure rather than a 
physical one; the principles of relational database management can be considered 
without concerning oneself with the physical implementation of the underlying data 
structures.86, 87, 88, 89, 90 

A relational database is composed of relations (tables). Figure 13.14 illus
trates a relation that might be used in a personnel system. The name of the relation 
is EMPLOYEE and its primary purpose is to organize the various attributes of each 
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employee. Any particular element (row) of the relation is called a tuple. This rela
tion is a set of six tuples. In this example, the first attribute (column) in each tuple. 
the employee number, is used as the primary key for referencing data in the rela
tion. The tuples of the relation are uniquely identifiable by primary key. 

Each attribute of the relation belongs to a single domain. Tuples must be 
unique within a relation, but particular attribute values may be duplicated between 
tuples. For example, three different tuples in the example contain department num
ber 413. The number of attributes in a relation is the degree of the relation. Rela
tions of degree 2 are binary relations, relations of degree 3 are ternary relations, and 
relations of degree n are n-ary relations. 

Users of a database are often interested in different data items and different 
relationships among them. Most users will want only certain subsets of the table 
rows and columns. Many users will wish to combine smaller tables into larger ones 
to produce more complex relations. Codd called the subset operation projection 
and the combination operation join. 

Using the relation of Fig. 13.14 we might, for example, use the projection 
operation to create a new relation called DEPARTMENT-LOCATOR whose pur
pose is to show where departments are located (Fig. 13.15). 

The Structured Query Language (SQL) operates on relational databases. The 
SQL query in Fig. 13.16 generates the table in Fig. 13.15. Line 1 begins with "--" , 
the SQL delimiter for a comment. The SELECT clause (line 2) specifies the columns. 
Department and Location, of the new table.The keyword DISTINCT indicates that 
the table should contain only unique entries. The FROM clause (line 3) indicates that 

Figure 13.14 | Relation in a relational database. 
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Location 
NEW JERSEY 

ORLANDO 

LOS ANGELES 

Figure 13.15 | Relation formed by projection. 

1 -- SQL query to generate the table in Fig, 13,15 
2 SELECT DISTINCT Department, Location 
3 FROM EMPLOYEE 
4 ORDER BY Department ASC 
5 

Figure 13.16 | SQL query. 

the columns will be projected from the EMPLOYEE table (Fig. 13.14). On line 4, an 
ORDER BY clause indicates the column (in this case, Department) that is used to sort 
the query result and ASC indicates that the sort will be in ascending order. 

The relational model has several advantages. 

1. The tabular representation used in implementations the relational model is 
easy to implement in a physical database system. 

2. It is relatively easy to convert virtually any other type of database structure 
into the relational model. Thus the model may be viewed as a universal 
form of representation. 

3. The projection and join operations are easy to implement and make the 
creation of new relations required for particular applications easy to per
form. 

4. Access control to sensitive data is straightforward to implement. The sensi
tive data is merely placed in separate relations, and access to these relations 
is controlled by some sort of authority or access scheme. 

1. What is the difference between the join and projection operations in relational databases? 
2. (T/F) In a relation, each attribute value must be unique among tuples. 

Ans: 1) The join operation forms a relation from more than one relation; the projection 
operation forms a relation from a subset of a relation's attributes. 2) False. Multiple tuples 
may have the same attribute value. 

Self Review 

Stonebraker discusses various operating system services that support database man
agement systems, namely buffer pool management, the file system, scheduling, pro
cess management, interprocess communication, consistency control and paged virtual 
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memory.91 He observes that because most of these features are not specifically opti
mized to DBMS environments, DBMS designers have tended to bypass operating 
system services in favor of supplying their own. He concludes that efficient, minimal 
operating systems are the most desirable for supporting the kinds of database man
agement systems that supply their own optimized services. Database support is 
becoming more common in today's systems. For example, Microsoft intends to use a 
database to store all user data in the next version of the Windows operating system.92 
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1. Why should operating systems generally avoid direct support for database systems? 
2. Why might more operating systems directly support database systems in the future? 

Ans: 1) Each database system may have different needs, which are difficult for the operating 
system to predict. These database systems generally exhibit higher performance when supply
ing their own optimized services. 2) If an operating system uses a single database as the primary 
way to store user information, it should certainly provide optimized services for that database. 

Self Review 

www.linux-tutorial.info/cgi-bin/dis
play.pi795&0&0&0&3 
Contains a tutorial describing file systems in Linux. 
www.redhat.com/docs/manuals/linux/RHL-8.0-Manual/ 
admin-pr imer / s l - s to rage-bas ics ,h tml 
Overviews file system concepts. 
www.itworld.com/nl/db_mgr/ 
Contains articles about data management strategies. 
www.winnetmag.com/articles/index.cfm?articleid=3455 
Includes information about the Windows NT file system. 

www.osta.org/specs/pdf/udf201.pdf 
Contains the 2.01 revision of the Universal Disk Format 
(UDF) file system, which is commonly used to organize data 
on DVDs. 
storageconference.org/ 
Contains articles and presentations from the annual coopera
tive IEEE-NASA Storage Conference, highlighting techniques 
and technologies that manage mass storage devices. 
www.sqlcourse.com/ 
Provides an interactive tutorial, teaching the basics of SQL. 

Web Resources 

Information is stored in computers according to a data hierar
chy. The lowest level of the data hierarchy is composed of bits. 
Bits are grouped together in bit patterns to represent all data 
items of interest in computer systems. The next level in the 
data hierarchy is fixed-length patterns of bits such as bytes, 
characters and words. A byte is typically 8 bits. A word is the 
number of bits a processor can operate on at once. Characters 
map bytes (or groups of bytes) to symbols such as letters, num
bers, punctuation and new lines. The three most popular char
acter sets in use today are ASCII (American Standard Code 
for Information Interchange), EBCDIC (Extended Binary-
Coded Decimal Interchange Code) and Unicode. 

A field is a group of characters. A record is a group of 
fields. A file is a group of related records. The highest level of 
the data hierarchy is a file system or database. A volume is a 
unit of data storage that may hold multiple files. 

A file is a named collection of data that may be manip
ulated as a unit by operations such as open, close, create, 
destroy, copy, rename and list. Individual data items within a 
file may be manipulated by operations like read, write, 
update, insert and delete. File characteristics include loca
tion, accessibility, type, volatility and activity. Files can con
sist of one or more records. 

Summary 



A file system organizes files and manages access to data. 
File systems are responsible for file management, auxiliary 
storage management, file integrity mechanisms and access 
methods. A file system primarily is concerned with managing 
secondary storage space, particularly disk storage. 

File systems should exhibit device independence—users 
should be able to refer to their files by symbolic names rather 
than having to use physical device names. File systems should 
also provide backup and recovery capabilities to prevent either 
accidental loss or malicious destruction of information. The file 
system may also provide encryption and decryption capabilities 
to make information useful only to its intended audience. 

File systems use directories, which are files containing 
the names and locations of other files in the file system, to 
organize and quickly locate files. A directory entry stores 
information such as a file name, location, size, type arid 
accessed, modified and creation times. The simplest file system 
organization is the single-level (or flat) system, which stores all 

of its files using one directory. In single-level file systems, no 
two files can have the same name and the file system must per
form a linear search of the directory contents to locate each 
file, which can lead to poor performance. 

In a hierarchical file system, a root is used to indicate 
where on the storage device the root directory begins. The root 
directory points to the various directories, each of which con
tains an entry for each of its files. File names need be unique 
only within a given user directory. The name of a file is usually 
formed as the pathname from the root directory to the file. 

Many file systems support the notion of a working direc
tory to simplify navigation using pathnames. The working 
directory enables users to specify a pathname that does not 
begin at the root directory (i.e., a relative path). When a file 
system encounters a relative pathname, it forms the absolute 
path (i.e., the path beginning at the root) by concatenating the 
working directory and the relative path. 

A link, which is a directory entry that references a data 
file or directory located in a different directory, facilitates data 
sharing and can make it easier for users to access files located 
throughout a file system's directory structure. A soft link is a 
directory entry containing the pathname for another file. A 
hard link is a directory entry that specifies the location of the 
file (typically a block number) on the storage device. Because 
a hard link specifies a physical location of a file, it references 
invalid data when the physical location of its corresponding file 
changes. Because soft links store the logical location of the file 
in the file system, they do not require updating when file data 
is moved. However, if a user moves a file to different directory 

or renames the file, any soft links to that file are no longer 
valid. 

Metadata is information that protects the integrity of the 
file system and cannot be modified directly by users. Many file 
systems store in a superblock critical information that protects 
the integrity of the file system, such as the file system identifier 
and the location of the storage device's free blocks. To reduce 
the risk of date loss, most file systems distribute redundant 
copies of the superblock throughout the storage device. 

The file open operation returns a file descriptor which is a 
non-negative integer index into the open-file table. From this 
point on, access to the file is directed through the file descriptor. 
To enable fast access to file-specific information such as permis
sions, the open-file table often contains file control blocks, also 
called file attributes, which are highly system-dependent struc
tures that might include the file's symbolic name, location in sec
ondary storage, access control data and so on. 

The mount operation combines multiple file systems into 
one namespace so that they can be referenced from a single root 
directory. The mount command assigns a directory, called the 
mount point, in the native file system to the root of the mounted 
file system. File systems manage mounted directories with 
mount tables, which contain information about the location of 
mount points and the devices to which they point. When the 
native file system encounters a mount point, it uses the mount 
table to determine the device and type of the mounted file sys
tem. Users can create soft links to files in mounted file systems 
but cannot create hard links between file systems. 

File organization refers to the manner in which the 
records of a file are arranged on secondary storage. File orga
nization schemes include sequential, direct, indexed nonse
quential and partitioned. 

The problem of allocating and freeing space on secondary 
storage is somewhat like that experienced in primary storage 
allocation under variable-partition multiprogramming. Because 
files tend to grow or shrink over time, and because users rarely 
know in advance how large their files will be, contiguous storage 
allocation systems have generally been replaced by more 
dynamic noncontiguous storage allocation systems. 

File systems that employ contiguous allocation place file 
data at contiguous addresses on the storage device. One 
advantage of contiguous allocation is that successive logical 
records typically are physically adjacent to one another. Con
tiguous allocation schemes exhibit the same types of external 
fragmentation problems inherent in memory allocation for 
variable-partition multiprogramming systems. Contiguous 
allocation may result in poor performance if files grow and 
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The primary advantage of index block chaining over 
simple linked-list implementations is that searching may take 
place in the index blocks themselves. File systems typically 
place index blocks near the data blocks they reference, so the 
data blocks can be accessed quickly after their index block is 
loaded. Index blocks are called inodes (i.e., index nodes) in 
UNIX-based operating systems. 

Some systems use a free list—a linked list of blocks con
taining the locations of free blocks—to manage the storage 
device's free space. The file system typically allocates blocks 
from the beginning of the free list and appends freed blocks to 
the end of the list. This technique requires little overhead to per
form free list maintenance operations, but files are allocated in 
noncontiguous blocks, which increases file access time. 

A bitmap contains one bit for each block in memory 
where the rth bit corresponds to the rth block on the storage 
device. A primary advantage of bitmaps over free lists is that the 
file system can quickly determine if contiguous blocks are avail
able at certain locations on secondary storage. A disadvantage is 
that the file system may need to search the entire bitmap to find 
a free block, resulting in substantial execution overhead. 

In a two-dimensional access control matrix, the entry aij 

is 1 if user i is allowed access to file j; otherwise aij = 0. In an 
installation with a large number of users and a large number of 
files, this matrix generally would be large and sparse. A tech
nique that requires considerably less space is to control access 
to various user classes. User classes can include the file owner, 
a specified user, group, project or public. This access control 
data can be stored as part of the file control block and often 
consumes an insignificant amount of space. 

Today's operating systems generally provide many 
access methods, such as queued and basic access methods. 
Queued access methods are used when the sequence in which 
records are to be processed can be anticipated, such as in 
sequential and indexed sequential accessing. The queued 
methods perform anticipatory buffering and scheduling of I/O 
operations. The basic access methods are normally used when 
the sequence in which records are to be processed cannot be 
anticipated, particularly with direct accessing. 

Memory-mapped files map file data to a process's virtual 
address space instead of using a file system cache. Because refer
ences to memory-mapped files occur in a process's virtual 
address space, the virtual memory manager can make page-
replacement decisions based on each process's reference pattern. 

Most file systems implement backup techniques to store 
redundant copies of information, and recovery techniques that 
enable the system to restore data after a system failure. Physi-

shrink over time. If a file grows beyond the size originally spec
ified and no contiguous free blocks are available, it must be 
transferred to a new area of adequate size, leading to addi
tional I/O operations. 

Using a sector-based linked-list noncontiguous file allo
cation scheme, a directory entry points to the first sector of a 
file. The data portion of a sector stores the contents of the file; 
the pointer portion points to the file's next sector. Sectors 
belonging to a common file form a linked list. 

When performing block allocation, the system allocates 
blocks of contiguous sectors (sometimes called extents). In 
block chaining, entries in the user directory point to the first 
block of each file. The blocks comprising a file each contain 
two portions: a data block and a pointer to the next block. 
When locating a record, the chain must be searched from the 
beginning, and if the blocks are dispersed throughout the stor
age device (which is normal), the search process can be slow as 
block-to-block seeks occur. Insertion and deletion are done by 
modifying the pointer in the previous block. 

Large block sizes can result in a considerable amount of 
internal fragmentation. Small block sizes may cause file data to 
be spread across multiple blocks dispersed throughout the 
storage device, leading to poor performance as the storage 
device performs many seeks to access all the records of a file. 

Tabular noncontiguous file allocation uses tables storing 
pointers to file blocks to reduce the number of lengthy seeks 
required to access a particular record. Directory entries indi
cate the first block of a file. The current block number is used 
as an index into the block allocation table to determine the 
location of the next block. If the current block is the file's last 
block, then its block allocation table entry is null. Because the 
pointers that locate file data are stored in a central location, 
the table can be cached so that the chain of blocks that com
pose a file can be traversed quickly, which improves access 
times. However, to locate the last record of a file, the file sys
tem might need to follow many pointers in the block allocation 
table, which could take significant time. When a storage device 
contains many blocks, the block allocation table can become 
large and fragmented, reducing file system performance. A 
popular implementation of tabular noncontiguous file alloca
tion is Microsoft's FAT file system. 

In indexed noncontiguous file allocation, each file has an 
index block or several index blocks. The index blocks contain a 
list of pointers that point to file data blocks. A file's directory 
entry points to its index block, which may reserve the last few 
entries to store pointers to more index blocks, a technique 
called chaining. 
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cal safeguards such as locks and fire alarms are the lowest level 
of data protection. Performing periodic backups is the most 
common technique used to ensure the continued availability of 
data. Physical backups duplicate a storage device's data at the 
bit level. A logical backup stores file system data and its logical 
structure. Thus, logical backups inspect the directory structure 
to determine which files need to be backed up, then write these 
files to a backup device in a common, often compressed, archi-
val format. Incremental backups are logical backups that store 
only file system data that has changed since the previous 
backup. 

In systems that cannot tolerate loss of data or downtime, 
RAID and transaction logging are appropriate. If a system 
failure occurs during a write operation, file data may be left in 
an inconsistent state. Transaction-based file systems reduce 
data loss using atomic transactions, which perform a group of 
operations in their entirety or not at all. If an error occurs that 
prevents a transaction from completing, it is rolled back by 
returning the system to the state before the transaction began. 

Atomic transactions can be implemented by recording 
the result of each operation in a log file instead of modifying 
existing data. Once the transaction has completed, it is com
mitted by recording a sentinel value in the log. To reduce the 
time spent reprocessing transactions in the log, most transac
tion-based systems maintain checkpoints that point to the last 
transaction that has been transferred to permanent storage. If 
the system crashes, it need only examine transactions after the 
checkpoint. Shadow paging implements atomic transactions by 
writing modified data to a free block instead of the original 
block. 

Log-structured file systems (LFS), also called journaling 
file systems, perform all file system operations as logged trans
actions to ensure that they do not leave the system in an incon
sistent state. In LFS, the entire disk serves as a log file. New 
data is written sequentially in the log file's free space. Because 
modified directories and metadata are always written to the 
end of the log, an LFS might need to read the entire log to 
locate a particular file, leading to poor read performance. To 
reduce this problem, an LFS caches locations of file system 
metadata and occasionally writes inode maps or superblocks 
that indicate the location of other metadata, enabling the 
operating system to locate and cache file metadata quickly 
when the system boots. Some file systems attempt to reduce 
the cost of log-structured file systems by using a log only to 
store metadata. This ensures file system integrity with rela
tively low overhead but does not ensure file integrity in the 
event of a system failure. 

Because data is written sequentially, each LFS write 
requires only a single seek while there is still space on disk. 
When the log fills, the file system's fragmented free space from 
reclaiming invalid blocks can reduce read and write perfor
mance to levels lower than those in conventional file systems. 
To address this issue, an LFS can create contiguous free space 
in the log by copying valid data to a contiguous region at the 
end of the log. 

One approach to handling nonlocal file references in a 
computer network is to route all such requests to a file server, 
i.e., a computer system dedicated to resolving intercomputer 
file references. This approach centralizes control of these refer
ences, but the file server could easily become a bottleneck, 
because all client computers send all requests to the server. A 
better approach is to let the separate computers communicate 
directly with one another. 

A database is a centrally controlled collection of data 
stored in a standardized format; a database system involves 
the data, the hardware on which the data resides and the soft
ware that controls access to data (called a database manage
ment system or DBMS). Databases reduce data redundancy 
and prevent data from being in an inconsistent state. Redun
dancy is reduced by combining data from separate files. Data
bases also facilitate data sharing. 

An important aspect of database systems is data inde
pendence; i.e., applications need not be concerned with how 
data is physically stored or accessed. From the system's stand
point, data independence makes it possible for the storage 
structure and accessing strategy to be modified in response to 
the installation's changing requirements, but without the need 
to modify functioning applications. 

Database languages allow database independence by 
providing a standard way to access information. A database 
language consists of a data definition language (DDL), a data 
manipulation language (DML) and a query language. A DDL 
specifies how data are organized and related and the DML 
enables data to be modified. A query language is a part of the 
DML that allows users to create queries that search the data
base for data that meets certain criteria. The Structured Query 
Language (SQL) is currently one of the most popular database 
languages. 

A distributed database, a database that is spread 
throughout the computer systems of a network, facilitates effi
cient data access across many sets of data that reside on differ
ent computers. 

Databases are based on models that describe how data 
and their relationships are viewed. The relational model is a 
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duce more complex relations. The relational database model is 
relatively easy to implement. 

Various operating system services support database man
agement systems, namely buffer pool management, the file sys
tem, scheduling, process management, interprocess 
communication, consistency control and paged virtual memory. 
Most of these features are not specifically optimized to DBMS 
environments, so DBMS designers have tended to bypass oper
ating system services in favor of supplying their own. 

logical structure rather than a physical one; the principles of 
relational database management are independent of the physi
cal implementation of data structures. A relational database is 
composed of relations that indicate the various attributes of an 
entity. Any particular element of a relation is called a tuple 
(row). Each attribute (column) of the relation belongs to a sin
gle domain. The number of attributes in a relation is the 
degree of the relation. A projection operation forms a subset 
of the attributes; a join operation combines relations to pro-
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absolute path—Path beginning at the root directory. 

access control matrix—Two-dimensional listing of all the users 
and their access to privileges to files in the system. 

accessibility (file)—File property that places restrictions on 
which users can access file data. 

access method—Technique a file system uses to access file 
data. See also queued access methods and basic access 
methods. 

activity (file)—Percentage of a file's records accessed during a 
given period of time. 

anticipatory buffering—Technique that allows processing and 
I/O operations to be overlapped by buffering more than 
one record at a time in main memory. 

ASCII (American Standard Code for Information Inter
change) — Character set, popular in personal computers 
and in data communication systems, that stores characters 
as 8-bit bytes. 

atomic transaction—Group of operations that have no effect 
on the state of the system unless they complete in their 
entirety. 

auxiliary storage management—Component of file systems 
concerned with allocating space for files on secondary 
storage devices. 

backup—Creation of redundant copies of information. 
basic access method—File access method in which the operat

ing system responds immediately to user I/O demands. It 
is used when the sequence in which records are to be pro
cessed cannot be anticipated, particularly with direct 
accessing. 

binary relation—Relation (in a relational database) of degree 2. 

bitmap—Free space management technique that maintains 
one bit for each block in memory, where the ith bit corre
sponds to the /th block in memory. Bitmaps enable a file 

system to more easily allocate contiguous blocks but can 
require substantial execution time to locate a free block. 

bit pattern—Lowest level of the data hierarchy. A bit pattern is 
a group of bits that represent virtually all data items of 
interest in computer systems. 

block allocation—Technique that enables the file system to 
manage secondary storage more efficiently and reduce file 
traversal overhead by allocating extents (blocks of contig
uous sectors) to files. 

blocked record—Record that may contain several logical 
records for each physical record. 

byte—Second-lowest level in the data hierarchy. A byte is typ
ically 8 bits. 

character—In the data hierarchy, a fixed-length pattern of bits, 
typically 8,16 or 32 bits. 

character set—Collection of characters. Popular character sets 
include ASCII, EBCDIC and Unicode. 

chaining—Indexed noncontiguous allocation technique that 
reserves the last few entries of an index block to store 
pointers to more index blocks, which in turn point to data 
blocks. Chaining enables index blocks to reference large 
files by storing references to its data across several blocks. 

checkpoint—Marker indicating which transactions in a log 
have been transferred to permanent storage. The system 
need only reapply the transactions from the latest check
point to determine the state of the file system, which is 
faster than reapplying all transactions starting at the 
beginning of the log. 

close (file) —Operation that prevents further reference to a file 
until it is reopened. 

committed transaction—Transaction that has completed suc
cessfully. 

copy (file)—Operation that creates another version of a file 
with a new name. 
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create (file) — Operation that builds a new file. 
data definition language (DDL)—Type of language that speci

fies the organization of data in a database. 
data manipulation language (DML)—Type of language that 

enables data modification. 
data-dependent application—Application that relies on a par

ticular file system's organization and access techniques. 

data hierarchy—Classification that groups different numbers 
of bits to extract meaningful data. Bit patterns, bytes and 
words contain small numbers of bits that are interpreted 
by hardware and low-level software. Fields, records and 
files may contain large numbers of bits that are inter
preted by operating systems and user applications. 

data independence—Property of applications that do not rely 
on a particular file organization technique or access tech
nique. 

database—Centrally controlled collection of data that is stored 
in a standardized format and can be searched based on 
logical relations between data. Databases organize data 
according to content as opposed to pathname, which 
tends to reduce or eliminate redundant information. 

database language—Language that provides for organizing, 
modifying and querying of structured data. 

database management system (DBMS) —Software that con
trols database organization and operations. 

database system—A particular set of data, the storage devices 
on which it resides and the software that controls its stor
age and retrieval (called a database management system 
or DBMS). 

decryption—Technique that reverses data encryption so that 
data can be read in its original form. 

degree—Number of attributes in a relation in a relational 
database. 

delete (file) —Operation that removes a data item from a file. 

destroy (file) —Operation that removes a file from the file sys
tem. 

device independence—Property of files that can be referenced 
by an application using a symbolic name instead of a 
name indicating the device on which it resides. 

direct file organization—File organization technique in which 
a record is directly (randomly) accessed by its physical 
address on a direct access storage device (DASD). 

directory—File storing references to other files. Directory 
entries often include a file's name, type, and size. 

distributed database—Database that is spread throughout the 
computer systems of a network. 

distributed file system—File system that is spread throughout 
the computer systems of a network. 

domain—Set of possible values for attributes in a relational 
database system. 

EBCDIC (Extended Binary-Coded Decimal Interchange 
Code)—Eight-bit character set for representing data in 
mainframe computer systems, particularly systems devel
oped by IBM. 

encryption—Technique that transforms data to prevent it from 
being interpreted by unauthorized users. 

execute access—Permission that enables a user to execute a 
file. 

extent—Block of contiguous sectors. 

FAT file system—An implementation of tabular noncontigu
ous file allocation developed by Microsoft. 

field—In the data hierarchy, a group of characters (e.g., a per
son's name, street address or telephone number). 

file—Named collection of data that may be manipulated as a 
unit by operations such as open, close, create, destroy, 
copy, rename and list. Individual data items within a file 
may be manipulated by operations like read, write, 
update, insert and delete. File characteristics include loca
tion, accessibility, type, volatility and activity. Files can 
consist of one or more records. 

file allocation table (FAT)—Table storing pointers to file data 
blocks in Microsoft's FAT file system. 

file attribute—See file control block. 

file control block—Metadata containing information the sys
tem needs to manage a file, such as access control infor
mation. 

file descriptor—Non-negative integer that indexes into an 
opened-file table. A process references a file descriptor 
instead of a pathname to access file data without incurring 
the overhead of a directory structure traversal. 

file integrity mechanism—Mechanism that ensures that the 
information in a file is uncorrupted. When file integrity is 
assured, files contain only the information they are 
intended to have. 

file management—Component of a file system concerned with 
providing the mechanisms for files to be stored, refer
enced, shared and secured. 

file organization—Manner in which the records of a file are 
arranged on secondary storage (e.g., sequential, direct, 
indexed sequential and partitioned). 

file server—System dedicated to provide remote processes 
access to its files. 
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list (file) —Operation that prints or displays a file's contents. 

location (file)—Address of a file on a storage device or in the 
system's logical file organization. 

log-structured file system (LFS)—File system that performs all 
file operations as transactions to ensure that file system 
data and metadata is always in a consistent state. An LFS 
generally exhibits good write performance because data is 
also appended to the end of a systemwide log file. To 
improve read performance, an LFS typically distributes 
metadata throughout the log and employs large caches to 
store that metadata so that the locations of file data can be 
found quickly. 

logical backup—Backup technique that stores file data and the 
file system's directory structure, often in a common, com
pressed format. 

logical block—See logical record. 
logical record—Collection of data treated as a unit by soft

ware. 
logical view—View of files that hides the devices that store 

them, their format and the system's physical access tech
niques. 

member—Sequential subfile of a partitioned file. 
memory-mapped file—File whose data is mapped to a pro

cess's virtual address space, enabling a process to refer
ence file data as it would other data. Memory-mapped 
files are useful for programs that frequently access file 
data. 

metadata—Data that a file system uses to manage files and 
that is inaccessible to users directly. Inodes and super-
blocks are examples of metadata. 

mount operation—Operation that combines disparate file sys-
terns into a single namespace so they can be accessed by a 
single root directory. 

mount point—User-specified directory within the native file 
system hierarchy where the mount command places the 
root of a mounted file system. 

mount tables—Tables that store the locations of mount points 
and their corresponding devices. 

MS-DOS—Popular operating system for the first IBM Per
sonal Computer and compatible microcomputers. 

n-ary relation—Relation of degree n. 
namespace—Set of files that can be identified by a file system. 

Network File System (NFS)—File system implemented by Sun 
Microsystems in which each computer maintains a virtual 
file system that can act as a server and/or a client. 

owner (file access control)—User who created the file. 

file system — Component of an operating system that organizes 
files and manages access to data. File systems are con
cerned with organizing files logically (using pathnames) 
and physically (using metadata). They also manage their 
storage device's free space, enforce security policies, 
maintain data integrity and so on. 

file system identifier—Value that uniquely identifies the file 
system a storage device is using. 

flat directory structure—File system organization containing 
only one directory. 

format a storage device—To prepare a device for a file system 
by performing operations such as inspecting its contents 
and writing storage management metadata. 

free list—Linked list of blocks that contain the addresses of 
free blocks. 

group (file access control) —Set of users with the same file 
access rights (e.g., members of a group that is working on 
a particular project). 

hard link—Directory entry specifying the location of a file on 
its storage device. 

hierarchically structured file system—File system organization 
in which each directory can contain multiple subdirecto
ries but exactly one parent. 

incremental backup—Backup technique that copies only data 
in file system that has changed since the last backup. 

index block—Block that contains a list of pointers to file data 
blocks. 

indexed sequential file organization—File organization that 
arranges records in a logical sequence according to a key 
contained in each record. 

indirect block—Index block containing pointers to data blocks 
in inode-based file systems. 

inode—Index block in a UNIX-based system that contains the 
file control block and pointers to singly, doubly and triply 
indirect blocks of pointers to file data. 

inode map—Block of metadata written to the log of a log-
structured file system that indicates the location of the file 
system's inodes. Inode maps improve LFS performance 
by reducing the time required to determine file locations 
in the LFS. 

insert (file) —Operation that adds a new data item to a file. 

join (database) —Operation that combines relations. 
journaling file system—See log-structured file system (LFS). 
link—Directory entry that references an existing file. Hard 

links reference the location of the file on its storage 
device; soft links store the file's pathname. 
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open (file) —Operation that prepares a file to be referenced. 
parent directory—In hierarchically structured file systems, the 

directory that points to the current directory. 
partitioned file—File composed of sequential subfiles. 
pathname—String identifying a file or directory by its logical 

name, separating directories using a delimiter (e.g.,"/" or 
" \ " ) . An absolute pathname specifies the location of a file 
or directory starting at the root directory; a relative path
name specifies the location of a file or directory beginning 
at the current working directory. 

physical backup—Copy of each bit of the storage device; no 
attempt is made to interpret the contents of its file system. 

physical block—See physical record. 
physical device name—Name given to a file that is specific to a 

particular device. 
physical record—Unit of information actually read from or 

written to disk. 
physical view—View of file data concerned with the particular 

devices on which data is stored, the form the data takes on 
those devices, and the physical means of transferring data 
to and from those devices. 

primary key—In a relational database, a combination of 
attributes whose value uniquely identifies a tuple. 

projection (database)—Operation that creates a subset of 
attributes. 

public (file access control)—File that may be accessed by any 
member of the system's user community. 

queued access method—File access method that does not 
immediately service user I/O demands. This can improve 
performance when the sequence in which records are to 
be processed can be anticipated and requests can be 
ordered to minimize access times. 

query language—Language that allows users to search a data
base for data that meets certain criteria. 

read access—Permission to access a file for reading. 
record—In the data hierarchy, a group of fields (e.g., to store 

several related fields containing information about a stu
dent or a customer). 

recovery—Restoration of the system's data after a failure. 
read (file) — Operation that inputs a data item from a file to a 

process. 
relation—A set of tuples in the relational model. 
relational model—A model of data proposed by Codd that is 

the basis for most modern database systems. 
relative path—Path that specifies the location of a file relative 

to the current working directory. 

rename (file) —Operation that changes a file's name. 
roll back a transaction—To return the system to the state that 

existed before the transaction was processed. 
root—Beginning of a file system's organizational structure. 
root directory—Directory that points to the various user direc

tories. 
sequential file organization—File organization technique in 

which records are placed in sequential physical order. The 
"next" record is the one that physically follows the previ
ous record. 

shadow page—Block of data whose modified contents are 
written to a new block. Shadow pages are one way to 
implement transactions. 

shadow paging—Transaction implementation that writes mod
ified blocks to a new block. The copy of the block that is 
unmodified is released as free space when the transaction 
has been committed. 

single-level directory structure—See flat directory structure. 
size (file)—Amount of information stored in a file. 
soft link—File that specifies the pathname corresponding to 

the file to which it is linked. 
specified user (file access control)—Identity of an individual 

user (other than the owner) that may use a file. 
Structured Query Language (SQL)—Database language that 

allows users to find data items that have certain proper
ties, and also to create tables, specify integrity constraints, 
manage consistency and enforce security. 

superblock—Block containing information critical to the 
integrity of the file system (e.g., the location of the file sys
tem's free block list or bitmap, the file system identifier 
and the location of the file system root). 

symbolic name—Device-independent name (e.g., a path
name). 

ternary relations—Relation of degree 3. 
tuple—Particular element of a relation. 
type (file)—Description of a file's purpose (e.g., an executable 

program, data or directory). 
unblocked record—Record containing exactly one logical 

record for each physical record. 
Unicode—Character set that supports international languages 

and is popular in Internet and multilingual applications. 
update (file) —Operation that modifies an existing data item in 

a file. 
user classes—Classification scheme that specifies individual 

users or groups of users that can access a file. 
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word—Number of bits a system's processor(s) can process at 
once. In the data hierarchy, words are one level above 
bytes. 

working directory—Directory that contains files that a user 
can access directly. 

write (file) —Operation that outputs a data item from a process 
to a file. 

write access—Permission to access a file for writing. 

user directory—Directory that contains an entry for each of a 
user's files; each entry points to where the corresponding 
file is stored on its storage device. 

volatility (file)—Frequency with which additions and deletions 
are made to a file. 

volume—Unit of storage that may hold multiple files. 
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Suppose a file system allows complex arrangements of pointers 
and interdirectory references. What measures might the file 
system designer take to ensure the reliability and integrity of 
such a system? 

13.9 Some file systems support a large number of access 
classes while others support only a few. Discuss the relative 
merits of each approach. Which is better for highly secure 
environments? Why? 

13.10 Compare the allocation space for files on secondary 
storage to real storage allocation under variable-partition mul-
tiprogramming. 

13.11 In what circumstances is compaction of secondary stor
age useful? What dangers are inherent in compaction? How 
can these be avoided? 

13.12 What are the motivations for structuring file systems 
hierarchically? 

13.13 One problem with indexed sequential file organization is 
that additions to a file may need to be placed in overflow areas. 
How might this affect performance? What can be done to 
improve performance in these circumstances? 

13.14 Pathnames in a hierarchical file system can become 
lengthy. Given that the vast majority of file references are made 
to a user's own files, what convention might the file system sup-
port to minimize the need for using lengthy pathnames? 

13.15 Some file systems store information in exactly the for
mat created by the user. Others attempt to optimize by com
pressing the data. Describe how you would implement a 
compression/decompression mechanism. Such a mechanism 
necessarily trades execution time overhead against the 
reduced storage requirements for files. In what circumstances 
is this trade-off acceptable? 

13.16 Suppose that a major development in primary storage 
technology made it possible to produce a storage so large, so fast 
and so inexpensive that all the programs and data at an installa
tion could be stored in a single "chip." How would the design of 

I3-I A virtual memory system has page size p and its corre
sponding file system has block size b and fixed-length record 
size r. Discuss the various relationships among p, b, and r that 
make sense. Explain why each of these possible relationships is 
reasonable. 

13.2 Give a comprehensive enumeration of reasons why 
records may not necessarily be stored contiguously in a 
sequential disk file. 

13.3 Suppose a distributed system has a central file server 
containing large numbers of sequential files for hundreds of 
users. Give several reasons why such a system may not be 
organized to perform compaction (dynamically or otherwise) 
on a regular basis. 

13.4 Give several reasons why it may not be useful to store 
logically contiguous pages from a process's virtual memory 
space in physically contiguous areas on secondary storage. 

13.5 A certain file system uses "systemwide" names; i.e., once 
one member of the user community uses a name, that name 
may not be assigned to new files. Most large file systems, how
ever, require only that names be unique with respect to a given 
user—two different users may choose the same file name with
out conflict. Discuss the relative merits of these two schemes, 
considering both implementation and application issues. 

13.6 Some systems implement file sharing by allowing several 
users to read a single copy of a file simultaneously. Others pro
vide a copy of the shared file to each user. Discuss the relative 
merits of each approach. 

13.7 Indexed sequential files are popular with application 
designers. Experience has shown, however, that direct access 
to indexed sequential files can be slow. Why is this so? In what 
circumstances is it better to access such files sequentially? In 
what circumstances should the application designer use direct 
files rather than indexed sequential files? 

13.8 When a computer system failure occurs, it is important 
to be able to reconstruct the file system quickly and accurately. 
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a file system for such a single-level storage differ from that for 
today's conventional hierarchical storage systems? 

13.17 You have been asked to perform a security audit on a 
computer system. The system administrator suspects that the 
pointer structure in the file system has been compromised, 
thus allowing certain unauthorized users to access critical sys
tem information. Describe how you would attempt to deter
mine who is responsible for the security breach and how it was 
possible for them to modify the pointers. 

13.18 In most computer installations, only a small portion of 
file backups are ever used to reconstruct a file. Thus there is a 
trade-off to be considered in performing backups. Do the con
sequences of not having a file backup available when needed 
justify the effort of performing the backups? What factors 
point to the need for performing backups as opposed to not 
performing them? What factors affect the frequency with 
which backups should be performed? 

13.19 Sequential access from sequential files is much faster 
than sequential access from indexed sequential files. Why then 
do many applications designers implement systems in which 
indexed sequential files are to be accessed sequentially? 

13.20 In a university environment how might the user access 
classes "owner," "group," "specified user," and "public" be 
used to control access to files? Consider the use of the com
puter system for administrative as well as academic computing. 
Consider also its use in support of grant research as well as in 
academic courses. 

13.21 File systems provide access to native files as well as to 
files from other mounted file systems. What types of files might 
best be stored in the native file system? in other mounted file 
systems? What problems are unique to the management of 
mounted file systems? 

13.22 What type and frequency of backup would be most 
appropriate in each of the following systems? 

a. a batch-processing payroll system that runs weekly 
b. an automated teller machine (ATM) banking system 
c. a hospital patient billing system 
d. an airline reservation system in which customers 

make reservations for flights as much as one year in 
advance 

e. a distributed program development system used by a 
group of 100 programmers 

13.23 Most banks today use online teller transaction systems. 
Each transaction is immediately applied to customer accounts 
to keep balances correct and current. Errors are intolerable, 
but because of computer failures and power failures, these sys
tems do "go down" occasionally. Describe how you would 
implement a backup/recovery capability to ensure that each 

completed transaction applies to the appropriate customer's 
account. Also, any transactions only partially completed at the 
time of a system failure must not apply. 

13.24 Why is it useful to reorganize indexed sequential files 
periodically? 

What criteria might a file system use to determine when 
reorganization is needed? 

13.25 Distinguish between queued access methods and basic 
access methods. 

13.26 How might redundancy of programs and data be useful 
in the construction of highly reliable systems? Database sys
tems can greatly reduce the amount of redundancy involved in 
storing data. Does this imply that database systems may in fact 
be less reliable than nondatabase systems? Explain your 
answer. 

13.27 Many of the storage schemes we discussed for placing 
information on disk include the extensive use of pointers. If a 
pointer is destroyed, either accidentally or maliciously, an 
entire data structure may be lost. Comment on the use of such 
data structures in the design of highly reliable systems. Indi
cate how pointer-based schemes can be made less susceptible 
to damage by the loss of a pointer. 

13.28 Discuss the problems involved in enabling a distributed 
file system of homogeneous computers to treat remote file 
accesses the same as local file accesses (at least from the user's 
perspective). 

13.29 Discuss the notion of transparency in distributed file sys
tems of heterogeneous computers. How does a distributed file 
system resolve differences between various computer architec
tures and operating systems to enable all systems on a network 
to perform remote file accesses regardless of system differences? 

13.30 Figure 13.9 shows an inode data structure. Suppose a file 
system that uses this structure has filled up the blocks stem
ming from the doubly indirect pointers. How many disk 
accesses will it take to write one more byte to the file? Assume 
that the inode and free block bitmap are both completely in 
memory, but there is no buffer cache. Also assume that blocks 
do not have to be initialized. 

13.31 A file system can keep track of free blocks by using 
either a free block bitmap or a free block list. The system has a 
total of t blocks of size b, u of which are used, and each block 
number is stored using s bits. 

a. Express size (in bits) of this device's free block bit
map using the given variables. 

b. Express the size (in bits) of this system's free block 
list in terms of the given variables. Ignore the space 
consumed by pointers to free list continuation blocks. 
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block uses all 1,024 bytes to store pointers to data 
blocks. 

c. The inode contains 12 direct pointers to data blocks, 
one indirect data block, and one doubly indirect data 
block. 

13-33 Why is it useful to store fixed-length directory entries? 
What limitation does this impose on file names? 

13.36 Research how operating systems such as Windows and 
Linux provide file system encryption and decryption capabili
ties. 

choice. Then implement the following functions: create, open, 
close, read, write, cd (change directory), and Is (to list the files 
in a directory). If you have more time, figure out how to save 
your file system to a file and be able to load it later. 

terns are discussed in detail by Rosenblum et al.95 Wang et al. 
introduce the notion of user-level custom file systems as a tech
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Performance, Processors 
and Multiprocessor 

Management 

Don't tell me how hard you work. Tell me how much you get done. 
—Lewis Carroll — 

Part 5 



The next two chapters continue our emphasis on 
performance. Chapter 14 discusses performance 
measures, monitoring, evaluation, bottlenecks, sat
uration and feedback loops. The chapter also 
examines the crucial importance of processor 
instruction set architectures for maximizing system 
performance. Chapter 15 discusses the profound 
performance improvement that is possible in sys
tems that employ multiple processors, especially 
massive numbers of processors. In the next decade, 
we expect parallel computing to literally explode, 
with individual systems tending to become multi
processors, and with the proliferation of distrib
uted systems. The chapter focuses on 
multiprocessor systems and discusses architecture, 
operating system organizations, memory access 
architectures, memory sharing, scheduling, process 
migration, load balancing and mutual exclusion. 

The most general definition of beauty ... Multeity in Unity. 
— Samuel Taylor Coleridge — 



Observe due measure, for right riming is in all things the most important factor. 
—Hesiod— 

Don't tell me how hard you work. Tell me how much you get done. 
—James Ling— 

It is not permitted to the most equitable of men to be a judge in his own cause. 
—Blaise Pascal— 

All words, 
And no performance! 

—Philip Massinger— 



Chapter 14 

Performance and Processor 
Design 

Objectives 
After reading this chapter, you should understand: 

• the need for performance measures. 

• common performance metrics. 

• several techniques for measuring relative system performance. 

• the notions of bottlenecks, saturation and feedback. 

• popular architectural design philosophies for processors. 

• processor design techniques that increase performance. 
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Because an operating system is primarily a resource manager, it is important for 
operating systems designers, managers and users to be able to determine how effec
tively a particular system manages its resources. System performance measure
ments enable consumers to make more informed decisions and help developers 
build more efficient systems. In this chapter, we describe many performance issues 
and investigate techniques for measuring, monitoring and evaluating performance; 
the use of these methods can help designers, managers and users realize maximum 
performance from computing systems. 

The performance of a system depends heavily on its hardware, operating sys
tem and the interaction between the two. Therefore, this chapter considers several 
evaluation techniques that measure the performance of entire systems, rather than 
just the operating system. We also present an introduction to popular processor-
design philosophies and how each seeks to achieve high performance. 

14.1 Introduction 

14.1 Introduction 643 

1. How do you suppose performance evaluation benefits consumers, developers and users? 
2. What resource of a computer system probably has the greatest impact on performance? 

Ans: 1) Performance evaluation provides consumers with a basis of comparison to decide 
between different systems, developers with useful information on how to write software to 
efficiently use system components and users with information that can facilitate tuning the 
system to meet the requirements of a specific setting. 2) The processor(s). 

In the early years of computer systems development, hardware was the dominant 
cost, so performance studies concentrated primarily on hardware issues. Now, hard
ware is relatively inexpensive and prices continue to decline. Software complexity is 
increasing with the widespread use of multithreading, multiprocessing, distributed 
systems, database management systems, graphical user interfaces and various appli
cation support systems. The software typically hides the hardware from the user, 
creating a virtual machine defined by the operating characteristics of the software. 
Cumbersome software causes poor performance, even on systems with powerful 
hardware, so it is important to consider a system's software performance as well as 
its hardware performance. 

The nature of performance evaluation itself is evolving. Raw and potentially 
misleading measures, such as clock speed and bandwidth, have become influential 
in the consumer market, because vendors engineer their products with an eye to 
these metrics. However, other aspects of performance evaluation are improving. 
For example, designers have developed more sophisticated benchmarks, acquired 
better trace data and engineered more comprehensive computer simulation mod
els—we investigate all these techniques later in the chapter. New industry-standard 
benchmarks and "synthetic programs" are emerging. Unfortunately, there is still no 

14.2 Important Trends Affecting Performance Issues 

Self Review 



consensus on these standards. Critics charge that performance results can be incor
rect or misleading, because the performance evaluation techniques do not necessar
ily measure relevant features of a program.1 

1. How has the focus of performance studies shifted over the years? 
2. Give several examples of how operating systems can improve performance, as discussed 

in the preceding chapters. 

Ans: 1) In the early years, hardware was the dominant cost, so performance studies focused 
on hardware issues. Today, it is recognized that sophisticated software can have a substantial 
effect on performance. 2) Operating systems can improve disk and processor scheduling pol-
icies, implement more efficient thread-synchronization protocols, more effectively manage 
file systems, perform context switches more efficiently, improve memory management algo-
rithms, etc. 

Self Review 
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In his classic paper, Lucas mentions three common purposes for performance eval
uation.2 

• Selection evaluation—The performance evaluator decides whether obtaining 
a computer system or application from a particular vendor is appropriate. 

• Performance projection—The performance evaluator estimates the perfor-
mance of a system that does not exist. It might be a completely new com-
puter system, or an old system with a new hardware or software 
component. 

• Performance monitoring—The evaluator accumulates performance data 
on an existing system or component to ensure that it is meeting its perfor-
mance goals. Performance monitoring can also help estimate the impact of 
planned changes and provide system administrators with the data they 
need in order to make strategic decisions, such as whether to modify an 
existing process priority system or upgrade a hardware component. 

In the early phases of a new system's development, the vendor attempts to 
predict the nature of applications that will run on the system and the anticipated 
workloads these applications must handle. Once the vendor begins development 
and implementation of the new system, performance evaluation and prediction are 
used to determine the best hardware organization, the resource management strat
egies that should be implemented in the operating system and whether or not the 
evolving system meets its performance objectives. Once the product is released to 
the marketplace, the vendor must be prepared to answer questions from potential 
users about whether the system can handle certain applications with certain levels 
of performance. Users are often concerned with choosing an appropriate configura-
tion of a system that services their needs. 

14.3 Why Performance Monitoring and Evaluation Are Needed 
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When the system is installed at the user's site, both the vendor and the user 
seek to obtain optimal performance. Administrators fine-tune the system to run at 
its best in the user's operating environment. This process, called system tuning, can 
often cause dramatic performance improvements, once the system is adjusted to the 
idiosyncrasies of the user installation. 

1. When would an evaluator use performance projection in preference to selection evalua
tion? 

2. How does performance monitoring facilitate system tuning? 

Ans: 1) Selection evaluation help an evaluator choose among existing systems. Perfor
mance projection helps the evaluator predict the performance of systems that do not exist 
yet—or how anticipated modifications to existing systems would perform. 2) An evaluator 
can monitor performance to determine which modifications would most likely increase sys
tem performance. 

Self Review 

By performance, we mean the efficiency with which a computer system meets its 
goals. Thus, performance is a relative rather than an absolute quantity, although we 
often talk of absolute performance measures such as the amount of time in which a 
given computer system can perform a specific computational task. However, when
ever a performance measure is taken, it is normally to be used as a basis of compar
ison. 

Performance is often "in the eye of the beholder." For example, a young music 
student might find a performance of Beethoven's Fifth Symphony thoroughly 
inspiring, whereas the conductor might be sensitive to the most minor flaws in the 
way a second violinist plays a certain passage. Similarly, the owner of a large airline 
reservation system might be pleased with the high utilization reflected by a large 
volume of reservations processed, whereas an individual user might be experienc
ing excessive delays on such a busy system. 

Quantifying is difficult for some performance measures, such as ease of use, 
and simple for others, such as the speed of a disk-to-memory transfer. The perfor
mance evaluator must be careful to consider both types of measures, even though it 
might be possible to provide neat statistics only for the latter. Some performance 
measures, such as response time, are user oriented. Others, such as processor utili
zation, are system oriented. 

Some performance results might be deceptive. For example, one operating sys
tem might focus on conserving memory by executing complicated page-replacement 
algorithms, whereas another might avoid these complex routines to save processor 
cycles for executing user programs. The former would appear more efficient on a sys
tem with a high clock speed; the latter, on a processor with a large main memory. In 
addition, some techniques permit the evaluator to measure the performance of small 
pieces of a system such as individual components or primitives. Although these tools 
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can be useful for pinpointing specific weaknesses, they do not tell the entire story. The 
evaluator might discover that an operating system performs all of its primitives effi
ciently except one. This should not be a major concern, unless that inefficient primi
tive is used extensively. Without taking into account the frequency with which each 
primitive is used, measurements can be misleading. Similarly, programs designed to 
evaluate a system for a particular environment that do not resemble the applications 
for which the system is intended can yield spurious results. 

Some common performance measures are: 

• Turnaround time—This is the time from submission of a job until the sys-
tem returns a result to the user. 

• Response time—This is an interactive system's turnaround time, often 
defined as the time from a user's pressing an Enter key or clicking a mouse 
until the system displays its response. 

• System reaction time—In an interactive system, this is often defined as the 
time from a user's pressing Enter or clicking a mouse until the first time 
slice of service is given to that user's request. 

These are probabilistic quantities, and in simulation and modeling studies of 
systems they are considered to be random variables. A random variable is one that 
can assume a certain range of values, where each value has an associated probabil
ity of occurring. We discuss the distribution of response times, for example, because 
users experience a wide range of response times on a particular interactive system 
over some interval of operation. A probability distribution can meaningfully char
acterize this range. 

When we talk of the expected value of a random variable, we are referring to 
its mean or average value. However, means can often be deceiving. A certain mean 
value can be produced by averaging a series of identical or nearly identical values, 
or it can be produced by averaging a wide variety of values, some much larger and 
some much smaller than the calculated mean. Therefore, other performance mea
sures often employed are: 

• Variance in response times (or of any of the random variables we dis
cuss)—The variance of response times is a measure of dispersion. A small 
variance indicates that the response times experienced by users are gener
ally close to the mean. A large variance indicates that some users are expe
riencing response times that differ widely from the mean. Some users could 
be receiving fast service, while others could be experiencing long delays. 
Thus the variance of response times is a measure of predictability; this can 
be an important performance measure for users of interactive systems. 

• Throughput—This is the work-per-unit-time performance measurement. 

• Workload—This is the measure of the amount of work that has been sub
mitted to the system. Often, evaluators define an acceptable level of per
formance for the typical workload of a computing environment. The 
system is evaluated compared to the acceptable level. 
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• Capacity—This is a measure of the maximum throughput a system can 
attain, assuming that whenever the system is ready to accept more jobs, 
another job is immediately available. 

• Utilization—This is the fraction of time that a resource is in use. Utilization 
can be a deceptive measure. Although a high-percent utilization seems 
desirable, it might be the result of inefficient usage. One way to achieve 
high processor utilization, for example, is to run a process that is in an infi
nite loop! Another view of processor utilization also yields interesting 
insights. We might view a processor at any moment as being idle, in user 
mode, or in kernel mode. When a processor is in user mode, it is performing 
operations on behalf of a user. When the processor is in kernel mode, it is 
performing tasks for the operating system. Some of this time, such as con
text-switching time, is pure overhead. This overhead component can 
become large in some systems. Thus, when we measure processor utiliza
tion, we must be concerned with how much of this usage is productive work 
on behalf of the users, and how much is system overhead. Strangely, "poor 
utilization" is actually a positive measure in certain kinds of systems, such 
as hard real-time systems, where the system resources must stand ready to 
respond immediately to incoming tasks, or lives could be at risk. Such sys
tems focus on immediate response rather than resource utilization. 
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1. What is the difference between response time and system reaction time? 
2. (T/F) When a processor spends most of its time in user mode, the system achieves efficient 

processor utilization. 

Ans: 1) Response time is the time required for the system to finish responding to a user 
request (from the time the request is submitted); system reaction time is the time required 
for the system to begin responding to a user request (from the time the request is submitted). 
2) False. If the processor is executing an infinite loop, this system is not using the processor 
efficiently. 

Self Review 

Now that we have considered some possible performance measures, we need some 
way of extracting them. In this section, we describe several important performance 
evaluation techniques.3, 4, 5 Some of these isolate different components of a system 
and report each component's individual performance, allowing developers to identify 
areas of inefficiency. Others are oriented toward the system as a whole and allow con
sumers to make comparisons between systems. Still other techniques are application 
specific and therefore allow only indirect comparisons with other systems,. In the sec
tions that follow, we describe various evaluation techniques and the aspects of system 
performance they measure. 

14.5 Performance Evaluation Techniques 



Ideally, a system evaluator would measure the performance of several systems, each 
executing in the same environment. However, this is usually not feasible, especially 
for corporations whose environments are complex and difficult to duplicate. Such a 
process can be invasive, compromising the integrity of the environment and nullify-
ing the results. When the performance of a system must be evaluated in a given 
environment, designers often use trace data. A trace is a record of system activity — 
typically a log of user and application requests to the operating system. 

System evaluators can use trace data to characterize a particular system's exe
cution environment by determining the frequency with which user-mode processes 
request particular kernel services. Before installing a new computing system, evalua
tors can test the new system using a workload derived from the trace data or using 
the trace itself. Trace data often can be modified to evaluate "what-if" scenarios. For 
example, a system administrator might need to determine how a new Web site will 
affect Web server performance. An existing trace can be modified to estimate how 
the system will handle its new load.6 

When operating systems execute in similar environments, standard traces can 
be developed and executed on those systems to compare performance. Trace data 
obtained from one installation, however, might not be applicable to another. Such 
data is, at best, an approximation of system activity at the other installation. In addi-
tion, user logs are considered proprietary to the system on which they were recorded; 
rarely are such logs distributed to the research community or to vendors. Conse
quently, there is a dearth of trace data available for comparison and evaluation.7 

Another method for capturing a computing system's execution environment is 
profiling. Profiles record system activity while executing in kernel mode, which can 
include operations such as process scheduling, memory management and I/O man
agement. For example, a profile might record which kernel operations are per
formed most often. Alternatively, a profile can simply log all function calls issued by 
the operating system. Profiles indicate which operating system primitives are most 
heavily used, enabling system administrators to identify potential targets for opti
mization and tuning.8 Evaluators must often employ other performance evaluation 
techniques in concert with profiles to determine the most effective ways to improve 
system performance. 

14.5.1 Tracing and Profiling 
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1. How do evaluators use trace data? 
2. Explain the difference between traces and profiles. 

Ans: 1) Trace data permits evaluators to compare the performance of many different sys
tems that operate in the same computing environment. Trace data describes this environ-
ment so that evaluators can obtain performance results relevant to the systems' intended use 
2) Traces record user requests, whereas profiles log all activity in kernel mode. Therefore 
traces describe a computing environment by capturing the user demand for particular kernel 
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Timings provide a means of performing quick comparisons of computer hardware. 
Early computer systems were often evaluated by their add times or their memory-
cycle times. Timings are useful for indicating the "raw horsepower" of a particular 
computer system, often in terms of the number of MIPS (millions of instructions 
per second) or BIPS (billions of instructions per second) it executes. Some comput
ers perform in the TIPS (trillion instructions per second) range. 

With the advent of families of computers, such as the IBM 360 series, first 
introduced in 1964, or the Intel Pentium series, a descendant of the Intel x86 series 
introduced in 1978, it has become common for hardware vendors to offer comput
ers that enable a user to upgrade to faster processors (without replacing other com
puter components) as the user's needs grow. The computers in a family are 
compatible in that they can run the same programs but at greater speeds as the user 
moves up in the family. Timings provide a convenient means for comparing the 
members of a family of computers. 

A microbenchmark measures the time required to perform an operating sys
tem operation (e.g., process creation). Microbenchmarks are useful for measuring 
how a design change affects the performance of a specific operation. Microbench
mark suites are programs that measure the performance of a number of important 
operating system primitives, such as memory operations, process creation and con
text-switch latency.9 Evaluators also use microbenchmarks to measure system per
formance for specific operations, such as read/write bandwidth (i.e., how much data 
the system can transfer per unit time during a read or write) and network connec
tion latency.10 

Microbenchmarks describe how quickly a system performs a particular opera
tion, not how often that operation is performed. Consequently, they do not measure 
important evaluation criteria such as throughput and utilization. Microbenchmarks, 
however, are useful in isolating which operations could be causing a system to per
form poorly when coupled with information about how each operation is used.11 

Until the 1990s, no single microbenchmark suite demonstrated the effect of 
hardware components on the performance of operating system primitives. In 1995 
the Imbench microbenchmark suite, which enabled evaluators to measure and com
pare system performance on a variety of UNIX platforms, was introduced.12 

Although Imbench provided useful performance evaluation data that allowed com
parison across multiple platforms, it was inconsistent in the way that it reported sta
tistical data—some tests returned results based on an average of runs while other 
used just one run of the microbenchmark. Imbench was also limited to performing 
measurements once per millisecond because it used coarse software timing mecha
nisms; this is insufficient for measuring fast operations and timing hardware. 
Researchers at Harvard University addressed these limitations by creating the 

14.5.2 Timings and Microbenchmarks 

services (without regard to the underlying system), and profiles capture operating system 
activity in a given environment. 
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hbench microbenchmark suite, which provides a standard and rigorous model for 
reporting statistics, enabling evaluators to more effectively analyze the relationship 
between operating system primitives and hardware components.13 lmbench and 
hbench represent different microbenchmark philosophies, lmbench focuses on 
portability, which permits evaluators to compare performance across different 
architectures; hbench focuses on the relationship between the operating system and 
its underlying hardware within a particular system.14, 15 

1. How can results from timings and microbenchmarks be misleading? How are they useful? 
2. Which performance measure can be combined with microbenchmarks to evaluate operat

ing system performance? 

Ans: 1) Microbenchmarks measure the time required to perform specific primitives (e.g.. 
process creation), and timings perform quick comparisons of hardware operations (e.g., add 
instructions). Neither of these measurements reflects system performance as a whole. How
ever, microbenchmarks and timings can be useful in pinpointing potential areas of ineffi
ciency and evaluating the effect of small modifications on system performance. 2) Profiles, 
which record how often an operating system primitive is used, can be combined with 
microbenchmarks to evaluate operating system performance. 

Self Review 
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Although "raw performance" is an important measure, many users are more inter
ested in how well particular applications will perform on a particular system. Selt
zer et al. describe a vector-based methodology for calculating an application-
specific evaluation of a system by combining trace and profile data with timings and 
microbenchmarks.16 

In this technique, an evaluator records the results of microbenchmarks for the 
operating system's primitives. Next, the evaluator constructs a vector by placing the 
values corresponding to the microbenchmark results in the elements of the vector: 
this is called the system vector. Next, the evaluator profiles the operating system 
while executing the target application. The evaluator constructs a second vector by 
inserting the relative demand for each operating system primitive in an element in 
the vector; this is called the application vector. Each element in the system vector 
describes how long the operating system needs to execute a particular primitive, 
and the corresponding entry in the application vector describes the application's 
relative demand for that primitive. For example, if the first entry in the system vec
tor records process creation performance, the first entry in the application vector 
records how many processes were created while executing a particular application 
(or group of applications). A characterization of the performance of a given system 
executing a particular application is calculated by 
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where si is the ith entry in the system vector, ai is the ith entry in the application vec-
tor and n is the size of both vectors.17 

This technique can be useful for comparing how efficiently different operating 
systems execute a particular application (or group of applications) by considering 
the demand an application places on each of a system's primitives. The vector-based 

methodology can be used to select operating system primitives to tune to improve 
system performance. 

Some application behavior depends both on the particular application and on 
user input. For example, the type of application requests generated in a database 
system depends on its population of active users. Simply profiling the system with
out determining the typical stream of user requests can produce misleading results. 

In such cases, both the application and user requests determine the system's execu
tion environment. Therefore, to provide a more accurate system evaluation, the 
vector-based methodology can be combined with a trace (Seltzer et al. call this the 
hybrid methodology). In this case, the trace data allows the evaluator to construct 
the application vector while accounting for how the specific application and typical 
stream of user requests affect the demand for each operating system primitive.18 

A kernel program is another application-specific performance evaluation tool, 
although it is not often used. A kernel program can range from an entire program 
that is typical of one executed at an installation or a simple algorithm such as a matrix 
inversion. Using the manufacturer's estimated instruction timings, execution of a ker
nel program is timed for a given machine. Machines are then compared on the basis 
of differences in the expected execution times. Kernel programs are actually "exe
cuted on paper" rather than being run on a particular computer. They are used in 
selection evaluation before a consumer purchases the system being evaluated. [Note: 
"Kernel" here should not be confused with the kernel of the operating system.]19 

Kernel programs give better results than either timings or microbenchmarks, 
but they require manual effort to prepare and time. One key advantage of many ker
nel programs is that they are complete programs, which ultimately is what the user 
actually runs on the computer system under consideration. 

Kernel programs can be helpful in evaluating certain software components of a 
system. For example, two different compilers might produce dramatically different 
code, and kernel programs can help an evaluator decide which one generates more 
efficient code.20 
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1. What is a benefit of application-specific evaluation? What is a drawback? 
2. Why do you suppose kernel programs are rarely used? 

Ans: 1) Application-specific evaluation is useful in determining whether a system will per
form well in executing the particular programs at a given installation. A drawback is that a 
system must be evaluated by each installation that is considering using it; the system's design
ers cannot simply publish one set of performance results. 2) Kernel programs require time 
and effort to prepare and time. Also, they are "executed on paper" and can introduce human 
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error. Often, it is easier to run the actual program, or one similar to it, on the actual system 
than calculate the execution time for a kernel program. 
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Analytic models are mathematical representations of computer systems or their 
components.21, 22, 23, 24, 25 Many types of models are used; those of queuing theory 
and Markov processes are two of the more popular, because they are relatively 
manageable and useful. 

For evaluators who are mathematically inclined, the analytic model can be rel
atively easy to create and modify. A large body of mathematical results exists that 
evaluators can apply in order to estimate the performance of a given computer sys
tem or component quickly and fairly accurately. However, several disadvantages of 
analytic modeling hinder its applicability. One is that evaluators must be highly 
skilled mathematicians; these people are rare in commercial computing environ
ments. Another is that complex systems are difficult to model precisely; as systems 
become more complex, analytic modeling becomes less useful. 

Today's systems are often so complex that the modeler is forced to make 
many simplifying assumptions that can diminish the usefulness and applicability of 
the model. Therefore, an evaluator should use other techniques (e.g.; microbench-
marks) in concert with analytic models. Sometimes the results of an evaluation 
using only analytic models might be invalidated by studies using other techniques. 
Often the different evaluations tend to reinforce one another, demonstrating the 
validity of the modeler's conclusions. 

14.5.4 Analytic Model 

1. Explain the relative merits of complex and simple analytic models. 
2. What are some benefits of using analytic modeling? 

Ans: 1) Complex analytic models are more accurate, but it might not be possible to find a 
mathematical solution to model a system's behavior. It is easier to represent the behavior of 
a system with a simpler model, but it might not accurately represent the system. 2) There is a 
large body of results that evaluators can draw from when creating models; analytic models 
can provide accurate and quick performance results; and they can be modified relatively eas-
ily when the system changes. 

Self Review 

A benchmark is a program that is executed to evaluate a machine. Commonly, a 
benchmark is a production program which is typical of many jobs at the installation. 
The evaluator is thoroughly familiar with the performance of the benchmark on 
existing equipment, so when it is run on new equipment, the evaluator can draw 
meaningful conclusions.26-27 Several organizations, such as Standard Performance 
Evaluation Corporation (SPEC; www.specbench.org) and Business Application 
Performance Corporation (BAPCo; www.bapco.com), have developed industry-
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standard benchmarks targeted for different systems (e.g., Web servers or personal 
computers). Evaluators can run these benchmarks to compare similar systems from 
different vendors. 

.One advantage of benchmarks is that many already exist, so the evaluator 
merely needs to choose them from known production programs or use industry-
standard benchmarks. No timings are taken on individual instructions. Instead, the 
full program is run on the actual machine using real data, so the computer does 
most of the work. The chance of human error is minimal because the benchmark 
time is measured by the computer itself. In environments such as multiprogram
ming, timesharing, multiprocessing, database, data communications and real-time 
systems, benchmarks can be particularly valuable, because they run on the actual 
machine in real circumstances. The effects of such complex systems can be experi
enced directly instead of being estimated. 

Several criteria should be considered when developing a benchmark. First, the 
results should be repeatable; specifically, every run of the benchmark program on a 
certain system should produce nearly the same result. Results do not have to be iden
tical, and seldom are, because they can be affected by environment-specific details, 
such as where an item is stored on disk. Second, benchmarks should accurately reflect 
the types of applications that will be executed on a system. Finally, the benchmark 
should be widely used so that more accurate comparisons can be made between sys
tems. A good industry-standard benchmark will have all these properties; however, 
the latter two often lead to conflicting design decisions. A benchmark that is specific 
to a certain system might not be widely used; a benchmark that is designed to test 
multiple systems might not yield as accurate a result for a specific system.28 

Benchmarks are useful in evaluating hardware as well as software, even under 
complex operating environments. They also are particularly useful in comparing the 
operation of a system before and after certain changes are made. Benchmarks are not 
useful, however, in predicting the effects of proposed changes, unless another system 
exists with the changes incorporated and on which the benchmarks can be run. 

Benchmarks are probably the technique most widely used by organizations 
and consumers when determining which equipment to purchase from several com
peting vendors. Their popularity as tools for this purpose led to the need for indus
try-standard benchmarks. SPEC was founded in 1988 to promote the development 
of standard, relevant benchmarks. SPEC publishes a variety of benchmarks (often 
called SPECmarks) that can be used to evaluate systems ranging from servers to 
Java Virtual Machines and publishes performance results obtained using those 
SPECmarks for thousands of commercial systems. SPEC ratings can be useful for 
making an informed decision determining which computer components to pur
chase. However, one must first carefully determine the focus of each SPECmark 
test to evaluate particular platforms. For example, SPECweb measures systems on 
which Web servers typically execute and should not be used to compare systems 
that execute in different environments.29 If the environment of a particular Web 
server differs from a "typical" one, the SPEC rating might not be relevant. Further-
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more, some of SPEC'S benchmarks have been criticized for narrow scope, espe
cially by those who question the assumption that a "typical" workload can 
accurately approximate a real-world workload for a particular system. To combat 
such limitations, SPEC continually redesigns its benchmarks to improve their rele
vance to current systems.30, 31 

Although SPEC produces some of the best-known benchmarks, there are a 
number of other popular benchmarks and benchmarking organizations. BAPCo pro
duces several benchmarks, including the popular SYSmark benchmark (for desktop 
systems), MobileMark (for systems installed on mobile devices) and WebMark (for 
Internet performance).32 Other popular benchmarks include the Transaction Process
ing Performance Council (TPC) benchmarks, which target database systems,33 and the 
Standard Application (SAP) benchmarks, which evaluate a system's scalability.34 
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1. How can benchmarks be used to anticipate the effect of proposed changes to a system? 
2. Why are there no universally accepted "standard" benchmarks? 

Ans: 1) In general, benchmarks are effective only for determining the results after a change 
or for performance comparisons between systems, not for anticipating the effect of proposed 
changes to a system. However, if the proposed changes match the configuration of an existing 
system, running the benchmark on that system would be useful. 2) Benchmarks are real pro
grams that are run on real machines, but each machine might contain a different set of hard
ware that runs a different mix of programs. Therefore, benchmark designers provide "typical" 
application mixes that are updated regularly to better approximate particular environments. 

Self Review 

Synthetic programs (also called synthetic benchmarks) are similar to benchmarks, 
except that they focus on a specific component of the system, such as the I/O sub
system and memory subsystem. Unlike benchmarks, which are typical of real appli
cations, evaluators construct synthetic programs for specific purposes. For example, 
a synthetic program might target an operating system component (e.g., the file sys
tem) or might be constructed to match the instruction frequency distribution of a 
large set of programs. One advantage of synthetic programs is that they can isolate 
specific components of a system rather than test the entire system.35, 36, 37, 38, 39 

Synthetic programs are useful in development environments. As new features 
become available, synthetic programs can be used to test that they are operational. 
Evaluators, unfortunately, do not always have sufficient time to code and debug 
synthetic programs, so they often seek existing benchmark programs that match the 
desired characteristics of a synthetic program as closely as possible. Evaluators can 
use synthetic programs with benchmarks and microbenchmarks for a thorough sys
tem evaluation. These three techniques provide different levels of abstraction (the 
system as a whole, a component of the system or a simple primitive) that, com
bined, give the evaluator an understanding of the performance both of the entire 
system and of individual parts of the system. 

14.5.6 Synthetic Programs 



Although no longer used much, the Whetstone and the Dhrystone are exam
ples of classic synthetic programs. The Whetstone measures how well systems han
dle floating point calculations, and was thus helpful in evaluating scientific 
programs. The Dhrystone measures how effectively an architecture runs systems 
programs. Because the Dhrystone consumes only a small amount of memory, its 
effectiveness is particularly sensitive to the size of a processor's cache; if the Dhrys-
tone's data and instruction can fit in the cache, it will execute much faster than if the 
processor must access main memory while it executes. In fact, because the Dhrys
tone fits in most of today's processor caches, in effect it measures a processor's 
clock speed and provides no insight into how a system manages memory. One pop
ular synthetic program used extensively today is WinBench 99, which tests a sys
tem's graphics, disk and video subsytsems in a Microsoft Windows environment.40 

Other popular synthetic benchmarks include IOStone (which tests file systems),41 

Hartstone (for real-time systems)42 and STREAM (for the memory subsystem).43 
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1. Explain why synthetic programs are useful for development environments. 
2. Should synthetic programs alone be used for a performance evaluation? Why? 

Ans: 1) Synthetic programs can be written fairly quickly and can test specific features for 
correctness. 2) No, synthetic programs are "artificial" programs used to test specific compo
nents or to characterize a large set of programs (but not one in particular). Therefore, 
although producing valuable results, they do not necessarily describe how the entire system 
will perform when executing real programs. It is usually a good idea to use a variety of per
formance evaluation techniques. 

Self Review 

Simulation is a technique in which an evaluator develops a computerized model of 
the system being evaluated.44, 45, 46, 47, 48 The evaluator tests the model, which pre
sumably reflects the target system, to infer performance data about this system. 

With simulation it is possible to prepare a model of a system that does not 
exist and then run the model to see how the system might behave in certain circum
stances. Of course, the simulation must eventually be validated against the real sys
tem to prove that it is accurate. Simulations can highlight problems early in a 
system's development cycle. Computerized simulators have become especially pop
ular in the space and transportation industries, because of the severe consequences 
of building systems that fail. 

Simulators are generally of two types: 

• Event-driven simulators—These are controlled by events that are made to 
occur in the simulator according to probability distributions.49 

• Script-driven simulators—These are controlled by data carefully manipu
lated to reflect the anticipated environment of the simulated system; evalu-
ators derive this data from empirical observations. 

14.5.7 Simulation 



Simulation requires considerable expertise on the part of the evaluator and 
can consume substantial computer time. Simulators generally produce huge 
amounts of data that must be carefully analyzed. However, once simulators are 
developed, they can be reused effectively and economically. 

Just as with analytic models, it is difficult to model a complex system exactly 
with a simulation. Several common errors cause most inaccuracies. Bugs in simula
tors will, of course, produce erroneous performance results. Deliberate omissions, 
resulting from the necessity of simplifying a simulation, can invalidate results as 
well. This is usually more of a problem for simple simulators. However, complex 
simulators suffer from the third problem—lack of detail. Complex simulators 
attempt to model all parts of the system, but inevitably, they do not model all 
details exactly. The attendant errors also can hinder a simulator's effectiveness. 
Therefore, to achieve the most accurate performance results, it is important to vali
date a simulation against the real system.50 
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1. Which produces more consistent results, event-driven or script-driven simulators? 
2. (T/F) Complex simulators are always more effective than simpler ones. 

Ans: 1) Script-driven simulators produce nearly the same result each run because the sys
tem always uses the same inputs. Because event-driven simulators dynamically generate 
input based on probabilities, the results are less consistent. 2) False. Although complex simu
lators attempt to model a system more completely, they still might not model it accurately. 
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Performance monitoring is the collection and analysis of information regarding sys
tem performance for existing systems.51, 52, 53 It can help determine useful perfor
mance measures, such as throughput, response times and predictability. 
Performance monitoring can locate inefficiencies quickly and help system adminis
trators decide how to improve system performance. 

Users can monitor performance using software or hardware techniques. Soft
ware monitors might distort performance readings, because the monitors them
selves consume system resources. Familiar examples of performance monitoring 
software are Microsoft Windows's Task Manager54 and the Linux proc file system55 

(see Section 20.7.4, Proc File System). Hardware monitors are generally more 
costly, but they have little or no impact on system performance. Many of today's 
processors maintain several counting registers useful for performance monitoring 
that record events including clockticks, TLB misses and memory operations (such 
as a write to main memory).56 

Monitors generally produce huge volumes of data that must be analyzed, pos
sibly requiring extensive computer resources. However, they indicate precisely how 
the system is functioning, and this information can be extremely valuable. This is 
particularly true in development environments in which key design decisions might 
be based on the observed operation of the system. 

14.5.8 Performance Monitoring 



Instruction execution traces, or module execution traces, can reveal which 
areas of a system are most frequently used. A module execution trace might show, 
for example, that a small subset of modules is being used a large percentage of the 
time. If designers concentrate their optimization efforts on these modules, they 

might be able to improve system performance without expending effort and 
resources on infrequently used portions of the system. Figure 14.1 summarizes per-
formance evaluation techniques. 

1. Why do software performance monitors influence a system more than hardware perfor
mance monitors? 

2. Why is performance monitoring important? 

Ans: 1) Software-based performance monitors must compete for system resources that 
would otherwise be allocated to programs that are being evaluated. This can result in inaccu-
rate performance measurements. Hardware performance monitors operate in parallel with 
other system hardware, so that measurement does not affect system performance. 2) Perfor-
mance monitoring enables administrators to identify inefficiencies, using data describing how 
the system is functioning. 

Self Review 
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Technique Description 

Record of real application requests to the operating system, which 
identifies a system's workload. 

Record of kernel activity taken during a real session. Profiles indi
cate the relative usage of operating system primitives. 
Raw measure of hardware performance, which can be used for 
quick comparisons between related systems. 

Raw measure of how quickly an operating system performs an iso
lated operation. 

Evaluation that determines how efficiently a system executes a par
ticular application. 

Technique in which an evaluator builds and analyzes a mathemati
cal model of a computer system. 

Program typical of one that will be run on the given system, used 
for comparisons between systems. 

Program that isolates the performance of a particular operating sys
tem component. 
Technique in which a computer model of the system is evaluated. 
The results of the simulation must be validated against the actual 
system once the system is built. 

Ongoing evaluation of a system once it is installed, allowing admin
istrators to assess whether it is meeting its demands and to deter
mine which areas of its performance require improvement. 

Trace 

Profile 

Timing 

Microbenchmarks 

Application-specific 
evaluation 

Analytic modeling 

Benchmark 

Synthetic program 

Simulation 

Performance 
monitoring 

Figure 14.1 | Summary of performance evaluation techniques. 



Operating systems manage collections of resources that interface and interact in 
complex ways. Occasionally, resources become bottlenecks, limiting the system's 
overall performance, because they perform their designated tasks slowly relative to 
other resources. While other system resources might have excess capacity, the bot
tlenecks cannot pass jobs or processes to these other resources fast enough to keep 
them busy.57.5859 

A bottleneck tends to develop at a resource when the traffic there begins to 
approach its capacity. We say that the resource becomes saturated—i.e., processes 
competing for its attention begin to interfere with one another, because one must 
wait for others to complete using the resource.60 A classic example is a virtual mem
ory system that is thrashing (see Chapter 11, Virtual Memory Management). This 
occurs in paged systems when main memory becomes overcommitted and the work-
ing sets of the various active processes cannot be maintained simultaneously in main 
memory. An active process interferes with another process's use of memory by forc
ing the system to flush some of the other process's working set to secondary storage 
to make room for its own working set. Saturation can be dealt with by reducing the 
load on the system—e.g., thrashing can be eliminated by temporarily suspending less 
critical, noninteractive processes, if such processes are available. 

How can bottlenecks be detected? Quite simply, each resource's request 
queue should be monitored. When a queue begins to grow quickly, then the arrival 
rate of requests at that resource must be larger than its service rate, so the resource 
has become saturated. 

Isolation of bottlenecks is an important part of tuning a system. The bottle-
necks can be removed by increasing the capacity of the resources, by adding more 
resources of that type at that point in the system, or, again, by decreasing the load 
on those resources. Removing a bottleneck does not always improve throughput, 
however, because other bottlenecks might also exist in the system. Tuning a system 
often involves identifying and eliminating bottlenecks until system performance 
reaches satisfactory levels. 

14.6 Bottlenecks and Saturation 
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1. Why is it important to identify bottlenecks in a system? 
2. Thrashing is due to the saturation of what resource? How would an operating system 

detect thrashing? 

Ans: 1) Identifying bottlenecks allows designers to focus on optimizing sections of a system 
that are degrading performance. 2) Main memory. The operating system would notice a high 
page recapture rate—the pages being paged out to make room for incoming pages would 
themselves quickly be paged back into main memory. 

Self Review 



A feedback loop is a technique in which information about the current state of the 
system can affect arriving requests. These requests can be rerouted if the feedback 
indicates that the system might have difficulty servicing them. Feedback can be neg

ative, in which case arrival rates might decrease, or positive, in which case arrival 
rates might increase. Although we divide this section to examine positive and nega
tive feedback situations separately, they do not represent two different techniques. 
Rather, a request rate at a particular resource might cause either negative or posi
tive feedback (or neither). 

14.7.1 Negative Feedback 
In negative feedback situations, the arrival rate of new requests might decrease as a 
result of information being fed back. For example, a motorist pulling into a gas sta
tion and observing that several cars are waiting at each pump might decide to drive 
down the street to less crowded station. 

In distributed systems, spooled outputs can often be printed by any of several 
equivalent print servers. If the queue behind one server is too long, the job may be 
placed in a less crowded queue. 

Negative feedback contributes to stability in queuing systems. If the scheduler 
assigns arriving jobs indiscriminately to a busy device, for example, then the queue 
behind that device might grow indefinitely (even though other devices might be 
underutilized). 

14.7 Feedback Loops 
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1. Explain how negative feedback could improve read performance in Level 1 (mirrored) 
RAID. 

2. How does negative feedback contribute to system stability? 

Ans: 1) If one of the disks in a mirrored pair contains a large queue of read requests, some 
of these requests could be sent to the other disk in the pair if it contains a smaller queue. 
2) Negative feedback prevents one resource from being overwhelmed while other identical 
resources lie idle. 

Self Review 

In positive feedback situations, the arrival rate of new requests might increase as a 
result of information being fed back. A classic example occurs in paged virtual 
memory multiprocessor systems. Suppose the operating system detects that a pro
cessor is underutilized. The system might inform the process scheduler to admit 
more processes to that processor's queue, anticipating that this would place a 
greater load on the processor. As more processes are admitted, the amount of 
memory that can be allocated to each process decreases and page faults might 
increase (because the working sets of all active processes might not fit in memory). 
Processor utilization will actually decrease as the system thrashes. A poorly 

14.7.2 Positive Feedback 



designed operating system might then decide to admit even more processes. Of 
course, this would cause further deterioration in processor utilization. 

Operating systems designers must be cautious when designing mechanisms to 
respond to positive feedback to prevent such unstable situations from developing. 
The effects of each incremental change should be monitored to see whether it 
results in the anticipated improvement. If a change causes performance to deterio
rate, this signals to the operating system that it might be entering an unstable 
range and that resource-allocation strategies should be adjusted in order to resume 
stable operation. 

1. In some large server systems, users communicate requests to a "front-end" server. This 
server accepts the user's request and sends it to a "back-end" server for processing. How 
could a front-end server balance request loads among a set of equivalent back-end servers 
using feedback loops? 

2. This section describes how positive feedback can intensify thrashing. Suggest one possible 
solution to this problem. 

Ans: 1) Back-end servers with a long queue of requests might send negative feedback to 
the front-end sever, and back-end servers that are idle might send positive feedback. The 
front-end server can use these feedback loops to send incoming requests to underloaded 
instead of overloaded servers. 2) The system can monitor the number of page recaptures and 
refuse to admit further processes beyond a certain threshold. 

Self Review 
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A system's performance depends heavily on the performance of its processors. Con-
ceptually, a processor can be divided into its instruction set, which is the set of 
machine instructions it can perform, and its implementation, which is the physical 
hardware. An instruction set might be composed of a few basic instructions that per-
form only simple functions, such as loading a value from memory into a register or 
adding two numbers. Alternatively, instruction sets can contain an abundance of 
more complex instructions such as those that solve a specified polynomial equation. 
The penalty for providing such a large number of complex instructions is more com-
plex hardware, which increases processor cost and might reduce performance for sim-
pier instructions; the benefit is that these complex routines can be performed quickly. 

The instruction set architecture (ISA) of a processor is an interface the 
describes the processor, including its instruction set, number of registers and mem-
ory size. The ISA is the hardware equivalent to an operating system API.61 

Although a particular ISA does not specify the hardware implementation, the ele-
ments of an ISA directly affect how the hardware is constructed and therefore sig-
nificantly impact performance. Approaches to IS As have evolved over the years. 
This section investigates these approaches and evaluates how ISA design decisions 
affect performance. 

14.8 Performance Techniques in Processor Design 



1. What trade-offs must be weighed when including single instructions that perform complex 
routines in an instruction set? 

2. Why is the choice of an ISA important? 

Ans: 1) The penalty for adding these instructions is more complex hardware, which might 
slow the execution of other more frequently used instructions; the benefit is faster execution 
of these complex routines. 2) The ISA specifies a programming interface between hardware 
and low-level software; therefore, it affects how easily code can be generated for the proces
sor and how much memory that code occupies. Also, the ISA directly affects processor hard
ware, which influences cost and performance. 

Self Review 
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Until the mid-1980s, the clear trend was to incorporate frequently used sections of 
code into single machine-language instructions, with the hope of making these func
tions faster to execute and easier to code in assembly language. The logic was 
appealing, judging by the number of ISAs that reflected these greatly expanded 
instruction sets—an approach that has been named complex instruction set com
puting (CISC), partly echoing the popular term reduced instruction set computing 
(RISC), which we discuss in the next section.62 

CISC processors originated when most systems programs were written in 
assembly language. An instruction set including single instructions that each per
formed several operations enabled assembly-language programmers to write their 
programs with fewer lines of code, thus improving programmer productivity. CISC 
continued to be attractive when high-level languages became widely used for writ
ing operating systems (such as the use of C and C++ in UNIX source code), because 
special-purpose instructions were added to fit well with the needs of optimizing 
compilers. Optimizing compilers alter the structure of compiled code (but not the 
semantics) to achieve higher performance for a particular architecture. CISC 
instructions mirrored the complex operations of high-level languages rather than 
the simple operations a processor could execute in one or two clock cycles. These 
complex instruction sets tended to be implemented via microprogramming. Micro
programming introduces a layer of programming below a computer's machine lan
guage; this layer specifies the actual primitive operations that a processor must 
perform, such as fetching an instruction from memory (see Section 2.9 for a further 
description). In these CISC architectures, the machine-language instructions were 
interpreted, so that complex instructions were performed as a series of simpler 
microprogrammed instructions.63 

CISC processors became popular largely in response to the decreasing cost of 
hardware coupled with the increasing cost of developing software with assembly 
language. CISC processors attempt to move most of the complexity from the soft
ware to the hardware. As a side effect, CISC processors also reduce the size of pro
grams, saving memory and easing debugging. Another characteristic of some CISC 
processors is a trend toward reducing the number of general-purpose registers, to 
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decrease cost and increase space available to other CISC structures, such as the 
instruction decoder.64-65 

One powerful technique to increase performance that developed during the 
CISC era was pipelining. A pipeline divides a processor's datapath (i.e., the portion 
of the processor that performs operations on data) into discrete stages. For every 
clock cycle, a maximum of one instruction can occupy each stage, allowing a proces
sor to perform operations on several instructions simultaneously. In the early 1960s. 
IBM developed the first pipelined processor, the IBM 7030 (nicknamed "Stretch"). 
The 7030's pipeline consisted of four stages: instruction fetch, instruction decode, 
operand fetch and execution. While the processor was executing one instruction, it 
fetched the operands for the next instruction, decoded another instruction and 
fetched a fourth instruction. After each clock cycle began, each instruction in the 
pipeline would move forward one stage; this permitted the 7030 to process up to four 
instructions at once, which improved performance significantly.66, 67, 68 

As processor manufacturing technology has improved, chip size and memory 
bandwidth have become less of a concern. Moreover, advanced compilers can easily 
perform many optimization techniques previously delegated to the implementation 
of the CISC instruction set.69 However, CISC processors still are popular in many 
personal computers; they also can be found in several high-performance computers. 
Intel Pentium (www.intel .com/products/desktop/processors/pentium4/) 
and Advanced Micro Devices (AMD) Athlon (www.amd.com/us-en/Processors/ 
Productlnformation/0, ,30_118_756,00.html) processors are CISC processors. 

1. (T/F) The widespread use of high-level programming languages eliminated the usefulness 
of complex instructions. 

2. What was the motivation behind the CISC processor-design philosophy? 

Ans: 1) False. Additional complex instructions were created to fit well with the needs of 
optimizing compilers. 2) Early operating systems were written primarily in assembly code, so 
complex instructions simplified programming, because each instruction performed several 
operations. 
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Many of the advantages of CISC processors were rendered unimportant by 
advances in hardware technology and compiler design. In addition, designers real-
ized that the microcode required to interpret complex instructions slowed the exe-
cution of the simpler instructions. Various studies indicated that a large majority of 
programs generated by popular compilers used only a small portion of their target 
processors' instruction sets. For example, an IBM study observed that the 10 most 
frequently executed instructions of the hundreds in the System/370 architecture 
(Fig. 14.2) accounted for two-thirds of the instruction executions on that machine.70 

The additional instructions incorporated into CISC instruction sets to improve soft-
ware development time were being used only infrequently. The simplest instrue-

14.8.2 Reduced Instruction Set Computing (RISC) 



tions to implement, such as register-memory transfers (loads and stores), were the 
most commonly used. 

Another IBM study, a static analysis of assembly-language programs written 
for the IBM Series/1 computer, provided more evidence that large CISC instruction 

sets might be inefficient. The study observed that programmers tended to generate 
"semantically equivalent instruction sequences" when working with the rich 

machine language of the IBM Series/1. The authors concluded that since it is diffi
cult to detect such sequences automatically, either instruction sets should be made 
sparser, or programmers should restrict their use of instructions.71 These observa
tions provided compelling motivation for the notion of reduced instruction set com
puting (RISC). This processor-design philosophy emphasizes that computer 
architects can optimize performance by concentrating then efforts on making com
mon instructions, such as branches, loads and stores, execute efficiently.72, 73 

RISC processors execute common instructions efficiently by including rela
tively few instructions, most of which are simple and can be performed quickly (i.e., 
in one clock cycle). This means that much of the programming complexity is moved 
from the hardware to the compiler, which permits RISC processor design to be sim
ple and to optimize for a small set of instructions. Furthermore, RISC control units 
are implemented in hardware, which reduces execution overhead compared to 
microcode. RISC instructions, which occupy fixed-length words in memory, are 
faster and easier to decode than variable-length CISC instructions. Additionally, 
RISC processors attempt to reduce the number of accesses to main memory by pro
viding many high-speed general-purpose registers in which programs can perform 
data manipulation.74 

Providing only simple, uniform-length instructions permits RISC processors 
to make better use of pipelines than CISC processors do. Pipelined execution in 
CISC architectures can be slowed by the longer processing times of complex 
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Figure 14.2 | The 10 most frequently executed instructions on IBM's System/370 
architecture.75 (Courtesy of International Business Machines Corporation.) 



instructions; these have the effect of idling sections of the pipeline handling simpler 
instructions. Additionally, pipelines on CISC machines often contain many stages 
and require complex hardware to support instructions of various lengths. Pipelines 
in RISC architectures contain few stages and are relatively straightforward to 
implement because most instructions require one cycle.76 

A simple and clever optimizing technique used in many RISC architectures is 
called delayed branching.77' 78 When a conditional branch is executed, the next 
sequential instruction might or might not be executed next, depending on the eval
uation of the condition. Delayed branching enables this next sequential instruction 
to enter execution anyway; then, if the branch is not taken, this next instruction can 
be well along, if not completely finished. RISC optimizing compilers often rear
range machine instructions so that a useful calculation (one that must be executed 
regardless of whether the branch is taken) is placed immediately after the branch. 
Because branching occurs more frequently than most people realize (as often as 
every fifth instruction on some popular architectures), this can yield considerable 
performance gains.79 Lilja provides a thorough analysis of delayed branching and 
several other techniques that can greatly reduce the so-called branch penalty in 
pipelined architectures.80 

The most significant trade-off in the RISC design philosophy is that its simple, 
reduced instruction set and register-rich architecture increase context-switching 
complexity.81 RISC architectures must save a large number of registers to main 
memory during a context switch; this reduces context-switching performance com
pared to CISC architectures due to an increased number of accesses to main mem
ory. Because context switching is pure overhead and occurs frequently, this can 
significantly impact system performance. 

In addition to increased context-switch time, there are other drawbacks to the 
RISC design. One interesting study tested the effect of instruction complexity on 
performance; the study selected three increasingly complex instruction subsets of 
the VAX. The researchers reached several conclusions:82 

i. Programs written in the simplest of the instruction subsets required as much 
as 2.5 times the memory of equivalent complex instruction set programs. 

2. The cache miss ratio was considerably larger for programs written in the 
simplest subset. 

3. The bus traffic for programs written in the simplest subset was about dou-
ble that of programs written in the most complex subset. 

These results and others like them indicate that RISC architectures can have 
negative consequences. 

Floating point operations execute faster in CISC architectures. Additionally 
CISC processors perform better for graphics or scientific programs, which repeatedly 
execute complex instructions; these programs tend to perform better on CISC 
machines with optimized complex instructions than on comparable RISC machines.83 

Figure 14.3 provides a summary comparison between the RISC and CISC 
design philosophies. Examples of RISC processors include the UltraSPARC 
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Category 
Characteristics of CISC 
Processors 

Characteristics of RISC 
Processors 

Instruction length 

Instruction decode 

Number of instructions in 
ISA 

Number of instructions per 
program 

Number of general-pur
pose registers 

Complexity 

Ability to exploit parallelism 
through pipelining 

Underlying philosophy 

Examples 

Variable, typically 1 to 10 
bytes. 
Via microcode. 

Many (typically several hun
dred), including many com
plex instructions. 
Few. 

Often, few (e.g., eight in 
the Intel Pentium 4 
processor).84 

In hardware. 

Limited. 

Implement as many opera
tions as possible. 

Pentium, Athlon. 

Fixed, typically 4 bytes. 

In hardware. 

Few (typically less than one 
hundred). 

Many (often about 20 per
cent more than for CISC). 
Many (typically, 32). 

In the compiler. 

Broad. 

Make the common case 
fast. 

MIPS, SPARC, G5. 

Figure 14.3 | RISC and CISC comparison. 

(www.sun.com/processors), MIPS (www.mips.com) and G5 (www.apple.com/ 
powermac/specs.html) processors. 

Self Review 
1. Why do RISC processors exploit pipelines better than CISC processors? 
2. Why does context switching require more overhead on RISC than on CISC processors? 

Ans: 1) RISC instructions are of fixed length and generally require one cycle to execute, so 
it is easy to overlap instructions such that most stages in the pipeline are performing mean
ingful work. The variable-length instructions of CISC processors have the effect of idling sec
tions of the pipeline not needed for simple instructions. 2) RISC processors contain many 
more registers than CISC processors, requiring a greater number of memory transfers during 
a context switch. 

As RISC and CISC processors have evolved, many techniques that were developed 
to independently increase the performance of one or the other have been inte
grated into both architectures.85, 86, 87 Many of these features add complexity to the 
instruction set or place more responsibility on the hardware to optimize perfor
mance. This convergence of architectures has blurred the line between RISC and 
CISC. The philosophy behind these processors is to increase performance in any 
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way possible, leading Severance et al. to coin the term fast instruction set comput
ing (FISC). Other commonly used names for this modern processor design philoso
phy are "post-RISC" and "second-generation RISC."88 

However, some designers adhere to the traditional terminology, "RISC" and 
"CISC." This school of thought—that the two types of processors have not 
converged—argues that RISC and CISC refer specifically to the ISA and not to 
how the ISA is implemented (i.e., additional hardware complexity is irrelevant). 
Further, they argue that the primary difference is that RISC instructions are of a 
uniform length and generally execute in one cycle, unlike CISC instructions. As we 
see in this section, most of the convergence results from the growing similarity of 
complex hardware in RISC and CISC machines and the expansion of the number 
of instructions in RISC ISAs, two aspects which these designers argue are not cen
tral to ISA design philosophies.89 

The sections that follow describe many techniques that post-RISC processors 
employ to improve processor performance. As we will see, these techniques cause 
processor hardware to be more complex, which increases cost and strays from the 
RISC tenet of keeping hardware simple. 

Superscalar execution enables more than one instruction to be executed in parallel 
during each clock cycle. Superscalar architectures include multiple execution units on 
a single chip and, until recently, were primarily used in CISC processors to reduce the 
time required to decode complex instructions. Today, superscalar execution is found 
in almost all general-purpose processors, because the parallelism that it allows 
increases performance. For example, both the Pentium 4 and G5 processors are 
superscalar. These architectures contain complicated hardware that ensures no two 
instructions executing simultaneously depend on each other. For example, when a 
processor executes the machine-code equivalent of an if...then...else control 
structure, the instructions inside the then and el se clauses cannot be executed until 
the processor has determined the value of the branch condition.90, 91, 92 

Superscalar Architecture 

Out-of-order execution (OOO) is a technique that dynamically reorders instruc
tions at runtime to optimize performance by isolating groups of instructions that 
can execute simultaneously. OOO facilitates deep pipelines and superscalar design, 
which require the processor or compiler to detect groups of independent instruc-
tions that can be executed in parallel.93, 94 

Such a mechanism, now common to both RISC and CISC processors, breaks 
with the RISC philosophy of leaving optimization to the compiler. OOO requires 
significant additional hardware to detect dependencies and handle exceptions 
When an instruction raises an exception, the processor must ensure that the pro
gram is in the state in which it would have been after the exception if the instruc-
tions had been executed in order.95, 96 

Out-of-Order Execution (OOO) 
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Branch prediction is a mechanism whereby a processor uses heuristics to determine 
the most probable result of a branch condition. The processor places instructions 
that are predicted to execute into the pipeline for immediate processing after the 
branch. If the processor guesses incorrectly, it must remove the predicted code from 
the pipeline, losing all work performed on that code. This case is slightly worse than 
the alternative, which is to wait until the result of a branch to fill the pipeline. How
ever, if the processor guesses correctly, performance increases, because the proces
sor can continue to execute instructions immediately after the branch. To achieve 
high performance using branch prediction, the processor must contain accurate 
branch prediction units, which also contribute to hardware complexity.97'98 

Branch Prediction 
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Many modern processors contain on-chip execution units called coprocessors. 
Designers optimize coprocessors to perform specific operations that the general-
purpose arithmetic and logic units (ALUs) execute slowly. These include floating 
point coprocessors and vector coprocessors. Vector coprocessors execute vector 
instructions, which operate on a set of data, applying the same instruction to each 
item in the set (e.g., adding one to each element in an array). Placing these copro
cessors on the processor's chip decreases the communication latency between the 
processor and its coprocessors, dramatically increasing the speed with which these 
operations are performed, but also increases hardware complexity." 

On-Chip Floating-Point and Vector Processing Support 

Perhaps the most significant divergence from the RISC philosophy is the expansion 
of the instruction sets in today's so-called RISC processors. These ISAs tend to 
include any instruction that enhances overall performance, regardless of the hard
ware complexity required to execute that instruction.100 For example, the Apple 
PowerMac G5 processor, referred to by many as a RISC processor, contains over a 
hundred more instructions than its ancestor, the G3. These instructions typically 
manipulate large (i.e., 128-bit) integers or perform the same instruction on multiple 
data units, a technique called vector processing.101 

Additional Infrequently-Used Instructions 

As RISC hardware has become more complex, CISC processors have adopted 
components of the RISC philosophy. For example, today's CISC processors often 
contain an optimized core subset of commonly used instructions that are decoded 
and executed quickly to enable performance comparable to that of RISC when 
complex instructions are not employed. In fact, the Intel Pentium 4 decodes all 
instructions into simple, fixed-size micro-ops before sending them to the execution 
unit. Often, the only reason that some complex instructions remain in a CISC ISA 
is to provide backward compatibility with code written for older versions of a CISC 
processor.102 In this way, CISC processors incorporate the benefits of simpler 
instructions advocated by the RISC philosophy. 

CISC convergence to RISC 



1. Despite increased additional hardware complexity, what is the primary characteristic that 
distinguishes today's RISC processors from CISC processors? 

2. (T/F) RISC processors are becoming more complex while CISC processors are becoming 
simpler. 

Ans: 1) Most of today's RISC processors continue to provide instructions of uniform length 
that require a single clock cycle to execute. 2) False. RISC processors are indeed becoming 
more complex. Although CISC processors incorporate RISC design philosophies, their hard
ware complexity continues to increase. 

Self Review 
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Techniques such as superscalar design, deep pipelines and OOO enable post-RISC 
processors to exploit parallelism. The hardware required to implement these fea
tures while accounting for dependencies across multiple execution units can 
become prohibitively expensive. In response, designers at Intel and Hewlett Pack
ard proposed a new design philosophy called Explicitly Parallel Instruction Com
puting (EPIC). EPIC attempts to simplify processor hardware to enable a high 
degree of parallelism. The EPIC philosophy requires that the compiler, not hard
ware, determines which instructions can be performed in parallel. This technique 
exploits instruction-level parallelism (ILP), which refers to sets of machine instruc
tions that can be executed in parallel (i.e., the instructions in the set do not rely on 
one another to execute). 

To support ILP, EPIC employs a variation of the very long instruction word 
(VLIW) method.103 In the VLIW method, the compiler determines which instruc
tions should be executed in parallel. This simplifies hardware, allowing more room 
for execution units; the Multiflow computer, the first VLIW machine, had 28 execu
tion, which is substantially more than modern superscalar processors.104 However, 
some dependencies are known only at execution time (e.g., because of branch 
instructions), but VLIWs form the execution path before the program executes. 
This limits the level of parallelism VLIW designs can exploit.105 

EPIC borrows from both VLIW processor designs and superscalar processor 
designs. EPIC processors assist the compiler by providing predictability—no out-of-
order execution is used, allowing EPIC compilers to optimize the most likely execu
tion path or paths. However, it is often difficult for a compiler to optimize even-
path of execution in a program. If the path of execution is incorrectly predicted, the 
processor ensures program correctness (e.g., by checking data dependencies).106 

Typical RISC and CISC processors employ branch prediction to probabilisti
cally determine the result of a branch. Instead, EPIC processors execute all possible 
instructions that could follow a branch in parallel and use only the result of the cor
rect branch once the predicate (i.e., the branch comparison) is resolved.107 This 
technique is called branch predication. 

Figure 14.4 illustrates the difference between program execution in an EPIC 
processor versus a post-RISC processor. In Fig. 14.4(a), the EPIC compiler has pro-
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Figure 14.4 | Instruction execution in an (a) EPIC processor and (b) post-RISC 
processor. 

duced a multi-op instruction, which is a package of a number of instructions that can 
be executed in parallel; the number depends on the processor. The processor decodes 
this multi-op into a number of single operations, then executes each simultaneously 
on several execution units. Because EPIC processors assist the compiler by providing 
predictability guarantees, they do not reorder multi-op instructions, and no OOO unit 
is needed. In Fig. 14.4(b), the post-RISC processor analyzes the instruction stream 
that it is executing and reorders instructions to find two instructions that can execute 
simultaneously. The processor places these two instructions into its two execution 
units (using a superscalar architecture) for simultaneous execution. 

Aside from improving performance through parallelism, EPIC processors 
employ speculative loading, a technique that attempts to reduce memory latency. 
When optimizing program code, the compiler converts each load instruction to a 
speculative load operation and a verifying load operation. A speculative load 
retrieves from memory data specified by an instruction that has yet to be executed. 
Therefore, the processor can execute a speculative load well before the actual data 



is needed. The verifying load ensures that the data from the speculative load is con
sistent (i.e., the value that was speculatively loaded has not been modified in mem-
ory). The processor can execute at full efficiency if the verifying load validates the 
speculative load, eliminating much of the cost of memory access. However, if the 
verifying load determines that the speculative load is inconsistent, the processor 
must wait while the correct data is retrieved from memory108 
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1. What is a motivation behind the EPIC design philosophy? 
2. How do EPIC ISAs reduce the performance cost of branching? 

Ans: 1) Superscalar designs do not scale well, because exponentially more hardware is 
needed for each additional processing unit. EPIC attempts to move the complexity into the 
compiler to exploit ILP. 2) EPIC compilers specify branch predication to execute both possi-
ble paths of execution after a branch. After the branch is performed, one path is discarded 
and the other is immediately ready to execute. 

Self Review 

a r s t echn ica .com/cpu /4q99 / r i sc -c i sc / rvc -1 .h tml 
Ars Technica is a Web site that publishes technical articles 
about computers, aimed at educating consumers. This article 
contains information on RISC and CISC design philosophies 
and characteristics of post-RISC processors. 
www.intel.com/products/server/processors/server/ 
Itanium/ 
Describes the Intel Itanium processor, one of the first commer-
daily available EPIC processors. 
www.bapco.com 
BAPCo is an organization that develops standard benchmarks, 
such as the popular SYSMark for processors. Its Web site 
describes its benchmarks in detail. 
www.linuxjournal.com/article.php?sid=2396 
Describes performance monitoring in Linux. 

www.opersys.com/LTT/ 
Provides a trace toolkit for Linux. 
www.eecs.harvard.edu/~vino/perf/hbench/ 
Provides information on hbench, which is a microbenchmark 
suite. The site includes a link to download a copy of the suite, 
documentation and related technical publications. 
www.specbench.org 
SPEC is an organization that develops standard benchmarks. 
Its Web site describes a number of benchmarks (called SPEC-
marks) used to evaluate a variety of systems and publishes the 
results of tests with these benchmarks on real systems. 
www.veritest.com/benchmarks/default.asp?visitor= 
VeriTest provides computer system evaluation services. This 
page from its Web site provides excellent information on several 
commercially available benchmarks and synthetic programs. 

Web Resources 

Summary 
The performance of a system depends heavily on its hard
ware, operating system and the interaction between the 
two. Cumbersome software causes poor performance, even 
on systems with powerful hardware, so it is important to 
consider a system's software performance as well as its 
hardware performance. 

Three common purposes for performance evaluation 
are selection evaluation, performance projection and per
formance monitoring. Some common performance mea
sures are turnaround time, response time, system reaction 
time, variance in response time, throughput and capacity. 

Some performance results may be deceptive if the evalua
tion does not use a representative workload or focuses on a 
small part of the system. 

A trace is a record of system activity—typically a log 
of user and application requests to the operating system. A 
profile records the activity of a system when executing in 
kernel mode. These techniques are useful in evaluating sys-
terns whose workload depends heavily on the system's exe-
cution environment. 

Timings are useful for performing quick comparisons 
in hardware. Timings measure how many instructions a sys-



tem can execute per second. Similarly, microbenchmarks 
permit evaluators to make quick comparisons between 

operating systems (or systems as a whole). A microbench-
mark measures how long an operating system operation 

(e.g., process creation) takes. 
An application-specific evaluation enables organiza-

tions and consumers to determine whether a particular sys-
tem is appropriate for a particular installation. The vector
sed methodology uses a weighted average of various 
microbenchmark results suited to a particular application. 

The hybrid methodology uses a trace to determine the rela-
tive weights for each primitive in the average. A kernel pro
gram is a typical program that might be run at an 
installation; it is executed "on paper" using manufacturers' 
instruction timing estimates. 

Analytic models are mathematical representations of 
computer systems or their components. A large body of 
mathematical results exists that evaluators can apply in 
order estimate the performance of a given computer sys-
tem or component quickly and fairly accurately. 

A benchmark is a real program that an evaluator exe
cutes on the machine being evaluated. Several organizations 
have developed industry-standard benchmarks targeted to 
different kinds of systems. Evaluators use the results from 
running these benchmarks to compare systems. Benchmarks 
should be repeatable, accurately reflect the types of applica
tions that will be executed and be widely used. 

Synthetic programs are artificial programs that evalu
ate a specific component of an operating system; they 
might be constructed to match the instruction frequency 
distribution of a large set of programs. Synthetic programs 
are useful in development environments; as new features 
become available, synthetic programs can be used to test 
that these features are operational. 

Simulation is a technique in which an evaluator 
develops a computerized model of the target system. The 
simulation is run to determine how a system might perform 
when it has been built. 

Performance monitoring is the collection and analysis 
of system performance information for existing systems. A 
resource becomes a bottleneck when it hinders the 
progress of the system because it cannot do its job effi
ciently. A resource becomes saturated when it has no 
excess capacity to fulfill new requests. In a feedback loop, 
information is reported to the system about how saturated 

(or underutilized) a resource is. With negative feedback, 
the arrival rate of requests at that resource might decrease; 
with positive feedback, the arrival rate might increase. 

A processor's instruction set architecture (ISA) is an 
interface that describes the processor, including its instruc
tion set, number of registers and memory size. The ISA is 
like an API that low-level software uses to construct exe
cutable programs. 

CISC ISAs tend to include a large number of instruc
tions, many of which require multiple cycles to execute; 
instruction length is variable. Many CISC implementations 
have few general-purpose registers and complex hardware. 
CISC processors became popular because they reduced 
memory cost and facilitated assembly-language program
ming. 

RISC ISAs tend to include a small number of instruc
tions, most of which execute in one cycle; instruction length 
is fixed. Many RISC implementations have a large number 
of general-purpose registers and simple hardware. They 
optimize the most-common instructions. RISC processors 
became popular because they use pipelines efficiently and 
eliminate cumbersome hardware, both of which improve 
performance. 

Today, RISC and CISC designs are converging, 
prompting many to call these modern processors post-
RISC, FISC or second-generation RISC. Still, some main
tain that this is not the case and that the terms RISC and 
CISC are still important. This convergence stems from 
increased hardware complexity and extra infrequently used 
instructions in RISC processors and from the fact that 
CISC processors often include an optimized core of RISC-
like instructions. 

EPIC, a newer processor-design philosophy, attempts 
to address the limited scalability of superscalar designs. 
EPIC processors place the responsibility on the compiler to 
determine the path of execution and use their many execu
tion units to support a high degree of parallelism. EPIC 
processors also reduce the penalty for main memory 
accesses by performing speculative loads before execution 
of a load instruction; the processor performs a verifying 
load when the instruction is executed, ensuring data integ
rity. If the data that was speculatively loaded has not 
changed, then no action is taken as a result of the verifying 
load; otherwise, the processor reexecutes the instruction 
using data from the verifying load. 
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absolute performance measure—Measure of the efficiency 
with which a computer system meets its goals, described 

by an absolute quantity such as the amount of time in 
which a system executes a certain benchmark. This con-

Key Terms 



incorporate single instructions that perform several oper
ations. 

delayed branching—Optimization technique for pipelined pro
cessors in which a compiler places directly after a branch 
an instruction that must be executed whether or not the 
branch is taken; the processor begins executing this 
instruction while determining the outcome of the branch. 

Dhrystone—Classic synthetic program that measures how 
effectively an architecture runs systems programs. 

dispersion—Measure of the variance of a random variable. 

distribution of response times—Set of values describing the 
response times for jobs in a system and the relative fre
quencies with which those values occur. 

ease of use—Measure of the comfort and convenience associ
ated with system use. 

event-driven simulator—Simulator controlled by events that 
are made to occur according to probability distributions. 

expected value—Sum of a series of values each multiplied by 
its respective probability of occurrence. 

Explicitly Parallel Instruction Computing (EPIC)—Processor-
design philosophy whose goals are to provide a high 
degree of instruction-level parallelism, reduce processor 
hardware complexity and improve performance. 

family of computers—Series of computers that are compatible 
in that they can run the same programs. 

fast instruction set computing (FISC)—Term describing the 
processor-design philosophy resulting from the conver
gence of RISC and CISC design philosophies. The FISC 
design philosophy stresses inclusion of any construct that 
improves performance. 

feedback loop—Technique in which information about the 
current state of the system can influence the number of 
requests arriving at a resource (e.g., positive and negative 
feedback loops). 

Hartstone—Popular synthetic benchmark used to evaluate 
real-time systems. 

hbench microbenchmark suite—Popular microbenchmark 
suite, which enables evaluators to effectively analyze the 
relationship between operating system primitives and 
hardware components. 

hybrid methodology—Performance evaluation technique that 
combines the vector-based methodology with trace data 
to measure performance for applications whose behavior 
depends strongly on user input. 

trasts with relative performance measures such as ease of 
use, which only can be used to make comparisons 
between systems. 

analytic model—Mathematical representation of a computer 
system or component of a computer system for the pur
pose of estimating its performances quickly and relatively 
accurately. 

application vector—Vector that contains the relative demand 
on operating system primitives by a particular application, 
used in an application-specific performance evaluation. 

arrival rate—Rate at which new requests are made for a 
resource. 

benchmark—Real program that an evaluator executes on the 
system being evaluated to determine how efficiently the 
system executes that program; benchmarks are used to 
compare systems. 

BIPS (billion instructions per second)—Unit commonly used 
to categorize the performance of a particular computer; a 
rating of one BIPS means a processor can execute one bil
lion instructions per second. 

bottleneck—Resource that hinders the progress of the system 
because it cannot do its job efficiently. 

branch penalty—Performance loss in pipelined architectures 
associated with a branch instruction; this occurs when a 
processor cannot begin processing the instruction after 
the branch until the processor knows the outcome of the 
branch. The branch penalty can be reduced by using 
delayed branching, branch prediction or branch predica
tion. 

branch predication—Technique used in EPIC processors 
whereby a processor executes all possible instructions that 
could follow a branch in parallel and uses only the result 
of the correct branch once the predicate (i.e., the branch 
comparison) is resolved. 

branch prediction—Technique whereby a processor uses heu
ristics to determine the most probable result of a branch 
in code; when the processor predicts correctly, perfor
mance increases, because the processor can continue to 
execute instructions immediately after the branch. 

Business Application Performance Corporation (BAPCo) — 
Organization that develops standard benchmarks, such as 
the popular SYSMark for processors. 

capacity—Measure of the maximum throughput a system can 
attain, assuming that whenever the system is ready to 
accept more jobs, another job is immediately available. 

complex instruction set computing (CISC)—Processor-design 
philosophy, emphasizing expanded instruction sets that 
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Imbench microbenchmark—Microbenchmark suite that 
enables evaluators to measure and compare system per
formance on a variety of UNIX platforms. 

instruction-level parallelism (ILP)—Parallelism that permits 
two machine instructions to be executed at once. Two 
instructions exhibit ILP if the execution of one does not 
affect the outcome of the other (i.e., the two instructions 
do not depend on each other). 

instruction set—Set of machine instructions a processor can 
perform. 

instruction set architecture (ISA)—Interface exposed by a 
processor that describes the processor, including its 
instruction set, number of registers and memory size. 

IOStone—Popular synthetic benchmark that evaluates file sys
tems. 

kernel program—Typical program that might be run at an 
installation; it is executed "on paper" using manufactur
ers' instruction timings and used for application-specific 
performance evaluation. 

mean—Average of a set of values. 
micro-op—Simple, RISC-like instruction that is the only type 

of instruction processed by a Pentium processor; the Pen
tium's instruction decoder converts complex instructions 
into a series of micro-ops. 

microbenchmark—Performance evaluation tool that measures 
the speed of a single operating system operation (e.g., 
process creation). 

microbenchmark suite—Program that consists of a number of 
microbenchmarks, typically used to evaluate many impor
tant operating system operations. 

MIPS (million instructions per second)—Unit commonly used 
to categorize the performance of a particular computer; a 
rating of one MIPS means a processor can execute one 
million instructions per second. 

MobileMark—Popular benchmark for evaluating systems 
installed on mobile devices developed by Business Appli
cation Performance Corporation (BAPCo). 

multi-op instruction—Instruction word used by an EPIC sys
tem in which the compiler packages a number of smaller 
instructions for the processor to execute in parallel. 

negative feedback—Data informing the system that a resource 
is having difficulty servicing all requests and the processor 
should decrease the arrival rate for requests at that 
resource. 

out-of-order execution (OOO)—Technique in which a proces
sor analyzes a stream of instructions and dynamically 

reorders instructions to isolate groups of independent 
instructions for parallel execution. 

performance monitoring—Collection and analysis of system 
performance information for existing systems; the infor
mation includes a system's throughput, response times, 
predictability, bottlenecks, etc. 

performance projection—Estimate of the performance of a 
system that does not exist, useful for deciding whether to 
build that system or to modify an existing system's design. 

positive feedback—Data informing the system that a resource 
has excess capacity, so the processor can increase the 
arrival rate for requests at that resource. 

predicate—Logical decision made on a subject (e.g., a branch 
comparison). 

predictability—Measure of the variance of an entity, such as 
response time. Predictability is particularly important for 
interactive systems, where users expect predictable (and 
short) response times. 

production program—Program that is run regularly at an 
installation. 

profile—Record of kernel activity taken during a real session, 
which indicates the operating system functions that are 
used most often and should therefore be optimized. 

random variable—Variable that can assume a certain range of 
values, where each value has an associated probability. 

reduced instruction set computing (RISC)—Processor-design 
philosophy that emphasizes small, simple instructions sets 
and optimization of the most-frequently used instructions. 

response time—In an interactive system, the time from when a 
user presses an Enter key or clicks a mouse until the sys
tem delivers a final response. 

saturation—Condition of a resource that has no excess capac
ity to fulfill new requests. 

script-driven simulator—Simulator controlled by data care
fully designed to reflect the anticipated environment of 
the simulated system; evaluators derive this data from 
empirical observations. 

selection evaluation—Analysis regarding whether obtaining a 
computer system or application from a particular vendor 
is appropriate. 

service rate—Rate at which requests are completed by a 
resource. 

simulation—Performance evaluation technique in which an 
evaluator develops a computerized model of a system 
being evaluated. The model is then run to reflect the 
behavior of the system being evaluated. 
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TIPS (trillion instructions per second)—Unit used to catego-
rize the performance of a particular computer; a rating of 
one TIPS means a processor can execute one trillion 
instructions per second. 

trace (performance evaluation)—Record of real system activ-
ity, which is executed on systems to test how the system 
handles a sample workload. 

Transaction Processing Performance Council (TPC) bench
marks—Popular benchmarks which target database sys
tems. 

turnaround time—Time from when a job is submitted until the 
system completes executing it. 

utilization—Fraction of time that a resource is in use. 

validate a model—To demonstrate that a computer model is 
an accurate representation of the real system the model is 
simulating. 

variance in response times—Measure of how much individual 
response times deviate from the mean response time. 

vector-based methodology—Method of calculating an applica
tion-specific evaluation of a system based on the weighted 
average of the microbenchmark results for the. target sys
tem's primitives; the weights are determined by the the 
target application's relative demand for each primitive. 

very long instruction word (VLIW)—Technique in which a 
compiler chooses which instructions a processor should 
execute in parallel and packages them into a single (very 
long) instruction word; the compiler guarantees that there 
are no dependencies between instructions that the proces
sor executes at the same time. 

WinBench 99—Popular synthetic program used extensively 
today in testing a system's graphics, disk and video subsys-
tems in a Microsoft Windows environment. 

WebMark—Popular benchmark for Internet performance 
developed by Business Application Performance Corpo
ration (BAPCo). 

Whetstone—Classic synthetic program which measures how 
well systems handle floating point calculations, and has 
thus been helpful in evaluating scientific programs. 

workload—Measure of the amount of work that has been sub-
mitted to a system; evaluators determine typical workloads 
for a system and evaluate the system using these workloads. 

14.2 When a user logged in, some early timesharing systems 
printed the total number of logged-in users. 

14.1 Explain why it is important to monitor and evaluate the 
performance of a system's software as well as its hardware. 

Exercises 

SPECmark—Standard benchmark for testing systems; SPEC-
marks are published by the Standard Performance Evalu
ation Corporation (SPEC). 

speculative loading—Technique whereby a processor retrieves 
from memory data specified by an instruction that has yet 
to be executed; when the instruction is executed, the pro
cessor performs a verifying load to ensure the data's con
sistency. 

stability—Condition of a system that functions without error 
or significant performance degradation. 

Standard Application (SAP) benchmarks—Popular bench
marks used to evaluate a system's scalability. 

Standard Performance Evaluation Corporation (SPEC)— 
Organization that develops standard, relevant bench
marks (called SPECmarks), which are used to evaluate a 
variety of systems; SPEC publishes the results of tests 
with these benchmarks on real systems. 

STREAM—Popular synthetic benchmark which tests the 
memory subsystem. 

superscalar architecture—Technique in which a processor con
tains multiple execution units so that it can execute more 
than one instruction in parallel per clock cycle. 

synthetic benchmark—Another name for a synthetic program. 
synthetic program—Artificial program used to evaluate a spe

cific component of a system or constructed to mirror the 
characteristics of a large set of programs. 

SYSmark benchmark—Popular benchmark for desktop sys
tems developed by Business Application Performance 
Corporation (BAPCo). 

system reaction time—Time from when a job is submitted to a 
system until the first time slice of service is given to that 
job. 

system tuning—Process of making fine adjustments to a sys
tem based on performance monitoring to optimize the 
system's execution for a specific operating environment. 

system vector—Vector containing the results of microbench-
marks for a number of operating system primitives for a 
specific system, used in an application-specific evaluation. 

throughput—Work-per-unit-time performance measurement. 
timing—Raw measure of an isolated hardware performance 

metric, such as a BIPS rating, used for quick comparisons 
between systems. 
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a. Why was this information useful to the user? 
b. In what circumstances might this not have been a 

useful indication of load? 
c. What factors tended to make this a highly reliable 

indication of system load on a timesharing system 
that supported many users? 

14.3 Briefly discuss each of the following purposes for perfor
mance evaluation. 

a. selection evaluation 
b. performance projection 
c. performance monitoring 

14.4 What is system tuning? Why is it important? 

14.5 Distinguish between user-oriented and system-oriented 
performance measures. 

14.6 What is system reaction time? 
Is it more critical to processor-bound or I/O-bound jobs? 

Explain your answer. 

14.7 In discussing random variables, why can mean values 
sometimes be deceiving? 

What other performance measure is useful in describing 
how closely the values of a random variable cluster about its 
mean? 

14.8 Why is predictability such an important attribute of 
computer systems? 

In what types of systems is predictability especially criti
cal? 
14.9 Some commonly used performance measures follow. 

i. turnaround time 
ii. throughput 
iii. response time 
iv. workload 
v. system reaction time 
vi. capacity 
vii. variance of response times 
viii. utilization 

For each of the following, indicate which performance 
measure(s) is (are) described. 

a. the predictability of a system 

b. the current demands on a system 

c. a system's maximum capabilities 

d. the percentage of a resource in use 

e. the work processed per unit time 

f. turnaround time in interactive systems 

14.10 What performance measure(s) is (are) of greatest inter
est to each of the following? Explain your answers. 

a. an interactive user 
b. a batch-processing user 
c. a designer of a real-time process control system 
d. installation managers concerned with billing users for 

resource usage 
e. installation managers concerned with projecting sys

tem loads for the next yearly budget cycle 
f. installation managers concerned with predicting the 

performance improvements to be gained by adding 
i. memory 
ii. faster processors 
iii. disk drives 

14.11 There is a limit to how many measurements should be 
taken on any system. What considerations might cause you to 
avoid taking certain measurements? 

14.12 Simulation is viewed by many as the most widely appli
cable performance evaluation technique. 

a. Give several reasons for this. 
b. Even though simulation is widely applicable, it is not 

as widely used as one might expect. Give several rea
sons why. 

14.13 Some of the popular performance evaluation and moni
toring techniques are 

i. timings 
ii. microbenchmarks 
iii. synthetic programs 
iv. vector-based methodology 
v. simulations 
vi. kernel programs 
vii. hardware monitors 
viii. analytic models 
ix. software monitors 
x. benchmarks 

Indicate which of these techniques is best defined by 
each of the following. (Some items can have more than one 
answer.) 

a. their validity might be jeopardized by making sim-
plfying assumptions 

b. weighted average of instruction timings 

c. produced by skilled mathematicians 

d. models that are run on a computer 
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14.15 On one computer system, the processor contains a BIPS 
meter that records how many billion instructions per second 
the processor is performing at any instant in time. The meter is 
calibrated from 0 to 4 BIPS in increments of 0.1 BIPS. All of 
the workstations to this computer are currently in use. Explain 
how each of the following situations might occur. 

a. The meter reads 3.8 BIPS and the terminal users are 
experiencing good response times. 

b. The meter reads 0.5 BIPS and the terminal users are 
experiencing good response times. 

c. The meter reads 3.8 BIPS and the terminal users are 
experiencing poor response times. 

d. The meter reads 0.5 BIPS and the terminal users are 
experiencing poor response times. 

14.16 You are a member of a performance evaluation team 
working for a computer manufacturer. You have been given 
the task of developing a generalized synthetic program to facil
itate the evaluation of a completely new computer system with 
an innovative instruction set. 

a. Why might such a program be useful? 

b. What features might you provide to make your pro
gram a truly general evaluation tool? 

14.17 Distinguish between event-driven and script-driven sim
ulators. 

14.18 What does it mean to validate a simulation model? 
How might you validate a simulation model of a small 

timesharing system (which already exists) with disk storage, 
several CRT terminals, and a shared laser printer? 

14.19 What information might a performance evaluator get 
from an instruction execution trace? 

a module execution trace? 
Which of these is more useful for analyzing the opera

tion of individual programs? 
for analyzing the operation of systems? 

14.20 How can bottlenecks be detected? 
How can they be removed? 
If a bottleneck is removed, should we expect a system's 

performance to improve? Explain. 

14.21 What is a feedback loop? 
Distinguish between negative and positive feedback. 
Which of these contributes to system stability? 
Which could cause instability? Why? 

14.22 Workload characterization is an important part of any 
performance study. We must know what a computer is sup-
posed to be doing before we can say much about how well it is 
doing it. What measurements might you take to help charac-
terize the workload in each of the following systems? 

e. useful for quick comparisons of "raw horsepower" 
for hardware 

f. particularly valuable in complex software environ
ments 

g. a real program executed on a real machine 
h. useful for determining the performance of operating 

system primitives 
i. custom-designed programs to exercise specific fea

tures of a machine 
j. a real program "executed on paper" 
k. a production program 
1. most commonly developed by using the techniques 

of queuing theory and Markov processes 
m. often used when it is too costly or time consuming to 

develop a synthetic program 

14.14 What performance evaluation techniques are most 
applicable in each of the following situations? Explain your 
answers. 

a. An insurance company has a stable workload consist
ing of a large number of lengthy batch-processing 
production runs. Because of a merger, the company 
must increase its capacity by 50 percent. The com
pany wishes to replace its equipment with a new com
puter system. 

b. The insurance company described in (a) wishes to 
increase capacity by purchasing some additional 
memory and channels. 

c. A computer company is designing a new, ultrahigh-
speed computer system and wishes to evaluate sev
eral alternative designs. 

d. A consulting firm that specializes in commercial data 
processing gets a large military contract requiring 
extensive mathematical calculations. The company 
wishes to determine if its existing computer equip
ment will process the anticipated load of mathemati
cal calculations. 

e. Management in charge of a multicomputer network 
needs to locate bottlenecks as soon as they develop 
and to reroute traffic accordingly. 

f. A systems programmer suspects that one of the soft
ware modules is being called upon more frequently 
than originally anticipated. The programmer wants to 
confirm this before devoting substantial effort to 
recoding the module to make it execute more effi
ciently. 

g. An operating systems vendor needs to test all aspects 
of the system before selling its product commercially. 

676 Performance and Processor Design 



a. a timesharing system designed to support program 
development 

b. a batch-processing system used for preparing 
monthly bills for an electric utility with half a million 
customers 

c. an advanced workstation used solely by one engineer 
d. a microprocessor implanted in a person's chest to 

regulate heartbeat 
e. a local area computer network that supports a 

heavily used electronic mail system within a large 
office complex 

f. an air traffic control system for collision avoidance 
g. a weather forecasting computer network that 

receives temperature, humidity, barometric pressure 
and other readings from 10,000 grid points through
out the country over communications lines. 

h. a medical database management system that pro
vides doctors around the world with answers to medi
cal questions. 

i. a traffic control computer network for monitoring 
and controlling the flow of traffic in a large city 

14.23 A computer system manufacturer has a new multipro
cessor under development. The system is modularly designed 
so that users may add new processors as needed, but the con
nections are expensive. The manufacturer must provide the 
connections with the original machine because they are too 
costly to install in the field. The manufacturer wants to deter
mine the optimal number of processor connections to provide. 
The chief designer says that three is optimal. The designer 

Suggested Projects 
14.28 It is often difficult to measure performance in a system 
without influencing the results. Prepare a research paper on 
the various ways benchmarks minimize the effect they have on 
a system's performance. 

14.29 In recent years, graphics-rendering technology has 
improved at a phenomenal rate. Prepare a research paper on 
the architectural features that boost graphics card perfor
mance. Also discuss graphics card performance evaluation 
techniques. 

14.30 Prepare a research paper on the IBM PowerPC 970 pro
cessor, which powers Apple's PowerMac G5 series. What type 
of instruction set does it have? What other technology 
improves the performance of this processor? 

Suggested Simulations 
14.34 Obtain versions of popular benchmarks or synthetic 
programs discussed in the text, such as SYSMark or a SPEC-

believes that placing more than three processors on the system 
would not be worthwhile and that the contention for memory 
would be too great. What performance evaluation techniques 
would you recommend to help determine the optimal number 
of connections during the design stage of the project? Explain 
your answer. 

14.24 Why are RISC programs generally longer than their 
CISC equivalents? 

Given this, why might RISC programs execute faster 
than their CISC equivalents? 

14.25 Compare branch prediction to branch predication. 
Which is likely to yield higher performance? Why? 

14.26 For each of the following features of modern processors, 
describe how this feature improves performance and indicate 
why its inclusion in a processor strays from either a pure RISC 
or pure CISC design. 

a. superscalar architecture 

b. out-of-order execution (OOO) 

c. branch prediction 

d. on-chip vector and floating point support 

e. large instruction sets 

f. decoding complex, multicycle instructions into sim
pler, single-cycle instructions. 

14.27 How do EPIC processors differ from post-RISC proces
sors? 

Given these differences, what could be a hindrance to 
the adoption of EPIC processors? 

14.31 Prepare a research paper on tools such as gprof to allow 
application developers to profile their software. 

14.32 Prepare a research paper surveying contemporary stud
ies that compare RISC performance to CISC performance. 
Describe the strengths and weaknesses of each design philoso
phy in today's systems. 
14.33 In the text, it was indicated that one weakness of the 
RISC approach is a dramatic increase in context-switching 
overhead. Give a detailed explanation of why this is so. Write a 
paper on context switching. Discuss the various approaches 
that have been used. Suggest how context switching might be 
handled efficiently in RISC-based systems. 

mark. Run these on several computers and prepare a compari
son of the results. Are your results similar to those published 
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10 minutes—10 percent of the jobs 
30 minutes—10 percent of the jobs 
60 minutes—10 percent of the jobs 
The load on the system is such that there is always at 

least one job waiting to be initiated. Jobs are processed strictly 
first-come-first-served. 

Write a simulation program to help you decide which 
memory placement strategy should be used at this installation. 
Your program should use random-number generation to pro
duce the memory requirement and execution time for each job 
according to the distributions above. Investigate the perfor-
mance of the installation over an eight-hour period by measur-
ing throughput, storage utilization, and other items of interest 
to you for each of the following memory placement strategies. 

a. first fit 
b. best fit 
c. worst fit 

14.36 At the installation described in the previous problem, 
management suspects that the first-come-first-served job 
scheduling might not be optimal. In particular, they are con-
cerned that longer jobs tend to keep shorter jobs waiting. A 
study of waiting jobs indicates that there are always at least 10 
jobs waiting to be initiated (i.e., when 10 jobs are waiting and 
one is initiated, another arrives immediately). Modify your 
simulation program from the previous exercise so that job 
scheduling is now performed on a shortest-job-first basis. How 
does this affect performance for each of the memory place-
ment strategies? What problems of shortest-job-first schedul-
ing become apparent? 

information on commercial benchmarks. Patterson and Henne-
sesy's Computer Organization and Design describes processor 
architecture.113 Stokes114 and Aletan115 survey the histories and 
philosophies of RISC and CISC processors. Flynn, Mitchell and 
Mulder discuss some benefits of the CISC approach.116 Schlan-
sker and Rau explain the EPIC design philosophy.117 The bibli-
ography for this chapter is located on our Web site at 
www.deitel.com/books/os3e/Bibliography.pdf. 

4. Ferrari, D.; G. Serazzi; and A. Zeigner, Measurement and Tun-
ing of Computer Systems, Englewood Cliffs, NJ: Prentice Hall, 
1983. 

5. Anderson, G., "The Coordinated Use of Five Performance Eval-
uation Methodologies," Communications of the ACM, Vol 27, 
No. 2, February 1984, pp. 119-125. 

by the vendors? What factors might cause differences between 
the results? Describe your experience using these benchmarks 
and synthetic programs. 

14.35 In this problem, you will undertake a reasonably 
detailed simulation study. You will write an event-driven simu
lation program using random-number generation to produce 
events probabilistically. 

At one large batch-processing computer installation the 
management wants to decide what memory placement strat
egy will yield the best possible performance. The installation 
runs a computer with a large main memory that uses variable-
partition multiprogramming. Each user program runs in a sin
gle group of contiguous storage locations. Users state their 
memory requirement in advance, and the operating system 
allocates each user the requested memory when the user's job 
is initiated. A total of 1024MB of main memory is available for 
user programs. 

The storage requirements of jobs at this installation are 
distributed as follows. 

10MB—30 percent of the jobs 
20MB - 2 0 percent of the jobs 
30MB—25 percent of the jobs 
40MB —15 percent of the jobs 
50MB —10 percent of the jobs 
Execution times of jobs at this installation are indepen

dent of the jobs' storage requirements and are distributed as 
follows. 

1 minute—30 percent of the jobs 
2 minutes—20 percent of the jobs 
5 minutes—20 percent of the jobs 

Lucas's 1971 paper, "Performance Evaluation and Monitoring," 
provides a survey of performance evaluation.109 A discussion of 
recent trends in performance evaluation, particularly bench
marking, is found in The Seventh Workshop on Hot Topics in 
Operating Systems in the section entitled "Lies, Damn Lies, and 
Benchmarks."110, 111 The SPEC Web site (www.specbench.org) 
and the PC Magazine benchmarks from VeriTest Web site 
(www.veritest.com/benchmarks/default.asp)112 provide 
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What's going to happen in the next decade is that 
we'll figure out how to make parallelism work. 

-David Kuck quoted in TIME,March 28,1988-

"The question is," said Humpty Dumpty, "whish is to be master - that's all." 
— Lewis Carroll — 

I hope to see my Pilot face to face When I have crossed the bar. 
— Alfred, Lord Tennyson — 

"If seven maids with seven mops 
Swept it for half a year, 
Do you suppose," the Walrus said, 
"That they could get it clear?" 

—Lewis Carroll— 

The most general definition of beauty ... Multeity in Unity. 
—Samuel Taylor Coleridge— 



Chapter 15 

Multiprocessor 
Management 

Objectives 
After reading this chapter, you should understand: 

• multiprocessor architectures and operating system organizations. 

• multiprocessor memory architectures. 

• design issues specific to multiprocessor environments. 

• algorithms for multiprocessor scheduling. 

• process migration in multiprocessor systems. 

• load balancing in multiprocessor systems. 

• mutual exclusion techniques for multiprocessor systems. 
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For decades, Moore's Law has successfully predicted an exponential rise in proces-
sor transistor count and performance, yielding ever more powerful processors. 
Despite these performance gains, researchers, developers, businesses and consum-
ers continue to demand substantially more computing power than one processor 
can provide. As a result, multiprocessing systems—computers that contain more 
than one processor —are employed in many computing environments. 

Large engineering and scientific applications that execute on supercomputers 
increase throughput by processing data in parallel on multiple processors. Busi-
nesses and scientific institutions use multiprocessing systems to increase system per
formance, scale resource usage to application requirements and provide a high 
degree of data reliability.1 For example, the Earth Simulator in Yokohama, Japan — 
the most powerful supercomputer as of June, 2003 —contains 5,f20 processors, each 
operating at 500MHz (see the Mini Case Study, Supercomputers). The system can 

15.1 Introduction 

686 Multiprocessor Management 

Mini Case Study 
Supercomputers 
Supercomputer is simply a term 
for the most powerful contempo
rary computers. The early super
computers would be no match for 
today's inexpensive PCs. The 
speed of a supercomputer is mea
sured in Flops (Floating-point 
operations per second). 

The first supercomputer was 
the CDC 6600, manufactured by 
Control Data Corporation and 
designed by Seymour Cray, who 
became known as the father of 
supercomputing (see the Bio
graphical Note, Seymour Cray).2, 3 

This machine, released in the early 
1960's, processed 3 million instruc
tions per second.4, 5 It was also the 
first computer to use the RISC 
(reduced instruction set comput-

ing) architecture.6 '7 Roughly 10 
years and several machines later, 
Cray designed the Cray-1, one of 
the earliest vector-processor mod
els.8 (Vector processors are dis
cussed in Section 15.2.1, 
Classifying Sequential and Parallel 
Architectures.) The supercomput
ers that Cray designed dominated 
the high-performance field for 
many years. 

According to the supercom
puter tracking organization 
Top500 (www.top500.org), the 
fastest computer in the world (at 
the time this book was published) 
is NEC's Earth Simulator, located in 
Japan. It operates at a peak speed 
of roughly 35 teraflops, more 
than twice the speed of the sec-

ond-fastest computer and tens of 
thousands of times faster than a 
typical desktop machine.9, 10 The 
Earth Simulator consists of 5,120 
vector processors grouped into 
640 units of eight processors each, 
where each unit has 16GB of 
shared main memory, totall ing 
10TB of memory.11, 12 These units 
are connected by 1500 miles of 
network cable and are linked to a 
640TB disk system and a tape 
library that can hold over 1.5 
petabytes (1,500,000,000,000,000 
bytes).13, 14 This enormous com
puting capacity is used for 
research in predicting environ
mental conditions and events.15 



execute 35.86 Tflops (trillion floating point operations per second), enabling 
researchers to model weather patterns, which can be used to predict natural disas
ters and evaluate how human activities affect nature.16, 17 

Multiprocessing systems must adapt to different workloads. In particular, the 
operating system should ensure that 

• all processors remain busy 

• processes are evenly distributed throughout the system 

• execution of related processes is synchronized 

• processors operate on consistent copies of data stored in shared memory 

• mutual exclusion is enforced. 

Techniques used to solve deadlock in multiprocessing and distributed systems are 
similar and are discussed in Chapter 17, Introduction to Distributed Systems. 

This chapter describes multiprocessor architectures and techniques for opti
mizing multiprocessing systems. These techniques focus on improving performance, 
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Seymour Cray 
Seymour Cray is known as the 
father of supercomputing. Shortly 
after getting his Masters in 
Applied Mathematics from the 
University of Minnesota in 1951, 
he joined Engineering Research 
Associates (ERA), one of the first 
companies to build digital 
computers.18, 19, 21 At ERA Cray 
designed the 1103, the first com
puter designed for scientific 
research that also sold well to the 
general market.20, 22 

In 1957, Cray left the com
pany wi th William Norris (the 
founder of ERA) to start Control 
Data Corporation.2324-25 By 1960 
Cray had designed the CDC 1604, 
the first computer that com-

pletely replaced vacuum tubes 
wi th transistors.26, 27, 28 In 1962 
Cray designed the CDC 6600, the 
first true "supercomputer," fo l 
lowed by the CDC 7600.29, 30, 31 He 
always strove for simplicity, so the 
CDC 6600 featured a simplified 
architecture based on a smaller 
set of instructions—a design phi
losophy later called RISC (reduced 
instruction set computing).32, 33, 34 

Seymour Cray founded Cray 
Research in 1972 to continue 
building large scientific comput
ers.35 The Cray-1, one of the earli
est vector-processor computers, 
was released in 1976 (see 
Section 15.2.1, Classifying Sequen
tial and Parallel Architectures).36 

The Cray-1 was much smaller yet 
more powerful than the CDC 
7600.37 It was also visually inter
esting, curving around to form a 
cylinder wi th a gap, and equipped 
wi th a bench running around the 
outside.38 It ran at 133 megaflops, 
which was extraordinarily fast at 
that t ime, but slower than today's 
typical desktop PCs.39 The Cray-1 
was fol lowed by three more Cray 
models, each progressively faster 
and more compact than the last. 
The computational unit (not 
including the memory banks and 
cooling equipment) of the Cray-4 
was smaller than the human 
brain.40 



fairness, cost and fault tolerance. Often, improvement in one of these parameter-
occurs at the expense of the others. We also consider how design decisions can 
affect multiprocessor performance. 

1. Why are multiprocessors useful? 
2. How do the responsibilities of a multiprocessor operating system differ from those of a 

uniprocessor system? 

Ans: 1) Many computer users demand more processing power than one processor can provide 
For example, businesses can use multiprocessors to increase performance and scale resource 
usage to application needs. 2) The operating system must balance the workload of various pro
cessors, enforce mutual exclusion in a system where multiple processes can execute truly simul
taneously and ensure that all processors are made aware of modifications to shared memory. 

Self Review 
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The term "multiprocessing system" encompasses any system containing more than 
one processor. Examples of multiprocessors include dual-processor personal com
puters, powerful servers that contain many processors and distributed groups of 
workstations that work together to perform tasks. 

Throughout this chapter we present several ways to classify multiprocessors. 
In this section, we categorize multiprocessing systems by their physical properties, 
such as the nature of the system's datapath (i.e., the portion of the processor that 
performs operations on data), the processor interconnection scheme and how pro
cessors share resources. 

15.2 Multiprocessor Architecture 

Flynn developed an early scheme for classifying computers into increasingly parallel 
configurations. The scheme consists of four categories based on the different types of 
streams used by processors.41 A stream is simply a sequence of bytes that is fed to a 
processor. A processor accepts two streams—an instruction stream and a data stream. 

Single-instruction-stream, single-data-stream (SISD) computers are the sim
plest type. These are traditional uniprocessors in which a single processor fetches one 
instruction at a time and executes it on a single data item. Techniques such as pipelin
ing, very long instruction word (VLIW) and superscalar design can introduce paral
lelism into SISD computers. Pipelining divides an instruction's execution path into 
discrete stages. This allows the processor to process multiple instructions simulta
neously, as long as at most one instruction occupies each stage during a clock cycle. 
VLIW and superscalar techniques simultaneously issue multiple independent instruc
tions (from one instruction stream) that execute in different execution units. VLIW 
relies on the compiler to determine which instructions to issue at any given clock 
cycle, whereas superscalar design requires that the processor make this decision.42 

Additionally, Intel's Hyper-Threading technology introduces parallelism by creating 
two virtual processors from one physical processor. This gives a multiprocessor-
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enabled operating system the impression that it is running on two processors that 
each execute at a little less than half the speed of the physical processor.43 

Multiple-instruction-stream, single-data-stream (MISD) computers are not 
commonly used. A MISD architecture would have several processing units that act 
on a single stream of data. Each unit would execute a different instruction on the 
data and pass the result to the next unit.44 

Single-instruction-stream, multiple-data-stream (SIMD) computers issue 
instructions that act on multiple data items. A SIMD computer consists of one or 

more processing units. A processor executes a SIMD instruction by performing the 
same instruction on a block of data (e.g., adding one to every element in an array). 
If there are more data elements than processing units, the processing units fetch 
additional data elements for the next cycle. This can increase performance relative 
to SISD architectures, which would require a loop to perform the same operation 
ome data element at a time. A loop contains many conditional tests, requires the 
SISD processor to decode the same instruction multiple times and requires the 
SISD processor to read data one word at a time. By contrast, SIMD architectures 
read in a block of data at once, reducing costly memory-to-register transfers. SIMD 
architectures are most effective in environments in which a system applies the same 
instruction to large data sets.45, 46 

Vector processors and array processors use a SIMD architecture. A vector 
processor contains one processing unit that executes each vector instruction on a 
set of data, performing the same operation on each data element. Vector processors 
rely on extremely deep pipelines (i.e., ones containing many stages) and high clock 
speeds. Deep pipelines permit the processor to perform work on several instruc
tions at a time so that many data elements can be manipulated at once. An array 
processor contains several processing units that perform the same instruction in 
parallel on many data elements. Array processors (often referred to as massively 
parallel processors) might contain tens of thousands of processing elements. There
fore, array processors are most efficient when manipulating large data sets. Vector 
and array processing are useful in scientific computing and graphics manipulation 
where the same operation must be applied to a large data set (e.g., matrix 
transformations).47, 48 The Connection Machine (CM) systems built by Thinking 
Machines, Inc., are examples of array processors.49 

Multiple-instruction-stream, multiple-data-stream (MIMD) computers are 
multiprocessors in which the processing units are completely independent and 
operate on separate instruction streams.50 However, these systems typically contain 
hardware that allows processors to synchronize with each other when necessary, 
such as when accessing a shared peripheral device. 
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1. Thread-level parallelism (TLP) refers to the execution of multiple independent threads in 
parallel. Which multiprocessor architecture exploits TLP? 

2. (T/F) Only SIMD processor architectures exploit parallelism. 

Self Review 



Ans: 1) Only MIMD and MISD architectures can execute multiple threads at once. How-
ever, the threads executed by a MISD computer manipulate the same data and are not inde-
pendent. Therefore, only MIMD systems can truly exploit TLP. 2) False. SISD systems use 
techniques such as pipelines, VLIW and superscalar design to exploit parallelism; MISD pro-
cessors execute multiple threads at once; and MIMD processors exploit TLP as described in 
the previous answer. 

The interconnection scheme of a multiprocessor system describes how the system's 
components, such as processors and memory modules, are physically connected. 
The interconnection scheme is a key issue for multiprocessor designers because it 
affects the system's performance, reliability and cost. An interconnection scheme 
consists of nodes and links. Nodes are composed of system components and/or 
switches that route messages between components. A link is a connection between 
two nodes. In many systems, a single node might contain one or more processors, 
their associated caches, a memory module and a switch. In large-scale multiproces-
sors, we sometimes abstract the concept of a node and denote a group of nodes as a 
single supernode. 

Designers use several parameters to evaluate interconnection schemes. A 
node's degree is the number of nodes to which it is connected. Designers try to min
imize a node's degree to reduce the complexity and cost of its communication inter
face. Nodes with larger degrees require more complex communication hardware to 
support communication between the node and its neighbor nodes (i.e., nodes con
nected to it).51 

One technique for measuring an interconnection scheme's fault tolerance is to 
count the number of communication links that must fail before the network is 
unable to function properly. This can be quantified using the bisection width—the 
minimum number of links that need to be severed to divide the network into two 
unconnected halves. Systems with larger bisection widths are more fault tolerant 
than those with smaller bisection widths because more components must fail before 
the entire system fails. 

An interconnection scheme's performance largely depends on communication 
latency between nodes. This can be measured in several ways, one of which is the 
average latency. Another performance measure is the network diameter—the 
shortest distance between the two most remote nodes in the interconnection 
scheme. To determine the network diameter, consider all pairs of nodes in the net
work and find the shortest path length for each pair—computed by totaling the 
number of links traversed—then find the largest of these paths. A small network 
diameter indicates low communication latency and higher performance. Finally, 
system architects attempt to minimize the cost of an interconnection scheme, which 
is equal to the total number of links in a network.52 

In the following subsections, we enumerate several successful interconnection 
models and evaluate them based on the preceding criteria. Many real systems 
implement variations of these models. For example, they might add extra communi-
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cation links to increase fault tolerance (by increasing the bisection width) and per-
formance (by decreasing the network diameter). 

The shared bus network organization uses a single communication path (i.e., route 
through which messages travel) between all processors and memory modules 
(Fig. 15.1).53 The components' bus interfaces handle transfer operations. The bus is 

passive, and the components arbitrate among themselves to use the bus. Only one 
transfer can take place at a time on the bus, because the bus cannot convey two 
electrical signals at once. Therefore, before a component initiates a transfer, it must 
first check that both the bus and the destination component are available. One 
problem with shared buses—contention—arises when several components wish to 
use the bus at once. To reduce contention and bus traffic, each processor maintains 
its own local cache as shown in Fig. 15.1. When the system can fulfill a memory 
request from a processor's cache, the processor does not need to communicate over 
the bus with a memory module. Another option is to construct a multiple shared 

bus architecture, which reduces contention by providing multiple buses that service 
communication requests. However, these require complex bus arbitration logic and 
additional links, which increases the system's cost.54-55 

The shared bus is a simple and inexpensive scheme to connect a small number 
of processors. New components can be added to the system by attaching them to 
the bus, and software handles the detection and identification of the bus compo
nents. However, due to contention for the single communication path, shared bus 
organizations do not scale beyond a small number of processors (in practice 16 or 
32 is the maximum).56 Contention is exacerbated by the fact that processor speed 
has increased faster than bus bandwidth. As processors get faster, it takes fewer 
processors to saturate a bus. 

Shared buses are dynamic networks, because communication links are formed 
and discarded (through the shared bus) during execution. Therefore, the criteria 
used to evaluate interconnection schemes that we discussed earlier do not apply; 
these criteria are based on static links, which do not change during execution. How-
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ever, compared to other interconnection schemes, a shared bus with several proces
sors is fast and inexpensive, but not particularly fault tolerant—if the shared bus 
fails, the components cannot communicate.57 

Designers can leverage the benefits of shared buses in multiprocessors with 
larger numbers of processors. In these systems, maintaining a single shared bus (or 
several buses) that connects all processors is impractical, because the bus becomes 
saturated easily. However, designers can divide the system's resources (e.g., proces
sors and memory) into several small supernodes. The resources within a supernode 
communicate via a shared bus, and the supernodes are connected using one of the 
more scalable interconnection schemes described in the sections that follow. Such 
systems attempt to keep most communication traffic within a supernode to exploit 
the fast bus architecture, while enabling communication between supernodes.58 

Most multiprocessors with a small number of processors, such as dual-processor 
Intel Pentium systems, use a shared bus architecture.59 

A crossbar-switch matrix provides a separate path from every processor to even 
memory module (Fig. 15.2).60 For example, if there are n processors and m memory 
modules, there will be n x m total switches that connect each processor to each 
memory module. We can imagine the processors as the rows of a matrix and the 
memory modules as the columns. In larger networks, nodes often consist of proces
sor and memory components. This improves memory-access performance (for 
those accesses between a processor and its associated memory module). In the case 
of a crossbar-switch matrix, this reduces the interconnection scheme's cost. In this 
design, each node connects to a switch of degree of p - 1, where p is the number of 
processor-memory nodes in the system (i.e., in this case, m - n because each node 
contains the same number of processors and memory modules).61, 62 

A crossbar-switch matrix can support data transmissions to all nodes at once, 
but each node can accept at most one message at a time. Contrast this with the shared 
bus, which supports only one transmission at a time. A switch uses an arbitration algo
rithm such as "service the requesting processor that has been serviced least recently at 
this switch" to resolve multiple requests. The crossbar-switch design provides high 
performance. Because all nodes are linked to all other nodes and transmission 
through switch nodes has a trivial performance cost, the network diameter is essen
tially one. Each processor is connected to each memory module, so to divide a cross
bar-switch matrix into two equal halves, half of the links between processors and 
memory modules must be cut. The number of links in the matrix is the product of n 
and m, so the bisection width is (n x m) / 2, yielding strong fault tolerance. As Fig. 15.2 
shows, there are many paths a communication can take to reach its destination. 

A disadvantage of crossbar-switch matrices is their cost, which increases pro
portionally to nxm, making large-scale systems impractical.63 For this reason, cross
bar-switches are typically employed in smaller multiprocessors (e.g., 16 processors). 
However, as hardware costs decline, they are being used more frequently in larger 
systems. The Sun UltraSPARC-Ill uses crossbar switches to share memory.64 

Crossbar-Switch Matrix 
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In a 2-D mesh network interconnection scheme, each node consists of one or more 
processors and a memory module. In the simplest case (Fig. 15.3), the nodes in a mesh 
network are arranged in a rectangle of n rows and m columns, and each node is con
nected with the nodes directly north, south, east and west of it. This is called a 4-con-
nected 2-D mesh network. This design keeps each node's degree small, regardless of 
the number of processors in a system—the corner nodes have a degree of two, the 
edge nodes have a degree of three and the interior nodes have a degree of four. In 
Fig. 15.3, where n = 4 and m = 5, the 2-D mesh network can be divided into two equal 
halves by cutting the five links between the second and third rows of nodes. In fact, if 
n is even and m is odd the bisection width is m + 1 if m > n and is n otherwise. If the 
2-D mesh contains an even number of rows and columns, the bisection width is the 

2-D Mesh Network 
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Figure 15.2 | Crossbar-switch matrix multiprocessor organization. 

Figure 15.3 | 4-connected 2-D mesh Network. 



smaller of m and n. Although not as fault tolerant as a crossbar-switch matrix, a 2-D 
mesh network is more so than other simple designs, such as a shared bus. Because the 
maximum degree of a node is four, a 2-D mesh network will have a network diameter 
that is too substantial for large-scale systems. However, mesh networks have been 
used in large systems in which communication is kept mainly between neighboring 
nodes. For example, the Intel Paragon multiprocessor uses a 2-D mesh network.65 
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An n-dimensional hypercube consists of 2n nodes, each linked with n neighbor 
nodes. Therefore, a two-dimensional hypercube is a 2 x 2 mesh network, and a 
three-dimensional hypercube is conceptually a cube.66 Figure 15.4 illustrates con
nections between nodes in three-dimensional (part a) and four-dimensional (part b) 
hypercubes.67 Note that a three-dimensional hypercube is actually a pair of two-
dimensional hypercubes in which the corresponding nodes in each two-dimensional 
hypercube are connected. Similarly, a four-dimensional hypercube is actually a pair 
of three-dimensional hypercubes in which the corresponding nodes in each three-
dimensional hypercube are connected. 

A hypercube's performance scales better than that of a 2-D mesh network, 
because each node is connected by n links to other nodes. This reduces the network 
diameter relative to a 2-D mesh network. For example, consider a 16-node multi
processor implemented as either a 4 x 4 mesh network or a 4-dimensional hyper
cube. A 4 x 4 mesh network has a network diameter of 6, whereas a 4-dimensional 
hypercube has a network diameter of 4. In some hypercubes, designers add commu
nication links between nonneighbor nodes to further reduce the network diame-
ter.68 A hypercube's fault tolerance also compares favorably with that of other 
designs. However, the increased number of links per node increases a hypercube's 
cost relative to that of a mesh network.69 

The hypercube interconnection scheme is efficient for connecting a modest 
number of processors and is more economical than a crossbar-switch matrix. The 
nCUBE system used in streaming media and digital-advertising systems employs 
hypercubes of up to 13 dimensions (8,192 nodes).70 

Figure 15.4 | 3- and 4-dimensional hypercubes. 
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An alternative processor interconnection scheme is a multistage network.71 As in 
the crossbar-switch matrix design, some nodes are switches rather than processor 
nodes with local memory. Switch nodes are smaller, simpler and can be packed 
more tightly, increasing performance. To understand the benefits of a multistage 
network over a crossbar-switch matrix, consider the problem of flying between 
small cities. Instead of offering direct flights between every pair of cities, airlines use 
large cities as "hubs." A flight between two small cities normally consists of several 
"legs" in which the traveller first flies to a hub, possibly travels between hubs and 

finally travels to the destination airport. In this way, airlines can schedule fewer 
total flights and still connect any small city with an airport to any other. The switch
ing nodes in a multistage network act as hubs for communication between proces
sors, just as airports in large cities do for airlines. 

There are many schemes for constructing a multistage network. Figure 15.5 
shows a popular multistage network called a baseline network.72 Each nodes on the 
left is the same as the node on the right. When one processor wants to communicate 
with another, the message travels through a series of switches. The leftmost switch 
corresponds to the least significant (rightmost) bit of the destination processor's ID; 
the middle switch corresponds to the middle bit; and the rightmost switch corre
sponds to the most significant (leftmost) bit. 
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For example, consider the bold path in Fig. 15.5 from the processor with ID 
001 to the processor with ID 110. Begin by following the path from processor 001 
to the switch. Next, determine the least significant bit (i.e., 0) in the destination pro
cessor's ID (110) and follow that path from the current switch to the next switch. 
From the second switch, follow the path that corresponds to the middle bit (i.e.. 1) 
in the destination processor's ID. Finally, from the third switch, follow the path that 
corresponds to the most significant bit (i.e., 1) in the destination processor's ID. 

Multistage networks represent a cost-performance compromise. This design 
employs simple hardware to connect large numbers of processors. Any processor 
can communicate with any other without routing the message through intermediate 
processors. However, a multistage network has a larger network diameter, so com
munication is slower than with a crossbar-switch matrix—each message must pass 
through multiple switches. Also, contention can develop at switching elements, 
which might degrade performance. IBM's SP series multiprocessor, which evolved 
to the POWER4, uses a multistage network to connect its processors. The IBM 
ASCI-White, which can perform over 100 trillion operations per second, is based on 
the POWER3-II multiprocessor.73, 74 

1. An 8-connected 2-D mesh network includes links to diagonal nodes as well as the links in 
Fig. 15.3. Compare 4-connected and 8-connected 2-D mesh networks using the criteria 
discussed in this section. 

2. Compare a multistage network to a crossbar-switch matrix. What are the benefits and 
drawbacks or each interconnection scheme? 

Ans: 1) An 8-connected 2-D mesh network has approximately double the degree for each 
node and, therefore, approximately double the cost compared to a 4-connected 2-D mesh 
network. However, the network diameter decreases and the bisection width correspondingly 
increases, because there are more links in the network. Thus, an 8-connected 2-D mesh net
work exhibits lower network latency and higher fault tolerance at a higher cost than a 4-con
nected 2-D mesh network. 2) A multistage network is cheaper to build than a crossbar-switch 
matrix. However, multistage networks exhibit reduced performance and fault tolerance. 

Self Review 
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Another defining characteristic of multiprocessors is how the processors share system 
resources. In a tightly coupled system (Fig. 15.6), the processors share most system 
resources. Tightly coupled systems often employ shared buses, and processors usually 
communicate via shared memory. A centralized operating system typically manages 
the system's components. Loosely coupled systems (Fig. 15.7) normally connect com
ponents indirectly through communication links.75 Processors sometimes share mem
ory, but often each processor maintains its own local memory, to which it has much 
faster access than to the rest of memory. In other cases, message passing is the only 
form of communication between processors, and memory is not shared. 

In general, loosely coupled systems are more flexible and scalable than tightly 
coupled systems. When components are loosely connected, designers can easily add 

15.2.3 Loosely Coupled vs. Tightly Coupled Systems 



components to or remove components from the system. Loose coupling also 
increases fault tolerance because components can operate independently of one 
another. However, loosely coupled systems typically are less efficient, because they 
communicate by passing messages over a communications link, which is slower 
than communicating through shared memory. This also places a burden on operat
ing systems programmers, who typically hide most of the complexity of message 
passing from application programmers. Japan's Earth Simulator is an example of a 
loosely coupled system.76 

By contrast, tightly coupled systems perform better but are less flexible. Such 
systems do not scale well, because contention for shared resources builds up 
quickly as processors are added. For this reason, most systems with a large number 
of processors are loosely coupled. In a tightly coupled system, designers can opti
mize interactions between components to increase system performance. However, 
this decreases the system's flexibility and fault tolerance, because one component 
relies on other components. A dual-processor Intel Pentium system is an example 
of a tightly coupled system.77 
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Figure 15.6 | Tightly coupled system 

Figure 15.7 | Loosely coupled system. 



1. Why are many small multiprocessors constructed as tightly coupled systems? Why are 
many large-scale systems loosely coupled? 

2. Some systems consist of several tightly coupled groups of components connected together 
in a loosely coupled fashion. Discuss some motivations for this scheme. 

Ans: 1) A small system would typically be tightly coupled because there is little contention 
for shared resources. Therefore, designers can optimize the interactions between system com
ponents, thus providing high performance. Typically, large-scale systems are loosely coupled 
to eliminate contention for shared resources and reduce the likelihood that one failed com
ponent will cause systemwide failure. 2) This scheme leverages the benefits of both intercon
nection organizations. Each group is small, so tightly coupled systems provide the best 
performance within a group. Making the overall system loosely coupled reduces contention 
and increases the system's flexibility and fault tolerance. 
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15.3 Multiprocessor Operating System Organizations 
In organization and structure, multiprocessor operating systems differ significantly 
from uniprocessor operating systems. In this section, we categorize multiprocessors 
based on how they share operating system responsibilities. The basic operating sys
tem organizations for multiprocessors are master/slave, separate kernels for each pro
cessor and symmetric (or anonymous) treatment of all processors. 

The master/slave multiprocessor organization designates one processor as the mas
ter and the others as slaves (Fig. 15.8).78 The master executes operating system 
code; the slaves execute only user programs. The master performs input/output and 
computation. The slaves can execute processor-bound jobs effectively, but I/O-
bound jobs running on the slaves cause frequent calls for services that only the mas
ter can perform. From a fault-tolerance standpoint, some computing capability is 
lost when a slave fails, but the system continues to function. Failure of the master 
processor is catastrophic and halts the system. Master/slave systems are tightly cou
pled because all slave processors depend on the master. 

The primary problem with master/slave multiprocessing is the hardware 
asymmetry, because only the master processor execute the operating system. When 

15.3.1 Master/Slave 

Figure 15.8 | Master/Slave multiprocessing. 



a process executing on a slave processor requires the operating system's attention, 
the slave processor generates an interrupt and waits for the master to handle the 
interrupt. 

The nCUBE hypercube system is an example of a master/slave system. Its 
many slave processors handle computationally intensive tasks associated with 
manipulating graphics and sound.79 
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1. (T/F) Master/slave multiprocessors scale well to large-scale systems. 
2. For what type of environments are master/slave multiprocessors best suited? 

Ans 1) False. Only one processor can execute the operating system. Contention will build 
between processes that are awaiting services (such as I/O) that only the master processor can 
provide. 2) Master/slave processors are best suited for environments that mostly execute pro
cessor-bound processes. The slave processors can execute these processes without interven
tion from the master processor. 

Self Review 

In the separate-kernels multiprocessor organization, each processor executes its 
own operating system and responds to interrupts from user-mode processes run
ning on that processor.80 A process assigned to a particular processor runs to com
pletion on that processor. Several operating system data structures contain global 
system information, such as the list of processes known to the system. Access to 
these data structures must be controlled with mutual exclusion techniques, which 
we discuss in Section 15.9, Multiprocessor Mutual Exclusion. Systems that use the 
separate-kernels organization are loosely coupled. This organization is more fault 
tolerant than the master/slave organization—if a single processor fails, system fail
ure is unlikely. However, the processes that were executing on the failed processor 
cannot execute until they are restarted on another processor. 

In the separate-kernels organization, each processor controls its own dedi
cated resources, such as files and I/O devices. I/O interrupts return directly to the 
processors that initiate those interrupts. 

This organization benefits from minimal contention over operating system 
resources, because the resources are distributed among the individual operating 
systems for their own use. However, the processors do not cooperate to execute an 
individual process, so some processors might remain idle while one processor exe
cutes a multithreaded process. The Tandem system, which is popular in business-
critical environments, is an example of a separate-kernels multiprocessor; because 
the operating system is distributed throughout the loosely coupled processing 
nodes, it is able to achieve nearly 100 percent availability.81 
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1. Why is the separate-kernels organization more fault tolerant than the master/slave orga
nization? 

2. For what type of environment would separate-kernels multiprocessor be useful? 

Ans: 1) The separate-kernels organization is loosely coupled. Each processor has its own 
resources and does not interact with other processors to complete its tasks. If one processor 
fails, the remainder continue to function. In master/slave organizations, if the master fails 
none of the slave processors can perform operating system tasks that must be handled by the 
master. 2) A separate-kernels multiprocessor is useful in environments where processes do 
not interact, such as a cluster of workstations in which users execute independent programs. 

Symmetrical multiprocessor organization is the most complex organization to 
implement, but is also the most powerful.82-83 [Note: This organization should not 
be confused with symmetric multiprocessor (SMP) systems, which we discuss in 
Section 15.4.1.] The operating system manages a pool of identical processors, any 
one of which can control any I/O device or reference any storage unit. The symme
try makes it possible to balance the workload more precisely than with the other 
organizations. 

Because many processors might be executing the operating system at once, 
mutual exclusion must be enforced whenever the operating system modifies shared 
data structures. Hardware and software conflict-resolution techniques are important. 

Symmetrical multiprocessor organizations are generally the most fault toler
ant. When a processor fails, the operating system removes that processor from its 
pool of available processors. The system degrades gracefully while repairs are made 
(see the Operating Systems Thinking feature, Graceful Degradation). Also, a pro
cess running on a symmetrical system organization can be dispatched to any proces
sor. Therefore, a process does not rely on a specific processor as in the separate-
kernels organization. The operating system "floats" from one processor to the next. 

One drawback of the symmetrical multiprocessor organization is contention 
for operating system resources, such as shared data structures. Careful design of 
system data structures is essential to prevent excessive locking that prevents the 
operating system from executing on multiple processors at once. A technique that 
minimizes contention is to divide the system data structures into separate and inde
pendent entities that can be locked individually. 

Even in completely symmetrical multiprocessing systems, adding new proces
sors does not cause system throughput to increase by the new processors' rated 
capacities. There are many reasons for this, including additional operating system 
overhead, increased contention for system resources and hardware delays in switch
ing and routing transmissions between an increased number of components. Several 
performance studies have been performed; one early BBN Butterfly system with 256 
processors operated 180 to 230 times faster than a single-processor system.84 

15.3.3 Symmetrical Organization 
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1. Why would doubling the number of processors in a symmetrical organization not double 
the total processing power? 

2. What are some benefits of the symmetrical organization over the master/slave and sepa
rate-kernels organizations? 

Ans: 1) Adding processors increases contention for resources and increases operating sys
tem overhead, offsetting some of the performance gains attained from adding processors. 
2) The symmetrical organization is more scalable than master/slave because all processors 
can execute the operating system; this also makes the system more fault tolerant. Symmetri
cal organization provides better cooperation between processors than separate kernels. This 
facilitates IPC and enables systems to exploit parallelism better. 

Self Review 
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15.4 Memory Access Architectures 
So far, we have classified multiprocessor systems by hardware characteristics and by 
how processors share operating system responsibilities. We can also classify multi
processor systems by how they share memory. For example, consider a system with 
tew processors and a small amount of memory. If the system contains a group of 
memory modules that is easily accessible by all processors (e.g., via a shared bus), 
the system can maintain fast memory access. However, systems with many proces
sors and memory modules will saturate the bus that provides access to these mem
ory modules. In this case, a portion of memory can be closely tied to a processor so 

Operating Systems Thinking 

Graceful Degradation 
Things do go wrong. Individual 
components of systems do fail. 
Entire systems fail. The question is, 
"What should a system do after 
experiencing some degree of fai l
ure?" Many systems are designed 
to degrade gracefully (i.e., con
tinue operating after a failure, but 
at reduced levels of service). A 
classic example of graceful degra
dation occurs in a symmetric multi
processing system in which any 

processor can run any process. If 
one of the processors fails, the sys
tem can still function with the 
remaining processors, but wi th 
reduced performance. Graceful 
degradation occurs in many disk 
systems that, upon detecting a 
failed portion of the disk, simply 
"map around" the failed areas, 
enabling the user to continue stor
ing and retrieving information on 
that disk. When a router fails on 

the Internet, the Internet contin
ues to handle new transmissions 
by sending them to the remaining 
functioning routers. Providing for 
graceful degradation is an impor
tant task for operating systems 
designers, especially as people 
grow increasingly reliant on hard
ware devices that eventually fail. 



that the processor can access its memory more efficiently. Designers, therefore, 
must weigh concerns about a system's performance, cost and scalability when deter-
mining the system's memory-access architecture. The following sections describe 
several common memory architectures for multiprocessor systems. 
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Uniform-memory-access (LIMA) multiprocessor architectures require all processors 
to share the system's main memory (Fig. 15.9). This is a straightforward extension of a 
uniprocessor memory architecture, but with multiple processors and memory mod
ules. Typically, each processor maintains its own cache to reduce bus contention and 
increase performance. Memory-access time is uniform for any processor accessing 
any data item, except when the data item is stored in a processor's cache or there is 
contention on the bus. UMA systems are also called symmetric multiprocessor 
(SMP) systems because any processor can be assigned any task and all processors 
share all resources (including memory, I/O devices and processes). UMA multipro-
cessors with a small number of processors typically use a shared bus or a crossbar-
switch matrix interconnection network. I/O devices are attached directly to the inter-
connection network and are equally accessible to all processors.85 

UMA architectures are normally found in small multiprocessor systems (typi-
cally two to eight processors). UMA multiprocessors do not scale well—a bus 
quickly becomes saturated when more than a few processors access main memery 
simultaneously, and crossbar-switch matrices become expensive even for modest-
sized systems.86-87 

1. Why are mesh networks and hypercubes inappropriate interconnection schemes for 
UMA systems? 

2. How is a UMA system "symmetric?" 

Ans: 1) Mesh networks and hypercubes place processors and memory at each node, so local 
memory can be accessed faster than remote memory; thus memory-access times are not uni-

Figure 15.9 | UMA multiprocessor. 
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form. 2) It is symmetric because any processor can be assigned any task and all processors 
share all resources (including memory, I/O devices and processes). 
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Nonuniform-memory-access (NUMA) multiprocessor architectures address 
UMA's scalability problems. The primary bottleneck in a large-scale UMA system 

is access to shared memory—performance degrades due to contention from numer-
ous processors attempting to access shared memory. If a crossbar-switch matrix is 
used, the interconnection scheme's cost might increase substantially to facilitate 
multiple paths to shared memory. NUMA multiprocessors handle these problems 
by relaxing the constraint that memory-access time should be uniform for all pro-
cessors accessing any data item. 

NUMA multiprocessors maintain a global shared memory that is accessible by 
all processors. The global memory is partitioned into modules, and each node uses 
one of these memory modules as the processor's local memory. In Fig. 15.10, each 

node contains one processor, but this is not a requirement. Although the interconnec
tion scheme's implementation might vary, processors are connected directly to their 
local memory modules and connected indirectly (i.e., through one of the interconnec-

tion schemes discussed in Section 15.2.2) to the rest of global memory. This arrange
ment provides faster access to local memory than to the rest of global memory, 
because access to global memory requires traversing the interconnection network. 

The NUMA architecture is highly scalable because it reduces bus collisions 
when a processor's local memory services most of the processor's memory requests. 
A NUMA system can implement a strategy that moves pages to the processor on 
which those pages are accessed most frequently —a technique called page migra-
tion, which is discussed in detail in Section 15.5.2, Page Replication and Migration. 
Typically, NUMA systems can support a large number of processors, but they are 
more complex to design than UMAs, and systems with many processors can be 
expensive to implement.88-89 

15.4.2 Nonuniform Memory Access 

Figure 15.10 | NUMA multiprocessor. 



1. List some advantages of NUMA multiprocessors over UMA. List some disadvantages. 
2. What issues does the NUMA design raise for programmers and for operating systems 

designers? 

Ans: 1) NUMA multiprocessors are more scalable than UMA multiprocessors because 
NUMA multiprocessors remove the memory-access bottleneck of UMA systems by using 
large numbers of processors. UMA multiprocessors are more efficient for small systems 
because there is little memory contention and access to all memory in a UMA system is fast. 
2) If two processes executing on processors at separate nodes use shared memory for IPC, 
then at least one of the two will not have the memory item in its local memory, which 
degrades performance. Operating system designers place processes and their associated 
memory together on the same node. This might require scheduling a process on the same 
processor each time the process executes. Also, the operating system should be able to move 
pages to different memory modules based on demand. 

As described in the previous section, each node in a NUMA system maintains its own 
local memory, which processors from other nodes can access. Often, local memory 
access is dramatically faster than global memory access (i.e., access to another node's 
local memory). Cache-miss latency—the time required to retrieve data that is not in 
the cache —can be significant when the requested data is not present in local memory. 
One way to reduce cache-miss latency is to reduce the number of memory requests 
serviced by remote nodes. Recall that NUMA systems place data in the local memory 
of the processor that accesses the data most frequently. This is impractical for a com
piler or programmer to implement, because data access patterns change dynamically. 
Operating systems can perform this task, but can move only page-size chunks of data, 
which can slow data migration. Also, different data items on a single page often are 
accessed by processors at different nodes.90 

Cache-Only Memory Architecture (COMA) multiprocessors (also called 
Cache-Only Memory Access multiprocessors) use a slight variation of NUMA to 
address this memory placement issue (Fig. 15.11). COMA multiprocessors include 
one or more processors, each with its associated cache, and a portion of the global 
shared memory. However, the memory associated with each node is organized as a 
large cache known as an attraction memory (AM). This allows the hardware to 
migrate data efficiently at the granularity of a memory line—equivalent to a cache 
line, but in main memory, and typically four or eight bytes.91 Also, because each 
processor's local memory is viewed as a cache, different AMs can have copies of the 
same memory line. With these design modifications, data often resides in the local 
memory of the processor that uses the data most frequently, which reduces the 
average cache-miss latency. The trade-offs are memory overhead from duplicating 
data items in multiple memory modules, and complicated hardware and protocols 
to ensure that memory updates are reflected in each processor's AM. This overhead 
results in higher latency for those cache misses that are serviced remotely.92 

15.4.3 Cache-Only Memory Architecture 
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Figure 15.11 | COMA multiprocessor. 

1. What problems inherent in NUMA multiprocessors does the COMA design address? 
2. (T/F) The COMA design always increases performance over a NUMA design. 

Ans: 1) Cache misses serviced at remote nodes in both NUMA and COMA systems typi
cally require much more time than cache misses serviced by local memory. Unlike NUMA 
systems, COMA multiprocessors use hardware to move copies of data items to a processor's 
local memory (the AM) when referenced. 2) False. COMA multiprocessors reduce the num
ber of cache misses serviced remotely, but they also add overhead. In particular, cache-miss 
latency increases for cache misses that are serviced remotely, and synchronization is required 
for data that is copied into several processors' attraction memory. 

Self Review 

UMA, NUMA and COMA multiprocessors are tightly coupled. Although NUMA 
(and COMA to a lesser extent) multiprocessors scale well, they require complex 
software and hardware. The software controls access to shared resources such as 
memory; the hardware implements the interconnection scheme. NO-Remote-
Memory-Access (NORMA) multiprocessors are loosely coupled multiprocessors 
that do not provide any shared global memory (Fig. 15.12). Each node maintains its 
own local memory, and often, NORMA multiprocessors implement a common 
shared virtual memory (SVM). On an SVM system, when a process requests a page 
that is not in its processor's local memory, the operating system loads the page into 
local memory from another memory module (i.e., from a remote computer over a 
network) or from secondary storage (e.g., a disk).93-94 Nodes in NORMA systems 
that do not support SVM must share data through explicit message passing. Google, 
which powers its service using 15,000 low-end servers located across the world, is an 
example of a distributed NORMA multiprocessor system.95 

15.4.4 No Remote Memory Access 
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NORMA systems are the simplest to build, because they do not require a 
complex interconnection scheme. However, the absence of shared global memory 
requires application programmers to implement IPC via message passing and 
remote procedure calls. On many systems, using shared virtual memory is ineffi
cient, because the system would have to send entire data pages from one processor 
to the next, and these processors often are not in the same physical machine.96 We 
discuss SVM in more detail in Section 15.5.3, Shared Virtual Memory. 

Because NORMA multiprocessors are loosely coupled, it is relatively easy to 
remove or add nodes. NORMA multiprocessors are distributed systems governed 
by a single operating system, rather than networked computers each with its own 
operating system. If a node in a NORMA system fails, a user can simply switch to 
another node and continue working. If one percent of the nodes fails in a NORMA 
multiprocessor, the system merely runs one percent slower.97 

706 Multiprocessor Management 

Figure 15.12 | NORMA multiprocessor. 

1. Why are NORMA multiprocessors ideal for workstation clusters? 
2. In what environments are NORMA multiprocessors not useful? 

Ans: 1) Different users in a workstation cluster usually do not share memory. However, 
they share resources such as a file system and processing power, which NORMA systems 
provide. Also, it is relatively easy to add or remove nodes in NORMA multiprocessors, which 
can be useful for scaling the system's processing capabilities. 2) NORMA multiprocessors are 
not useful in shared-memory environments, especially systems with a single user or a few 
processors. These can be implemented more efficiently with UMA or NUMA designs. 
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When multiple processors with private caches or local memories access shared 
memory, designers must address the problem of memory coherence. Memory is 
coherent if the value obtained from reading a memory address is always the value 
that was most recently written to that address.98 For example, consider two proces
sors that maintain a separate copy of the same page in their local memories. If one 
processor modifies its local copy, the system should ensure that the other copy of 
the page is updated to reflect the latest changes. Multiprocessors that allow only 
one copy of a page to be resident in the system at a time (such as UMA and small 
NUMA systems) must still ensure cache coherence —reading a cache entry reflects 
the most recent update to that data. Large-scale systems (such as NORMA or 
large-scale NUMA systems) often permit the same memory page to be resident in 
the local memory of several processors. These systems must integrate memory 
coherence into their implementation of shared virtual memory. 

Other important design considerations are page placement and replication. 
Local memory access is much faster than global memory access, so ensuring that data 
accessed by a processor resides in that processor's local memory can improve perfor
mance. There are two common strategies for addressing this issue. Page replication 
maintains multiple copies of a memory page, so that the page can be accessed quickly 
at multiple nodes (see the Operating Systems Thinking feature, Data Replication and 
Coherency). Page migration transfers pages to the node (or nodes, when used with 
page replication) where processors access a page most. In Section 15.5.2, Page Repli

cation and Migration, we consider implementations of these two strategies. 

15.5 Multiprocessor Memory Sharing 

1. Why is memory coherence important? 
2. What are the advantages of allowing multiple copies of the same page to exist in one sys

tem? 
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Operating Systems Thinking 
Data Replication and Coherency 
We will see several examples of 
data being duplicated for various 
reasons in operating systems. 
Sometimes this is done for backup 
to ensure recoverability if one 

copy of the data is lost. It is also 
done for performance where 
some copies of the data may be 
accessed faster than others. 
Often, it is crucial to ensure coher-

ency, (i.e., that all copies of the 
data either are identical or wil l be 
made so before any differences 
could cause a problem). 



Ans: 1) Without memory coherence, there is no guarantee that a particular copy of data is 
the most up-to-date version. Data must be coherent to ensure that applications produce cor
rect results. 2) If two processes executing on different processors repeatedly read the same 
memory page, replicating the page allows both processors to keep the page in local memory 
so that it can be accessed quickly. 
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Memory coherence became a design consideration when caches appeared, because 
computer architectures allowed different access paths to data (i.e., through the 
cache copy or the main memory copy). In multiprocessor systems, coherence is 
complicated by the fact that each processor maintains a private cache. 

15.5.1 Cache Coherence 

Implementing cache coherence protocols for UMA multiprocessors is simple 
because caches are relatively small and the bus connecting shared memory is rela
tively fast. When a processor updates a data item, the system must also update or 
discard all instances of that data in other processors' caches and in main memory.99 

This can be accomplished by bus snooping (also called cache snooping). In this pro
tocol, a processor "snoops" the bus by determining whether a requested write from 
another processor is for a data item in the processor's cache. If the data resides in 
the processor's cache, the processor removes the data item from its cache. Bus 
snooping is simple to implement, but generates additional traffic on the shared bus. 
Alternatively, the system can maintain a centralized directory that records the items 
that reside in each cache and indicates when to remove stale data (i.e., data that 
does not reflect the most recent update) from a cache. Another option is for the sys
tem to allow only one processor to cache a particular memory item.100 

UMA Cache Coherence 

Cache-coherent NUMAs (CC-NUMAs) are NUMA multiprocessors that impose 
cache coherence. In a typical CC-NUMA architecture, each physical memory 
address is associated with a home node, which is responsible for storing the data 
item with that main-memory address. (Often, the home node is simply determined 
by the higher-order bits in the address.) When a cache miss occurs at a node, that 
node contacts the home node associated with the requested memory address. If the 
data item is clean (i.e., no other node has a modified version of the data item in its 
cache), the home node forwards it to the requesting processor's cache. If the data 
item is dirty (i.e., another node has written to the data item since the last time the 
main memory entry was updated), the home node forwards the request to the node 
with the dirty copy; this node sends the data item to both the requestor and the 
home node. Similarly, requests to modify data are performed via the home node. 
The node that wishes to modify data at a particular memory address requests exclu
sive ownership of the data. The most recent version of the data (if not already in the 
modifying node's cache) is obtained in the same manner as a read request. After the 

Cache-Coherent NUMA (CC-NUMA) 



modification, the home node notifies other nodes with copies of the data that the 
data was modified.101 

This protocol is relatively simple to implement, because all reads and writes 
first contact the home node. Although this might seem inefficient, this coherence 

protocol requires a maximum of only three network communications. (Consider 
how much traffic would be generated if a writing node had to contact all other 
nodes.) This protocol also makes it easy to distribute the load throughout the sys-
tem—by assigning each node as the home node for approximately the same number 
of addresses—which increases fault tolerance and reduces contention. However, 
this protocol can perform poorly if most data accesses come from remote nodes. 
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1. What are the advantages and disadvantages of bus snooping? 
2. Why is it difficult for the system to establish a home node for memory that is referenced 

by several different nodes over time? How can the CC-NUMA home-based protocol be 
modified to support such behavior? 

Ans: 1) Bus snooping is easy to implement and it enables cache coherence. However, it 
generates additional bus traffic. 2) If memory-access patterns for a memory region change 
frequently, then it is difficult to decide which node should be the home node for that region. 
Although one node might make the majority of the references to that item now, this will soon 
change and most of the references will come from a remote node. A remedy would be to 
dynamically change the home node of a data item (this, of course, would imply changing the 
item's physical memory address). 
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NUMA systems have higher memory-access latency than UMA multiprocessors, 
which limits NUMA's performance. Therefore, maximizing the number of cache 
misses serviced by local memory is an important NUMA design consideration.102 

The COMA design, described in Section 15.4.3, is one attempt to address the 
NUMA latency issue. CC-NUMA systems address the latency issue by implement-
ing page-migration or page-replication strategies.103 

Replicating a page is straightforward. The system copies all data from a remote 
page to a page in the requesting processor's local memory. To maintain memory 
coherence, the system uses a data structure that records where all duplicate pages 
exist. We discuss different strategies for memory coherence in the next section. Page 
migration occurs in a similar fashion, except that after a page has been replicated, 
the original node deletes the page from its memory and flushes any associated TLB 
or cache entries.104 

Although migrating and replicating pages has obvious benefits, these strate
gies can degrade performance if they are not implemented correctly. For example, 
remotely referencing a page is faster than migrating or replicating that page. There
fore, if a process references a remote page only once, it would be more efficient not 
to migrate or replicate the page.105 In addition, some pages are better candidates for 
replication than for migration, and vice versa. For example, pages that are read fre-

15.5.2 Page Replication and Migration 

file:///lthough


quently by processes at different processors would benefit from replication. by 
enabling all processes to access that page from local memory. Also, the drawback of 
replication—maintaining coherency on writes—would not be a problem for a read
only page. A page frequently modified by one process is a good candidate for 
migration; if other processes are reading from that page, replicating the page would 
not be viable because these processes would have to fetch updates continually from 
the writing node. Pages that are frequently written by processes at more than one 
processor are not good candidates for either replication or migration, because they 
would be migrated or replicated after each write operation.106 

To help determine the best strategy, many systems maintain each page's access 
history information. A system might use this information to determine which pages 
are frequently accessed —these should be considered for replication or migration 
The overhead of replicating or migrating a page is not justified for pages that are 
not frequently accessed. A system also might maintain information on which 
remote processors are accessing the page and whether these processors are reading 
from, or writing to, the page. The more page-access information the system gathers, 
the better decision the system can make. However, gathering this history and trans
ferring it during migration incurs overhead. Thus, the system must collect enough 
information to make good replication or migration decisions without incurring 
excessive overhead from maintaining this information.107 
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1. How could an ineffective migration/replication strategy degrade performance? 
2. For what types of pages is replication appropriate? When is migration appropriate? 

Ans: 1) Migration and replication are more costly than remotely referencing a page. They are 
beneficial only if the page will be referenced remotely multiple times from the same node. An 
ineffective strategy might migrate or replicate pages that are, for example, modified by many 
nodes, requiring frequent updates and thus reducing performance. Also, manipulating pages 
access history information imposes additional overhead that can degrade performance. 
2) Pages that are read frequently by multiple processors (but not modified) should be repli-
cated. Pages that are written by only one remote node should be migrated to that node. 
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Sharing memory on small, tightly coupled multiprocessors, such as UMA multipro-
cessors, is a straightforward extension of uniprocessor shared memory because all 
processors access the same physical addresses with equal access latency. This strategy 
is impractical for large-scale NUMA multiprocessors due to remote-memory-access 
latency, and it is impossible for NORMA multiprocessors, which do not share physi
cal memory. Because IPC through shared memory is easier to program than IPC via 
message passing, many systems enable processes to share memory located on differ
ent nodes (and perhaps in different physical address spaces) through shared virtual 
memory (SVM). SVM extends uniprocessor virtual memory concepts by ensuring 
memory coherence for pages accessed by various processors.108 
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Two issues facing SVM designers are selecting which coherence protocol to 
use and when to apply it. The two primary coherence protocols are invalidation and 
write broadcast. First we describe these protocols, then we consider how to imple
ment them. 
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In the invalidation memory-coherence approach, only one processor may access a 
page while it is being modified —this is called page ownership. To obtain page own
ership, a processor must first invalidate (deny access to) all other copies of the page. 
After the processor obtains ownership, the page's access mode is changed to read/ 
write, and the processor copies the page into its local memory before accessing it. 
To obtain read access to a page, a processor must request that the processor with 
read/write access change its access mode to read-only access. If the request is 
granted, other processors can copy the page into local memory and read it. Typi
cally, systems employ the policy of always granting requests unless a processor is 
waiting to acquire page ownership; in the case that a request is denied, the 
requestor must wait until the page is available. Note that multiple processes modi-
fying a single page concurrently leads to poor performance, because competing pro
cessors repeatedly invalidate the other processors' copies of the page.109 

Invalidation 

In the write broadcast memory-coherence approach, the writing processor broad
casts each modification to the entire system. In one version of this technique, only 
one processor may obtain write ownership of a page. Rather than invalidating all 
other existing copies of the page, the processor updates all copies.110 In a second 
version, several processors are granted write access to increase efficiency. Because 
this scheme does not require writers to obtain write ownership, processors must 
ensure that various updates to a page are applied in the correct order, which can 
incur significant overhead.111 

Write Broadcast 

There are several ways to implement a memory-coherence protocol, though design
ers must attempt to limit memory-access bus traffic. Ensuring that every write is 
reflected at all nodes as soon as possible can decrease performance; however, weak
ening coherence constraints can produce erroneous results if programs use stale 
data. In general, an implementation must balance performance and data integrity. 

Systems that use sequential consistency ensure that all writes are immediately 
reflected in all copies of a page. This scheme does not scale well to large systems due 
to communication cost and page size. Internode communication is slow compared 
to accessing local memory; if a process repeatedly updates the same page, many 
wasteful communications will result. Also, because the operating system manipu
lates pages, which often contain many data items, this strategy might result in false 
sharing, where processes executing at separate nodes might need access to unre
lated data on the same page. In this case, sequential consistency effectively requires 
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the two processes to share the page, even though their modifications do not affect 
one another.112 

Systems that use relaxed consistency perform coherence operations periodi
cally. The premise behind this strategy is that delaying coherence for remote data by 
a few seconds is not noticeable to the user and can increase performance and 
reduce the false sharing effect.113 

In release consistency, a series of accesses begin with an acquire operation and 
end with a release operation. All updates between the acquire and the release are 
batched as one update message after the release.114 In lazy release consistency, the 
update is delayed until the next acquire attempt for the modified memory. This 
reduces network traffic, because it eliminates coherence operations for pages that 
are not accessed again.115 

One interesting consequence of lazy release consistency is that only a node that 
attempts to access a modified page receives the modification. If this node also modi
fies the page, a third node would need to apply two updates before it can access the 
page. This can lead to substantial page-update overhead. One way to reduce this 
problem is to provide periodic global synchronization points at which all data must 
be consistent.116 An alternative way to reduce this problem is to use a home-based 
consistency approach similar to that used for cache coherence in a CC-NUMA. The 
home node for each page is responsible for keeping an updated version of the page. 
Nodes that issue an acquire to a page that has been updated since that its last release 
must obtain the update from the home node.117 

The delayed consistency approach sends update information when a release 
occurs, but nodes receiving updates do not apply them until the next acquisition. 
These updates can be collected until a new acquire attempt, at which point the node 
applies all update information. This does not reduce network traffic, but it improves 
performance because nodes do not have to perform coherence operations as fre
quently118 

Lazy data propagation notifies other nodes that a page has been modified at 
release time. This notification does not supply the modified data, which can reduce 
bus traffic. Before a node acquires data for modification, it determines if that data 
has been modified by another node, If so, the former node retrieves update infor
mation from the latter. Lazy data propagation has the same benefits and drawbacks 
as lazy release consistency. This strategy significantly reduces communication traf
fic, but requires a mechanism to control the size of update histories, such as a global 
synchronization point.119 
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1. What is a benefit of relaxed consistency? A drawback? 
2. In many relaxed consistency implementations, data may not be coherent for several seconds. 

Is this is a problem in all environments? Give an example where it might be a problem. 
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Ans: 1) Relaxed consistency reduces network traffic and increases performance. However, 
the system's memory can be incoherent for a significant period of time, which increases the 
likelihood that processors will operate on stale data. 2) This is not a problem in all environ
ments, considering that even sequential consistency schemes may use networks exhibiting 
latencies of a second or two. However, latency of this magnitude is not desirable for a super
computer in which many processes interact and communicate through shared memory. The 
extra latency degrades performance due to frequent invalidations. 
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Multiprocessor scheduling has goals similar to those of uniprocessor scheduling— 
the system attempts to maximize throughput and minimize response time for all 
processes. Further, the system must enforce scheduling priority 

Unlike uniprocessor scheduling algorithms which only determine in what 
order processes are dispatched, multiprocessor scheduling algorithms also must 
determine to which processor they are dispatched, which increases scheduling com
plexity. For example, multiprocessor scheduling algorithms should ensure that pro
cessors are not idle while processes are waiting to execute. 

When determining the processor on which a process is executed, the scheduler 
considers several factors. For example, some strategies focus on maximizing parallel
ism in a system to exploit application concurrency. Systems often group collaborating 
processes into a job. Executing a job's processes in parallel improves performance by 
enabling these processes to execute truly simultaneously. This section introduces sev
eral timesharing scheduling algorithms that attempt to exploit such parallelism by 
scheduling collaborative processes on different processors.120 This enables the pro
cesses to synchronize their concurrent execution more effectively. 

Other strategies focus on processor affinity—the relationship of a process to a 
particular processor and its local memory and cache. A process that exhibits high 
processor affinity executes on the same processor through most or all of its life 
cycle. The advantage is that the process will experience more cache hits and, in the 
case of a NUMA or NORMA design, possibly fewer remote page accesses than if it 
were to execute on several processors throughout its life cycle. Scheduling algo
rithms that attempt to schedule a process on the same processor throughout its life 
cycle maintain soft affinity, whereas algorithms that schedule a process on only one 
processor maintain hard affinity.121 

Space-partitioning scheduling algorithms attempt to maximize processor 
affinity by scheduling collaborative processes on a single processor (or single set of 
processors) under the assumption that collaborative processes will access the same 
shared data, which is likely stored in the processor's caches and local memory.122 

Therefore, space-partitioning scheduling increases cache and local memory hits. 
However, it can limit throughput, because these processes typically do not execute 
simultaneously.123 

Multiprocessor scheduling algorithms are generally classified as job blind or 
job aware. Job-blind scheduling policies incur minimal scheduling overhead, 
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because they do not attempt to enhance a job's parallelism or processor affinity. 
Job-aware scheduling evaluates each job's properties and attempts to maximize 
each job's parallelism or processor affinity, which increases performance at the cost 
of increased overhead. 

Many multiprocessor scheduling algorithms organize processes in global run 
queues.124 Each global run queue contains all the processes in the system that are 
ready to execute. Global run queues might be used to organize processes by prior
ity, by job or by which process executed most recently.125 

Alternatively, systems might use a per-processor run queue. This is typical of 
large, loosely coupled systems (such as NORMA systems) in which cache hits and 
references to local memory should be maximized. In this case, processes are associ
ated with a specific processor and the system implements a scheduling policy for 
that processor. Some systems use per-node run queues; each node might contain 
more than one processor. This is appropriate for a system in which a process is tied 
to a particular group of processors. We describe the related issue of process migra
tion, which entails moving processes from one per-processor or per-node run queue 
to another, in Section 15.7, Process Migration. 
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1. What types of processes benefit from timesharing scheduling? From space-partitioning 
scheduling? 

2. When are per-node run queues more appropriate than global run queues? 

Ans: 1) Timesharing scheduling executes related processes simultaneously, improving per
formance for processes that interact frequently because processes can react to messages or 
modifications to shared memory immediately. Space-partitioning scheduling is more appro
priate for processes that must sequentialize access to shared memory (and other resources) 
because their processors are likely to have cached shared data, which improves performance. 
2) Per-node run queues are more appropriate than global run queues in loosely coupled sys
tems, where processes execute much less efficiently when accessing remote memory. 

Self Review 

Job-blind multiprocessor scheduling algorithms schedule jobs or processes on any 
available processor. The three algorithms described in this section are examples of 
job-blind multiprocessor scheduling algorithms. In general, any uniprocessor sched
uling algorithm, such as those described in Chapter 8, can be implemented as a job-
blind scheduling multiprocessor algorithm. 

15.6.1 Job-Blind Multiprocessor Scheduling 

First-come-first-served (FCFS) process scheduling places arriving processes in a glo
bal run queue. When a processor becomes available, the scheduler dispatches the pro
cess at the head of the queue and runs it until the process relinquishes the processor. 

FCFS treats all processes fairly by scheduling them according to their arrival 
times. However, FCFS might be considered unfair because long processes make 
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short processes wait, and low-priority processes can make high-priority processes 
wait—although a preemptive version of FCFS can prevent the latter from occur
ring. Typically, FCFS scheduling is not useful for interactive processes, because 
FCFS cannot guarantee short response times. However, FCFS is easy to implement 
and eliminates the possibility of indefinite postponement—once a process enters 
the queue, no other process will enter the queue ahead of it.126-127 
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Round-robin process (RRprocess) scheduling places each ready process in a global 
run queue. RRprocess scheduling is similar to uniprocessor round-robin schedul
ing—a process executes for at most one quantum before the scheduler dispatches a 
new process for execution. The previously executing process is placed at the end of 
the global run queue. This algorithm prevents indefinite postponement, but does 
not facilitate a high degree of parallelism or processor affinity because it ignores 
relationships among processes.128-129 

Round-Robin Process (RRprocesss) Multiprocessor Scheduling 

A system can also implement the shortest-process-first (SPF) scheduling algorithm, 
which dispatches the process that requires the least amount of time to run to com
pletion.130 Both preemptive and nonpreemptive versions of SPF exhibit lower 
average waiting times for interactive processes than FCFS does, because interactive 
processes typically are "short" processes. However, a longer process can be indefi
nitely postponed if shorter processes continually arrive before it can obtain a pro
cessor. As with all job-blind algorithms, SPF does not consider parallelism or 
processor affinity. 

Shortest-Process-First (SPF) Multiprocessor Scheduling 

1. Is a UMA or a NUMA system more suitable for job-blind multiprocessor scheduling? 
2. Which job-blind scheduling strategy discussed in this section is most appropriate for batch 

processing systems and why? 

Ans: 1) A UMA system is more appropriate for a job-blind algorithm. NUMA systems 
often benefit from scheduling algorithms that consider processor affinity, because memory 
access time depends on the node at which a process executes, and nodes in a NUMA system 
have their own local memory. 2) SPF is most appropriate because it exhibits high throughput, 
an important goal for batch-processing systems. 

Self Review 

Although job-blind algorithms are easy to implement and incur minimal overhead, 
they do not consider performance issues specific to multiprocessor scheduling. For 
example, if two processes that communicate frequently do not execute simulta
neously, they might spend a significant amount of their time busy waiting, which 
degrades overall system performance. Furthermore, in most multiprocessor systems, 
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each processor maintains its own private cache. Processes in the same job often 
access the same memory items, so scheduling one job's processes on the same pro
cessor tends to increase cache hits and improves memory-access performance. In 
general, job-aware process-scheduling algorithms attempt to maximize parallelism 
or processor affinity, at the cost of greater scheduling algorithm complexity. 

The smallest-number-of-processes-first (SNPF) scheduling algorithm, which can be 
either preemptive or nonpreemptive, uses a global job priority queue. A job's prior
ity is inversely proportional to the number of processes in the job. If jobs containing 
the same number of processes compete for a processor, the job that has waited the 
longest receives priority. In nonpreemptive SNPF scheduling, when a processor 
becomes available, the scheduler selects a process from the job at the head of the 
queue and allows it to execute to completion. In preemptive SNPF scheduling, if a 
new job arrives with fewer processes, it receives priority and its processes are dis
patched immediately131-132 SNPF algorithms improve parallelism, because pro
cesses that are associated with the same job can often execute concurrently. 
However, the SNPF algorithms do not attempt to improve processor affinity. Fur
ther, it is possible for jobs with many processes to be postponed indefinitely. 

Round-robin job (RRJob) scheduling employs a global job queue from which each 
job is assigned to a group of processors (although not necessarily the same group each 
time the job is scheduled). Every job maintains its own process queue. If the system 
contains p processors and uses a quantum of length q, then a job receives a total of 
p x q of processor time when dispatched. Typically, a job does not contain exactly p 
processes that each exhaust one quantum (e.g., a process may block before its quan
tum expires). Therefore, RRJob uses round-robin scheduling to dispatch the job's 
processes until the job consumes the entire p x q quanta, the job completes or all of 
the job's processes block. The algorithm also can divide the p x q quanta equally 
among the processes in the job, allowing each to execute until it exhausts its quantum, 
completes or blocks. Alternatively, if a job has more than p processes, it can select p 
processes to execute for a quantum length of q.133 

Similar to RRprocess scheduling, this algorithm prevents indefinite postpone
ment. Further, because processes from the same job execute concurrently, this algo
rithm promotes parallelism. However, the additional context-switching overhead of 
round-robin scheduling can reduce job throughput.134-135 

Coscheduling (or gang scheduling) algorithms employ a global run queue that is 
accessed in round-robin fashion. The goal of coscheduling algorithms is to execute 
processes from the same job concurrently rather than maximize processor affin
ity.136 There are several coscheduling implementations—matrix, continuous and 
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undivided. We present only the undivided algorithm, because it corrects some of 
the deficiencies of the matrix and continuous algorithms. 

The undivided coscheduling algorithm places processes from the same job in 
adjacent entries in the global run queue (Fig. 15.13). The scheduler maintains a 
"window" equal to the number of processors in the system. All processes within a 

window execute in parallel for at most one quantum. After scheduling a group of 
processes, the window moves to the next group of processes, which also execute in 
parallel for one quantum. To maximize processor utilization, if a process in the win
dow is suspended, the algorithm extends the sliding window one process to the right 
to allow another runnable process to run for the given quantum, even if it is not 
part of a job that is currently executing. 

Because coscheduling algorithms use a round-robin strategy, they prevent 
indefinite postponement. Furthermore, because processes from the same job often 
run at the same time, coscheduling algorithms allow programs that are designed to 
run in parallel to take advantage of a multiprocessing environment. Unfortunately, 
the processor on which a process might be dispatched to a different processor each 
time, which can reduce processor affinity.137 
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Dynamic partitioning minimizes the performance penalty associated with cache 
misses by maintaining high processor affinity.138 The scheduler evenly distributes 
processors in the system among jobs. The number of processors allocated to a job is 
always less than or equal to the job's number of runnable processes. 

For example, consider a system that contains 32 processors and executes three 
jobs—the first with eight runnable processes, the second with 16 and the third with 
20. If the scheduler were to divide the processors evenly between jobs, one job 
would receive 10 processors and the other two jobs 11. In this case, the first job has 
only eight processes, so the scheduler assigns eight processors to that job and evenly 
distributes the remaining 24 processors (12 each) to the second and third jobs 
(Example 1 in Fig. 15.14). Therefore, a particular job always executes on a certain 

Dynamic Partitioning 

Figure 15.13 | Coscheduling (undivided version). 



subset of processors as long as no new jobs enter the system. The algorithm can be 
extended so that a particular process always executes on the same processor. If 
every job contains only one process, dynamic partitioning reduces to a round-robin 
scheduling algorithm.139 

As new jobs enter the system, the system dynamically updates the processor 
allocation. Suppose a fourth job containing 10 runnable processes (Example 2 in 
Fig. 15.14) enters the system. The first job retains its allocation of eight processors, but 
the second and third jobs each relinquish four processors to the fourth job. Thus, the 
processors are evenly distributed among the jobs—eight processors per job.140 The 
algorithm updates the number of processors each job receives whenever jobs enter or 
exit the system, or a process within a job changes state from running to waiting or vice 
versa. Although the number of processors allocated to jobs changes, a job still exe
cutes on either a subset or superset of its previous allocation, which helps maintain 
processor affinity.141 For dynamic partitioning to be effective, the performance 
increase from cache affinity must outweigh the cost of repartitioning.142 

Figure 15.14 | Dynamic partitioning. 
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1. How are RRJob and undivided coscheduling similar? How are they different? 
2. Describe some of the trade-offs between implementing a global scheduling policy that max

imizes processor affinity, such as dynamic partitioning, and per-processor run queues. 

Self Review 



Ans: 1) RRJob and undivided coscheduling are similar in that both schedule processes of a 
job to execute concurrently in round-robin fashion. Undivided coscheduling simply places 
processes of the same job next to each other in the global run queue where they wait for the 
next available processor. RRJob schedules only entire jobs. 2) Global scheduling is more 
flexible because it reassigns processes to different processors depending on system load. 
However, per-processor run queues are simpler to implement and can be more efficient than 
maintaining global run queue information. 
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Process migration entails transferring a process between two processors.143-144 This 
might occur if, for example, a processor fails or is overloaded. 

The ability to execute a process on any processor has many advantages. The 
most obvious is that processes can move to processors that are underutilized to 
reduce process response times and increase performance and throughput.145-146 

(We describe this technique, called load balancing, in more detail in Section 15.8, 
Load Balancing.) Process migration also promotes fault tolerance.147 For example, 
consider a program that must perform intensive, uninterrupted computation. If the 
machine running the program needs to be shut down or becomes unstable, the pro
gram's progress might be lost. Process migration allows the program to move to 
another machine to continue computation perhaps in a more stable environment. 

In addition, process migration promotes resource sharing. In large-scale sys
tems, some resources might not be replicated at every node. For example, in a 
NORMA system, processes might execute on machines with different hardware 
device support. A process might require access to a RAID array that is available 
through only one computer. In this case, the process should migrate to the com
puter with access to the RAID array for better performance. 

Finally, process migration improves communication performance. Two pro
cesses that communicate frequently should execute on or near the same node to 
reduce communication latency. Because communication links are often dynamic, 
process migration can be used to make process placement dynamic.148 

15.7 Process Migration 

1. What are some benefits provided by process migration? 
2. On which types of systems (UMA, NUMA or NORMA) is process migration most appro

priate? 

Ans: 1) Process migration promotes fault tolerance by moving processes away from mal
functioning nodes, supports load balancing, can reduce communication latency and promotes 
resource sharing. 2) Process migration is appropriate for large-scale NUMA or NORMA sys
tems that use per-processor (or per-node) run queues. Process migration enables these sys
tems to perform load balancing and share resources local to each node. 

Although process migration implementations vary across architectures, many 
implementations follow the same general steps (Fig. 15.15). First, a node issues a 
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migration request to a remote node. In most schemes, the sender initiates the 
migration because its node is overloaded or a specific process needs to access a 
resource located at a remote node. In some schemes, an underutilized node might 
request processes from other nodes. If the sender and receiver agree to migrate a 
process, the sender suspends the migrating process. The sender creates a message 
queue to hold all messages destined for the migrating process. Then, the sender 
extracts the process's state; this includes copying the process's memory contents 
(i.e., pages marked as valid in the process's virtual memory), register contents, state 
of open files and other process-specific information. The sender transmits the 
extracted state to a "dummy" process that the receiver creates. The two nodes 
notify all other processes of the migrated process's new location. Finally, the 
receiver dispatches the new instance of the process, the sender forwards the mes-

Figure 15.15 | Process migration. 
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sages in the migrated process's message queue and the sender destroys the local 
instance of the process.149-150 

1. List some items that compose a process's state and that must be migrated with a process. 
2. What overhead is incurred in process migration? 

Ans: 1) The sending process must transfer such items as the process's memory contents, 
register contents and state of open files. 2) The overhead includes migrating the process and 
its state, rerouting messages to the receiving node, maintaining two instances of the process 
for a short time (the old instance and the "dummy process"), suspending the process for a 
short time and sending messages to other nodes to inform them about the migrated process's 
new location. 

Self Review 
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Memory transfer is the most time-consuming element of migration.151 To minimize 
the process migration's performance cost, residual dependency—a process's depen
dency on its former node—must be minimized. For example, the process's former 
node might contain part of the process's working set or might be executing other 
processes with which the migrated one was communicating. If migration results in 
many residual dependencies, a receiving node must communicate with the sending 
node while executing the migrated process. This increases IPC, which generates 
more traffic on the interconnection network and degrades performance due to high 
latencies. Also, residual dependencies decrease fault tolerance, because the 
migrated process's execution depends on both nodes functioning correctly.152 

Often, the strategies that result in the highest degree of residual dependency 
transfer pages from the sender only when the process at the receiving node refer
ences them. These lazy (or on-demand) migration strategies reduce the initial pro
cess migration time —the duration for which the migrating process is suspended. In 
lazy migration, the process's state (and other required) information is transferred to 
the receiver, but the original node retains the process's pages. As the process exe
cutes on the remote node, it must initiate a memory transfer for each access to a 
page that remains at the sending node. Although this technique yields fast initial 
process migration, memory access can severely decrease an application's perfor
mance. Lazy migration is most useful when the process does not require frequent 
access to the remote address space.153-154 

For successful migration, processes should exhibit several characteristics. A 
migrated process should exhibit transparency—i.e., it should not be adversely 
affected (except, perhaps, for a slight delay in response time) by migration. In other 
words, the process should lose no interprocess messages or open file handles.155 A 
system also must be scalable—if process's residual dependencies grow with each 
migration, then a system could quickly be overwhelmed by network traffic as pro
cesses request remote pages. Finally, advances in communication technology across 
multiple architectures have created the need for heterogeneous process migra-
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tions—processes should be able to migrate between two different processor archi
tectures in distributed systems. This implies that process state should be stored in a 
platform-independent format.156 Section 17.3.6, Process Migration in Distributed 
Systems, discusses heterogeneous process migration architectures in more detail. 

1. Why is residual dependency undesirable? Why might some residual dependency be bene
ficial? 

2. How might a migration strategy that results in significant residual dependency not be scal
able? 

Ans: 1) Residual dependency is undesirable because it decreases fault tolerance and 
degrades performance after the transfer. One reason for allowing residual dependency is that 
it reduces initial transfer time. 2) If a process that already has a residual dependency migrates 
again, it will now rely on three nodes. With each migration, the process's state grows (so it 
can find its memory pages) and its fault tolerance decreases. 

Self Review 
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Process migration strategies must balance the performance penalty of transferring 
large amounts of process data with the benefit of minimizing a process's residual 
dependency. In some systems, designers assume that most of a migrated process's 
address space will be accessed at its new node. These systems often implement eager 
migration, which transfers all of a process's pages during initial process migration. 
This enables the process to execute as efficiently at its new node as it did at its previ
ous one. However, if the process does not access most of its address space, the initial 
latency and the bandwidth required by eager migration are largely overhead.157, 158 

To mitigate eager migration's initial cost, dirty eager migration transfers only a 
process's dirty pages. This strategy assumes that there is common secondary storage 
(e.g., a disk to which both nodes have access). All clean pages are brought in from the 
common secondary storage as the process references them from the remote node. 
This reduces initial transfer time and eliminates residual dependency. However, each 
access to a nonresident page takes longer than it would have using eager migration.159 

One disadvantage of dirty eager migration is that the migrated process must 
use secondary storage to retrieve the process's clean pages. Copy-on-reference 
migration is similar to dirty eager migration, except that the migrated process can 
request clean pages from either its previous node or the common secondary stor
age. This strategy has the same benefits as dirty eager migration but gives the mem
ory manager more control over the location from which to request pages —access to 
remote memory may be faster than disk access. However, copy-on-reference migra
tion can add memory overhead at the sender.160-161 

The lazy copying implementation of copy-on-reference transfers only the min
imum state information at initial migration time; often, no pages are transferred. 
This creates a large residual dependency, forces the previous node to keep pages in 
memory for the migrated process and increases memory-access latency over strate
gies that migrate dirty pages. However, the lazy copying strategy eliminates most 
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initial migration latency.162' 163 Such latency might be unacceptable for real-time 
processes and is inappropriate for most processes.164 

All the strategies discussed so far either create residual dependency or incur a 
large initial migration latency. A method that eliminates most of the initial migra
tion latency and residual dependency is the flushing strategy. In this strategy, the 
sender writes all pages of memory to shared secondary storage when migration 
begins; the migrating process must be suspended while the data is being written to 
secondary storage. The process then accesses the pages from secondary storage as 
needed. Therefore, no actual page migration occurs to slow initial migration, and 
the process has no residual dependency on the previous node. However, the flush
ing strategy reduces process performance at its new node, because the process has 
no pages in main memory, leading to page faults.165-166 

Another strategy for eliminating most of the initial migration latency and 
residual dependency is the precopy method, in which the sender node begins trans
ferring dirty pages before the original process is suspended. Any transferred page 
that the process modifies before it migrates is marked for retransmission. To ensure 
that a process eventually migrates, the system defines a lower threshold for the 
number of dirty pages that should remain before the process migrates. When that 
threshold is reached, the process is suspended and migrated to another processor. 
With this technique, the process does not need to be suspended for long (compared 
to other techniques such as eager and copy-on-reference), and memory access at 
the new node is fast because most data has already been copied. Also, residual 
dependency is minimal. The process's working set is duplicated for a short time (it 
exists at both nodes involved in migration), but this a minor drawback.167168 
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1. Which migration strategies should be used with real-time processes? 
2. Although initial migration time is minimal and there is little residual dependency for the 

precopy strategy, can you think of any "hidden" performance costs this strategy incurs? 

Ans: 1) Real-time processes cannot be suspended for long because this would slow 
response time. Therefore, strategies such as lazy copying, flushing, copy-on-reference and 
precopy are best for soft real-time processes. However, hard real-time processes should not 
be migrated because migration always introduces some indeterministic delay. 2) The process 
must continue executing on the sender node while its state is being copied to the receiving 
node. Because a migration decision was made, it is reasonable to assume that executing on 
the sending node is no longer desirable and therefore, precopy includes this additional cost. 

Self Review 

One measure of efficiency in a multiprocessor system is overall processor utilization. 
In most cases, if processor utilization is high, the system is performing more effi
ciently. Most multiprocessor systems (especially NUMA and NORMA systems) 
attempt to maximize processor affinity. This increases efficiency, because the pro
cesses do not need to access remote resources as often, but it might reduce processor 
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utilization if all the processes assigned to a particular processor complete. This proces
sor will idle while processes are dispatched to other processors to exploit affinity. 
Load balancing is a technique in which the system attempts to distribute processing 
loads evenly among processors. This increases processor utilization and shortens run 
queues for overloaded processors, reducing average process response times.169 

A load balancing algorithm might assign a fixed number of processors to a job 
when the job is first scheduled. This is called static load balancing. This method 
yields low runtime overhead, because processors spend little time determining the 
processors on which a job should execute. However, static load balancing does not 
account for varying process populations within a job. For example, a job might 
include many processes initially, but maintain only a few processes throughout the 
rest of its execution. This can lead to unbalanced run queues, which may lead to 
processor idling.170 

Dynamic load balancing attempts to address this issue by adjusting the num
ber of processors assigned to a job throughout its life. Studies have shown that 
dynamic load balancing performs better than static load balancing when context-
switch time is low and system load is high.171 

1. What are some of the benefits of implementing load balancing? 
2. What scheduling algorithms benefit from load balancing? 

Ans: 1) Some of the benefits of load balancing include higher processor utilization, which 
leads to higher throughput, and reduced process response time. 2) Load balancing is appro
priate for scheduling algorithms that maximize processor affinity, such as dynamic partition
ing. Also, it can benefit systems that maintain per-processor or per-node run queues. 

Self Review 
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Static load balancing is useful in environments in which jobs repeat certain tests or 
instructions and therefore exhibit predictable patterns (e.g., scientific comput
ing).172 These patterns can be represented as graphs that can be used to model 
scheduling. Consider the processes in a system as vertices in a graph, and communi
cations between processes as edges. For example, if there is an application in which 
one process continually analyzes similar data, then feeds that data to another pro
cess, this can be modeled as two nodes connected by one edge. Because this rela
tionship will be consistent throughout the application's life, there is no need to 
adjust the graph. 

Due to shared cache and physical memory, communication between processes 
at the same processor is much faster than communication between processes at differ-
ent processors. Therefore, static load balancing algorithms attempt to divide the 
graph into subgraphs of similar size (i.e., each processor has a similar number of pro-
cesses) while minimizing edges between subgraphs to reduce communication 
between processors.173 However, this technique can incur significant overhead for a 
large number of jobs.174 Consider the graph in Fig. 15.16. Two dashed lines represent 
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possible cuts to divide the processes somewhat evenly. Cut #1 yields four interproces-
sor communication channels, whereas cut #2 yields only two, thus representing a bet
ter grouping of processes. 

Static load balancing can be inadequate when communication patterns change 
dynamically and when processes complete with no new processes to take their 
places. The first case might perform less efficiently due to high communication 
latency. In the second case, processor utilization could decrease even when there 
are processes waiting to obtain a processor. In these cases, dynamic load balancing 
can improve performance.175 

Figure 15.16 | Static load balancing using graphs. 

1. When is static load balancing useful? When is it not useful? 
2. In Fig. 15.16, there is a substantial difference between cut #1 and cut #2. Considering that 

it is difficult to find the most effective cut when there are large numbers of jobs, what does 
this say about the limitations of static load balancing? 

Ans: 1) Static load balancing is useful in environments where processes might exhibit pre
dictable communication patterns. It is not useful in environments where communication pat
terns change dynamically and processes are created or terminated unpredictably. 2) The 
difference between Cut #1 (four IPC channels) and Cut #2 (two IPC channels) illustrates the 
performance implications of making bad decisions. Most large systems will have to estimate 
to find a solution; a wrong estimate could severely degrade performance. 

Self Review 

Dynamic load balancing algorithms migrate processes after they have been created 
in response to system load. The operating system maintains statistical processor 
load information such as the number of active and blocked processes at a processor, 
average processor utilization, turnaround time and latency.176-177 If many of a pro
cessor's processes are blocked or have a large turnaround times, the processor most 
likely is overloaded. If a processor does not have a high processor utilization rate, it 
probably is underloaded. 

Several policies may be used to determine when to migrate processes in 
dynamic load balancing. The sender-initiated policy activates when the system 
determines that a processor contains a heavy load. Only then will the system search 
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for underutilized processors and migrate some of the overloaded processor's jobs to 
them. This is best for systems with light loads, because process migration is costly 
and, in this case, the policy will rarely be activated.178, 179 

Conversely, a receiver-initiated policy is better for overloaded systems. In this 
environment, the system initiates process migration when a processor's utilization is 
low.180, 181 

Most systems experience heavy and light loads over time. For these systems, 
the symmetric policy, which combines the previous two methods, provides maxi
mum versatility to adapt to environmental conditions.182, 183 Finally, the random 
policy, in which the system arbitrarily chooses a processor to receive a migrated 
process, has shown decent results due to its simple implementation and (on aver
age) even distribution of processes. The motivation behind the random policy is 
that the migrating process's destination will likely have a smaller load than its ori
gin, considering that the original processor is severely overloaded.184, 185 

The subsections that follow describe common algorithms that determine how 
processes are migrated. For the purposes of this discussion, consider that the multi
processor system can be represented by a graph in which each processor and its 
memory are a vertex and each link is an edge. 

The bidding algorithm is a simple sender-initiated migration policy. Processors with 
smaller loads "bid" for processes on overloaded processors, much as in an auction. 
The value of a bid is based on the current load of the bidding processor and the dis
tance between the underloaded and overloaded processors in the graph. To reduce 
the process migration cost, more direct communication paths to the overloaded pro
cessor receive higher bid values. The overloaded processor accepts bids from proces
sors that are within a certain distance on the graph. If the overloaded processor 
receives too many bids, it decreases the distance; if it receives too few, it increases the 
distance and checks again. The process is sent to the processor with the highest bid.186 
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Bidding Algorithm 

The drafting algorithm is a receiver-initiated policy that classifies the load at each 
processor as low, normal or high. Each processor maintains a table describing the 
other processors' loads using these classifications. Often in large-scale or distrib
uted systems, processors maintain only information about their neighbors. Even 
time a processor's load changes classification, the processor broadcasts its updated 
information to the processors in its load table. When a processor receives one of 
these messages, it appends its own information and forwards the message to its 
neighbors. In this way, information about load levels eventually reaches all nodes in 
the network. Underutilized processors use this information to request processes 
from overloaded processors.187 
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Inefficient or incorrect communication strategies can overwhelm a system. For exam
ple, some process migration implementations employ systemwide broadcasts. The 
flood of broadcast messages can overwhelm communication channels. Due to com
munication delays, many overloaded processors could receive a request for a process 
at the same time and all send their processes to one underloaded processor.188 

Several strategies have been devised to avoid these problems. For example, the 
algorithm could restrict processors to communicate only with then immediate neigh
bors, which reduces the number of messages that are transmitted, but increases the 
time required for information to reach every node in the system.189 Alternatively, pro
cessors could periodically select a random processor with which to exchange informa
tion. In this case, processes are migrated from the processor with the higher load to 
the one with a lower load.190 In cases where one processor is severely overloaded and 
the rest are underloaded, this results in rapid process diffusion. 

Figure 15.17 illustrates process diffusion in a system in which nodes communi
cate only with their neighbors. The overloaded processor, represented by the middle 
vertex, has 17 processes while all others have one process. After one iteration, the 
overloaded processor communicates with its neighbors and sends three processes to 
each. Now those processors have four processes, which is three more than some of 
their neighbors have. In the second iteration, the processors with four processes send 
some to their neighbors. Finally, in the third iteration, the overloaded processor once 
again sends some processes to its neighbors so that now the processor with the 
heaviest load has only three processes. This example illustrates that even when com
munications are kept among neighboring processors, load balancing can effectively 
distribute processing responsibilities throughout the system. 

Communications Issues 
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Figure 15.17 | Processor load diffusion. (Part 1 of 2.) 
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Figure 15.17 | Processor load diffusion. (Part 2 of 2.) 
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1. In what type of environment should a sender-oriented policy be used? A receiver-oriented 
policy? Justify your answers. 

2. How does high communication latency hinder the effectiveness of load balancing? 

Ans: 1) A system with a light load should use a sender-oriented policy, whereas a system with 
a heavy load should use a receiver-oriented policy. In both cases this will reduce unnecessary 
migrations, because there will be few senders in a system with a light load and few receivers in 
one with a heavy load. 2) A node sending a message that it is underloaded might have become 
overloaded by the time another node receives the message. Thus, the receiving node could fur
ther unbalance the system's load by migrating additional processes to the sender. 
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Self Review 

Many of the mutual exclusion mechanisms we described in Chapter 5 are not ade
quate for multiprocessor systems. For example, disabling interrupts, which prevents 
other processes from executing by disabling preemption on uniprocessor systems, 
does not guarantee mutual exclusion on multiprocessors because several processes 
can execute simultaneously on different processors. Instructions such as test-and-set 
can be inefficient when the data these instructions reference is located in remote 
memory. Test-and-set has another weakness, namely that each of the pending opera
tions requires a separate memory access; these are performed sequentially, because 
only one access to a memory location may normally occur at a time. Such collisions 
can quickly saturate various kinds of interconnection networks, causing serious per
formance problems. Because of nontrivial communication costs and the fact that 
multiple processes execute at the same time, designers have developed a number of 
mutual exclusion techniques for multiprocessors. This section introduces mutual 
exclusion techniques for nondistributed multiprocessing systems. We present distrib
uted mutual exclusion in Section 17.5, Mutual Exclusion in Distributed Systems. 

15.9 Multiprocessor Mutual Exclusion 

Multiprocessor operating systems, such as Windows XP and Linux, frequently use 
spin locks for multiprocessor mutual exclusion. A spin lock is called a "lock" 
because a process that holds a spin lock claims exclusive access to the resource the 
spin lock protects (e.g., a shared data structure in memory or a critical section of 
code). In effect, other processes are "locked out" of the resource. Other processes 
that wish to use the resource "spin" (i.e., busy wait) by continually testing a condi
tion to determine whether the resource is available. In uniprocessing systems, spin 
locks are wasteful because they consume processor cycles that could be used by 
other processes, including the one that holds the lock, to do useful work. In multi
processing systems, the process holding the lock could release it while another pro
cess is busy waiting. In this case, it is more efficient for a process to busy wait if the 
time required for the system to perform a context switch to schedule another pro
cess is longer than the average busy-wait time.191 Also, if a processor contains no 

15.9.1 Spin Locks 



other runnable processes in its run queue, it makes sense to keep the process spin
ning to minimize the response time when the spin lock is released.192'193 

When a process holds a spin lock for a long duration (relative to context-
switch time), blocking is more efficient. Delayed blocking is a technique in which a 
process spins for a short period of time; if it does not acquire the lock in that time, 
the process blocks.194 An advisable process lock (APL) presents an alternative solu
tion. When a process acquires an APL, it specifies the amount of time it will hold 
the lock. Based on the time specified, other processes waiting to acquire the APL 
can determine if it is more efficient to busy wait for the lock or to block.195 

Adaptive locks (also called configurable locks) add flexibility to a mutual 
exclusion implementation. At certain times, such as when there are few active pro
cesses, spin locks are preferable because a process can acquire a resource soon after 
it becomes available. At times when system load is high, spinning wastes valuable 
processor cycles and blocking is preferable. Adaptive locks permit a process to 
dynamically change the type of lock being used. These locks can be set to blocking, 
spinning or delayed blocking and can incorporate APL features to customize the 
lock according to system load and application needs.196 

When multiple processes simultaneously wait for a spin lock to be released, 
indefinite postponement can occur. Operating systems can prevent indefinite post
ponement by granting the spin lock to processes in first-come-first-served order, or 
by aging processes waiting on the spin lock, as discussed in Section 7.3. 

1. In what way can spinning be useful in a multiprocessor? Under what conditions is it not 
desirable in a multiprocessor? Why is spinning not useful in a uniprocessor system? 

2. Why might an APL not be useful in all situations? 

Ans: 1) Spinning can be useful because it minimizes the time between when a resource 
becomes available and when a new process acquires the resource. Spinning is not desirable 
when system load is high and the expected time before the resource is available is greater than 
context-switch time; in these cases, spinning uses valuable processor cycles. Spinning is not use
ful in uniprocessor systems because it blocks the execution of the process holding the resource. 
2) An APL is not useful when a process cannot determine how long it will hold the lock. 
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Self Review 

A sleep/wakeup lock provides synchronization similar to a spin lock, but reduces 
wasted processor cycles and bus traffic. Consider processes P1 and P2, both of which 
request use of a resource protected by a sleep/wakeup lock. P1 requests the 
resource first and obtains the lock. When P2 requests the resource owned by P1 and 
does not receive the resource, P2 responds by sleeping (i.e., blocking). Once P1 

releases the lock, P1 wakes the highest-priority process waiting for the resource (in 
this case, P2). Unlike spin locks (which give the lock to the next waiting process), 
sleep/wakeup locks can use the processor scheduler to enforce process priorities. 

15.9.2 Sleep/Wakeup Locks 



Sleep/wakeup locks can cause waiting processes to be indefinitely postponed, 
depending on the system's scheduling policy. 

Note that unlike a uniprocessor implementation, only the process with the high
est priority is awakened. When all threads are awakened, a race condition can result 
because two or more threads may access a resource associated with a lock in a nonde-
terministic order. Race conditions should be avoided because they can cause subtle 
errors in applications and are difficult to debug. In uniprocessors, even if all processes 
are alerted, there can be no race condition because only one process (the one with 
highest priority in most scheduling algorithms) obtains control of the processor and 
acquires the lock. In a multiprocessing environment, a broadcast could wake many 
processes that are competing for the lock, creating a race condition. This would also 
result in one process obtaining the lock and many processes testing, reblocking and 
consequently going back to sleep, thus squandering processor time due to context 
switching. This phenomenon is known as the thundering herd.197 
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1. What are an advantage and a disadvantage of a sleep/wakeup lock compared to a spin 
lock? 

2. How is the implementation of a sleep/wakeup lock different in a multiprocessor environ
ment than in a uniprocessor environment? 

Ans: 1) A sleep/wakeup lock eliminates wasted processor cycles incurred by spinning. Also, a 
sleep/wakeup lock ensures that the highest-priority waiting process obtains the lock next. A dis
advantage is that reaction to the lock's availability is slower because the new acquirer must 
awaken and obtain a processor. 2) In a multiprocessor environment, a releasing process awak
ens only one waiting process, which prevents a thundering herd that would waste processor 
cycles and flood communication channels. This is not a problem on uniprocessor systems. 

Self Review 

Enforcing mutually exclusive access to shared memory in a multiprocessor system 
can degrade performance. Only writers need exclusive access to the resource, 
whereas, in general, multiple readers can access the same memory location at once. 
Therefore, many systems protect shared memory with a more versatile read/write 
lock rather than a generic mutual exclusion lock.198 A read/write lock provides 
mutual exclusion similar to that presented in the readers/writers problem of 
Section 6.2.4. A read/write lock permits multiple reader processes (i.e., processes 
that will not alter shared data) to enter their critical sections. Unlike the example in 
Section 6.2.4, however, read/write locks require that a writer (i.e., a process that will 
alter shared data) wait until there are no reader or writer processes in their critical 
sections before entering its critical section.199 

To implement this locking approach efficiently, the mutual exclusion mecha
nism must use shared memory. However, in environments in which memory is not 
shared, such as NORMA systems, message passing must be used. We discuss such 
techniques in Section 17.5, Mutual Exclusion in Distributed Systems. 

15.9.3 Read/Write Locks 
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1. In what situations are read/write locks more efficient than spin locks? 
2. A naive implementation of a read/write lock allows any reader to enter its critical section 

when no writer is in its critical section. How can this lead to indefinite postponement for 
writers? What is a fairer implementation? 

Ans: 1) Read/write locks are more efficient than spin locks when multiple processes read a 
memory location, but do not write to it. In this case, multiple processes can be in critical sec
tions at once. 2) This implementation leads to indefinite postponement if readers continually 
enter their critical sections before a writer can enter its critical section. A fairer implementa
tion would allow a reader to enter its critical section only if no writer is in or is waiting to 
enter its critical section as discussed in Section 6.2.4. 

Self Review 

www.winntmag.com/Articles/Index.cfm?Arti-
cleID=303&pg=l&show=495 
This article describes multiprocessor scheduling in Windows NT. 
www.aceshardware.com/Spades/read.php?article_id= 
30000187 
This article describes how the AMD Athlon (with two processors) 
implements cache coherence. It also discusses bus snooping. 
www.mosix.org 
This site provides information about MOSIX, a software bun
dle used on UNIX systems, which implements automatic pro
cess migration and load balancing. 

www.teamten.com/lawrence/242.paper/242.paper.html 
This paper discusses mutual exclusion algorithms for multipro
cessors. 
users.win.be/W0005997/UNIX/LINUX/IL/atomicity-
eng.html 
This site explains how to use spin locks to implement mutual 
exclusion in Linux. 

Web Resources 

Many applications demand substantially more computing 
power than one processor can provide. As a result, multi
processing systems—computers that use more than one 
processor to meet a system's processing needs—are often 
employed. The term "multiprocessing system" encom
passes any system with more than one processor. This 
includes dual-processor personal computers, powerful serv
ers that contain many processors and distributed groups of 
workstations that work together to perform tasks. 

There are several ways to classify multiprocessors. 
Flynn developed an early scheme for classifying computers 
into increasingly parallel configurations based on the types 
of streams used by processors. SISD (single instruction 
stream, single data stream) computers are traditional uni
processors that fetch one instruction at a time and execute 
it on a single data item. MISD (multiple instruction stream, 
single data stream) computers (which are not commonly 
used) have multiple processing units, each operating on a 
piece of data and then passing the result to the next pro-

cessing unit. SIMD (single instruction stream, multiple data 
stream) computers, which include array and vector proces
sors, execute instructions on multiple data items in parallel. 
MIMD (multiple instruction stream, multiple data stream) 
computers have multiple processing units that operate 
independently on separate instruction streams. 

The interconnection scheme of a multiprocessor sys-
tern describes how the system physically connects its com-
ponents, such as processors and memory modules. The 
interconnection scheme affects the system's performance, 
reliability and cost, so it is a key issue for multiprocessor 
designers. A shared bus provides low cost and high perfor-
mance for a small number of processors but does not scale 
well, owing to contention on the bus as the number of pro-
cessors increases. A crossbar-switch matrix provides high 
fault tolerance and performance but is inappropriate for 
small systems in which UMA (uniform memory access) is 
more cost effective. A 2-D mesh network is a simple design 
that provides adequate performance and fault tolerance at 
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a low cost but that also does not scale well. A hypercube is 
more scalable than a 2-D mesh network and provides bet
ter performance, but at a higher cost. Multistage networks 
compromise between cost and performance and can be 
used to build extremely large-scale multiprocessors. 

In a tightly coupled system, the processors share most 
system resources. Loosely coupled systems connect compo
nents indirectly through communication links and do not 
share most resources. Loosely coupled systems are more scal
able, flexible and fault tolerant but do not perform as well as 
tightly coupled systems. Loosely coupled systems also place 
more burden on programmers, who must implement applica
tions that communicate via IPC rather than shared memory. 

Multiprocessors can also be categorized based on 
how the processors share operating system responsibilities. 
In the master/slave organization, only the master processor 
can execute the operating system; the slaves execute only 
user programs. In the separate-kernels organization, each 
processor executes its own operating system, and operating 
system data structures maintain the system's global infor
mation. In the symmetrical organization, all processors can 
control any device and reference any storage unit. This 
organization enables systems to balance their workloads 
more precisely. 

Multiprocessor systems use several architectures to 
share memory. UMA multiprocessors require all processors 
to share all the system's main memory equally owing to 
shared-memory contention; these systems are not scalable 
beyond a few processors. NUMA (nonuniform memory 
access) multiprocessors partition memory into modules, 
assigning one to each processor as its local memory. COMA 
(cache-only memory architecture) multiprocessors are simi
lar to NUMA multiprocessors, but treat all memory as a 
large cache to increase the likelihood that requested data 
resides in the requesting processor's local memory. 
NORMA (no remote memory access) multiprocessors are 
loosely coupled and do not provide any globally shared 
main memory. NORMA multiprocessors are used to build 
large-scale distributed systems. 

Memory is coherent if the value obtained from reading 
a memory address is always the same as the value most 
recently written to that address. UMA cache-coherence pro
tocols include bus snooping and directory-based coherence. 
CC-NUMAs (cache-coherent NUMAs) often use a home-
based approach in which a home node for each memory 
address is responsible for keeping that data item coherent 
throughout the system. 

Systems that use page replication maintain multiple 
copies of a memory page so it can be accessed quickly by 

multiple processors. Systems that use page migration trans
fer pages to the processor that accesses the pages most. 
These techniques can be combined to optimize perfor
mance. 

Shared virtual memory (SVM) provides the illusion 
of shared physical memory in large-scale multiprocessor 
systems. Invalidation (in which a writer voids other copies 
of a page) and write broadcast (in which a writer notifies 
other processors of updates to a page) are two approaches 
for implementing memory coherence in SVM systems. 
These protocols can be strictly applied, but this can be inef
ficient. Relaxed consistency, in which the system might not 
be coherent for a few seconds, improves efficiency but sac
rifices some data integrity. 

Multiprocessor scheduling algorithms must deter
mine both when and where to dispatch a process. Some 
algorithms maximize processor affinity (the relationship of 
a process to a particular processor and its local memory) by 
executing related processes on the same processors. Others 
maximize parallelism by executing related processes on 
separate processors simultaneously. Some systems use glo
bal run queues, whereas others (typically large-scale sys
tems) maintain per-processor or per-node run queues. 

Process migration is the act of transferring a process 
between two processors or computers. Process migration can 
increase performance, resource sharing and fault tolerance. 
To migrate a process, nodes must transfer the process's state, 
which includes the process's memory pages, register con
tents, state of open files and kernel context. Migration poli
cies that allow residual dependency (a process's dependency 
on its former node) decrease fault tolerance and the pro
cess's performance after migration. However, eliminating 
residual dependency makes initial migration slow. Various 
migration policies balance the goals of minimal residual 
dependency and fast initial migration. 

Load balancing is a technique in which the system 
attempts to distribute processing responsibility equally 
among processors to increase processor utilization and 
decrease process response times. Static load balancing algo
rithms assign a fixed number of processors to a job when the 
job is first scheduled. These algorithms are useful in envi
ronments, such as scientific computing, where process inter
actions and execution times are predictable. Dynamic load 
balancing algorithms change the number of processors 
assigned to a job throughout the job's life. These algorithms 
are useful when process interactions are unpredictable, and 
when processes can be created and terminate at any time. 

Many uniprocessor mutual exclusion mechanisms are 
either inefficient or ineffective for multiprocessors. Design-
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With a sleep/wakeup lock, a process releasing the lock 
wakes up the highest-priority waiting process, which 
acquires the lock. This reduces the use of processor cycles 
typical in spin locks. Read/write locks allow one writer or 
many readers to be in their critical sections at once. 

ers have developed mutual exclusion techniques specific to 
multiprocessors. A spin lock is a mutual exclusion lock in 
which waiting processes spin (i.e., busy wait) for the lock. 
This is appropriate when system load is low and spinning 
time is short relative to context-switch time. Spin locks 
reduce reaction time when resources become available. 
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2-D mesh network—Multiprocessor interconnection scheme 
that arranges nodes in an m x n rectangle. 

4-connected 2-D mesh network—2-D mesh network in which 
nodes are connected with the nodes directly to the north, 
south, east and west. 

acquire operation—In several coherence strategies, an opera
tion indicating that a process is about to access shared 
memory. 

adaptive lock—Mutual exclusion lock that allows processes to 
switch between using a spin lock or a blocking lock, 
depending on the current condition of the system. 

advisable process lock (APL)—Locking mechanism in which 
an acquirer estimates how long it will hold the lock; other 
processes can use this estimate to determine whether to 
block or spin when waiting for the lock. 

array processor—SIMD (single instruction stream, multiple 
data stream) system consisting of many (possibly tens of 
thousands) simple processing units, each executing the 
same instruction in parallel on many data elements. 

attraction memory (AM)—Main memory in a COMA (cache-
only memory architecture) multiprocessor, which is orga
nized as a cache. 

baseline network—Type of multistage network. 
bidding algorithm—Dynamic load balancing algorithm in 

which processors with smaller loads "bid" for jobs on over
loaded processors; the bid value depends on the load of 
the bidding processor and the distance between the under
loaded and overloaded processors. 

bisection width—Minimum number of links that need to be 
severed to divide a network into two unconnected halves. 

bus snooping—Coherence protocol in which processors 
"snoop" the shared bus to determine whether a requested 
write is to a data item in that processor's cache or, if appli
cable, local memory. 

cache coherence—Property of a system in which any data item 
read from a cache has the value equal to the last write to 
that data item. 

Key Terms 
cache-coherent NUMA (CC-NUMA)—NUMA multiproces

sor that maintains cache coherence, usually through a 
home-based approach. 

cache miss latency—Extra time required to access data that 
does not reside in the cache. 

cache-only memory architecture (COMA) multiprocessor -
Multiprocessor architecture in which nodes consist of a 
processor, cache and memory module; main memory is 
organized as a large cache. 

cache snooping—Bus snooping used to ensure cache coher
ency. 

configurable lock—See adaptive lock 
contention—In multiprocessing a situation in which several 

processors compete for the use of a shared resource. 
copy-on-reference migration—Process migration technique in 

which only a process's dirty pages are migrated with the 
process, and the process can request clean pages either 
from the sending node or from secondary storage. 

cost of an interconnection scheme—Total number of links in a 
network. 

coscheduling—Job-aware process scheduling algorithm that 
attempts to execute processes from the same job concur
rently by placing them in adjacent global-run-queue loca
tions. 

crossbar-switch matrix—Processor interconnection scheme 
that maintains a separate path from every sender node to 
every receiver node. 

degree of a node—Number of other nodes with which a node 
is directly connected. 

delayed blocking—Technique whereby a process spins on a 
lock for a fixed amount of time before it blocks; the ratio
nale is that if the process does not obtain the lock quickly, 
it will probably have to wait a long time, so it should 
block. 

delayed consistency—Memory coherence strategy in which 
processors send update information after a release, but a 



receiving node does not apply this information until it 
performs an acquire operation on the memory. 

dirty eager migration—Process migration method in which 
only a process's dirty pages are migrated with the process; 
clean pages must be accessed from secondary storage. 

drafting algorithm—Dynamic load balancing algorithm that 
classifies each processor's load as low, normal or high; 
each processor maintains a table of the other processors' 
loads, and the system uses a receiver-initiated policy to 
exchange processes. 

dynamic load balancing—Technique that attempts to distrib
ute processing responsibility equally by changing the 
number of processors assigned to a job throughout the 
job's life. 

dynamic partitioning—Job-aware process scheduling algo
rithm that divides processors in the system evenly among 
jobs, except that no single job can be allocated more pro
cessors than runnable processes; this algorithm maximizes 
processor affinity. 

eager migration—Process migration strategy that transfers the 
entire address space of a process during the initial phases 
of migration to eliminate a migrated process's residual 
dependencies on its original node. 

false sharing—Situation that occurs when processes on sepa
rate processors are forced to share a page because they 
are each accessing a data item on that page, although not 
the same data item. 

first-come-first-served (FCFS) process scheduling—Job-blind 
multiprocessor scheduling algorithm that places arriving 
processes in a queue; the process at the head of the queue 
executes until it freely relinquishes the processor. 

flushing—Process migration strategy in which the sending 
node writes all of the process's memory pages to a shared 
disk at the start of migration; the process then accesses 
the pages from the shared disk as needed on the receiving 
node. 

gang scheduling—Another name for coscheduling. 

global run queue—Process scheduling queue used in some 
multiprocessor scheduling algorithms, which is indepen
dent of the processors in a system and into which every 
process or job in the system is placed. 

hard affinity—Type of processor affinity in which the schedul
ing algorithm guarantees that a process only executes on a 
single node throughout its life cycle. 

home-based consistency—Memory-coherence strategy in 
which processors send coherence information to a home 
node associated with the page being written; the home 

node forwards update information to other nodes that 
subsequently access the page. 

home node—Node that is the "home" for a physical memory 
address or page and is responsible for maintaining the 
data's coherence. 

hypercube—Multiprocessor interconnection scheme that con
sists of 2n nodes (where n is an integer); each node is 
linked with n neighbor nodes. 

interconnection scheme—Design that describes how a multi
processor system physically connects its components, such 
as processors and memory modules. 

invalidation—Memory-coherence protocol in which a process 
first invalidates—i.e., voids—all other copies of a page 
before writing to the page. 

job-aware scheduling—Multiprocessor scheduling algorithms 
that account for job properties when making scheduling 
decisions; these algorithms typically attempt to maximize 
parallelism or processor affinity. 

job-blind scheduling—Multiprocessor scheduling algorithms 
that ignore job properties when making scheduling deci
sions; these algorithms are typically simple to implement. 

lazy copying—Process migration strategy that transfers pages 
from the sender only when the process at the receiving 
node references these pages. 

lazy data propagation—Technique in which writing processors 
send coherence information after a release, but not the 
data; a processor retrieves the data when it accesses a 
page that it knows is not coherent. 

lazy migration—Process migration strategy in multiprocessor 
systems that does not transfer all pages during initial 
migration. This increases residual dependency but reduces 
initial migration time. 

lazy release consistency—Memory-coherence strategy in 
which a processor does not send coherence information 
after writing to a page until a new processor attempts an 
acquire operation on that memory page. 

load balancing—Technique which attempts to distribute the 
system's processing responsibility equally among proces
sors. 

loosely coupled system—System in which processors do not 
share most resources; these systems are flexible and fault 
tolerant but perform worse than tightly coupled systems. 

massively parallel processor—Processor that performs a large 
number of instructions on large data sets at once; array 
processors are often called massively parallel processors. 

master/slave multiprocessor organization—Scheme for dele
gating operating system responsibilities in which only one 
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processor (the "master") can execute the operating sys
tem, and the other processors (the "slaves") can execute 
only user processes. 

memory coherence—State of a system in which the value 
obtained from reading a memory address is always the 
same as the most-recently written value at that address. 

memory line—Entry in memory that stores one machine word 
of data, which is typically four or eight bytes. 

multiple-instruction-stream, multiple-data-stream (MIMD) 
computer—Computer architecture consisting of multiple 
processing units, which execute independent instructions 
and manipulate independent data streams; this design 
describes multiprocessors. 

multiple-instruction-stream, single-data-stream (MISD) com
puter—Computer architecture consisting of several pro
cessing units, which execute independent instruction 
streams on a single stream of data; these architectures 
have no commercial application. 

multiple shared bus architecture—Interconnection scheme 
that employs several shared buses connecting processors 
and memory. This reduces contention, but increases cost 
compared to a single shared bus. 

multiprocessing system—Computing system that employs 
more than one processor. 

multistage network—Multiprocessor interconnection scheme 
that uses switch nodes as hubs for communication 
between processor nodes that each have their own local 
memory. 

network diameter—Shortest path between the two most 
remote nodes in a system. 

network link—Connection between two nodes. 

node—System component, such as a processor, memory mod
ule or switch, attached to a network; sometimes a group of 
components might be viewed as a single node. 

nonuniform-memory-access (NUMA) multiprocessor—Multi
processor architecture in which each node consists of a 
processor, cache and memory module. Access to a proces
sor's associated memory module (called local memory) is 
faster than access to other memory modules in the system. 

no-remote-memory-access (NORMA) multiprocessor—Mul
tiprocessor architecture that does not provide global 
shared memory. Each processor maintains its own local 
memory. NORMA multiprocessors implement a common 
shared virtual memory. 

on-demand migration—Another name for lazy process migra
tion. 

page migration—Technique in which the system transfers 
pages to the processor (or processors when used with 
page replication) that accesses the pages most. 

page replication—Technique in which the system maintains 
multiple copies of a page at different nodes so that it can 
be accessed quickly by multiple processors. 

per-processor run queue—Process scheduling queue associ
ated with a specific processor; processes entering the 
queue are scheduled on the associated processor indepen
dently of the scheduling decisions made in rest of the sys
tem. 

per-node run queue—Process scheduling queue associated 
with a group of processors; processes entering the queue 
are scheduled on the associated node's processors inde
pendently of the scheduling decisions made in rest of the 
system. 

precopy—Process migration strategy in which the sender 
begins transferring dirty pages before the original process 
is suspended; once the number of untransferred dirty 
pages at the sender reaches some threshold, the process 
migrates. 

process migration—Transferring a process and its associated 
state between two processors. 

processor affinity—Relationship of a process to a particular 
processor and a corresponding memory bank. 

race condition—Occurs when multiple threads simultaneously 
compete for the same serially reusable resource, and that 
resource is allocated to these threads in an indeterminate 
order. This can cause subtle program errors when the 
order in which threads access a resource is important. 

random policy—Dynamic load balancing policy in which the 
system arbitrarily chooses a processor to receive a 
migrated process. 

read/write lock—Lock that allows a single writer process or 
multiple reading processes (i.e., processes that will not 
alter shared variables) to enter a critical section. 

receiver-initiated policy—Dynamic load balancing policy in 
which processors with low utilization attempt to find over
loaded processors from which to receive a migrated pro
cess. 

relaxed consistency—Category of memory-coherence strate-
gies that permit the system to be in an incoherent state for 
a few seconds after a write, but improve performance over 
strict consistency. 

release consistency—Memory-coherence strategy in which 
multiple accesses to shared memory are considered a sin
gle access; these accesses begin with an acquire and end 

736 Multiprocessor Management 



with a release, after which coherence is enforced through
out the system. 

release operation—In several coherence strategies, this opera
tion indicates that a process is done accessing shared 
memory. 

residual dependency—Dependency of a migrated process on 
its original node after process migration because some of 
the process's state remains on the original node. 

round-robin job (RRJob) scheduling—Job-aware process 
scheduling algorithm employing a global run queue in 
which jobs are dispatched to processors in a round-robin 
fashion. 

round-robin process (RRprocess) scheduling—Job-blind mul
tiprocessor scheduling algorithm that places each process 
in a global run queue and schedules these process in a 
round-robin manner. 

sender-initiated policy—Dynamic load balancing policy in 
which overloaded processors attempt to find underloaded 
processors to which to migrate a process. 

separate kernels multiprocessor organization—Scheme for 
delegating operating system responsibilities in which each 
processor executes its own operating system, but the pro
cessors share some global system information. 

sequential consistency—Category of memory-coherence strat
egies in which coherence protocols are enforced immedi
ately after a write to a shared memory location. 

shared bus—Multiprocessor interconnection scheme that uses 
a single communication path to connect all processors and 
memory modules. 

shared virtual memory (SVM)—An extension of virtual mem
ory concepts to multiprocessor systems; SVM presents the 
illusion of shared physical memory between processors 
and ensures coherence for pages accessed by separate 
processors. 

shortest-process-first (SPF) scheduling (multiprocessor)—Job-
blind multiprocessor scheduling algorithm, employing a 
global run queue, that selects the process with the smallest 
processor time requirement to execute on an available 
processor. 

single-instruction-stream, multiple-data-stream (SIMD) com
puter—Computer architecture consisting of one or more 
processing elements that execute instructions from a sin
gle instruction stream that act on multiple data items. 

single-instruction-stream, single-data-stream (SISD) com
puter—Computer architecture in which one processor 

fetches instructions from a single instruction stream and 
manipulates a single data stream; this architecture 
describes traditional uniprocessors. 

sleep/wakeup lock—Mutual exclusion lock in which waiting 
processes block, and a releasing process wakes the high
est-priority waiting process and gives it the lock. 

smallest-number-of-processes-first (SNPF) scheduling—Job-
aware process scheduling algorithm, employing a global 
job-priority queue, where job priority is inversely propor
tional to the number of processes in a job. 

soft affinity—Type of processor affinity in which the schedul
ing algorithm tries, but does not guarantee, to schedule a 
process only on a single node throughout its life cycle. 

space-partitioning scheduling—Multiprocessor scheduling strat
egy that attempts to maximize processor affinity by sched
uling collaborative processes on a single processor (or 
single set of processors); the underlying assumption is that 
these processes will access the same shared data. 

spin lock—Mutual exclusion lock in which a waiting process 
busy waits for the lock; this reduces the process's reaction 
time when the protected resource's becomes available. 

static load balancing—Category of load balancing algorithms 
that assign a fixed number of processors to a job when it is 
first scheduled. 

stream—Sequence of objects fed to the processor. 

switch—Node that routes messages between component 
nodes. 

symmetric multiprocessor (SMP)—Multiprocessor system in 
which processors share all resources equally, including 
memory, I/O devices and processes. 

symmetrical multiprocessor organization—Scheme for dele
gating operating system responsibilities in which each 
processor can execute the single operating system. 

symmetric policy—Dynamic load balancing policy that com
bines the sender-initiated policy and the receiver-initiated 
policy to provide maximum versatility to adapt to envi
ronmental conditions. 

thundering herd—Phenomenon that occurs when many pro
cesses awaken when a resource becomes available; only 
one process acquires the resource, and the others test the 
lock's availability and reblock, wasting processor cycles. 

tightly coupled system—System in which processors share 
most resources; these systems provide higher perfor
mance but are less fault tolerant and flexible than loosely 
coupled systems. 
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of main memory; in general, memory-access time is con
stant, regardless of which processor requests data, except 
when the data is stored in a processor's cache. 

vector processor—Type of SIMD computer containing one 
processing unit that executes instructions that operate on 
multiple data items. 

write broadcast—Technique for maintaining memory coher
ence in which the processor that performs a write broad
casts the write throughout the system. 

timesharing scheduling—Multiprocessor scheduling technique 
that attempts to maximize parallelism by scheduling collab
orative processes concurrently on different processors. 

undivided coscheduling algorithm—Job-aware process sched
uling algorithm in which processes of the same job are 
placed in adjacent locations in the global run queue, and 
processes are scheduled round-robin. 

uniform-memory-access (UMA) multiprocessor—Multipro
cessor architecture that requires all processors to share all 
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15.1 A multiprocessor's interconnection scheme affects the 
system's performance, cost and reliability. 

a. Of the schemes presented in this chapter, which are 
best suited for small systems and which for large-
scale systems? 

b. Why are some interconnection schemes good for 
small networks and others for large networks, but 
none are optimal for all networks? 

15.2 For each of the following multiprocessor organizations, 
describe an environment in which the organization is useful; 
also, list a drawback for each. 

a. Master/slave multiprocessor organization 
b. Separate-kernels multiprocessor organization 
c. Symmetrical organization 

15.3 For each of the following environments, suggest whether 
the UMA, NUMA or NORMA memory-access architecture 
would be best and explain why. 

a. An environment consisting of a few interactive pro
cesses that communicate using shared memory 

b. Thousands of workstations performing a common 
task 

c. Large-scale multiprocessor containing 64 processors 
in a single machine 

d. Dual-processor personal computer 

15.4 As we described in the chapter, one important, but diffi
cult, goal of a NUMA multiprocessor designer is maximizing 
the number of page accesses that can be serviced by local 
memory. Describe the three strategies, COMA, page migra
tion and page replication, and discuss the advantages and dis
advantages of each. 

a. COMA multiprocessor. 

b. Page migration. 

c. Page replication. 

15.5 For each of the following multiprocessor scheduling 
algorithms, use the classifications discussed early in this chap
ter to describe the type of multiprocessor system that would 
likely employ it. Justify your answers. 

a. Job-blind multiprocessor scheduling 

b. Job-aware multiprocessor scheduling 

c. Scheduling using per-processor or per-node run 
queues 

15.6 For each of the following system attributes, describe how 
process migration can increase it in a system and an inefficient 
implementation reduce it. 

a. Performance 

b. Fault tolerance 

c. Scalability 

15.7 In our load balancing discussion, we described how pro
cessors decide when and with whom to migrate a process. 
However, we did not describe how processors decide which 
process to migrate. Suggest some factors that could help deter
mine which process to migrate. [Hint: Consider the benefits of 
process migration other than load balancing.] 

15.8 Can a process waiting for a spin lock be indefinitely 
postponed even if all processes guarantee to leave their critical 
sections after a finite amount of time? A process waiting for a 
sleep/wakeup lock? If you answered yes, suggest a way to pre
vent indefinite postponement. 

Exercises 

15.9 Prepare a research paper describing how the Linux 
operating system supports CC-NUMA multiprocessors. 
Describe Linux's scheduling algorithm, how Linux maintains 

cache and memory coherency and the various mutual exclu
sion mechanisms provided by the operating system. Make sure 
your research entails reading some source code. 
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15.10 The cost and performance of different hardware devices 
are changing at different rates. For example, hardware contin
ues to get cheaper, and processor speed is increasing faster 
than bus speed. Write a research paper describing the trends in 
interconnection schemes. Which schemes are becoming more 
popular? Which less popular? Why? 

15.11 Prepare a research paper surveying the load balancing 
algorithms in use today. What are the motivations behind each 

algorithm? For what type of environment is each intended? 
Are most algorithms static or dynamic? 

15.12 Prepare a research paper describing how operating sys
tems implement memory coherence. Include a precise descrip
tion of the coherence protocol and when it is applied for at 
least one real operating system. 
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ify when it requires access to a shared memory location and to 
which location. 

15.14 Expand your simulation. Implement per-processor run 
queues and a load balancing algorithm. Maintain a data struc
ture for a processor's local memory, and implement a function 
in the Process object to randomly add memory locations to 
the local memory. Be sure to migrate this local memory when 
migrating a Process. 

15.13 Use Java threads to simulate a multiprocessor, with each 
thread representing one processor. Be sure to synchronize 
access to global (i.e., shared) variables. Implement shared 
memory as an array with memory addresses as subscripts. 
Define an object class called Process. Randomly create Pro
cess objects and implement a scheduling algorithm for them. 
A Process object should describe how long it runs before 
blocking each time, and when it terminates. It should also spec-

Suggested Simulations 

Flynn and Rudd provide a synopsis of parallel and sequential 
architecture classifications in their 1996 paper "Parallel Archi
tectures."200 Crawley, in his paper "An Analysis of MIMD Pro
cessor Interconnection Networks for Nanoelectronic Systems," 
surveys processor interconnection schemes.201 

As multiprocessing systems have become more main
stream, much research has been devoted to optimizing their 
performance. Mukherjee et al. present a survey of multipro
cessor operating system concepts and systems in "A Survey of 
Multiprocessor Operating Systems."202 More recently Tripathi 
and Karnik, in their paper "Trends in Multiprocessor and Dis
tributed Operating System Designs," summarize many impor
tant topics such as scheduling, memory access and locks.203 

For more information regarding scheduling algorithms 
in multiprogrammed environments, see Leutenegger and Ver-

Recommended Reading 
non's "The Performance of Multiprogrammed Multiprocessor 
Scheduling Policies,"204 and more recently, Bunt et al's "Sched
uling in Multiprogrammed Parallel Systems."205 Lai and 
Hudak discuss "Memory Coherence in Shared Virtual Mem
ory Systems."206 Iftode and Singh survey different implemen
tation strategies for maintaining memory coherence in 
"Shared Virtual Memory: Progress and Challenges."207 A com
prehensive survey, "Process Migration," has been published by 
Milojicic et al.,208 and the corresponding problem of load bal
ancing has been treated thoroughly by Langendorfer and Petri 
in "Load Balancing and Fault Tolerance in Workstation Clus
ters: Migrating Groups of Processes."209 The bibliography for 
this chapter is located on our Web site at www.deitel.com/ 
books/os3e/Bibliography.pdf. 
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Networking and 
Distributed Computing 

Whatever shall we do in that remote spot? 
—Napoleon Bonaparte — 

Part 6 



With the popularization of the Web in 1993, Internet 
usage literally exploded. Now there is a huge focus 
on building distributed, Internet-based applica
tions; this is profoundly affecting operating sys
tems design. Chapter 16 introduces computer 
networking and discusses network topologies and 
types, and the client/server networking model. We 
carefully explain the four layers of the Internet's 
TCP/IP protocol stack. Chapter 17 introduces dis
tributed systems and discusses attributes, commu
nication, synchronization, mutual exclusion and 
deadlock. The chapter also presents case studies of 
the Sprite and Amoeba distributed operating sys
tems. Chapter 18 discusses distributed file systems, 
clustering, peer-to-peer distributed computing, grid 
computing, Java distributed computing technolo
gies and the emerging technology of Web services. 

The humblest is the peer of the most powerful. 
—John Marshall Harlan— 



Live in fragments no longer. Only connect. 
—Edward Morgan Forster— 

What networks of railroads, highways and canals were in another age, the networks of 
telecommunications, information and computerization...are today. 

—Bruno Kreisky— 

It took five months to get word back to Queen Isabella about the voyage of Colombus 
two weeks for Europe to hear about Lincoln's assassination, and only 1.2 seconds to get 
the words from Neil Armstrong that man can walk on the moon. 

—Isaac Asimov— 



Chapter 16 

Introduction to Networking 
Objectives 
After reading this chapter, you should understand: 

• the central role of networking in today's computer systems. 

• various network types and topologies. 

• the TCP/IP protocol stack. 

• the capabilities of TCP/IP's application, transport, network and link layers. 

• protocols such as HTTP, FTP, TCP, UDP, XCP, IP and IPv6. 

• network hardware and hardware protocols such as Ethernet and Wireless 
802.11. 

• the client/server networking model. 
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16.6.1 Transmission Control Protocol 
(TCP) 

1 6 . 6 . 2 User Datagram Protocol (UDP) 

16.7 
Network Layer 

16.7.1 Internet Protocol (IP) 
1 6 . 7 . 2 Internet Protocol version 6 (IPv6) 

16.8 
Link Layer 

16.8.1 Ethernet 
16.8.2 Token Ring 

16.8.3 Fiber Distributed Data Interface 
(FDDI) 

16.8.4 IEEE 802.11 (Wireless) 

16.9 
Client/Server Model 



Networks have become almost as important as the computers they connect, 
enabling users to access resources that are available on remote computers and com
municate with other users around the world. Talking on the telephone, watching 

cable television, using a cellular phone, making a credit card purchase, withdrawing 
money from an ATM, browsing the Web and sending e-mail are all activities that 
rely on networked computers. As users, we have come to expect that network com
munication will occur quickly and without error. 

This chapter discusses common network layouts, focusing on how hosts—enti
ties that receive and provide services over a network—are connected by links— 
media over which network services are transmitted. If a link breaks, a host fails or a 
message is lost, network communication can be interrupted. We introduce the TCP/ 
IP protocol stack, which provides well-defined interfaces to enable communication 
between computers across a network and to allow problems to be fixed as they 
arise. The TCP/IP protocol stack splits networked communication into four logical 
levels called layers. Each layer provides functionality for the layers above it to ease 
the development, management and debugging of networks and simplify the pro
gramming of applications that rely on those networks. A layer is implemented by 
following certain protocols—sets of rules that govern how two entities should inter

act. In our discussion of each layer, we consider popular Internet protocols that 
allow users worldwide to communicate. We conclude by discussing the popular cli
ent/server model of network communication. 

The concepts presented in this chapter will help you understand the chapters 
on distributed systems (Chapter 17 and Chapter 18), security (Chapter 19) and the 
case studies on Linux (Chapter 20) and Windows XP (Chapter 21). 

16.1 Introduction 
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1. Why does the TCP/IP protocol stack separate network communication into four layers? 
2. What problems can arise during network communication? 

Ans: 1) Separating network communication into four layers modularizes the communica
tion. Developers can focus on one layer at a time. This eases development, management and 
debugging of networks and networked applications. 2) Hosts can fail, links can break and 
messages can be lost. 

Self Review 

Network topology describes the relationship among the hosts, also called nodes, on 
a network. A logical topology displays which nodes in a network are directly con
nected (i.e., which nodes can communicate with each other without relying on any 
intermediate nodes).1 Common network topologies (Fig. 16.1) include bus, ring, 

star, tree, mesh and fully-connected mesh networks. 
Nodes on a bus (or linear) network (Fig. 16.1, part a) are all connected to a 

single, common communication link (called a bus). Bus networks are simple 

16.2 Network Topology 
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Figure 16.1 | Network topologies. 

because they do not require intermediate nodes to forward messages to other nodes. 
As messages travel along a link, resistance in the medium causes the signal to lose 
strength—this is known as attenuation. Since bus networks do not have intermediate 
nodes that retransmit messages, the length of the bus communication medium must 
be limited to minimize attenuation. If any individual node in a bus network fails, the 
entire network will continue functioning. If the bus itself fails, the entire network will 
fail. Bus networks are appropriate for homes and small offices. ' 

Ring networks (Fig. 16.1, part b) consist of a set of nodes, each of which main
tains exactly two connections to other nodes such that a message sent through one 
connection can eventually return via the other. Ring networks can grow to be larger 
than bus networks, because each node in the ring forwards each message; this limits 
message attenuation but introduces a retransmission delay (i.e., the time required 
for a node to process a message before retransmitting it). One of the most signifi
cant limitations of a ring network is that if one node in a ring fails, then communica-



tion in the entire ring will fail. This means that a ring network has limited fault 
tolerance, since the network cannot recover from a single node failure. 

Star networks (Fig. 16.1, part e) contain a single central node, or hub, that is 
connected to all of the other nodes in the network and is responsible for relaying 

messages between nodes. All transmissions in a star network pass through the hub. 
Since communications over star networks go through a single intermediate node, 
attenuation will limit the geographical size of the network, but transmission delay is 
smaller than in ring networks. The network can survive the failure of one of the 
outer nodes, but the entire network will fail if the central hub fails. Since the central 
hub controls all communication, a bottleneck will occur if the network demand 
exceeds the processing capabilities of the hub. ' 

Tree networks (Fig. 16.1, part f) are hierarchical networks that consist of a 
root node and several subnodes, called children, that can have subnodes of their 
own. A tree network can be viewed as multiple star networks. The hub of the first 
star network is the root of the tree. Each child node in this star serves as a hub for 
another star network. Hubs are responsible for relaying information to the nodes in 
their immediate networks. A tree topology is often used to join nodes that commu-
nicate with each other frequently, thereby increasing network efficiency.6, 7 

In mesh networks (Fig. 16.1, part c), at least two nodes have more than one 
path connecting them. A mesh network in which each node is directly connected to 
every other node is a fully-connected mesh network (Fig. 16.1, part d). Mesh net
works and fully connected networks are the most fault-tolerant topologies, because 
typically there are multiple paths between each pair of nodes. The primary disad
vantage of mesh networks is the complexity associated with directing messages 
between nodes that have no direct connection. With fully-connected networks, this 
is simple since each pair of nodes has a direct link between them. The problem with 

fully-connected networks is that as the number of nodes increase, the number of 
links to connect those nodes increases exponentially.8'9 

The proliferation of wireless network technology has introduced ad hoc net
works (see the Mini Case Study, Symbian OS). An ad hoc network is spontaneous— 
any number of devices may be connected to it at any time. These devices become 
part of, and leave, the network at random. Ad hoc networks consist of any combina
tion of wireless and wired devices. The network topology can change rapidly, which 
makes it difficult for the network to be governed by a central node. The variable 
nature of ad hoc networks makes determining their topology a challenging problem 
in current research.10 
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1. Why would a network for a mission-critical system (e.g., a nuclear power plant or an air 
traffic control system) not be built with a ring topology? 

2. Why do wireless devices require a spontaneous network? 

Ans: 1) A mission-critical system would not use a ring topology because of the lack of fault 
tolerance. If a single node failed, the entire network would fail. Mission-critical systems 

Self Review 



require networks with multiple levels of redundancy to ensure continuous operation. 2) The 
nature of wireless devices is that as they move from place to place; they join and exit multiple 
networks. Ad hoc networks do not require a fixed network topology. 

The two most prevalent types of networks are local area networks (LANs) and 
wide area networks (WANs). A LAN is a network with limited geographic range 
designed to optimize data transfer rates between its nodes. Local area networks 
interconnect resources using high-speed communication paths with network proto
cols optimized for local area environments such as office buildings or college cam
puses. LANs benefit by independence from the larger networks. Those that are 
company or university owned can be upgraded or reorganized at the company or 
university's discretion. LANs are also free from the congestion that can arise in 

16.3 Network Types 
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Mini Case Study 
Symbian OS 
Symbian (www.symbian.com), 
maker of the Symbian operating 
system, was founded in 1998 by 
mobile phone manufacturers Eric
sson, Nokia, Motorola and Psion 
to develop a cross-platform 
mobile phone operating system 
to replace their individual, incom
patible OSs.11, 12 The result is 
Symbian OS, a small operating 
system that runs on "smart 
phones"13—mobile phones w i th 
the functionality of a PDA (Per
sonal Digital Assistant). Symbian 
OS is unique in that it was built 
for mobile phones,14 ,15 while its 
major competitors such as Win
dows CE, Linux and PalmOS were 
all originally designed for differ
ent systems, then adapted to 
mobile phones. 

Symbian focuses on size and 
t ime efficiency.16-17 The Symbian 
OS complies wi th open standards 
such as the POSIX API18—the 
IEEE's Portable Operating System 
Interface standard—as well as 
APIs for high-performance graph
ics and multimedia, mobile brows
ing and messaging,, 
communications and mobile tele
phony, security and data manage
ment, to make it easier for 
application developers to wri te 
compatible software.19, 20 Also, 
since Java is becoming standard 
on mobile phones and has a large 
application developer base, an 
implementation of the Java 
mobile run-time environment 
(MIDP) is included.21- 22 

Symbian's latest release, 
v7.0s, is intended for third-gener
ation (3G) mobile phones and 
comes equipped w i th new func
tionality to meet the needs of 
these high-performance wireless 
devices. Some of the new features 
of OS v7.0s include a mult i
threaded framework for multime
dia, Java Wireless Messaging 1.0 
and Bluetooth 1.1 capability.23 OS 
v7.0s also supports W-CDMA 
(wideband code-division multiple 
access), which enables 3G mobile 
phones to transfer data at much 
higher rates, up to 2Mbps.24 

These new features are built upon 
the extensive collection of APIs 
common in all recent Symbian OS 
releases. 



lager networks that must serve millions of users. Since LANs are autonomous, they 
can be customized to meet the needs of a particular group and can employ any of 
the network topologies discussed in Section 16.2.25 

WANs are broader, consisting of many LANs and connecting many computers 
over great distances; the largest WAN by far is the Internet. WANs generally employ 
a mesh topology, operate at lower speeds than LANs and have higher error rates 
because they must interact with multiple, often heterogeneous LANs and WANs. 
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1. What is the purpose of creating smaller subnetworks within a larger network, such as a 
LAN that comprises a piece of a WAN? 

2. What are the disadvantages of WANs compared to LANs? 

Ans: 1) A subnetwork, such as a LAN on a college campus, allows for a group of related 
computers to be directly connected for faster transmission, higher capacity, greater manage-

ment flexibility and customization. 2) WANs often operate at lower speeds and have higher 
error rates than LANs because they must interact with multiple, often heterogeneous LANs 
and WANs. 

Self Review 

The four layers of networked communication as defined by the TCP/IP protocol 
stack are the application, transport, network and link layers. The application layer is 
the highest level and provides protocols (e.g., HTTP, FTP) for applications, such as 
Web browsers and Web servers, to communicate with each other. The transport 
layer is responsible for end-to-end communication of information from the sending 
process to the receiving process. The network layer is responsible for moving the 
data from one computer to the next (also known as routing). The transport layer 
relies on the network layer to determine the proper path from one end of the com
munication to the other. The link layer translates information between bits and a 
physical signal that travels through the physical link (e.g., a network cable).27 

As a message travels down the stack, each layer receives the message and 
adds control information to the beginning of the message (called a header) or to 
the end of the message (called a trailer) to enable communication with the corre
sponding layer on other hosts. The control information might include, for example, 
the addresses of the source and destination hosts, or the type or size of data that is 
being sent. This new message then is passed to the layer below it (or to the physical 
medium if the message is coming from the link layer). When receiving information 
over a network, each layer receives data from the layer below it (or from the phys-
ical medium in the case of the link layer). The layer strips off the control informa
tion from the corresponding layer on the remote host. This data is often used to 
ensure that the message is valid and directed to the current host. The message then 
is passed to the layer above it (or to the process if the message is being passed 
upward by the application layer). We discuss these layers in detail in the sections 
that follow. 

16.4 TCP/IP Protocol Stack 
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In 1984, the International Organization for Standardization (ISO) introduced 
the Open Systems Interconnection (OSI) Reference Model to establish an interna-
tional standard for communication between applications over a network. Although 
not followed strictly on the Internet, it remains an important model to understand. 
The OSI protocol stack consists of the four layers we discussed previously plus 
three additional ones. The seven layers of the OSI model are application, presenta
tion, session, transport, network, data link and physical. 

The application, presentation and session layers in OSI correspond to the 
application layer in the TCP/IP protocol stack. In the OSI model, the application 
layer interacts with the applications and provides network services, such as file 
transfer and e-mail. The presentation layer solves certain compatibility problems, 
such as when the two end users use different data formats, by translating the appli-
cation data into a standard format that can be understood by other layers. The ses-
sion layer establishes, manages and terminates the communication between two 
end users. The transport and network layers correspond with the transport and net-
work layers of the TCP/IP protocol stack, respectively. The data link layer and phys-
ical layer in OSI correspond to the link layer in the TCP/IP protocol stack. At the 
sender, the data link layer converts the data representation it receives from the net
work layer into bits and at the destination, it converts bits received into the data 
representation for the network layer. The physical layer transmits bits over the 
physical medium, such as cables.28, 29, 30, 31 
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1. What type of information is placed in the header or trailer of a message? 
2. Briefly list the capabilities of each of the four layers of the TCP/IP protocol stack. 

Ans: 1) Control information is placed in the header or trailer of a message to govern the 
communication between the two hosts; this information can include the addresses of the two 
hosts, or the type or size of the data. 2) The application layer allows applications on remote 
hosts to communicate with one another. The transport layer is responsible for end-to-end 
communication between two hosts. The network layer is responsible for sending a packet to 
the next host toward the destination. The link layer serves as an interface between the net-
work layer and the physical medium through which the information travels. 

The application layer provides a well-defined interface for applications on different 
computers to communicate with one another; for example opening a remote file 
requesting a Web page, transferring an e-mail or calling a remote procedure. Appli-
cation layer protocols simplify communication between processes on a network and 
determine how processes should interact.32 Common protocols of the application 
layer include Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), 
Simple Mail Transfer Protocol (SMTP), Domain Name System (DNS) and Secure 
Socket Shell (SSH). 
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Many application layer protocols interact with resources on remote hosts. 
These resources are specified by a Uniform Resource Identifier (URI), which is a 
name that references a specific resource on a remote host. The more common term 

Uniform Resource Locator (URL) describes URIs that access resources in com-
mon protocols such as HTTP or FTP.33 Most URLs contain the protocol, host, port 
and path of the resource. The protocol is the application layer protocol that is being 

used to communicate (e.g., HTTP or FTP). The host is the fully qualified name of 
the host computer. We discuss computer naming conventions in Section 16.7.1, 
Internet Protocol (IP). The port determines the socket to which a message should 
be passed—a socket is a software construct that represents one endpoint of a con-
nection. Processes use sockets to send and receive messages over a network. The 

path is the location of the resource on that host. 
Consider the URL http://www.deitel.com/index.html. The first part, 

h t t p : / / , denotes that this URL is for HTTP. The second part, www.deitel.com, is 
the host name. Specifically, it accesses the company Web site for Deitel & Associ

ates. The third part of the URL, the port, is omitted. Certain ports have been 
assigned by the Internet Assigned Numbers Authority as "well-known" ports; these 
ports are used by common application layer protocols. For example, HTTP com-
monly uses port 80, whereas FTP commonly uses ports 20 and 21.34 By omitting the 
port, this URL connects to port 80, the default port for HTTP. The final part of the 
URL, index.html, specifies the path and name of the resource. 
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1. Name some common protocols of the application layer. 
2. Why is the port an important part of a URL? 

Ans: 1) FTP, SMTP, DNS, SSH and HTTP. 2) The port identifies the socket on the computer 
to which the message should be passed. 

Self Review 

The Hypertext Transfer Protocol (HTTP) is a versatile application layer protocol, 
While HTTP is commonly used to transmit HTML documents over the Internet, it 
allows the transfer of data in several formats using Multipurpose Internet Mail 
Extensions (MIME). MIME defines five content types: text, image, audio, video and 
application. The first four types are often used in multimedia Web pages; application 
is generally reserved for transferring binary files. 

HTTP consists of requests for resources and responses from remote hosts. An 
HTTP request involves an action and a resource's URI. The action specifies the 
operation to be performed on the resource. The remote host processes the request 
and replies with an HTTP response, which contains in its header a code that tells 
the client whether the request was processed correctly or an error occurred. If the 
request was processed correctly, the requested resource is returned along with the 

16.5.1 Hypertext Transfer Protocol (HTTP) 
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header. The header also specifies the MIME type of the resource to notify the 
requesting application about the type of content it is receiving.35, 36, 37 
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1. What would happen if a client sent an HTTP request for a resource that did not exist? 
2. What is the purpose of MIME types? 

Ans: 1) The server would reply with an HTTP response that included an error code in the 
header. 2) The MIME type provides the client with knowledge about the type of data being 
transmitted. This aids the client in determining how to process the data. 

File Transfer Protocol (FTP) is an application layer protocol that allows the trans
fer of files between remote hosts. FTP specifies connections between two ports: one 
port (typically port 21) sends control information that governs the session; the 
other port (typically port 20) sends the actual data. After a connection is estab
lished, the client specifies actions for the FTP server to perform by issuing various 
commands to the server (Fig. 16.2). The server attempts to satisfy each command, 
then issues a response with the result.38 

16.5.2 File Transfer Protocol (FTP) 

1. What ports do FTP hosts usually use to communicate? 
2. What is the purpose of FTP? 

Ans: 1) FTP uses two ports to communicate, typically ports 20 and 21. 2) FTP allows the 
transfer of files between hosts. 

Sefffovtetf 

16.6 Transport Layer 
The transport layer is responsible for the end-to-end communication of data 
between hosts. It receives data from the application layer, breaks it into smaller 

Name Function 
Change from the current directory to the parent of the current directory 

Change the working directory. 

Print the path of the working directory. 

List the contents of the working directory. 

Delete the specified file. 

Retrieve the specified file. 

Upload the specified file. 

Terminate the FTP session. 

CDUP 

CWD 

PWD 

LIST 

DELE 

RETR 

STOR 

QUIT 

Figure 16.2 | FTP commands. 



pieces suitable for transport, appends control information to these pieces and sends 
them to the network layer. 

There are two primary approaches to implementing the transport layer: coll
ection oriented and connectionless. Connection-oriented services are modeled 
after the telephone system, in which a connection is established and held for the 
length of the session. Connectionless services are modeled after the postal service, 
in which two letters mailed from one place to the same destination may actually 
take two dramatically different paths through the system and even arrive at differ-

ent times or not at all. 
In a connection-oriented approach, hosts send each other control informa-

tion — through a technique called handshaking—to initiate an end-to-end connec
tion. Many networks are unreliable, which means that data sent across them may be 
damaged or lost (see the Anecdote, Unreliable Communication Lines Can Lead to 
Embarrassment). These networks do not guarantee anything about the data sent; it 
could arrive corrupted or out of order, as duplicates or not at all. These networks 
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Anecdote 
Unreliable Communication Lines Can Lead to Embarrassment 
This one happened to one of the 
authors, HMD. In the early 1980s, 
he was offered a consulting 
opportunity. To formalize the 
relationship, he had to send the 
client a detailed resume along 
with some other materials by 
overnight package courier. The 
package pickup deadline was 
approaching. HMD quickly 
updated his resume using a termi
nal at his home connected by an 
old-style acoustic coupler to 
phone lines and in turn to a time-

sharing computer at the univer
sity where he was a professor at 
the time. He typed, "Since 1978, 
Harvey M. Deitel has been an 
assistant professor at Boston Uni
versity" and started the printout 
(which was done on an old-style, 
30-character-per-second dot 
matrix printing terminal). He 
walked into another room. The 
package courier came. He asked 
his wife to please tear off the 
printout, throw it in the package, 
seal it and give it to the courier. 

She said, "Harvey, I don't think 
you want to send this; you'd bet
ter take a look at it." HMD came 
back into the room. Data trans
mission over phone lines was a bit 
unreliable at the time. The printer 
failed and stopped typing at a 
most unfortunate point in the 
middle of the sentence (figure it 
out)! If HMD had sent the pack
age, he surely would not have 
been given the consulting job! 
This was a humbling experience! 

Lesson to operating systems designers: You can't design in a vacuum and simply assume that parts of a sys
tem "you're not responsible for" will indeed work perfectly. Every part of a system can fail—the software for 
which operating systems designers and implementors are most directly responsible, the hardware, the com
munications lines and even the people who work with the system as users or administrators. 



make only a "best effort" to deliver data. A connection-oriented approach ensures 
reliability on unreliable networks. These protocols make communication reliable. 
guaranteeing that sent data will arrive at the intended receiver undamaged and in 
the correct sequence. Hosts might also exchange information to regulate the termi
nation of the session so that no processes are left running on either host. 

In a connectionless approach, the two hosts do not handshake before trans
mission and reliability is not guaranteed—data sent may never reach the intended 
recipient. A connectionless approach, however, avoids the overhead associated 
with handshaking and enforcing reliability; less information often needs to be 
passed between the hosts.39, 40, 41, 42, 43 
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1. Why would a bank not implement a connectionless transport layer? 
2. Most streaming media applications require a connectionless transport layer. What are 

some possible reasons for this? 

Ans: 1) A bank performs business-critical transactions that must be carried out correctly. A 
connectionless transport layer could lose transactions. 2) Streaming media applications do 
not require the reliability of a connection-oriented approach, but benefit by the smaller 
amount of control information that comes with a connectionless approach. 

Self Review 

The Transmission Control Protocol (TCP) is a connection-oriented transmission 
protocol that guarantees that data (called segments in TCP) sent from a sender will 
arrive at the intended receiver undamaged and in the correct sequence. Both HTTP 
and FTP rely on TCP to guarantee reliable communication. TCP handles error con
trol, congestion control and retransmission, allowing protocols like HTTP and FTP 
to send information across a network as simply and reliably as writing to a file on a 
local computer. 

To set up a connection, TCP uses a three-way handshake. One of the purposes 
of this handshaking is to synchronize sequence numbers between the two hosts. The 
sequence number of each host increases by one with each segment sent and is placed 
in each segment's header. The destination host uses these sequence numbers to rear
range the segments if they are received out-of-order. First, the source host sends a 
synchronization segment (SYN) to the destination host. This segment requests that a 
connection be made and contains the sequence number of the source host. The desti
nation host responds with a synchronization/acknowledgement segment (SYN/ACK) 
which is an acknowledgement of the connection being established and contains the 
sequence number for the destination host. Finally, the source host responds with an 
acknowledgement segment (ACK) which finalizes the connection.44 

When the destination host receives a segment, it responds with an acknowl-
edgement (ACK) containing the sequence number of the received segment. If the 
source host does not receive an ACK for a particular sequence number, it will 
resend the segment with that sequence number after a certain wait time. This pro-

16.6.1 Transmission Control Protocol (TCP) 



cess guarantees that all segments will eventually be received by the destination 
host, duplicates will be discarded and the segments will be reassembled, if neces
sary, into the original order.45, 46, 47, 48, 49 

In addition to reliability, TCP offers flow control and congestion control. Flow 
control regulates the number of segments sent by each host in an attempt not to 
overwhelm the receiver of those segments. Congestion control restricts the number 
of segments sent from a single host in response to overall network congestion. TCP 
implements both flow control and congestion control by maintaining a TCP win
dow for the sender and receiver. The sender cannot send more segments than spec-
ified by the window before receiving an ACK from the receiver. The receiver 
calculates and sends its window along with each ACK that it sends. There are trade
offs associated with the size of the window advertised. A large window leads to the 
transmission of many segments. If the network or the receiver cannot handle this 
volume of segments, some will be discarded leading to retransmission of segments 
and inefficiency. Smaller windows can reduce throughput and result in the network 
being underutilized. 

1. TCP guarantees that segments will be delivered to the application in order, but the seg
ments may not arrive at the host in order. What additional resource must TCP use? 

2. What is the difference between flow control and congestion control? 

Ans: 1) TCP must possess a buffer to hold any segments received out of order until the 
missing segments are received. 2) Flow control deals with restricting the number of segments 
sent by the source host so as to not overwhelm the destination host. Congestion control 
restricts the number of segments sent from a single host to help restrict network congestion. 
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Applications that do not require the reliable end-to-end transmission guaranteed 
by TCP may be better served by the connectionless User Datagram Protocol 
(UDP). UDP incurs the minimum overhead necessary to implement the transport 
layer. There is no guarantee that UDP segments, called datagrams, will reach their 
destination or arrive in their original order. 

There are benefits to using UDP over TCP. UDP has little overhead because 
UDP headers are small; they do not need to carry the information TCP carries to 
ensure reliability. UDP also reduces network traffic relative to TCP due to the 
absence of ACKs, handshaking, retransmissions, etc. 

Unreliable communication is acceptable in many situations. First, reliability is 
not necessary for some applications, so the overhead imposed by a protocol that guar
antees reliability can be avoided. Second, some applications, such as streaming audio 
and video, can tolerate occasional datagram loss. This usually results in a small pause 
(or "hiccup") in the audio or video being played. If the same application were run 
over TCP, a lost segment could cause a significant pause, since the protocol would 
wait until the lost segment was retransmitted and delivered correctly before continu-

16.6.2 User Datagram Protocol (UDP) 



ing. Finally, applications that need to implement their own reliability mechanisms dif
ferent from that provided by TCP can build such mechanisms over UDP.50, 51, 52 

1. If a UDP datagram is lost due to network traffic, how does the host that sent the datagram 
respond? 

2. Why would an application choose to use UDP as its transport layer protocol? 

Ans: 1) The host does nothing. UDP includes no means by which the sending host could 
learn that a datagram was lost. The host does not retransmit. 2) An application would use 
UDP if reliability were not necessary (e.g., as in streaming audio and video applications) or if 
the application needed to implement its own reliability mechanisms. 

The network layer receives data from the transport layer and is responsible for 
sending the data (called datagrams) to the next stop toward the destination through 
a process known as routing. Routing is the two-step process of determining the next 
host for a datagram toward the destination and sending the datagram along this 
path. Routers are computers that connect networks. Note that a router determines 
the next host for a given source and destination given its particular picture of the 
network at the time. Networks can change quickly and routers cannot determine 
these changes instantaneously, so a router's knowledge of the network is not always 
complete and up-to-date. 

Routers determine the next host for a given datagram based on information 
such as network topologies and link quality, which includes strength of signal, error 
rate and interference. This information is propagated throughout networks using 
various routing protocols, one of the better known being the Routing Information 
Protocol (RIP)—an application layer protocol operating over UDP. RIP requires 
each router in a network to transmit its entire routing table (a hierarchical matrix 
listing the current network topology) to its closest neighboring routers. The process 
is continued until all routers are aware of the current topology. As networks grow in 
size, each router needs to keep track of the entire network topology This generates 
excessive network traffic in large networks, which is why RIP is used almost exclu-
sively on smaller networks. 

Routers keep queues to manage datagrams, because it takes time for the 
router to determine the best route and send the datagram. When a datagram arrives 
from a network, it is placed into a queue until it can be serviced. Once the queue is 
full, additional datagrams are simply dropped from the network. It is therefore 
important to make sure senders do not overwhelm routers. Transport layer proto-
cols must try not to overrun the queues. 

Unlike the transport layer, which is concerned with sending data from the 
originating host to the destination host, the network layer at a particular host sends 
datagrams only to the next host toward the destination host. This process continues 
until the datagram reaches its destination host. 

16.7 Network Layer 
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1. What is the major drawback to the Routing Information Protocol that causes it to be 

reserved for smaller networks? 
2. What happens when network congestion causes a router's queue to fill up with unserviced 

datagrams? 

Ans: 1) Each router in a network is required to transmit its entire routing table to its closest 
neighbor, regardless of whether or not changes have occurred. In large networks, these rout-
ing tables are larger, which causes increased network traffic. 2) When a router's queue is full, 
datagrams that arrive subsequently are discarded. Hosts using TCP will consider this an 
example of network congestion and slow down transmission. 

The Internet Protocol (IP) is the dominant network layer protocol for transmitting 
information over a network. IP allows smaller networks. (LANs and small WANs) to 
be combined into larger networks (WANs, such as the Internet). IP version 4 (IPv4) is 
the version currently used by most networks. Destinations on the Internet are speci
fied by IP addresses, which are 32-bit numbers in IPv4. Thus, there are 232, or approx-
imately 4 billion, unique IP addresses. IP addresses are generally divided into four 
octets (8-bit bytes). An 8-bit byte can represent a decimal number from 0 to 256. 

One or more host names are mapped to an IP address through the Domain 
Name System (DNS). When a person enters a host name into a browser, it uses 
DNS to find the correct IP address for that host name. In this way, an easily remem
bered name is established as an alias for the IP address. This IP address is then used 
by the transport and network layers to deliver the data.53, 54, 55 

16.7.1 Internet Protocol (IP) 

1. How many possible IPv4 addresses are there? 
2. How does a Web browser convert a host name into an IP address? 

Ans: 1) There are 232, or approximately 4 billion, unique IP addresses. 2) The Web server 
uses the Domain Name System (DNS) to convert a host name into an IP address. 
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Every device that accesses the Internet must be assigned an IP address. As the num
ber of devices (e.g., PDAs and cellular phones) with network access increases, the 
pool of available IP addresses shrinks. In the near future, the number of remaining 
32-bit IP addresses will run out. To combat this problem, the Internet Engineering 
Task Force has introduced Internet Protocol version 6 (IPv6). IPv5 was proposed in 
1990, nine years after IPv4, but it was never implemented. IPv6 eliminates many 
limitations of IPv4. IPv6 addresses are 128 bits long, yielding 2128 (approximately 
3.4 x 1038) possible addressable nodes. 

IPv6 specifies three types of addresses: unicast, anycast and multicast. A uni-
cast address allows users to send a datagram to a single host. Anycast addresses 
allow users to send a datagram to any one of a group of hosts. For example, a series 

16.7.2 Internet Protocol version 6 (IPv6) 
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of routers that provide access to a LAN could be assigned anycast addresses. 
Incoming datagrams would be delivered to the nearest router with that address. 
Multicast addresses allow users to send datagrams to all hosts in a group. 

IPv6's headers are simpler than those of IPv4, because several of the header 
fields have been eliminated or offered as options in IPv6. This increases the speed 
with which datagrams are processed. Fewer restrictions are imposed on the header 
format to increase extensibility; IPv6 provides mechanisms for including additional 
headers between the required header and the message. 

The transition to IPv6 is proving to be gradual. To aid with this transition, 
some routers have been modified to interpret both IPv6 and IPv4 datagrams. For 
routers that cannot handle IPv6 addresses, IPv6-enabled routers can implement a 
technique called tunneling, which places IPv6 datagrams inside IPv4 datagrams. 
When other IPv6-enabled routers eventually receive the datagram, they can strip 
the IPv4 control information and continue as usual. This method is attractive 
because it allows routing to continue without interruption. However, it adds pro
cessing overhead at routers.58, 59 
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1. How many possible IPv6 addresses are there? 
2. What is the difference between anycast and multicast addresses? 

Ans: 1) There are 2128, or approximately 3.4 x 1038, unique IPv6 addresses. 2) An anycast 
address allows a user to send a datagram to any one of a group of hosts. A multicast address 
allows a user to send a datagram to all hosts within a group. 

The link layer interfaces with the transmission medium (often copper wiring or 
optical fiber). It is responsible for transforming a datagram (called a frame in the 
link layer) into a representation (such as electrical or optical) that is suitable for the 
specific transmission medium and for sending this representation into the medium. 
The link layer is also responsible for transforming that representation at the receiv
ing computer back into bit streams that can be interpreted by the upper three layers 
of the TCP/IP stack. Because transmission media are physical entities, they are sus
ceptible to interference which can cause errors. The link layer attempts to detect 
and, if possible, correct such errors. 

Many implementations of the link layer use a checksum to determine if a 
frame was corrupted. A checksum is the result of a calculation on the bits in the 
frame. If the checksum calculated by the sender and inserted into the frame 
matches the checksum calculated by the receiver, it is likely that the frame was not 
corrupted during transmission. Some systems employ error-correcting codes that 
enable a receiver to both detect and correct corrupted frames. An example is a 
Hamming Code, which uses redundant bits to determine which bits in the transmis
sion were corrupted and to correct the frames. If errors cannot be corrected, the 
sender must resend the original frame. 

16.8 Link Layer 
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1. What is the benefit of using an error-correcting code such as the Hamming Code? 
2. What factors contribute to the overhead of using an error-correcting code such as the 

Hamming Code? 

Ans: 1) Error-correcting codes can be used to correct errors that occurred during transmis
sion. This removes the need to retransmit corrupted frames. 2) The complication with error-
correcting codes is that they require additional bits to be sent with each frame. This can slow 
network transmission. These bits must be calculated at the sender and recalculated and 
checked at the receiver. 
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Ethernet is a type of LAN first developed at the Xerox Palo Alto Research Center 
in 1976 and later denned by the IEEE 802.3 standard. Ethernet uses the Carrier 
Sense Multiple Access with Collision Detection (CSMA/CD) protocol. In 802.3-
style CSMA/CD (i.e., CSMA/CD that conforms to the IEEE 802.3 standard), 
"intelligent" nodes are attached to the medium by hardware devices called trans
ceivers. The nodes are deemed "intelligent" because a transceiver tests a shared 
medium to determine if it is available before transmitting data. When the station 
connected to the transceiver wishes to transmit, the transceiver sends data into the 
shared medium, while monitoring that medium to detect a simultaneous transmis
sion called a collision. Due to delays in the medium, it is possible that multiple 
transceivers may decide that the medium is clear and begin transmitting simulta
neously. When two frames collide, the data is corrupted. 

If transceivers detect a collision, they continue to transmit bytes for a specific 
period of time to ensure that all transceivers become aware of the collision. Each 
transceiver, after learning of a collision, waits a random interval before attempting 
to transmit again. This interval is calculated to maximize throughput while minimiz
ing new collisions—one of the most challenging issues in designing CSMA/CD tech
nology. Ethernet employs a method called exponential backoff. The transceiver 
tracks how many times there has been a collision in trying to transmit a certain 
frame and uses it to calculate the delay before attempting to retransmit. This is 
called the random delay. Each time there is a collision, the length of the delay dou
bles—rapidly reducing the probability that the offending transceivers will retrans
mit at the same time. Eventually the frame is sent without collision. 

While this method may seem inefficient, it actually works quite well in prac
tice. If the delay were not random, then more collisions would be likely, resulting in 
greater loss of time. Due to the high transmission speeds and relatively small 
frames, multiple successive collisions after random retransmissions are usually rare 
and indicate a network configuration error or a hardware error. ' 

16.8.1 Ethernet 

1. What are the possible consequences if a transceiver does not continue to transmit bytes 
upon detection of a collision? 

Self Review 



2. Why are collisions possible in Ethernet transmissions? 

Ans: 1) Other transceivers may not recognize that a collision has occurred. This can cause a 
transceiver to think a frame has been transferred correctly when it has in fact been corrupted. 
2) Transmission is not instantaneous, so two hosts can decide that the medium is free at the 
same time and start transmitting. 
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The Token Ring protocol operates on ring networks and employs tokens to gain 
access to the transmission medium. In a Token Ring, the token is actually an empty 
frame that circulates continuously between machines over a network having a logi
cal ring topology (Fig. 16.3). When a node wishes to send a message, it must first 
wait for the empty frame to arrive. When the node receives the empty frame, it 
changes one bit in the header to indicate that the frame is no longer empty and 
writes its message and the address of the intended recipient to the frame. The node 
then sends the frame to its neighbor. Each node compares its own address to the 
address in the frame; if the addresses do not match, the node sends the frame on to 
the next node. 

If the address does match, the machine copies the content of the message, 
changes the bit in the frame's header and passes the frame to the next node on the 
ring. When the original sender receives the frame (i.e., the frame has completed one 
cycle of the ring), it can determine if the message was received. At this point, the 
sender removes the message from the frame and passes the now-empty frame to its 
neighbor. The Token Ring protocol also contains complex mechanisms to protect 
the network from losing the token—if a station failed while holding the token, the 
token might never be released, thus deadlocking the network. 

When the token is being passed without incident, the time to transmit a mes
sage is quite predictable, as is the time to recover from various errors. Token Rings 
are the most common network architecture after Ethernet.64 

16.8.2 Token Ring 

1. What would happen if a station failed while it owned the token and there was no mecha
nism to recover? 

2. Describe what happens when a host wants to send information using a Token Ring. 

Ans: 1) The token would never be released and all of the hosts would become deadlocked. 
2) The host must first wait until it receives the empty frame (the token). When the host 
receives the empty frame, it places its message in it. The frame is sent around the Token Ring 
until it reaches the destination host, which reads the message and indicates that the message 
has been read. The frame continues around the Token Ring until it reaches the first host, 
which then releases the token. 

Self Review 

Fiber Distributed Data Interface (FDDI) shares many properties of the Token 
Ring protocol, but operates over fiber-optic cable, allowing it to support more 
transfers at greater speeds over larger distances. FDDI is built on two Token Rings, 

16.8.3 Fiber Distributed Data Interface (FDDI) 
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Figure 16.3 | Sending a message via the Token Ring protocol. 

the second usually being reserved for backup. In FDDI, a token circulates around 
the optical fiber ring; stations cannot transmit until they obtain the token by receiv
ing it from a preceding station. While the station is transmitting, no token is circu
lating, thus forcing all other stations to wait before they are allowed to transmit. 
When it has completed transmission, the transmitting station generates a new 
token, and other stations may attempt to capture it so they may transmit in turn. If 



the secondary ring is not needed for backup purposes, FDDI will generally use it to 
transmit information and tokens in the opposite direction.65, 66, 67 

1. What is the major difference between FDDI and the Token Ring protocol? 
2. What is the purpose of the second ring in FDDI? 
Ans: 1) FDDI operates over fiber-optic cable, allowing it to support more transfers at 
greater speeds over larger distances. FDDI is also built on two Token Rings. 2) The second 
ring is provided as backup for the first. If the first ring fails, the second is used to keep the 
entire network from failing. 

IEEE 802.11 is a wireless protocol which employs a method similar to Ethernet to 
communicate: Carrier Sense Multiple Access with Collision Avoidance (CSMA/ 
CA). Like Ethernet devices, wireless devices determine if the medium (air) is avail
able before transmission. Availability is a good indication that no message is cur
rently being transferred. However, since wireless networks are spontaneous and 
can be obstructed by physical objects such as buildings, it is not guaranteed that 
each device will be aware of all other devices, and a collision could still occur. 

To circumvent this issue, 802.11 requires that each sender broadcast a Request 
to Send (RTS) to the entire network. The RTS indicates the sender's desire to trans
mit data and specifies the length of the transmission, the sender's address and the 
receiver's address. Upon receiving an RTS and if the medium is available, the 
receiver broadcasts a Clear to Send (CTS) message to the entire network. The CTS 
message also includes the specified length of transmission. The two stations with the 
addresses specified in the RTS and CTS can then begin communication. After 
receiving a CTS message, any other station that wishes to broadcast must wait until 
the time specified by the CTS (i.e., the length of transmission) has passed.68 

1. What complications arise in wireless networks that do not exist in Ethernet networks? 
2. What two messages are required before a wireless host can begin transmitting data? 

Ans: 1) Wireless networks are spontaneous and can often be obstructed by physical objects 
such as buildings. It is not guaranteed that each device will be aware of all other devices, and 
collisions could still occur. 2) The source host must send out an RTS and the destination host 
must respond with a CTS, before transmission is allowed to begin. 

16.8.4 IEEE 802.11 (Wireless) 
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Many distributed applications operate according to a popular networking paradigm 
known as the client/server model. Clients are hosts that need various services per
formed, and servers are hosts that provide these services. Typically, clients transmit 
requests to servers over a network and servers process requests and return the 

16.9 Client/Server Model 



result to the client. For example, an Internet user might request from a server a list 
of airplane flights departing from a particular location at a particular time. Upon 
receiving this request, the server might query a local database for the requested 
flight information, then send the client a message containing the requested list. 

We have presented the client/server model essentially as a two-tier system. 
Typically, in such a system, the user interface resides on the client, the data resides 
on the server and the application logic (i.e., rules for processing and handling data) 
lies on one or both of these components. 

Some developers find it convenient to use a larger number of tiers in their cli
ent/server systems for various reasons, including increased flexibility and extensibil
ity in configuring a single system for many clients. In general, architectures 
consisting of three or more tiers are referred to as n-tier systems. For example, a 
three-tier system offers a clearer separation of the application logic from the user 
interface and the data (Fig. 16.4).70 Ideally, the logic resides in its own layer, possi
bly on a separate machine, independent of the client and data. This organization 
affords client/server systems increased flexibility. The trade-off in a multitier system 
is increased network latency and more areas where the network could fail. Since the 
three tiers are separate from one another, we can alter or relocate one without 
affecting the others. 

Web applications commonly use a three-tier architecture, consisting of a client 
browser, a Web server and a relational database.71 The Web browser on the client 
machine usually offers the client a graphical user interface (GUI) which facilitates 
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Figure 16.4 | Three-tier client/server model. 



access to remote documents. The browser interprets pages written in HyperText 
Markup Language (HTML) and produces their representation on the client moni
tor. To retrieve a remote document, the browser communicates via HTTP with a 
Web server, which transmits HTML to the browser also via HTTP. A particular 
Web server might dynamically produce Web pages by querying a relational data
base (see Section 13.12.3). For example, imagine that a user visits an online auction 
site and wishes to view all the computers of a certain type that are currently being 
auctioned. A request would be sent from the client browser to the auction site's 
Web server. The server might then query a relational database residing on a remote 
machine and use the resulting information to dynamically create an HTML page. 
This page is sent to the browser, which interprets the HTML and displays the infor
mation on the client monitor. In this example, the client, server and data tiers are 
on physically separate machines. 

770 Introduction to Networking 

1. What are the names of the tiers in a typical three-tier system? 
2. What are the benefits and complications associated with increasing the number of tiers of 

a Web-based system? 

Ans: 1) The client tier, the application logic tier and the data tier. 2) The benefit is that it 
further modularizes the system. Each tier can be modified without altering the others. Add
ing tiers can introduce network latencies as requests are being fulfilled, diminishing applica
tion performance. 
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www.ietf.org/rfc 
Provides an index of all of the Requests For Comments 
(RFCs) that have been published. 
www.ietf.org 
Internet Engineering Task Force provides links to its working 
groups and a discussion of the Internet standards process. 
www.w3.org 
World Wide Web Consortium (W3C) provides guidelines for 
many Web-based technologies. 

www.its.bldrdoc.gov/fs-1037/ 
Federal Standards 1037 Web site provides a glossary of tele
communications terms. 
www.iana.org/ 
Internet Assigned Numbers Authority sets default port num
bers for many common protocols. 

Web Resources 

Network topology describes the relationship between dif
ferent hosts, also called nodes, on a network. A logical 
topology displays which nodes in a network are directly 
connected. 

Nodes on a bus network are connected to a single, 
common communication link. Since there are no intermedi
ary nodes to retransmit the message, the length of bus com
munications medium must be limited to reduce attenuation. 

Ring networks consist of a set of nodes, each maintain
ing exactly two connections to other nodes such that a mes
sage sent through one connection can eventually return via 
the other. Each node in the ring forwards each message, lim
iting attenuation but introducing a delay for retransmission. 

In mesh networks at least two nodes have more than 
one path connecting them. A fully-connected mesh network 
directly connects every node to every other node. The pres-
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are specified by a Uniform Resource Identifier (URI), 
which is a name that references a specific resource on the 
remote host. 

The Hypertext Transfer Protocol (HTTP) is an appli
cation layer protocol that allows the transfer of a variety of 
data formats. HTTP defines a request for a resource and a 
response. The remote host processes the request and 
replies with a response, which contains in its header a code 
that tells the client whether the request was processed cor
rectly or there was an error. 

The File Transfer Protocol (FTP) is an application 
layer protocol that allows file-sharing between remote 
hosts. FTP specifies connections between two pairs of 
ports: one pair sends control information that governs the 
session, the other sends the actual data. After a connection 
is established, the client specifies actions for the FTP server 
to perform by issuing various requests to the server. The 
server attempts to satisfy each request, then issues a 
response specifying the result. 

The transport layer is responsible for the end-to-end 
communication of messages. In a connection-oriented 
approach, hosts send each other control information— 
through a technique called handshaking—to set up a logical 
end-to-end connection. A connection-oriented approach 
imposes reliability on unreliable networks. By making com
munication reliable, these protocols guarantee that data 
sent from the sender will arrive at the intended receiver 
undamaged and in the correct sequence. In a connectionless 
approach, the two hosts do not handshake before transmis
sion, and there is no guarantee that sent messages will be 
received in their original order, or at all. 

The Transmission Control Protocol (TCP) is a con
nection-oriented transmission protocol. TCP guarantees 
that segments sent from a sender will arrive at the intended 
receiver undamaged and in the correct sequence. TCP han
dles error control, congestion control and retransmission, 
allowing protocols like HTTP and FTP to send information 
into the network as simply and reliably as writing to a file 
on the local computer. 
When TCP is given a message to send over a network, TCP 
must first make a connection with the receiving host using 
a three-way handshake. The receiving host in TCP accounts 
for reordering of the segments by using the sequence num
bers found in the message headers to reconstruct the origi
nal message. When the destination host gets one of these 
segments, it responds with an ACK segment containing the 
sequence number of the message. This guarantees that seg
ments will eventually be received by the destination host 
and that they will be reassembled in the original order. 

ence of multiple paths between any two nodes increases the 
capacity available for network traffic, enabling higher net
work throughput. 

Star networks contain a hub that is connected to all 
other nodes in the network. Star networks suffer from 
lower transmission delay than ring networks, because con
nections require only one intermediary node. If the central 
hub fails, however, messages cannot reach their recipients, 
so fault tolerance can be a problem. 

Tree networks are hierarchical networks that consist of 
a root node and several subnodes, called children, that can 
have subnodes of their own. A tree topology can be used to 
join nodes that communicate with each other frequently into 
a subtree, thereby increasing network efficiency. 

The proliferation of wireless network technology has 
introduced ad hoc networks. An ad hoc network is charac-
terized as being spontaneous —any combination of wireless 
and wired devices may be connected to it at any time. The 
network topology is not fixed, which makes it difficult to 
have a network governed by a central node. 

Networks can also be classified by the geographic dis
persion of their hosts. A local area network (LAN) has lim-
ited geographic dispersion and is designed to optimize data 
transfer rates between its hosts. LANs interconnect 
resources using high-speed communication paths with opti
mized network protocols for local area environments. 
Advantages of local networks include error rates lower 

than those of larger networks, greater management flexibil
ity, and independence from the constraints of the public 
networking system. Wide area networks (WANs) are 
broader, connecting two or more LANs; the largest WAN is 
the Internet. WANs generally employ a mesh topology, 
operate at lower speeds than LANs and have higher error 
rates, because they handle larger amounts of data being 
transmitted over far greater distances. 

The TCP/IP protocol stack is composed of four logi
cal levels called layers. The application layer is the highest 
level and provides protocols for applications to communi-
cate. The transport layer is responsible for end-to-end com
unication. The network layer is responsible for moving 
the data on to the next step. The transport layer relies on 
the network layer to determine the proper path from one 
end of the communication to the other. The link layer pro
vides an interface between the network layer and the 
underlying physical medium of the connection. 

Application layer protocols specify the rules that gov
ern remote interprocess communication and determine 
how processes should interact. Many of these protocols 
interact with resources on remote hosts. These resources 
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ting simultaneously. If transceivers detect a collision caused 
by simultaneous transmissions, they continue to transmit 
bytes for a specific period of time to ensure that all trans-
ceivers become aware of the collision. Each transceiver, 
after learning of a collision, waits a random interval before 
attempting to transmit again. 

The Token Ring protocol operates on ring networks 
and employs tokens to gain access to the transmission 
medium. In a Token Ring, a token that controls access to 
the transmission medium is actually an empty frame that is 
continuously circulated between machines over a network 
having a logical ring topology. When a machine owns the 
token, it generates data, places it in the frame and sends the 
frame to its neighbor. Each machine forwards the token 
until it reaches its destination. At the destination, the 
machine copies the content of the message, marks the 
frame as having been delivered and passes the frame to its 
neighbor. When the original sender receives the frame, it 
removes the message from the frame and passes the token 
to its neighbor. 

Fiber Distributed Data Interface (FDDI) operates 
over fiber-optic cable, allowing it to support more transfers 
at greater speeds over larger distances. FDDI is built on two 
Token Rings, the second usually being reserved for backup. 

802.11 wireless communications employ a method 
similar to Ethernet to communicate: Carrier Sense Multi-
pie Access with Collision Avoidance (CSMA/CA). This 
requires that each sender broadcast a Request to Send 
(RTS) to the entire network. Upon receiving an RTS, the 
receiver broadcasts a Clear to Send (CTS) message to the 
entire network if the medium is available. 

Typically, in a two-tier client/server system, the user 
interface resides on the client, the data resides on the 
server and the application logic lies on one or both of these 
components. In place of this two-tier model, client/server 
systems often employ a three-tier system, which offers a 
clearer separation of the application logic from the user 
interface and the data. Ideally, the logic resides in its own 
layer, possibly on a separate machine, independent of the 
client and data. This organization affords the client/server 
system increased flexibility and extensibility. The trade-off 
in a multitier system is increased network latency and more 
areas where the network could fail. 

receive and ACK for a segment, it will retransmit that seg
ment. This guarantees that each transmitted segment is 
received. 

acknowledgement segment (ACK)—In TCP, a segment that is 
sent to the source host to indicate that the destination 
host has received a segment. If a source host does not 
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TCP also implements flow control and congestion control 
to regulate the amount of data sent by each host. 

The connectionless User Datagram Protocol (UDP) 
provides the minimum overhead necessary for the trans
port layer. There is no guarantee that UDP datagrams will 
reach their destination in their original order, or at all. 

The network layer receives segments from the trans
port layer and is responsible for sending these packets to 
the next stop toward the destination through a process 
known as routing. Routing is the two-step procedure of first 
determining the best route between two points and then 
sending packets along this route. Routers determine the 
next host for a given datagram based on information, such 
as network topologies and link quality, which includes 
strength of signal, error rate and interference which is 
broadcast throughout networks using various router proto
cols, such as the Routing Information Protocol (RIP). 

Internet Protocol version 4 (IPv4) is the dominant 
protocol for directing information over a network. Destina
tions on the Internet are specified by IP addresses, which 
are 32-bit numbers in IPv4. To make networking simpler 
for the user, one or more names can be mapped to an IP 
address through the Domain Name System (DNS). 

In the near future, there will be more addressable 
nodes on the Internet than available addresses using the 
current system. To combat this problem, the Internet Engi
neering Task Force introduced Internet Protocol version 6 
(IPv6). IPv6 specifies three types of addresses: unicast, any-
cast and multicast. A unicast address describes a particular 
host on the Internet. Anycast addresses are designed to be 
sent to the nearest host with a particular address. Multicast 
addresses are designed to send packets to a group of hosts. 

The link layer interfaces the software-oriented layer 
with the physical medium over which frames are sent. The 
link layer is responsible for detecting and, if possible, cor
recting transmission errors. Some systems employ error-
correcting codes to correct the corrupted frames. 

Ethernet uses the Carrier Sense Multiple Access with 
Collision Detection (CSMA/CD) protocol. In 802.3-style 
CSMA/CD, a transceiver tests a shared medium to deter
mine if it is available before transmitting data. Due to 
delays in the medium, it is possible that multiple transceiv
ers may decide that the medium is clear and begin transmit-
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ad hoc network—Network characterized as being spontane
ous—any number of wireless or wired devices may be 
connected to it at any time. 

any cast—Type of IPv6 address that enables a datagram to be 
sent to any host within a group of hosts. 

application layer (in OSI)—Interacts with the applications and 
provides various network services, such as file transfer 
and e-mail. 

application layer (in TCP/IP)—Protocols in this layer allow 
applications on remote hosts to communicate with each 
other. The application layer in TCP/IP performs the func
tionality of the top three layers of OSI —the application, 
presentation and session layers. 

attenuation—Deterioration of a signal due to physical charac
teristics of the medium. 

bus network—Network in which the nodes are connected by a 
single bus link (also known as a linear network). 

Carrier Sense Multiple Access with Collision Avoidance 
(CSMA/CA)—Protocol used in 802.11 wireless communi
cation. Devices must send a Request To Send (RTS) and 
receive a Clear To Send (CTS) from the destination host 
before transmitting. 

Carrier Sense Multiple Access with Collision Detection 
(CSMA/CD)-Protocol used in Ethernet that enables 
transceivers to test a shared medium to see if it is avail
able before transmitting data. If a collision is detected, 
transceivers continue transmitting data for a period of 
time to ensure that all transceivers recognize the collision. 

checksum—Result of a calculation on the bits of a message. 
The checksum calculated at the receiver is compared to 
the checksum calculated by the sender (which is embed
ded in the control information). If the checksums do not 
match, the message has been corrupted. 

Clear to Send (CTS)—Message that a receiver broadcasts in 
the CSMA/CA protocol to indicate that the medium is 
free. A CTS message is sent in response to a Request to 
Send (RTS). 

client/server model—Popular networking paradigm in which 
processes that need various services performed (clients) 
transmit their requests to processes that provide these ser
vices (servers). The server processes the request and 
returns the result to the client. The client and the server 
are typically on different machines on the network. 

client—Process in the client/server model that needs various 
services performed. 

collision—Simultaneous transmission in CSMA/CD protocol. 
congestion control—Means by which TCP restricts the number 

of segments sent by a single host in response to network 
congestion. 

connectionless transport—Method of implementing the trans
port layer in which there is no guarantee that data will 
arrive in order or at all. 

connection-oriented transport—Method of implementing the 
transport layer in which hosts send control information to 
govern the session. Handshaking is used to set up the con
nection. The connection guarantees that all data will 
arrive and in the correct order. 

control information—Data in the form of headers and/or trail
ers that allows protocols of the same layer on different 
machines to communicate. Control information might 
include the addresses of the source and destination hosts 
and the type of data or size of the data that is being sent. 

data link layer (in OSI)—At the sender, converts the data rep
resentation from the network layer into bits to be trans
mitted over the physical layer. At the receiver, converts 
the bits into the data representation for the network layer. 

datagram—Piece of data transferred using UDP or IP. 
Domain Name System (DNS)—System on the Internet used 

to translate a machine's name to an IP address. 
Ethernet (IEEE 802.3)—Network that supports many speeds 

over a variety of cables. Ethernet uses the Carrier Sense 
Multiple Access with Collision Detection (CSMA/CD) 
protocol. Ethernet is the most popular type of LAN. 

exponential backoff—Method employed by Ethernet to calcu
late the interval before retransmission after a collision; 
this reduces the chance of subsequent collisions on the 
same transmission, thus increasing throughput. 

Fiber Distributed Data Interface (FDDI)—Protocol that shares 
many properties of a Token Ring, but operates over fiber
optic cable, allowing the transfer of more information at 
greater speeds. In FDDI, a token circulates around the 
optical fiber ring; stations cannot transmit until they obtain 
the token by receiving it from a preceding station. FDDI 
uses a second Token Ring as backup or to circulate tokens 
in the reverse direction of the primary Token Ring. 

File Transfer Protocol (FTP)—Application layer protocol that 
moves files between different hosts on a network. FTP 
specifies connections between two pairs of ports: one pair 
sends control information that governs the session, the 
other sends the actual data. 

flow control—Means by which TCP regulates the number of 
segments sent by a host to avoid overwhelming the 
receiver. 

frame—Piece of data in the link layer. Contains both the mes
sage and the control information. 

fully-connected mesh network—Mesh network in which each 
node is directly connected to every other node. These net
works are faster and more fault tolerant than other net-
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multicast—Type of IPv6 address used to send packets to all 
hosts in a group of related hosts. 

Multipurpose Internet Mail Extensions (MIME)—Electronic 
mail standard defining five content types: text, image, 
audio, video and application. 

network layer—Protocols responsible for sending data to the 
next host toward the destination. This layer exists in both 
the TCP/IP model and the OSI model of network commu
nication. 

network topology—Representation of the relationships of 
nodes in a network. Some examples are bus networks 
ring networks, star networks, tree networks and mesh net
works. 

n-tier system—Architecture for network-based applications 
The three-tier system, for example, has a client tier, an 
application logic tier and a data tier. 

physical layer (in OSI)—Transmits bits over physical media, 
such as cables. The data link layer and physical layer in 
OSI correspond to the link layer in TCP/IP. 

port—Identifies the specific socket on a machine to which to 
send data. For example, HTTP communicates by default 
on port 80. 

presentation layer (in OSI)—Solves compatibility problems by 
translating the application data into a standard format 
that can be understood by other layers. 

protocol—Set of rules that govern how two entities should 
interact. Common examples include Transmission Control 
Protocol (TCP), Internet Protocol (IP) and Hypertext 
Transfer Protocol (HTTP). 

random delay—Interval of time calculated by the exponential 
backoff method of CSMA/CD before a transceiver can 
retransmit a frame after a collision. 

reliable network—Network which does not damage or lose 
packets. 

Request to Send (RTS)—Message sent from a wireless device in 
the CSMA/CA protocol that indicates a desire to transmit 
data, the length of the transmission, the sender address and 
the receiver address. If the medium is available, the 
receiver will send a Clear To Send (CTS) message. 

ring network—Network consisting of a set of nodes, each 
maintaining exactly two connections to other nodes in 
that network. These networks have a low fault tolerance 
since the failure of any single node can cause the whole 
network to fail. 

router—Computer that is an intermediate destination between 
the sending host and the receiving host. The router is 
responsible for determining where to send a datagram 
next in order for it to eventually reach its destination. 

works, but also unrealizable on all but the smallest of 
networks because of the cost of the potentially enormous 
number of connections. 

handshaking—Mechanism in a connection-oriented transport 
layer in which hosts send control information to create a 
logical connection between the hosts. 

header—Control information placed in front of a data message. 
host—Entity, such as a computer or Internet-enabled cellular 

phone, that receives and/or provides services over a net
work. Also called a node. 

hub—Central node (such as in a star network) responsible for 
relaying messages between nodes. 

HTTP request—Resource request from an HTTP client to an 
HTTP server. 

HTTP response—Reply message from an HTTP server to an 
HTTP client, consisting of a status, header and data. 

Hypertext Transfer Protocol (HTTP)—Application layer pro
tocol used for transferring HTML documents and other 
data formats between a client and a server. 

IEEE 802.11—One of the standards that governs wireless 
communication. It dictates that hosts follow the CSMA/ 
CA protocol. 

Internet Protocol version 6 (IPv6)—New version of the Inter
net Protocol that uses 128-bit addresses and specifies 
three types of addresses: unicast, anycast and multicast. 

Internet Protocol (IP)—Primary protocol for directing infor
mation over a network. Destinations on the Internet are 
specified by 32-bit numbers called IP addresses. 

IP address—Address of a particular host on the Internet. 
layer—Level of abstraction in the TCP/IP protocol stack asso

ciated with certain conceptual functions. These layers are 
the application layer, transport layer, network layer and 
link layer. 

link—Medium over which services are physically transmitted 
in a network. 

link layer (in TCP/IP) —Responsible for interfacing with and 
controlling the physical medium over which data is sent. 

local area network (LAN)—Type of network used to intercon
nect resources using high-speed communication paths 
optimized for local area environments, such as office 
buildings or college campuses. 

logical topology—Map of a network that depicts which nodes 
are directly connected. 

mesh network—Network in which at least two nodes have 
more than one path connecting them. Faster and more 
fault tolerant than all but fully-connected mesh networks. 
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Routing Information Protocol (RIP)—Protocol that defines 
how routing information is propagated throughout net
works. RIP requires routers to share their entire routing 
table with other routers; this limits its use to small net
works. 

routing table —Representation of a network used to determine 
where routers should send datagrams next on their path 
to their destination. 

routing—Determining the best route between two points and 
sending packets along this route. 

segment—Piece of data sent by TCP. It includes the message 
and the TCP header. 

server—Process in the client/server model that performs vari
ous services for clients. 

session layer (in OSI)—Establishes, manages and terminates 
the communication between two end users. 

socket - Software construct that represents one endpoint of a 
connection. 

star network—Network containing a hub that is directly con
nected to all other nodes in the network. The hub is 
responsible for relaying messages between nodes. 

Symbian OS —Small operating system for smart phones 
(mobile phones with the functionality of a PDA). 

synchronization segment (SYN)—In TCP, the first handshak
ing segment sent; contains the sequence number of the 
source host. 

synchronization/acknowledgement segment (SYN/ACK)—In 
TCP, the second handshaking segment sent; acknowledges 
that the SYN segment was received and contains the 
sequence number of the destination host. 

TCP/IP Protocol Stack—Hierarchical decomposition of com
puter communications functions into four levels of 
abstraction called layers. These layers are the application 
layer, transport layer, network layer and link layer. 

TCP window—Flow-control and congestion-control mecha
nism in which only a certain amount of data can be sent by 
the network layer without the receiver explicitly authoriz
ing the sender to send more. 

three-tier system—System which offers a separation of the 
application logic, the user interface and the data. The user 
interface tier (also called the client tier) communicates 
with the user. The application logic tier is responsible for 
the logic associated with the system's function. The data 
tier stores the information that the user wishes to access. 

token—Empty frame used to ensure that only one host is 
transmitting data at a time in the Token Ring and FDDI 
protocols. 

Token Ring—Protocol in which a token is circulated around a 
ring network. Only one host can own the token at a time, 
and only its owner can transmit data. 

trailer—Control information appended to the end of a data 
message. 

transceiver—Hardware device that attaches an Ethernet node 
to the network transmission medium. Transceivers test a 
shared medium to see if it is available before transmitting 
data, and monitor the medium to detect a simultaneous 
transmission called a collision. 

Transmission Control Protocol (TCP) —Connection-oriented 
transmission protocol designed to provide reliable com
munication over unreliable networks. 

transmission medium—Material used to propagate a signal 
(e.g., optical fiber or copper wire). 

transport layer—Set of protocols responsible for end-to-end 
communication of data in a network. This layer exists in 
both the TCP/IP model and the OSI model of network 
communication. 

tree network—Hierarchical network that consists of multiple 
star networks. The hub of the first star network is the root 
of the tree. Each node that this hub connects serves as a 
hub for another star network and is a root of a subtree. 

tunneling—Process of placing IPv6 datagrams in the body of 
IPv4 datagrams when communicating with routers that do 
not support IPv6. 

two-tier system—A system in which the user interface resides 
on the client, the data resides on the server and the appli
cation logic lies on one or both of these components. 

unicast address—IP address used to deliver data to a single 
host. 

Uniform Resource Identifier (URI)—Name that references a 
specific resource on the Internet. 

Uniform Resource Locator (URL) A URI used to access a 
resource in a common protocol such as HTTP and FTP. 
Consists of the protocol, host name, port and path of the 
resource. 

unreliable network—Network that may damage or lose pack
ets. 

User Datagram Protocol (UDP) —Connectionless transmis
sion protocol which allows datagrams to arrive out of 
order, duplicated or not at all. 

wide area network (WAN)—Type of network connecting two 
or more local area networks, usually operating over great 
geographical distances. WANs are generally implemented 
with a mesh topology and high-capacity connections. The 
largest WAN is the Internet. 
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work, no station can transmit. Comment on this problem. 
What safeguards can be built into a token-passing network to 
determine if a token has been lost, and then to restore proper 
operation of the network? 

16.7 The text said that the Internet is implemented as a mesh 
network. What would be the consequences if the internet were 
implemented as a tree network? If it was implemented as a 
ring network? If it was implemented as a fully-connected mesh 
network? 

16.8 HTTP and FTP are both implemented on top of TCP 
What would be the effect if they were implemented on top of 
UDP? 

16.9 Why was CSMA/CD not used for wireless systems? 

16.10 Why would an implementation of the link layer utilize 
error-correcting codes? How would that affect the system? 

16.1 What are the pros and cons of using a layered network 
architecture? 

16.2 Why does TCP/IP not specify a single protocol at each 
layer? 

16.3 Compare and contrast connection-oriented services and 
connectionless services. 

16.4 Distinguish between addressing, routing, and flow con
trol. What is a windowing mechanism? 

16.5 Explain the operation of CSMA/CD. Compare the pre
dictability of CSMA/CD with token-based approaches. Which 
of these schemes has the greatest potential for indefinite post
ponement? 

16.6 One interesting problem that occurs in distributed con
trol, token-passing systems, is that the token may get lost. 
Indeed, if a token is not properly circulating around the net-

Exercises 
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I 6 . I I A number of protocols have been proposed to replace 
TCP. Researchers at MIT and Berkeley have recently devel
oped the eXplicit Control Protocol (XCP) which is designed to 
speed up transmissions. Research this protocol and examine 
what changes it makes to TCP. 

16.12 In the text, we mentioned that Routing Information Pro-
tocol (RIP) is a means to determine the next host for a data-
gram. Research RIP and explore how it determines the next 
host for a datagram. 

Suggested Projects 

16.13 Write a simulation program to experiment with routing 
procedures. Create a mesh network containing some number 
of nodes and links. Create your own routing protocol to send 
information about the links throughout the network. Check to 

see that each node can efficiently determine the next node 
along a path between two nodes in the graph. Experiment with 
"crashing" a node or changing the network topology. How 
quickly will all of your nodes figure out the new topology? 

Suggested Simulations 

Many books go into greater depth on networking than space 
permits in an operating systems text. Those include Tanen-
baum's classic Computer Networks, 4th ed. and Computer Net
working: A Top-Down Approach Including the Internet by 
Kurose and Ross.73, 74 

Requests for Comments (RFCs) describe networking 
protocols, including TCP, IP, UDP, FTP and SMTP. The Inter
net Engineering Task Force (IETF) provides free access to 
every RFC via their Web site (www.ietf.org). 

Networking remains a rich research area. Papers such as 
"Congestion Control for High Bandwidth-Delay Product Net
works" and "Why Wi-Fi Wants to be Free" give a technical and 

more general idea of how this exciting research area is progress-
ing.75, 76 Professional groups such as the Institute of Electrical 
and Electronics Engineers (IEEE; www.ieee.org) and the 
Association for Computing Machinery (ACM; www.acm.org) 
are an ideal source of new literature on the topic. Interesting 
papers available through the ACM include "Frameworks for 
Component-Based Client/Server Computing," "The Transport 
Layer: Tutorial and Survey" and "Fundamental Challenges in 
Mobile Computing."77, 78, 79 The bibliography for this chapter 
is located on our Web site at www.deitel.com/books/os3e 
Bibliography.pdf. 
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I wish to have no connection with any ship that does not sail fast;for I intend to go in 
harm's way. 

—John Paul Jones — 

Whatever shall we do in that remote spot? 
—Napoleon Bonaparte— 

The art of progress is to preserve order amid change and to preserve change amid order. 
-Alfred North Whitehead— 

Order and simplification are the first sted toward the mastery of a subject - the actual 
enemy is the unknown. 

—Thomas Mann— 

The clock, not the steam-engine, is the key machine of the modern industrial age. 
—Lewis Mumford— 

It's so awkward to tell one client that you're working on someone else's business... 
—Andrew Forthingham— 

You may delay, but Time will not. 
—Benjamin Franklin— 



Chapter 17 

Introduction to Distributed 
Systems 

Objectives 
After reading this chapter, you should understand: 

• the need for distributed computing. 

• fundamental properties and desirable characteristics of distributed systems. 

• remote communication in distributed systems. 

• synchronization, mutual exclusion and deadlock in distributed systems. 

• examples of distributed operating systems. 
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17.1 Introduction 
As the speed and reliability of networking have improved, computers worldwide 
have become increasingly interconnected. Remote communication via networks, 
originally reserved for large computer installations and academic environments, has 
become pervasive. In distributed systems, remote computers cooperate via a net
work to appear as a local machine. Both distributed systems and network systems 
spread computation and storage throughout a network of computers. However, 
users of a distributed operating system are given the impression that they are inter
acting with just one machine, whereas users of a network operating system must be 
aware of the distributed implementation. Applications of distributed systems are 
able to execute code on local machines and remote machines and to share data, files 
and other resources among these machines. 

Distributed systems often arise from the need to improve the capacity (e.g., 
processing power and storage size) and reliability of a single machine. Economic 
factors can limit the capabilities of a system. By implementing an operating system 
across several inexpensive machines, it is possible to design a powerful system with-
out expensive machines. For example, it is difficult to connect hundreds of proces
sors on a single mainboard; moreover, most hard disk interfaces do not support the 
hundreds of disks required for terabytes of storage. Having a single machine with 
an exorbitant amount of resources is wasteful; a single user would rarely, if ever, 
take advantage of such capacity. Dividing the resources among a group of machines 
lets multiple users share the resources, while guaranteeing that there will be enough 
for the occasional large job. Another reason to adopt a distributed system is to 
serve a large user base. A distributed file system places files on separate machines, 
while providing the view of a single file system. Distributed file systems can allow 
vast numbers of users to access the same set of files reliably and efficiently. 

Although distributed systems offer many advantages over single-machine oper
ating systems, they can be complex and difficult to implement and manage. For exam
ple, they must handle communication delays and reliability problems introduced by 
the underlying networks. It is harder to manage machine failure in distributed sys-
tems; an operating system distributed across n machines is far more likely to experi
ence a system crash than a single-machine operating system. Another challenge is 
ensuring that each computer in the system has the same view of the entire system. 

The discussion of distributed systems in this and the next chapter builds on 
Chapter 16. In this chapter we discuss distributed communication, distributed file 
systems and distributed processing. Distributed communication describes how pro
cesses on different machines communicate, while distributed processing describes 
the interaction among distributed processes. Distributed file systems provide a 
means of managing files within a distributed system. 

Self Review 
1. What are some benefits of a distributed system? 
2. What makes distributed systems complex and difficult to implement and manage? 



Ans: 1) Distributed systems can achieve a high level of performance for a lesser cost than 
with a single system. Distributed systems can also allow vast numbers of users access to the 
same files reliably and efficiently. 2) Handling communication delays and reliability problems-
introduced by the underlying networks, responding to machine failure and ensuring that each 
computer in the system has the same view of the entire system. 

For decades, researchers and professionals have stressed the importance of distrib
uted systems. The explosion of the Internet that occurred with the popularization of 
the World Wide Web in 1993 has made distributed systems common. This section 
discusses performance, scalability, connectivity, security, reliability and fault toler
ance in distributed systems. 

In a centralized system, a single server handles all user requests. With a distributed 
system, user requests can be sent to different servers working in parallel to increase 
performance. Scalability allows a distributed system to grow (i.e., add more 
machines to the system) without affecting the existing applications and users. 

17.2.1 Performance and Scalability 

17.2 Attributes of Distributed Systems 
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1. How can a distributed systems increase performance? 
2. How does scalability make distributed systems better than centralized systems? 

Ans: 1) Multiple servers can handle user requests simultaneously. 2) Scalability allows tin-
distributed system to grow (i.e., add more machines) without affecting the existing applica
tions and users. 

Self Review 

A distributed system can provide seamless access to resources distributed across 
the network. If the resource is a processor, the distributed system should allow 
tasks to be executed on any machine. If the resource is a globally shared file system, 
then remote users should be able to access the file system as they would access a 
local, private file system. For example, a user should be able to navigate the file sys
tem and open a file using a graphical browser or shell instead of connecting to an 
FTP program. 

Connectivity in distributed systems requires communication protocols. The 
protocols must provide common interfaces to all computers in the system. Many 
distributed systems require communication of state information to maintain effi
cient operation. State information consists of data that describes the status of one 
or more resources. Improper state information could lead to inconsistency; trans-
mitting state information too often can flood the network and reduce scalability 
Distributed system designers must determine what state information to maintain 
and how often to make such information known to the system.1 

17.2.2 Connectivity and Security 



17.2 Attributes of Distributed Systems 785 

Distributed systems can be susceptible to attacks by malicious users if they 
rely on insecure communications media (i.e., a public network). To improve secu
rity, a distributed system should allow only authorized users to access resources and 
ensure that information transmitted over the network is readable only by the 
intended recipients. Also, because many users or objects may request resources, the 
system must provide mechanisms to protect resources from attack. Security and 
protection are discussed in Chapter 19. 

1. What facts should distributed system designers consider when designing state informa
tion? 

2. Give examples of poor state-information design. 

Ans: 1) Distributed system designers need to decide whether the system should keep state 
information, what state information to maintain and how often to make such information 
known to the system. 2) Poor state-information design may keep multiple entries for the sta-
tus of the same resource, leading to inconsistency; it may cause state information to be trans-
mitted too often, which could flood the network and restrict scalability. 

The failure of one or more resources on a single machine may cause the whole sys-
tem to fail or may affect the performance of processes running on the system. A dis
tributed system is more likely to suffer failures than a single-machine system 
because it has more components that might malfunction.2 

Distributed systems implement fault tolerance by providing replication of 
resources across the system. The failure of any one computer will not affect the 
availability of the system's resources. For example, a distributed file system might 
keep copies of the same file at different servers. If a user is using a file on a server 
that crashes, then the distributed file system can direct future requests to a server 
with a copy of the original file. Replication offers users increased reliability and 
availability over single-machine implementations. 

This comes at a cost. Distributed system designers must develop software that 
detects and reacts to system failures. Furthermore, designers must provide mecha
nisms to ensure consistency among the state information at different machines. 
Such systems must also be equipped to reintegrate failed resources, once they have 
been repaired. 

Self Review 

17.2.3 Reliability and Fault Tolerance 

Self Review 
1. Why is a distributed system more likely to suffer faults than a single machine? 
2. What is the side effect of increasing reliability and fault tolerance? 

Ans: 1) Distributed systems simply have more components that might malfunction. 
2) Increasing reliability and fault tolerance makes designing distributed systems more com
plex. The designer must provide mechanisms to switch from a failed machine to a working 
machine and keep the copies of the duplicated resources consistent across the system. 



One goal of a distributed system is to provide transparency by hiding the distribu
tion aspects from users of the system. Access to a file system that is distributed 
across several remote computers should be no different than access to a local file 
system. The user of a distributed file system should be able to access its resources 
without knowing about the communication between the processes, which process 
runs the user request and the physical location of the resources. 

The ISO Open Distributed Processing Reference Model defines eight types of 
transparency a distributed system can provide:3 

• access transparency 

• location transparency 

• failure transparency 

• replication transparency 

• persistence transparency 

• migration transparency 

• relocation transparency 

• transaction transparency 

Access transparency hides the details of networking protocols that enable 
communication between distributed computers. It also provides a universal means 
to access data stored in disparate data formats throughout a system. 

Location transparency builds on access transparency to hide the location of 
resources in the distributed system from those attempting to access them. A distrib
uted file system that provides location transparency allows access to remote files as 
if they were local files. 

Failure transparency is the method by which a distributed system provides 
fault tolerance. If one or more resources or computers in the network fail, users of 
the system will be aware only of the reduced performance. Failure transparency is 
typically implemented by replication or checkpoint/recovery. Under replication, a 
system provides multiple resources that perform the same function. Even if all but 
one of a set of replicated resources fails, a distributed system can continue to func
tion. A system that employs checkpointing periodically stores the state of an object 
(such as a process) such that it can be restored (i.e., recovered) if a failure in the dis
tributed system results in the loss of the object. 

Replication transparency hides the fact that multiple copies of a resource are 
available in the system; all access to a group of replicated resources occurs as if 
there were one such resource available. Persistence transparency hides the informa-
tion about where the resource is stored—memory or disk. 

Migration and relocation transparency both hide the movement of compo-
nents of a distributed system. Migration transparency masks the movement of an 
object from one location to another in the system, such as the movement of a file 
from one server to another. Relocation transparency masks the relocation of an 
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object from other objects that communicate with it. Finally, transaction transpar
ency allows a system to achieve consistency by masking the coordination among a 
set of resources. Transactions (see Section 13.10.2, Data Integrity and Log-Struc
tured File Systems) include service requests (such as file access and function calls) 
that change the state of the system. Consequently, transactions often require check
pointing or replication to meet other goals of the distributed system. Transaction 
transparency hides the implementation of these services. 
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1. Give an example of location transparency. 
2. When failure transparency is implemented by replication, what issue(s) should the design

ers consider? 

Ans: 1) When you access a file in a distributed system, you do not know which server owns 
the file. 2) The designers should consider consistency among replicated resources. 

Self Review 

A network operating system accesses resources on remote computers that run inde
pendent operating systems, but is not responsible for resource management at 
remote locations. Consequently, distributed functions are explicit rather than trans
parent—a user or process must explicitly specify the resources's location to retrieve 
a networked file or remotely execute an application. The lack of transparency in 
network operating systems keeps them from providing some of the benefits of dis
tributed operating systems. However, because network operating systems do not 
need to ensure transparency, they are easier to implement than distributed operat
ing systems.4 

17.2.5 Network Operating Systems 

1. State how network operating systems differ from distributed operating systems. 
2. Why are network operating systems easier to implement than distributed operating sys

tems? 

Ans: 1) The network operating system lacks transparency, which means the client must 
explicitly specify the resource location to access the resource. 2) Network operating systems 
do not provide transparency and are not responsible for resource management at remote 
locations, so network operating systems do not need to implement these capabilities. 

Self Review 

A distributed operating system manages resources located in multiple networked 
computers. Distributed operating systems employ many of the same communica
tion methods, file system structures and other protocols found in network operating 
systems, but make the communication transparent so that objects in the system are 
unaware of the separate computers that provide the service. This level of transpar
ency is difficult to achieve, so it is rare to find a "truly" distributed system.5 

17.2.6 Distributed Operating Systems 



One of the primary challenges in designing distributed systems is managing com
munication between computers. Designers must establish interoperability between 
heterogeneous computers and applications. In the early years of distributed com
puting, processes communicated by calling functions from processes located on 
remote computers. Many of today's applications, however, require interaction 
between remote objects via method calls. In this section we discuss remote function 
calls and interactions among remote objects via remote method calls.6 

Interoperability permits software components to interact among different 
hardware and software platforms, programming languages and communication pro
tocols. An interface allows heterogeneous systems to communicate in a way that is 
meaningful to both sides—promoting interoperability. In the client/server model, 
the client issues a request across the network to the server, and the server processes 
the request and sends the reply back to the client computer, often using an interface 
to aid the communication. A standardized interface allows each client/server pair to 
communicate using a single, common interface that is understood by both sides. 
Standardized interfaces are discussed in Section 17.3.4, CORBA (Common Object 
Request Broker Architecture). 

1. Why is interoperability a challenge in distributed systems? 
2. Explain how the client/server communication model works. 

Ans: 1) Distributed systems typically consist of heterogeneous computing systems that 
must somehow be made to interoperate smoothly despite their differences. 2) In the client/ 
server communication model, the client issues requests across the network to the server, then 
the server processes the requests and sends the replies back to the client. 

Self Review 

17.3 Communication in Distributed Systems 

The machines that compose distributed systems are often heterogeneous—different 
hardware running different operating systems communicating across different net
work architectures. In such environments, it is time-consuming and error-prone for 
the application programmer to provide the routines to convert messages between 
computers (see the Anecdote, Consequences of Errors). Software known as mid
dleware helps provide portability, transparency and interoperability in distributed 
systems. Portability enables the movement of a system or component from one 
environment (including both hardware and software) to another without changing 
the system or component being moved. 

Consider a customer purchasing goods from a merchant by writing a check. A 
bank has issued the customer a book of checks to use for transactions. Upon receipt 
of a check, the merchant can process it at any bank (even one which did not issue 
the check), which transparently performs operations to validate the transaction and 
process the transfer of funds. In this example, the bank (or banks) represents mid-
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dleware and the merchant and customer represent two computers in a distributed 
system. Similar to the banks, middleware transparently performs operations to vall

ate transactions and initiate network communication. Middleware provides mech-
anisms to simplify transactions. Instead of visiting the bank to withdraw funds, 
paying the merchant and having the merchant visit another bank to deposit the 
funds, the customer can simply write a check which the merchant deposits directly. 
In a similar manner, middleware facilitates communication and cooperation among 
the various components of a distributed system by hiding low-level implementation 
details from users and applications developers.7 

Middleware provides standard programming interfaces to enable interprocess 
communication between remote computers. These interfaces provide portability 

and transparency.8 The following sections describe several common implementa
tions and protocols that form the backbone of many distributed systems. 
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1. Why do distributed systems need middleware? 
2. How does middleware provide transparency? 

Ans: 1) Distributed systems consist of heterogeneous machines. Middleware enables these 
heterogeneous machines to work together as a single computer. Middleware provides porta
bility, transparency and interoperability. 2) Middleware provides standard interfaces so that 
heterogeneous computers can communicate with each other. It makes calls to procedures on 
another computer look like local procedure calls. 

Self Review 

Anecdote 
Consequences of Errors 
For $125 million, can you answer 
how many feet are in a meter? On 
September 23, 1999, engineers 
lost contact wi th NASA's Mars Cli
mate Orbiter, a $125 million satel
lite orbit ing Mars to study its 
atmosphere. It was later discov
ered that the Orbiter had entered 

the Martian atmosphere, which 
destroyed the spacecraft. The 
cause for the error? The project 
team in Colorado was measuring 
the trajectory of the spacecraft in 
standard units (e.g., feet and 
pounds) but the California team 
was measuring it in metric units 

(e.g., meters and kilograms). The 
difference between the two mea
surements caused the teams to 
interpret the satellite's bearing 
incorrectly, which eventually led 
to the orbiter's loss. 

Lesson to operating systems designers: Think twice. Question everything. Dig deeper. The consequences of 
malfunctions in the systems you design could be serious. 



In the mid-1970s, the concept of a remote procedure call (RPC) was introduced to 
provide a structured, high-level approach to interprocess communication in distrib
uted systems. A remote procedure call allows a process executing on one computer 
to invoke a procedure (or function) in a process executing on another computer. 
This mechanism assumes a client/server model: The client computer issuing the 
remote procedure call sends its parameters across the network to the server, where 
the called procedure resides. Execution occurs at the server, and the result (i.e., the 
return value of the function) is then transmitted across the network to the client. 

A goal of RPC was to simplify the process of writing distributed applications 
by preserving the syntax of a local procedure (or function) call while transparently 
initiating network communication. In addition to the primary goal of simplicity, 
RPC also aimed to be efficient and secure.9 

To provide transparency to programmers of distributed systems, RPC intro
duces the concept of a stub. A stub prepares outbound data for transmission and 
translates incoming data so that it may be correctly interpreted. To issue an RPC. a 
client process makes a call (passing the appropriate parameters) to the procedure in 
the client stub. The client stub performs marshaling of data, which packages proce
dure arguments along with the procedure name into a message for transmission 
over a network.10 

To make the remote procedure call, the client stub passes the message (with 
marshaled parameters) to the server (Fig. 17.1). Upon receipt of the message from 
the client stub, the server's operating system transmits the message to the server 
stub. The message is then unmarshaled, and the stub sends the parameters to the 
appropriate local procedure. When the procedure has completed, the server stub 
marshals the result and sends it back to the client. Finally, the client stub unmar-
shals the result, notifies the process and passes it the result. From the standpoint of 
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Figure 17.1 | RPC communication model. 



the client, this looks no different than making a local procedure call and receiving 
the return result—the elaborate mechanisms of the RPC are hidden.11 

There are several complications associated with RPC. RPC can run over 
either TCP or UDP, which means that different implementations may offer varying 
levels of reliability. If RPC is operating over UDP, then the RPC implementation 
must provide communication reliability. Furthermore, each RPC implementation 
may offer a different level of security (we discuss this topic in Chapter 19, Security 
and Protection). In fact, we will see that the security capabilities provided by NFS— 
Section 18.2.2, Network File System (NFS)—are directly related to its underlying 
RPC implementation. 

Another complication is that the process issuing an RPC and its correspond
ing client stub reside in different memory address spaces. This complicates passing 
pointers as parameters, which can limit the transparency and capability of RPC. 
Similarly, RPC does not support global variables, so every variable that a procedure 
uses must be passed to it as an argument. 

Although remote procedure calls promote interoperation in distributed sys
tems, they are not a sufficient solution to the general problem of distributed com
munication. Performance and security issues have led to the development of 
additional communication protocols, described in the following sections. 
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1. What is the main benefit of RPC? 
2. List several problems with RPC. 

Ans: 1) RPC enables processes to call procedures on remote hosts as easily as making calls 
to procedures on the local machine. 2) Problems with RPCs include: a) Lack of reliability and 
security; b) limited transparency and capability; c) Does not support global variables; d) 
Complex to implement. 

Self Review 

Java's RPC protocol, known as remote method invocation (RMI), enables a Java 
process executing on one computer to invoke a method of an object on a remote 
computer using the same syntax as a local method call. Similar to RPC, the details 
of parameter marshaling and message transport in RMI are transparent to the call
ing program. A key benefit of RMI is that it allows transmission of objects between 
remote processes. RMI allows Java programmers to implement distributed systems 
without having to explicitly program sockets.12 

Three distinct software layers comprise the RMI architecture: the stub/skele
ton layer, the remote reference layer (RRL) and the transport layer.13 The stub/ 
skeleton layer contains parameter-marshaling structures analogous to the client and 
server stubs of RPC. An RMI stub is a Java object residing on the client machine 
that provides an interface between the client process and the remote object. When a 
client process invokes a method on a remote object, the stub method is called first. 
The stub employs object serialization to create its marshaled message, a feature 

17.3.3 Remote MEthod Invocation (RMI) 



that allows objects to be encoded into byte streams and transmitted from one 
address space to another. Object serialization enables programs to pass Java objects 
as parameters and receive objects as return values.14 

Once the parameters have been serialized by the stub, they are sent to the cli
ent-side component of the RMI system's RRL. The RRL uses the transport layer to 
send the marshaled message between the client and the server. When the server-
side component of the RRL receives the marshaled parameters, it directs them to 
the skeleton, which unmarshals the parameters, identifies the object on which the 
method is to be invoked and calls that method. Upon completion of the method, 
the skeleton marshals the result and returns it to the client via the RRL and stub.15 
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1. What is the function of the stub/skeleton layer in RMI? 
2. What benefit does RMI provide over RPC? 

Ans: 1) The stub/skeleton layer marshals and unmarshals parameters. This allows the com
munication between remote hosts to be hidden from the user. 2) RMI uses object serializa
tion to enable clients to send objects as arguments in remote method calls and to receive 
objects as return values from servers. 

Self Review 

CORBA (Common Object Request Broker Architecture) is a standard specifica
tion of distributed systems architecture that has gained wide acceptance.16 Con
ceived in the early 1990s by the Object Management Group (OMG), CORBA is an 
open standard designed to enable interoperation among programs in heteroge
neous as well as homogeneous systems. Similar to RMI, CORBA supports objects 
as parameters or return values in remote procedures during interprocess communi
cation. However, unlike RMI (which is Java based), CORBA is language and sys
tem independent, meaning that applications written in different programming 
languages and on different operating systems interoperate through access to a com
mon CORBA core.17 

CORBA-based distributed systems have a relatively simple structure. The 
process on the client passes the procedure call along with the required arguments to 
the client stub. The client stub marshals the parameters and sends the procedure 
call through its Object Request Broker (ORB), which communicates with the ORB 
on the server. The ORB on the server then passes off the procedure call to the 
server's skeleton, which unmarshals the parameters and passes the call to the 
remote procedure.18 

CORBA provides its users language independence with the interface defini
tion language (IDL). IDL allows programmers to strictly define the procedures that 
can be called on the object; this is known as that object's interface. Applications 
written in any language can communicate through CORBA by following each 
object's IDL specification.19 

17.3.4 CORBA (Common Object Request Broker Architecture) 
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1. What advantage does CORBA have over RMI? 
2. Why might a user chose RMI over CORBA? 

Ans: 1) Unlike RMI, CORBA is language independent, so that applications written in dif
ferent programming languages can interoperate through access to a common CORBA core. 
2) If the user is working strictly in Java, then CORBA's language independence is unnece
sary. Using CORBA also requires the user to learn IDL so that the client and server can com-
municate properly. 

Self Review 

In the 1990s, Microsoft independently developed its own distributed object archi
tecture called DCOM (Distributed Component Object Model).20 21 DCOM has 
been included in Windows operating systems since Windows 95 and is CORBA's 
key competitor in distributed object computing. DCOM is a distributed extension 
of Microsoft's Component Object Model (COM), which was introduced in 1993 to 
facilitate component-based development in the Windows environment. The COM 
specification was designed to allow software components residing in a single 
address space or in separate address spaces within a single computer to interact 
with one another. 

As in CORBA, objects in DCOM are accessed via interfaces. This allows 
DCOM objects to be written in a number of different programming languages and 
on a number of different platforms. Unlike CORBA, however, DCOM objects may 
have multiple interfaces. When a client requests a DCOM object from a server, the 
client must also request a specific interface of the object.22 The client request is first 
sent to the client stub (called a proxy). The client stub communicates over a net
work with the server stub, which forwards the request to the specific DCOM object. 
When the DCOM object is finished with the request, it sends the return value back 
to the server stub. The server stub sends this value back over the network to the 
proxy, which finally returns the value to the calling process.23 

17.3.5 DCOM (Distributed Component Object Model) 

1. How is DCOM similar to CORBA? 
2. What is a benefit of having multiple interfaces for a DCOM object? 

Ans: 1) Both DCOM and CORBA provide support for remote objects written in different 
programming languages on different platforms. 2) This allows a single DCOM object to inter
act differently with different processes. 

Self Review 

An alternative to remote communication is process migration, which transfers a pro
cess between two computers in the distributed system. Recall from Section 15.7 that 
process migration implements load balancing in multiprocessor systems. Process 
migration can enable more efficient access to remote resources. For example, con
sider that computers A and B are networked and that a process residing on computer 
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A frequently accesses files residing on computer B. The combination of disk and net
work latency could severely degrade the performance of the process. To reduce this 
latency, the process from computer A can be transferred to computer B.24 

Process cloning creates a copy of a process on a remote machine. Because 
process cloning does not destroy the original process, the two processes may need 
to synchronize access to shared memory.25 
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1. Why is process migration employed in distributed systems? 
2. Explain the difference between process migration and process cloning. 

Ans: 1) Process migration allows a process executing on one computer to be transferred to 
another to utilize the resources efficiently and to distribute the workload among different pro
cessors; it can improve performance by enabling processes to execute without incurring net
work latencies. 2) In process migration, the process is transferred to, and executed on, a remote 
computer. In process cloning, a new process is created and executed on the remote computer. 

Self Review 

Distributed systems typically contain many processes that cooperate to achieve a 
common goal. Events at one node in a distributed system often depend on events at 
other nodes. Determining the order in which events occur is difficult, because com
munication delays in a distributed network are unpredictable. If two nodes each 
send a message to a third node, the order of arrival of the two messages might not 
be the same as the order in which they were sent. This uncertainty can have impor
tant consequences if the two messages are related. For example, suppose a distrib
uted system ensures mutual exclusion by having processes broadcast a message 
whenever they enter or leave a critical section. Suppose one process leaves its criti
cal section and broadcasts a message. Upon receiving this message, another process 
enters its critical section and broadcasts a second message. If a third process 
receives the second message, before the first, it will appear to that process that 
mutual exclusion has been violated. 

This mutual exclusion example describes a causally dependent relationship. The 
second message (that a process is executing inside its critical section) may occur only 
if the first message (indicating that a process has exited its critical section) has been 
broadcast. Causal ordering ensures that all processes recognize that a causally depen
dent event must occur only after the event on which it is dependent. 

Causal ordering is implemented by the happens-before relation, which is 
denoted as a → b. This relation states that if events a and b belong to the same pro
cess, then a → b if a occurred before b. This relation also states that if event a is the 
sending of a message and event b is the receiving of that message, then a → b. 
Finally, this relation is transitive, so if a → b and b → c then a → c. Causal ordering 
is only a partial ordering, because there will be events for which it cannot be deter
mined which occurred earlier. In this case, these events are said to be concurrent. 

17.4 Synchronization in Distributed Systems 
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Sometimes, a causal ordering is not strong enough. A total ordering ensures that all 
events are ordered and that causality is preserved.26 

One way to implement total ordering is through a logical clock which assigns a 
number (or time stamp) to each event (such as sending and receiving a message, 
accessing a variable, etc.) that occurs in the system. Logical clocks do not measure 

time as such, but rather the order in which events occur; they are often imple
mented as a simple counter of events. Logical clocks enforce a causal ordering in 
that if a → b, then the time associated with event a will be less than that associated 
with event b.27 

Scalar logical clocks synchronize the logical clocks on remote hosts and keep a 
single time value at each host. They ensure causality by following two simple rules. 
The first rule is that if two events happen within the same process, then the event 
that happened earlier in actual time will have the earlier time stamp. The second 
rule is that the event corresponding to receiving a message will have a later time 
stamp than the event corresponding to sending that message. These two rules also 
ensure that scalar logical clocks ensure causality.28 

To follow the first rule, a process will increment its internal clock each time an 
event occurs. To follow the second rule, when a process receives a message, it will 
compare the value of its logical clock to the time stamp from the message, set its 
logical clock to the latter of the two and then increment it.29 

1. How is a logical clock implemented? 
2. What would happen if the clocks used by different processes were not synchronized? 

Ans: 1) To implement the logical clock, a process must increment its clock before it exe
cutes an event, and a process must append a time stamp (the local time at which the message 
was sent) to the end of a message. 2) If the clocks used by different processes were not syn
chronized, then the time stamp from one process would be interpreted incorrectly by the 
other process. 

Self Review 

This section discusses how to implement mutual exclusion in distributed systems. 
The synchronization methods presented in the previous section are used to enforce 
mutual exclusion. 

17.5 Mutual Exclusion in Distributed Systems 

Efficient mutual exclusion algorithms for uniprocessor and shared memory multi
processors use shared memory. However, in environments with no shared memory, 
such as NORMA multiprocessors, mutual exclusion must be implemented using 
some form of message passing, which often requires clock synchronization. FIFO 
broadcast guarantees that when two messages are sent from one process to another, 
the message that was sent first will arrive first. Causal broadcast ensures that when 
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message M1 is causally dependent on message M2, then no process receives M1 
before receiving M2. Atomic broadcast guarantees that all messages in a system are 
received in the same order at each process. Atomic broadcast is also known as 
totally ordered broadcast or agreed broadcast.30, 31 

1. What is FIFO broadcast? 
2. State the difference between atomic broadcast and causal broadcast. 

Ans: 1) FIFO broadcast guarantees that when two messages are sent from one process to 
another, the message that was sent first will arrive first. 2) Causal broadcast does not guaran
tee the delivery order of unrelated messages. Atomic broadcast guarantees that unrelated 
messages are delivered in the same order to each process. 

Self Review 
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G. Ricart and A. K. Agrawala present an algorithm for ensuring mutual exclusion in 
NORMA systems in their 1981 paper, "An Optimal Algorithm for Mutual Exclusion 
in Computer Networks"32 which derives from the work by Lamport.33 This algorithm 
requires that a process first send a request message to all other processes in the sys
tem and receive a response from each of them before that process can enter its critical 
section. This algorithm assumes that communication between processes is reliable 
(i.e., no messages are lost) and that processes do not fail. Algorithms have been devel
oped to address these issues, but they are beyond the scope of this book. 

When a process receives a request to enter a critical section and has not sent a 
request of its own, it sends a reply. If the process has sent its own request, it compares 
the time stamps of the two requests, and if its own request has a later time stamp than 
the other request, it sends a reply. If the process's own request has an earlier time 
stamp than the other request, it delays its reply. Finally, if the time stamps of the 
requests are equal, the process compares its process number to that of the requesting 
process. If its own number is higher, it sends a reply, otherwise it delays its reply. 

Consider processes P1, P2, P3, each residing on different nodes. Process P2 
wishes to enter its critical section and sends request messages to P1 and P3. Pro
cesses P1 and P3 do not wish to enter their critical sections and immediately 
respond. Once P2 has received both of these replies, it enters its critical section. 
While P2 executes inside its critical section, both P1 and P3 attempt to enter their 
critical sections. Each process sends its request message, and both happen to have 
identical time stamps. Process P2 receives both requests but delays its reply because 
it is currently inside its critical section. Process P3 receives the request from P1 and 
compares the time stamps. Because both are equal, P3 then compares process num
bers. P3's number is higher than P1's, so P3 sends its reply. 

Process P1 receives the request from P3 and compares the time stamps. Again, 
both are equal, but P1's number is less P3's, so the reply is delayed. When P2 exits its 
critical section, it sends replies to both P1 and P3. Process P2 does not check either 
time stamp, since it is concerned only about whether it is currently using its critical 
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section, not whether another process is doing so. Process P1 receives the reply from 
P2 and enters its critical section (as it has already received a reply from P3). Process 

P3 receives the reply from P2 but must still wait on the reply from P1. Finally, when 
P1 is done with its critical section, it sends its reply to P3, which will then enter its 
critical section. 

Mutual exclusion is ensured by this algorithm. If two processes entered their 
critical sections at the same time, it would mean that each process sent a request, 
received the other process's request, compared the time stamps, and found that the 
other process's request had a lower time stamp than its own. This is not possible; 
therefore, mutual exclusion is ensured.34 

This algorithm also prevents indefinite postponement. If a process is indefi
nitely postponed, requests are being sent with earlier time stamps than its own. But 
because time stamps increase monotonically, all requests sent after the postponed 
process's request will have a later time stamp. Eventually, all requests with an ear
er time stamp will be fulfilled and the postponed process's request will have the 
lowest timestamp, allowing the postponed process to proceed. In Exercise 17.12 

you will be asked to prove that this algorithm prevents deadlock.35 
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1. What are the consequences if a process does fail in this algorithm? 
2. If there are n processes within the system, how many messages must be sent before a pro

cess can enter its critical section? 

Ans: 1) If a process fails, then other processes will not receive replies from it when they 
send out a request. If there is no mechanism to determine that a process has failed, the entire 
system could become deadlocked. 2) 2(n -1 ) messages must be sent. 

Self Review 

Distributed deadlock occurs when processes spread over different computers in a 
network wait for events that will not occur. This section addresses how distributed 
systems complicate the problem of deadlock and provides algorithms to solve them. 

17.6 Deadlock in Distributed Systems 

Distributed deadlock can be classified into three types. Resource deadlock is the 
type discussed in Chapter 7.36 

As in a centralized system, processes in a distributed system also often block, 
waiting for signals from other processes. This introduces a new type of deadlock 
called communication deadlock, circular waiting for communication signals. For 
instance, if P1 is waiting for a response from P2, P2 is waiting for a response from P3 

and P3 is waiting for a response from P1, then the system is deadlocked.37 

Due to the communications delay associated with distributed computing, it is 
possible that a deadlock detection algorithm, introduced in Chapter 7, might detect 
a deadlock that does not exist. For example, consider processes P1 and P2 executing 

17.6.1 Distributed Deadlock 



on different nodes and a third node, N3, that is testing for deadlock. Process P1 

holds resource R1 and process P2 holds resource R2. Process P1 releases resource 
R1 and sends message M1 to node N3. Process P1 then requests resource R2 and 
sends message M2 to node N3. Process P2 releases resource R2 and sends message 
M3 to node N3. Finally, P2 requests R1 and sends message M4 to node N3. Suppose 
that, because of network latency, messages M2 and M4 arrive at node N3 before M1 

and M3. Node N3 would then detect a deadlock which did not exist. This is known 
as phantom deadlock.38 
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1. When would phantom deadlock occur? 
2. Why is it difficult to manage distributed deadlock? 

Ans: 1) Phantom deadlock occurs when communications between two processes are 
delayed, which leads to a false global state. 2) In distributed systems, the deadlocked pro
cesses are spread over different computers in a network. Managing distributed deadlock 
requires each process to know the global state of the shared resources and critical sections. 

Self Review 

To prevent deadlocks in uniprocessor machines, it is sufficient to deny one of the 
four necessary conditions for deadlock (i.e., mutual exclusion, wait for, no preemp-
tion and circular wait). These techniques can also be employed to prevent distrib-
uted deadlock. Rosenkrantz et al. developed two algorithms designed specifically 
for distributed systems in their 1978 paper, "System Level Concurrency Control for 
Distributed Database Systems." Both of these algorithms rely on ordering pro
cesses based on when each process was started.39 

17.6.2 Deadlock Prevention 

The wound-wait deadlock prevention strategy (Fig. 17.2) breaks deadlock by deny-
ing the no-preemption condition. Consider the following situation: there are two 
processes, P1 and P2, and P1 was created before P2. If process P1 requests a resource 
held by P2, P1 wounds P2. Process P2 will then be restarted, freeing all of its 
resources, including the resource requested by P1. If P2 requests a resource held by 
P1, P2 will wait for P1 to finish using the resource and release it.40 

Wound-Wait Strategy 

The wait-die deadlock prevention strategy (Fig. 17.3) prevents deadlock by denying 
the wait-for condition. Consider the following situation: there are two processes, P1 

and P2, and P1 was created before P2. Process P1 can request a resource held by P2 

and wait for P2 to release that resource. But if P2 requests a resource held by P1, P2 

dies. When P2 dies, it releases all of its resources and restarts.41 

Wait-Die Strategy 
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Both of these strategies prevent deadlock, but processes interact differently in 
each. In the wound-wait strategy, recently created processes will be restarted if they 
hold a resource requested by an earlier created process. Recently created processes 
are also forced to wait for earlier created processes. As a process ages, it will wait 
less often. In the wait-die strategy, recently created processes will die instead of 
waiting for a resource. As processes age, they may be forced to wait more often.42 

Figure 17.3 | Wait-die strategy. 

Figure 17.2 | Wound-wait strategy. 



1. How do the wound-wait and wait-die strategies prevent indefinite postponement? 
2. What is a problem with the wound-wait and wait-die strategies? 

Ans: 1) In both algorithms, a process that is rolled back many times would eventually get 
executed, because at some point it would have an earlier time stamp than other processes. 
2) In each algorithm, a process may be forced to restart multiple times. This requires the pro
cess to repeatedly execute the code preceding the roll back. 

Self Review 
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In a centralized system, all resources and processes are located on a single machine. 
In a distributed system, resources and processes are spread over multiple, geo
graphically distant machines. This makes it harder for the system to coordinate 
interactions between processes. Three distributed deadlock detection strategies are 
central, hierarchical and distributed. Systems that implement central deadlock 
detection contain a single node that monitors the entire system. Whenever a pro
cess requests or releases a resource, it notifies the central node. The node checks the 
global system for cycles. Upon detection of a cycle, the system may implement a 
variety of deadlock recovery algorithms. The centralized deadlock detection strat
egy is simple to implement and is efficient for LANs, which are relatively small and 
exhibit relatively high communication rates. However, the system may experience 
decreased performance, because resource requests can create a bottleneck at the 
central node. Also, central deadlock detection is not fault tolerant, because a failure 
at the central node prevents all nodes in the system from acquiring resources.43, 44 

The hierarchical deadlock detection method organizes a system's nodes in a 
tree. Each node, except the leaf nodes, collects the resource allocation information 
of all dependent nodes. This tree structure provides a higher degree of fault toler
ance than centralized systems. Furthermore, because deadlock detection is divided 
into hierarchies, each branch of the tree needs to have knowledge only of the 
resources within that branch.45 

Distributed deadlock detection strategies require each process to determine 
whether deadlock exists. To do this, each node queries all other nodes. This is the 
most fault-tolerant method of deadlock detection, because the failure of one node 
does not prevent other nodes from functioning properly. However, creating effi
cient algorithms for distributed deadlock detection is difficult, because they must 
manage synchronized communication among many processes.46 

1. In a distributed system operating over a WAN, why would it be infeasible to use a central-
ized deadlock detection strategy? 

2. What will happen in a hierarchical deadlock detection scheme if a host fails? 

Ans: 1) In a WAN, a deadlock may not be detected for a long time, due to communication 
delays. This will cause processes involved in the deadlock to wait unnecessarily long for the 
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deadlock to be resolved. 2) Deadlock detection for all hosts dependent on the failed host will 
stop. This can cause a reduction in performance. 
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Johnston et al. presented a simple algorithm for deadlock detection in distributed 
systems in their 1991 paper, "A Distributed Algorithm for Resource Deadlock 
Detection."47 In this algorithm, each operating system enforces mutual exclusion on 
its resources and keeps track of which process holds each resource. Processes can 
be uniquely identified throughout the entire distributed system. 

Consider a simple example. Process P1 begins executing and requests resource 
R1. Resource R1 is available, so its operating system allocates it to P1. Process P2 
then begins executing and requests resource R2, which is also available and is allo
cated to P2. Process P2 then requests R1. Resource R1 is being used, so P2 is 
blocked and R1's operating system sends P2 the identifier of process P1, which holds 
the resource that P2 has requested. This value is stored in P2's Heldjby variable. 
Process P1 also holds all of the resources it needs to execute, so P2 stores P1 in its 
Wait_for variable. Finally, P1 records in its Request_queue that process P2 has 
requested R1. 

Now process P3 begins executing. It requests resource R3, which is available 
and allocated to P3. P3 then requests resource R2 which is held by process P2. P3 
blocks, and R2's operating system sends P3 the identifier of P2. P2 is then stored in 
P3's Held_by variable. P2 has an outstanding resource request, so P3 stores the value 
that is in P2's Wait_for variable, which is P1, in its own. Finally, P2 records in its 
Request_queue that process P3 has requested R2. 

Process P4 then begins executing and also requests resource R2. P4 blocks, and 
R2's operating system sends P4 the identifier of P2, which is then stored in P4's 
Held_by variable. P2 has an outstanding resource request, so P4 stores the value of 
P2's Wait_for variable (which is P1) in its own. Finally, P2 records in its 
Request_queue that process P4 has requested R2. 

Figure 17.4 shows the transaction wait-for graph (TWFG) for this system. In a 
TWFG, each process in the system is a node in the graph. A line between nodes indi
cates that one process has requested a resource that is being held by another process. 

17.6.4 A Distributed Resource Deadlock Algorithm 

Figure 17.4 | System without deadlocks. 



Suppose now that process P1 requests resource R3, which will complete a cir
cular wait (Fig. 17.5). P1 now blocks, and R3 's operating system sends P1 the identi
fier of the process that holds R3, which is P3. This process is stored in P1's Held_by 
variable. Since P3 has an outstanding resource request, P1 stores in its Wait_for vari
able the process in P3's Wait_for variable, which is P1. Finally, P3 stores in its 
Request_queue that process P1 has requested R3. 

When P1 changes its Wait_for variable (from null to P1), it sends a message to 
each process in its Request_queue to update their own Wait_for variables. Process 
P2 receives this message, but its Wait_for variable is already P1, so no change is 
made. P2 then checks for deadlock. This is done by testing whether the process in 
the Waitjor variable is also in P2's Request_queue. The process in P2's Wait_for 
variable is P1, while the only process in its Request_queue is P3, so deadlock is not 
detected at this step. The message is now forwarded to P3 and P4. 

Process P3 receives the message, but its Wait_for variable is already P1 also, so 
no change is made. P3 still checks for deadlock, though. The process in P3's Wait_for 
variable is P1, which is also in P3's Request_queue, so a deadlock has been detected. 
In this algorithm, the process that detects the deadlock aborts, so P3 releases R3, 
notifies P1 that R3 has been freed, and aborts. P1's resource request will then be 
filled, and the deadlock has been removed (Fig. 17.6). 

Figure 17.5 | Deadlock is introduced to the system. 

Figure 17.6 | System after deadlock has been eliminated. 
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1. How does a process check for deadlock in this algorithm? 
2. What information is stored in a process's Request queue? 

Ans: 1) A process checks for deadlock by determining whether the process in its Wait_for 
variable is also an entry in its Request_queue. If this is the case, deadlock has occurred. 2) The 
Request_queue keeps track of the processes that have requested a resource held by the origi-
nal process, and of the resource each of those processes requested. 

Sprite is a distributed operating system developed at the University of California at 
Berkeley. Sprite connects large numbers of powerful but inexpensive personal 
workstations in a high-speed LAN. In a Sprite network, large numbers of personal 
workstations are connected, and many computers could be idle at any given time. 
These idle workstations allow Sprite to use process migration to balance the work-
load of the system.48 

Each workstation in Sprite monitors its own usage to determine if it is idle. 
When a workstation does not receive any keyboard or mouse input for 30 seconds 
and when it has fewer running processes than processors, the workstation claims it 
is idle and reports to a server, called the central migration server, that keeps infor
mation about idle workstations. The central migration server will then migrate a 
process to that workstation, called the target computer. When the user of the target 
computer returns (i.e., the workstation receives a keyboard or mouse input), the 
workstation notifies the central migration server about the return, and the process 
is migrated back to its original computer, called the home computer.49 

Each workstation in the system runs a Sprite kernel, and these can communi
cate with each other via RPCs. Sprite uses implicit acknowledgements to ensure 
that messages are delivered reliably. With implicit acknowledgements, the response 
message is an implied acknowledgement for the request message. 

To ensure transparency, the Sprite kernel distinguishes between two kinds of 
calls. Location-dependent calls are system calls that produce different results for 
different workstations. Location-independent calls are system calls that produce the 
same result for all workstations. The system then provides more location-indepen-
dent calls by providing the exact same view of the file system for each workstation. 
When a location-dependent call is required, the system either forwards the call to 
the home computer for evaluation or transfers the process's state information (such 
as virtual memory, open files and process identifiers, etc.) from the home computer 
to the target computer. 

The Sprite file system has the same form as a UNIX file system—every client 
has the exact same view of the hierarchy. The Sprite file system caches files on both 
the server and client sides. On the server side, when a file is requested, the server 
checks the server cache first. If the requested file is not cached, the server adds the 
file to the server cache and sends it to the client. On the client side, when a file is 
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requested, the client checks the client cache first. If the file is in the client cache, 
then the client gets the file from the client cache. Otherwise, the client gets the file 
from the server and adds it to the client cache.50 Section 18.2.5, Sprite File System, 
discusses the Sprite file system in much more detail. 
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1. Give an example of a location-dependent call. 
2. How does Sprite share computer power to balance workload? 

Ans: 1) Obtaining the home computer's name is a location-dependent call. 2) Sprite uses a 
process migration mechanism to enable idle computers to share computer power. When pro
cess migration happens, a process on one computer is transferred to an idle computer, dis
tributing the workload among the computers in the system. 

Self Review 

Amoeba is a distributed operating system developed at the Vrije Universiteit 
Amsterdam. Unlike Sprite in which each workstation has its own processors, 
Amoeba users share processors located in one or more processor pools. A proces
sor pool is a collection of processors, each having its own memory and Ethernet 
connection. The processors in the processor pool are shared equally among users. 
When a user issues a command to execute a process, the processor pool dynamically 
allocates the processors for the user. When the user process terminates, the user 
returns the allocated processors to the processor pool. Like Sprite, Amoeba pro-
vides transparency by hiding the number and location of processors from the user.51 

Each processor in an Amoeba system runs a microkernel, which is a collection 
of services that supports kernel process management, kernel memory management 
and the communication between clients and servers. It is also the microkernel's 
responsibility to manage and schedule the threads in a process.52 

Amoeba supports two forms of communication—point-to-point and group. In 
a point-to-point communication, a client stub sends a request message to the server 
stub and blocks, awaiting the server reply. Amoeba uses explicit acknowledgement, 
which means the client sends an acknowledgement to the server in an additional 
packet when the client receives the response from the server. In a group communi-
cation, messages are sent to all receivers in exactly the same order. 

The Amoeba file system has a standard file server called the bullet server. The 
bullet server has a large primary memory. The files stored in it are immutable, which 
means they cannot be modified after being created. If the file is modified, a new file is 
created to replace the old one, and the old one is deleted from the server.53 

The bullet server stores files contiguously on the disk, while Sprite stores files 
in blocks that are not necessarily contiguous. This means that the bullet server can 
transfer files faster than Sprite. Unlike Sprite, the bullet server supports only server-
side caching. Files located in the cache are also stored contiguously. When a client 
process wants to access a file, it sends the request to the bullet server. The bullet 
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server retrieves the file from disk if it is not in the cache, otherwise the bullet server 
gets the file from the cache.54 

Web Resources 805 

1. How are processors managed in Amoeba? 
2. How is a file stored in the bullet server modified? 

Ans: 1) All processors are located in one or more processor pools. The processors in a pool 
are not owned by a particular user but are shared among all the users. The processor pool 
dynamically allocates the processor for each client. When the processors finish their job to 
execute a client's command, they are returned to the processor pool. 2) Bullet servers store 
only immutable files. To modify a file, a bullet server creates a new file to replace the old one, 
and the old file is deleted from the server. 
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In distributed systems, remote computers cooperate via a 
network to appear as a local machine. Scalability allows the 
distributed system to grow without affecting the existing 
applications and users. Distributed systems can be suscepti
ble to attacks by malicious users if they rely on insecure 
communications media. To improve security, a distributed 
system should allow only authorized users to access 
resources and ensure that information transmitted over the 
network is readable only by the intended recipients. The 
system must also provide mechanisms to protect resources 
from attack. Distributed systems implement fault tolerance 
by providing replication of resources across the system. 

Summary 
Replication offers users increased reliability and availabil
ity over single-machine implementations, but designers 
must provide mechanisms to ensure consistency among the 
state information at different machines. 

Access transparency hides the details of networking 
protocols that enable communication between distributed 
computers. Location transparency builds on access trans
parency to hide the location of resources in the distributed 
system. 

Failure transparency is the method by which a distrib
uted system provides fault tolerance. Under replication, a 
system provides multiple resources that perform the same 



marshals the result and returns it to the client via the RRL 
and stub. 

CORBA (Common Object Request Broker Archi-
tecture) is an open standard designed to enable interopera-
tion among programs in heterogeneous as well as 
homogeneous systems. CORBA supports objects as param-
eters or return values in remote procedures during inter
process communication and is language independent. In 
CORBA, the process on the client passes the procedure 
call along with the required arguments to the client stub. 
The client stub marshals the parameters and sends the pro
cedure call through its Object Request Broker (ORB), 
which communicates with the ORB on the server. CORBA 
provides its users language independence with the Inter-
face Definition Language (IDL), which allows program-
mers to strictly define the procedures that can be called on 
the object. 

Distributed Component Object Model (DCOM) is 
designed to allow software components residing on remote 
computers to interact with one another. As in CORBA, 
objects in DCOM are accessed via interfaces. Unlike 
CORBA, however, DCOM objects may have multiple 
interfaces. When a client requests a DCOM object from a 
server, the client must also request a specific interface of 
the object. 

Process migration transfers a process between two 
computers in a distributed system. Process migration 
between remote computers allows processes to exploit a 
remote resource, but it is a complicated task that often 
reduces the performance of the process that is being 
migrated. Process cloning is similar to process migration, 
except that instead of transferring a process to a remote 
location, a new process is created on the remote machine. 

Determining the order in which events occur is diffi-
cult, because communication delays in a distributed net-
work are unpredictable. Causal ordering ensures that all 
processes recognize that a causally dependent event must 
occur only after the event on which it is dependent. 

Causal ordering is implemented by the happens-
before relation, which states that if events a and b belong to 
the same process, then a → b if a occurred before b. This 
relation also states that if event a is the sending of a mes-
sage and event b is the receiving of that message, then 
a → b. Finally, this relation is transitive. Causal ordering is 
only a partial ordering. Events for which it cannot be deter-
mined which occurred earlier are said to be concurrent. A 
total ordering ensures that all events are ordered and that 
causality is preserved. 

function. A system that employs checkpointing periodically 
stores the state of an object such that it can be restored if a 
failure in the distributed system results in the loss of the 
object. 

Replication transparency hides the fact that multiple 
copies of a resource are available in the system. Persistence 
transparency hides the information about where the 
resource is stored—memory or disk. 

Migration and relocation transparency both hide the 
movement of components of a distributed system. The 
former masks the movement of an object from one location 
to another in the system; the latter masks the relocation of 
an object from other objects that communicate with it. 
Transaction transparency allows a system to achieve consis
tency by masking the coordination among a set of resources. 

A remote procedure call allows a process executing 
on one computer to invoke a procedure in a process exe
cuting on another computer. A goal of RPC was to simplify 
the process of writing distributed applications by preserv
ing the syntax of a local procedure call while transparently 
initiating network communication. To issue an RPC, a cli
ent process makes a call to the procedure in the client stub, 
which performs marshaling of data to package procedure 
arguments along with the procedure name into a message 
for transmission over a network. The client stub passes the 
message to the server, which transmits the message to the 
server stub. The message is then unmarshaled, and the stub 
sends the parameters to the appropriate local procedure. 
When the procedure has completed, the server stub mar
shals the result and sends it back to the client. Finally, the 
client stub unmarshals the result, notifies the process and 
passes it the result. 

Remote method invocation (RMI) enables a Java 
process executing on one computer to invoke a method of 
an object on a remote computer using the same syntax as a 
local method call. Similar to RPC, the details of parameter 
marshaling and message transport in RMI are transparent 
to the calling program. 

The stub/skeleton layer of RMI contains parameter-
marshaling structures analogous to the client and server 
stubs of RPC. The stub employs object serialization, which 
enables programs to pass Java objects as parameters and 
receive objects as return values. The remote reference layer 
(RRL) and the transport layer of RMI work together to 
send the marshaled message between the client and the 
server. The skeleton unmarshals the parameters, identifies 
the object on which the method is to be invoked and calls 
that method. Upon completion of the method, the skeleton 
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One way to implement total ordering is through a 
logical clock which assigns a timestamp to each event that 
occurs in the system. Scalar logical clocks synchronize the 

logical clocks on remote hosts and ensure causality. 
In environments with no shared memory, mutual 

exclusion must be implemented over message passing. 
Message-passing systems use clock synchronization con
cepts to employ either FIFO broadcast, causal broadcast or 
atomic broadcast to synchronize the system. FIFO broad
cast guarantees that when two messages are sent from one 
process to another, the message that was sent first will 
arrive first. Causal broadcast ensures that when message 
m1 is causally dependent on message m2, then no process 
delivers m1 before delivering m2. Atomic broadcast guar
antees that all messages in a system are received in the 
same order at each process. 

Ricart and Agrawala's algorithm requires that a pro
cess first send a request message to all other processes in the 
system and receive a response from each of these processes 
before that process can enter its critical section. When a pro
cess receives a request to enter a critical section and has not 
sent a request of its own, it sends a reply. If the process has 
sent its own request, it compares the timestamps of the two 
requests and if the process's own request has a later times
tamp than the other request, it sends a reply. If the process's 
own request has a earlier timestamp than the other request, 
it delays its reply. Finally, if the timestamps of the requests 
are equal, the process compares its process number to that of 
the requesting process. If its own number is higher, it sends a 
response, otherwise it delays its response. 

There are three types of distributed deadlock: 
resource deadlock, communication deadlock and phantom 
deadlock. Resource deadlock is the kind of deadlock intro
duced in Chapter 7. Communication deadlock is circular 
waiting for communication signals. Due to the communica
tions delay associated with distributed computing, it is pos
sible that a deadlock detection algorithm might detect a 
deadlock (called phantom deadlock, a perceived deadlock) 
that does not exist. Although this form of deadlock cannot 
immediately stop the system, it is a source of inefficiency. 

Two algorithms designed to prevent deadlock rely on 
ordering processes based on when each process was 
started. The wound-wait strategy breaks deadlock by deny
ing the no-preemption condition. A process will wait for 
another process if the first process was created before the 
other. In this strategy, a process will wound (restart) 
another process if the first process was created after the 
other. The wait-die strategy breaks deadlock by denying 
the wait-for condition. In this strategy, a process will wait 

for another process if the first process was created after the 
other process. A process will die (restart) itself if it was cre
ated before the other process. 

Systems that implement central deadlock detection 
have one site that is dedicated to monitoring the entire sys
tem. Whenever a process requests or releases a resource it 
informs the central site which continuously checks the sys
tem for cycles. The central algorithm is simple to implement 
and is efficient for LANs. However, the system may experi
ence decreased performance and is not fault tolerant. 

The hierarchical deadlock detection method arranges 
each site in the system as a node in a tree. Each node, 
except the leaf nodes, collects the resource allocation infor
mation of all dependent nodes. This tree structure helps to 
ensure fault tolerance. Furthermore, because deadlock 
detection is divided into hierarchies and clusters, sites that 
are irrelevant to deadlock detection on a particular 
resource do not have to participate in deadlock detection. 

Distributed deadlock detection algorithms place the 
responsibility of deadlock detection with each site. Each site 
in the system queries all other sites to determine whether 
any other sites are involved in deadlock. This is the most 
fault-tolerant method of deadlock detection because the fail
ure of one site will not cause any other site to fail. 

Johnston, et al. presented a simple algorithm for 
deadlock detection in distributed systems. In this algo
rithm, each process keeps track of the transaction wait-for 
graph (TWFG) of which they are involved. When a process 
requests a resource that is being held by another process, 
the requesting process blocks and the TWFG is updated. 
As this happens, any deadlocks are detected and removed. 

In a Sprite network, large numbers of personal work
stations are connected and many computers could be idle 
at any given time. These idle workstations allow Sprite to 
use process migration to balance the workload of the sys
tem. When the central migration server is notified that a 
workstation is idle, it will migrate a process to that target 
computer. When the user of the target computer returns, 
the workstation notifies the central migration server about 
the return, and the process is migrated back to the home 
computer. 

The Sprite kernel provides more location-indepen
dent calls by providing the exact same view of the file sys
tem for each workstation. When a location-dependent call 
is required, the system either forwards the call to the home 
computer for evaluation or transfers the process's state 
information from the home computer to the target com
puter. The Sprite file system also caches files on both the 
server and client sides. 
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stub and blocks, awaiting the server reply. In a group com
munication, messages are sent to all receivers in exactly the 
same order. 

The Amoeba file system has a standard file server 
called the bullet server which has a large primary memory. 
The files stored in the bullet server are immutable. If a file-
is modified, a new file is created to replace the old one, and 
the old one is deleted from the server. The bullet server 
also stores files contiguously on the disk so that it can trans
fer files faster than Sprite. 

Amoeba users share processors located in one or 
more processor pools. When a user issues a command to 
execute a process, the processor pool dynamically allocates 
the processors for the user. When the user process termi
nates, the user returns the allocated processors to the pro
cessor pool. Amoeba provides transparency by hiding the 
number and location of processors from the user. 

Amoeba supports two forms of communication— 
point-to-point and group. In a point-to-point communica
tion, a client stub sends a request message to the server 
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Group (OMG), CORBA is a standard specification of dis
tributed systems architecture that has gained wide accep
tance. 

communication deadlock—One of the two types of distributed 
deadlock, which is a circular waiting for communication 
signals. 

concurrent—Two events are concurrent if it cannot be deter
mined which occurred earlier by following the happens-
before relation. 

Distributed Component Object Model (DCOM)—Distributed 
systems extension of Microsoft's COM. 

distributed deadlock—Similar to deadlock in a uniprocessor 
system, except that the processes concerned are spread 
over different computers. 

distributed deadlock detection strategy—Technique used to 
find deadlock in a distributed system. 

distributed file system—Places files on physically distinct 
machines, while providing the view of a single file system. 

distributed operating system—Provides all of the same ser
vices as a traditional operating system, but must provide 
adequate transparency such that objects in the system are 
unaware of the computers that provide the service. 

distributed system—Remote computers cooperate via a net-
work to provide a unified operating system. 

explicit acknowledgement—The client sends an acknowledge
ment to the server in an additional packet when the client 
receives the response from the server. 

failure transparency—Method by which a distributed system 
provides fault tolerance so that the client is unaware of 
the failure of a computer. 

FIFO broadcast—Guarantees that when two messages are 
sent from one process to another, the message that was 
sent first will arrive first. 

access transparency—Hides the details of networking proto
cols that enable communication between computers in a 
distributed system. 

atomic broadcast—Guarantees that all messages in a system 
are received in the same order at each process. Also 
known as totally ordered or agreed broadcast. 

bullet server—Standard file server used in the Amoeba file sys
tem. 

causal broadcast—Ensures that when a message is sent from 
one process to all other processes, any given process will 
receive the message before it receives a response to the 
message from a different process. 

causal ordering—Ensures that all processes recognize that a 
causally dependent event must occur only after the event 
on which it is dependent. 

causally dependent—Event B is causally dependent on event 
A if event B may occur only if event A occurs. 

central deadlock detection—A strategy in distributed dead
lock detection, in which one site is dedicated to monitor
ing the TWFG of the entire system. Whenever a process 
requests or releases a resource, it informs the central site. 
The site continuously checks the global TWFG for cycles. 

central migration server—Workstation in a Sprite distributed 
operating system that keeps information about idle work
stations. 

client stub—Stub at the client side that prepares outbound 
data for transmission and translates incoming data so that 
it may be correctly interpreted. 

Component Object Model (COM)—Introduced in 1993 by 
Microsoft to facilitate component-based development in 
the Windows environment. 

Common Object Request Broker Architecture (CORBA)— 
Conceived in the early 1990s by the Object Management 
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happens before relation—A happens before B if A and B 
belong to the same process and A occurred before B; or A 
is the sending of a message and B is the receiver of that 
message. 

hierarchical deadlock detection—A strategy in distributed 
deadlock, which arranges each site in the system as a node 
in a tree. Each node, except the leaf nodes, collects the 
resource allocation information of all dependent nodes. 

home computer (in process migration)—Computer on which 
the process originates. 

implicit acknowledgement—The response message implies the 
acknowledgement for the request message. 

immutable file—A file that cannot be modified after it is cre
ated. 

Interface Definition Language (IDL)—A language used to 
specify the details of the RPCs, which provides a lan
guage-independent representation of interfaces and 
allows distributed applications to transparently call proce
dures on remote computers. 

interoperability—Permits software components to interact 
among different hardware and software platforms, pro
gramming languages and communication protocols. 

location-dependent call—System call that depends on the 
workstation (in Sprite) on which the call is executed. 
Location-dependent calls produce different results for dif
ferent workstations. 

location-independent call—System call that does not depend 
on the workstation on which the call is executed. Loca
tion-independent calls produce the same result for all 
workstations. 

location transparency—Builds on access transparency to hide 
the location of resources in a distributed system from 
those attempting to access them. 

logical clock—Assigns a timestamp to each event that happens 
in a system in order to create a total ordering of events. 

marshaling of data—A routine for the client stub to package 
procedure arguments and return values for transmission 
over a network. 

middleware—A software layer that helps provide portability, 
transparency, and interoperability in distributed systems. 

migration transparency—Masks the movement of an object 
from one location to another in the system, such as the 
movement of a file from one server to another. 

network operating system—Accesses resources on remote 
computers that run independent operating systems. 

Object Request Broker (ORB)—Component residing on both 
CORBA client and server, which is responsible for initiat
ing communication between systems. 

object serialization—Allows objects to be encoded into byte 
streams and transmitted from one address space to 
another. 

partial ordering—An ordering of events that follows the hap-
pens-before relation. Some events cannot be ordered 
using this system which is why it is only a partial ordering. 

persistence transparency—Hides the information about where 
the resource is stored—memory or disk. 

phantom deadlock—Situation due to communications delay 
associated with distributed computing, when a deadlock 
detection algorithm (DDA) might detect a deadlock that 
does not exist. 

process cloning—Creates a copy of a process on a remote 
machine. 

processor pool—Component in Amoeba system, which con
tains a collection of processors, each having its own mem
ory and Ethernet connection. 

proxy—In DCOM, the client-side stub that is responsible for 
marshaling and unmarshaling messages. 

relocation transparency—Masks the relocation of an object 
from other objects that communicate with it. 

remote method invocation (RMI)—Allows Java programmers 
to implement distributed systems without having to 
explicitly program sockets. 

remote procedure call (RPC)—Allows a process executing on 
one computer to invoke a procedure (or function) in a 
process executing on another computer. 

remote reference layer (RRL)—Works with the transport 
layer to send marshaled messages between the client and 
server in RMI. 

replication—Provides multiple resources that perform the 
same function in a system. 

replication transparency—Hides the fact that multiple copies 
of a resource are available in the system. All access to a 
group of replicated resources occurs as if there were one 
such resource available. 

scalability—Allows a distributed system to grow (i.e., add 
more machines to the system) without affecting the exist
ing applications and users. 

server stub—A stub at the server side in RPC that prepares 
outbound data for transmission and translates incoming 
data so that it may be correctly interpreted. 

skeleton—Server-side stub. 
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transparency—Hides the distribution aspects from users of a 
distributed system. 

transport layer (in RMI)—Works with the RRL to send mar
shaled messages between the client and server in RMI. 

wait-die deadlock prevention strategy—Prevents deadlock by 
denying the wait-for condition. Assigns individual pro
cesses unique priorities based on when they were created. 
A process will wait if it was created after the process it is 
waiting on. A process will die if it was created before the 
process it is waiting on. 

wound-wait deadlock prevention strategy—Prevents deadlock 
by denying the no-preemption condition. Assigns individ-
ual processes unique priorities based on when they were 
created. A process requesting a resource held by another 
process will wound that process if the first one was created 
before the other. A process will wait if it was created after 
the process it is waiting on. 

wound—When a process is wounded by another process, it will 
be rolled back. 

standardized interface—Allows each client/server pair to com
municate using a single, common interface that is under
stood by both sides. 

state information—Data that describes the status of one or 
more resources. 

stub—prepares outbound data for transmission and translates 
incoming data so that it may be correctly interpreted 

stub/skeleton layer in RMI—Contains parameter-marshaling 
structures analogous to the client and server stubs of RPC. 

target computer (in process migration)—Computer to which 
the process is migrated. 

time stamp—Records the local time at which the message was 
sent. 

total ordering—Ensures that all events are observed in the 
same order by all processes. 

transaction transparency—Allows a system to achieve consis
tency by masking the coordination among a set of 
resources. 

transaction wait-for graph (TWFG)—Graph that represents 
processes as nodes and dependencies as directed edges, 
which is used for distributed deadlock detection algorithms. 
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17.10 Distinguish FIFO broadcast, causal broadcast and 
atomic broadcast. 
17.11 Suppose processes P1, P2 and P3 share the critical sec
tion,. P1 sends a request to enter the critical section at logical 
time 1. P2 sends a request to enter the critical section at logical 
time 2. P3 sends a request to enter the critical section at logical 
time 3. Apply Ricart and Agrawala's algorithm to demonstrate 
how mutual exclusion is achieved. 
17.12 Prove that Ricart and Agrawala's algorithm prevents 
deadlock. 
17.13 Suppose processes P1, P2 and P3 have time stamps 1.2 
and 3, respectively. If P1 requests a resource held by P2, which 
process will be rolled back using the wound-wait algorithm? 
17.14 Suppose processes P1, P2 and P3 have timestamps 1.2 
and 3, respectively. If P3 requests a resource held by P2, which 
process will be rolled back using the Wait-Die algorithm? 
17.15 Compare the Sprite and Amoeba distributed systems. 

17.1 What are the benefits of distributed systems? 
17.2 Define each type of transparency. 
17.3 What is the role of middleware? Give examples of mid
dleware. 
17.4 Explain how RPC works. 
17.5 When the client and the server communicate via RPC, 
the client blocks until it receives a response from the server. 
What is the drawback of this design? Give an alternative sug
gestion to remove this limitation. 
17.6 Why is the Interface Definition Language (IDL) impor
tant in CORBA? 
17.7 Discuss the major differences in DCOM and CORBA. 
17.8 Give examples in which process migration is used to 
exploit resource locality and to balance work load. 
17.9 Draw two diagrams, one illustrating that event e2 is 
dependent on e1, the other illustrating that events e2 and e1 are 
concurrent. 

Exercises 

Recommended Reading 
This chapter has only provided a high-level overview of certain 
middleware technologies. More information on CORBA can 

be found through the Object Management Group (OMG).55 

In addition, many of the algorithms introduced in this chapter 



are discussed in much greater detail in the papers that intro-
duced each algorithm. Agrawala and Ricart's paper provides 
much greater detail about their mutual exclusion algorithm.56 

Rosenkrantz et. al. discuss in their paper concurrency control 

in distributed systems.57 Other resources are the paper by 
Johnston et al.,58 Which describes their deadlock detection 
algorithm, and Obermarck's paper,59 which covers another 
deadlock detection algorithm not mentioned in this chapter. 
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The humblest is the peer of the most powerful. 
—John Marshall Harlan 

O! call back yesterday, bid time reeturn. 
William Shakespeare— 



Chapter 18 

Distributed Systems and 
Web Services 

Objectives 
After reading this chapter, you should understand: 

• characteristics and examples of networked and distributed file systems. 

• types, benefits and examples of clustering. 

• the peer-to-peer distributed computing model. 

• grid computing. 

• Java distributed computing technologies. 

• Web services and the Microsoft .NET and Sun ONE platforms. 
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In the preceding chapter, we discussed the basic concepts of distributed systems, 
including the middleware technologies that help to build transparent and scalable 
systems. We also discussed how to ensure mutual exclusion in distributed systems 
and how to prevent and detect distributed deadlocks. In this chapter, we look at 
another fundamental element of distributed systems—file sharing. Accessing files 
stored on file servers using a distributed file system is similar to accessing files 
stored on the user's local computer. We discuss several distributed file systems and 
give an overview of how data and files are shared among distributed computers. 
Then, we introduce clustering, which takes advantage of distributed systems and 
parallel systems to build powerful computers. We discuss the peer-to-peer distrib
uted computing model which is used to remove many central points of failure in 
applications like instant messengers. Another distributed computing model we dis
cuss is grid computing, which uses unused computer power to solve complex prob
lems. We continue our presentation of Java distributed systems technologies, with 
discussions of servlets, JSP, Jini, JavaSpaces and JMX, and discuss Web services and 
how they improve interoperability in distributed systems. 
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18.2 Distributed File Systems 
Networked file systems allow clients to access resources stored on remote comput
ers as the combination of a server name and the path to the resource within that 
server. Distributed file systems, discussed in detail in this chapter, are special exam
ples of networked file systems that allow transparent access to remote files.1 They 
take the form of one global file system to which all machines in the system have 
access. This is achieved by allowing users to mount other file systems (see 
Chapter 13). Once a remote file system has been mounted, the user can access the 
files in it as if the files were local. This section addresses the key concepts of distrib
uted file systems and presents case studies on various key distributed file systems. 

A distributed file server can be either stateful or stateless. A stateful server main
tains state information about client requests—such as the file name, a pointer to the 
file and the current position in the file—so that subsequent access to the file is faster 
and easier. In a stateless system, the client must specify this state information in 
each request. There are benefits to both types of systems: fault tolerance is easier to 
implement in stateless systems, but stateful systems can reduce the size of request 
messages and hence offer better performance. Distributed file systems can be char
acterized by transparency, scalability, security, fault tolerance, and consistency. 

Distributed file systems provide complete file location transparency; the user sees 
the distributed file system as a single, global file system. For example, consider a 

Transparency 
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company with offices located in Boston and New York. If a user is in Boston, the 
system should allow the user to access files located in either Boston or New York. 
However, the physical location of the files is hidden from the user. To achieve high 
degrees of transparency, robust naming mechanisms are required.2 

Distributed file systems should also be scalable; allowing new computers to be 
added to the system easily. Designers of scalable distributed file systems must con
sider the size of the file system, file management, data duplication and concurrent 
user access. Other design issues, such as narrow bandwidth, could also limit scalabil
ity. Further, if any operations are restricted to a single machine, adding clients could 
make that machine a bottleneck.3 

Two key security concerns in distributed file systems are ensuring secure communi
cations and guaranteeing correct file-access permissions. Providing secure commu
nications can be done by encrypting file content. Ensuring correct file access 
permissions can be complex. In many operating systems, the kernel can determine 
what files a process has access to based on the identity of the process' user. How-
ever, in a distributed system, users may have different user identifications on differ
ent machines. This can allow users to access files that they should not and prevent 
users from accessing files that they are authorized to access.4 

Fault tolerance is more complex in distributed systems than in conventional sys
tems. When a machine crashes, the system should provide mechanisms to leave the 
file system in a stable and consistent state. For example, if a client requests a file and 
blocks while waiting for a server's response and the server then crashes, the client 
must have some way to guarantee that it will not wait indefinitely. Often, both the 
client and server will set a timer and abort a call after a timeout, but this introduces 
complications. What happens if a client sends a request and does not receive a 
response from the server? It could be that the server has crashed. It could also be 
that the server is slow or that its response was lost. In the latter case, if the client's 
request was idempotent, i.e., several calls to perform the same operation return the 
same result (such as when checking a bank balance), then the client can resend its 
request without introducing inconsistency into the system. However, if the client's 
request was not idempotent, such as when withdrawing money from a bant 
account, inconsistencies might arise.5 A well-designed distributed system makes 
sure that the same remote procedure calls are executed exactly once regardless of 
server failures. 

High availability is closely related to fault tolerance. In a fault-tolerant sys-
tem, the failure of a component causes no down time; a backup component immedi-

Fault Tolerance 

Security 

Scalabitity 
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ately takes the place of the failed component and users will not be aware that a 
failure occurred. In a high-availability system, the failure of a component causes 
minimal down time. In such systems, often the backup components are used during 
normal execution for better performance.6 

18.2 Distributed File Systems 819 

Consistency is another concern for the designers of distributed systems. Many dis
tributed systems implement client caching to avoid the overhead of multiple RPCs. 
In such cases, clients will keep a local copy of a file and flush it to the server from 
:ime to time. Because there are multiple copies of the same file, files can become 
inconsistent. To avoid inconsistencies, each client must invalidate its copy of the file 
against the copy on the server. The client checks the timestamp of the copy of the 
file on the server, ff it has been updated since the client last copied the file, then the 
client must download the latest version. If the file has not been updated since the 
client copied it, then the client can work on its cached copy. Invalidation guarantees 
that each client will have the same view of the file, but it can lead to inefficiency if it 
results in the overwriting of work performed by the client. To reduce file access 
times, sometimes clients will also cache information about files, such as creation or 
modification dates and location.7 

Servers can guarantee consistency by issuing locks to clients, giving them 
exclusive access to a file. When another client needs to access the file, that client 
must wait for the client that owns the lock to release it. The server still has ultimate 
control over the file and can revoke the lock if necessary. In fact, most servers lease 
locks and automatically revoke them when the leases expire. If a user still requires a 
lock, the user must renew the lease before it expires. In some cases, a server may 
even delegate complete control over the file to the client for a brief period of time. 
In this situation, other clients must request file access from that client instead of 
from the server, thereby reducing the load on the server.8 

Designing a distributed file system involves trade-offs. One means of imple
menting fault tolerance is replication. But replication requires more components 
and introduces the problem of consistency. To ensure consistency, systems can 
employ client invalidation and file locks. But these increase complexity and, in 
some cases, restrict scalability; and these mechanisms can reduce performance. 

Consistency 

1. Why is fault tolerance difficult to implement in stateful systems? 
2. What problem is raised by client caching? 

Ans: 1) In stateful systems, if the server crashes, it must reconstruct the state information of 
each client when it restarts. The state information after the server restarts must be consistent 
with the state information before the crash. 2) Client caching may cause file inconsistency 
because multiple copies of a file may be distributed to multiple clients, enabling them to mod
ify the same file at the same time. 

Self Review 
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Sun Microsystem's Network File System (NFS), the current de facto standard for 
network file sharing, is supported natively in most varieties of UNIX and with client 
and server software available for other common platforms. NFS was originally 
designed around TCP/IP, so it has been easily adapted to link file systems across the 
Internet and other wide area networks.9 

The original version of NFS was released by Sun in 1984 and licensed free to 
the industry. NFS was revised in 1985 to version 2, which became integrated into 
various operating systems. In 1989 NFS-2 became the first version of NFS to be 
standardized by the Internet Engineering Task Force (IETF), becoming an Internet 
protocol.10 NFS was revised again with the release of version 3 in 1995.11 

Figure 18.1 illustrates how NFS works. Before an NFS client can access a 
remote file, it must use the mount protocol—a mechanism that translates a file path 
name to a file handle—to mount the directory that holds the remote file. A file han
dle identifies a remote file by its type, location and access permissions. Mounting 
involves mapping a remote file directory to a client's local directory. To mount the 
file system, the NFS client makes an RPC (the mount request, which contains the 
file path of the remote file to be mounted) to the client stub. Upon receiving the 
mount request, the server skeleton passes the call to the NFS server. The NFS 
server looks up its local file system and exports the local file directory that satisfies 
the client request, which means the server makes the local directory of files avail
able to the remote client. The server skeleton then returns a file handle of the 
exported local file directory, which allows the client to access the exported file 
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directory remotely. The remote client uses this file handle in all subsequent requests 
to files in the exported file directory. 

NFS-2 and NFS-3 assume a stateless server implementation, which makes 
fault tolerance easier to implement. If a stateless server crashes, the client can sim
ply retry until the server responds. The NFS-2 and NFS-3 permission checks simply 
rely on the authentication information from RPC, which determines whether the 
client can access certain information and functions. NFS-2 uses UDP as its transfer 
protocol, since UDP performs well over local area networks. TCP becomes the pro
tocol of choice on error-prone, high-latency and wide-area networks. Both NFS-2 
and NFS-3 support TCP; NFS-3 optimizes its use by allowing transfers of large 
streams of data. Neither version 2 nor version 3 defines a caching policy to guaran
tee the consistency of the server and client copies of the file.12 

Although NFS-2 and NFS-3 are structurally similar, NFS-3 introduces several 
key differences. First, it supports larger files—file sizes can be stored in 64 bits, 
while NFS-2 supports only 32-bit file sizes. Second, NFS-3 supports safe asynchro
nous writes, which allow a server to continue executing before a write has been 
completed. Finally, NFS-3 removes the 8KB limit defined by NFS-2 for any single 
request or reply.13 This limit was chosen as a reasonable upper bound for the size of 
UDP packets being transferred over local area Ethernet. 

Following the release of NFS-3, Sun enhanced NFS with a service called Web-
NFS, which allows NFS clients to access WebNFS-enabled servers with a minimum 
of protocol overhead. WebNFS is specifically designed to take advantage of NFS-3's 
use of TCP to support efficient file operations over the Internet. 

Many features provided by WebNFS have been integrated into version 4 of 
NFS, which entered development in 1999 as an IETF proposal. NFS version 4 main
tains most of the features of prior versions of NFS and provides efficient operation 
over wide area networks, strong security implementation, stronger interoperability 
and client caching.14 

Like its predecessors, NFS-4 uses RPCs to communicate between client and 
server. NFS-4 offers a new feature, allowing multiple related RPCs to be packaged 
together into one request. This limits network traffic and increases performance. 
Also, NFS-4 is stateful, which allows faster access to files. With earlier versions of 
NFS, the client used the mount protocol to receive the file handle. In NFS-4, the cli
ent obtains the file handle without the mount protocol. The client gets a file handle 
referring to the root of the file system on the server, then traverses the file system to 
locate the requested file. By removing the mount protocol, the client does not need 
to mount the different file systems of a server separately.15 

NFS-4 extends the client-caching scheme through delegation, whereby the 
server temporarily transfers control of a file to a client. When the server grants a 
read delegation, no other clients can write to that particular file but they can read 
from it. When the server grants a write delegation, then no other clients can read 
from or write to that particular file. If another client requests write access to a file 
with the read or write delegation, or the client requests read access to the file with 
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write delegation, the server will revoke the delegation and request that the original 
client flush the file to disk.16 

As discussed earlier, the only security provided by previous versions of NFS 
was weak authentication from RPC. The developers of NFS-4 were able to take 
advantage of new RPC security which also supports several cryptographic algo
rithms which are used when NFS-4 sets up communication sessions and encrypts 
each RPC.17 

1. Does NFS-2 require stateful server implementation? What is the benefit of such a design? 
2. When an NFS-4 client owns the read delegation of a file, can other clients read or write to 

that file? 

Ans: 1) No, NFS-2 servers must be stateless. With a stateless server, it is easy to implement 
fault tolerance. 2) Other clients can read from, but not write to, the file. 
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Development of the Andrew File System (AFS), a scalable distributed file system, 
began in 1983 at Carnegie Mellon University. The goal was to provide a distributed 
file system that would grow to support a large user community while being secure. 
The designers hoped to exploit advances in workstation processing capabilities to 
facilitate scalability, efficiency and security. AFS is a global file system that appears 
as a branch of a traditional UNIX file system at each workstation, ft is based on the 
client-server model and relies on RPCs for communication. Andrew went through 
three major revisions: AFS-1, AFS-2 and AFS-3.18-19 

The entity that governs distributed file access in AFS is called Vice (Fig. 18.2). 
Vice processes run on distributed file servers and interact with a user-level process 
called Venus at each client. Venus interacts with the kernel's virtual file system 
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Figure 18.2 | AFS structure. 



(VFS), which provides the abstraction of a common file system at each client and is 
responsible for all distributed file operations. AFS obtains scalability from its cach
ing method. The local nonvolatile storage (disk) at each workstation serves prima
rily as a cache to the distributed file system. The data stored in nonvolatile storage is 
not lost when a machine loses power. When a user process tries to open a file, it 
makes a request to the VFS which consequently checks to see if the file is in the 
cache. If it is, the VFS simply accesses the file. If not, the VFS communicates 
through Venus to Vice, which retrieves the file from the correct server.20 

In AFS-1 and AFS-2, the cache was updated only at the file level—block 
updates were not possible. This guaranteed that users working locally on a file 
would not have to wait long for network access once the file was open. AFS-3 was 
also upgraded to support block-level caching, which allows large files to be manipu
lated by clients with small caches. 

In AFS-1, each time the VFS tried to open a cached file it would have Venus 
contact the server to make sure that the file was still valid. This generated many net
work calls, even when files had not been modified. In AFS-2 and AFS-3, the server 
becomes responsible for ensuring each client has the most up-to-date copy of its 
riles. Each server keeps track of the files that clients cached. Each time a client 
closes a file, Venus flushes it to Vice, so the server always keeps the most up-to-date 
copy of the files. When a file is flushed to Vice, the server performs a callback to cli
ents that have that file cached. When a client receives a callback, it knows that its 
cached version is no longer valid and requests the newest version from the server. 

In AFS-1 the server had one process listening on a dedicated port for connec
tion requests. Upon connection, this process would fork another process to handle 
the Vice functions for the duration of the client's session. Because processes on dif
ferent machines cannot share main memory, all shared data had to be written to the 
server's local file system. Furthermore, servers suffered performance problems due 
to the time associated with the context switches that were required to service differ
ent clients. In AFS-2 and AFS-3 there is one dedicated process that services all cli
ent requests. This process spawns a separate thread for each client and allows all 
state information to be loaded into virtual memory. Because the state information 
tends to be small for each client, it can generally be held in main memory. This elim-
inates context switches and allows interthread communication through shared 
memory. The RPC mechanism is incorporated into the thread package to further 
improve performance.21 

The overall AFS structure also changed with each revision. In AFS-1 different 
subtrees were divided among different servers, which were known as the custodi
ans. Each server also had a directory that would allow Vice to direct requests for 
different subtrees to different servers. Venus located resources based on pathname. 
This had several drawbacks—resolving an entire path could generate multiple calls 
to Vice and could span multiple custodians. AFS-2 introduced volumes to manage 
subtrees. Volumes are primarily of administrative value, allowing replication and 
isolation of certain subtrees, and are transparent to users. Generally each user is 
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assigned a volume. Making the idea of volumes concrete also allowed the imple
mentation of file identifiers (fids) in Venus. A fid specifies a volume, an index within 
a volume and an identifier to guarantee object uniqueness within a volume. The 
AFS-2 implementation of Venus resolved filenames in this manner, which simpli
fied file lookups and allowed the renaming of directories. Each server had a direc
tory to allow it to find volumes on any other server. AFS-3 was designed to be a 
large distributed file system. In fact, one continuous AFS-3-based namespace 
spanned multiple geographically distant universities in the United States. Obvi-
ously, there cannot be centralized administration of such a file system as each uni
versity typically has its own managerial requirements. Therefore, AFS-3 introduced 
cells, which preserve namespace continuity while allowing different systems admin
istrators to oversee each cell.22, 23 

The security of AFS is much stronger than that of earlier versions of NFS, par
tially due to the underlying RPC structure. Because AFS is designed to grow to ser
vice many computers, its designers decided that it would not be safe to trust the 
network or any client. Therefore, every RPC is encrypted and must be authenti
cated. In AFS-1 and AFS-2 the permissions of a given user are related to the per
missions of each group to which the user belongs. In AFS-3 permissions must be 
specified individually. Upon system login, users must specify a password. Vice sends 
the encrypted password to an authentication server, which responds with tokene. 
Secure RPCs use these tokens to provide secure communication. File access is gov-
erned by access control lists (ACLs). Section 19.4.3, Access Control Mechanisms, 
discusses ACL in detail. Each user is allowed to perform certain operations on cer
tain files. Authentication is guaranteed by matching the credentials on each token to 
the permitted operations in the ACL.24 

AFS is scalable, indeed able to service thousands of computers, but it has one large 
drawback—it is not fault tolerant. The crash of one server or disruption of network 
service can render hundreds of computers inoperable. To deal with this, the design
ers of AFS began research on Coda in 1987.25 

Coda is derived from AFS-2. As in AFS-2, Coda uses local nonvolatile storage 
(e.g., disks) as file caches, and Vice uses callbacks to keep clients up to date. Vol
umes are the basic division in the file system and Coda performs file lookups in the 
same way as AFS-2. The goal of fault tolerance led to the addition and modification 
of several of AFS's features, including the idea of a volume.26 

In Coda, volumes are logical pieces of the file system and are replicated phys
ically across multiple file servers. Servers that hold the same volume are known as a 
volume storage group (VSG). Although the multiple servers are transparent to 
users, the Venus process on each client periodically probes the VSGs of each of its 
volumes. The members of the VSG with which the client can connect and communi
cate are known collectively as the client's available volume storage group (AVSG) 
(Fig. 18.3). Coda uses AVSGs to implement fault tolerance.27 

18.2.4 Coda File System 
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Figure 18.3 | Coda volume structure. 

When a client process tries to read a file, its request is directed to the local 
VFS. If the file is in cache, then the read continues as in AFS-2. Otherwise, Venus 
contacts a member of the AVSG known as the preferred server (PS). Venus down
loads a copy of the file from the PS and downloads file version information from 
each member in the AVSG. If the versions on each server agree, then the client is 
allowed to use the file. If the versions from different servers do not agree, then the 
calling process aborts and the outdated copies are updated. After the members of 
the AVSG have been updated, the requesting client downloads a copy of the file. 
Note that if the PS or any member of the AVSG crashes, the client can still operate, 
whereas in AFS-2 the client would be stuck.28 

Upon closing a file, Coda clients write a copy of the file to each member of the 
AVSG The write occurs in two steps using the Coda Optimistic Protocol. The first 

step, COP1, writes the file as we have discussed. The second step, COP2 writes an 
update set, which specifies the members of the AVSG that have successfully per
formed the COP1, to each of the members of the AVSG. If any of the members are 
not in the update set, it is assumed that they have not updated (even if they have 
and their reply was lost) and this is noted to remind the system to update them the 
next time communication is established. To decrease write delays, COP2 messages 
are performed asynchronously and are appended on future COPf messages. If 
other clients have a copy of the file in cache, then servers will have to perform 
callbacks.29 

These operations will provide a consistent view of a file within an AVSG. 
When a file is opened, it will be the same as the last copy that was written to Coda. 
However, Coda's replication scheme is optimistic, which means it assumes that files 
in different AVSGs are consistent and it allows clients to access and modify such 
files. This guarantees that files will always be available, but it might lead to inconsis-
tencies and the loss of work. 



We now discuss Coda's replication scheme and potential consistency issues. 
Consider a VSG and two clients whose AVSGs are mutually exclusive (Fig. 18.4). It 
is possible for each client to download, modify and upload the same copy of a file to 
its AVSG. Now the view of that file within the VSG will not be consistent. 

Coda provides some mechanisms to fix inconsistencies. If the file in conflict is 
a directory, the Coda servers deal with the problem. Each member of the VSG 
locks the volume that holds the document and one is designated the leader. Logs of 
the transactions of each server are sent to the leader, which combines the logs and 
redistributes them. Based on the logs, each server updates its view of the directory. 
Finally, the volumes are unlocked. 

When Coda clients are connected to Coda, they enter a stage called the 
hoarding stage, where they prepare for a possible disconnection from the system by 
caching any requested files. When the client becomes disconnected, it enters the 
emulation stage, during which all file read requests are serviced from the cache. The 
files could be stale, but the system is still operable. If the user tries to access a file 
that is not in cache, the system reports an error. Writes during the emulation stage 
occur in two steps. First, the file is updated on disk. Second, the client modifkation 
log (CML) is updated to reflect file changes. Venus modifies the CML so that when 
a log entry is undone by a later entry, the earlier log entry is removed. The CML 
also facilitates updates during the reintegration stage. Reintegration occurs imme-
diately after the client reconnects to the system when Venus asynchronously 
updates the server using the CML.30 

A client may become disconnected for several reasons: All of the servers in a 
VSG could crash, a network connection could be faulty or the user could intention
ally disconnect from the network. Coda handles each of these cases in the same 
way, and the transition between connected and disconnected states is transparent. 
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This makes Coda particularly attractive for the growing number of mobile comput
ers, and it is one of the primary reasons that Coda is still undergoing improvement. 

1. In Coda, if client A and client B belong to the same AVSG, does it imply that they belong 
to the same VSG? If client A and client B belong to the same VSG, does it imply that they 
belong to the same AVSG? 

2. What is the problem with Coda's replication scheme? 

Ans: 1) If client A and client B belong to the same AVSG, then they belong to the same 
VSG. If client A and client B belong to the same VSG, then they may not belong to the same 
AVSG. 2) Coda's replication scheme provides a consistent view of a file within an AVSG but 
does not guarantee consistency within the VSG. Coda's replication scheme assumes that files 
in different AVSGs are consistent and allows clients to access and modify such files within 
different AVSGs, which causes inconsistency within the VSG. 

Self Review 
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In Chapter 17, we overviewed the Sprite operating system. This section focus on the 
Sprite file system. A primary goal for the Sprite file system was transparency. 
Sprite's developers attained a better level of transparency than that offered by NFS, 
AFS or Coda. A second goal was to implement complete consistency.31 

The Sprite file system has the perceived form of a UNIX file system. Unlike 
NTS or Coda, however, it gives every client the exact same view of the hierarchy. 
The Sprite file system also goes one step further in UNIX file system emulation by 
allowing transparent remote access to I/O devices (which are represented as files in 
UNIX). Although hidden from the user, the Sprite file system is divided into 
domains. Each domain represents a piece of the global file hierarchy and is stored 
at one server (Fig. 18.5). Except for the domain at the top of the global file hierar
chy, the root of one domain is the deepest child of another.32 

18.2.5 Sprite File System 

Figure 18.5 | Sprite file system domains. 



The kernel of each client keeps a private copy of a prefix table, which stores 
domain information to aid in file lookups (Fig. 18.5). Each entry in the table repre
sents a separate domain and consists of the absolute path to the root directory 
within the domain, the server that houses the domain and a token that identifies the 
domain. To look up a file, a client takes an absolute pathname and locates the long
est matching prefix within the prefix table. If no such prefix can be found, the client 
broadcasts a request to every server. The server that houses the domain that 
matches the path responds with information to populate the client's prefix table, 
and the client continues. The client then removes the matched prefix from the name 
and sends what is left to the indicated server along with the domain identification 
token. The server resolves the name within the specified domain and returns a 
token pointing to the requested file. If the resolution cannot be completed because 
the path spans multiple domains, the server returns the pathname of the new 
domain and the client repeats the process. Sprite processes that access files keep the 
server address and token identifying the domain of the working directory as part of 
their state. Processes that access files via relative paths provide this state informa
tion in addition to the relative path to allow servers to resolve the entire path.33 

In Sprite, both the client and the server keep a cache in main memory. To 
open a file, the client first checks its cache. If the file is not in the client's cache, the 
client then makes a request to its backing store (which is generally a server). If the 
server is unable to satisfy the request from its cache, it reads the data in from disk 
(Fig. 18.6, step a). The server then stores the data in its cache and passes the data t< 
the client. The client retains a copy of the data in its cache as well (Fig. 18.6, step b). 
When a client writes a block, it writes into its cache. Sprite flushes updated pages to 
the server every 30 seconds though the cache management algorithm may choose to 
flush the page sooner. The page will then remain in the server's cache for 30 seconds 
before it is flushed to disk (Fig. 18.6, step c). 

The lazy write-back strategy was chosen to trade an increase in performance 
for a decrease in fault tolerance. As in UNIX systems, modified pages in a cache will 
be lost during a crash if they have not been flushed to the server.34 

Sprite's complete consistency is achieved by its caching protocols. The clients 
may have inconsistent versions of a file if two or more clients have a copy of the file 
in cache and at least one client is modifying its copy. This can be divided into two 
cases: sequential write-sharing and concurrent write-sharing. Sequential write-shar-
ing occurs when one client modifies a file then another client tries to read or write 
its own cached copy of the file. To guarantee the highest level of consistency, before 
a client opens a file it contacts the server and requests the version of that file. If the 
file on the server is newer than the cached version, the client removes the file from 
cache and downloads the version from the server. To ensure that delayed write
backs do not hinder this algorithm, the server keeps track of the last client that 
writes a file. On receiving a read request, the server forces the last client that modi
fies the file to flush all modified pages to disk immediately, before servicing the 
request. Concurrent write-sharing occurs when two clients modify cached copies of 
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the same file at the same time. To ensure consistency, Sprite disables caching of that 
file for all clients. Reads and writes are sent directly to the server, and the state of 
the file therefore appears the same to all clients. 

Note that although each client will have a consistent view of the file, there could 
be synchronization issues associated with this algorithm. Sprite provides locking sys
tem calls for applications that cause the inconsistency. This solution also hinders file 
system performance. The developers of Sprite justified their implementation by 
observing that concurrent write-sharing is rare.35 

Cache (in main memory) and virtual memory contend for the same system 
resources in Sprite—physical memory. Whereas devoting a large portion of physical 
memory to the virtual memory system increases processing efficiency, devoting a 
large portion to cache increases network and file system efficiency. Furthermore, 
some applications rely heavily on virtual memory while others rely on the file sys
tem. Sprite allows its cache size to vary dynamically to deal with these issues. Physi
cal memory pages are divided into two sets, a set for cache and a set for virtual 
memory. The replacement algorithm for each set uses the age of the pages as a 
guideline for removal when new pages must be swapped in. The set that has the 
older page loses that page to the set that is swapping in a new page. For example, 
consider the situation where 16 pages of physical memory are devoted to cache, 16 
pages are devoted to virtual memory and one of the virtual memory's pages is the 

Figure 18.6 | Reading and writing in the Sprite file system. 



oldest of all 32 pages. If a process tries to bring a page into cache, the oldest virtual 
memory page is removed and the cache is then allocated 17 total pages. 

This introduces a subtle point of inefficiency. What happens if a page is in both 
virtual memory and cache? Clearly the system is wasting space. To avoid this, vir
tual memory writes directly to the server when updating files. 

We have seen that Sprite is more concerned with performance than with fault 
tolerance. This point is strengthened when considering how Sprite deals with server 
crashes. Sprite does not use replication servers. Instead, in the hope that crashes 
would be infrequent, Sprite's designers implemented a server that would recover 
quickly from crashes. To do this they placed the burden of state control on the cli
ents, using a log-structured file system with checkpointing on the server (as dis
cussed in Section 13.10.2). The motivation for log-based file system was to improve 
I/O performance. When clients realize that a server has crashed, they wait until it 
reboots and then send it information about its files that they have cached. The 
server uses this information to rebuild its state.36 

1. How is complete consistency achieved in sequential write-sharing? 
2. What problem might result from placing the burden of state control on the clients? Pro-

pose a solution to this problem. 

Ans: 1) Sequential write-sharing occurs when one client modifies a file and then another ch-
ent tries to read or write its own cached copy of the file. Before a client opens a file, it con
tacts the server and requests the version of that file. If the file on the server is newer than the 
cached version, the client removes the file from cache and downloads the version from the 
server. To ensure complete consistency, the server keeps track of the last client that writes a 
file. On receiving a read request, the server forces the last client that modifies the file to flush 
all modified pages to disk immediately, before servicing the request. 2) All of the clients will 
bombard the server with information when it reboots, possibly swamping the network. 
Sprite's developers built a negative acknowledgement into their implementation.This allows 
the server to tell the client that it is busy now, but has not crashed and to come back later. 

Self Review 
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As discussed in Chapter 15, multiprocessing is the use of multiple processors to exe
cute separate portions of a computation in parallel. Several classes of machines are 
generally referred to as multiprocessors, but the most popular are machines that 
have similar or identical processors and that share a common memory. In contrast, 
multicomputer systems do not share a common memory or bus (although they may 
share a virtual memory). Each processing unit has access to its own resources. These 
independent units are connected in a network to operate cooperatively to form a 
multicomputer system. Multicomputer systems can be either homogenous or heter
ogeneous. A homogeneous multicomputer system consists of computers that have 
the same hardware, run the same operating systems and communicate across the 
same network architectures. A heterogeneous multicomputer system consists of 
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computers that may have different hardware, run different operating systems and 
communicate across different network architectures.37 

Modern supercomputers are massively parallel processing (MPP) machines 
capable of hundreds of gigaflops or even teraflops. A flop is a floating point opera
tion per second.38 Currently under construction at Los Alamos is the supercom
puter Q which will top 100 teraflops. It will be used by scientists to simulate the 
effects of aging on America's nuclear arsenal, using three-dimensional models of 
explosions.39 Los Alamos scientists are also working on a low-end supercomputer 
called Green Destiny built from off-the-shelf components. Green Destiny provides 
160 gigaflops of computing power using 100Base-T Ethernet and 240 667-mega-
hertz Transmeta Corp. processors.40 Green Destiny is a multicomputer system. 

Another method of implementing a multicomputer system is with grid com
puting which uses middleware that can run like an application on a general-purpose 
computer. Distributed.net pioneered academic distributed computing over the 
Internet by having users download an application which performed operations on 
their own computers.41 Today there is also SETI@Home, which uses volunteers' 
computers to process data collected by the Search for Extraterrestrial Intelligence 
project. Intel, United Devices, and the American Cancer Society have created a 
screensaver software that performs calculations to aid in pharmaceutical research.42 

Companies such as United Devices are developing software and hardware pack
ages to create enterprise computer grids which will allow organizations to leverage 
unused processor cycles on their networks to handle computer-intensive tasks. We 
discuss such grid computing in Section 18.6, Grid Computing. 

Distributed processing makes large computations feasible. However, this 
power comes at the cost of simplicity. Just as in uniprocessing environments, distrib
uted processing must take into account synchronization, mutual exclusion and 
deadlock. Networking and the lack of shared memory make managing such issues 
more complex. 
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1. Distinguish multiprocessing and multicomputer systems. 
2. What makes distributed processing difficult to implement? 

Ans: 1) With multiprocessing, processors share a common memory. Multicomputer systems 
do not share a common memory—each processing unit has access to its own resources. 2) Dis
tributed processing must take into account synchronization, mutual exclusion and deadlock. 
Networking and the lack of shared memory make managing such issues more complex. 

Self Review 

Recall that in a distributed system, several computers handle user requests simulta
neously. Each computer processes user requests independently. However, the dis-
tributed system must handle communication delays introduced by its underlying 
networks. Multiprocessing fixes the communication delays by allocating many pro-
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cessors for one computer, making the communications among processes easier and 
faster. Yet, multiprocessing has its own disadvantages: high cost/performance ratio, 
limited scalability and not all types of applications running on a system benefit from 
multiprocessing.43 

Clustering—interconnecting nodes (single-processor computers or multiproces-
sor computers) within a high-speed LAN to function as a single parallel computer— is 
architecturally intermediate between distributed computing and multiprocessing. The 
set of nodes that forms the single parallel machine is called a cluster. Clustering 
enables multiple computers to work together to solve large and complex problems.44 
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1. What is clustering? 
2. Why would clustering be employed? 

Ans: 1) Clustering interconnects nodes within a high-speed LAN to function as a single 
parallel computer. 2) Clustering takes advantage of multiprocessing and distributed systems 
while eliminating the communication delays associated with fully distributed systems, provid-
ing a powerful computer that is capable of solving large and complex problems. 
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There are three major types of clusters. In a high-performance cluster, all of the 
nodes in the cluster are used to perform work. In a high-availability cluster, some of 
the nodes perform work while others serve as backups. If working nodes or their 
components fail, the backup nodes start running and take over the jobs that were 
being executed on the failed nodes immediately without interrupting service. In a 
load-balancing cluster, a particular node works as a load balancer to distribute the 
load (such as thousands of requests from the clients) to a set of nodes so that all 
hardware is efficiently utilized.45 

High-performance clusters are used for solving large-scale computations that 
can be divided into smaller problems to be solved in parallel. High-availability clus-
ters are used for mission-critical applications in which failure must be avoided. 
Load-balancing clusters benefit organizations that handle large volumes of user 
requests. For example, high-performance clusters are useful for analyzing images 
from Magnetic Resource Imaging (MRI) scanners, while high-availability clusters 
are crucial in aircraft control systems and load-balancing clusters are usually used in 
e-business applications with high user volumes. 

1. Does a high-availability cluster require that its nodes be working all the time? 
2. Argue why a cluster for a particular type of application should have the attributes of all 

three types of clusters. Consider a search engine being used for an application where lives 
could be at stake, such as locating organs for transplant. 

Ans: 1) No. High-availability clusters require that only some of their nodes be working 
while others act as backups. 2) The cluster should be high performance, because billions of 
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Web pages would have to be searched in a fraction of a second. It should be high availability 
to ensure that it is always ready to operate when needed, especially in an emergency. It 
should be load balancing to spread the load in peak periods, ensuring that individual requests 
are not delayed. 

There are several benefits associated with clustering. It economically interconnects 
relatively inexpensive components. This reduces the cost for building a clustered sys
tem compared to a single parallel computer with the same capability.46 High perfor
mance is another advantage of clustering. Each node in the clustering system shares 
the workload. Communications among nodes in the cluster are faster than those in 
unclustered distributed computing systems due to the high-speed LAN between 
nodes.47 Clustering can also provide replication of resources across the nodes, so that 
the failure of any one computer will not affect the availability of the system's 
resources. If a service on one node is down, other nodes that provide the same service 
in the cluster can still function and take over the tasks performed by the failed com
ponent.48 Clustering inherits the scalability of distributed systems. A cluster is able to 
add or remove nodes (or the components of nodes) to adjust its capabilities without 
affecting the existing nodes in the cluster. Clustering provides better scalability than 
multiprocessing. For example, the HP 9000 Superdome can have up to 64 processors, 
while the HP XC clusters can scale up to 512 processors.49'50 Clustering achieves reli
ability and fault tolerance by providing backups for the services and resources. When 
failure occurs in one running service, the cluster immediately switches the process to 
the backup service without affecting the performance and capacity of the system, pro
viding uninterrupted service.51 

1. Why is communication among nodes in a cluster faster than among nodes in an unclus-
tered distributed computing system? 

2. How does clustering implement fault tolerance? 

Ans: 1) The reason is that a high-speed local area network is generally faster than the wide 
area networks used in distributed systems. 2) Clustering provides backups for services and 
resources. 

18.4.2 Clustering Benefits 
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In this section, we consider how clustering is implemented in Linux and Windows. 
Many Linux clustering solutions are available, the best known being Beowulf, a 
nigh-performance cluster.52 In 1994, the NASA Earth and Space Sciences (ESS) 
project built the first Beowulf cluster to provide parallel computing to address 
large-scale problems involved in ESS applications. Figure 18.7 shows a typical 
Beowulf cluster. A Beowulf cluster may contain up to several hundred nodes. Theo
retically, all nodes have Linux installed as their operating system and they are inter
connected with high-speed Ethernet (often with a bandwidth of 100 Mbps). Each 
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Figure 18.7 | Typical Beowulf cluster. 

Beowulf cluster has a head node (also called a master node) that acts as a server to 
distribute the work load, control access to the cluster and handle the shared 
resources. All other nodes in the cluster are often called slave nodes. The head node 
usually has a monitor and keyboard, while slave nodes do not. All slave nodes 
should be configured with the same processor, memory and disk space so that all 
nodes can complete the same job at approximately the same time. Usually, all the 
nodes in the cluster are connected within a single room to form a supercomputer.53 

Windows Server 2003 can be used to build both high-availability clusters and 
load-balancing clusters. A high-availability cluster built with Windows Server 2003 
can have at most eight nodes. All its nodes may share a storage device (Fig. 18.8) or 
each node may have a local storage, in which case the backup node must keep the 
exact same data (Fig. 18.9). Unlike the Beowulf cluster, the nodes in the high-avail
ability Windows cluster can be connected either in a LAN or a WAN. In the case of 
shared storage, only one node is running at a time and that node has the control of 
the shared storage. When the running node fails, a backup node takes over control 
of the shared storage. However, if the shared storage breaks down, the entire clus-

Figure 18.8 | High-availability cluster with shared storage. 
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Figure 18.9 | High-availability cluster with local storage. 

ter cannot keep running. When each node has its own storage, more than half of the 
cluster nodes must be active at all times so that when one or more nodes fail, other 
nodes can continue work effectively. For example, if the cluster has eight nodes, at 
least five of them must be active and ready to function.54 

A load-balancing cluster built with Windows Server 2003 can have at most 32 
nodes (Fig. 18.10). The cluster does not require sharing storage, because each node 
can do its job independently. If one node fails, the remaining nodes in the cluster 
are still capable of handling user requests. Scalability is achieved with the load-bal-
ancing cluster, because it is easy to add or remove a node from the cluster. Usually 
the nodes in the load-balancing cluster are interconnected with high-speed Ether
net.55 

1. List three characteristics that make Beowulf clusters high-performance. 
2. What problem does the high-availability cluster with shared storage have? 
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Figure 18.10 | Load-balancing cluster with 32 nodes. 



Ans: 1) All nodes in the Beowulf cluster are interconnected with high-speed Ethernet 
(often with a bandwidth of 100 Mbps). All nodes can complete the same job approximately at 
the same time. All nodes work together in parallel to improve performance. 2) All nodes 
depend on the shared storage. If the shared storage fails, the entire cluster fails. 

In a peer-to-peer (P2P) application, each peer—a single computer in the P2P sys
tem—performs both client and server functions. Such applications distribute pro
cessing responsibilities and information to many computers, thus reclaiming 
otherwise wasted computing power and storage space and eliminating many central 
points of failure. In the next several subsections we introduce the fundamental con
cepts of peer-to-peer applications. 
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Many network applications operate on the principle that computers should be seg
regated by function. Some computers, such as servers, offer common stores of pro
grams and data. Other computers, such as clients, access the data provided by the 
servers. Using a search engine from a Web browser is an example of a client/server 
application. Clients send queries to servers, which access various databases and 
respond with the requested information. 

P2P applications are different from client/server applications because all com
puters in the network act as both clients and servers. Each peer has the ability to 
discover and communicate with other peers and may share resources (such as large 
multimedia files) with others. P2P applications are similar to the telephone sys
tem—a single user can both send and receive information.56 

18.5.1 Client/Server and Peer-to-Peer Applications 

1. How do client/server applications work? 
2. List the advantages of peer-to-peer applications over client/server applications. 

Ans: 1) In a client/server application, the client sends requests to the server, and the server 
processes the client request, often accessing one or more databases, and sends the response 
back to the client. 2) It is easier to set up the network for a peer-to-peer application, and no 
network administrator is required. In a peer-to-peer application, if one peer fails, others can 
still function well. In a client/sever application, if the server fails, the entire application fails. 
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P2P applications can be implemented in two forms: centralized and decentralized.57 

A centralized P2P application uses a central server system that connects to each 
peer. Centralized P2P applications are similar to the client/server relationship. In a 

18.5.2 Centralized vs. Decentralized P2P Applications 



centralized instant messenging application (Fig. 18.11), when peer 1 wants to talk to 
peer 3, peer 1 must get the address of peer 3 from the server first. Then peer 1 com
municates with peer 3 directly. One major weakness of this centralized system is the 
dependency on the server. If one or more central servers fail, the entire network 
could fail. The server's capabilities limit the application's overall performance. For 
instance, Web sites can fail when malicious users overload the Web server(s) with an 
excessive number of requests. However, centralized architectures also have advan
tages, such as simplifying management tasks (e.g., monitoring user access by provid-
ing single points of network control). 

A pure P2P application, also called a decentralized P2P application, does not 
have a server and therefore does not suffer from the same deficiencies as applica
tions that depend on servers. In a pure P2P instant messenger application 
(Fig. 18.12), when peer 1 wants to send a message to peer 3, peer 1 no longer needs 
to communicate with the server. Instead, peer1 discovers peer3 via distributed 
search mechanisms and sends messages to peer3 directly. If a peer in a well-
designed, pure P2P system fails, all other peers continue to function, so such sys
tems are particularly fault tolerant. 

Peer-to-peer applications have disadvantages as well. Anyone with the appro
priate software can join the network of peers and often remain anonymous, so 
determining who is on the network at any moment is difficult. Also, the lack of a 
server hinders the protection of copyright and intellectual-property rights. Real
time searches can be slow and increase network traffic, as queries propagate 
throughout the network.58 Figure 18.13 lists some common peer-to-peer applica
tions. 
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Figure 18.11 | Centralized P2P instant-messenging application. 



838 Distributed Systems and Web Services 

Figure 18.12 | Pure P2P instant-messenging application. 

Distributed 
Application Description 
Gnutella 

KaZaA 

Groove 

Freenet 

Instant 
messenging 

A P2P technology used to share documents on the Internet. Gnutella 
does not use any servers. There is no authentication, and peers search for 
files via a distributed search mechanism.59 (Section 18.5.3, Peer Discovery 
and Searching, overviews this mechanism.) 
A file sharing application that is a hybrid between Gnutella and central
ized applications. A server authenticates all users. Certain peers serve as 
search hubs, which catalog the files of peers connected to them. 
Searches are distributed to each search hub, which then responds with 
results that allow direct connections for file transfers.60 

A P2P system that allows users to communicate, collaborate and share 
documents on the Internet and intranet. Groove provides secure commu
nication because users are authenticated and private data is not shared 
with third parties.61 

Decentralized P2P technology that allows users to share documents on 
the Internet without fear of censorship. Freenet does not have a central 
server to govern access. Instead, access to Freenet is anonymous. Docu
ments stored in Freenet are encrypted to improve protection.62 

P2P application that enables users to send short text messages and files 
to one another. Most instant messengers use servers that authenticate all 
users and route messages between peers. 

Figure 18.13 | Common P2P applications. 

Pure peer-to-peer applications are completely decentralized. Some file shar
ing applications are not pure peer-to-peer, because they use servers to authenticate 
users and index each peer's shared files. However, peers connect directly to one 



another to transfer files. In such a system, centralization improves search perfor
mance but makes the network dependent on a server. Performing file transfers 
between peers decreases the load on the server. 

1. What are the advantages of centralized P2P applications? 
2. What is a benefit of a decentralized P2P application over a centralized one? 

Ans: 1) Centralized P2P applications simplify management tasks, such as monitoring user 
access by providing single points of network control. 2) Centralized P2P applications rely on 
a server for certain operations. If the server fails, those operations will be unavailable. 

Self Review 

18.5.3 Peer Discovery and Searching 
Peer discovery is the act of finding peers in a P2P application. Pure P2P applications 
often suffer slow peer discovery and information searching due to the lack of a 
server. There is no general solution to peer discovery. Gnutella presents one 
approach for circumventing these problems. Gnutella is a pure peer-to-peer tech
nology that enables distributed information storage and retrieval. Users can search 
for and download files from any peer on the network. Users first join a Gnutella 
network by specifying the network address of a known Gnutella peer. Without 
knowing at least one peer on the network, a user cannot join the network. Each 
user's Gnutella software functions as a server and uses the HTTP protocol to search 
for and transfer files.63 

To perform a search, a peer sends search criteria to the peers connected to it. 
Those peers then propagate the search throughout the network of peers. If a partic
ular peer can satisfy the search, that peer passes this information back to the origi
nator. The originator then connects directly to the target peer and downloads the 
information. The peer that made the original query can identify itself only when it 
connects directly to the peer with the requested file to begin file transfer. 

In the Gnutella network, a peer forwards a search request to all of its directly 
connected peers in parallel. For example, if P1 receives a request from the user, P1 

forwards the search request to all its directly connected peers first. These peers then 
work in parallel; each one tries to fulfill the search request and also forwards the 
request to its directly connected peers. 

In the Freenet P2P application, each peer forwards a search request to a single 
directly-connected peer at a time. For example, if P1 receives a request from the 
user, P1 forwards the search request to P2 which is one of its directly connected 
peers. If P2 cannot answer the request, it forwards the request to one of its directly 
connected peers. If all the nodes that P2 can reach cannot answer the request, P1 

then forwards the search request to another one of its directly connected peers.64 

Searches conducted in both Gnutella and Freenet are called distributed 
searches. Distributed searches make networks more robust by removing single 
points of failure, such as servers. Not only can peers find information in this way, but 
peers can search for other peers via distributed searches as well. 
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1. What are some of the problems with distributed searches? 
2. Compare Gnutella's distributed search mechanism to Freenets. 

Ans: 1) Distributed searches are costly, possibly generating enormous amounts of network 
traffic. If poorly implemented P2P systems proliferate, this could have serious ramifications 
on the performance of the entire Internet. Distributed searches do not guarantee to find the 
requested files. 2) Searches in Gnutella will reach close peers before reaching any more dis
tant peers. In Freenet, a search can reach a distant peer before all close peers have been 
searched. 
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Sun Microsystems, Inc., created Project JXTA (short for Juxtapose) in response to 
the growing popularity of peer-to-peer applications. Project JXTA strives to create 
a standard, low-level, platform and language-independent protocol that promotes 
interoperability among peer-to-peer applications. The current JXTA implementa
tion is written in Java, but developers can implement JXTA in any programming 
language. JXTA provides a foundation on which developers can build any type of 
P2P application. 

JXTA attempts to solve the following problems of peer-to-peer applications:65 

1. Security/authentication —Large peer-to-peer network applications, such as 
AOL Instant Messenger (AIM) and MSN Instant Messenger, use servers 
to bootstrap users onto the network.66 This bootstrapping ensures that the 
same person uses a particular online identity. 

2. Peer discovery—Without a server, it is complex to locate other peers on the 
network. 

3. Network incompatibility—Currently, each popular peer-to-peer applica
tion has a set of proprietary protocols that are incompatible with other 
peer-to-peer networks due to the lack of standards. For example, users on 
the AIM platform cannot communicate with MSN Instant Messenger users. 

4. Platform incompatibility—Software developers must rewrite the low-level 
core aspects of their peer-to-peer applications for each platform they wish 
to support. Wireless phones and other mobile devices usually have a lim
ited selection of P2P applications, if any. 

JXTA attempts to solve these problems by standardizing the low-level proto
cols that govern peer-to-peer applications. All JXTA-based P2P applications use 
identical low-level protocols, hence they are compatible with one another. 

Networks built with the JXTA protocols consist of three basic types of enti
ties—peers or peer groups, advertisements and pipes. A peer is any entity that uses 
JXTA protocols (Fig. 18.14) to communicate with other peers. Each peer need sup
port only some of the protocols, so devices with low processing power and memory 
can still participate in JXTA networks (albeit with limited functionality). Peer 
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Peer discovery 

Peer resolver 

Peer information 

Peer membership 

Pipe binding 

Endpoint routing 

Protocol Function 

Peers use this protocol to find other entities in the JXTA net
work by searching for advertisements. 
Peers that help a search process (e.g., send and process 
requests) implement this protocol. 

Peers obtain information about other peers via this protocol. 

Peers use this protocol to learn about the requirements of 
groups, how to apply for membership, how to modify their 
membership and how to quit a group. Authentication and 
security are implemented through this protocol. 

Peers can connect pipes to one another, via advertisements, 
through this protocol. 

Peer routers implement this protocol to provide other routing 
services to other peers (e.g., tunneling through a firewall). 

Figure 18.14 | JXTA low-level protocols.67 
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groups are logical constructs that represent sets of peers. JXTA specifies only two 
rules regarding peer groups: 

1. peers can join or leave groups, and 

2. the group administrator, if the group has one, controls access to the group. 

Advertisements are XML documents formatted according to JXTA specifications 
that are used by a peer to advertise itself and notify others of its existence. Pipes are 
virtual communication channels that connect two or more peers for sending and 
receiving messages among peers. At the simplest level, pipes are one-way communi-
cation channels. Two peers communicate by configuring two pipes that "flow" in 
opposite directions. When a source peer needs to send a message to a destination 

peer, a pipe is dynamically bound to the two peers. Once the pipe is set up, the 
source peer can send messages to the destination peer via the pipe. 

Examples of P2P applications that uses JXTA are: VistaPortal 
(www.vistaportal.com/), Momentum by InView Software (www.inviewsoft-
ware.com/news/20030305_momentuml.htm) and ifreestyle by Digital Dream 

(www.digitaldream.jp/en/) .6 8 

1. How do AOL Instant Messenger and MSN Instant Messenger bootstrap users onto the 
network? 

2. How do peers communicate in networks built with the JXTA protocol? 

Ans: 1) Both AOL Instant Messenger and MSN Instant Messenger use central servers to 
bootstrap users onto the network. 2) Peers use one-way communication channels called pipes 
to exchange messages. 
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A few decades ago, the number of computers was relatively small, their computing 
power was modest and they were expensive and heavily utilized. With the advent of 
the microprocessor, there are now hundreds of millions of inexpensive, relatively 
powerful computers in homes and businesses. However, a vast amount of comput
ing power is wasted (e.g., personal computers at home sit idle while people are at 
work, and work computers sit idle while people are at home). Grid computing links 
potentially vast numbers of computational resources (such as computers, storage 
devices and scientific instruments) that are distributed over a network to solve com
plex, massive, computation-intensive problems. 

As in other distributed systems, the resources in grid computing are distrib
uted, and users can access them transparently. While clustering typically is localized 
or centralized, grid computing emphasizes public collaboration. Individuals and 
research institutes participating in grid computing coordinate resources that are not 
subject to centralized control. High performance, the goal of grid computing. is 
achieved by using spare computer power at little or no cost. Grid computing offers 
better scalability than clusters. For example, the SETI@home project, which is dis
cussed later, runs on half-a-million PCs while an HP XC cluster runs on up to 512 
nodes. Grid computing requires sophisticated software to manage distributed com
puting tasks on such a massive scale.69-70-71 

To enable interoperability of heterogeneous distributed resources, a grid-com-
puting system is often divided into five layers. The application layer, which is the 
highest level, contains applications that use the lower layers to access distributed 
resources. The collective layer is responsible for coordinating distributed resources, 
such as scheduling a task to analyze data received from a scientific device. The 
resources layer enables applications to request and share a resource. The connectiv-
ity layer carries out reliable and secure network communications between 
resources. The fabric layer accesses physical resources, such as disks.72 

The SETI@home (Search for Extraterrestrial Intelligence at home) project 
( s e t i a t h o m e . s s l . b e r k e l e y . e d u / ) is a popular grid-computing implementation 
SETI@home enables individuals to participate in a scientific effort seeking intelli
gent life elsewhere in the universe. Computers belonging to participants, when not 
in use, download data representing signals from outer space from the SETI@home 
server, analyze the data and return the results to the SETI@home server.73, 74 

The Globus Alliance (www.globus.org/), based at Argonne National Labo
ratory, the University of Southern California's Information Sciences Institute, the 
University of Chicago, the University of Edinburgh and the Swedish Center for 
Parallel Computers, researches grid-computing resource management and develops 
software (called the Globus Toolkit) to implement grid computing.75 United 
Devices (www.ud.com) provides grid-computing solutions for businesses.76 
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1. What makes grid computing a promising trend? 
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2. Why is the grid-computing system divided into several layers? 

Ans: 1) Grid computing helps coordinate distributed resources and allows access to poten-
tially massive amounts of computing resources, enabling complex problems to be solved that 
usually cannot be approached without enormous computing powers. 2) Distributed resources 
are typically heterogeneous, so the layered architecture enables interoperability and modu
larity. 

Java is used widely to implement distributed systems. We discussed developing dis
tributed systems using Java's RMI in Section 17.3.3, and CORBA in Section 17.3.4. 
Sun provides an article about CORBA and Java at java.sun.com/j2ee/corba/. 
The following subsections introduce several additional Java technologies that 
enable developers to build distributed systems and to share and manage distributed 
resources. 

Java provides a number of built-in networking capabilities that make it easy to 
develop Internet-based and Web-based applications. This section focuses on both 
sides of a client-server relationship which is the foundation for the highest-level 
views of networking in Java, namely servlets and JavaServer Pages (JSP). A servlet 
extends the functionality of a server, most frequently a Web server. Using special 
Syntax, JSP allows Web-page programmers to create pages that use encapsulated 
Java functionality and even to write scriptlets (Java code embedded in a JSP) of 
actual Java code directly in the page.77 

A common implementation of the request-response model is between Web 
browsers and Web servers that interact via the HTTP protocol. When a user 
accesses a Web site by means of a browser (the client application), a request is sent 
to the appropriate Web server (the server application). The server normally 
responds to the client by sending the appropriate HTML Web page. Servlets 
enhance the functionality of Web servers to provide capabilities such as secure 
access to Web sites, interacting with databases on behalf of a client, dynamically 
generating custom documents to be displayed by browsers and maintaining unique 
session information for each client. 

In some ways, JSPs look like standard HTML or XML documents. In fact, 
JSPs normally include HTML or XML markup. Such markup is known as fixed-
template data or fixed-template text. JSPs are generally used when most of the con
tent sent to the client is static text and markup, and only a small portion of the con
tent is generated dynamically with Java code. Servlets are commonly used when a 
small portion of the content sent to the client is static text or markup. In fact, some 
servlets do not produce content. Rather, they perform a task on behalf of the client 
(such as a database query), then invoke other servlets or JSPs to provide a 
response. Note that in most cases servlet and JSP technologies are interchangeable. 
The server that executes a servlet is referred to as the servlet container or servlet 

18.7.1 Java Servlets and JavaServer Pages (JSP) 
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engine. JSPs are translated into servlets by the servlet container, which then com
piles and executes them.78 

Many developers believe that servlets are appropriate for database-intensive 
applications that communicate with so-called thin clients—applications that require 
minimal client-side support. With these applications, the server is responsible for 
database access and clients connect to the server using HTTP. Thus, the presenta
tion-logic code for generating dynamic content can be written once and reside on 
the server for access by clients, to allow programmers to create efficient thin clients. 

Sun Microsystems, through the Java Community Process, is responsible for the 
development of the servlet and JavaServer Pages specifications. The reference imple
mentations of these standards are under development by the Apache Software Foun
dation (www.apache.org) as part of the Jakarta Project ( jakar ta .apache.org) . 7 9 

As stated on the Jakarta Project's home page, "The goal of the Jakarta Project is to 
provide commercial-quality server solutions based on the Java platform that arc 
developed in an open and cooperative fashion." The servlet and JSP part of the 
Jakarta Project is called Tomcat—this is the official reference implementation of the 
JSP and servlet standards. The most recent version can be downloaded from the 
Apache Software Foundation's Web site. 

Servlets and JavaServer Pages have become so popular that they are now sup
ported by most major Web servers and application servers, including the Sun ONE 
Application Server, Microsoft's Internet Information Services (IIS), the Apache 
HTTP Server, BEA's WebLogic application server, IBM's WebSphere application 
server, the World Wide Web Consortium's Jigsaw Web server and many more. 

Architecturally, all servlets implement a common interface, which enables the serv-
let container to interact with any servlet, regardless of its functionality. A servlet's 
life cycle begins when the servlet container loads the servlet into memory—usually 
in response to the first request that the servlet receives. Before the servlet can han
dle that request, the servlet container initializes the servlet. Then, the servlet can 
respond to its first request. Typically, each new request results in a new thread of 
execution (created by the servlet container). The servlet container can also termi
nate the servlet to release its resources.80 

JavaServer Pages is an extension of servlet technology. JSPs simplify the delivery of 
dynamic Web content. Web-application programmers can create dynamic content 
by reusing predefined components and by interacting with components using 
server-side Java code. JSP programmers can reuse Java objects and create custom 
tag libraries that encapsulate complex, dynamic functionality. These libraries enable 
Web-page designers who are not familiar with Java to enhance Web pages with 
powerful dynamic content and processing capabilities. 

There are four key components to JSPs: directives, actions, scriptlets and tag 
libraries. Directives are messages to the JSP container that enable the programmer 

JavaServer Pages (JSP) 

Servlet Life Cycle 
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to specify page settings, to include content from other resources and to specify cus
tom tag libraries for use in a JSP. Actions encapsulate functionality in predefined 
tags that programmers can embed in a JSP. Actions often are performed based on 
the information sent to the server as part of a particular client request. They also 
can create Java objects for use in JSP scriptlets. Scriptlets, or scripting elements, 
enable programmers to insert Java code that interacts with components in a JSP 
(and possibly other Web-application components) to process requests. The tag-
extension mechanism enables programmers to create custom tags. Such tags enable 
programmers to manipulate JSP content.81 

When a JSP-enabled server receives the first request for a JSP, the JSP con
tainer translates that JSP into a Java servlet that handles the current request and 
future requests to the JSP. If the new servlet compiles properly, the JSP container 
invokes the servlet to process the request. The JSP may respond directly to the 
request or may invoke other Web-application components to assist in processing 
the request. Overall, a JSP's request/response mechanism and life cycle are identi
cal to that of a servlet. 
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Self Review 
1. Suppose a request for a Web page requires the server to generate its content from a data

base. Which technology discussed in the previous section is most appropriate to accom
plish this? 

2. Which JSP component enables programmers to insert Java code into JSP? 

Ans: 1) Servlets should be used, because JSP is used when a small portion of the content is 
generated dynamically with Java code. 2) Scriptlets. 

Many network devices, such as printers and Web servers, provide services to net
work clients. Jini—a framework for building reliable and fault-tolerant distributed 
systems with existing Java technologies—extends this idea of providing services 
beyond industry computer-based networks and into home-based networks. For 
example, when you arrive home, your car could use a wireless network to notify 
your home's lighting service to turn on the lights over the walkway. Each service 
mentioned here has a well-defined interface. The network-printing service provides 
an interface that enables applications to print documents. A Web server provides an 
HTTP interface that enables Web browsers to download documents. Your home's 
lighting service provides an interface that enables other devices on the network to 
turn the lights on and off. 

To use a Jini service, a Jini client must be able to discover that a service exists 
and must know the interface for interacting with the service. For example, your car 
must be able to discover that your home provides a lighting service and must know 
the service's interface to interact with it. However, the car need not know the 
implementation of the underlying lighting service. 

18.7.2 Jini 



The Jini lookup service is the heart of the Jini architecture (Fig. 18.15). A 
lookup service maintains information about available Jini services and enables cli
ents to discover and use them. The process of finding the lookup services and 
obtaining references to them is called discovery. A service provider discovers and 
registers the service interface with one or more lookup services to make itself avail
able to clients. Clients discover the lookup services and request a service they 
require. The lookup services then send a copy of the service interface to the client. 
Upon obtaining the service interface, the client communicates with the service pro
vider via RMI, as discussed in Section 17.3.3, using the service interface.82 

Recall that Jini services register with lookup services to make the Jini ser
vice's functionality available to other members in the network. If all goes well, 
other members use the service, and the service stays up and running perpetually. In 
reality, however, services fail for many reasons—network outages can make a ser
vice unreachable, a physical device associated with a service (e.g., a printer) might 
need repairs or the service itself could encounter an unrecoverable error. In these 
and many other situations, a service could become unavailable, and that service 
might not be able to unregister itself from lookup services to prevent other clients 
from attempting to use it. 

One goal of Jini technology is to make Jini communities "self-healing" and 
able to recover from these common problems. Therefore, when a Jini service regis
ters with a lookup service, the registration is not permanent. The registration is 
leased for a specific amount of time, after which the lookup service revokes the reg
istration (a service provider can also renew the lease anytime before it expires).83 

This prevents problematic services from disrupting the entire Jini network. If a Jini 
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service fails, the Jini service's lease eventually expires and lookup services will no 
longer provide the failed Jini service to clients. The leasing strategy that Jini 
employs is strict—if a Jini service provider does not renew the lease, the lookup ser-
vice terminates the registration when the lease expires and the service becomes 
unavailable to clients. 

18.7 Java Distributed Computing 847 

1. What information must a Jini client know in order to use a Jini service? 
2. What is the function of the Jini lookup service? 

Ans: 1) The Jini client must know the service interface to use a Jini service. 2) It acts as a reg-
istry for Jini services so that a Jini client can find and use the Jini services that are available. 

JavaSpaces is a Jini service that implements a simple, high-level architecture for 
building distributed systems. Objects that take part in distributed systems must be 
able to communicate with one another and share information. The JavaSpaces ser
vice provides distributed, shared storage (and shared memory) for Java objects and 
enables Java objects to communicate, share objects and coordinate tasks using the 
storage. Any Java-compatible client can put shared objects into the storage. 

A JavaSpaces service provides three fundamental operations—write, take and 
read, which allow the communications between objects stored in JavaSpaces. The 
write operation adds an object into the JavaSpaces service. When clients want to 
remove an object, they perform a take operation. The take operation removes from 
the JavaSpaces service an object that satisfies the client's search criteria. The read 
operation is similar to the take operation, but it does not remove the matching 
object from the JavaSpaces service so that other clients can still find it. Clients can 
perform read operations concurrently, but only one client can perform the take 
operation to remove the object from JavaSpaces.84 

JavaSpaces eases the design and development of distributed systems that 
share Java objects between the service providers and the clients. A JavaSpaces ser
vice has six major properties:85 

1. A JavaSpaces service is a Jini service. 

2. Multiple processes can access a JavaSpaces service concurrently, which 
helps synchronize actions between distributed applications. 

3. An object stored in a JavaSpaces service will remain in the service until its 
lease expires or until a program removes the object from the JavaSpaces 
service. 

4. A JavaSpaces service locates objects by comparing them to a template. The 
template specifies the search criteria against which the JavaSpaces service 
compares each object in the JavaSpaces service. When one or more entries 
match the template, the JavaSpaces service returns a single matching object. 

18.7.3 JavaSpaces 

Self Review 



5. JavaSpaces services ensure that operations execute atomically. 
6. Objects in a JavaSpaces service are shared. Both service providers and cli

ents can read and take objects from the JavaSpaces service. 
Now we demonstrate how to build a distributed image-processing system with 

the JavaSpaces service (Fig. 18.16). Image processing can be a time-consuming task, 
especially for large images. However, we can improve performance by using Jav
aSpaces services to build a distributed image-processing system for applying filters 
to images (e.g., blur, sharpen, etc.). The client first partitions a large image into 
smaller pieces and writes them into a JavaSpaces service. Multiple image processors 
(distributed among the system) run in parallel to take the smaller images from the 
storage and process them by applying appropriate filters, then write the processed 
images back into the JavaSpaces service. The client takes the processed subimages 
from the JavaSpaces service and builds the complete, processed image. 

1. (T/F) After a service provider adds an object to a JavaSpaces service, the object will 
always be there if no one removes it. 

2. How might JavaSpaces be used to implement a chat system? 

Al*9-- 1) False. Even though the client does not execute a take operation, the object will not 
remain in the JavaSpaces service permanently. Each object stored in a JavaSpaces service has 

Self Review 
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Figure 18.16 | Distributed image-processing application using JavaSpaces. 



a lease; when its lease expires, the object is removed. 2) JavaSpaces can be used to build a 
chat system in which the message sender writes messages to JavaSpaces and the message 
receiver reads or takes the message from JavaSpaces. The sender can send messages to a par
ticular recipient or to a group of recipients. 
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A crucial function in any distributed system is network management. Businesses 
increasingly need networks that provide services which are customized to customer 
demands, consistently available and easily updated. As more organizations add net
works and expand existing networks to increase productivity, network management 
becomes more difficult. The proper functionality of printers, network routers and 
other devices—many of which play an integral role in the productivity of a firm—is 
important. As more devices are networked and as networks grow larger, more 
problems can occur. The demand for managing distributed applications increases 
when business applications move into distributed environments.86 

Existing tools for managing networked devices often use both standard and 
proprietary protocols and management tools. The diversity of such proprietary pro
tocols and tools makes managing a diverse network difficult. Many network man
agement schemes are inflexible and nonautomated. This usually means that 
significant amounts of time and resources are spent trying to fix and operate large 
networks. New technologies are required that will help shift the burden of routine 
tasks to the network management software itself and leave special issues to the net
work manager. 

Recent technological advances have provided network management develop
ers with the tools necessary to develop smart agents that can assume various 
responsibilities. These tools allow agents to incorporate themselves into frame
works in which numerous agents interact with each other and provide a dynamic 
and extensible network management solution. 

Java Management Extensions (JMX), developed by Sun and other companies 
in the network management industry, defines a component framework that enables 
developers to build automated, intelligent and dynamic network management solu
tions. JMX defines a three-level management architecture —the instrumentation 
level, the agent level and the manager level (Fig. 18.17). The instrumentation level 
makes any Java-based object manageable so that the management application can 
access and operate these objects. The agent level provides services for exposing the 
managed resources. The manager level gives management applications access to 
resources created in the instrumentation level and operates these resources via the 
JMX agents.87 

18.7.4 Java Management Extensions (JMX) 

1. What are the problems with many existing network-management schemes? 
2. What are the three levels in JMX architecture? Briefly describe the function of each. 

Self Review 



Ans: 1) Many existing network-management schemes are inflexible and nonautomated, 
because various networked devices may be managed using diverse protocols and tools and 
require large amounts of time to fix and operate in a large network. 2) The three levels are: 
the instrumentation level, the agent level and the manager level. The instrumentation level 
makes any Java-based object manageable. The agent level provides services for exposing the 
managed resources. The manager level gives management applications access to resources 
and operates these resources via the JMX agents. 

Figure 18.17 | JMX's three-level management architecture. 

Instrumentation level 

Agent level 

Manager level 
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Over the past several decades, computing has evolved at an unprecedented pace. 
This progress impacts organizations in significant ways, forcing information-tech
nology (IT) managers and developers to accept new computing paradigms. Innova
tions in programming and hardware have led to more powerful and useful 
technologies, including object-oriented programming, distributed computing, Inter
net protocols and XML (Extensible Markup Language). At the same time, organi-
zations have learned to leverage the power of their networks and the Internet to 
gain competitive advantages. 

Web services technology, which represents the next stage in distributed com
puting, will profoundly affect organizations in the future. Web services encompass a 
set of related standards that can enable any two computer applications to communi
cate and exchange data via the Internet. Many factors—including software vendors' 
widespread support for underlying standards —indicate that Web services will radi
cally change IT architectures and partner relationships. Companies are already 
implementing Web services to facilitate a wide variety of business processes, such as 
application integration and business-to-business transactions.88 

18.8 Web Services 



For a distributed system to function correctly, application components execut
ing on different computers throughout a network must be able to communicate. In 
Section 17.3, we discussed technologies such as DCOM and CORBA that enable 
communication among distributed components. Unfortunately, DCOM and 
CORBA cannot intercommunicate easily. Their components often communicate 
via a COM/CORBA bridge. If DCOM's and CORBA's underlying protocols 
change, programmers must modify the bridge to reflect the changes. Such problems 
have impeded distributed computing's ability to facilitate business-process integra
tion and automation. 

Web services improve distributed computing capabilities by addressing the 
issue of limited interoperability.89 Web services operate using open (i.e., nonpropri
etary) standards, which means that Web services can, theoretically, enable any two 
software components to communicate—regardless of the technologies used to cre
ate the components or the platforms on which the components reside. Also, Web-
services-based applications are often easier to debug, because Web services use a 
text-based communications protocol, rather than the (albeit faster) binary commu
nications protocols employed by DCOM and CORBA. Organizations are imple
menting Web services to improve communication between DCOM and CORBA 
components and to create standards-based distributed computing systems. Thus, 
Web services will help organizations achieve the goals of distributed computing and 
do so more economically.90 

The industry's experience with interoperability problems led to the develop
ment of open standards for Web services technologies, in an effort to enable cross-
platform communication. The primary standard used in Web services is Extensible 
Markup Language (XML), a language for marking up data so that information can 
be exchanged between applications and platforms. Microsoft and DevelopMentor 
developed the Simple Object Access Protocol (SOAP) as a messaging protocol for 
transporting information and instructions between Web services, using XML as a 
foundation for the protocol. Two other Web services specifications—Web Services 
Description Language (WSDL) and Universal Description, Discovery and Integra
tion (UDDI) —are also based on XML. WSDL provides a standard method of 
describing Web services and their specific capabilities; UDDI defines XML-based 
rules for building directories in which companies advertise themselves and their 
Web services.91 

Open standards enable businesses (running different platforms) to communi
cate and transfer data without designing costly platform-specific software. Web ser
vices improve collaborative software development by allowing developers to create 
applications by combining code written in any language on any platform. Also, Web 
services promote modular programming. Each specific function in an application 
can be exposed as a separate Web service. Individuals or businesses can create their 
own unique applications by mixing and matching Web services that provide the 
functionality they need. Modularization is less error prone and promotes software 
reuse. 
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A Web service can be as trivial as multiplying two numbers together or as 
complex as the functions carried out by an entire customer relationship manage-
ment (CRM) software system. For example, tracking the location and status of a 
FedEx package is a Web service ( fedex.com/us/ t racking) . 

Some e-commerce Web sites allow independent developers to harness the 
power of their sites' technologies by exposing certain functions as Web services. For 
example, online retailer Amazon. com allows developers to build online stores that 
search its product databases and display detailed product information via Ama
zon.com Web Services (www.amazon.com/gp/aws/landing.html). The Google 
search engine also can be integrated with other functionality through the Google 
Web APIs (www.google.com/apis), which connect to Google's indices of Web sites 
using Web services. Amazon. com and Google provide access to their sites' features 
through SOAP and other standard protocols in exchange for increased exposure. 
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1. How are Web services more portable than DCOM? 
2. Can a client application written in Java access a Web service written in C#? Why? 

Ans: 1) Web services provide interoperability, platform independence and language inde
pendence. 2) Yes, a client application written in Java can access a Web service written in C#, 
because Web services technologies use open standards such as XML, SOAP, WSDL and 
UDDI. 

Self Review 

Microsoft introduced the term Web services during the June 2000 launch of its 
.NET initiative. Today, Microsoft is one of the dominant companies in the Web ser
vices market. The .NET initiative includes the Visual Studio .NET integrated devel
opment environment which enables programmers to develop Web services in a 
variety of languages, including C++, C# and Visual Basic .NET However, .NET 
technologies are available only for Windows 2000 and XP.92 

.NET Web services, which are central to the .NET initiative, extend the con
cept of software reuse to the Internet by allowing developers to reuse software 
components that reside on other machines or platforms. Employing Web services as 
reusable building blocks, programmers can concentrate on their specialties without 
having to implement every component of an application. For example, a company 
developing an e-commerce application can subscribe to Web services that process 
payments and authenticate users. This enables programmers to focus on other, 
more unique aspects of the e-commerce application. 

In .NET, a Web service is an application stored on one machine that can be 
accessed by another machine over a network. In its simplest form, a Web service 
created in .NET is a class, or a logical grouping of methods and data that simplifies 
program organization. Methods are defined within a class to perform tasks and 
return information when their tasks are complete. .NET Web service classes contain 
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certain methods (called Web service methods) that are specified as part of the Web 
service. These methods can be invoked remotely using RPC. 
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1. Can .NET technologies be used on Linux? 
2. How have .NET Web services extended the concept of software reuse to the Internet? 

Ans: 1) No. .NET technologies are available only for Windows 2000 and XP. 2) .NET Web 
services allow developers to reuse software components that reside on other machines or 
platforms. 

Self Review 

Sun Microsystems' Web services strategy is based on the Sun Open Net Environ
ment (Sun ONE), which consists of three components—a vision, an architecture 
and a conceptual model for developing standards-based software.93 

The Sun ONE vision incorporates a model for software development, in 
which critical business information and applications are available at any time to any 
type of device, including cell phones and PDAs. Sun ONE's goal is to help develop
ers create networks of distributed applications or Web services that are highly reli
able and promote the reuse of components and services.94 

The Sun ONE architecture is designed to be scalable to ensure reliable access 
to services. Scalability is crucial; as new technologies and new components are 
added to systems, more demands are placed on system resources, potentially 
degrading service.95 

The Sun ONE platform is comprised of three products: the Solaris™ Operat-
ing Environment, the Infrastructure Software and the Sun ONE Studio. The Infra-
structure Software includes the Sun ONE Directory Server and the Sun ONE 
Portal Server, which offer user authentication and personalization. Other Infra
structure Software capabilities include scheduling management, billing and commu
nication. Sun ONE allows programmers to deploy Web services using third-party 
products. By integrating disparate products, programmers can develop Web ser
vices infrastructures that best suit their companies' requirements. Sun ONE incor
porates support for open standards, including XML, SOAP, UDDI and WSDL, to 
help ensure high levels of interoperability and system integration.96 

Sun ONE promotes the notion that a company's Data, Applications, Reports 
and Transactions, which compose the conceptual DART model, can be published as 
services online.97 Using the DART model, companies can organize business appli-
cations and processes that involve data, applications, reports and transactions, so 
that programmers can map business elements to corresponding services. 

18.8.2 Sun Microsystems and the Sun ONE Platform 

1. How is Sun ONE more portable than .NET? 
2. What does infrastructure software do in Sun ONE? 

Self Review 



Ans: 1) .NET is available only on Windows, while Sun ONE is available for many plat-
forms. 2) Infrastructure software offers user authentication and personalization. Infrastruc
ture software is also capable of scheduling management, billing and communication. 
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www.faqs.org/ftp/rfc/pdf/rfcl094.txt.pdf 
PDF version of the Network File System version 2 protocol 
specification. 
www.connectathon.org/nfsv3.pdf 
PDF version of the Network File System version 3 protocol 
specification. 
www.ietf.org/rfc/rfc2054.txt 
Text version of the WebNFS client specification. 
www.ietf.org/rfc/rfc3010.txt 
Text version of the Network File System version 4 protocol 
specification. 
www.ietf.org/rfc/rfc2203.txt 
Text version of the RPCSEC_GSS protocol specification. 
www.cs.berkeley.edu/projects/sprite/ 
retrospective.html 
Brief retrospective on the Sprite Network Operating System. 
www.es . jamstec .go. jp/esc/eng/ index.html 
Earth simulator home page. 
www.distributed.net/pressroom/presskit.php 
Provides news and articles for distributed system projects. 
l ibrary.thinkquest.org/C007645/english/1-
paral le l .htm 
Compares distributed computing and parallel computing and 
introduces clustering. 
www.linux-mag.com/2000-10/clustering_01.html 
Discusses Linux clustering in detail. 
www.jini.org 
The Jini technology site; provides links for downloading the 
Jini technology implementation. 
wwws.sun.com/software/ j ini /specs/ js2_0.pdf 
Provides the JavaSpaces service specification. 
java.sun.com/products/HavaManagement/wp/ 
Contains Java Management Extensions (JMX) White Paper. 

www.jxta.org 
Official Web site for Project JXTA; contains the newest down-
loads of the source code and opportunities to participate in 
developing JXTA. 
www.openp2p.com 
This O'Reilly Network online resource provides articles and 
links related to peer-to-peer technologies. 
java.sun.com/j2ee/corba/ 
Discusses CORBA technology and the Java platform. 
java.sun.com/j2ee 
Provides reference material for all Java 2 Enterprise Edition 
technologies, including servlets and JavaServer Pages. 
j akar ta .apache .org 
The Apache Jakarta Project site provides resources for servlets 
and JavaServer Pages and the reference implementation of 
these technologies. 
www.webservices.org 
The Web Services Community Portal contains the latest news 
regarding Web services and Web services vendors. There is also 
a collection of articles and papers relating to Web services 
technologies. 
www.microsof t .com/net 
Microsoft's .NET site provides .NET resources, including 
product information, news, events and downloads. 
www.sun.com/sunone 
Sun Microsystems' Sun ONE initiative site explains the Open 
Net Environment and provides news about the products and 
its users. 
www.xmethods.com 
Lists free, publicly available Web services and provides links 
for tutorials and implementations of Web services. 

Summary 
Networked file systems allow clients to access files stored 
on remote computers. Distributed file systems, which are 
the focus of this chapter, are special examples of networked 
file systems that allow transparent access to remote files. 

A distributed file server can be either stateful or 
stateless. In a stateful system, the server keeps state infor-

mation of the client requests so that subsequent access to 
the file is easier. In a stateless system, the client must spec-
ify which file to access in each request. 

Distributed file systems provide the illusion of trans-
parency. Complete file location transparency means that 
the user is unaware of the physical location of a file within a 
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distributed file system; the user just sees a global file sys
tem. Many distributed systems implement client caching to 
avoid the overhead of multiple RPCs. Clients keep a local 
copy of a file and flush it to the server from time to time. 
Because there are multiple copies of the same file, files can 
become inconsistent. Distributed file systems are designed 
to share information among large groups of computers. To 
reach this goal new computers should be able to be added 
to the system easily. Distributed file systems should be scal
able. There are two primary security concerns in distributed 
file systems: ensuring secure communications and guaran
teeing correct file access permissions. 

NFS (Network File System) versions 2 and version 3 
assume a stateless server implementation, which makes 
fault tolerance easier to implement than with a stateful 
server. With stateless servers, if the server crashes, the cli
ent can simply retry until the server responds. NFS-4 is 
stateful. The stateful server allows faster access to files. 
However, if the server crashes, all the state information of 
the client is lost, so the client needs to rebuild its state on 
the server before retrying. 

Client-side caching is essential to efficient distributed 
file system operation. NFS-4 extends the client-caching 
scheme through delegation, which allows the server to tem
porarily transfer the control of a file to a client. When the 
server grants a read delegation of a particular file to the cli
ent, then no other client can write to that file. When the 
server grants a write delegation of a particular file to the 
client, then no other client can read or write to that file. If 
another client requests a file that has been delegated, the 
server will revoke the delegation and request that the origi
nal client flush the file to disk. 

AFS (Andrew File System) is a global file system that 
appears as a branch of a traditional UNIX file system at 
each workstation. AFS is completely location transparent 
and provides a high degree of availability, which means the 
files are always available regardless of the user's location. 
AFS is based on the client-server model and relies on RPCs 
for communication. 

The Sprite file system has the perceived form of a 
UNIX file system, and every client has the exact same view 
of the hierarchy. It goes a step further in UNIX file system 
emulation by allowing transparent remote access to I/O 
devices (which are represented as files in UNIX). In Sprite, 
both the client and the server keep a cache. To open a file, 
the client first checks its cache, then makes a request to its 
backing store (which is generally a server). If the server is 
unable to satisfy the request from its cache, it reads the 
data from disk. Both caches retain a copy of the data when 

it is returned to the client. When a client writes a block, it 
writes into its cache. Sprite flushes updated pages to the 
server every 30 seconds. 

Clustering involves interconnecting nodes (single-
processor computers or multiprocessor computers) within 
a high-speed LAN to function as a single parallel computer. 
The set of nodes that forms the single parallel machine is 
called a cluster. Clustering enables multiple computers to 
work together to solve large and complex problems such as 
weather prediction. 

There are three major types of clusters: high-perfor
mance clusters, high-availability clusters and load-balanc
ing clusters. In a high-performance cluster, all the nodes in 
the cluster work to improve performance. In a high-avail
ability cluster, only some of the nodes in the cluster are 
working while others act as backups. If working nodes or 
their components fail, the backup nodes immediately start 
running and take over the jobs that were being executed on 
the failed nodes, without interrupting service. In a load-bal
ancing cluster, a particular node works as a load balancer to 
distribute the load to a set of nodes so that all hardware is 
efficiently utilized. 

P2P (peer-to-peer) applications are different from cli
ent/server applications. Instead of segregating computers 
by function, all computers act as both clients and servers. 
Each peer has the ability to discover and communicate with 
other peers. Peers may share resources (such as large multi
media files) with others. P2P applications can be imple
mented in two forms: centralized and decentralized. A 
centralized P2P application uses a server that connects to 
each peer. Centralized P2P applications exemplify the cli
ent/server relationship. A pure P2P application, also called 
a decentralized P2P application, does not have a server and 
therefore does not suffer from the same deficiencies as 
applications that depend on servers. 

Distributed searches make networks more robust by 
removing single points of failure, such as servers. Not only 
can peers find information in this way, but they can search 
for other peers via distributed searches. 

Grid computing links computational resources that 
are distributed over the wide area network (such as com
puters, data storages and scientific devices) to solve com
plex problems. Resources in grid computing are 
distributed, and users can access these resources transpar
ently without knowing where they are located. Grid com
puting emphasizes public collaboration—individuals and 
research institutes coordinate resources that are not subject 
to a centralized control to deliver qualities of service. Grid 
computing has the same advantage as clustering—high per-
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based networks and into home-based networks. The Jav-
aSpaces service provides distributed, shared storage (and 
shared memory) for Java objects and enables Java objects 
to communicate, share objects and coordinate tasks using 
the storage. Any Java-compatible client can put shared 
objects into the storage. 

Java Management Extensions (JMX) defines a com
ponent framework that enables developers to build auto
mated, intelligent and dynamic network-management 
solutions. 

Web services is an emerging area of distributed com
puting. Web services encompass a set of related standards 
that can enable any two computer applications to commu
nicate and exchange data via the Internet. Web services can 
enable any two software components to communicate — 
regardless of the technologies used to create the compo
nents or the platforms on which the components reside. 

Web services improve collaborative software devel
opment by allowing developers to create applications by 
combining code written in any language on any platform. 
Also, Web services promote modular programming. Each 
specific function in an application can be exposed as a sepa
rate Web service. With separate Web service components, 
individuals or businesses can create their own unique appli-
cations by mixing and matching Web services that provide 
the functionality they need. Such modularization is less 
error prone and promotes software reuse 

formance, achieved by cost-effectively using spare com
puter power and collaborating resources. However, grid 
computing requires advanced software to manage distrib
uted computing tasks efficiently and reliably. 

A Java servlet extends the functionality of a server, 
most frequently a Web server. Using special syntax, JSP 
allows Web-page programmers to create pages that use 
encapsulated Java functionality and even to write scriptlets 
(Java code embedded in a JSP) of actual Java code directly 
in the page. 

JSPs are generally used when most of the content 
sent to the client is static text and markup and only a small 
portion of the content is generated dynamically with Java 
code. Servlets are commonly used when a small portion of 
the content sent to the client is static text or markup. In 
fact, some servlets do not produce content. Rather, they 
perform a task on behalf of the client (such as a database 
query), then invoke other servlets or JSPs to provide a 
response. 

Project JXTA strives to create a standard, low-level 
platform and language-independent protocol that pro
motes interoperability among peer-to-peer applications. 
JXTA provides a foundation on which developers can build 
any type of P2P application. 

Jini—a framework for building reliable and fault-tol
erant distributed systems with existing Java technologies— 
extends this idea of providing services beyond computer-
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advertisement (in JXTA)—XML document formatted accord
ing to JXTA specifications that is used by a peer to adver
tise itself and notify others of its existence. 

agent level (in JMX)—JMX level that provides services for 
exposing the managed resources. 

Andrew File System (AFS)—Scalable distributed file system 
that would grow to support a large community while 
being secure. AFS is a global file system that appears as a 
branch of a traditional UNIX file system at each worksta
tion. AFS is completely location transparent and provides 
a high degree of availability. 

Apache Software Foundation—Provides open-source soft
ware, such as Tomcat, the official reference implementa
tion of JSP and servlet specifications. 

application layer (in grid computing) — Contains applications 
that use lower-level layers to access the distributed 
resources. 

available volume storage group (AVSG) (in Coda)—Members 
of the VSG with which the client can communicate. 

Beowulf cluster—Linux clustering solution, which is a high-
performance cluster. A Beowulf cluster may contain sev-
eral nodes or several hundred. Theoretically, all nodes 
have Linux installed as their operating system and are 
interconnected with high-speed Ethernet. Usually, all the 
nodes in the cluster are connected within a single room to 
form a supercomputer. 

callback (in AFS)—Sent by the server to notify the client that 
the cached file is modified. 

cell (in AFS-3)—Unit in AFS-3, which preserves namespace 
continuity while allowing different systems administrators 
to oversee each cell. 

centralized P2P application—Uses a server that connects to 
each peer. 

client caching—Clients keep local copies of files and flush 
them to the server after having modified the files. 

client modification log (CML) (in Coda)—Log which is 
updated to reflect file changes on disk. 
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cluster—Set of nodes that forms what appears to be a single 
parallel machine. 

clustering—Interconnection of nodes within a high-speed 
LAN so that they function as a single parallel computer. 

Coda Optimistic Protocol—Protocol used by Coda clients to 
write a copy of the file to each of the members of the 
AVSG, which provides a consistent view of a file within an 
AVSG. 

collective layer (in grid computing)—Layer responsible for 
coordinating distributed resources, such as scheduling a 
task to analyze data received from a scientific device. 

concurrent write-sharing—Occurs when two clients modify 
cached copies of the same file. 

connectivity layer (in grid computing)—Layer that carries out 
reliable and secure transactions between distributed 
resources. 

decentralized peer-to-peer application—Also called a pure 
peer-to-peer application. It does not have a server and 
therefore does not suffer from the same deficiencies as 
applications that depend on servers. 

delegation (in NFS)—Allows the server to temporarily trans
fer the control of a file to a client. When the server grants 
a read delegation of a particular file, then no other clients 
can write to that file, but they can read it. When the server 
grants a write delegation of a particular file to the client, 
then no other clients can read or write that file. 

discovery (in Jini)—Process of finding the lookup services and 
obtaining references to them. 

distributed file system—Special examples of networked file 
systems that allow transparent access to remote files. 

distributed search—Searching technology used in peer-to-peer 
applications to make networks more robust by removing 
single points of failure, such as servers. In a distributed 
search, if a peer cannot answer the client's request, the 
peer forwards the request to its directly connected peers 
and the search is distributed to the entire peer-to-peer 
network. 

domain (in Sprite file system)—Unit that represents a portion 
of the global file hierarchy and is stored at one server. 

emulation stage—When a Coda client becomes disconnected, 
it is said to enter the emulation stage. During this stage all 
file read requests are satisfied from cache. Write requests 
during the emulation stage occur in two steps. First, the 
file is updated on disk. Second, a log called the client mod
ification log (CML) is updated to reflect file changes. 

export local file—Performed by an NFS server to make the 
local directory of files available to the remote client via 
the mount protocol. 

Extensible Markup Language (XML)—Language for marking 
up data so that information can be exchanged between 
applications and platforms. 

fabric layer (in grid computing)—Layer that accesses physical 
resources, such as disks. 

file handle—Identifies a file on the file server with file type, 
location and access permissions. 

file identifiers (fids) (in AFS)—Entity that specifies a volume, 
an index within a volume and an identifier to guarantee 
object uniqueness within a volume. 

grid computing—Links computational resources that are dis
tributed over the wide area network (such as computers, 
data storages and scientific devices) to solve complex 
problems. 

head node (in a Beowulf cluster)—Node, also called master 
node, that acts as a server to distribute the workload, con
trol access to the cluster and handle the shared resources. 

high-availability cluster—Cluster in which only some of the 
nodes are working while other nodes act as backups. The 
goal of a high-availability cluster is to stay up all the time. 

high-performance cluster—Cluster in which all the nodes work 
to achieve maximum performance. 

hoarding stage (in Coda) —Stage that clients enter when they 
are connected to Coda. In this stage, clients prepare for a 
possible disconnection from the system by caching any 
requested file. 

idempotent request—A requested operation that if performed 
several times will return the same result, so it is accept
able to perform the same operation twice. 

instrumentation level (in JMX)—Makes any Java-based object 
manageable so that the management application can 
access and operate these objects. 

invalidate—To invalidate a file, the client checks the time 
stamp of the copy of the file on the server. If this copy has 
been updated since the client last copied the file, then the 
client must download the latest version. If the server copy 
has not been updated since the client copied it, then the 
client can work on its cached copy. 

Jakarta project—Provides commercial-quality server solutions 
based on the Java platform that are developed in an open 
and cooperative fashion. 

Java Community Process—Open organization that focus on 
developing Java technology specifications, including serv-
let and JavaServer Pages. 

Java Management Extensions (JMX)—Developed by Sun and 
network management industry leaders, which defines a 
component framework that enables developers to build 
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and server software available for other common plat
forms. 

network file system—System that allows clients to access files 
on remote computers. Network file systems do not pro
vide location transparency as distributed file systems do. 

nonvolatile storage—The contents of nonvolatile storage are 
not lost when the machine loses power or is powered off. 

peer—Single computer in a peer-to-peer system. 
peer discovery—Finding peers in a peer-to-peer application. 
peer group—Logical construct that represents a set of peers. A 

peer group is one of the basic types of entities in a net
work built with the JXTA protocols. 

peer-to-peer (P2P) application—Distributes processing respon
sibilities and information to many computers, thus reclaim-
ing otherwise wasted computing power and storage space 
and eliminating central points of failure. In a peer-to-peer 
system, each peer performs both client and server func
tions. 

pipe (in JXTA)—Virtual communication channel that con
nects two or more peers for sending and receiving mes
sages among peers. 

preferred server (PS) (in Coda)—Member of the AVSG that 
provides copies of files for Venus. 

prefix table (in Sprite)—Table that stores domain information 
to aid in file lookups. Each entry in the table represents a 
separate domain and consists of the absolute path to the 
root directory within the domain, the server which houses 
the domain and a token that identifies the domain. 

pure peer-to-peer application—Also called a decentralized 
peer-to-peer application. It does not have a server and 
therefore does not suffer from the same deficiencies as 
applications that depend on servers. 

read operation (in JavaSpaces)—Operation that is similar to 
the take operation, but does not remove the object from 
the JavaSpaces service so that other clients can still find it. 

reintegration stage (in Coda)—Stage right after the client 
reconnects to the system during which Venus asynchro
nously updates the server using the CML. 

resources layer (in grid computing)—Layer that enables appli-
cations to query and share a resource. 

safe asynchronous write (in NFS-3)—Allows a server to return 
before a write has been completed. 

scriptlet—Java code embedded in a JSP. 
sequential write-sharing—Occurs when one client modifies a 

file, then another client tries to read or write its own 
cached copy of the file. Sequential write-sharing intro-
duces cache inconsistency. 

automated, intelligent and dynamic network management 
solutions. 

JavaServer Pages (JSP)—Allows Weh-page programmers to 
create pages that use encapsulated Java functionality and 
even to write scriptlets of actual Java code directly in the 
page. 

JavaSpaces—Jini service that implements a simple, high-level 
architecture for building distributed systems. The Java-
Spaces service provides distributed, shared storage (and 
shared memory) for Java objects and enables Java objects 
to communicate, share objects and coordinate tasks using 
the storage. 

Jini—Framework for building reliable and fault-tolerant dis
tributed systems with existing Java technologies. Jini 
extends the idea of providing services beyond industry-
based computer networks and into home-based networks. 

JXTA—Project created at Sun Microsystems, Inc., which cre
ates a standard, low-level, platform and language-inde
pendent protocol that promotes interoperability among 
peer-to-peer applications. 

lease—Agreement between the client and server for control
ling file locks. 

load-balancing cluster—Cluster in which one particular node 
works as a load balancer to distribute the load to a set of 
nodes, so that all hardware is efficiently utilized. 

load balancer—Node in a load-balancing cluster that distrib
utes the workload (such as thousands of requests from the 
clients) to a set of nodes so that all hardware is efficiently 
utilized. 

lookup service—Heart of the Jini architecture, which main
tains information about available Jini services and enables 
clients to discover and use them. 

manager level (in JMX)—Level that gives a management 
application access to managed resources (created in the 
instrumentation level) and operates these resources via 
the JMX agents. 

master node (in a Beowulf cluster)—Node also known as the 
head node, that acts as a server to distribute the workload, 
control the access to the cluster and handle the shared 
resources. 

multicomputer system—System in which processors do not 
share a common memory or bus. Each processor has 
access to its own resources. These independent processors 
are connected in a network to operate cooperatively to 
form a multicomputer system. 

Network File System (NFS) — Current de facto standard for 
network file sharing, natively supported in most varieties 
of UNIX (and many other operating systems) with client 
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which companies advertise themselves and their Web ser
vices. 

update set (in Coda) — Specifies, to each member of the AVSG, 
the members of the AVSG that have successfully per
formed the write. 

Venus (in AFS) —User-level process that interacts with the 
Vice processes run on distributed file servers to govern 
distributed file access. 

virtual file system (VFS)—Provides the abstraction of a com
mon file system at each client and is responsible for all dis
tributed file operations. 

Vice (in AFS)—Entity that governs distributed file access in 
AFS. 

volume (in AFS-2) —Introduced in AFS-2 to manage subtrees. 
Volumes are primarily of administrative value, allowing 
replication and isolation of certain subtrees, and are 
therefore transparent to users. 

volume storage group (VSG) (in Coda)—Volumes are logical 
pieces of the file system and are replicated physically 
across multiple file servers. Servers that hold the same 
volume are known as a volume storage group (VSG). 

WebNFS-Allows NFS clients to access WebNFS-enabled 
servers with a minimum of protocol overhead. Marketed 
as the file system for the Web, WebNFS is designed to 
improve NFS functionality and performance over wide 
area Internet and intranets. 

Web service—Technology that encompasses a set of related 
standards that can enable any two computer applications 
to communicate and exchange data via the Internet. 

Web Services Description Language (WSDL)—Provides a 
standard method of describing Web services and their spe
cific capabilities. 

Web service methods (in .NET)—Methods contained in a 
.NET Web service class. 

write operation (in JavaSpaces) — Operation that adds an 
object into the JavaSpaces service. 

servlet—Enhances the functionality ofWeb servers to provide 
capabilities such as secure access to Web sites, interacting 
with databases on behalf of a client, dynamically generat
ing custom documents to be displayed by browsers and 
maintaining unique session information for each client. 

servlet container—Server that executes a servlet. Also known 
as servlet engine. 

Simple Object Access Protocol (SOAP)—Messaging protocol 
for transporting information and instructions between 
Web services, using XML as a foundation for the protocol. 

slave node (in a Beowulf cluster)—Beowulf cluster node that 
is not a head node. 

Sprite—Distributed operating system whose goal is transpar
ency and complete consistency. 

stateful server—Keeps state information of the client 
requests—such as the file name, a pointer to the file and 
the current position in the file—so that the subsequent 
access to the file is easier and faster. 

stateless server—The server does not keep state information 
of the client requests, so the client must specify which file 
to access in each request. 

Sun Open Net Environment (Sun ONE)—Consists of three 
components—a vision, an architecture and a conceptual 
model for developing standards-based software. 

take operation (in JavaSpaces)—Removes from the Jav-
aSpaces service an object that matches the given criteria. 
Take operations, together with write and read operations, 
allow distributed applications to dynamically exchange 
objects within JavaSpaces services. 

thin client—Application that requires minimal client-side sup
port. 

Tomcat—Official reference implementation of the JSP and 
servlet standards. 

Universal Description, Discovery and Integration (UDDI)— 
Defines XML-based rules for building directories in 
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18.1 Explain the benefits and drawbacks of client caching in 
distributed file systems. 

18.2 What are the primary concerns of implementing distrib
uted file systems? 

18.3 A file server can be either stateful or stateless. What are 
the advantages and disadvantages of each implementation? 

18.4 How can distributed file systems ensure cache consis
tency? 

18.5 Is NFS-4 more secure than NFS-2 and NFS-3? How? 

18.6 In AFS-1, each time the VFS tried to open a cached file 
it would have Venus contact the server to make sure that the 
file was still valid. What is the problem with this approach? 
How do AFS-2 and AFS-3 solve this problem? 

18.7 Explain how Coda provides fault tolerance. 

18.8 Describe the three stages Coda clients go through when 
reading and writing to a file on the Coda server. 
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18.14 Given the peer network as shown in Fig. 18.18, apply 
the distributed search mechanism used in Freenet to find the 
requested resource, which is on P7. Assume the search starts at 
P1. 
18.15 Describe the three basic types of entities of JXTA. 

18.16 Explain why the Jini lookup service is the heart of the 
Jini architecture. 
18.17 When a service provider registers a service with a Jini 
lookup service, is the registration permanent? What is the ben
efit of this design? 

18.18 What problems do DCOM and CORBA have? How can 
Web services solve this problem? 

18.21 Prepare a research paper for Web services. How is is 
used? 

18.9 How does Sprite handle server crashes? 

18.10 Describe the differences between high-performance 
clusters, high-availability clusters and load-balance clusters. 
Give examples of each of these cluster types in use. 

18.11 List the essential elements for building a Beowulf cluster. 

18.12 Compare centralized and pure peer-to-peer applica
tions. What are the advantages and disadvantages of each 
approach? 

18.13 Given the peer network of Fig. 18.18, apply the distrib
uted search mechanism used in Gnutella to find the requested 
resource which is on P7. Assume the search starts at P1. 
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18.19 Research transparency in distributed file systems. What 
research is currently being done in that field? 
18.20 Research client caching in distributed file systems. What 
research is currently being done in that field? 

Suggested Projects 

Distributed file systems play an important role in distributed 
systems.98, 99 Examples of distributed file systems are NFS,136, 101, 

102, 103, 104, 105 AFS,106, 107 Coda108 and Sprite.109, 110, 111, 112 Cluster
ing enables multiple computers to work together to solve large 
and complex problems.113, 114 The most popular clustering tech
nologies are Beowulf and Windows Server 2003 clusters.115, 116 

The peer-to-peer distributed computing model is another archi
tecture for building distributed systems.117, 118, 119 Peer-to-peer 
applications use a distributed search to find a peer in the net
work.120, 121 Sun provides several technologies for developing 
distributed computing systems with servlets and JavaServer 
Pages (JSP),122, 123, 124, 125 including Jini,126, 127 JavaSpaces128 and 

JMX.129 Web services is an emerging area of distributed com
puting. Web services encompass a set of related standards that 
can enable any two computer applications to communicate and 
exchange data via the Internet. Web services can enable any two 
software components to communicate—regardless of the tech
nologies used to create the components or the platforms on 
which the components reside.130, 131, 132, 133 

Web services is one of the most recent distributed systems 
architectures.134, 135 Distributed systems exist in many forms— 
distributed object-based systems, distributed file systems, dis
tributed document-based systems and distributed coordination-
based systems. Tanenbaum and Steen discuss each of these types 

Figure 18.18 | P2P system with seven peers. 



of distributed systems.136 Both centralized and decentralized 
P2P applications have scalability limitations. Grid computing 

enables the creation of a large-scale infrastructure used to share 
computing power and data resources.137, 138 
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Security 
'Is it weakness of intellect, birdie?' I cried, 

'Or a rather tough worm in your little inside?' 
-W. S. Gilbert-

Part 7 



Computers are vulnerable to attacks that can com
promise data, corrupt files and crash systems— 
operating system security is at the core of secure 
computing systems. The next chapter discusses key 
security topics, including cryptography (secret key 
and public key), authentication (biometrics, smart 
cards, Kerberos, single sign-on), access control, 
security attacks (cryptanalysis, viruses, worms, 
denial-of-service attacks), attack prevention (fire
walls, intrusion detection systems, antivirus soft
ware), key agreement protocols, digital signatures, 
Public Key Infrastructure (PKI), certificates, certif
icate authorities, secure communication protocols 
(Secure Sockets Layer, Virtual Private Networks, 
wireless security), steganography and proprietary 
vs. open-source security. We include a case study 
on OpenBSD, arguably the world's most secure 
operating system. 

We have forty million reasons for failure, but not a single excuse. 
— Rudyard Kipling— 



You can't trust code that you did not totally create yourself. (Especially code from compa-

nies that employ people like me. 
—Ken Thompson— 
1983 Turing Award Lecture 
Association for Computing Machinery, Inc. 

We have forty million reasons for failure, but not a single excuse. 
—Rudyard Kipling— 

There is no such thing as privacy on a computer. The view here is that if you don't want 
something read, don't put it on the system. 

—Thomas Mandel— 
quoted in Time, April 6,1987 

'Is it weakness of intellect, birdie?' I cried, 
'Or a rather tough worm, in your little inside?' 

-W. S. Gilbert-



Chapter 19 

Security 
Objectives 
After reading this chapter, you should understand: 

• public-key/private-key cryptography. 

• the role of authentication in providing secure systems. 

• access control models, policies and mechanisms. 

• security threats, such as viruses, worms, exploits and denial-of-service attacks. 

• security and authentication protocols, such as SSL and Kerberos. 

• digital signatures, digital certificates and certificate authorities. 

• Virtual Private Networks and IPSec. 
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As the personal computing and e-business movements expand, individuals and 
organizations are storing highly confidential information on their computers and 
transmitting sensitive information over the Internet. Consumers are submitting 
credit card numbers to e-commerce sites, and businesses are exposing proprietary 
data on the Web. At the same time, organizations are experiencing increasing num
bers of security breaches. Both individuals and companies are vulnerable to data 
theft and attacks that can compromise data, corrupt files and crash systems. The 
computing industry has been responding to these needs, as organizations work to 
improve Internet and network security. For example, the "trustworthy computing" 
initiative put forth by Microsoft Chairman Bill Gates is an effort to focus the com
pany's priorities on providing reliable, available and secure applications (see the 
Operating Systems Thinking feature, Ethical Systems Design).1 

Computer security addresses the issue of preventing unauthorized access to 
resources and information maintained by computers. Computer systems must pro-
vide mechanisms to manage security threats originating both from outside the com
puter (via a network connection) and from within the computer (via malicious users 
and software). Computer security commonly encompasses guaranteeing the privacy 

19. 1 Introduction 
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Operating Systems Thinking 
Ethical Systems Design 

our professional responsibilities to 
build dependable systems. Can we 
continue to build systems that are 
so easily attacked and compro
mised, and employ those systems 
in situations where people's 
health and lives are at stake? It is 
software, not computer hard
ware, which has been most vul
nerable to attack. Operating 
systems designers must conscien
tiously deal with the same kinds 
of ethical dilemmas as those faced 
by other professional people such 
as doctors, attorneys, scientists 
and engineers. 

uations. Should we build systems 
that could fail? What is an 
"acceptable" level of failure? 
Who is responsible when com
puter systems fail? Should we 
build systems so complex that we 
cannot be certain they wil l per
form properly?3 Operating sys
tems designers need to be 
concerned with these and other 
important ethical issues. 

With viruses and worms 
attacking our computer systems in 
record numbers, we must think 
seriously about just how vulnera
ble our systems are, and about 

We have entrusted our lives to 
computers in a manner that 
demands ethical behavior on the 
part of operating systems design
ers.2 People who work wi th com
puters and communication 
devices are often privy to confi
dential information they would 
not ordinarily see. Computer sys
tems control heart pacemakers, 
monitor air traffic and process 
confidential financial, medical 
and criminal records. People who 
design computer systems must 
realize that these systems are 
used and relied upon in critical sit-



and integrity of sensitive data, restricting the use of computer resources and provid-
ing protection against malicious attempts to incapacitate the system. Protection 
encompasses mechanisms that shield resources such as hardware and operating sys-
tem services from attack. Security is quickly becoming one of the richest and most 
challenging topics in computing; operating system security is at the core of a secure 
computing system. 

This chapter also explores the fundamentals of Internet security, including the 
implementation of secure electronic transactions and secure networks. We discuss 
how to achieve network security using current technologies—including cryptogra
phy, Public Key Infrastructure (PKI), digital signatures, Secure Sockets Layer 
(SSL) and Virtual Private Networks (VPNs). We also examine authentication and 
authorization solutions, firewalls and intrusion detection systems. At the end of the 
chapter, we discuss UNIX security. Linux operating systems security and Windows 
XP operating systems security are discussed in Section 20.13 and Section 21.13, 
respectively. 

1. Why are security and protection important even for computers that do not contain sensi
tive data? 

2. What is the difference between security and protection? 

Ans: 1) All computers, regardless of the data they manage, are susceptible to security 
breaches that may crash the system, spread viruses or commit identity theft. 2) Security 
addresses the issue of preventing unauthorized access to resources and information main
tained by computers. Protection refers to the mechanisms that shield resources such as hard
ware and operating system services from attack. 

An important goal of computing is to make massive amounts of data easily avail
able. Electronic data transmission, especially over public wires, is inherently inse
cure. A solution to this problem is to make data unreadable to any unauthorized 
user, through encryption. Many security mechanisms rely on encryption to protect 
sensitive data such as passwords. 

Cryptography focuses on encoding and decoding data so that it can be inter
preted only by the intended recipients. Data is transformed by the use of a cipher, 
or cryptosystem—a mathematical algorithm for encrypting messages. A key, repre
sented by a string of characters, is input to the cipher. The algorithm transforms the 
unencrypted data, or plaintext, into encrypted data, or ciphertext, using the keys as 
input—different keys result in different ciphertext. The aim is to render the data 
incomprehensible to any unintended receivers (i.e., those who do not possess the 
decryption key). Only the intended receivers should have the key to decrypt the 
ciphertext into plaintext. 

First employed by the ancient Egyptians, cryptographic ciphers have been 
used throughout history to conceal and protect valuable information. Ancient cryp-
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tographers encrypted messages by hand, usually with a method based on the alpha
betic letters of the message. The ancients' two primary types of ciphers were 
substitution ciphers and transposition ciphers. In a substitution cipher, every occur
rence of a given letter is replaced by a different letter. For example, if every "a" 
were replaced by a "b," every "b" by a "c," and so on, the word "security" would 
encrypt to "tfdvsjuz." The first prominent substitution cipher was credited to Julius 
Caesar and is referred to today as the Caesar cipher. Using the Caesar cipher, every 
instance of a letter is replaced by the letter in the alphabet three places to the right. 
For example, the word "security" would encrypt to "vhfxulwb."4 

In a transposition cipher, the ordering of the letters is shifted. For example, if 
every other letter, starting with "s," in the word "security" creates the first word in 
the ciphertext and the remaining letters create the second word, the word "secu
rity" encrypts to "scrt euiy." An encrypted message becomes increasingly robust 
(i.e., difficult to decipher) when its cipher combines substitution and transposition 
ciphers. For example, using the substitution cipher in combination with the transpo
sition cipher, the word "security" encrypts to "tdsu fvjz."5 

The greatest weakness of many early ciphers was their reliance on the sender 
and receiver remembering the encryption algorithm and maintaining its secrecy. 
Such algorithms are called restricted algorithms. Restricted algorithms are not fea
sible to implement for a large group of people. Imagine if the security of U.S. gov-
ernment communications relied on every employee keeping a secret—the 
encryption algorithm could easily be compromised. 

Modern cryptosystems rely on algorithms that operate on the individual bits 
or blocks (a group of bits) of data, rather than letters of the alphabet. Encryption 
and decryption keys are binary strings with a given key length. For example, 128-bit 
encryption systems have a key length of 128 bits. Longer keys have stronger encryp
tion; it takes more time and computing power to "break" the encryption. Longer 
keys also require more processing time to encrypt and decrypt data, reducing sys-
tern performance. The growth of computer networking has made the security/per
formance trade-off more challenging. 

Until January 2000, the U.S. government placed restrictions on the strength of 
cryptosystems that could be exported from the United States by limiting the key 
length of exported encryption algorithms. Today, the regulations are less stringent. 
Any cryptography product may be exported, as long as the end user is not a foreign 
government or a member of a country with embargo restrictions.6 

1. Consider a cipher that randomly reorders the letters of each word in a message. Why is 
such a cipher inappropriate for encryption? 

2. What is the primary weakness of restricted algorithms? 

Ans: 1) The receiver would be unable to decipher the ciphertext because it would have no 
way of knowing how the letters were reordered. 2) The sender and receiver must remember 
the encryption algorithm and maintain its secrecy; thus, restricted algorithms are not feasible 
to implement for a large group of people. 
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Symmetric cryptography, also known as secret-key cryptography, uses the same 
secret key to encrypt and decrypt a message (Fig. 19.1). In this case, the sender 
encrypts a message using the secret key, then sends the encrypted message to the 
intended recipient, who decrypts the message using the same secret key. A limita
tion of secret-key cryptography is that before two parties can communicate 
securely, they must find a secure way to exchange the secret key. 

A solution is to have the key delivered by a courier or other mail service. 
While this approach may be feasible when two parties communicate, it does not 
scale well to large networks. Moreover, secret-key encryption cannot be considered 
completely secure, because message privacy and integrity can be compromised if 
the key is intercepted as it is passed between the sender and the receiver. Also, 
because both parties in the transaction use the same key to encrypt and decrypt a 
message, one cannot determine which party created a message. This enables a third 
party, posing as one of the two authorized parties, to create a message after captur
ing the key. Finally, to maintain private communications, a sender needs a different 
secret key for each receiver. Consequently, secure computing in large organizations 
would necessitate maintaining large numbers of secret keys for each user, requiring 
significant data storage. 

An alternative approach to the key-exchange problem is to create a central 
authority, called a key distribution center (KDC), which shares a different secret 
key with every user in the network. The key distribution center generates a session 
key to be used for a transaction (Fig. 19.2), then delivers the session key to the 
sender and receiver, encrypted with the secret key they each share with the key dis
tribution center. 

For example, suppose a merchant and a customer wish to conduct a secure 
transaction. They each share unique secret keys with the key distribution center. 
The KDC generates a session key for the merchant and customer to use in the 

Figure 19.1 | Encrypting and decrypting a message using a secret key. 
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Figure 19.2 | Distributing a session key with a key distribution center. 
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transaction, then sends the session key for the transaction to the merchant, 
encrypted using the secret key the merchant already shares with the center. The 
KDC sends the same session key for the transaction to the customer, encrypted 
using the secret key the customer already shares with the KDC. Once the merchant 
and the customer obtain the session key for the transaction, they can communicate 
with each other, encrypting their messages using the shared session key. 

A key distribution center reduces the number of courier deliveries of secret 
keys to each user in the network. In addition, it gives users a new secret key for 
each communication with other users in the network, which greatly increases the 
level of security of the network. However, if the security of the key distribution cen
ter is compromised, then the security of the entire network is also compromised. 

One commonly used symmetric encryption algorithm is the Data Encryption 
Standard (DES). Horst Feistel of IBM created the Lucifer algorithm, which was 
chosen as the DES by the U.S. government and the National Security Agency 
(NSA) in the 1970s.7 DES has a key length of 56 bits and encrypts data in 64-bit 
blocks. This type of encryption is known as a block cipher, because it creates groups 
of bits from a message, then applies an encryption algorithm to the block as a 
whole. This technique reduces the amount of computer processing power and time 
required to encrypt data. 

For many years, DES was the encryption standard set by the U.S. government 
and the American National Standards Institute (ANSI). However, due to advances 
in technology and computing speed, DES is no longer considered secure—in the 
late 1990s, specialized DES cracker machines were built that recovered DES keys 
after a period of several hours.8 Consequently, the standard for symmetric encryp-
tion was replaced by Triple DES, or 3DES, a variant of DES that is essentially three 
DES systems in series, each with a different secret key that operates on a block. 



Though 3DES is more secure, the three passes through the DES algorithm increase 
encryption overhead, leading to reduced performance. 

In October 2000, the U.S. government selected a more secure standard for 
symmetric encryption to replace DES, called the Advanced Encryption Standard 
(AES). The National Institute of Standards and Technology (NIST)- which sets 
the cryptographic standards for the U.S. government—chose Rijndael as the 
encryption method for AES. Rijndael is a block cipher developed by Dr. Joan Dae-
men and Dr. Vincent Rijmen of Belgium. Rijndael can be used with key sizes and 
block sizes of 128, 192 or 256 bits. Rijndael was chosen as the AES over four other 
finalists due to its high level of security, performance, efficiency, and flexibility and 
its low memory requirement for computing systems.9 
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1. Discuss the advantages and disadvantages of secret-key cryptography. 
2. What limits the strength of most encryption algorithms? 

Ans: 1) An advantage is that encryption and decryption via secret-key cryptography are 
straightforward because both parties share the same key, making secret-key encryption 
highly efficient. Disadvantages are that it does not provide authentication and it requires a 
secure way to transmit the secret key so that a third party does not intercept it. 2) The pri
mary limitation to most encryption algorithms is the amount of computational power 
required to implement them. 

Self Review 

In 1976, Whitfield Diffie and Martin Hellman, researchers at Stanford University, 
developed public-key cryptography to solve the problem of securely exchanging 
symmetric keys. Public-key cryptography is asymmetric in that it employs two 
inversely related keys: a public key and a private key. The private key is kept secret 
by its owner and the public key is freely distributed. If the public key encrypts a 
message, only the corresponding private key can decrypt it (Fig. 19.3) and vice 
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Figure 19.7 | Encrypting and decrypting a messageusing public-key cryptography. 



versa. Each party in a transaction possesses both a public key and a private key. To 
transmit a message securely, the sender uses the receiver's public key to encrypt the 
message. The receiver then decrypts the message, using his or her unique private 
key. Assuming that the private key has been kept secret, the message cannot be 
read by anyone other than the intended receiver. Thus the system ensures the pri
vacy of the message. 

Secure public-key algorithms depend on a private key that is computationally 
infeasible to deduce from the public key within a reasonable amount of time. Such 
algorithms are called "one-way" or "trap-door" functions, because the message 
requires little computation to encrypt using the public key, but takes significant 
computing power and time to decrypt without knowledge of the private key Mod
erately secure encryption requires years for a single computer to decrypt. [Note: 
D i s t r i b u t e d . n e t ' s RC5 competition offers a cash award to decrypt a message 
encrypted by a one-way function. The competition attracts thousands of users that 
work in parallel to discover the key Recently, over 300,000 participants devoted 
computer power to crack a message encrypted using a 64-bit key. The key was 
found in August of 2002 after 1,757 days of computation, equivalent to 46,000 2GHz 
processors working in parallel.10 The most powerful computer at the time was the 
Earth Simulator, which contained 5,120 500MHz processors.] 

The security of the system relies on the secrecy of the private keys. Therefore, 
if a third party obtains the private key used in decryption, the security of the entire 
system is compromised. If system integrity is compromised, the user can simply 
change the key, rather than change the entire encryption or decryption algorithm. 

Both the public key or the private key can be used to encrypt or decrypt a 
message. For example, if a customer uses a merchant's public key to encrypt a mes
sage, only the merchant can decrypt the message, using the merchant's private key. 
Thus, the merchant's identity can be authenticated, because only the merchant 
knows the private key. However, the merchant cannot validate the customer's iden
tity, because the encryption key the customer used is publicly available. 

If the decryption key is the sender's public key and the encryption key is the 
sender's private key, the sender of the message can be authenticated. For example, 
suppose a customer sends a merchant a message encrypted using the customer's 
private key. The merchant decrypts the message using the customer's public key. 
Because the customer encrypted the message using his or her private key, the mer
chant can be confident of the customer's identity. This process authenticates the 
sender but does not ensure confidentiality, as any third party could decrypt the mes
sage with the sender's public key. The problem of proving ownership of a public key 
is discussed in Section 19.9, Public-Key Infrastructure, Certificates and Certificate 
Authorities. 

These two methods of public-key encryption can be combined to authenticate 
both participants in a communication (Fig. 19.4). Suppose a merchant wishes to 
send a message securely to a customer so that only the customer can read it. and 
also to provide proof to the customer that the merchant sent the message. First, the 
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Figure 19.4 | Authentication with a public-key algorithm. 

merchant encrypts the message using the customer's public key. This step guaran
tees that only the customer can read the message. Then the merchant encrypts the 
result using the merchant's private key, which proves the identity of the merchant. 
The customer decrypts the message in reverse order. First, the customer uses the 
merchant's public key. Because only the merchant could have encrypted the mes
sage with the inversely related private key, this step authenticates the merchant. 
Then the customer uses the customer's private key to decrypt the next level of 
encryption. This step ensures that the content of the message remained private in 
the transmission, because only the customer has the key to decrypt the message. 

The most commonly used public-key algorithm is RSA, an encryption system 
developed in 1977 by MIT professors Ron Rivest, Adi Shamir and Leonard Adle-
man (see the Biographical Note, Rivest, Shamir and Adleman).11 Their encryption 
products are built into hundreds of millions of copies of the most popular Internet 
applications, including Web browsers, commerce servers and e-mail systems. Most 
secure e-commerce transactions and communications on the Internet use RSA 
products. 

Pretty Good Privacy (PGP), a public-key encryption system that encrypts e-
mail messages and files, was designed in 1991 by Phillip Zimmermann.12 PGP can 
also provide digital signatures (see Section 19.8.2, Digital Signatures) that confirm 
the identity of an author of an e-mail or public posting. 

PGP is based on a "web of trust"; each client in a network can vouch for 
another client's identity to prove ownership of a public key. The "web of trust" is 

used to authenticate each client. If users know the identity of a public key holder, 
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through personal contact or another secure method, they validate the key by sign
ing it with their own key. The web of trust grows as more users validate the keys of 
others. To learn more about PGP and to download a free copy of the software, visit 
the MIT Distribution Center for PGP at web.mit .edu/network/pgp.html. 

1. How does secret-key cryptography differ from public-key cryptography? 
2. For which types of communication is PGP appropriate? 

Ans: 1) Secret-key cryptography uses the same secret key to encrypt and decrypt a mes-
sage. Public-key cryptography employs two inversely related keys: a public key and a private 
key. The private key is kept secret by its owner, while the public key is freely distributed-if 
the public key encrypts a message, only the corresponding private key can decrypt it. 
2) PGP's security increases as the number of users in the Web of trust increases. Thus, PGP is 
appropriate for communication among a group of users (e.g., e-mail or public forums). 

Self Review 

Identifying users and the actions they are allowed to perform is vital to maintaining 
a secure computing system. A user can be identified by: 
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Biographical Note 
Rivest, Shamir and Adleman 
Ronald Rivest, Adi Shamir and 
Leonard Adleman are the inven
tors of the RSA cryptography 
algorithm. This algorithm is used 
in over one billion copies of 
secure software applications.13 

Rivest, Shamir and Adleman 
met in the 1970s while working as 
assistant professors in Math at 
MIT. When Whitf ield Diffie and 
Martin Hellman published their 
new theory of public-key cryptog
raphy in 1977, Rivest and Shamir 
tried to f ind a practical implemen-

tat ion. They enlisted Adleman to 
test out their ideas; he disproved 
over 40 of their designs until they 
finally found the mechanism that 
they published as "A Method for 
Obtaining Digital Signatures and 
Public-Key Cryptosystems" in 
Communications of the ACM in 
1978.14 Rivest, Shamir and Adle
man obtained a patent for their 
algorithm and started the RSA 
Data Security company (now 
named RSA Security) in 1982.15, 16 

Together they won the 2002 
Turing Award for their develop
ment of the RSA code.17 

The RSA Security company 
uses the RSA algorithm in security 
software including authentication 
mechanisms, smart cards, digital 
certificates and software develop
ment kits (SDKs) to facilitate the 
development of secure applica
tions. RSA Security dominates the 
field of authentication software, 
controlling over 65 percent of the 
market.18 



• a unique characteristic of the person (e.g., fingerprints, voiceprints, retina 
scans and signatures). 

• ownership of an item (e.g., badges, identification cards, keys and smart 
cards). 

• user knowledge (e.g., passwords, personal identification numbers (PINs) 
and lock combinations). 

In the sections that follow, we discuss common authentication methods. 
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Self Review 
1. Of the three identification methods mentioned in this section, which one is least likely to 

be compromised by eavesdroppers? 
2. How might security be compromised in a system that requires only ownership of an item 

or only user knowledge for authentication? 

Ans: 1) A unique characteristic of a person. 2) Under authentication by ownership of an 
item, the item may be stolen. Users tend to write down information such as passwords and 
PINs, so security could be compromised if an unauthorized user finds such a record. 

The most common authentication scheme is simple password protection.19 The user 
chooses a password, memorizes it and then enters it into the system to gain admis
sion to a resource or system. Most systems suppress the display of a password on 
the screen by replacing password text with masking characters (which display 
"dummy" characters —often asterisks—for password characters entered) or by hid
ing password input. 

Password protection introduces several weaknesses to a secure system.20 

Users tend to choose passwords that are easy to remember, such as the name of a 
spouse or pet. Someone who has obtained personal information about the user 
might try to log in several times using passwords that are characteristic of the user; 
several repeated attempts might result in a security breach. Some early systems lim
ited users to short passwords; these systems were easily compromised by simply 
attempting all possible passwords—a technique known as brute-force cracking. 

Most systems today require longer passwords that include both alphabetic 
and numeric characters to thwart such penetration attempts. Some systems even 
prohibit use of dictionary words as password values. However, long passwords do 
not necessarily improve the security of a system; if passwords are difficult to 
remember, users will be more inclined to make a note of them, making it easier for 
an intruder to obtain a password. 

Penetration of an operating system's defenses need not necessarily result in a 
significant security compromise. For example, suppose an intruder manages to gain 
access to a system's master list of passwords. If the password file were stored in 
plaintext, such penetration would enable the intruder to access any information on 
the system by assuming the identity of any user. To reduce the effectiveness of a sto
len password file, many operating systems encrypt the password file or store only 
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hash values for each password. In this case, a copy of the password file is of little use 
unless the intruder can decrypt the passwords. To further thwart attempts at obtain
ing passwords, several systems employ password salting, which is a technique that 
inserts characters at various positions in the password before encryption (Fig. 19.5). 
Note how, in Fig. 19.5, a small amount of salting can significantly alter ciphertext. 
even when using a weak cipher such as a substitution cipher (base 64 encoding). 
Salting can prevent intruders from obtaining an encryption key based on patterns 
produced by common passwords after encryption. 

Users are encouraged to change their passwords often; even if an intruder 
obtains a password, it may be changed before any real damage can be done. Some 
systems require that users choose new passwords on a regular basis. Unfortunately, 
some users will reuse two or three passwords cyclically, reducing overall security. In 
response, several authentication systems prohibit repeated use of a user's most 
recent password choices. 

A simple defense against brute-force cracking and repeated password trials is to 
limit the number of login attempts that may be initiated in any period of time from a 
single terminal or workstation (or from a single account). Certainly, people make typ
ing errors when attempting to log in, but it is unreasonable for someone who knows 
the correct password to require tens, hundreds or thousands of tries. Therefore, a sys
tem might allow three or four tries, then disconnect the terminal for several seconds 
or minutes. After a waiting period, the terminal may be reconnected. 
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1. (T/F) Longer and more complicated passwords guarantee higher security. 
2. How does salting improve password security? 

Ans: 1) False. Longer and more complicated passwords usually result in the user writing 
down the password, enabling intruders to steal it. 2) Salting can prevent intruders from deter
mining an encryption key based on patterns produced by common passwords after encryption. 

Self Review 

An innovation in security, once limited to the movies but becoming increasingly com-
mon in today's secure systems, is biometrics. Biometrics uses unique personal infor-
mation—such as fingerprints, eyeball iris scans or face scans—to identify a user. The 
number of passwords an average user must remember has increased due to the prolif-
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Plaintext Ciphertext 

Figure 19.5 | Salting passwords (Base 64 encoding). 

password 

psasaswlortd 

newpassword 

nsewaplatssewodrd 

cGFzc3dvcmQ= 
cHNhc2Fzd2xvcnRk 
bmV3cCFzc3dvcmQ= 
bnM d2FwbGFOc3N1d29kcmQ= 



eration of sensitive data transmitted over unsecure channels. [Note: People in the 
security community prefer unsecure to insecure.] As a result, passwords have become 
an increasing burden to secure computing. This trend can be detrimental to security, 
as users record passwords on paper or employ the same password for several 
accounts. Consequently biometrics has become an attractive alternative to passwords, 
and the cost of biometric devices has dropped significantly. 

Fingerprint-scanning, face-scanning and iris-scanning devices are replacing 
the use of passwords to log into systems, check e-mail or access secure information 
over a network. Each user's fingerprint, face scan or iris scan is stored in a secure 
database. Each time a user logs in, his or her scan is compared with the database. If 
a match is made, the login is successful. Two companies that specialize in biometric 
devices are IriScan (www.iriscan.com) and Keytronic (www.keytronic.com). For 
additional resources, see the Web Resources section at the end of the chapter. 

Although passwords are currently the predominant means of authentication 
in computer systems and e-commerce, several platforms have embraced biometrics. 
In 2000, Microsoft announced its Biometric Application Programming Interface 
(BAPI), which is included in its Windows 2000 and Windows XP operating systems 
to simplify the integration of biometrics into personal and corporate systems.21 

Keyware Inc. (www. keyware.com) has implemented a wireless biometrics sys
tem that stores user voiceprints on a central server. Keyware also created layered 
biometric verification (LBV), which uses multiple physical measurements—face, 
finger and voice prints—simultaneously. The LBV feature enables a wireless bio
metrics system to combine biometrics with other authentication methods, such as 
personal identification numbers (PIN) and PKI (Public Key Infrastructure; see 
Section 19.9, Public-Key Infrastructure, Certificates and Certificate Authorities).22 

Identix, Inc. (www.identix.com) also provides biometrics authentication 
technology for wireless transactions. The Identix fingerprint-scanning device is 
embedded in handheld devices. The Identix service offers transaction management 
and content protection services. Transaction management services prove that trans
actions took place, and content protection services control access to electronic doc
uments, including limiting a user's ability to download or copy documents.23 

A smart card, often designed to resemble a credit card, is typically used to 
perform authentication and store data. The most popular smart cards are memory 
cards and microprocessor cards. Memory cards can store and transfer data. Micro
processor cards contain computer components, managed by an operating system, 
that provide security and storage. Smart cards are also characterized by their inter
face to reading devices. One is a contact interface, whereby smart cards are inserted 
into a reading device, requiring physical contact between the device and the card 
for data transfer. Alternatively, a contactless interface allows data to be transferred 
without physical contact between the reader and the card, often accomplished with 
an embedded wireless device in the card.24 

Smart cards can store private keys, digital certificates and other information 
necessary for implementing PKI. They may also store credit card numbers, personal 
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contact information, and the like. Each smart card can be used in combination with 
a PIN. This feature provides two levels of security by requiring the user to possess a 
smart card and know the corresponding PIN to access information stored on the 
card. To further strengthen security, some microprocessor cards will delete or cor
rupt stored data in the event of malicious tampering with the card. Smart-card PKI 
allows users to access information from multiple devices using the same smart card. 

Two-factor authentication employs two means to authenticate the user, such 
as biometrics or a smart card used in combination with a password. Though this sys
tem could potentially be compromised, using two methods of authentication typi
cally provides better security than passwords alone. 
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1. Why is it difficult for an unauthorized user to gain access in a system that uses biometrics 
for security? 

2. Explain one disadvantage to storing unencrypted user information on a smart card. 

Ans: 1) It is difficult to replicate another user's physical features. 2) If the smart card is sto
len, another individual could access that user's potentially sensitive information. 

Self Review 

Internal computer attacks (i.e., attacks that originate from a valid user) are com-
mon and can be extremely damaging. For example, disgruntled employees with net
work access can disable an organization's network or steal valuable proprietary 
information. It is estimated that 70-90 percent of attacks on corporate networks are 
internal.25 A centralized, secure authentication system can facilitate a fast response 
to such security attacks. Kerberos, a freely available, open-source protocol devel
oped at MIT, can provide protection against internal security attacks. It employs 
secret-key cryptography to authenticate users in a network and to maintain the 
integrity and privacy of network communications.26'27 

Authentication in Kerberos is handled by an authentication server and a sec-
ondary Ticket Granting Service (TGS). This system is similar to the key distribution 
centers described in Section 19.2.1, Secret-Key Cryptography. The authentication 
server authenticates a client's identity to the TGS; the TGS authenticates the cli
ent's rights to access specific network services. 

Each client in the network shares a secret key with the Kerberos system. This 
secret key may be stored by multiple TGSs in the Kerberos system. The Kerberos 
system works as follows:28 

1. The client begins by submitting a username and password to the Kerberos 
authentication server. 

2. The authentication server maintains a database of all clients in the net-
work. If the username and password are valid, the authentication server 
returns a Ticket-Granting Ticket (TGT) encrypted with the client's secret 
key. Because the secret key is known only by the authentication server and 
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the client, only the client can decrypt the TGT, thus authenticating the cli
ent's identity. 

3. The client sends the decrypted TGT to the Ticket Granting Service to 
request a service ticket. The service ticket authorizes the client's access to 
specific network services. Service tickets are assigned an expiration time 
and can be renewed or revoked by the TGS. If the TGT is valid, the TGS 
issues a service ticket encrypted with the client's session key. 

4. The client then decrypts the service ticket, which it then presents to gain 
access to networked resources. 
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1. In Kerberos authentication, why must the connection between clients and the authentica
tion server be secure? 

2. Why is it appropriate for tickets to expire? 

Ans: 1) If the connection is not secure, eavesdroppers could steal user names and passwords 
to gain access to secure resources. 2) It is appropriate for tickets to expire because it forces 
users to reauthenticate often. For example, if an authorized user leaves a terminal while logged 
in, the ticket can expire before an unauthorized user can cause significant damage. 

Self Review 

Single sign-on systems simplify the authentication process by allowing the user to 
log in once, using a single password. Users authenticated via a single sign-on system 
can then access multiple applications across multiple computers. Sign-on passwords 
should be closely guarded, because if a password becomes available to attackers, all 
applications protected by that password can be accessed and attacked. 

Workstation login scripts are the simplest form of single sign-on. Users log in 
at their workstations, then choose applications from a menu. The workstation login 
script sends the user's password to the application servers to authenticate the user 
for future access to those applications. Many workstation login scripts do not pro
vide a sufficient level of security, because user passwords are often stored on the cli
ent computer in plaintext. Even if the script uses simple password encryption, that 
algorithm must be present on the system, meaning that any intruder that gains 
access to the computer will be able to compromise the encryption. 

Authentication server scripts authenticate users via a central server. The cen
tral server controls connections between the user and the applications the user 
wishes to access. Authentication server scripts are more secure than workstation 
login scripts because passwords are maintained on the server, which is generally 
more secure than the client computer. However, if the security of the server is com
promised, the security of the entire system is also compromised. 

The most advanced single sign-on systems employ token-based authentica
tion. Once a user is authenticated, a unique token is issued to enable the user to 
access specific applications. The login that creates the token is secured by encryp
tion or a single password. For example, Kerberos uses token-based authentication, 
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in which the service ticket acts as the token. A key problem with token authentica
tion is that applications must be modified to accept tokens, rather than traditional 
login passwords.29 

Currently, the three leaders in development of single sign-on technology are 
the Liberty Alliance Project (www.project l iber ty .org) , Microsoft and Novell. 
The Liberty Alliance Project is a consortium of technology and security organiza
tions working to create an open single sign-on solution. Microsoft's .NET Passport 
and Novell's SecureLogin are also viable solutions, though they are proprietary. To 
protect the privacy of information submitted to single sign-on and other applica
tions, the Platform for Privacy Preferences (P3P) allows users to control the per
sonal information that sites collect.30, 31 

1. Of the three single sign-on services, which is the most secure? 
2. In what way are workstation login scripts more secure than authentication server scripts? 

Ans: 1) Token-based authentication is the most secure. However, it is also the most compli
cated scheme. 2) Workstation login scripts are more secure in that the security for all of the 
other users in the system is not compromised if the security of a workstation login script is 
compromised. 

Self Review 

As a resource manager, the operating system must carefully guard against uninten-
tional and malicious use of computer resources. Consequently, today's operating 
systems are designed to protect operating system services and sensitive information 
from users and/or software that have gained access to computer resources. Access 
rights protect system resources and services from potentially dangerous users by 
restricting or limiting the actions that can be performed on the resource. These 
rights are typically managed by access control lists or capability lists. 

19.4 Access Control 

The key to operating system security is to control access to internal data and 
resources. Access rights define how various subjects can access various objects. Sub-
jects may be users, processes, programs or other entities. Objects are resources such 
as hardware, software and data; they may be physical objects that correspond to 
disks, processors or main memory. They may also be abstract objects that corre-
spond to data structures, processes or services. Subjects can also be objects of the 
system; one subject may have rights to access another. Subjects are active entities, 
objects are passive. As a system runs, its population of subjects and objects tends to 
change. The manner in which a subject can access an object is called a privilege and 
can include reading, writing and printing. 

Objects must be protected from subjects. If a process were allowed to access 
every resource on a system, a user could maliciously (or inadvertently) compromise 
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system security or cause other programs to crash. To prevent such events from 
occurring, each subject must obtain authorization to access objects within a system. 

A protection domain is a collection of access rights. Each access right in a pro
tection domain is represented as an ordered pair with fields for the object name and 
its corresponding privileges. A protection domain is unique to a subject. For example, 
if a user can read and write the file example.txt , the corresponding ordered pair for 
this user's access right can be represented by <example. txt , { read, write}>.32 

The most common access rights are read, write and execute. Some subjects 
may also grant access rights to other subjects. In most computing systems, the 
administrator possesses all access rights and is responsible for managing other 
users' rights. 

Access rights may be copied, transferred or propagated from one domain to 
another. Copying an access right simply entails granting a right of one user to 
another user. When an access right is transferred from subject A to subject B, sub
ject A's access right is revoked upon completion of the transfer. Propagating an 
access right is similar to copying an access right; however, in addition to sharing the 
original access right, both subjects can also copy the right to other subjects. 

When a subject no longer needs access to an object, access rights can be 
revoked. Several issues arise—should revocation be immediate or delayed? Should 
revocation apply to all objects or a select few? Should revocation apply to specific 
subjects or an entire domain? Should revocation be permanent or temporary? Each 
implementation of access rights management addresses revocation differently; we 
discuss several implementations in Section 19.4.3.33 

19.4 Access Control 887 

1. (T/F) The term subject always refers to users in a system. 
2. Explain the difference between copying access rights and propagating access rights. 

Ans: 1) False. The term subject can refer to users, processes, programs and other entities. 
2) If subject A copies a right to subject B, subject B will not be able to grant that right to 
other subjects. However, if subject A propagates a right to subject B, subject B will be able to 
grant that right to other subjects. 

Access control can be divided into three conceptual levels: models, policies and 
mechanisms. A security model defines a system's subjects, objects and privileges. A 
security policy, which is typically specified by the user and/or system administrator, 
defines which privileges to objects are assigned to subjects. The security mechanism 
is the method by which the system implements the security policy. In many systems, 
the policy changes over time as the system's set of resources and users change, but 
the security model and mechanisms that implement access control do not require 
modification, so the security policy is separated from the mechanism and model. 

A popular security model organizes users into classes, as discussed in 
Section 13.8.2, Access Control by User Classes. A drawback is that access rights are 
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stored in each file and specify a single owner and group, so at most one group can 
access a particular file. Further, the system might need to modify group permissions 
for several files when assigning new access rights to a group of users—an error-
prone and time-consuming process. 

In the role-based access control (RBAC) model, users are assigned roles, each 
typically representing a set of tasks assigned to a member of an organization. Each 
role is assigned a set of privileges, which define the objects that users in each role 
can access.34 Users can belong to multiple roles; administrators need only modify 
permissions for a single role to change access rights for a group of users. The appeal 
of RBAC is that it assigns meaningful relationships between subjects and objects 
that are not limited by classes such as owners and groups. 

For example, consider an academic computer system with the following roles: 
faculty members create and grade assignments, students submit completed assign
ments and staff members post grades to student transcripts. Under the RBAC 
model, this system consists of three roles (students, faculty and staff), two objects 
(assignments and grades) and three permissions (read, modify and create). In this 
example, faculty have permission to create, read and modify both assignments and 
grades; students have permission to read and modify copies of coursework and read 
grades; staff have permission to read and modify grades. 

Although security policies vary to meet the needs of users in a system, most 
policies incorporate the principle of least privilege —a subject is granted access only 
to the objects it requires to perform its tasks. Policies can also implement discre-
tionary or mandatory access control depending on the security needs of the envi
ronment. Most UNIX-based systems follow the discretionary access control (DAC) 
model, whereby the creator of an object controls the permissions for that object. 
On the contrary, mandatory access control (MAC) policies predefine a central per
mission scheme by which all subjects and objects are controlled. MAC is found in 
many high-security installations, such as classified government systems.35 

1. Why are access control policies and mechanisms typically separated? 
2. How might MAC be more secure than DAC? 

Ans: 1) Policies often change without requiring modification to their underlying implemen-
tation; changing policies requires less work if the security policy is separated from the secu-
rity mechanism. 2) MAC prevents users from accidentally or intentionally assigning 
permissions that might compromise system security (e.g., the owner of a file assigning public 
access to sensitive information). 

In this section we discuss various techniques that an operating system can employ 
to manage access rights. Access control matrices match subjects and objects to the 
appropriate access rights. The concept behind the model is simple; however, most 
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systems contain many subjects and objects, resulting in a large matrix that is an inef
ficient means for access control. Access control lists and capability lists are derived 
from the principle of least privilege and are often more efficient and flexible meth
ods of managing access rights. Section 20.13.2, Access Control Methods, and 
Section 21.13.2, Authorization, discuss how Linux and Windows XP, respectively, 
use access control methods to secure their systems. 
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One way to manage access rights is in an access control matrix. The various subjects 
are listed in the rows, and the objects to which they require access are listed in the 
columns. Each cell in the matrix specifies the actions that a subject (defined by the 
row) can perform on an object (defined by the column). Access rights in an access 
control matrix are granted on the basis of least privilege, so if an access right is not 
explicitly described in the matrix, the user has no access rights to the object.36 

Because an access control matrix places all permission information in a cen
tral location, the matrix should be one of the most closely guarded entities in an 
operating system. If the matrix is compromised, any resources that were protected 
by the access rights defined in the matrix are susceptible to attack as well. 

The access control matrix in Fig. 19.6 represents the access rights for the users 
(Alice, Bob, Chris , David and Guest) to the objects (F i l e A, F i l e B and 
Pri n ter ) . The privileges that a user can obtain for an object are read, w r i t e and 
pr in t . The read and wr i t e access rights apply only to files on the system, in this 
case, F i l e A and F i l e B. In some environments, not every user has access to the 
printer—a user must explicitly have the p r i n t privilege to send content to the 
printer. Any access right that is followed by an asterisk (*) can be copied from one 
user to another. In this access control matrix, Al ice has all access rights as well as 
the ability to assign these rights to other users. Davi d cannot access Fi 1 e A because 
there is no entry in the corresponding cell in the matrix. The Guest account con
tains no access rights by default. A Guest can access resources only when the right 
is explicitly granted by another user. Although generating and interpreting an 
access control matrix is straightforward, the matrix can become large and sparsely 
populated. 

Access Control Matrices 

Figure 19.6 I Access control matrix for a small group of subjects and objects. 



An access control list stores the same data as an access control matrix, but it main
tains a record of only those entries that specify an access right. The access control 
list for a system can be based on the rows of a matrix (the subjects) or the columns 
(the objects). For each object in an operating system, an access control list contains 
entries for each subject and the privileges associated with that subject for the 
object. When a subject attempts to access an object, the system searches the access 
control list for that object to find any privileges for the subject.37 

A drawback to this method is the inefficiency with which the operating system 
determines user privileges for a particular object. The access control list for each 
object contains an entry for every subject with privileges for that object —a poten
tially large list. Each time an object is accessed, the system must search the list of 
subjects to find the proper privileges. It is difficult to determine which access rights 
belong to a certain protection domain when using access control lists; the access list 
for every object in the system must be searched for entries regarding that particular 
subject. 

The access control list in Fig. 19.7 represents the set of access rights that were 
established in the access control matrix of Fig. 19.6. The implementation is smaller 
because empty entries in the matrix are not present. If an object does not contain 
an entry for a particular user, that user has no privileges for the object. 

Access Control Lists 
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A capability is a pointer or token that grants privileges to a subject that possesses it. It 
is analogous to a ticket used to gain access to a sporting event. Capabilities ordinarily 
are not modified, but they can be reproduced. Recall that a protection domain defines 
the set of privileges between subjects and objects. Alternatively, one can define the 
protection domain as the set of capabilities belonging to a subject.38 

A capability is often implemented as a unique object identifier. Capabilities 
are granted to a subject, which presents the token for all subsequent accesses to the 

Capability Lists 

1 File A: 
2 <Alice, {read*, write*}> 
3 <Bob, {read*, wn'te}> 
4 <Chris, {read}> 
5 File B: 
6 <Alice, {read*, write*}> 
7 <Bob, {read*, write}> 
8 <David, {read}> 
9 Printer: 

10 <Alice, {pr int*}> 
11 <Bob, {pr int}> 
12 <Chris, {pr int}> 

Figure 19.7 I Access control list derived from the access control matrix. 



object. Capabilities are created by carefully guarded operating system routines. A 
subject that possesses a capability may perform certain operations, including creat
ing copies of the capability or passing it as a parameter. 

Upon creation of an object, a capability for that object is created. This original 
capability includes full privileges for the new object. The subject that creates the 
object may pass copies of the capability to other subjects. Likewise, a subject receiv
ing a capability may use it to access the object, or the subject may create additional 
copies and pass them to other subjects. When one subject passes a capability to 
another, it may reduce the associated privileges. Thus, as a capability propagates 
through the system, its privilege set can either remain the same or decrease in size. 

Users must be prevented from creating capabilities arbitrarily. This can be 
accomplished by storing capabilities in segments that user processes cannot access. 

The identifier in a capability may be implemented as a pointer to the desired 
object, or it may be a unique bit sequence (i.e., a token). Pointers simplify access to 
the address at which the object is stored, but all such pointers in the system must be 
updated if the object is moved, which can degrade performance. When using 
tokens, capabilities do not rely on the object's location in memory. However, 
because a token does not specify the location of its corresponding object, tokens 
require that the object's address be determined when the capability is first used. A 
hashing mechanism implements token-based capabilities efficiently; high-speed 
caches often reduce the overhead of repeated references to the same object. 

Systems that employ capabilities can suffer from the "lost object" problem. If 
the last remaining capability for an object is destroyed, the associated object can no 
longer be accessed. To prevent this problem, many operating systems ensure that 
the system always maintains at least one capability for each object. 

Controlling the propagation of capabilities is a difficult problem. Systems gen
erally do not allow direct manipulation of capabilities by users; instead capability 
manipulation is performed by the operating system on behalf of the users. Keeping 
track of capabilities is an important task that becomes difficult in multiuser systems 
containing a large numbers of capabilities. Many systems employ a directory struc
ture to manage their capabilities.39 
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1. In what type of environment are access control lists more appropriate than access control 
matrices? 

2. Discuss the advantages and disadvantages of token-based and pointer-based capabilities. 

Ans: 1) Access control lists are more appropriate than access control matrices when the 
matrices are sparse. In this case, access control lists require much less space than access con
trol matrices. 2) Pointers simplify access to the address at which the object is stored, but all 
such pointers in the system must be updated if the object is moved, which can degrade per
formance. When using tokens, capabilities are independent of the object's location in mem
ory. However, because a token does not specify the location of its corresponding object, 
tokens require that an object's address be determined when the capability is first used. 
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Recent cyber attacks on e-businesses have made the front pages of newspapers 
worldwide. Denial-of-service attacks (DoS), viruses and worms have cost companies 
billions of dollars and caused countless hours of frustration. Many of these attacks 
allow the perpetrator to penetrate a network or system, which can lead to data theft, 
data corruption and other attacks. In this section we discuss several types of attacks 
against computer systems. Section 19.6, Attack Prevention and Security Solutions, 
discusses possible solutions to protect a computer's information and integrity. 

19.5 Security Attacks 
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A cryptanalytic attack attempts to decrypt ciphertext without possessing the 
decryption key. The most common form of cryptanalytic attacks are those in which 
the encryption algorithm is analyzed to find relations between bits of the encryption 
key and bits of the ciphertext. The goal of such an attack is to determine the key 
from the ciphertext. 

Weak statistical trends between ciphertext and keys can be exploited to gain 
knowledge about the key. Proper key management and key expiration dates can 
reduce susceptibility to cryptanalytic attacks. The longer an encryption key is used, 
the more ciphertext an attacker can use to derive the key. If a key is covertly recov-
ered by an attacker, it can be used to decrypt every message that uses the key. 

19.5.1 Cryptanalysis 

1. How do key expiration dates reduce the effectiveness of cryptanalytic attacks? 

Ans: 1) The longer an encryption key is used, the more ciphertext an attacker can use to 
derive the key. Key expiration addresses this concern by limiting hour long each key is in use. 

A virus is executable code—often sent as an attachment to an e-mail message or 
hidden in files such as audio clips, video clips and games—that attaches to or over
writes other files to replicate itself. Viruses can corrupt files, control applications or 
even erase a hard drive. Today, viruses can be spread across a network simply by 
sharing "infected" files embedded in e-mail attachments, documents or programs. 

A worm is executable code that spreads by infecting files over a network. 
Worms rarely require any user action to propagate, nor do they need to be attached 
to another program or file to spread. Once a virus or worm is released, it can spread 
rapidly, often infecting millions of computers worldwide within minutes or hours. 

Viruses can be classified as follows: 

1. boot sector virus—infects the boot sector of the computer's hard disk, 
allowing it to load with the operating system and potentially control the 
system. 

19.5.2 Viruses and Worms 
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2. transient virus—attaches itself to a particular computer program. The virus 
is activated when the program is run and deactivated when the program is 
terminated. 

3. resident virus—once loaded into the memory of a computer, it operates 
until the computer is powered down. 

4. logic bomb—executes its code, or payload, when a given condition is met. 
An example of a logic bomb is a time bomb, which is activated when the 
clock on the computer matches a certain time or date. 

A Trojan horse is a malicious program that hides within a trusted program or 
simulates a legitimate program or feature, while actually causing damage to the 
computer or network when the program is executed. The name Trojan horse origi
nates from the story of the Trojan War in Greek legend. [Note: In this story, Greek 
warriors hid inside a wooden horse, which the Trojans took within the walls of the 
city of Troy. When night fell and the Trojans were asleep, the Greek warriors came 
out of the horse and opened the gates to the city, letting the Greek army enter and 
destroy the city of Troy] Trojan horse programs can be particularly difficult to 
detect, because they appear to be legitimate and operational applications. 

Back-door programs are resident viruses that allow the sender complete, 
undetected access to the victim's computer resources. These types of viruses are 
especially threatening to the victim, as they can be programmed to log every key
stroke (capturing all passwords, credit card numbers, etc.). 
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Two viruses that attracted significant media attention are Melissa, which struck in 
March 1999, and the ILOVEYOU virus that hit in May 2000. Each caused billions 
of dollars of damage. The Melissa virus spread in Microsoft Word documents sent 
via e-mail. When the document was opened, the virus was triggered, at which point 
it accessed a user's Microsoft Outlook address book (i.e., a list of e-mail addresses) 
on that computer and sent the infected Word attachment by e-mail to a maximum 
of 50 people in the user's address book. Each time another user opened the attach
ment, the virus would send up to 50 additional messages. Once resident in a system, 
the virus also infected any files saved using Microsoft Word. 

The ILOVEYOU virus was sent as an attachment to an e-mail posing as a love 
letter. The message in the e-mail said "Kindly check the attached love letter corning 
from me." Once opened, the virus accessed the Microsoft Outlook address book and 
sent messages to each address listed, enabling the virus to spread rapidly worldwide. 
The virus corrupted many types of files, including operating system files. Many net
works were disabled for days due to the massive number of e-mails generated. 

This virus exposed e-mail security inadequacies, such as a lack of software to 
scan file attachments for security threats before they are opened. It also taught 
users to be more aware of suspicious e-mails, even those from someone with whom 
they are familiar. 

Widespread Viruses 



Worms spread by exploiting weaknesses in communications channels established 
by software, either by applications or by the operating system. Once a weakness is 
discovered, a worm can produce network traffic sufficient to disable a single com
puter or a network of computers. Further, a worm can be designed to execute code 
on the computer it infects, potentially allowing the worm's creator to obtain or 
destroy sensitive information. 

Worm attacks that have received media attention include Nimda, Code Red 
and Sapphire, also called Slammer. Slammer, which infected most vulnerable com
puters within 10 minutes of its release on January 25, 2003, doubled the number of 
computers it infected every 8.5 seconds. [Note: Vulnerable computers were those 
running Microsoft SQLServer 2000 to which a security patch, released by Microsoft 
in July 2002, was not applied.] The infection rate was two orders of magnitude faster 
than its notable predecessor, the Code Red worm. The latter, a 4KB worm, instanti
ated multiple threads to create TCP connections to infect new hosts. On the con
trary, Slammer operated over UDP and its payload was contained in a single 404-
byte UDP packet. The connectionless UDP protocol, coupled with a random-scan
ning algorithm to generate target IP addresses, made the Slammer worm particu
larly virulent. A random-scanning algorithm uses pseudorandom numbers to 
generate a broad distribution of IP addresses as targets to infect. 

The Slammer worm caused system and network outages due to network satu
ration by its UDP packets. Interestingly, the worm included no malicious payload 
and attacked a vulnerability in an application of relatively limited worldwide use. 
The Slammer worm also contained what appeared to be a logic error in its random-
scanning algorithm that significantly limited the number of IP addresses the worm 
could reach.40 

Antivirus software can protect against viruses and some worms. Most antivi
rus software is reactive, meaning that it can attack known viruses, rather than pro
tecting against unknown or future viruses. We discuss antivirus software in 
Section 19.6.3. 

Sapphire/Slammer Worm: Analysis and Implications 
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1. How do worms differ from other viruses? 
2. What weaknesses in computer systems did the Melissa and ILOVEYOU viruses expose? 

Ans: 1) Worms typically spread via network connections and do not require user interaction 
to spread. 2) The viruses exposed insufficient file-scanning antivirus software for e-mail applica-
tions and demonstrated that users did not treat suspicious e-mails with appropriate care. 
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19.5.3 Denial.of.Service (DoS) Attacks 
A denial-of-service (Dos) attack prevents a system from servicing legitimate 
requests. In many DoS attacks, unauthorized traffic saturates a network's resources, 



restricting access for legitimate users. Typically, the attack is performed by flooding 
servers with data packets. Denial-of-service attacks usually require a network of 
computers to work simultaneously, although some skillful attacks can be achieved 
with a single machine. Denial-of-service attacks can cause networked computers to 
crash or disconnect, disrupting service on a Web site or even disabling critical sys
tems such as telecommunications or flight-control centers. 

Another type of denial-of-service attack targets a network's routing tables. 
Recall that routing tables provide a view of the network topology and are used by a 
router to determine where to send data. This type of attack is accomplished by modi-
fying the routing tables, thus maliciously redirecting network activity. For example, 
the routing tables can be changed to send all incoming data to one address in the net
work. A similar attack, called a DNS (domain name system) attack, can modify the 
address to which network traffic for a particular Web site is sent. Such attacks can be 
used to redirect users of a particular Web site to another, potentially malicious, Web 
site. These attacks are particularly dangerous if the illegitimate Web site poses as the 
real one, leading users to disclose sensitive information to the attacker. 

In a distributed denial-of-service attack, packet flooding comes from multiple 
computers at once. Such attacks are typically initiated by an individual who has 
infected several computers with a virus to gain unauthorized access to them to carry 
out the attack. Distributed denial-of-service attacks can be difficult to stop, because it 
is not easy to determine which requests on a network are from legitimate users and 
which are part of the attack. It is also particularly difficult to identify the perpetrator of 
such attacks, because they are not carried out directly from the attacker's computer. 

In February 2000, distributed denial-of-service attacks shut down a number of 
high-traffic Web sites, including Yahoo!, eBay, CNN Interactive and Amazon. In this 
case, a single user utilized a network of computers to flood the Web sites with traffic 
that overwhelmed the sites' computers. Although denial-of-service attacks merely 
shut off access to a Web site and do not affect the victim's data, they can be 
extremely costly. For example, when eBay's Web site went down for a 24-hour 
period on August 6,1999, its stock value declined dramatically.41 

Who is responsible for viruses and denial-of-service attacks? Most often the 
responsible parties are referred to as hackers, but really that is a misnomer. In the 
computer field, hacker refers to an experienced programmer, often one who programs 
as much for personal enjoyment as for the functionality of the application. The true 
term for such people is cracker, which is someone who uses a computer maliciously 
(and often illegally) to break into another system or cause another system to fail. 

1. How are DNS attacks harmful? 
2.. Why is it difficult to detect and stop distributed denial-of-service attacks? 

Ans: 1) Users unaware of malicious activity could submit sensitive information to a cracker. 
Legitimate Web sites may lose revenue because users are redirected to alternate sites. 2) It 
may be difficult to distinguish between legitimate and malicious users. 
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The result of many security attacks is system or network penetration. According to 
a study by the Computer Security Institute (www.gocsi.com), 40 percent of the 
respondents reported that an outsider had successfully penetrated their systems.42 

After an attacker exploits an operating system or the software running on the com
puter, the system is vulnerable to a number of attacks—ranging from data theft and 
manipulation to a system crash. A system penetration is a successful breach of com
puter security by an unauthorized external user.43 Every system penetration is 
potentially dangerous, although a quick response can usually thwart an intruder's 
attack before any significant damage is done. Many attacks, such as data theft and 
Web defacing, rely on a successful system penetration as a foundation. 

Web defacing is a popular form of attack wherein the crackers illegally obtain 
access to modify an organization's Web site and change the contents. Web defacing 
has attracted significant media attention. A notable case occurred in 1996, when 
Swedish crackers changed the Central Intelligence Agency Web site to read "Cen
tral Stupidity Agency." The vandals placed obscenities, political messages, notes to 
system administrators and links to adult-content sites on the page. Many other pop-
ular and large Web sites have been defaced. Defacing Web sites has become over-

19.5.5 System Penetration 

1. Why are buffer overflow attacks dangerous? 
2. How can buffer overflow attacks be prevented? 

Ans: 1) Buffer overflow attacks may modify an application's stack so that an attacker can 
execute code to gain access to the entire system. 2) An application can rigidly enforce buffer 
limits when accepting input. Also, the system can implement stack segments that are not exe
cutable. 
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Another problem plaguing e-businesses is software exploitation by crackers. Every 
program on a networked machine should be checked for vulnerabilities. However, 
with millions of software products available and vulnerabilities discovered daily, 
this becomes an overwhelming task. One common vulnerability exploitation 
method is a buffer overflow, in which a program receives input that is larger than its 
allocated space. 

A buffer overflow occurs when an application sends more data to a buffer 
than it can hold. A buffer overflow attack can push the additional data into adjacent 
buffers, corrupting or overwriting existing data. A well-designed buffer overflow 
attack can replace executable code in an application's stack to alter its behavior. 
Buffer overflow attacks may contain malicious code that will then be able to exe
cute with the same access rights as the application it attacked. Depending on the 
user and application, the attacker may gain access to the entire system. BugTraq 
(www.securityfocus.com) was created in 1993 to list vulnerabilities, how to 
exploit them and how to repair them. 

19.5.4 Software Exploitation 
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whelmingly popular among crackers today, causing archives of attacked sites (with 
records of more than 15,000 vandalized sites) to close because of the volume of sites 
that were vandalized daily.44 

System penetration often occurs as a result of a Trojan horse, back-door pro
gram or an exploited bug in software or the operating system. Allowing external 
users to access applications via the Web provides another channel for an attacker to 
penetrate a system.45 Vulnerabilities in common Web server applications, such as 
Microsoft Internet Information Services (IIS) and Apache HTTP Server, give 
attackers a well-known route to penetrating a system if administrators fail to apply 
necessary patches. System penetration can also occur on personal computers 
through software connected to the Internet, such as Web browsers. 

The CERT®/CC (Computer Emergency Response Team Coordination Center; 
www.cert .org) at Carnegie Mellon University's Software Engineering Institute is a 
federally funded research and development center. CERT/CC responds to reports of 
viruses and denial-of-service attacks and provides information on network security, 
including how to determine if a system has been compromised. The site provides 
detailed incident reports of viruses and denial of service attacks, including descrip-
tions of the incidents, their impact and solutions. The site also reports the vulnerabili
ties in popular operating systems and software packages. The CERT Security 
Improvement Modules are excellent tutorials on network security. These modules 
describe the issues and technologies used to solve network security problems. 

1. List several techniques crackers use to penetrate systems. 
2. Compare Web defacing to a DNS attack. 

Ans: 1) Crackers can issue a Trojan horse back-door program, place an exploited bug in 
software or the operating system or access applications via an organization's Web site. 2) Web 
defacing occurs when crackers illegally obtain access to modify an organization's Web site 
and change its contents. DNS attacks modify the address to which network traffic for a partic
ular Web site is sent, which can redirect users of a particular Web site to another. 
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The previous section detailed several common attacks against computer security, 
Though the number of threats to computer security may seem overwhelming, in 
practice, common sense and diligence can prevent a large number of attacks. To fur
ther bolster security, additional hardware and software that specializes in thwarting 
a variety of attacks can be installed on computers and in networks. This section 
describes several common security solutions. 

19.6 Attack Prevention and Security Solutions 

A firewall protects a local area network (LAN) from intruders outside the network. 
A firewall polices inbound and outbound traffic for the LAN. Firewalls can prohibit 
all data transmission that is not expressly allowed, or allow all data transmission that 

19.6.1 Firewall 
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is not expressly prohibited. The choice between these two models can be determined 
by the network security administrator; the former provides a high level of security, 
but might prevent legitimate data transfer. The latter leaves the system more suscepti
ble to attack, but generally does not restrict legitimate network transfer. Each LAN 
can be connected to the Internet through a gateway, which typically includes a fire
wall. For years, the most significant security threats originated from employees inside 
the firewall. Now that businesses rely heavily on access to the Internet, an increasing 
number of security threats originate outside the firewall—from the hundreds of mil
lions of people connected to the company network via the Internet.46 

There are two primary types of firewalls. A packet-filtering firewall examines all 
data sent from outside the LAN and rejects data packets based on predefined rules, 
such as reject packets that have local network addresses or reject packets from cer
tain addresses or ports. For example, suppose that a hacker from outside the network 
obtains the address of a computer inside the network and attempts to pass a harmful 
data packet through the firewall by sending a packet indicating that it was sent from 
the computer inside the network. In this case, a packet-filtering firewall will reject the 
data packet because the return address of the inbound packet has clearly been modi
fied. A limitation of packet-filtering firewalls is that they consider only the source of 
data packets; they do not examine the attached data. As a result, malicious viruses 
can be installed on an authorized user's computer, allowing an attacker access to the 
network without that user's knowledge. The goal of an application-level gateway is to 
protect the network against the data contained in packets. If the message contains a 
virus, the gateway can block it from being sent to the intended receiver. 

Installing a firewall is one of the most effective and easiest ways to add security 
to a small network.47 Often, small companies or home users who are connected to the 
Internet through permanent connections, such as cable modems, do not employ 
strong security measures. As a result, their computers are prime targets for crackers 
to exploit for denial-of-service attacks or information theft. However, it is important 
for all computers connected to the Internet to contain some degree of security for 
their systems. Many popular network products, such as routers, provide firewall capa
bilities and certain operating systems, such as Windows XP, provide software firewalls. 
In fact, the Windows XP Internet Connection Firewall (ICF) is enabled by default. 
Section 21.13.3, Internet Connection Firewall, discusses how Windows XP imple
ments its firewall. Numerous other firewall software products are available; several 
are listed in the Web Resources section at the end of the chapter. 

Air gap technology is a network security solution that complements the fire
wall. It secures private data from external traffic accessing the internal network. 
The air gap separates the internal network from the external network, and the orga
nization decides which information will be made available to external users. Whale 
Communications created the e-Gap System, which is composed of two computer 
servers and a memory bank. The memory bank does not run an operating system: 
therefore hackers cannot take advantage of common operating system weaknesses 
to access network information. 
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Air gap technology does not allow outside users to view the network's struc-
ture, which prevents hackers from searching the network for weaknesses. The e-

Gap Web Shuttle feature allows safe external access by restricting the system's 
"back office," where an organization's most sensitive information and IT-based 

business processes are controlled. Users who wish to access a network hide behind 
the air gap, where the authentication server is located. Authorized users gain access 
through a single sign-on capability, allowing them to use one login password to 

access authorized areas of the network. 
The e-Gap Secure File Shuttle feature moves files in and out of the network. 

Each file is inspected behind the air gap. If the file is deemed safe, it is carried by the 
File Shuttle into the network.48 

Air gap technology is used by e-commerce organizations to allow their clients 
and partners to access information with transparent security, thus reducing the cost 
of inventory management. Military, aerospace and government industries, which 
store highly sensitive information, employ air gap technology. 
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1. Is a home user more likely to use a firewall to prohibit all data flow not expressly allowed 
or to allow all data that is not expressly prohibited? 

2. Discuss the difference between packet-filtering firewalls and application gateways. 

Ans: 1) A home user would be more likely to allow all data that is not expressly prohibited, 
because the user will most likely want to access a large (and evolving) set of Web sites, 
located at different IP addresses. 2) A packet-filtering firewall examines all data sent from 
outside the LAN and rejects data packets based on predefined rules, such as reject packets 
that have local network addresses or reject packets from certain addresses or ports. An appli
cation-level gateway protects the network against the data contained in packets. If the mes
sage contains a virus, the gateway can block it from being sent to the intended receiver. 
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Intrusion detection systems (IDSs) monitor networks and application log files, 
which record information about system behavior, such as the time at which operat
ing system services are requested and the name of the process that requests them. 
IDSs examine log files to alert system administrators of suspicious application and/ 
or system behavior, ff an application exhibits erratic or malicious behavior, an IDS 
can halt the execution of that process.49 

Host-based intrusion detection systems monitor system and application log 
files, which is especially useful for detecting Trojan horses. Network-based intrusion 
detection software monitors traffic on a network for any unusual patterns that 
might indicate DoS attacks or access to a network by an unauthorized user. System 
administrators can then check their log files to determine if there was an intrusion 
and, if so, track the offender. Intrusion detection products are commercially avail
able from companies such as Cisco (www.cisco.com/warp/public/cc/pd/sqsw/ 
sqidsz), Hewlett-Packard (www.hp.com/security/home.html) and Symantec 
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(www.symantec.com). There is also an open-source network intrusion detection 
system from Snort (www.snort.org). 

Intrusion detection via static analysis attempts to detect when applications 
have been corrupted by a hacker. The static analysis technique assumes that hack
ers attempt to attack a system using system calls. Under this assumption, the first 
step in detecting intrusions is to build a model of an application's expected behavior 
(i.e., a pattern of system calls the application typically generates). The application's 
pattern of system calls is then monitored as it runs; an attack can be detected if this 
pattern differs from the static model.50 

The OCTAVESM (Operationally Critical Threat, Asset and Vulnerability 
Evaluation) method, developed at the Software Engineering Institute at Carnegie 
Mellon University, evaluates a system's security threats. There are three phases in 
OCTAVE: building threat profiles, identifying vulnerabilities, and developing secu
rity solutions and plans. In the first stage, the organization identifies its important 
information and assets, then evaluates the levels of security required to protect 
them. In the second phase, the system is examined for weaknesses that could com
promise the valuable data. The third phase is to develop a security strategy as 
advised by an analysis team of three to five security experts assigned by OCTAVE. 
This approach is one of the first of its kind, in which the owners of computer sys
tems not only obtain professional analysis, but also participate in prioritizing the 
protection of crucial information.51 
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1. Name a major drawback to IDSs. 
2. Explain the difference between host-based and network-based IDSs. 

Ans: 1) IDSs cannot detect intrusion with perfect accuracy. Thus, an IDS may prevent an 
authorized user from performing a legitimate operation and may enable an intrusion to go 
undetected. 2) Host-based IDSs monitor the current system's log files. Network-based IDSs 
monitor packets that travel over a network. 
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As discussed in Section 19.5.2, viruses and worms have become a menace to busi
nesses and home users alike and have cost businesses billions of dollars.52 The num
ber of reported viruses has increased steadily since the mid-1990s.53 In response, 
antivirus software has been developed and modified to meet the increasing number 
and variety of virus attacks on computer systems. Antivirus software attempts to 
protect a computer from a virus and/or identify and remove viruses on that com
puter. There are a variety of techniques antivirus software may use to detect and 
remove viruses from a system; however, none can offer complete protection. 

Signature-scanning virus detection relies on knowledge about the structure of 
the computer virus's code. For example, many antivirus programs maintain a list of 
known viruses and their code. All viruses contain a region called the virus signature 
that does not change as the virus spreads. In practice, most known virus lists main-
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tain a list of virus signatures. In this case, virus detection software scans the com
puter, comparing file data to virus code. 

A weakness of known virus lists is that they could become prohibitively large as 
viruses proliferate. The virus list must be updated regularly to successfully identify 
emerging viruses. Perhaps the most serious weakness of known virus lists is that they 
can recognize only viruses that have been previously identified by the list provider. 
Thus, known virus lists generally do not protect against new and unidentified viruses. 

A known virus list can be particularly ineffective against variants and poly
morphic viruses. A variant is a virus whose code has been modified from its original 
form, yet still retains its malicious payload. A polymorphic virus changes its code 
(e.g., via encryption, substitution, insertion, and the like) as it spreads, to evade 
known virus lists (Fig. 19.8). 

Although virus signatures improve a virus scanner's ability to detect viruses 
and their variants, they introduce the possibility of false positive and false negative 
virus detection. False positive virus alerts incorrectly indicate that a virus is resident 
in a file, whereas false negatives incorrectly determine that an infected file is clean. 
These incorrect results become more frequent as the size of a virus signature 
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Figure 19.8 | Polymorphic virus. 
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19.6.4 Security Patches 
Operating systems and other software often contain security flaws that are not dis-
covered until after many users have installed them. To address security flaws in a 
timely manner, the software developers must: 

1. Does signature scanning or heuristic scanning provide better protection against new .. 
unidentified viruses? 

2. Describe several weaknesses of known virus lists. 

Ans: 1) Heuristic scanning provides better protection against new and unidentified viruses 
because it can detect new virus behavior even when its signature is not available. 2) A weak-
ness of known virus lists is that they could become prohibitively large as viruses proliferate. 
The virus list must be updated regularly to successfully identify emerging viruses. Perhaps the 
most serious weakness of known virus lists is that they can recognize only viruses that have 
been previously identified by the list provider. Thus, known virus lists generally do not pro-
tect against new and unidentified viruses. 

becomes smaller. The problem of preventing false positive and false negative read
ings when scanning for viruses is a challenging one, as it has been demonstrated that 
virus signatures as small as two bytes can be created.54, 55 

An alternative to signature scans is heuristic scanning. Viruses are character-
ized by replication, residence in memory and/or destructive code. Heuristic scans 
can prevent the spread of viruses by detecting and suspending any program exhibit-
ing this behavior. The primary strength of heuristic scanning is that it can detect 
viruses that have not yet been identified. Similar to signature scanning, however, 
heuristic scanning is also susceptible to false reporting. Most antivirus software 
employs a combination of signature and heuristic scanning. 

All viruses (with the exception of worms) must modify a file to infect a com-
puter. Consequently, another antivirus technique is to monitor changes to files by 
checking file consistency. Most consistency checks are implemented as checksums of 
protected files. In a system that experiences a high volume of file I/O, maintaining a 
record of file consistency is not a viable option if users expect fast response times. 
Consequently, many antivirus programs ensure file consistency for a limited set of 
files (typically the operating system files). However, file consistency scans cannot pro-
tect against viruses resident on the computer before antivirus software installation. 
Some operating systems, such as Windows XP, perform consistency checks on vital 
system files and replace them if they are altered, to protect system integrity.56 

In addition to scanning techniques, antivirus software can be characterized by 
its program behavior. For example, real-time scanners are resident in memory and 
actively prevent viruses, whereas other antivirus software must be loaded manually 
and serves only to identify viruses. Some antivirus software programs prompt the 
user for action when a virus is detected, whereas others remove viruses without 
user interaction.57 
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• discover previously unknown flaws, 

• quickly release patches for the flaws and 

• establish strong lines of communication with users. 

To reduce the damage caused by security flaws, developers should address 
security flaws that have been exploited and actively search and fix those that have 
not. A code release that addresses a security flaw is often called a security patch. 

Often, simply releasing a patch for a security flaw is insufficient to improve 
security. For example, the Slammer worm (Section 19.5.2, Viruses and Worms) 
exploited a security flaw for which a patch had been released six months earlier. 
Thus software developers should address security flaws by notifying their users 
quickly and providing software that facilitates the process of applying security 
patches. 

OpenBSD is a BSD UNIX project whose primary goal is to create the most 
secure (UNIX-compatible) operating system (see the Mini Case Study, OpenBSD). 
The project includes an audit team that continuously searches for security flaws, a 
lull-disclosure policy that describes each security flaw in a public forum and a team 
that releases security patches quickly. Users must subscribe to a mailing list or visit 
a Web page to learn of new security flaws and download patches.58 Both the Open-
BSD and Apple MacOS X operating systems close all ports and disable all network 
services by default to improve security (see the Mini Case Study, Macintosh). 

Microsoft's Trustworthy Computing Initiative has resulted in a steady stream 
of security patches, called hotfixes, for the Windows line of operating systems. 
Microsoft offers free software called Automatic Updates that executes in the back
ground of a Windows system to periodically determine if new hotfixes are available. 
If the Automatic Updates determines that a "critical update" such as a security 
patch is available, it will display a dialog to prompt the user to download and install 
the hotfix.59 This software also enables critical updates to be installed without user 
interaction, which can improve system security. 
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1. Why is it important to establish strong lines of communication between software develop
ers and users when releasing security patches? 

2. Why is it insufficient to address security flaws only after they are exploited? 

Ans: 1) Software developers should address security flaws by notifying their users quickly 
and providing software that facilitates the process of applying security patches, so that users 
can protect themselves against known security flaws. 2) Some exploit actions of security flaws 
not detected by developers and could compromise system security and go undetected for 
days, months or even years. 

Access to system resources, including data stored in a file system, can be regulated by 
the operating system's access control policy. However, such mechanisms do not nec-
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essarily prevent access to data stored on the hard drive when it is accessed by a differ
ent operating system. Consequently, several of today's operating systems support 
secure file systems that protect sensitive data regardless of how the data is accessed. 
Windows XP employs the New Technology File System (NTFS), which protects files 
via access control and encryption (see Section 21.8, File Systems Management). 

The Encrypting File System (EFS) uses cryptography to protect files and fold
ers in an NTFS file system. EFS uses secret-key and public-key encryption to secure 
files.60 Each user is assigned a key pair and certificate that are used to ensure that 
only the user who encrypted the files can access them. File data is lost if the key is 
lost. EFS is often implemented in multiuser or mobile systems to ensure that pro
tected files would not be accessible to somebody using a stolen or lost machine. 

904 Security 

Mini Case Study 
OpenBSD 
Theo de Raadt, an original mem
ber of the NetBSD project, left 
NetBSD in 1995 to start the Open-
BSD project using the open-source 
NetBSD source code as a base.61, 62 

OpenBSD is considered by many 
to be the most secure OS 
available.63, 64, 65 It has been more 
than four years (as of the time this 
book was published) since Open-
BSD has been cracked while run
ning with default settings.66, 67 

OpenBSD's extraordinary 
level of security has been 
achieved primarily by the core 
team's code-auditing process. 
Every source file in the system has 
been analyzed several times by 
various developers on the core 
project team—an ongoing pro
cess. These audits check for bugs 
such as classic security holes like 
buffer overflow opportunities. 

Any found bugs are posted imme
diately to the OpenBSD project 
site and are generally fixed in less 
thanaday.6 8 , 6 9 , 7 0 , 7 1 

OpenBSD includes several 
security features, such as built-in 
support for OpenSSH and OpenSSL 
(open-source implementations of 
the SSH and SSL security proto
cols).72 OpenBSD was also the first 
operating system to implement 
IPsec, the IP Security protocol 
widely used in Virtual Private Net
works (VPNs), discussed in 
Section 19.10.2. It also includes the 
network authentication protocol 
Kerberos version five.73 

The OpenBSD group 
(www.openbsd.org) ensures that 
its operating system is secure 
upon installation by shipping 
OpenBSD wi th only minimal ser
vices enabled and all ports closed 

(to prevent network attacks).74, 75 

It is interesting to note that Win
dows Server 2003 follows the 
same philosophy—a complete 
reversal f rom Microsoft's policy in 
Windows 2000—to enhance secu
rity in environments managed by 
inexperienced administrators.76 

To maintain its secure core, 
OpenBSD provides a limited set of 
applications, though the Open-
BSD team claims it can run pro
grams writ ten for any of the 
major UNIX-based systems.77 

There is no GUI, making this sys
tem an unlikely option for most 
desktop users but suitable for 
servers, which must be secure and 
generally have little direct inter
action with users.78 

http://www.openbsd.org


Encryption can be applied to individual files or entire folders; in the latter case, 
every file inside the folder is encrypted. Applying encryption at the folder level often 
achieves a higher level of security by preventing programs from creating temporary 
tiles in plaintext. File encryption in Linux is discussed in Section 20.7, File Systems. 
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Mini Case Study 
Machintosh 
In the late 1970s, Apple Computer 
was working on two new comput
ers: the Lisa, a high-end personal 
computer, and the Macintosh, a 
more affordable personal 
computer.79, 80, 81 In 1979, Apple 

cofounder Steve Jobs (now CEO of 
Apple) visited Xerox's Palo Alto 
Research Center (PARC).82 During 
his visit, Jobs saw a demo of the 
Alto—a personal computer that 
used a graphical user interface 
(GUI) and a computer mouse. The 
Alto, developed at PARC in the 
1970s, was designed for personal 
use, however it was too large and 
expensive to be practical, there
fore it was never sold. 

Inspired by the Alto, Jobs 
incorporated GUIs and the com
puter mouse into both the Apple 
Lisa and Macintosh operating sys
tems. The Apple GUIs included 
some features similar to those of 
the Alto, plus many original fea
tures including drag-and-drop 
file-icon movement, pull-down 
menus and windows that redraw 
automatically when uncovered— 

all of which worked using a 
mouse. The Lisa and Macintosh 
systems were the first personal 
computers on the market to 
include a mouse.83 The Lisa 
debuted in 1983, but it cost ten 
thousand dollars and was not suc
cessful; Apple discontinued the 
model two years later.84 The Mac
intosh was announced in 1984 
with a famous commercial based 
on George Orwell's "1984,"85 

which debuted during the Super 
Bowl. The Macintosh, which was 
more space efficient and afford
able than the Lisa (it sold for 
$2,495), became extraordinarily 
successful.86, 87 

The first Macintosh operat
ing system was System 1. 
Although it had GUI capabilities, 
it was a fairly rudimentary operat
ing system—it had no virtual 
memory, did not support multi
programming and had a single-
level file system.88 These features 
were updated in later versions; a 
hierarchical file structure was 
implemented in System 3, basic 

multiprogramming was added in 
System 4 and virtual memory was 
introduced in System 7 which was 
released in 1990.89 In 1997, after 
numerous bug fixes and applica
t ion upgrades, version 7.6 was 
released and the operating sys
tem was renamed Mac OS.90 '91 

Mac OS was completely 
rebuilt in 2001 for Mac OS X, wi th 
the new Darwin kernel incorpo
rating the Mach 3 microkernel 
and BSD UNIX.92 Darwin is a com
plete UNIX environment including 
the X11 windows system as an 
option.93 Apple also made Darwin 
an open-source project to make it 
more robust and stable.94 Mac OS 
X has fol lowed OpenBSD's (dis
cussed in the OpenBSD mini case 
study) lead, improving security by 
shipping wi th all ports closed and 
all network services disabled.95 

Apple also made Mac OS X com
patible wi th the Windows file for
mats and Windows Exchange mail 
servers, making it easy for Mac OS 
X users to integrate into a busi
ness environment.96 



1. When are access control mechanisms insufficient to protect file data? 
2. What is the primary risk of implementing an encrypted file system? 

Ans: 1) Access control mechanisms are insufficient to protect file data when the storage 
device is removed from the computer, because it can be accessed by a system that bypasses the 
existing access control mechanisms. 2) File data is unrecoverable if the encryption key is lost. 
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To evaluate the security features of operating systems, the U.S. Department of 
Defense (DoD) published a document entitled "Department of Defense Trusted 
Computer System Evaluation Criteria," also called the Orange Book, in December 
1985.97' 98 This document is still used to define levies of security in operating sys
tems. The Orange Book, originally designed for evaluating military systems, classi-
ties systems into four levels of security protection —A, B, C and D. The lowest level 
of security is D and the highest is A. The requirements for each level follow.99, 100 

• Level D: Any system that does not meet all the requirements in any other 
levels. Systems categorized as level D are generally unsecure. 

• Level C:This level contains two sublevels. Level C1 requires the operating 
system to separate users and data, which means individuals or groups must 
log in a username or group name and password to use the system. Private 
information belonging to an individual or a group is secured to prevent 
other individuals and groups from reading or modifying it. Early versions 
of UNIX belong to this level. Level C2 supports only individual login with 
password, which means users cannot log in with a group name. Authorized 
individuals can access only certain files and programs. Both C1 and C2 
allow individuals to control the access to their files and private information, 
which means they require only discretionary access control. Most operating 
systems, such as Windows NT, modern UNIX systems and IBM OS/400101 

fall into this category. 

• Level B: In this level, mandatory access control is required, which means 
the operating system requires a predefined central permission scheme to 
determine the permissions assigned to subjects. The creator of an object 
does not control the permissions for that object. This level contains three 
sublevels. In addition to the requirements of C2, Bl requires the operating 
system to contain a predefined central permission scheme and apply sensi-
tivity labels (e.g., "Confidential") on subjects and objects. The access con-
trol mechanism must use these sensitivity labels to determine permissions. 
Operating systems that satisfy Bl requirements include HP-UX BLS102, 
SEVMS103 and CS/SX104. B2 requires the communication line between the 
user and the operating system for authentication to be secure, in addition 
to the requirements from Bl . Operating systems that satisfy B2 require-
ments include Multics105 and VSLAN106. B3 requires all the features 
present in B2, in addition to implementing protection domains, providing 
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secure recovery mechanisms (recovery without compromising protection 
after a system failure) and monitoring all access to subjects and objects for 
analysis. The XTS-300 operating system107 satisfies B3 requirements. 

• Level A: This level contains two sublevels. A1 requires all the features pro
vided by B3, and it requires that the operating system's security is formally 
verified. An example of an operating system that satisfies the Af require
ments is the Boeing MLS LAN108. The requirements for A2 are reserved 
for future use. 
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1. Does a system that belongs to category C2 need to satisfy the requirements for level B? 
2. How does C2 differ from C1? 

Ans: 1) No. Level B is higher than level C2, hence level B has more features and require
ments. 2) C1 supports both individual and group logins while C2 supports only individual login. 

E-business has profited from the rapidly rising number of consumers that own com
puters with Internet connections. However, as the number of online transactions 
increases, so does the volume of sensitive data transmitted over the Internet. Appli
cations that process transactions require secure connections through which sensi
tive data can be transmitted. Several methods for providing secure transactions 
have been developed in recent years. In the sections that follow, we describe some 
of these techniques. 

There are five fundamental requirements for a successful, secure transaction: 

• privacy 

• integrity 

• authentication 

• authorization 

• nonrepudiation 
The privacy issue is: How do you ensure that the information you transmit over the 
Internet has not been captured or passed to a third party without your knowledge? 
The integrity issue is: How do you ensure that the information you send or receive 
has not been compromised or altered? The authentication issue is: How do the 
sender and receiver of a message verify their identities to each other? The authori
zation issue is: How do you manage access to protected resources on the basis of 
user credentials, which consists of user's identity (e.g., username) and proof of iden-
tify (e.g., password)? The nonrepudiation issue is: How do you legally prove that a 
message was sent or received? Network security must also address the issue of 
availability: How do we ensure that the network, and the computer systems to 
which it connects, will operate continuously? In the sections that follow, we discuss 
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several implementations of secure communication that derive from encryption 
techniques discussed in Section 19.2. 

1. For which of the five fundamental requirements for a successful, secure transaction would 
encryption be useful? 

2. Which of the five fundamental requirements deal with user login? 

Ans: 1) Encryption is useful for all five of the fundamental requirements for a successful, 
secure transaction. 2) Authorization and authentication. 
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19.8 Key Agreement Protocols 
Although public-key algorithms offer flexible and reliable security, they are not effi
cient for sending large amounts of data. Therefore, public-key algorithms should 
not be considered replacements for secret-key algorithms. Instead, public-key algo
rithms are most often employed to exchange secret keys securely. The process by 
which two parties can exchange keys over an unsecure medium is called a key 
agreement protocol. 

The most common key agreement protocol is a digital envelope (Fig. 19.9). 
The message is encrypted using a secret key (Step 1), and the secret key is then 
encrypted using public-key encryption (Step 2). The sender attaches the encrypted 
secret key to the encrypted message and sends the receiver the entire package, or 
envelope. The sender could also digitally sign the envelope before sending it to 
prove the sender's identity to the receiver (covered in Section 19.8.2, Digital Signa-
tures). To decrypt the envelope, the receiver first decrypts the secret key using the 
receiver's private key. Then, the receiver uses the secret key to decrypt the actual 
message. Because only the receiver can decrypt the encrypted secret key, the sender 
can be sure that only the intended receiver can read the message. 

Self Review 
1. Why are public-key algorithms employed to exchange secret keys? 
2. In the digital envelope protocol, why is it inappropriate to encrypt the entire message 

using public-key encryption? 

Ans: 1) Public-key algorithms are efficient for sending small amounts of data, and they pre-
vent attackers from obtaining the secret key while it is transmitted. 2) Public-key encryption is 
not efficient for sending large amounts of data because it requires significant processing power. 

Maintaining the secrecy of private keys is essential to the maintenance of crypto-
graphic system security. Most security breaches result from poor key management 
(e.g., the mishandling of private keys, resulting in key theft) rather than cryptana-
lytic attacks.109 
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An important aspect of key management is key generation —the process by 
which keys are created. A malicious third party could try to decrypt a message by 
using every possible decryption key. Key-generation algorithms are sometimes 
unintentionally constructed to choose from only a small subset of possible keys. If 
the subset is too small, then the encrypted data is more susceptible to brute-force 
attacks. Therefore, it is important to use a key-generation program that can gener-
ate a large number of keys as randomly as possible. Key security is improved when 
key length is large enough that brute-force cracking is computationally infeasible. 

Figure 19.9 | Creating a digital envelope. 
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1. Why is it important to use a long key length? 
2. Why are most security breaches due to poor key management rather than cryptanalytic 

attack? 

Ans: 1) If the total number of decryption keys is small, malicious third parties could gener
ate all possible decryption keys quickly to break the encryption. 2) When long key lengths 
are used, it is easier to take advantage of poor key management to steal private keys than it is 
to use a brute-force method such as a cryptanalytic attack. 
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Digital signatures, the electronic equivalents of written signatures, were developed 
to address the absence of authentication and integrity in public-key cryptography. 
A digital signature authenticates the sender's identity and is difficult to forge. 

To create a digital signature, a sender first applies a hash function to the origi
nal plaintext message. Hash functions for secure applications are also typically 
designed such that it is computationally infeasible to compute a message from its 
hash value or to generate two messages with the same hash value. A secure hash 
algorithm is designed so that the probability that two different messages will pro
duce the same message digest is statistically insignificant. 

In digital signatures, the hash value uniquely identifies a message. If a mali
cious party changes the message, the hash value also changes, thus enabling the 
recipient to detect that the message has been altered. Two widely used hashing 
functions are the Secure Hash Algorithm (SHA-1), developed by National Institute 
of Standards and Technology (NIST), and the MD5 Message Digest Algorithm. 
developed by Professor Ronald L. Rivest at MIT. Using SHA-f, the phrase "Buy 
100 shares of company X" would produce the hash value D8A9 B6 9F 72 65 OB D5 
6D OC 47 00 95 OD FD 31 96 OA FD B5. The hash value is called the message digest. 

Next, the sender uses the sender's private key to encrypt the message digest. 
This step creates a digital signature and validates the sender's identity, because only 
the owner of that private key could encrypt the message. A message that includes the 
digital signature, hash function and the encrypted message is sent to the receiver. The 
receiver uses the sender's public key to decipher the digital signature (this establishes 
the message's authenticity) and reveal the message digest. The receiver then uses his 
or her own private key to decipher the original message. Finally, the receiver applies 
the hash function to the original message. If the hash value of the original message 
matches the message digest included in the signature, the message integrity is con-
firmed—the message has not been altered in transmission. 

Digital signatures are significantly more secure than handwritten signatures. A 
digital signature is based upon the contents of the document, so a digital signature 
(contrary to a handwritten signature) is different for each document signed. 

Digital signatures do not provide proof that a message has been sent. Con
sider the following situation: A contractor sends a company a digitally signed con
tract, which the contractor later would like to revoke. The contractor could do so by 
releasing the private key, then claiming that the digitally signed contract was gener-
ated by an intruder who stole the contractor's private key. Time stamping, which 
binds a time and date to a digital document, can help solve the problem of nonrepu-
diation. For example, suppose the company and the contractor are negotiating a 
contract. The company requires the contractor to sign the contract digitally and 
then have the document digitally time stamped by a third party, called a time-
stamping agency or a digital notary service. 

The contractor sends the digitally signed contract to the time-stamping agency. 
The privacy of the message is maintained, because the time-stamping agency sees 
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only the encrypted, digitally signed message. The agency affixes the time and date of 
receipt to the encrypted, signed message and digitally signs the entire package with 
the time-stamping agency's private key. The time-stamp cannot be altered by anyone 
except the time-stamping agency, because no one else possesses the agency's private 
key. Unless the contractor reports that the private key was compromised before the 
document was time stamped, the contractor cannot legally prove that the document 
was signed by an unauthorized third party. The sender could also require the receiver 
to sign the message digitally and time stamp it as proof of receipt. To learn more 
about time-stamping, visit www.authentidate.com. 

The U.S. government's digital authentication standard is called the Digital Sig
nature Algorithm (DSA). Legislation passed in June of 2000 allows digital signa
tures to be as legally binding as handwritten signatures, which has facilitated many 
e-business transactions. For the latest news about U.S. government legislation in 
information security, visit www.itaa.org/infosec. 

1. If digital signatures do not create a message digest, can a malicious third party modify a 
message's ciphertext? 

2. When interpreting messages that are digitally signed, what is the difference between 
authenticating a message and verifying its integrity? 

Ans: 1) Although it is possible to modify the ciphertext, it is unlikely that the third party 
will be able to modify the message in any meaningful way without knowledge of the encryp-
tion key. 2) To authenticate a message, the receiver uses the sender's public key to decipher 
the digital signature. To verify a message's integrity, the receiver checks the hash value of the 
original message with the message digest included in the signature. 

Self Review 

A limitation of public-key cryptography is that multiple users might share the same 
set of keys, making it difficult to establish each party's identity. For example, sup-
pose a customer wishes to place an order with an online merchant. How does the 
customer know that the Web site being viewed was created by that merchant and 
not by a third party masquerading as a merchant to steal credit card information? 
Public Key Infrastructure (PKI) provides a solution to such a problem by integrat
ing public-key cryptography with digital certificates and certificate authorities to 
authenticate parties in a transaction. 

A digital certificate is a digital document that identifies a user and is issued by 
a certificate authority (CA). A digital certificate includes the name of the subject 
(the company or individual being certified), the subject's public key, a serial number 
(which uniquely identifies the certificate), an expiration date, the signature of the 
trusted certificate authority and any other relevant information. A CA can be a 
financial institution or any other trusted third party, such as VeriSign. Once issued, 
the CA makes the digital certificates publicly available in certificate repositories. 
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The CA signs the certificate by encrypting either the subject's public key or a 
hash value of the public key using the CA's own private key, so that a recipient can 
verify the certificate. The CA must verify every subject's public key. Thus, users 
must trust the public key of a CA. Usually, each CA is part of a certificate authority 
hierarchy. This hierarchy can be viewed as a tree structure in which each node relies 
on its parent for authentication information. The root of the certificate authority 
hierarchy is the Internet Policy Registration Authority (IPRA). The IPRA signs 
certificates using the root key, which signs certificates exclusively for policy creation 
authorities —organizations that set policies for obtaining digital certificates. In turn, 
policy creation authorities sign digital certificates for CAs. CAs then sign digital 
certificates for individuals and organizations. 

The CA is responsible for authentication, so it must check user information 
carefully before issuing a digital certificate. In one case, human error caused Veri
sign to issue two digital certificates to an imposter posing as a Microsoft 
employee.110 Such an error can be significant; for example, the inappropriately 
issued certificates can cause users to download malicious code unknowingly onto 
their machines. VeriSign, Inc., is a leading certificate authority (www.veri-
si gn. com); other digital certificate vendors are listed in the Web Resources section 
at the end of the chapter. 

Digital certificates are created with an expiration date to force users to refresh 
key pairs periodically. If a private key is compromised before its expiration date, 
the digital certificate can be cancelled, and the user can obtain a new key pair and 
digital certificate. Cancelled and revoked certificates are placed on a certificate 
revocation list (CRL), which is maintained by the certificate authority that issued 
the certificates. 

CRLs are analogous to the paper lists of revoked credit card numbers formerly 
used at the points of sale in retail stores.111 This can substantially lengthen the process 
of determining the validity of a certificate. An alternative to CRLs is the Online Cer
tificate Status Protocol (OCSP), which validates certificates in real time.112 

Many still consider e-commerce unsecure. However, transactions using PKI 
and digital certificates can be more secure than exchanging private information 
over public, unencrypted media such as voice phone lines, paying through the mail, 
or handing a credit card to a sales clerk. In contrast, the key algorithms used in most 
secure online transactions are nearly impossible to compromise. By some estimates, 
the key algorithms used in public-key cryptography are so secure that even millions 
of today's computers working in parallel could not break the codes after a century 
of dedicated computation. However, as computing power increases, key algorithms 
considered strong today could be easily compromised in the future. 

1. Describe how CAs ensure the security of their certificates. 
2. Why are electronic transactions secured by PKI and digital certificates often more secure 

than those conducted over the phone or in person? 
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Ans: 1) Each CA is part of a certificate authority hierarchy. This hierarchy can be viewed as 
a tree structure in which each node relies on its parent for authentication information. Its 
root is the Internet Policy Registration Authority (IPRA), which signs certificates for policy 
creation authorities. Policy creation authorities sign digital certificates for CAs. CAs then sign 
digital certificates for individuals and organizations. 2) The reason is that it is computation
ally infeasible to compromise the key algorithms used in most secure online transactions. By 
some estimates, the key algorithms used in public-key cryptography are so secure that even 
millions of today's computers working in parallel could not break the codes after a century of 
dedicated computation. By comparison, it is far easier to tap a phone line or write down an 
individual's credit card number during an in-person transaction. 

Secure communication protocols have been developed for several layers of the tra
ditional TCP/IP stack. In this section we discuss Secure Sockets Layer (SSL) and 
Internet Protocol Security (IPSec). We also discuss the protocols that are com
monly used to implement secure wireless communication. 
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The Secure Sockets Layer (SSL) protocol, developed by Netscape Communica
tions, is a nonproprietary protocol that secures communication between two com
puters on the Internet and the Web.113 Many e-businesses use SSL for secure online 
transactions. Support for SSL is included in many Web browsers, such as Mozilla (a 
stand-alone browser that has been integrated into Netscape Navigator), Microsoft's 
Internet Explorer and other software products. It operates between the Internet's 
TCP/IP communications protocol and the application software.114 

During typical Internet communication, a process sends and receives mes
sages via a socket. Although TCP guarantees that messages are delivered, it does 
not determine whether packets have been maliciously altered during transmission. 
For example, an attacker can change a packet's source and destination addresses 
without being detected, so fraudulent packets can be disguised as valid ones.115 

SSL implements public-key cryptography using the RSA algorithm and digital 
certificates to authenticate the server in a transaction and to protect private infor
mation as it passes over the Internet. SSL transactions do not require client authen
tication; many servers consider a valid credit card number to be sufficient for 
authentication in secure purchases. To begin, a client sends a message to a server to 
open a socket. The server responds and sends its digital certificate to the client for 
authentication. Using public-key cryptography to communicate securely, the client 
and server negotiate session keys to continue the transaction. Session keys are 
secret keys that are used for the duration of that transaction. Once the keys are 
established, the communication is secured and authenticated using the session keys 
and digital certificates. 

Before sending a message over TCP/IP, the SSL protocol breaks the informa
tion into blocks, each of which is compressed and encrypted. When the receiver 
obtains the data through TCP/IP, SSL decrypts the packets, then decompresses and 
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assembles the data. SSL is used primarily to secure point-to-point connections — 
interactions between exactly two computers.116 SSL can authenticate the server, the 
client, both or neither. However, in most e-business SSL sessions, only the server is 
authenticated. 

The Transport Layer Security (TLS) protocol, designed by the Internet Engi
neering Task Force (IETF), is the successor to SSL. Conceptually, SSL and TLS are 
nearly identical—they authenticate using symmetric keys and encrypt data with pri
vate keys. The difference between the two protocols is in the implementation of the 
algorithm and structure of TLS packets.117 

Although SSL protects information as it is passed over the Internet, it does 
not protect private information, such as credit card numbers, once the information 
is stored on the merchant's server. Credit card information may be decrypted and 
stored in plaintext on the merchant's server until the order is placed. If the server's 
security is breached, an unauthorized party can access the information. 

1. Why do many transactions via SSL authenticate only the server? 
2. Why is information compressed before encryption under SSL? 

Ans: 1) The reason is that many servers consider a valid credit card number to be sufficient 
for authentication in secure purchases. 2) One reason is that compressed data consumes less 
space, thus requiring less time to transmit over the Internet. Another reason is that compres-
sion makes it more difficult for an attacker to interpret the unencrypted message, which pro-
vides greater protection against a cryptanalytic attack. 
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Most home or office networks are private—computers in the network are con
nected via communication lines not intended for public use. Organizations can also 
use the existing infrastructure of the Internet to create Virtual Private Networks 
(VPNs), which provide secure communication channels over public connections. 
Because VPNs use the existing Internet infrastructure, they are more economical 
than wide-area private networks.118 Encryption enables VPNs to provide the same 
services and security as private networks. 

A VPN is created by establishing a secure communication channel, called a tun-
nel, through which data passes over the Internet. Internet Protocol Security (IPSec) 
is commonly used to implement a secure tunnel by providing data privacy, integrity 
and authentication.119 IPSec, developed by the IETF, uses public-key and symmetric-
key cryptography to ensure data integrity, authentication and confidentiality. 

The technology builds upon the Internet Protocol (IP) standard, whose pri
mary security weakness is that IP packets can be intercepted, modified and retrans-
mitted without detection. Unauthorized users can access the network by using a 
number of well-known techniques, such as IP spoofing—whereby an attacker simu-
lates the IP address of an authorized user or host to obtain unauthorized access to 
resources. Unlike the SSL protocol, which enables secure, point-to-point connec-
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tions between two applications, IPSec secures connections among all users of the 
network on which it is implemented. 

The Diffie-Hellman and RSA algorithms are commonly used for key exchange 
in the IPSec protocol, and DES or 3DES are used for secret-key encryption, depend
ing on the system and its encryption needs. [Note: The Diffie-Hellman encryption 
algorithm is a public-key algorithm.]120 IPSec encrypts packet data, called a payload, 
then places it in an unencrypted IP packet to establish the tunnel. The receiver dis
cards the IP packet header, then decrypts the payload to access the packet's con
tent.121 

VPN security relies on three concepts—user authentication, data encryption 
and controlled access to the tunnel.122 To address these three security issues, IPSec 
is composed of three components. The authentication header (AH) attaches infor
mation (such as a checksum) to each packet to verify the identity of the sender and 
prove that data was not modified in transit. The encapsulating security payload 
(ESP) encrypts the data using symmetric keys to protect it from eavesdroppers 
while the IP packet is transmitted across public communication lines. IPSec uses the 
Internet Key Exchange (IKE) protocol to perform key management, which allows 
secure key exchange. 

VPNs are becoming increasingly popular in businesses, but remain difficult to 
manage. The network layer (i.e., IP) is typically managed by the operating system or 
hardware, not user applications. So, it can be difficult to establish a VPN because 
network users must install the proper software or hardware to support IPSec. For 
more information about IPSec, visit the IPSec Developers Forum at www.ip-
sec.com and the IETF's IPSec Working Group at www. ie t f .o rg /h tml .char -
t e r s / i p s e c - c h a r t e r . h t m l . 
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1. Why do companies often choose VPNs over private WANs? 
2. Why must the encrypted IP packet be sent inside an unencrypted IP packet? 

Ans: 1) Because VPNs use the existing infrastructure of the Internet, VPNs are much more 
economical than WANs. 2) Existing routers must be able to forward the packet. If the entire 
IP packet were encrypted, routers could not determine its destination. 

Self Review 

As wireless devices become increasingly popular, transactions such as stock trading 
and online banking are commonly transmitted wirelessly. Unlike wired transmis
sions, which require a third party to physically tap into a network, wireless transmis
sions enable virtually anyone to access transmitted data. Because wireless devices 
exhibit limited bandwidth and processing power, high latency and unstable connec
tions, establishing secure wireless communication can be challenging.123 

The IEEE 802.11 standard, which defines specifications for wireless LANs, 
uses the Wired Equivalent Privacy (WEP) protocol to protect wireless communica
tion. WEP provides security by encrypting transmitted data and preventing unau-
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thorized access to the wireless network. To transmit a message, WEP first appends a 
checksum to the message to enable the receiver to verify message integrity. It then 
applies the RC4 encryption algorithm, which takes two arguments —a 40-bit secret 
key (shared between the sender and the receiver) and a random 24-bit value (called 
the initialization value) —and returns a keystream (a string of bytes). Finally, WEP 
encodes the message by XORing the keystream and the plain text. Each WEP 
packet contains the encrypted message and the unencrypted initialization value. 
Upon receiving a packet, the receiver extracts the initialization value. The receiver 
then uses the initialization value and the shared secret key to generate the key-
stream. Finally, it decodes the message by XORing the keystream and the 
encrypted message. To determine whether the contents of the packet have been 
modified, the receiver can calculate the checksum and compare it with the check
sum appended to the message.124 

The security provided by the WEP protocol is inadequate for many environ
ments. For one, the 24-bit initialization value is small, causing WEP to use the same 
keystream to encode different messages, which can allow a third party to recover 
plaintext relatively easily. WEP also exhibits poor key management —the secret key 
can be cracked by brute-force attacks within hours using a personal computer. Most 
WEP-enabled wireless networks share a single secret key between every client on 
the network, and the secret key is often used for months and even years. Finally, the 
checksum computation uses simple arithmetic, enabling attackers to change both 
the message body and the checksum with relative ease.125, 126 

To address these issues, the IEEE and the Wi-Fi Alliance (www.weca.net/ 
OpenSection/index.asp) developed a specification called Wi-Fi Protected Access 
(WPA) in 2003. WPA is expected to replace WEP by providing improved data 
encryption and by enabling user authentication, a feature not supported by WEP 
WPA also introduces dynamic key encryption, which generates a unique encryption 
key for each client. Authentication is achieved via an authentication server that 
stores user credentials.127 

Both WEP and WAP are designed for communication using the 802.11 wire
less standard. Other wireless technologies —such as Cellular Digital Packet Data 
(CDPD) for cell phones, PDAs and pagers, Third Generation Global System for 
Mobile Communications (3GSM) for 3GSM-enabled cell phones, PDAs and pag
ers, and Time Division Multiple Access (TDMA) for TDMA cell phones —define 
their own (often proprietary) wireless communication and security protocols.128 

1. What properties of wireless devices introduce challenges when implementing secure wire
less communication? 

2. How does WPA address the poor key management in WEP? 

Ans: 1) Limited bandwidth, limited processing power, high latency and unstable connec-
tions. 2) WPA introduces dynamic key encryption, which generates a unique encryption key 
for each client. 
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Steganography is the practice of hiding information within other information, 
derived from Greek roots meaning "covered writing." Like cryptography, steganog
raphy has been used since ancient times. Steganography can be used to hide a piece 
of information, such as a message or image, within another image, message or other 
form of multimedia. 

Consider a simple textual example: Suppose a stock broker's client wishes to 
perform a transaction via communication over an unsecure channel. The client 
might send the message "BURIED UNDER YARD." If the client and broker 
agreed in advance that the message is contained in the first letters of each word, the 
stock broker extracts the message, "BUY." 

An increasingly popular application of steganography is digital watermarks for 
intellectual property protection. Digital steganography exploits unused portions of 
files encoded using particular formats, such as in images or on removable disks. The 
insignificant space stores the hidden message, while the digital file maintains its 
intended semantics.129 A digital watermark can be either visible or invisible. It is usu
ally a company logo, copyright notification or other mark or message that indicates 
the owner of the document. The owner of a document could show the hidden water
mark in a court of law, for example, to prove that the watermarked item was stolen. 

Digital watermarking could have a substantial impact on e-commerce. Con-
sider the music industry. Music and motion picture distributors are concerned that 
MP3 (compressed audio) and MPEG-4 (compressed video) technologies facilitate 
the illegal distribution of copyrighted material. Consequently, many publishers are 
hesitant to publish content online, as digital content is easy to copy. Also, because 
CD- and DVD-ROMs store digital information, users are able to copy multimedia 
files and share them via the Web. Using digital watermarks, music publishers can 
make indistinguishable changes to a part of a song at a frequency that is not audible 
to humans, to show that the song was, in fact, copied. 

Blue Spike's Giovanni™ digital watermarking software uses cryptographic 
keys to generate and embed steganographic digital watermarks into digital music 
and images (www.bluespike.com). The watermarks are placed randomly and are 
undetectable without knowledge of the embedding scheme; thus, they are difficult 
to identify and remove. 

19.11 Steganography 
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1. Compare and contrast steganography and cryptography. 
2. In grayscale bitmap images, each pixel can be represented by a number between 0 and 

255. The number represents a certain shade of gray between 0 (black) and 255 (white). 
Describe a possible steganography scheme, and explain why it works. 

Ans: 1) Steganography and cryptography are similar because they both involve sending a 
message privately. However, with steganography, third parties are unaware that a secret mes
sage has been sent, though the message is typically in plaintext. With cryptography, third par
ties are aware that a secret message is sent, but they cannot decipher the message easily. 2) A 
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secret message can be encoded by replacing each of the least significant bits of the picture 
with one bit of the message. This would not affect the picture much, because each pixel would 
become at most one shade lighter or darker. In fact, it would be undetectable by most third 
parties that the picture contained a hidden message. 

When comparing the merits of open-source and proprietary software, security is an 
important concern. Supporters of open-source security claim that proprietary solu
tions rely on security through obscurity. Proprietary solutions assume that because 
attackers cannot analyze the source code for security flaws, fewer security attacks 
are possible. 

Supporters of open-source security claim that proprietary security applica
tions limit the number of collaborative users that can search for security flaws and 
contribute to the overall security of the application. If the public cannot review the 
software's source code, certain bugs that are overlooked by developers can be 
exploited. Developers of proprietary software argue that their software has been 
suitably tested by their security experts. 

Open-source security supporters also warn that proprietary security develop
ers are reluctant to publicly disclose security flaws, even when accompanied by 
appropriate patches, for fear that public disclosure would damage the company's 
reputation. This may discourage vendors from releasing security patches, thereby 
reducing their product's security. 

A primary advantage to open-source applications is interoperability—open-
source software tends to implement standards and protocols that many other devel
opers can easily include in their products. Because users can modify the source, 
they can customize the level of security in their applications. Thus, an administrator 
can customize the operating system to include the most secure access control policy 
file system, communication protocol and shell. By contrast, users of proprietary 
software often are limited to the features provided by the vendor, or must pay addi
tional fees to integrate other features. 

Another advantage to open-source security is that the application source code 
is available for extensive testing and debugging by the community at large. For exam
ple, the Apache Web server is an open-source application that survived four and half 
years without a serious vulnerability—an almost unrivaled feat in the field of com
puter security.130-131 Open-source solutions can provide code that is provably secure 
before deployment. Proprietary solutions rely on an impressive security track record 
or recommendations from a small panel of experts to vouch for their security. 

The primary limitation of security in open-source applications is that open-
source software is often distributed without standard default security settings, 
which can increase the likelihood that security will be compromised due to human 
error, such as inexperience or negligence. For example, several Linux distributions 
enable many network services by default, exposing the computer to external 
attacks. Such services require significant customization and modification to prevent 
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skilled attackers from compromising the system. Proprietary systems, on the other 
hand, typically are installed with an appropriate security configuration by default. 
Unlike most UNIX-based distributions, the open-source OpenBSD operating sys
tem claims to install fully secured against external attacks by default. As any user 
will soon realize, however, significant configuration is required to enable all but the 
most basic of communication services. 

It is important to note that proprietary systems can be as secure as open-
source systems, despite opposition from the open-source community. Though each 
method offers relative merits and pitfalls, both require attention to security and 
timely releases of patches to fix any security flaws that are discovered. 
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1. Why might a software development company be reluctant to admit security flaws? 
2. How do open-source cryptography software solutions address the fact that the technique 

they use to generate keys is made public? 

Ans: 1) Acknowledgement of security flaws can damage a company's reputation. 2) Such 
software must use a large set of decryption keys to prevent malicious third party brute-force 
attacks that attempt to compromise security by generating all possible decryption keys. 

Self Review 

UNIX systems are designed to encourage user interaction, which can make them 
more difficult to secure.132, 133, 134, 135, 136, 137, 138 UNIX systems are intended to be 
open systems; their specifications and source code are widely available. 

The UNIX password file is encrypted. When a user enters a password, it is 
encrypted and compared to the encrypted password file. Thus, passwords are unre
coverable even by the system administrator. UNIX systems use salting when 
encrypting passwords.139 The salting is a two-character string randomly selected via 
a function of the time and the process ID. Twelve bits of the salting then modify the 
encryption algorithm. Thus, users who choose the same password (by coincidence 
or intentionally) will have different encrypted passwords (with high likelihood). 
Some installations modify the password program to prevent users from choosing 
weak passwords. 

The password file must be readable by any user because it contains other crucial 
information (i.e., usernames, user IDs, and the like) that is required by many UNIX 
tools. For example, because directories employ user IDs to record file ownership, Is 
(the tool that lists directory contents and file ownership) needs to read the password 
file to determine usernames from user IDs. If crackers obtain the password file, they 
could potentially break the password encryption. To address this issue, UNIX pro
tects the password file from crackers by storing information other than the encrypted 
passwords in the normal password file and storing the encrypted passwords in a 
shadow password file that can be accessed only by users with root privileges.140 

With the UNIX setuid permission feature, a program may be executed by one 
user using the privileges of another user. This powerful feature has security flaws, 
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particularly when the resulting privilege is that of the "superuser" (who has access 
to all files in a UNIX system).141-142 For example, if a regular user is able to execute 
a shell belonging to the superuser, and for which the setuid bit has been set, then the 
regular user essentially becomes the superuser.143 Clearly, setuid should be 
employed carefully. Users, including those with superuser privileges, should period
ically examine their directories to confirm the presence of setuid files and detect any 
that should not be setuid. 

A relatively simple means of compromising security in UNIX systems (and 
other operating systems) is to install a program that prints out the login prompt, 
copies what the user then types, fakes an invalid login and lets the user try again. 
The user has unwittingly given away his or her password! One defense is that if you 
are confident you typed the password correctly the first time, you should log into a 
different terminal and choose a new password immediately.144 

UNIX systems include the crypt command, which allows a user to enter a key 
and plaintext; ciphertext is output. The transformation can be reversed trivially with 
the same key. One problem with this is that users tend to use the same key repeat
edly; once the key is discovered, all other files encrypted with this key can be read. 
Users sometimes forget to delete their plaintext files after producing encrypted ver
sions. This makes discovering the key much easier. 

Often, too many people are given superuser privileges. Restricting superuser 
privileges can reduce the risk of attackers gaining control of a system due to errors 
made by inexperienced users. UNIX systems provide a substitute user identity (su) 
command to enable users to execute shells with a different user's credentials. All su 
activity should be logged; this command lets any user who types a correct password of 
another user assume that user's identity, possibly even acquiring superuser privileges. 

A popular Trojan horse technique is to install a fake su program, which 
obtains the user's password, e-mails it to the attacker and restores the regular su 
program.145 Never allow others to have write permission for your files, especially 
for your directories; if you do, you're inviting someone to install a Trojan horse. 

UNIX systems contain a feature called password aging, in which the adminis-
trator determines how long passwords are valid; when a password expires, the user 
receives a message and is asked to enter a new password.146-147 There are several 
problems with this feature: 

1. Users often supply easy-to-crack passwords. 

2. The system often prevents a user from resetting to the old (or any other) 
password for a week, so the user can not strengthen a weak password. 

3. Users often switch between only two passwords. 

Passwords should be changed frequently. A user can keep track of all login 
dates and times to determine whether an unauthorized user has logged in (which 
means that his or her password has been learned). Logs of unsuccessful login 
attempts often store passwords, because users sometimes accidentally type their 
password when they mean to type their username. 
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Some systems disable accounts after a small number of unsuccessful login 
attempts. This is a defense against the intruder who tries all possible passwords. An 
intruder who has penetrated the system can use this feature to disable the account 
or accounts of users, including the system administrator, who might attempt to 
detect the intrusion.148 

The attacker who temporarily gains superuser privileges can install a trap
door program with undocumented features. For example, someone with access to 
source code could rewrite the login program to accept a particular login name and 
grant this user superuser privileges without even typing a password.149 

It is possible for individual users to "grab" the system, thus preventing other 
users from gaining access. A user could accomplish this by spawning thousands of 
processes, each of which opens hundreds of files, thus filling all the slots in the open-
file table.150 Installations can guard against this by setting reasonable limits on the 
number of processes a parent can spawn and the number of files that a process can 
open at once, but this in turn could hinder legitimate users who need the additional 
resources. 
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1. Why should the setuid feature be used with caution? 
2. Discuss how UNIX systems protect against unauthorized logins and how attackers can 

circumvent and exploit these mechanisms. 

Ans: 1) When a user executes the program, the user's individual ID or group ID or both are 
changed to that of the program's owner only while the program executes. If a regular user is 
able to execute a shell belonging to the superuser, and for which the setuid bit has been set, 
then the regular user essentially becomes the superuser. 2) To protect against unauthorized 
logins, UNIX systems use password aging to force users to change passwords frequently, 
track user logins and disable accounts after a small number of unsuccessful login attempts. 
Attackers can obtain user passwords using Trojan horses, exploiting the su command and set
uid feature and disabling an account (e.g., the system administrator's account) to prevent that 
user from responding to an intrusion. 
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www.nsa.gov/se l inux/ index.h tml 
Lists documents and resources for Security-Enhanced Linux. 
www.microsof t .com/windowsxp/secur i ty 
Provides links for maintaining security in Windows XP systems. 
w w w . s u n . c o m / s o f t w a r e / s o l a r i s / t r u s t e d s o l a r i s / 
index.html 
Provides information about the trusted Solaris operating envi
ronment. 
www.computerworld.com/securitytopics/security/ 
story/0,10801,69976,00.html 
Discusses two security flaws in Windows NT and 2000 and how 
they were fixed. 

Web Resources 
people.freebsd.org/~jkb/howto.html 
Discusses how to improve FreeBSD system security. 
www.deter.com/unix 
Lists links for UNIX-related security papers. 

www.alw.nih.gov/Security/Docs/network-
security.html 
Provides an architectural overview of UNIX network security. 

www.newsfactor.com/perl/story/7907.html 
Compares Linux and Windows security. 

i tmanagement .earthweb.com/secu/art icle .php/641211 
Discusses the future of operating systems security. 
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www.ieee-secur i ty .org/c ipher .h tml 
Cipher is an electronic newsletter on security and privacy frorm 
the Institute of Electrical and Electronics Engineers (IEEE) 
You can view current and past issues online. 
www.scmagazine.com 
SC Magazine has news, product reviews and a conference 
schedule for security events. 
www.cdt.org/crypto 
Visit the Center for Democracy and Technology for U.S. cryp
tography legislation and policy news. 
c s r c . n i s t . g o v / e n c r y p t i o n / a e s 
The official site for the AES includes press releases and a dis-
cussion forum. 
www.pk i fo rum.org / 
The PKI Forum promotes the use of the Public Key Infrastruc-
ture. 
www.Verisign.com 
VeriSign creates digital IDs for individuals, small businesses 
and large corporations. Check out its Web site for product 
information, news and downloads. 
www.thawte.com 
Thawte Digital Certificate Services offers SSL, developer and 
personal certificates. 
www.be ls ign.be/ 
Belsign is the European authority for digital certificates. 
www.interhack.net/pubs/fwfaq 
This site provides an extensive list of FAQs on firewalls. 
www.indentix.com 
Identix specializes in fingerprinting systems for law enforce-
ment, access control and network security. Using its fingerprint 
scanners, you can log on to your system, encrypt and decrypt 
files and lock applications. 

www.keytronic.com 
Key Tronic manufactures keyboards with fingerprint recogni-
tion systems. 

www. ie t f . o rg /h tml . cha r t e r s / i p sec -cha r t e r . h tml 
The IPSec Working Group of the Internet Engineering Task 
Force (IETF) is a resource for technical information related to 
the IPSec protocol. 
www.vpnc.org 
The Virtual Private Network Consortium has VPN standards, 
white papers, definitions and archives. VPNC also offers com-
patibility testing with current VPN standards. 
www.outguess.org 
Outguess is a freely available steganographic tool. 
www.weca.net/OpenSection/index.asp 
Wi-Fi alliance provides information about Wi-Fi and resources 
for setting up and securing a Wi-Fi network. 

www-106.ibm.com/developerworks/security/library/l-
sec/index.html?dwzone=security 
Provides links to Linux security issues and how to address 
these issues. 

www.securemac.com/ 
Provides security news for Apple systems. 

www.linuxjournal .com/art icle.php?sid=1204 
Describes how to create a Linux firewall using the TIS Firewall 
Toolkit. 

www.rsasecurity.com 
Homepage of RSA security. 

www.informit.cotn/isapi/guide~security/seq_id~13/ 
guide/content.asp 
Discusses operating system security overview, operating sys
tem security weakness. 

www.ftponline.com/wss/ 
Homepage of the Windows Server System magazine, which 
contains various security articles. 

www.networkcomputing.com/1202/1202fldl.html 
Provides a tutorial on wireless security. 

www.cnn.com/SPECIALS/2003/wireless/interactive/ 
wi reless101/index.html 
Provides a list of wireless security technologies for computers, 
PDAs, cell phones and other wireless devices. 

www.securitysearch.com 
This is a comprehensive resource for computer security, with 
thousands of links to products, security companies, tools and 
more. The site also offers a free weekly newsletter with infor
mation about vulnerabilities. 

www.w3.org/Security/Overview.html 
The W3C Security Resources site has FAQs, information about 
W3C security and e-commerce initiatives and links to other 
security-related Web sites. 

www.rsasecurity.com/rsalabs/faq 
This site is an excellent set of FAQs about cryptography from 
RSA Laboratories, one of the leading makers of public-key 
cryptosystems. 

www.authentidate.com 
Authentidate provides timestamping to verify the security of a 
file. 

www.itaa.org/infosec 
The Information Technology Association of America (ITAA) 
InfoSec site has information about the latest U.S. government 
legislation related to information security. 

www.securitystats.com 
This computer security site provides statistics on viruses, Web 
defacements and security spending. 
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Computer security addresses the issue of preventing unau
thorized access to resources and information maintained by 
computers. Computer security commonly encompasses 
guaranteeing the privacy and integrity of sensitive data, 
restricting the use of computer resources and providing 
resilience against malicious attempts to incapacitate the 
system. Protection entails mechanisms that shield resources 
such as hardware and operating system services from 
attack. 

Cryptography focuses on encoding and decoding data 
so that it can be interpreted only by the intended recipients. 
Data is transformed by means of a cipher or cryptosystem. 
Modern cryptosystems rely on algorithms that operate on 
the individual bits or blocks (a group of bits) of data, rather 
than letters of the alphabet. Encryption and decryption 
keys are binary strings of a given length. 

Symmetric cryptography, also known as secret-key 
cryptography, uses the same secret key to encrypt and 
decrypt a message. The sender encrypts a message using the 
secret key, then sends the encrypted message to the 
intended recipient, who decrypts the message using the 
same secret key. A limitation of secret-key cryptography is 
that before two parties can communicate securely, they 
must find a secure way to exchange the secret key. 

Public-key cryptography solves the problem of 
securely exchanging symmetric keys. Public-key cryptogra
phy is asymmetric in that it employs two inversely related 
keys: a public key and a private key. The private key is kept 
secret by its owner, while the public key is freely distrib
uted. If the public key encrypts a message, only the corre
sponding private key can decrypt it. 

The most common authentication scheme is simple 
password protection. The user chooses a password, memo
rizes it and presents it to the system to gain admission to a 
resource or system. Password protection introduces several 
weaknesses to a secure system. Users tend to choose pass
words that are easy to remember, such as the name of a 
spouse or pet. Someone who has obtained personal infor
mation about the user might try to log in several times 
using passwords that are characteristic of the user; several 
repeated attempts might result in a security breach. 

Biometrics uses unique personal information—such 
as fingerprints, eyeball iris scans or face scans—to identify a 
user. A smart card is often designed to resemble a credit 
card and can serve many different functions, from authenti
cation to data storage. The most popular smart cards are 
memory cards and microprocessor cards. 

Single sign-on systems simplify the authentication 
process by allowing the user to log in once using a single 
password. Users authenticated via a single sign-on system 
can then access multiple applications across multiple com
puters. It is important to secure single sign-on passwords, 
because if a password becomes available to hackers, all 
applications protected by that password can be accessed 
and attacked. Single sign-on systems are available in forms 
of workstation login scripts, authentication server scripts 
and token-based authentication. 

The key to operating system security is to control 
access to system resources. The most common access rights 
are read, write and execute. Techniques that an operating 
system employ to manage access rights include the access 
control matrices, access control lists and capability lists. 

There are several types of security attacks against 
computer systems, including cryptanalytic attacks, viruses 
and worms (such as the ILOVEYOU virus and Sapphire/ 
Slammer worm), denial-of-service attacks (such as a 
domain name system (DNS) attack), software exploitation 
(such as buffer overflow) and system penetration (such as 
Web defacing). 

Several common security solutions include firewalls 
(including packet-filtering firewall and application-level 
gateways), intrusion detection systems (including host-
based intrusion detection and network-based intrusion 
detection), antivirus software using signature scanning and 
heuristic scanning, security patches (such as hotfixes) and 
secure file systems (such as the Encrypting File System). 

The five fundamental requirements for a successful, 
secure transaction are privacy, integrity, authentication, 
authorization and nonrepudiation. The privacy issue deals 
with ensuring that the information transmitted over the 
Internet has not been viewed by a third party. The integrity 
issue deals with ensuring that the information sent or 
received has not been altered. The authentication issue 
deals with verifying the identities of the sender and 
receiver. The authorization issue deals with managing 
access to protected resources on the basis of user creden
tials. The nonrepudiation issue deals with ensuring that the 
network will operate continuously. 

Public-key algorithms are most often employed to 
exchange secret keys securely. The process by which two 
parties can exchange keys over an unsecure medium is 
called a key agreement protocol. Common key agreement 
protocols are the digital envelopes and digital signatures 
(using the SHA-1 and MD5 hash algorithms). 
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wireless communication by encrypting transmitted data 
and preventing unauthorized access to the wireless net
work. WEP has several drawbacks, which make it to be too 
weak for many environments. Wi-Fi Protected Access 
(WPA) addresses these issues by providing improved data 
encryption and by enabling user authentication, a feature 
not supported by WEP. 

A primary advantage to open-source security appli
cations is interoperability—open-source applications tend 
to implement standards and protocols that many develop
ers include in their products. Another advantage to open-
source security is that an application's source code is avail
able for extensive testing and debugging by the community 
at large. The primary weaknesses of proprietary security 
are nondisclosure and the fact that the number of collabo
rative users that can search for security flaws and contrib
ute to the overall security of the application is limited. 
Proprietary systems, however, can be equally as secure as 
open-source systems. 

The UNIX password file is stored in encrypted form. 
When a user enters a password, it is encrypted and com
pared to the password file. Thus, passwords are unrecover
able even by the system administrator. 

With the UNIX setuid permission feature, a program 
may be executed by one user using the privileges of 
another user. This powerful feature has security flaws, par
ticularly when the resulting privilege is that of the "supe-
ruser" (who has access to all files in a UNIX system). 

A limitation of public-key cryptography is that multi
ple users might share the same set of keys, making it diffi
cult to establish each party's identity. Public Key 
Infrastructure (PKI) provides a solution by integrating 
public-key cryptography with digital certificates and certifi
cate authorities to authenticate parties in a transaction. 

The Secure Sockets Layer (SSL) protocol is a non
proprietary protocol that secures communication between 
two computers on the Internet. SSL implements public-key 
cryptography using the RSA algorithm and digital certifi
cates to authenticate the server in a transaction and to pro
tect private information as it passes over the Internet. SSL 
transactions do not require client authentication; many 
servers consider a valid credit card number to be sufficient 
for authentication in secure purchases. 

Virtual Private Networks (VPNs) provide secure 
communications over public connections. Encryption 
enables VPNs to provide the same services and security as 
private networks. A VPN is created by establishing a secure 
communication channel over the Internet. IPSec (Internet 
Protocol Security), which uses public-key and symmetric-
key cryptography to ensure data integrity, authentication 
and confidentiality, is commonly used to implement a 
secure tunnel. 

Wireless devices have limited bandwidth and process
ing power, high latency and unstable connections, so estab
lishing secure wireless communication can be challenging. 
The Wired Equivalent Privacy (WEP) protocol protects 
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3DES -See Triple DES. 
Advanced Encryption Standard (AES)—Standard for sym

metric encryption that uses Rijndael as the encryption 
method. AES has replaced the Data Encryption Standard 
(DES) because AES provides enhanced security. 

access control list—List that stores one entry for each access 
right granted to a subject for an object. An access control 
list consumes less space than an access control matrix. 

access control matrix—Matrix that lists system's subjects in the 
rows and the objects to which they require access in the 
columns. Each cell in the matrix specifies the actions that 
a subject (defined by the row) can perform on an object 
(defined by the column). Access control matrices typically 
are not implemented because they are sparsely populated. 

access right—Defines how various subjects can access various 
objects. Subjects may be users, processes, programs or 
other entities. Objects are information-holding entities; 

they may be physical objects that correspond to disks 
processors or main memory or abstract objects that corre
spond to data structures, processes or services. Subjects 
are also considered to be objects of the system; one sub
ject may have rights to access another. 

air gap technology—Network security solution that comple-
ments a firewall. It secures private data from external 
users accessing the internal network. 

antivirus software—Program that attempts to identify, remove 
and otherwise protect a system from viruses. 

application-level gateway—Hardware or software that pro
tects the network against the data contained in packets. If 
the message contains a virus, the gateway can block it 
from being sent to the intended receiver. 

authentication (secure transaction) —One of the five funda-
mental requirements for a successful, secure transaction 
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Authentication deals with how the sender and receiver of 
a message verify their identities to each other. 

authentication header (AH) (IPSec)—Information that veri
fies the identity of a packet's sender and proves that a 
packet's data was not modified in transit. 

authentication server scripts—Single sign-on implementation 
that authenticates users via a central server, which estab
lishes connections between the user and the applications 
the user wishes to access. 

authorization (secure transaction) —One of the five fundamen
tal requirements for a successful, secure transaction. 
Authorization deals with how to manage access to pro
tected resources on the basis of user credentials. 

back-door program—Resident virus that allows an attacker 
complete, undetected access to the victim's computer 
resources. 

biometrics—Technique that uses an individual's physical char
acteristics, such as fingerprints, eyeball iris scans or face 
scans, to identify the user. 

block cipher—Encryption technique that divides a message 
into fixed-size groups of bits to which an encryption algo
rithm is applied. 

boot sector virus—Virus that infects the boot sector of the 
computer's hard disk, allowing it to load with the operat
ing system and take control of the system. 

brute-force cracking—Technique to compromise a system sim
ply by attempting all possible passwords or by using every 
possible decryption key to decrypt a message. 

buffer overflow—Attack that sends input that is larger than 
the space allocated for it. If the input is properly coded 
and the system's stack is executable, buffer overflows can 
enable an attacker to execute malicious code. 

capability (access control mechanism)—Token that grants a 
subject privileges for an object. It is analogous to a ticket 
the bearer may use to gain access to a sporting event. 

certificate authority (CA)—Financial institution or other 
trusted third party, such as VeriSign, that issues digital cer
tificates. 

certificate authority hierarchy—Chain of certificate authori
ties, beginning with the root certificate authority, that 
authenticates certificates and CAs. 

certificate repositories—Locations where digital certificates 
are stored. 

certificate revocation list (CRL)—List of cancelled and 
revoked certificates. A certificate is cancelled/revoked if a 
private key is compromised before its expiration date. 

cipher—Mathematical algorithm for encrypting messages. 
Also called cryptosystem. 

ciphertext—Encrypted data. 
cracker—Malicious individual that is usually interested in 

breaking into a system to disable services or steal data. 
credential—Combination of user identity (e.g., username) and 

proof of identify (e.g., password). 
cryptanalytic attack—Technique that attempts to decrypt 

ciphertext without possession of the decryption key. The 
most common such attacks are those in which the encryp
tion algorithm is analyzed to find relations between bits of 
the encryption key and bits of the ciphertext. 

cryptography—Study of encoding and decoding data so that it 
can be interpreted only by the intended recipients. 

cryptosystem—Mathematical algorithm for encrypting mes
sages. Also called a cipher. 

Data Encryption Standard (DES)—Symmetric encryption 
algorithm that use a 56-bit key and encrypts data in 64-bit 
blocks. For many years, DES was the encryption standard 
set by the U.S. government and the American National 
Standards Institute (ANSI). However, due to advances in 
computing power, DES is no longer considered secure— 
in the late 1990s, specialized DES cracker machines were 
built that recovered DES keys after a period of several 
hours. 

denial-of-service (DoS) attack—Attack that prevents a system 
from properly servicing legitimate requests. In many DoS 
attacks, unauthorized traffic saturates a network's 
resources, restricting access for legitimate users. Typically, 
the attack is performed by flooding servers with data 
packets. 

digital certificate—Digital document that identifies a user or 
organization and is issued by a certificate authority. A dig
ital certificate includes the name of the subject (the orga
nization or individual being certified), the subject's public 
key, a serial number (to uniquely identify the certificate), 
an expiration date, the signature of the trusted certificate 
authority and any other relevant information. 

digital envelope—Technique that protects message privacy by 
sending a package including a message encrypted using a 
secret key and the secret key encrypted using public-key 
encryption. 

digital notary service—See time-stamping agency. 
digital signature—Electronic equivalent of awritten signature. 

To create a digital signature, a sender first applies a hash 
function to the original plaintext message. Next, the 
sender uses the sender's private key to encrypt the mes
sage digest (the hash value). This step creates a digital sig-
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Internet Protocol Security (IPSec)—Transport-layer security 
protocol that provides data privacy, integrity and authen
tication. 

intrusion detection system (IDS)—Application that monitors 
networks and application log files, which record informa-
tion about system behavior, such as the time at which 
operating services are requested and the name of the pro
cess that requests it. 

IP spoofing—Attack in which an attacker simulates the IP 
address of an authorized user or host to obtain unautho-
rized access to resources. 

Kerberos—Freely available, open-source authentication and 
access control protocol developed at MIT that provides 
protection against internal security attacks. It employs 
secret-key cryptography to authenticate users in a net-
work and to maintain the integrity and privacy of network 
communications. 

key—Input to a cipher to encrypt data; keys are represented 
by a string of digits. 

key agreement protocol—Rules that govern key exchange 
between two parties over an unsecure medium. 

key distribution center (KDC)—Central authority that shares 
a different secret key with every user in the network. 

key generation—Creation of encryption keys. 
layered biometric verification (LBV)—Authentication tech-

nique that uses multiple measurements of human features 
(such as face, finger and voice prints) to verify a user's 
identity. 

log file—Records information about system behavior, such as 
the time at which operating services are requested and the 
name of the process that requests them. 

logic bomb—Virus that executes its code when a specified con-
dition is met. 

Lucifer algorithm—Encryption algorithm created by Horst 
Feistel of IBM, which was chosen as the DES by the 
United States government and the National Security 
Agency (NSA) in the 1970s. 

Macintosh—Apple Computer's PC line that introduced the 
GUI and mouse to mainstream computer users. 

Mac OS—Line of operating systems for Apple Macintosh 
computers first introduced in 1997. 

mandatory access control (MAC)—Access control model in 
which policies predefine a central permission scheme by 
which all subjects and objects are controlled. 

MD5 Message Digest Algorithm—Hash algorithm developed 
by Professor Ronald L. Rivest at MIT that is widely used 
to implement digital signatures. 

nature and validates the sender's identity, because only 
the owner of that private key could encrypt the message. 

Digital Signature Algorithm (DSA)—U.S. government's digi
tal authentication standard. 

digital watermark—Popular application of steganography that 
hides information in unused (or rarely used) portions of a 
file. 

discretionary access control (DAC)—Access control model in 
which the creator of an object controls the permissions for 
that object. 

distributed denial-of-service attack—Attack that prevents a 
system from servicing requests properly by initiating 
packet flooding from separate computers sending traffic 
in concert. 

DNS (domain name system) attack—Attack that modifies the 
address to which network traffic for a particular Web site is 
sent. Such attacks can be used to redirect users of a particu
lar Web site to another, potentially malicious Web site. 

encapsulating security payload (ESP) (IPSec)—Message data 
encrypted using symmetric-key ciphers to protect the data 
from eavesdroppers while the IP packet is transmitted 
across public communication lines. 

Encrypting File System (EFS)—NTFS feature that uses cryp
tography to protect files and folders in Windows XP Pro
fessional and Windows 2000. EFS uses secret-key and 
public-key encryption to secure files. Each user is assigned 
a key pair and certificate that are used to ensure that only 
the user that encrypted the files can access them. 

firewall—Software or hardware that protects a local area net
work from packets sent by malicious users from an exter
nal network. 

hacker—Experienced programmer who often program as 
much for personal enjoyment as for the functionality of 
the application. This term is often used when the term 
cracker is more appropriate. 

heuristic scanning—Antivirus technique that detects viruses 
by their program behavior. 

host-based intrusion detection—IDS that monitors system and 
application log files. 

integrity (secure transaction) —One of the five fundamental 
requirements for a successful, secure transaction. Integ
rity deals with how to ensure that the information you 
send or receive has not been compromised or altered. 

Internet Key Exchange (IKE) (IPSec)—Key-exchange proto
col used in IPSec to perform key management, which 
allows secure key exchange. 

926 Security 



message digest—Hash value produced by algorithms such as 
SHA-1 and MD5 when applied to a message. 

message integrity—Property indicating whether message has 
been altered in transmission. 

National Institute of Standards and Technology (NIST)— 
Organization that sets cryptographic (and other) stan
dards for the U.S. government. 

network-based intrusion detection—IDS that monitors traffic 
on a network for any unusual patterns that might indicate 
DoS attacks or attempted entry into a network by an 
unauthorized user. 

nonrepudiation—Issue that deals with how to prove that a 
message was sent or received. 

Online Certificate Status Protocol (OCSP)-Protocol that val
idates certificates in real time. 

OpenBSD—BSD UNIX system whose primary goal is security. 

Operationally Critical Threat, Asset and Vulnerability Evalua
tion (OCTAVE) method—Technique for evaluating secu
rity threats of a system developed at the Software 
Engineering Institute at Carnegie Mellon University. 

Orange Book—Document published by U.S. Department of 
Defence (DoD) to establish guidelines for evaluating the 
security features of operating systems. 

packet-filtering firewall—Hardware or software that examines 
all data sent from outside its LAN and rejects data pack
ets based on predefined rules, such as reject packets that 
have local network addresses or reject packets from cer
tain addresses or ports. 

password aging—Technique that attempts to improve security 
by requiring users to change their passwords periodically. 

password protection—Authentication technique that relies on 
a user's presenting a username and corresponding pass
word to gain access to a resource or system. 

password salting—Technique that inserts characters at various 
positions in the password before encryption to reduce vul
nerability to brute-force attacks. 

payload—Code inside a logic bomb that is executed when a 
specified condition is met. 

plaintext—Unencrypted data. 

Platform for Privacy Preferences (P3P)—Protects the privacy 
of information submitted to single sign-on and other 
applications by allowing users to control the personal 
information that sites collect. 

policy creation authority—Organization that sets policies for 
obtaining digital certificates. 

polymorphic virus—Virus that attempts to evade known virus 
lists by modifying its code (e.g., via encryption, substitu
tion, insertion, and the like) as it spreads. 

Pretty Good Privacy (PGP)—Public-key encryption system 
primarily used to encrypt e-mail messages and files, 
designed in 1991 by Phillip Zimmermann. 

privacy (secure transaction)—One of the five fundamental 
requirements for a successful, secure transaction. Privacy 
deals with how to ensure that the information transmitted 
over the Internet has not been captured or passed to a 
third party without user knowledge. 

private key—Key in public-key cryptography that should be 
known only by its owner. If its corresponding public key 
encrypts a message, only the private key should be able to 
decrypt it. 

privilege (access right)—The manner in which a subject can 
access an object. 

protection—Mechanism that prevents unauthorized use of 
resources such as hardware and operating system services. 

protection domain—Collection of access rights. Each access 
right in a protection domain is represented as an ordered 
pair with fields for the object name and applicable privi
leges. 

public key—Key in public cryptography that is available to all 
users that wish to communicate with its owner. If the pub
lic key encrypts a message, only the corresponding private 
key can decrypt it. 

public-key cryptography—Asymmetric cryptography tech
nique that employs two inversely related keys: a public 
key and a private key. To transmit a message securely, the 
sender uses the receiver's public key to encrypt the mes
sage. The receiver then decrypts the message using his or 
her unique private key. 

Public Key Infrastructure (PKI)—Technique that integrates 
public-key cryptography with digital certificates and cer
tificate authorities to authenticate parties in a transaction. 

resident virus—Virus that, once loaded into memory, executes 
until the computer is powered down. 

restricted algorithm—Algorithm that provides security by 
relying on the sender and receiver to use the same encryp
tion algorithm and maintain its secrecy. 

random-scanning algorithm—Algorithm that uses pseudoran
dom numbers to generate a broad distribution of IP 
addresses. 

real-time scanner—Software that resides in memory and 
actively prevents viruses. 
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smart card—Credit card size data store that serves many func
tions, including authentication and data storage. 

steganography—Technique that hides information within 
other information, derived from Latin roots meaning 
"covered writing." 

substitution cipher—Encryption technique whereby every 
occurrence of a given letter is replaced by a different let
ter. For example, if every "a" were replaced by a "b,' 
every "b" by a "c," and so on the word "security" would 
encrypt to "tfdvsjuz." 

static analysis—Intrusion detection method which attempts to 
detect when applications have been corrupted by a hacker. 

system penetration—Successful breach of computer security 
by an unauthorized external user. 

symmetric cryptography—See secret-key cryptography. 
Ticket Granting Service (TGS) (Kerberos) —Server that 

authenticates client's rights to access specific network ser-
vices. 

Ticket-Granting Ticket (TGT) (Kerberos)—Ticket returned 
by Kerberos's authentication server. It is encrypted with 
the client's secret key that is shared with the authentica-
tion server. The client sends the decrypted TGT to the 
Ticket Granting Service to request a service ticket. 

time bomb—Virus that is activated when the clock on the com
puter matches a certain time or date. 

timestamping (nonrepudiation)—Technique that binds a time 
and date to a digital document, which helps solve the 
problem of nonrepudiation. 

time-stamping agency—Organization that digitally time 
stamps a document that has been digitally signed. 

token (in token-based authentication)—Unique identifier for 
authentication. 

token-based authentication—Authentication technique that 
issues a token unique to each session, enabling users to 
access specific applications. 

transient virus—Virus that attaches itself to a particular com
puter program. The virus is activated when the program is 
run and deactivated when the program is terminated. 

transposition cipher—Encryption technique whereby the 
ordering of the letters is shifted. For example, if every 
other letter, starting with "s," in the word "security" cre
ates the first word in the ciphertext and the remaining let-
ters create the second word in the ciphertext, the word 
"security" would encrypt to "scrt euiy." 

Triple DES—Variant of DES that can be thought of as three 
DES systems in series, each with a different secret key 
that operates on a block. Also called 3DES. 

root key—Used by the Internet Policy Registration Authority 
(IPRA) to sign certificates exclusively for policy creation 
authorities. 

Rijndael—Block cipher developed by Dr. Joan Daemen and 
Dr. Vincent Rijmen of Belgium. The algorithm can be 
implemented on a variety of processors. 

role (RBAC) — Represents a set of tasks assigned to a member 
of an organization. Each role is assigned a set of privileges, 
which define the objects that users in each role can access. 

role-based access control (RBAC)—Access control model in 
which users are assigned roles. 

RSA—Popular public-key algorithm, which was developed in 
1977 by MIT professors Ron Rivest, Adi Shamir and 
Leonard Adleman. 

secret-key cryptography—Technique that performs encryption 
and decryption using the same secret key to encrypt and 
decrypt a message. The sender encrypts a message using 
the secret key, then sends the encrypted message to the 
intended recipient, who decrypts the message using the 
same secret key. Also called symmetric cryptography. 

Secure Hash Algorithm (SHA-1)—Popular hash function used 
to create digital signatures; developed by NIST 

Secure Sockets Layer (SSL)—Nonproprietary protocol devel
oped by Netscape Communications that secures commu
nication between two computers on the Internet. 

Security mechanism—Method by which the system implements 
its security policy. In many systems, the policy changes over 
time, but the mechanism remains unchanged. 

Security model—Entity that defines a system's subjects, objects 
and privileges. 

Security patch—Code that addresses a security flaw. 
Security policy—Rules that govern access to system resources. 
Service ticket (Kerberos)—Ticket that authorizes the client's 

access to specific network services. 
Session key—Secret key that is used for the duration of a trans

action (e.g., a customer's buying merchandise from an 
online store). 

Shadow password file (UNIX)—Protects the password file 
from crackers by storing information other than the 
encrypted passwords in the normal password file and stor
ing the encrypted passwords in the shadow password file 
that can be accessed only by users with root privileges. 

Signature-scanning virus detection—Antivirus technique that 
relies on knowledge of virus code. 

Single sign-on— Simplifies the authentication process by allow
ing the user to log in once, using a single password. 

928 Security 



Trojan horse—Malicious program that hides within a trusted 
program or simulates the identity of a legitimate program 
or feature, while actually causing damage to the computer 
or network when the program is executed. 

two-factor authentication—Authentication technique that 
employs two means to authenticate the user, such as bio
metrics or a smart card used in combination with a pass
word. 

variant—Virus whose code has been modified from its original 
form, yet still retains its malicious payload. 

Virtual Private Network (VPN)—Technique that securely 
connects remote users to a private network using public 
communication lines. VPNs are often implemented using 
IPSec. 

virus—Executable code (often sent as an attachment to an e-
mail message or hidden in files such as audio clips, video 
clips and games) that attaches to or overwrites other files 
to replicate itself, often harming the system on which it 
resides. 

virus signature—Segment of code that does not vary between 
virus generations. 

Web defacing—Attack that maliciously modifies an organiza
tion's Web site. 

Wi-Fi Protected Access (WPA)—Wireless security protocol 
intended to replace WEP by providing improved data 
encryption and by enabling user authentication. 

Wired Equivalent Privacy (WEP)—Wireless security protocol 
that encrypts transmitted data and prevents unauthorized 
access to the wireless network. 

workstation login scripts—Simple form of single sign-on in 
which users log in at their workstations, then choose 
applications from a menu. 

worm—Executable code that spreads and infects files over a 
network. Worms rarely require any user action to propa
gate, nor do they need to be attached to another program 
or file to spread. 
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19.1 Why is a precise statement of security requirements crit
ical to the determination of whether a given system is secure? 

19.2 Sharing and protection are conflicting goals. Give three 
significant examples of sharing supported by operating sys-
tems. For each, explain what protection mechanisms are neces
sary to control the sharing. 

19.3 Give several reasons why simple password protection is 
the most common authentication scheme in use today. Discuss 
the weaknesses inherent in password protection schemes. 

19.4 An operating systems security expert has proposed the 
following economical way to implement a reasonable level of 
security: Simply tell everyone who works at an installation that 
the operating system contains the latest and greatest in secu
rity mechanisms. Do not actually build the mechanisms, the 
expert says, just tell everyone that the mechanisms are in place. 
Who might such a scheme deter from attempting a security 
violation? Who would not likely be deterred? Discuss the 
advantages and disadvantages of the scheme. In what types of 
installations might this scheme be useful? Suggest a simple 
modification to the scheme that would make it far more effec
tive, yet still far more economical than a comprehensive secu
rity program. 

19.5 What is the principle of least privilege? Give several rea
sons why it makes sense. Why is it necessary to keep protec
tion domains small to effect the least-privilege approach to 

security? Why are capabilities particularly useful in achieving 
small protection domains? 

19.6 How does a capabilities list differ from an access control 
list? 

19.7 Why is an understanding of cryptography important to 
operating systems designers? List several areas within operat
ing systems in which the use of cryptography would greatly 
improve security. Why might a designer choose not to include 
encryption in all facets of the operating system? 

19.8 Why is it desirable to incorporate certain operating sys
tems security functions directly into hardware? Why is it useful 
to microprogram certain security functions? 

19.9 Give brief definitions of each of the following terms. 
a. cryptography 
b. Data Encryption Standard (DES) 
c. privacy problem 
d. integrity problem 
e. problem of nonrepudiation 
f. plaintext 
g. ciphertext 
h. unsecure channel 
i. eavesdropper 
j . cryptanalysis 
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19.14 Explain how cryptography is useful in each of the fol
lowing. 

a. protecting a system's master list of passwords 
b. protecting stored files 
c. protecting vulnerable transmissions in computer net

works 

19.15 The UNIX systems administrator cannot determine the 
password of a user who has lost his or her password. Why? 
How can that user regain access to the computer? 

19.16 How could a UNIX system user seize control of a sys
tem, thus locking out all other users? What defense may be 
employed against this technique? 

19.17 Why do antivirus software companies and high-security 
installations hire convicted hackers? 

19.10 Give brief definitions of each of the following terms. 
a. public-key system 
b. public key 
c. private key 
d. digital signature 

19.11 Why are denial-of-service attacks of such great concern 
to operating systems designers? List a few types of denial-of-
service attacks. Why is it difficult to detect a distributed denial-
of-service attack on a server? 

19.12 What is a log file? What information might an operating 
system deposit in a log file? How does a log act as a deterrent 
to those who would commit a security violation? 

19.13 Explain how public-key cryptography systems provide 
an effective means of implementing digital signatures. 
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19.18 At the moment, it appears that our computing systems 
are easy targets for penetration. Enumerate the kinds of weak
nesses that are prevalent in today's systems. Suggest how to 
correct these weaknesses. 
19.19 Design a penetration study for a large computer system 
with which you are familiar. Adhere to the following: 

a. Perform the study only with the full cooperation of 
the computer center administrators and personnel. 

b. Arrange to have ready access to all available system 
documentation and software source listings. 

c. Agree that any flaws you discover will not be made 
public until they have been corrected. 

d. Prepare a detailed report summarizing your findings 
and suggesting how to correct the flaws. 

e. Your primary goals are to achieve 

i. total system penetration 

ii. denial of access to legitimate system users 

iii. the crashing of the system. 

f. You may access the system only through conven
tional mechanisms available to nonprivileged users. 

g. Your attacks must be software and/or firmware ori
ented. 

19.20 Prepare a research paper on the RSA algorithm. What 
mathematical principles aid the RSA algorithm in being diffi
cult to crack? 

19.21 Prepare a research paper on how antivirus software pro
vides security while being minimally invasive. 

19.22 Prepare a research paper on the implementation of PGP 
Explain why the name "Pretty Good Privacy" is appropriate. 

19.23 Prepare a research paper on the most costly viruses and 
worms. How did these worms or viruses spread? What flaws 
did they exploit? 

19.24 Prepare a research paper on how IP spoofing is per
formed. 

19.25 Discuss the ethical and legal issues surrounding the 
practice of hacking. 

Suggested Projects 

19.26 Create an application to encode and decode secret mes
sages within bitmap pictures. When encoding, modify the least 
significant bit in each byte to store information about the mes-

sage. To decode, just reassemble the message using the least 
significant bit of each byte. 

Suggested Simulation 

are constantly evolving. Although the problems of cryptogra
phy and access control are well characterized, techniques that 

Computer security has been researched extensively in aca
demic and commercial environments. Most topics in the field 
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Operating System 
Case Studies 

Our children may learn about the heroes of the past. 
Our task is to make ourselves architects of the future. 

—Mzee Jomo Kenyatta — 

Part 8 



The final two chapters present in-depth case studies 
of Linux and Microsoft Windows XP These case 
studies reinforce the text's key concepts and dem
onstrate how operating system principles are 
applied in real-world operating systems. Chapter 
20 examines the history and core components of 
Linux 2.6—the most popular open-source operat
ing system— including kernel architecture, process 
management, memory management, file systems, 
I/O management, synchronization, IPC, network
ing, scalability and security. Chapter 21 explores 
the internals of Windows XP—the most popular 
proprietary operating system. The case study 
examines XP's history, design goals and core com
ponents, including system architecture, system 
management mechanisms, process and thread 
management, memory management, file systems 
management, input/output management, IPC, net
working, scalability and security. 

Freely ye have received, freely give. 
-Matthew 10:8-



Freely ye have received, freely give. 
-Matthew 10:8-

The world is moving so fast these days that the man who says it can't be 
done is generally interrupted by someone doing it. 

—Elbert Hubbard— 

When your Daemon is in charge, do not try to think consciously. Drift, 
wait and obey. 

— Rudyard Kipling— 

I long to accomplish a great and noble task, but it is my chief duty to 
accomplish small tasks as if they were great and noble. 

—Helen Keller— 

Our children may learn about heroes of the past, Our task is to make our-
selves architects of the future. 

—Jomo Mzee Kenyatta— 



After reading this chapter, you should understand: 

• Linux kernel architecture. 

• the Linux implementation of operating system components such as process, 
memory and file management. 

• the software layers that compose the Linux kernel. 

• how Linux organizes and manages system devices. 

• how Linux manages I/O operations. 

• interprocess communication and synchronization mechanisms in Linux. 

• how Linux scales to multiprocessor and embedded systems. 

• Linux security features. 
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The Linux kernel version 2.6 is the core of the most popular open-source, freely dis
tributed, full-featured operating system. Unlike that of proprietary operating sys
tems, Linux source code is available to the public for examination and modification 
and is free to download and install. As a result, users of the operating system benefit 
from a community of developers actively debugging and improving the kernel, an 
absence of licensing fees and restrictions and the ability to completely customize 
the operating system to meet specific needs. Though Linux is not centrally produced 
by a corporation, Linux users can receive technical support for a fee from Linux 
vendors or for free through a community of users. 

The Linux operating system, which is developed by a loosely organized team 
of volunteers, is popular in high-end servers, desktop computers and embedded sys
tems. Besides providing core operating system features, such as process scheduling, 
memory management, device management and file system management, Linux 
supports many advanced features such as symmetric multiprocessing (SMP), non
uniform memory access (NUMA), access to multiple file systems and support for a 
broad spectrum of hardware architectures. This case study offers the reader an 
opportunity to evaluate a real operating system in substantial detail in the context 
of the operating system concepts discussed throughout this book. 

In 1991, Linus Torvalds, a 21-year-old student at the University of Helsinki, Fin
land, began developing the Linux (the name is derived from "Linus" and "UNIX") 
kernel as a hobby. Torvalds wished to improve upon the design of Minix, an educa-
tional operating system created by Professor Andrew S. Tanenbaum of the Vrije 
Universiteit in Amsterdam. The Minix source code, which served as a starting point 
for Torvalds's Linux project, was publicly available for professors to demonstrate 
basic operating system implementation concepts to their students.1 

In the early stages of development, Torvalds sought advice about the short-
comings of Minix from those familiar with it. He designed Linux based on these 
suggestions and made further efforts to involve the operating systems community in 
his project. In September of 1991, Torvalds released the first version (0.01) of the 
Linux operating system, announcing the availability of his source code to a Minix 
newsgroup.2 

The response led to the creation of a community that has continued to 
develop and support Linux. Developers downloaded, tested, and modified the 
Linux code, submitting bug fixes and feedback to Torvalds, who reviewed them and 
applied the improvements to the code. In October, 1991, Torvalds released version 
0.02 of the Linux operating system.3 

Although early Linux kernels lacked many features implemented in well-
established operating systems such as UNIX, developers continued to support the 
concept of a new, freely available operating system. As Linux's popularity grew. 
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developers worked to remedy its shortcomings, such as the absence of a login mech
anism and its dependence on Minix to compile. Other missing features were floppy 
disk support and a virtual memory system.4 Torvalds continued to maintain the 
Linux source code, applying changes as he saw fit. 

As Linux evolved and drew more support from developers, Torvalds recog
nized its potential to become more than a hobby operating system. He decided that 
Linux should conform to the POSIX specification to enhance its interoperability 
with other UNIX-like systems. Recall that POSIX, the Portable Operating System 
Interface, defines standards for application interfaces to operating system services, 
as discussed in Section 2.7, Application Programming Interfaces (APIs).5 

The 1994 release of Linux version 1.0 included many features commonly 
found in a mature operating system, such as multiprogramming, virtual memory, 
demand loading and TCP/IP networking.6 It provided the functionality necessary 
for Linux to become a viable alternative to the licensed UNIX operating system. 

Though it benefited from free licensing, Linux suffered from a complex instal-
lation and configuration process. To allow users unfamiliar with the details of Linux 
to conveniently install and use the operating system, academic institutions, such as 
the University of Manchester and Texas A&M University, and organizations such as 
Slackware Linux (www.slackware.org), created Linux distributions, which 
included software such as the Linux kernel, system applications (e.g., user account 
management, network management and security tools), user applications (e.g., 
GUIS, Web browsers, text editors, e-mail applications, databases, and games) and 

tools to simplify the installation process.7 

As kernel development progressed, the project adopted a version numbering 
scheme. The first digit is the major version number, which is incremented at Tor-
valds's discretion for each kernel release that contains a feature set significantly dif
ferent from that of the previous version. Kernels that are described by an even 
minor version number (the digit directly following the first decimal point), such as 
version 1.0.9, are considered to be stable releases, whereas an odd minor version 
number, such as 2.1.6, indicates a development version. The digit following the sec
ond decimal point is incremented for each minor update to the kernel. 

Development kernels include new features that have not been extensively 
tested, so they are not sufficiently reliable for production use. Throughout the 
development process, developers create and test new features; then, once a devel-
opment kernel becomes stable (i.e., the kernel does not contain any known bugs), 

Torvalds declares it a release kernel. 
By the 1996 release of version 2.0, the Linux kernel had grown to over 400,000 

lines of code.1 Thousands of developers had contributed features and bug fixes, and 
more than 1.5 million users had installed the operating system.9 Although this 
release was appealing to the server market, the vast majority of desktop users were 

1 Red Hat version 6.2, which included version 2.0 of the Linux kernel, contained approxi
mately 17 million lines of code. By comparison, Microsoft Windows 95 contained approxi
mately 15 million lines of code and Sun Solaris approximately 8 million.8 
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still reluctant to use Linux as a client operating system. Version 2.0 provided enter
prise features such as support for SMP, network traffic control and disk quotas. 
Another important feature allowed portions of the kernel to be modularized, so 
that users could add device drivers and other system components without rebuild
ing the kernel. 

Version 2.2 of the kernel, which was released by Torvalds in 1999, improved 
the performance of existing 2.0 features, such as SMP, audio support and file sys
tems, and added new features such as an extension to the kernel's networking sub
system that allowed system administrators to inspect and control network traffic at 
the packet level. This feature simplified firewall installation and network traffic for
warding, as requested by server administrators.10 

Many new features in version 2.2, such as USB support, CD-RW support and 
advanced power management, targeted the desktop market. These features were 
labeled as experimental, because they were not sufficiently reliable for use in pro
duction systems. Although version 2.2 improved usability in desktop environments. 
Linux could not yet truly compete with popular desktop operating systems of the 
time, such as Microsoft's Windows 98. The desktop user was more concerned with 
the availability of applications and the "look and feel" of the user interface than 
with kernel functionality. However, as Linux kernel development continued, so did 
the development of Linux applications. 

The next stable kernel, version 2.4, was released by Torvalds in January, 2001 
In this release a number of kernel subsystems were modified and, in some cases. 
completely rewritten to support newer hardware and to use existing hardware more 
efficiently. In addition, Linux was modified to run on high-performance architec
tures including Intel's 64-bit Itanium, 64-bit MIPS and AMD's 64-bit Opteron, and 
handheld-device architectures such as SuperH. 

Enterprise systems companies such as IBM and Oracle had become increas
ingly interested in Linux as it continued to stabilize and spread to new platform-
Viability in the enterprise systems market, however, required Linux to scale to both 
high-end and embedded systems, a need fulfilled by version 2.4.11 

Version 2.4 addressed a critical scalability issue by improving performance on 
high-end multiprocessor systems. Although Linux had included SMP support since 
version 2.0, inefficient synchronization mechanisms and other issues limited perfor
mance on systems containing more than four processors. Improvements in version 
2.4 enabled the kernel to scale to 8,16 or more processors.12 

Version 2.4 also addressed the needs of desktop users. Experimental feature-
in the 2.2 kernel, such as USB support and power management, matured in the 2.4 
kernel. This kernel supported a large set of desktop devices; however, a variety of 
issues, such as Microsoft's market power and the small number of user-friendly 
Linux applications, prevented widespread Linux use on desktop computers. 

Development of the version 2.6 kernel focused on scalability, standards com
pliance and modifications to kernel subsystems to improve performance. Kernel 
developers focused on scalability by increasing SMP support, providing support for 
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NUMA systems and rewriting the process scheduler to increase the performance of 
scheduling operations. Other kernel enhancements included support for advanced 
disk scheduling algorithms, a new block I/O layer, improved POSIX compliance, an 
updated audio subsystem and support for large memories and disks. 

Linux has a distinct development process and benefits from a wealth of diverse (and 
free) system and user applications. In this section we summarize Linux kernel fea
tures, discuss the process of standardizing and developing the kernel, and introduce 
several user applications that improve Linux usability and productivity. 

In addition to the kernel, Linux systems include user interfaces and applica
tions. A user interface can be as simple as a text-based shell, though standard Linux 
distributions include a number of GUIs through which users can interact with the 
system. The Linux operating system borrows from the UNIX layered system 
approach. Users access applications via a user interface; these applications access 
resources via a system call interface, thereby invoking the kernel. The kernel may 
then access the system's hardware, as appropriate, on behalf of the requesting appli
cation. In addition to creating user processes, the system creates kernel threads that 
perform many kernel services. Kernel threads are implemented as daemons, which 
remain dormant until the scheduler or another component of the kernel wakes 
them. 

Because Linux is a multiuser system, the kernel must provide mechanisms to 
manage user access rights and provide protection for system resources. Therefore, 
Linux restricts operations that may damage the kernel and/or the system's hard
ware to a user that has superuser (also called root) privileges. For example, the 
superuser privilege enables a user to manage passwords, specify access rights for 
other users and execute code that modifies system files. 

The Linux project is maintained by Linus Torvalds, who is the final arbiter of any 
code submitted for the kernel. The community of developers constantly modifies 
the operating system and every two or three years releases a new stable version of 
the kernel. The community then shifts to the development of the next kernel, dis
cussing new features via e-mail lists and online forums. Torvalds delegates mainte
nance of stable kernels to trusted developers and manages the development kernel. 
Bug fixes and performance enhancements for stable releases are applied to the 
source code and released as updates to the stable version. In parallel, development 
kernels are released at various stages of the coding process for public review, testing 
and feedback. 

Torvalds and a team of approximately 20 members of his "inner circle" —a set 
of developers who have proven their competency by producing significant additions 
to the Linux kernel—are entrusted with enhancing current features and coding new 
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ones. These primary developers submit code to Torvalds, who reviews and accepts 
or rejects it, depending on such factors as correctness, performance and style. When 
a development kernel has matured to a point at which Torvalds is satisfied with the 
content of its feature set, he will declare a feature freeze. Developers may continue 
to submit bug fixes, code that improves system performance and enhancements to 
features that are under development.13 When the kernel is near completion, a code 
freeze occurs. During this phase only code that fixes bugs is accepted. When Tor
valds decides that all important known bugs have been addressed, the kernel is 
declared stable and is released with a new, even kernel minor version number. 

Though many Linux developers contribute to the kernel as individuals, corpo
rations such as IBM have invested significant resources in improving the Linux ker
nel for use in large-scale systems. Such corporations typically charge for tools and 
support services. Free support is provided by other users and developers in the 
Linux community. Users may ask questions in user groups, electronic mailing lists 
(also called listservs) or forums, and may find answers to questions in FAQs (fre
quently asked questions) and HOWTOs (step-by-step guides). URLs for such 
resources can be found via the sites in the Web Resources section at the end of the 
chapter. Alternatively, dedicated support services can be purchased from vendors. 

Linux is free for users to download, modify and distribute under the GNU 
General Public License (GPL). GNU (pronounced guh-knew) is a project created 
by the Free Software Foundation in 1984 that aims to provide free UNIX-like oper
ating systems and software to the public.14 The General Public License specifies that 
any distribution of the software under its license must be accompanied by the GPL, 
must clearly indicate that the original code has been modified and must include the 
complete source code. Although Linux is free software, it is copyrighted (many of 
the copyrights are held by Linus Torvalds); any software that borrows from Linux's 
copyrighted material must clearly credit its source and must also be distributed 
under the terms of the GPL. 

By the end of the 1990s, Linux had matured but was still largely ignored by desktop 
users. In a PC market dominated by Microsoft and Apple, Linux was considered 
too difficult to use. Those who wished to install Linux were required to download 
the source code, manually customize configuration files and compile the kernel. 
Users still needed to download and install applications to perform productive work 
As Linux matured, developers realized a need for a friendly installation process, 
which led to the creation of distributions that included the kernel, applications and 
user interfaces as well as other tools and accessories. 

Currently more than 300 distributions are available, each providing a variety of 
features. User-friendly and application-rich distributions are popular among users — 
they often include an intuitive GUI and productivity applications such as word pro-
cessors, spreadsheets and Web browsers. Distributions are commonly divided into 
packages, each containing a single application or service. Users can customize a 
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Linux system by installing or removing packages, either during the installation pro
cess or at runtime. Examples of such distributions are Debian, Mandrake, Red Hat, 
Slackware and SuSE.15 Mandrake, Red Hat and SuSE are commercial organizations 
that provide Linux distributions for markets such as high-end servers and desktop 
users.161718 Debian and Slackware are nonprofit organizations comprised of volun
teer developers who update and maintain Linux distributions.19-20 Other distribu
tions tailor to specific environments, such as handheld systems (e.g., OpenZaurus) 
and embedded systems (e.g., uClinux).21-22 All parts of distributions using GPL-
icensed code can be freely modified and redistributed by end-users, but the GPL 
does not prohibit distributors from charging a fee for distribution costs (e.g., the cost 
if packaging materials) or technical support.23-24 

In a Microsoft Windows XP or Macintosh OS X environment, the user is presented 
with a standard, customizable user interface composed of the GUI and an emulated 
terminal or shell (e.g., a window containing a command-line prompt). On the con
trary, Linux is simply the kernel of an operating system and does not specify a 
"standard" user interface. Many console shells, such as bash (Bourne-again shell), 

csh (a shell providing C-like syntax, pronounced "seashell") and esh (easy shell) are 
commonly found on user systems.25 

For users who prefer a graphical interface to console shells, there are several 
freely available GUIs, many of which are packaged as part of most Linux distribu

tions. Those most commonly found in Linux systems are composed of several layers. 
In most Linux systems, the lowest layer is the X Window System 
(www.XFree86.org), a low-level graphical interface originally developed at MIT in 
1984.26 The X Window System provides to higher layers the mechanisms necessary 
to create and manipulate windows and other graphical components. The second 
layer of the GUI is the window manager, which builds on mechanisms in the X Win
dow System interface to control the placement, appearance, size and other 
attributes of windows. An optional third layer is called the desktop environment. 
The most popular desktop environments are KDE (K Desktop Environment) and 
GNOME (GNU Network Object Model Environment). Desktop environments 
tend to provide a file management interface, tools to facilitate access to common 
applications and utilities, and a suite of software, typically including Web browsers, 
text editors and e-mail applications.27 

A more recent goal of the Linux operating system has been to conform to a variety of 
widely recognized standards to improve compatibility between applications written 
for UNIX-like operating systems and Linux. The most prominent set of standards to 
which Linux developers strive to conform is POSIX ( s t a n d a r d s . i e e e . o r g / 
regauth/posi x/).Two other sets prominent in UNIX-like operating systems are the 
Single UNIX Specification (SUS) and the Linux Standards Base (LSB). 

20.7.4 Standards 
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The Single UNIX Specification (www.unix.org/version3/) is a suite of stan
dards that define user and application programming interfaces for UNIX operating 
systems, shells and utilities. Version 3 of the SUS combines several standards 
(including POSIX, ISO standards and previous versions of the SUS) into one.28 The 
Open Group (www.unix.org), which holds the trademark rights and defines stan
dards for the UNIX brand, maintains SUS. To bear the UNIX trademarked name, 
an operating system must conform to the SUS; The Open Group certifies SUS con
formance for a fee.29 

The Linux Standard Base (www.linuxbase.org) is a project that aims to 
standardize Linux so that applications written for one LSB-compliant distribution 
will compile and behave exactly the same on any other LSB-compliant distribution 
The LSB maintains general standards that apply to elements of the operating sys
tem, including libraries, package format and installation, commands and utilities. 
For example, the LSB specifies a standard file system structure. The LSB also main
tains architecture-specific standards that are required for LSB certification. Those 
who wish to test and certify a distribution for LSB compliance can obtain the tools 
and certification from the LSB organization for a fee.30 

Until recently, standards compliance has been a low priority for the kernel, 
because most kernel developers are concerned with improving the feature set and 
reliability of Linux. Consequently, most kernel releases do not conform to any one 
set of standards. During the development of the version 2.6 Linux kernel, develop
ers modified several interfaces to improve compliance with the POSIX, SUS and 
LSB standards. 

Although Linux is a monolithic kernel (see Section 1.13, Operating System Archi-
tectures), recent scalability enhancements have included modular capabilities simi
lar to those supported by microkernel operating systems.31 Linux is commonly 
referred to as a UNIX-like or a UNIX-based operating system because it provides 
many services that characterize UNIX systems, such as AT&T's UNIX System V 
and Berkeley's BSD. Linux is composed of six primary subsystems: process man
agement, interprocess communication, memory management, file system manage-
ment, I/O management and networking. These six subsystems are responsible for 
controlling access to system resources (Fig. 20.1). In the following sections, we 
examine these kernel subsystems and their interactions. 

Process execution on a Linux system occurs in either user mode or kernel 
mode. User processes run in user mode and must therefore access kernel services 
via the system call interface. When a user process issues a valid system call (in user 
mode), the kernel executes the system call in kernel mode on behalf of the process. 
If the request is invalid (e.g., a process attempts to write to a file that is not open). 
the kernel returns an error. 

20.4 Kernel Architecture 
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The process manager is a fundamental Linux subsystem that is responsible for 
creating processes, providing access to the system's processor(s) and removing pro
cesses from the system upon completion (see Section 20.5, Process Management). 
The kernel's interprocess communication (IPC) subsystem allows processes to com
municate with one another. This subsystem interacts with the process manager to 
permit information sharing and message passing using a variety of mechanisms, dis
cussed in Section 20.10, Interprocess Communication. 

The memory management subsystem provides processes with access to mem
ory. Linux assigns each process a virtual memory address space, which is divided 
into the user address space and the kernel address space. Including the kernel 
address space within each execution context reduces the cost of context switching 
from user mode to kernel mode because the kernel can access its data from every 
user process's virtual address space. The algorithms to manage free (i.e., available) 
memory and select pages for replacement are discussed in Section 20.6, Memory 
Management. 

Users access files and directories by navigating the directory tree. The root of 
the directory tree is called the root directory. From the root directory, users can 
navigate any available file systems. User processes access file system data through 

Figure 20.1 | Linux architecture. 
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the system call interface. When system calls access a file or directory in the directory 
tree, they do so through the virtual file system (VFS) interface, which provides to 
processes a single interface to access files and directories stored in multiple hetero
geneous file systems (e.g., ext2 and NFS). The virtual file system passes requests to 
particular file systems, which manage the layout and location of data, as discussed in 
Section 20.7, File Systems. 

Based on the UNIX model, Linux treats most devices as files, meaning that 
they are accessed using the same mechanisms with which data files are accessed. 
When user processes read from or write to devices, the kernel passes requests to the 
virtual file system interface, which then passes requests to the I/O interface. The I/O 
interface passes requests to device drivers that perform I/O operations on the hard
ware in a system. In Section 20.8, Input/Output Management, we discuss the I/O 
interface and its interaction with other kernel subsystems. 

Linux provides a networking subsystem to allow processes to exchange data 
with other networked computers. The networking subsystem accesses the I/O inter
face to send and receive packets using the system's networking hardware. It allows 
applications and the kernel to inspect and modify packets as they traverse the sys
tem's networking layers via the packet filtering interface. This interface allows sys
tems to implement firewalls, routers and other network utilities. In Section 20.11. 
Networking, we discuss the various components of the networking subsystem and 
their implementations. 

Initially, Torvalds developed Linux for use on 32-bit Intel x86 platforms. As its pop
ularity grew, developers implemented Linux on a variety of other architectures. The 
Linux kernel supports the following platforms: x86 (including Intel IA-32), HP 
Compaq Alpha AXP, Sun SPARC, Sun UltraSPARC, Motorola 68000, PowerPC, 
PowerPC64, ARM, Hitachi SuperH, IBM S/390 and zSeries, MIPS, HP PA-RISC, 
Intel IA-64, AMD x86-64, H8/300, V850 and CRIS.32 

Each architecture typically requires that the kernel use a different set of low-
level instructions to perform operating system functions. For example, an Intel pro
cessor implements a different system call mechanism than a Motorola processor. 
The code that performs operations that are implemented differently across archi-
tectures is called architecture-specific code. The process of modifying the kernel to 
support new architecture is called porting. To facilitate the process of porting Linux 
to new platforms, architecture-specific code is separated from the rest of the kernel 
code into the / a r ch directory of the kernel source tree. The kernel source tree 
organizes each significant component of the kernel into different subdirectories. 
Each subdirectory in / a rch contains code corresponding to a particular architec-
ture (e.g., machine instructions for a particular processor). When the kernel must 
perform processor-specific operations, such as manipulating the contents of a pro
cessor cache, control passes to the architecture-specific code that was integrated 
into the kernel at compile time.33 Although Linux relies on architecture-specific 
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code to control computer hardware, Linux may also be executed on a set of virtual 
hardware devices. The Mini Case Study, User-Mode Linux (UML), describes one 
such Linux port. 

For a system to execute properly on a particular architecture, the kernel must 
be ported to that architecture and compiled for a particular machine prior to execu
tion. Likewise, applications may need to be compiled (and sometimes redesigned) 
to properly operate on a particular system. For many platforms, this work has 
already been accomplished —a variety of platform-specific distributions provide 
ports of common applications and system services.34 
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Mini Case Study 
User-Mode Linux (UML) 
Kernel development is a compli
cated and error-prone process 
that can result in numerous bugs. 
Unlike other software, the kernel 
may execute privileged instruc
tions, meaning that a f law in the 
kernel could damage a system's 
data and hardware. As a result, 
kernel development can be a 
tedious (and risky) endeavor. 
User-Mode Linux (UML) facili
tates kernel development by 
allowing developers to test and 
debug the kernel wi thout damag
ing the system on which it runs. 

User-Mode Linux (UML) is a 
version of the Linux kernel that 
runs as a user application on a 
computer running Linux. Unlike 
most versions of Linux, which con
tain architecture-specific code to 
control devices, UML performs all 
architecture-specific operations 

using system calls to the Linux sys
tem on which it runs. As a result, 
UML is interestingly considered to 
be port of Linux to itself.35 

The UML kernel runs in user 
mode, so it cannot execute privi
leged instructions available to the 
host kernel. Instead of controlling 
physical resources, the UML ker
nel creates virtual devices (repre
sented as files on the host system) 
that simulate real devices. 
Because the UML kernel does not 
control any real hardware, it can
not damage the system. 

Almost all kernel mecha
nisms, such as process scheduling 
and memory management, are 
handled in the UML kernel; the 
host kernel executes only when 
privileged access to hardware is 
required. When a UML process 
issues a system call, the UML ker-

nel intercepts and handles it 
before it can be sent to the host 
system. Although this technique 
incurs significant overhead, UML's 
primary goal is to provide a safe 
(i.e., protected) environment in 
which to execute software, not to 
provide high performance.36 

The UML kernel has been 
applied to more than just testing 
and debugging. For example, 
UML can be used to run multiple 
instances of Linux at once. It can 
also be used to port Linux such 
that it runs as an application in 
operating systems other than 
Linux. This could allow users to 
run Linux on top of a UNIX or a 
Windows system. The Web 
Resources section at the end of 
this chapter provides a link to a 
Web site that documents UML 
usage and development. 



Adding functionality to the Linux kernel, such as support for a particular file sys
tem or a new device driver, can be tedious. Because the kernel is monolithic, drivers 
and file systems are implemented in kernel space. Consequently, to permanently 
add support for a device driver, users must patch the kernel source by adding the 
driver code, then recompiling the kernel. This can be a lengthy and error-prone pro
cess, so an alternative method has been developed for adding features to the ker
nel—loadable kernel modules. 

A kernel module contains object code that, when loaded, is dynamically 
linked to a running kernel (see Section 2.8, Compiling, Linking and Loading). If a 
device driver or file system is implemented as a loadable kernel module, it can be 
loaded into the kernel on demand (i.e., when first accessed) without any additional 
kernel configuration or compilation. Also, because modules can be loaded on 
demand, moving code from the kernel into modules reduces the memory footprint 
of the kernel; hardware and file system drivers are not loaded into memory until 
needed. Modules execute in kernel mode (as opposed to user mode) so they car-
access kernel functions and data structures. Consequently, loading an improperly 
coded module can lead to disastrous effects in a system, such as data corruption.37 

When a module is loaded, the module loader must resolve all references to 
kernel functions and data structures. Kernel code allows modules to access functions 
and data structures by exporting their names to a symbol table.38 Each entry in the 
symbol table contains the name and address of a kernel function or data structure. 
The module loader uses the symbol table to resolve references to kernel code.39 

Because modules execute in kernel mode, they require access to symbols in the 
kernel symbol table, which allows modules to access kernel functions. However, con
sider what can happen if a function is modified between kernel versions. If a module 
was written for a prior kernel version, the module may expect a particular, yet invalid, 
result from a current kernel function (e.g., an integer value instead of an unsigned 
long value), which may in turn lead to errors such as exceptions. To avoid this prob-
lem, the kernel prevents users from loading modules written for a version of the ker-
nel other than the current one, unless explicitly overridden by the superuser.40 

Modules must be loaded into the kernel before use. For convenience, the ker
nel supports dynamic module loading. When compiling the kernel, the user is given 
the option to enable or disable kmod—a kernel subsystem that manages modules 
without user intervention. The first time the kernel requires access to a module, it 
issues a request to kmod to load the module. Kmod determines any module depen-
dencies, then loads the requested module. If a requested module depends on other 
modules that have not been loaded, kmod will load those modules on demand.41 

The process management subsystem is essential to providing efficient multiprogram-
ming in Linux. Although responsible primarily for allocating processors to processes, 
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the process management subsystem also delivers signals, loads kernel modules and 
receives interrupts. The process management subsystem contains the process sched
uler, which provides processes access to a processor in a reasonable amount of time. 

In Linux systems, both processes and threads are called tasks; internally, they are 
represented by a single data structure. In this section, we distinguish processes from 
threads from tasks where appropriate. The process manager maintains a list of all 
tasks using two data structures. The first is a circular, doubly linked list in which 
each entry contains pointers to the previous and next tasks in the list. This structure 
is accessed when the kernel must examine all tasks in the system. The second is a 
hash table. When a task is created, it is assigned a unique PID (process identifier). 
Process identifiers are passed to a hash function to determine their location in the 
process table. The hashing method provides quick access to a specific task's data 
structure when the kernel knows its PID.42 

Each task in the process table is represented by a t a s k _ s t r u c t structure, 
which serves as the process descriptor (i.e., the PCB). The t a s k _ s t r u c t structure 
stores variables and nested structures containing information describing a process. 
For example, the variable s t a t e stores information about the current task state. 
[Note: The kernel is primarily written using the C programming language and 
makes extensive use of structures to represent software entities.] 

A task transitions to the running state when it is dispatched to a processor 
(Fig. 20.2). A task enters the sleeping state when it blocks and the stopped state 
when it is suspended. The zombie state indicates that a task has been terminated 
but has not yet been removed from the system. For example, if a process contains 
several threads, it will enter the zombie state until its threads have been notified 
that it received a termination signal. A task in the dead state may be removed from 
the system. The states active and expired are process scheduling states (described in 
the next section), which are not stored in the variable s t a t e . 

Other important task-specific variables permit the scheduler to determine 
when a task should run on a processor. These variables include the task's priority, 
whether the task is a real-time task and, if so, which real-time scheduling algorithm 
should be used (real-time scheduling is discussed in the next section).43 

Nested structures within a t a s k _ s t r u c t store additional information about a 
task. One such structure, mm_struct, describes the memory allocated to a task (e.g., 
the location of its page table in memory and the number of tasks sharing its address 
space). Additional structures nested within a t a s k _ s t r u c t contain information 
such as register values that store a task's execution context, signal handlers and the 
task's access rights.44 These structures are accessed by several kernel subsystems 
other than the process manager. 

When the kernel is booted, it typically loads a process called init, which then 
uses the kernel to create all other tasks.45 Tasks are created using the clone system 
call; any calls to fork or vfork are converted to clone system calls at compile 
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Figure 20.2 | Task state-transition diagram. 

time.The purpose of fork is to create a child task whose virtual memory space is 
allocated using copy-on-write to improve performance (see Section 10.4.6, Sharing 
in a Paging System). When the child or the parent attempts to write to a page in 
memory, the writer is allocated its own copy of the page. As discussed in 
Section 10.4.6, copy-on-write can lead to poor performance if a process calls execve 
to load a new program immediately after the fork. For example, if the parent exe-
cutes before its child, a copy-on-write will be performed for any page the parent 
modifies. Because the child will not use any of its parent's pages (if the child will 
immediately call execve when it executes), this operation is pure overhead. There
fore, Linux supports the vfork call, which improves performance when child pro
cesses will call execve. vfork suspends the parent process until the child calls 
execve or exi t, to ensure that the child loads its new pages before the parent causes 
any wasteful copy-on-write operations, vfork further improves performance by not 
copying the parent's page tables to the child, because new page table entries will be 
created when the child calls execve. 



Linux provides support for threads using the clone system call, which enables the 
calling process to specify whether the thread shares the process's virtual memory, 
file system information, file descriptors and/or signal handlers.46 In Section 4.2, Def
inition of Thread, we mentioned that processor registers, the stack and other 
thread-specific data (TSD) are local to each thread, while the address space and 
open file handles are global to the process that contains the threads. Thus, depend
ing on how many of the process's resources are shared with its thread, the resulting 
thread may be quite different from the threads described in Chapter 4. 

Linux's implementation of threads has generated much discussion regarding 
the definition of a thread. Although clone creates threads, they do not precisely 
conform to the POSIX thread specification (see Section 4.8, POSIX and Pthreads). 
For example, two or more threads that were created using a clone call specifying 
maximum resource sharing still maintain several data structures that are not shared 
with all threads in the process, such as access rights.47 

When clone is called from a kernel process (i.e., a process that executes ker
nel code), it creates a kernel thread that differs from other threads in that it directly 
accesses the kernel's address space. Several daemons within the kernel are imple
mented as kernel threads —these daemons are services that sleep until awakened by 
the kernel to perform tasks such as flushing pages to secondary storage and sched
uling software interrupts (see Section 20.8.6, Interrupts).48 These tasks are generally 
maintenance related and execute periodically. 

There are several benefits to the Linux thread implementation. For example, 
Linux threads simplify kernel code and reduce overhead by requiring only a single 
copy of task management data structures.49 Moreover, although Linux threads are 
less portable than POSIX threads, they allow programmers the flexibility to tightly 
control shared resources between tasks. A recent Linux project, Native POSIX 
Thread Library (NPTL), has achieved nearly complete POSIX conformance and is 
likely to become the default threading library in future Linux distributions.50 

The goal of the Linux process scheduler is to run all tasks within a reasonable 
amount of time while respecting task priorities, maintaining high resource utilization 
and throughput, and reducing the overhead of scheduling operations. The process 
scheduler also addresses Linux's role in the high-end computer system market by 
scaling to SMP and NUMA architectures while providing high processor affinity. 
One of the more significant scalability enhancements in version 2.6 is that all sched
uling functions are constant-time operations, meaning that the time required to exe
cute scheduling functions does not depend on the number of tasks in the system.51 

At each system timer interrupt (an architecture-specific number set to 1 milli
second by default for the IA-32 architecture52), the kernel updates various book
keeping data structures (e.g., the amount of time a task has been executing) and 
performs scheduling operations as necessary. Because the scheduler is preemptive, 
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each task runs until its quantum, or time slice, expires, a higher priority process 
becomes runnable or the process blocks. Each task's time slice is calculated as a 
function of the process's priority upon release of the processor (with the exception 
of real-time tasks, which are discussed later). To prevent time slices from being too 
small to allow productive work or so large as to diminish response times, the sched
uler ensures that the time slice assigned to each task is between 10 and 200 timer 
intervals, corresponding to a range of 10 to 200 milliseconds on most systems (like 
most scheduler parameters, these default values have been chosen empirically). 
When a task is preempted, the scheduler saves the task state to its t a s k _ s t r u c t 
structure. If the process's time slice has expired, the scheduler recalculates the pro
cess's priority, determines the task's next time slice and dispatches the next process. 

Once a task has been created using clone, it is placed in a processor's run queue. 
which contains references to all tasks competing for execution on that processor. Run 
queues, similar to multilevel feedback queues (Section 8.7.6, Multilevel Feedback 
Queues), assign tasks to priority levels. The priority array maintains pointers to each 
level of the run queue. Each entry in the priority array points to a list of tasks—a task 
of priority i is placed in the ith entry of a priority array in the run queue (Fig. 20.3). 

Run Queues 
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The scheduler dispatches the task at the front of the list in the highest level of the pri
ority array. If more than one task exists in a level of the priority array, tasks are dis
patched from the priority array round-robin. When a task enters the blocked or 
sleeping (i.e., waiting) state, or is otherwise unable to execute, that task is removed 
from its run queue. 

One goal of the scheduler is to prevent indefinite postponement by defining a 
period of time called an epoch during which each task in the run queue will execute 
at least once. To distinguish processes that are considered for processor time from 
those that must wait until the next epoch, the scheduler defines an active state and 
an expired state. The scheduler dispatches only processes in the active state. 

The duration of an epoch is determined by the starvation limit—an empiri
cally derived value that provides high-priority tasks with good response times while 
ensuring that low-priority tasks are dispatched often enough to perform productive 
work within a reasonable amount of time. By default, the starvation limit is set to 
lOn seconds, where n is the number of tasks in the run queue. When the current 
epoch has lasted longer than the starvation limit, the scheduler transitions each 
active task in the run queue to the expired state (the transition occurs after each 
active task's time slice expires). This temporarily suspends high-priority tasks (with 
the exception of real-time tasks), allowing low-priority tasks to execute. When all 
tasks in the run queue have executed at least once, all tasks in that run queue will be 
in the expired state. At this point, the scheduler transitions all tasks in the run queue 
to the active state and a new epoch begins.53 

To simplify the transition from the expired state to the active state at the end 
of an epoch, the Linux scheduler maintains two priority arrays for each processor. 
The priority array that contains tasks in the active state is called the active list. The 
priority array that stores expired tasks (i.e., tasks that are not allowed to execute 
until the next epoch) is called the inactive (or expired) list. When a task transitions 
from the active state to the expired state, it is placed in the level of the expired list's 
priority array corresponding to its priority when it transitioned to the expired state. 
At the end of an epoch, all tasks are located in the expired state and must transition 
to the active state. The scheduler performs this operation quickly by simply swap
ping the pointers to the expired list and the active list. By maintaining two priority 
arrays per process, the scheduler can transition all tasks in a run queue using a sin
gle swap operation, a performance enhancement that generally outweighs the nom
inal memory overhead due.54 

The Linux scheduler scales to multiprocessor systems by maintaining one run 
queue for each physical processor in the system. One reason for per-processor run 
queues is to assign tasks to execute on particular processors to exploit processor 
affinity. Recall from Chapter 15 that processes in some multiprocessor architectures, 
such as NUMA, achieve higher performance when a task's data is stored in a proces
sor's local memory and in a processor's cache. Consequently, tasks can achieve 
higher performance if they are consistently assigned to a single processor (or node). 
However, per-processor run queues risk unbalancing processor loads, leading to 



reduced system performance and throughput (see Section 15.7, Process Migration). 
Later in this section, we discuss how Linux addresses this issue by dynamically bal
ancing the number of tasks executing on each processor in the system. 

In the Linux scheduler, a task's priority affects the size of its time slice and the 
order in which it executes on a processor. Upon creation, tasks are assigned a static 
priority, also called the nice value. The scheduler recognizes 40 distinct priority lev
els, ranging from -20 to 19. Conforming to UNIX convention, smaller priority val
ues denote higher priority in the scheduling algorithm (i.e., -20 is the highest 
priority a process can attain). 

One goal of the Linux scheduler is to provide a high level of system interactiv
ity. Because interactive tasks typically block to perform I/O or sleep (e.g., while 
waiting for a user response), the scheduler dynamically boosts the priority (by dec
rementing the static priority value) of a task that yields its processor before the 
task's time slice expires. This is acceptable because I/O-bound processes normally 
use the processor only briefly before generating an I/O request. Thus, giving I/O-
bound tasks high priority has little effect on processor-bound tasks, which might use 
the processor for hours at a time if the system makes the processor available on a 
nonpreemptible basis. The modified priority level is called a task's effective priority. 
which is calculated when a task sleeps or consumes its time slice. A task's effective 
priority determines the level of the priority array in which a task is placed. There
fore, a task that receives a priority boost is placed in a lower level of the priority 
array, meaning it will execute before tasks of a higher effective priority value. 

To further improve interactivity, the scheduler penalizes a processor-bound 
task by increasing its static priority value. This places a processor-bound task in a 
higher level of the priority array, meaning tasks of a smaller effective priority will be 
executed before it. Again, this ultimately has little effect on processor-bound tasks 
because the higher-priority interactive tasks execute only briefly before blocking. 

To ensure that a task executes at or near the priority it was initially assigned. 
the task scheduler does not allow a task's effective priority to differ from its static 
priority by more than five units. In this sense, the scheduler honors the priority lev
els assigned to a task when it was created. 

The scheduler removes a task from a processor if the task is interrupted, preempted 
(e.g., if its time slice expires) or blocks. Each time a task is removed from a proces
sor, the scheduler calculates a new time slice. If the task blocks, or is otherwise 
unable to execute, it is deactivated, meaning that it is removed from the run queue 
until it becomes ready to execute. Otherwise, the scheduler determines whether the 
task should be placed in the active list or the inactive list. The algorithm that deter
mines this has been empirically derived to provide good performance; its primary 
factors are a task's static and effective priorities. 

Scheduling Operations 
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The result of the algorithm is depicted in Fig. 20.4. The y-axis of Fig. 20.4 indi
cates a task's static priority value and the x-axis represents a task's priority adjust
ment (i.e., boost or penalty) The shaded region indicates sets of static priority 
values and priority adjustments that cause a task to be rescheduled, meaning that it 
is placed at the end of its corresponding priority array in the active list. In general, if 
a task is of high priority and/or has received a significant bonus to its effective prior
ity, it is rescheduled. This allows high-priority, I/O-bound and interactive tasks to 
execute more than once per epoch. In the unshaded region, tasks that are of low 
priority and/or have received priority penalties are placed in the expired list. 

When a user process cl ones, it may seem reasonable to allocate each child its 
own time slice. However, if a task spawns a large number of new tasks, and all of its 
children are allocated their own time slices, other tasks in the system might experi
ence unreasonably poor response times during that epoch. To improve fairness, 
Linux requires that each parent process initially share its time slice with its children 
when a user process clones.The scheduler enforces this requirement by assigning 
half of the parent's original time slice to both the parent process and its child the 
child is spawned. To prevent legitimate processes from suffering low levels of ser-
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vice due to spawning child processes, this reduced time slice applies only during the 
remainder of the epoch during which the child is spawned. 

Because the process scheduler maintains tasks in a per-processor run queue, tasks 
will generally exhibit high processor affinity. This means that a task will likely be 
dispatched to the same processor for each of its time slices, which can increase per
formance when a task's data and instructions are located in a processor's caches. 
However, such a scheme could allow one or several processors on an SMP system 
to lie idle even during a heavy system load. To avoid this, if the scheduler detects 
that a processor is idle, it performs load balancing to migrate tasks from one proces
sor to another to improve resource utilization. If the system contains only one pro
cessor, load balancing routines are removed from the kernel when it is compiled. 

The scheduler determines if it should perform load balancing routines after 
each timer interrupt, which is set to one millisecond on IA-32 systems. If the proces
sor that issued the timer interrupt is idle (i.e., its run queue is empty), the scheduler 
attempts to migrate tasks from the processor with the heaviest load (i.e., the proces
sor that contains the largest number of processes in its run queue) to the idle pro
cessor. To reduce load balancing overhead, if the processor that triggered the 
interrupt is not idle, the scheduler will attempt to move tasks to that processor 
every 200 timer interrupts instead of after every timer interrupt.56 

The scheduler determines processor load by using the average length of each 
run queue over the past several timer interrupts, to minimize the effect of variations 
in processor loads on the load balancing algorithm. Because processor loads tend to 
change rapidly, the goal of load balancing is not to adjust the size of two run queues 
until they are of equal length; rather, it is to reduce the imbalance between the 
number of tasks in each run queue. As a result, tasks are removed from the larger 
run queue until the difference in size between the two run queues has been halved. 
To reduce overhead, load balancing is not performed unless the run queue with the 
heaviest load contains 25 percent more tasks than the run queue of the processor 
performing the load balancing.57 

When the scheduler selects tasks for balancing, it attempts to choose tasks 
whose performance will be least affected by moving from one processor to another. 
In general, the least-recently active task on a processor will most likely be cache-cold 
on the processor—a cache-cold task does not contain much (or any) of the task's 
data in its processor's cache, whereas a cache-hot task contains most (or all) of the 
task's data in the processor cache. Therefore, the scheduler chooses to migrate tasks 
that are most likely cache-cold (i.e., tasks that have not executed recently). 

The scheduler supports soft real-time scheduling by attempting to minimize the 
time during which a real-time task waits to be dispatched to a processor. Unlike a 
normal task, which is eventually placed in the expired list to prevent low-priority 
tasks from being indefinitely postponed, a real-time task is always placed in the 
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active list after its quantum expires. Further, real-time tasks always execute with 
higher priority than normal tasks. Because the scheduler always dispatches a task 
from the highest-priority queue in the active list (and real-time tasks are never 
removed from the active list), normal tasks cannot preempt real-time tasks. 

The scheduler complies with the POSIX specification for real-time processes 
by allowing real-time tasks to be scheduled using the default scheduling algorithm 
described in the previous sections, or using the round-robin or FIFO scheduling 
algorithms. If a task specifies round-robin scheduling and its time slice has expired, 
the task is allocated a new time slice and is enqueued at the end of its priority array 
in the active list. If the task specifies FIFO scheduling, it is not assigned a time slice 
and therefore will execute on a processor until it exits, sleeps, blocks or is inter
rupted.58 Clearly, real-time processes can indefinitely postpone other processes if 
coded improperly, resulting in poor response times. To prevent accidental or mali
cious misuse of real-time tasks, only users with root privileges can create them. 
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During the development of kernel versions 2.4 and 2.6, the memory manager was 
heavily modified to improve performance and scalability. The memory manager 
supports both 32- and 64-bit addresses as well as nonuniform memory access 
(NUMA) architectures to allow it to scale from desktop computers and worksta
tions to servers and supercomputers. 

20.6 Memory Management 

On most architectures, a system's physical memory is divided into fixed-size page 
frames. Generally, Linux allocates memory using a single page size (often 4KB or 
8KB); on some architectures that support large pages (e.g., 4MB), kernel code may 
be placed in large pages. This can improve performance by minimizing the number 
of entries for kernel page frames in the translation lookaside buffer (TLB).59 The 
kernel stores information about each page frame in a page structure. This structure 
contains variables that describe page usage, such as the number of processes shar
ing the page and flags indicating the state of the page (e.g., dirty, unused, etc).60 

20.6.1 Memory Organization 

On 32-bit systems, each process can address 232 bytes, meaning that each virtual 
address space is 4GB. The kernel supports larger virtual address spaces on 64-bit 
systems—up to 2 petabytes (i.e., 2 million gigabytes) on Intel Itanium processors 
(the Itanium processor uses only 51 bits to address main memory, but the IA-64 
architecture can support up to 64-bit physical addresses).61 In this section, we focus 
on the 32-bit implementation of the virtual memory manager. Entries describing 
the virtual-to-physical address mappings are located in each process's page tables. 
The virtual memory system supports up to three levels of page tables to locate the 
mappings between virtual pages and page frames (see Fig. 20.5). The first level of 
the page table hierarchy, called the page global directory, stores addresses of sec-
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Figure 2 0 . 5 | Page table organization. 

ond-level tables. Second-level tables, called page middle directories, store addresses 
of the third-level tables. The third level, simply called page tables, maps virtual 
pages to page frames. 

The kernel partitions a virtual address into four fields to provide processors 
with multilevel page address translation information. The first three fields are indi
ces into the process's page global directory, page middle directory and page table, 
respectively. These three fields allow the system to locate the page frame corre
sponding to a virtual page. The fourth field contains the displacement (also called 
offset) from the physical address of the beginning of the page frame.62 Linux dis
ables page middle directories when running on the IA-32 architecture, which sup
ports only two levels of page tables when the Physical Address Extension (PAE) 
feature is disabled. Page middle directories are enabled for 64-bit architectures that 
support three or more levels of page tables (e.g., the x86-64 architecture, which sup
ports four levels of page tables). 

Although a process's virtual address space is composed of individual pages, the ker
nel uses a higher-level mechanism, called virtual memory areas, to organize the vir
tual memory a process is using. A virtual memory area describes a contiguous set of 
pages in a process's virtual address space that are assigned the same protection 
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In Linux, virtual memory organization is architecture specific. In this section, we 
discuss how the kernel organizes virtual memory by default to optimize perfor
mance on the IA-32 architecture. 

When the kernel performs a context switch, it must provide the processor with 
page address translation information for the process that is about to execute (see 
Section 10.4.1). Recall from Section 10.4.3 that an associative memory called the 
translation lookaside buffer (TLB) stores recently used page table entries (PTEs) 
so that the processor can quickly perform virtual-to-physical address translations 
for the process that is currently running. Because each process is allocated a differ
ent virtual address space, PTEs for one process are not valid for another. As a 
result, the PTEs in the TLB must be removed after a context switch. This is called 
flushing the TLB —the processor removes each PTE from the TLB and updates the 
PTEs in main memory to match any modified PTEs in the TLB. In particular, each 
time the value of the page table origin register changes, the TLB must be flushed. 
The overhead due to a TLB flush can be substantial because the processor must 
access main memory to update each PTE that is flushed. If the kernel changes the 
value of the page table origin register to execute each system call, the overhead due 
to TLB flushing can significantly reduce performance. 

To reduce the number of expensive TLB flush operations, the kernel ensures 
that it can use any process's page table origin register to access the kernel's virtual 
address space. The kernel does this by dividing each process's virtual address space 
into user addresses and kernel addresses. The kernel allows each process to access 
up to 3GB of the process's virtual address space—the virtual addresses from zero to 
3GB. Therefore, virtual-to-physical address translation information can vary 
between processes for the first 3GB of each 32-bit virtual address space. The kernel 
address space is the remaining 1GB of virtual addresses in each process's 32-bit vir
tual address space (addresses ranging from 3GB to 4GB), as shown in Fig. 20.6. The 
virtual-to-physical address translation information for this region of memory 
addresses does not vary from one process to another. Therefore, when a user pro
cess invokes the kernel, the processor does not need to flush the TLB, which 
improves performance by reducing the number of times the processor accesses 
main memory to update page table entries.66 
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(e.g., read-only, read/write, executable) and backing store. The kernel stores a pro
cess's executable code, heap, stack and each memory-mapped file (see Section 13.9, 
Data Access Techniques) in separate virtual memory areas.63-64 

When a process requests additional memory, the kernel attempts to satisfy 
that request by enlarging an existing virtual memory area. The virtual memory area 
the kernel selects depends on the type of memory the process is requesting (e.g., 
executable code, heap, stack, etc.). If the process requests memory that does not 
correspond to an existing virtual memory area, or if the kernel cannot allocate a 
contiguous address space of the requested size in an existing virtual memory area, 
the kernel creates a new virtual memory area.65 
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Often, the kernel must access main memory on behalf of user processes (e.g., 
to perform I/O); therefore, it must be able to access every page frame in main mem
ory. However, today's processors require that all memory references use virtual 
addresses to access memory (if virtual memory is enabled). As a result, the kernel 
generally must use virtual addresses to access page frames. 

When using virtual addresses, the kernel must provide the processor with PTEs 
that map the kernel's virtual pages to the page frames it must access. The kernel could 
create these PTEs each time it accessed main memory; however, doing so would cre
ate significant overhead. Therefore, the kernel creates PTEs that map most of the 
pages in the kernel's virtual address space permanently to page frames in main mem
ory. For example, the first page of the kernel's virtual address space always points to 
the first page frame in main memory; the 100th page of the kernel's virtual address 
space always points to the 100th page frame in main memory (Fig. 20.6). 

Note that creating a PTE (i.e., mapping virtual page to a page frame) does not 
allocate a page frame to the kernel or a user process. For example, assume that page 
frame number 100 stores a process's virtual page p. When the kernel accesses vir
tual page number 100 in the kernel virtual address space, the processor maps the 
virtual page number to page frame number 100, which stores the contents of p. 
Thus, the kernel's virtual address space is used to access page frames that may be 
allocated to the kernel or user processes. 

Ideally, the kernel would be able to create PTEs that permanently map to 
each page frame in memory. However, if a system contains more than 1GB of main 
memory, the kernel cannot create a permanent mapping to every page frame 
because it reserves only 1GB of each 4GB virtual address space for itself. For exam
ple, when the kernel performs I/O on behalf of a user process, it must be able to 
access the data using pages in its 1GB virtual address space. However, if a user pro-

Figure 20.6 | Kernel virtual address space mapping. 
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cess requests I/O for a page that is stored at an address higher than 1GB, the kernel 
might not contain a mapping to that page. In this case, the kernel must be able to 
create a temporary mapping between a kernel virtual page and a user's physical 
page in main memory to perform the I/O. To address this problem, the kernel maps 
most of its virtual pages permanently to page frames and reserves several virtual 
pages to provide temporary mappings to the remaining page frames. In particular, 
the kernel creates PTEs that map the first 896MB of its virtual pages permanently 
to the first 896MB of main memory when the kernel boots. It reserves the remain
ing 128MB of its virtual address space for temporary buffers and caches that can be 
mapped to other regions of main memory. Therefore, if the kernel must access page 
frames beyond 896MB, it uses virtual addresses in this region to create a new PTE 
that temporarily maps a virtual page to a page frame. 

The memory management system divides a system's physical address space into 
three zones (Fig. 20.7). The size of each zone is architecture dependent; in this sec
tion we present the configuration for the IA-32 architecture discussed in the previ
ous section. The first zone, called DMA memory, includes the main memory 
locations from 0-16MB. The primary reason for creating a DMA memory zone is to 
ensure compatibility with legacy architectures. For example, some direct memory 
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access (DMA) devices can address only up to 16MB of memory, so Linux reserves 
memory in this zone for such devices. The DMA memory zone also contains kernel 
data and instructions (e.g., bootstrapping code) and might be allocated for user pro
cesses if free memory is scarce. 

The second zone, called normal memory, includes the physical memory loca
tions between 16MB and up to 896MB. The normal memory zone can be used to 
store user and kernel pages as well as data from devices that can access memory 
greater than 16MB using DMA. Note that because the kernel's virtual address 
space is mapped directly to the first 896MB of main memory, most kernel data 
structures are located in the low memory zones (i.e., the DMA or normal memory 
zones). If these data structures were not located in these memory zones, the kernel 
could not provide a permanent virtual-to-physical address mapping for kernel data 
and might cause a page fault while executing its code. Page faults not only reduce 
kernel performance but can be fatal when performing error-handling routines. 

The third zone, called high memory, includes physical memory locations from 
896MB to a maximum of 64GB on Pentium processors. (Intel's Page Address Exten
sion feature enables 36-bit memory addresses, allowing the system to access 236 bytes. 
or 64GB, of main memory.) High memory is allocated to user processes, any devices 
that can access memory in this zone and temporary kernel data structures.67-68 

Some devices, however, cannot access data in high memory because the num
ber of physical addresses they can address is limited. In this case, the kernel copies 
such data to a buffer, called a bounce buffer, in DMA memory to perform I/O. 
After completing an I/O operation, the kernel copies any modified pages in the 
buffer to the page in high memory69-70-71 

Depending on the architecture, the first megabyte of main memory might con
tain data loaded into memory by initialization functions in the BIOS (see 
Section 2.3.1, Mainboards). To avoid overwriting such data, the Linux kernel code 
and data structures are loaded into a contiguous area of physical memory, typically 
beginning at the second megabyte of main memory. (The kernel reclaims most of 
the first megabyte of memory.after loading.) Kernel pages are never swapped (i.e.. 
paged) or relocated in physical memory. In addition to improving performance, the 
contiguous and static nature of kernel memory simplifies coding for kernel develop
ers at a relatively low cost (the kernel footprint is approximately 2MB).72 

The kernel allocates page frames to processes using the zone allocator. The zone 
allocator attempts to allocate pages from the physical zone corresponding to each 
request. Recall that the kernel reserves as much of the DMA memory zone as pos
sible for use by legacy architectures and kernel code. Also, performing I/O opera
tions on high memory might require use of a bounce buffer, which is less efficient 
than using pages that are directly accessible by DMA hardware. Thus, although 
pages for user processes can be allocated from any zone, the kernel attempts to 
allocate them first from the high memory zone. If the high memory zone is full and 
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pages in normal memory are available, then the zone allocator uses pages from nor
mal memory. Only when free memory is scarce in both the normal and the high 
zone of memory does the zone allocator select pages in DMA memory.73 

When deciding which page frames to allocate, the zone allocator searches for 
empty pages in each zone's f ree_area vector. The f ree_area vector contains ref
erences to a zone's free lists and bitmaps that identify contiguous blocks of memory. 
Blocks of page frames are allocated in groups of powers of two; each element in a 
zone's f ree_area vector contains a list of blocks that are the same s ize- the nth 
element in the vector references a list of blocks of size 2n.74 Figure 20.8 illustrates 
the first three entries of the f ree_area vector. 

To locate blocks of the requested size, the memory manager uses the binary 
buddy algorithm to search the f ree_area vector. The buddy algorithm, described 
by Knowlton and Knuth, is a simple physical page allocation algorithm that pro
vides good performance.75, 76 If there are no blocks of the requested size, a block of 
the next-closest size in the f ree_area vector is halved repeatedly until the resulting 
block is of the correct size. When the memory manager finds a block of the correct 
size, it allocates it to the process that requested it and places any orphaned free 
blocks in the appropriate lists.77 

When memory is deallocated, the buddy algorithm groups contiguous free 
pages as follows. When a process frees a block of memory, the memory manager 
checks the bitmap (in the f ree_area vector) that tracks blocks of that size. If the 
bitmap indicates that an adjacent block is free, the memory manager combines the 
two blocks (buddies) into a larger block. The memory manager repeats this process 
until there are no blocks with which to combine the resulting block. The memory 
manager then inserts the block into the proper list in f ree_area . 7 8 
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There are several kernel data structures (e.g., the structure that describes vir
tual memory areas) that consume much less than a page of memory (4KB is the 
smallest page size on most systems). Processes tend to allocate and release many 
such data structures during the course of execution. Requests to the zone allocator 
to allocate such small amounts of memory would result in substantial internal frag
mentation because the smallest unit of memory the zone allocator can supply is a 
page. Instead, the kernel satisfies such requests via the slab allocator. The slab allo
cator allocates memory from any one of a number of available slab caches.79 A slab 
cache is composed of a number of objects, called slabs, that span one or more pages 
and contain structures of the same type. Typically, a slab is one page of memory that 
serves as a container for multiple data structures smaller than a page. When the ker
nel requests memory for a new structure, the slab allocator returns a portion of a 
slab in the slab cache for that structure. If all of the slabs in a cache are occupied, 
the slab allocator increases the size of the cache to include more slabs. These new 
slabs contain pages allocated using the appropriate zone allocator.80 

As previously discussed, serious or fatal system errors can occur if the kernel 
causes a page fault during interrupt- or error-handling code. Similarly, a request to 
allocate memory while executing such code must not fail if the system contains few 
free pages. To prevent such a situation, Linux allows kernel threads and device driv-
ers to allocate memory pools. A memory pool is a region of memory that the kernel 
guarantees will be available to a kernel thread or device driver regardless of how 
much memory is currently occupied. Clearly, extensive use of memory pools limits 
the number of page frames available to user processes. However, because a system 
failure could result from a failed memory allocation, the trade-off is justified.81 

The Linux memory manager determines which pages to keep in memory and which 
pages to replace (known as "swapping" in Linux) when free memory becomes 
scarce. Recall that only pages in the user region of a virtual address space can be 
replaced; most pages containing kernel code and data cannot be replaced. 

As pages are read into memory, the kernel inserts them into the page cache. 
The page cache is designed to reduce the time spent performing disk I/O opera
tions. When the kernel must flush (i.e., write) a page to disk, it does so through the 
page cache. To improve performance, the page cache employs write-back caching 
(see Section 12.8, Caching and Buffering) to clean dirty pages.82 

Each page in the page cache must be associated with a secondary storage device 
(e.g., a disk) so the kernel knows where to place pages when they are swapped out. 
Pages that are mapped to files are associated with a file's inode, which describes the 
file's location on disk (see Section 20.7.1, Virtual File System, for a detailed descrip
tion of inodes). As we discuss in the next section, pages that are not mapped to files 
are placed on secondary storage in a region called the system swap file.83 

When physical memory is full and a nonresident page is requested by pro
cesses or the kernel, a page frame must be freed to fill the request. The memory 
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manager provides a simple, efficient page-replacement strategy. Figure 20.9 illus
trates this strategy, fn each memory zone, pages are divided into two groups: 
active pages and inactive pages. To be considered active, a page must have been ref
erenced recently. One goal of the memory manager is to maintain the current work
ing set inside the collection of active pages.84 

Linux uses a variation of the clock page-replacement strategy (see 
Section 11.6.7). The memory manager uses two linked lists per zone to implement 
page replacement—the active list contains active pages, the inactive list contains 
inactive pages. The lists are organized such that the most-recently used pages are 
near the head of the active list, and the least-recently used pages are near the tail of 
the inactive list.85 

When the memory manager allocates a page of memory to a process, the 
page's associated page structure is placed at the head of that zone's inactive list and 
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that page is marked as having been referenced by setting its referenced bit. The 
memory manager determines whether the page has been subsequently referenced 
at several points during kernel execution, such as when a PTE is flushed from the 
TLB. If the page has been referenced, the memory manager determines how to 
mark the page based on whether the page is active or inactive, and whether it has 
been referenced recently. 

If the page is active or inactive and its referenced bit is off, the bit is turned on. 
Similar to the clock algorithm, this technique ensures that recently referenced 
pages are not selected for replacement. Otherwise, if the page is inactive and is 
being referenced for the second time (its referenced bit is already on), the memory 
manager moves the page to the head of the active list, then clears its referenced 
bit.86 This allows the kernel to distinguish between referenced pages that have been 
accessed once and those that have been accessed more than once recently. The lat
ter are placed in the active list so that they are not selected for replacement. 

The memory manager updates the active list by transferring pages that have 
not been recently accessed to the inactive list. This is performed periodically and 
when available memory is low. The memory manager attempts to balance the lists 
such that approximately two-thirds of the total number of pages in the page cache 
are in the active list—an empirically derived value that achieves good performance 
in many environments.87 The memory manager achieves this goal by periodically 
moving any unreferenced pages in the active list to the head of the inactive list. 

This algorithm is repeated until the specified number of pages have been moved 
from the tail of the active list to the head of the inactive list. A page in the inactive list 
will remain in memory unless it is reclaimed (e.g., when free memory is low). While a 
page is in the active list, however, the page cannot be selected for replacement.88 

When available page frames become scarce, the kernel must decide which pages to 
swap out to free page frames for new requests. This is performed periodically by the 
kernel thread kswapd (the swap daemon), which reclaims pages by writing dirty 
pages to secondary storage. If the pages are mapped to a file in a particular file sys
tem (i.e., store file data in main memory), the system updates the file with any mod
ifications to the page in memory. If the page corresponds to a process's data or 
procedure page, kswapd writes them to a region of data in secondary storage called 
the system swap file, kswapd selects pages to evict from entries at the tail of the 
inactive list.89 

When swapping out a page, kswapd first determines whether it exists in the 
swap cache. The swap cache contains page table entries that describe whether a 
given page already exists in the system swap file on secondary storage. Under cer
tain conditions, if the swap cache contains an entry for the page being swapped out. 
the page frame occupied by the page is freed immediately. By examining the swap 
cache, kswapd can avoid performing expensive I/O operations when an exact copy 
of the swapped page exists in the swap file.90 

20.6.4 Swapping 
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Before a page is replaced, the memory manager must determine whether to 
perform certain actions to ensure consistency (e.g., updating PTEs and writing data 
to disk). A page chosen for replacement cannot be immediately swapped under the 
following conditions: 

• The page is shared (i.e., referenced by more than one process). 
• The page has been modified. 
• The page is locked —a process or device relies on its presence in main 

memory to perform an operation.91 

If a page is being referenced by more than one process, kswapd must first 
unmap references to the page. The kernel unmaps a reference to a page by zeroing 
its PTE value. Linux uses reverse mapping to quickly find all page table entries 
pointing to a page, given a reference to a page frame. This is implemented in the 
page structure by a linked list of page table entries that reference the page. Without 
reverse mappings, the kernel would be required to search every page table in the 
system to find PTEs that map the page that is chosen for replacement. Although 
reverse mapping increases the size of each page object in the system, which in turn 
increases kernel memory usage, the performance improvement over searching page 
tables usually outweighs its cost.92 

After the kernel unmaps all the page table entries that reference a page, it 
must determine if the page has been modified. Modified (i.e., dirty) pages must be 
flushed to disk before they can be freed. To improve performance and reduce data 
loss during system crashes, the kernel attempts to limit the number of dirty pages 
resident in memory. The kernel thread pdflush attempts to flush pages to disk (i.e., 
clean dirty pages) approximately every 5 seconds (depending on the system load) 
and defines an upper limit of 30 seconds during which pages can remain dirty. Once 
the disk flushing I/O is complete, kswapd can reclaim the page frame and allocate it 
to a new virtual page.93.94 

If a page is locked, kswapd cannot access the page to free it because a process 
or device relies on its presence in main memory to perform an operation. For exam
ple, a page of memory used to perform an I/O operation is typically locked. When 
the memory manager searches the inactive page list to choose pages for eviction, it 
does not consider locked pages. The page is freed on the next pass through the list if 
it is no longer locked and is still a member of the inactive list.95 

To meet the needs of users across multiple platforms, Linux must support a variety 
of file systems. When the kernel requires access to a specific file, it calls functions 
defined by the file system containing the file. Each particular file system determines 
how to store and access its data. 

In Linux, a file refers to more than bits on secondary storage—files serve as 
access points to data, which can be found on a local disk, across a network, or even 
generated by the kernel itself. By abstracting the concept of a file, the kernel can 
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access hardware devices, interprocess communication mechanisms, data stored on 
disk and a variety of other data sources using a single generic file system interface. 
Developers use this interface to quickly add support for new file systems as they 
become available. Linux kernel version 2.6 includes support for more than 40 file 
systems that can be integrated into the kernel or loaded as modules.96 These include 
general-purpose file systems (e.g., ext2, FAT and UDF), network file systems (e.g.. 
NFS, CIFS and Coda) and file systems that exist exclusively in memory (e.g., procfs. 
sysfs, ramfs and tmpfs). In the sections that follow, we discuss the ext2, procfs, sysfs. 
ramfs and tmpfs file systems. 

Linux supports multiple file systems by providing a virtual file system (VFS) layer. 
The VFS abstracts the details of file access, allowing users to view all the files and 
directories in the system under a single directory tree. Users can access any file in 
the directory tree without knowledge of where, and under which file system, the file 
data are stored. All file-related requests are initially sent to the VFS layer, which 
provides an interface to access file data on any available file system. The VFS pro
vides only a basic definition of the objects that comprise a file system. Individual file 
systems expand that basic definition to include details of how objects are stored and 
accessed.97 Figure 20.10 illustrates this layered file system approach. Processes issue 

20.7.1 Virtual File System 

972 Case Study: Linux 

Figure 20.10 | Relationship between the VFS, file systems and data. 



system calls such as read, wr i t e and open, which are passed to the virtual file sys
tem. The VFS determines the file system to which the request corresponds and calls 
the corresponding routines in the file system driver, which perform the requested 
operations. This layered approach simplifies application programming and enables 
developers to add support for new file systems quickly, at the cost of nominal execu
tion-time overhead. 

The VFS uses files to read and write data that are not necessarily stored as bits 
on secondary storage. The virtual file system layer defines a number of objects that 
locate and provide access to data. One such object, called an inode, describes the 
location of each file, directory or link within every available file system. VFS inodes 
do not contain the name of the file they represent; rather, inodes are uniquely iden
tified by a tuple containing an inode number (which is unique to a particular file sys
tem) and a number identifying the file system that contains the inode.98 The VFS 
enables several file names to map to a single inode. This allows users to create hard 
links—multiple file names that map to the same inode within a file system. 

Linux uses files to represent many objects, including named sets of data, hard
ware devices and shared memory regions. The broad usage of files originates in 
UNIX systems, from which Linux borrows many concepts. 

The VFS represents each file using a file descriptor, which contains informa
tion about the inode being accessed, the position in the file being accessed and flags 
describing how the data is being accessed (e.g. read/write,append-only).99 For clar
ity, we refer to VFS file objects as "file descriptors" and use the term "file" to refer 
to named data within a particular file system. 

To map file descriptors to inodes, the VFS uses a dentry (directory entry) 
object. A dentry contains the name of the file or directory an inode represents. A 
file descriptor points to a dentry, which points to the corresponding inode.100 

Figure 20.11 shows a possible dentry representation of the /home directory and its 
contents. Each dentry contains a name and pointers to the dentry of its parent, chil
dren and siblings. For example, the dentry corresponding to /home/chriscontains 
pointers to its parent (/home), children ( /home/chris / foo, /home/chri s /bar and 
/home/ch r i s / t x t ) and sibling (/home/jim) directory entries. Using this informa
tion, the virtual file system can quickly resolve pathname-to-inode conversions. 
Dentries are discussed further in Section 20.7.2, Virtual File System Caches. 

The Linux directory tree is comprised of one or more file systems, each com
prised of a tree of inodes. When a file system is mounted, its contents are attached 
to a specified part of the primary directory tree. This allows processes to access data 
located in different file systems transparently via a single directory tree. A VFS 
superblock contains information about a mounted file system, such as the type of 
file system, its root inode's location on disk and housekeeping information that pro
tects the integrity of the file system (e.g., the number of free blocks and free inodes 
in the system).101 The VFS superblock is created by the kernel and resides exclu
sively in memory. Each file system must provide the VFS with superblock data 
when it is mounted. 
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The data stored in a file system's superblock is file-system dependent, but typ
ically includes a pointer to the root inode (i.e., the inode that corresponds to the 
root of the file system) as well as information regarding the size and available space 
in the file system. Because a file system's superblock contains a pointer to the first 
inode in the file system, the operating system must load its superblock to access any 
other data in the file system. Most file systems place their superblock in one of the 
first blocks on secondary storage and maintain redundant copies of the superblock 
throughout their storage device to recover from damage.102 

The virtual file system interprets data from the superblock, inodes, files and 
dentries to determine the contents of available file systems. The VFS defines generic 
file system operations and requires that each file system provide an implementation 
for each operation it supports. For example, the VFS defines a read function, but 
does not implement it. Example VFS file operations are listed in Fig. 20.12. Each 
file system driver must therefore implement a read function to allow processes to 
read its files. The virtual file system also provides generic file system primitives (e.g.. 
files, superblocks and inodes). Each file system driver must assign file-system-spe-
cific information to these primitives. 

Figure 20.11 | Dentry organization for a particular /home directory. 
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The virtual file system maintains a single directory tree composed of one or more file 
systems. To improve performance for file and directory access, the virtual file system 
maintains two caches—the directory entry cache (dcache) and the inode cache. 
These caches contain information about recently used entries in the directory tree. 
The cache entries represent objects in any available mounted file system.103104 

The dcache contains dentries corresponding to directories that have recently 
been accessed. This allows the kernel to quickly perform a pathname-to-inode trans
lation if the file specified by the pathname is located in main memory. Because the 
amount of memory allocated to the dcache is limited, the VPS uses the dcache to 
store the most recently used dentries.105 Although normally it cannot cache every file 
and directory in the system, the VFS ensures that if a dentry is in the dcache, its par
ent and other ancestors are also in the dcache. The only time this might not hold true 
is when file systems are accessed across a network (due to the fact that remote file 
system information can change without the local system being notified).106 

Recall that when the VFS performs a pathname-to-inode translation, it uses 
dentries in the dcache to quickly locate inodes in the inode cache. The VFS then 
uses these inodes to locate a file's data when it is cached in main memory. Because 
the VFS relies on dentries to quickly locate inodes, each dentry's corresponding 
inode should be present in the inode cache. Therefore, the VFS ensures that each 
dentry in the dcache corresponds to an inode in the inode cache. 

Conversely, if an inode is not referenced by a dentry, the VFS cannot access 
the inode. Therefore the VFS removes inodes that are no longer referenced by a 
dentry.107, 108 

Locating the inode corresponding to a given pathname is a multistep process. 
The VFS must perform a directory-to-inode translation for each directory in the 
pathname. The translation begins at the root inode of the file system containing the 
pathname. The location of the file system's root inode is found in its superblock, 
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Figure 20.12 | VFS file and inode operations. 

VFS operation Intende use 
read 
write 
open 
release 

ioctl 

lookup 

Copy data from a file to a location in memory. 

Write data from a location in memory to a file. 

Locate the inode corresponding to a file. 

Release the inode associated with a file. This can be per
formed only when all open file descriptors for that inode are 
closed. 

Perform a device-specific operation on a device (represented 
by an inode and file). 

Resolve a pathname to a file system inode and return a den-
try corresponding to it. 
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which is loaded into memory when the file system is mounted. Beginning at the root 
inode, the VFS must resolve each directory entry in the pathname to its correspond
ing inode.109 

When searching for the inode that represents a given directory, the VFS first 
checks the dcache for the directory. If the dentry is found in the dcache, the corre
sponding inode must exist in the inode cache. Note that in Fig. 20.13 the dentry cor
responding to f o o . t x t exists in the dentry cache; that dentry then points to an 
inode, which points to data in a file system. 

If the VFS cannot find the dentry in the dcache, it searches for the inode 
directly in the inode cache.110 Figure 20.13 illustrates this case using l i n k . t x t , a 
hard link to the file b a r . t x t . In this case, a process has previously referenced 
l i n k . t x t , meaning that a dentry corresponding to l i n k . t x t exists in the dcache. 
Because l i n k . t x t is a hard link to b a r . t x t , l i n k . t x t ' s dentry points to 
b a r . t x t ' s inode. When b a r . t x t is referenced for the first time, its dentry does not 
exist in the dentry cache. However, because a process has referenced b a r . t x t using 
a hard link, the inode corresponding to b a r . t x t exists in the inode cache. When the 
VFS does not find an entry for b a r . t x t in the dcache, it searches the inode cache 
and locates the inode corresponding to b a r . t x t . 

If the dentry is not in the dcache and its corresponding inode is not in the 
inode cache, the VFS locates the inode by calling its parent directory inode's lookup 
function (which is defined by the underlying file system).111 Once the directory is 
located, its associated inode and corresponding dentry are loaded into memory. The 
new inode is added to the inode cache and the dentry is added to the dcache.112 

The VFS repeats the process of searching the caches before calling the lookup 
function for each directory in the pathname. By utilizing the caches, the VFS can 
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avoid lengthy delays due to a file system's accessing inodes on disk, across a net
work, or from other media. 

The inode lookup function is one of several functions that file systems typi
cally implement (see Fig. 20.12). The primary responsibilities of the VFS are to 
cache file system data and pass file access requests to the appropriate file systems. 
Most file systems provide the VFS with their own implementations of functions 
such as lookup, read and wr i t e to access files, directories and links. The VFS 
allows file systems a great deal of flexibility in choosing which functions to imple
ment and how to implement them. 

After its 1993 release, the second extended file system (ext2fs) quickly became the 
most widely used Linux file system of its time. The primary goal of ext2fs is to pro
vide a high-performance, robust file system with support for advanced features.113 

As required by the virtual file system, ext2fs supports basic objects such as the 
superblock, inodes and directories. The ext2fs implementation of these objects 
extends their definitions to include specific information about the location and lay
out of data on disk, as well as providing functions to retrieve and modify data. 

When an ext2fs partition is formatted, its corresponding disk space is divided 
into fixed-size blocks of data. Typical block sizes are 1,024, 2,048, 4,096 or 8,192 
bytes. The file system stores all file data and metadata in these blocks.114 By default, 
five percent of the blocks are reserved exclusively for users with root privileges 
when the disk is formatted. This is a safety mechanism provided to allow root pro-
cesses to continue to run if a malicious or errant user process consumes all other 
available blocks in the file system.115 The remaining 95 percent of the blocks can be 
used by all users to organize and store file data. 

An ext2 inode represents files and directories in an ext2 file system—each 
node stores information relevant to a single file or directory, such as time stamps, 

permissions, the identity of the file's owner and pointers to data blocks (Fig. 20.14). 
A single block is rarely large enough to contain an entire file. Thus, there are 15 
data block pointers (each 32 bits wide) in each ext2 inode. The first 12 pointers 
directly locate the first 12 data blocks. The 13th pointer is an indirect pointer. The 
indirect pointer locates a block that contains pointers to data blocks. The 14th 
pointer is a doubly indirect pointer. The doubly indirect pointer locates a block of 
indirect pointers. The 15th pointer is a triply indirect pointer—a pointer to a block 

of doubly indirect pointers. 
Consider an ext2 file system that uses 32-bit block addresses and a block size of 

4.096 bytes. If a file is less than 48KB in size (i.e., it consumes 12 blocks of data or 
fewer), the file system can locate the file's data using pointers directly from the file's 
inode. The block of singly indirect pointers locates up to 1,024 data blocks (4MB of 
file data). Thus, the file system need load only two blocks (the inode and the block of 
indirect pointers) to locate over 4MB of file data. Similarly, the doubly indirect block 

of pointers locates up to 1,0242, or 1,048,576, data blocks (4GB of file data). 

20.7.3 Second Extended File System (ext2fs) 
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In this case, the file system must load one doubly indirect block, 1,025 singly 
indirect blocks and the file's inode (containing 12 direct pointers to data blocks) to 
access files of 4GB. Finally, the triply indirect block of pointers locates up to 1,0243, 

Figure 20.14 | Ext2 inode contents. 
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or 1,073,741,824, data blocks (4,096GB of file data). In this case, the file system 
must load one triply indirect block, 1,025 doubly indirect blocks, 1,149,601 singly 
indirect blocks and the file's inode (containing 12 direct pointers to data blocks) to 
access files of approximately 4,100GB. This design provides fast access to small files, 
while supporting larger files (maximum file sizes range from 16GB to 4,096GB, 
depending on the file system's block size).116 
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Blocks in an ext2fs partition are divided into clusters of contiguous blocks called 
block groups. The file system attempts to store related data in the same block group. 
This arrangement reduces the seek time for accessing large groups of related data 
(e.g., directory inodes, file inodes and file data) because blocks inside each block 
group are located in a contiguous region of disk. Figure 20.15 illustrates the struc
ture of a block group. The first block is the superblock. The superblock contains 
critical information about the entire file system, not just a particular block group. 
This information includes the total number of blocks and inodes in the file system, 
the size of the block groups, the time at which the file system was mounted and 
other housekeeping data. Because the contents of the superblock are critical to the 
integrity of the file system, a redundant copy of the superblock is maintained in 
some block groups. As a result, if any copy is corrupted, the file system can be 
restored from one of the redundant copies.117 

The block group contains several data structures to facilitate file operations 
on that group. One such structure is the inode table, which contains an entry for 
each inode in the block group. When the file system is formatted, it assigns a fixed 
number of ext2 inodes to each block group. The number of inodes in the system 
depends on the ratio of bytes to inodes in the file system, specified when the parti
tion is formatted. Because the size of the inode table is fixed, the only way to 
increase the number of inodes in a formatted ext2 file system is to increase the size 
of the file system. The inodes in each group's inode table typically point to file and 
directory data located in that group, reducing the time necessary to load files from 
disk due to the phenomenon of locality. 

The block group also maintains a block containing an inode allocation bitmap 
that tracks inode use within a block group. Each bit in the allocation bitmap corre
sponds to an entry in the group's inode table. When a file is allocated, an available 

Figure 20.15 | Block group. 
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inode is selected from the inode table to represent the file. The bit in the allocation 
bitmap corresponding to the inode's index in the inode table is turned on to indi
cate that the inode is in use. For example, if inode table entry 45 is assigned to a file, 
the 45th bit in the inode allocation bitmap is turned on. When an inode is no longer 
needed, the corresponding bit in the inode allocation bitmap is cleared to indicate 
that the inode can be reused. This same strategy is employed to maintain the block 
allocation bitmaps, which track each group's block usage.118 

Another element of metadata in each block group, called the group descriptor. 
contains the block numbers corresponding to the location of the inode allocation bit
map, block allocation bitmap and inode table (Fig. 20.16). It also contains accounting 
information, such as the number of free blocks and inodes in the group. Each block 
group contains a redundant copy of its group descriptor for recovery purposes.119 

The remaining blocks in each block group store file and directory data. Direc
tories are variable-length objects that associate file names with inode numbers 
using directory entries. Each directory entry is composed of an inode number, 
directory entry length, file name length, file type and file name (Fig. 20.17). Typical 
file types include data files, directories and symbolic links; however, ext2fs also can 
use files to represent other objects, such as devices and sockets.120 

Ext2fs supports both hard and symbolic links (recall from Section 13.4.2. 
Metadata, that symbolic links specify a pathname, not an inode number). When the 

980 Case Study: Linux 

Figure 20.16 | Group descripror. 



20.7 File Systems 981 

file system encounters a symbolic link while translating a pathname to an inode, the 
pathname being translated is replaced by the contents of the symbolic link, and the 
conversion is restarted. Because hard links specify an inode number, they do not 
require pathname-to-inode conversion. The file system maintains a count of the 
number of directory entries referencing an inode to ensure an inode is not deleted 
while it is still being referenced.121 

Figure 20.17 | Directory structure. 

Each file's inode stores information that the kernel uses to enforce its access control 
policies. In the ext2 file system, inodes contain two fields related to security: file per
missions and file attributes. File permissions specify read, write and execute privi
leges for three categories of users: the owner of the file (initially the user that 
created the file), a group of users allowed to access the file (initially the group to 
which the user that created the file belongs), and all other users in the system. 

File attributes control how file data can be modified. For example, the 
append-only file attribute specifies that users may append data to the file, but not 
modify data that already exists in the file. Ext2 file attributes can be extended to 
support other security features. For example, ext2 stores access control metadata in 
its extended file attributes to implement POSIX access control lists.122 

File Security 

To locate a file in a file system, a pathname-to-inode conversion must be performed. 
Consider the example of finding the file given by the pathname /home/admi n/pol -
icydoc. The pathname is composed of a series of directory names separated by 
slashes (/home/admi n) that specify the path to the file pol i cydoc. The conversion 
begins by locating the inode representing the root directory of the file system. The 
inode number of the root directory (/) is stored in the file system superblock (and is 
always 2).123 This inode number specifies the root directory inode in the appropriate 
block group. The data blocks referenced by the latter inode contain the directory 
entries for the root directory. Next, the file system searches these directory entries 
for the inode number of the home directory. This process is repeated until the inode 

Locating Data Using a Pathname 



representing the file policydoc is located. As each inode is accessed, the file system 
checks the permission information stored in it to ensure that the process perform
ing the search is permitted to access the inode. The file's data can be directly 
accessed after the correct inode has been located and the file data (and metadata) 
have been cached by the system.124 

One strength of the VFS is that it does not impose many restrictions on file system 
implementations. The VFS requires only that function calls to an underlying file sys
tem return valid data. This abstraction of a file system permits some intriguing file 
system implementations. 

One such file system is procfs (the proc file system). Procfs was created to pro
vide real-time information about the status of the kernel and processes in a system. 
Similar to the VFS, the proc file system is created by the kernel at runtime. 

The information provided by procfs can be found in the files and subdirectories 
within the /p roc directory (Fig. 20.18). By examining the contents of /proc , users 
can obtain detailed information describing the system, from hardware status infor
mation to data describing network traffic.125 For example, each number in Fig. 20.18 
corresponds to a process in the system, identified by its process ID. By examining the 
contents of a process's directory in the proc file system, users can obtain information 
such as a process's memory usage or the location of its executable file. Other directo
ries include devices (which contains information about devices in the system). 
mounts (which contains information regarding each mounted file system) and 
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root> ls /proc 
1 20535 20656 751 978 interrupts pci 
10 20538 20657 792 acpi iomem self 
137 20539 20658 8 asound ioports slabinfo 
19902 20540 20696 811 buddyinfo irq stat 
2 20572 20697 829 bus kcore swaps 
20473 20576 20750 883 cmdiine kmsg sys 
20484 20577 3 9 cpuinfo ksyms sysvipc 
20485 20578 4 919 crypto loadavg tty 
20489 20579 469 940 devices locks uptime 
20505 20581 5 960 dma meminfo version 
20507 20583 536 961 dri misc vmstat 
20522 20586 541 962 driver modules 
20525 20587 561 963 execdomains mounts 
20527 20591 589 964 filesystems mtrr 
20529 20621 6 965 fs net 
20534 20624 7 966 ide partitions 
root> 

Figure 20.18 | Sample contents of the /proc directory. 



uptime (which displays the amount of time the system has been running). Data pro
vided by procfs is particularly useful for driver developers and system administrators 
who require detailed information about system usage. In this section, we limit our 
discussion to the implementation of procfs. A detailed explanation of the /p roc 
directory's contents can be found in the Linux source code under Documentation/ 
f i l e s y s t e m s / p r o c . t x t . 

Procfs is a file system that exists only in main memory. The contents of files in 
the proc file system are not stored persistently on any physical medium—procfs files 
provide users an access point to kernel information, which is generated on demand. 
When a file or directory is registered with the proc file system, a proc directory entry 
is created. Proc directory entries, unlike VFS directory entries, allow each directory 
to implement its own read function. This enables a proc directory to generate its 
contents each time the directory entry is accessed. When a process accesses a partic
ular procfs file, the kernel calls the corresponding file operation specified by the file. 
These functions allow each file to respond differently to read and write operations.126 

The kernel creates many procfs entries by default. Additional files and directories 
can be created using loadable kernel modules. 

When a user attempts to read data from a procfs file, the VFS calls the procfs 
read function, which accesses a proc directory entry. To complete a read request, 
procfs calls the read function defined for the requested file. Procfs read functions 
typically gather status information from a resource, such as the amount of time the 
system has been running. Once information has been retrieved by a read function, 
procfs passes the output to the process that requested it.127 

Procfs files can be used to send data to the kernel. Some system variables, 
such as the network host name of a machine, can be modified at runtime by writing 
to procfs files. When a process writes to a procfs file, the data provided by the pro
cess may be used to update the appropriate kernel data structures.128 
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This section explains how the kernel accesses system devices using the I/O inter
face. The kernel abstracts the details of the hardware in a system, providing a com
mon interface for I/O system calls. The kernel groups devices into classes; members 
of each device class perform similar functions. This allows the kernel to address the 
performance needs of certain devices (or classes of devices) individually. 

20.8 Input/Output Management 

Support for devices such as graphics cards, printers, keyboards and other such hard
ware is a necessary part of any operating system. A device driver is the software 
interface between system calls and a hardware device. Independent Linux develop
ers, not device manufacturers, have written most of the drivers that operate devices 
commonly found in Linux systems. This generally limits the number of devices that 
are compatible with the Linux operating system. As the popularity of Linux 
increases, so does the number of vendors that ship Linux drivers with their devices. 

20.8.1 Device Drivers 



Typically, device drivers are implemented as loadable kernel modules. Drivers 
implemented as modules can be loaded and unloaded as they are needed, avoiding 
the need to have them permanently loaded in the kernel.129 

Most devices in a system are represented by device special files. A device spe
cial file is an entry in the /dev directory that provides access to a particular device. 
Each file in the /dev directory corresponds to a block device or a character 
device.130 A list of block and character device drivers that are currently loaded on a 
particular system can be found in the file /p roc /dev i ces (Fig. 20.19). 

Devices that perform similar functions are grouped into device classes. For 
example, each brand of mouse that connects to the computer may belong to the 
input device class. To uniquely identify devices in the system, the kernel assigns 
each device a 32-bit device identification number. Device drivers identify their 
devices using a major identification number and a minor identification number. 
Major and minor identification numbers for all devices supported by Linux are 
located in the Linux Device List, which is publicly available online.131 Driver devel
opers must use the numbers allocated to devices in the Linux Device List to ensure 
that devices in a system are properly identified. 

Devices that are assigned the same major identification number are controlled 
by the same driver. Minor identification numbers allow the system to distinguish 

root> cat /proc/devices 
Character devices: 

Block devices: 

root> 

Figure 20.19 | /proc/devices file contents.132 
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individual devices that are assigned the same major identification number (i.e., 
belong to the same device class).133 For example, a hard disk is assigned a major 
identification number, and each partition on the hard disk is assigned a device 
minor number. 

Device special files are accessed via the virtual file system. System calls pass to 
the VFS, which in turn issues calls to device drivers. Figure 20.20 illustrates the 
interaction between system calls, the VFS, device drivers and devices. Drivers 
implement generic virtual file system functions so that processes may access /dev 
files using standard library calls. For example, standard library calls for accessing 
files (such as printing to a file using the standard C library function f p r i n t f ) are 
implemented on top of lower-level system calls (such as read and write).1 3 4 Indi
vidual device characteristics determine the drivers and their corresponding system 
calls necessary to support the device. Most devices that Linux supports belong to 
three primary categories: character devices, block devices and network devices. 

Each class of device requires its corresponding device drivers to implement a 
set of functions common to the class. For example, a character device driver must 
implement a wri te function to transfer data to its device.135 Further, if a device is 
attached to a kernel subsystem (e.g., the SCSI subsystem), the device's drivers must 
interface with the subsystem to control the device. For example, a SCSI device driver 
passes I/O requests to the SCSI subsystem, which then interacts directly with devices 
attached to the SCSI interface.136 Subsystem interfaces exist to reduce redundant 
code; for example, each SCSI device driver need only provide access to a particular 
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Figure 20.20 | I/O interface layers. 



SCSI device, not to the SCSI controller to which it is attached. The SCSI subsystem 
provides access to common SCSI components, such as the SCSI controller. 

Most drivers implement common file operations such as read, wr i t e and 
seek. These operations allow drivers to transfer data to and from devices, but do 
not allow them to issue hardware-specific commands. To support tasks such as eject
ing a CD-ROM tray or retrieving status information from a printer, Linux provides 
the i o c t l system call, i o c t l allows developers to send control messages to am 
device in the /dev directory. The kernel defines several default control messages 
and allows a driver to implement its own messages for hardware-specific opera
tions.137 The set of messages supported by a device driver is dependent on the 
driver's device and implementation. 

A character device transmits data as a stream of bytes. Devices that fall under this 
category include printers, consoles, mice, keyboards and modems. Because they 
transfer data as streams of bytes, most character devices support only sequential 
access to data.138 

Most character device drivers implement basic operations such as opening, 
closing, reading from and writing to a character device. Each device in the system is 
represented by a device_struct structure that contains the driver name and a 
pointer to the driver's f i l e _ o p e r a t i o n s structure, which maintains the operations 
supported by the device driver. To initialize a character device, a device driver must 
register its operations with the virtual file system, which appends a devi ce_struct 
structure to the array of registered drivers stored in chrdevs.139 Figure 20.21 

Figure 20.21 | chrdevs vector. 



describes the contents of vector chrdevs. Each entry in chrdevs corresponds to a 
device driver major identification number. For example, the fifth entry in chrdevs 
is the dev i ce_s t ruc t for the driver with major number five.140 

When a system call accesses a device special file, the VFS calls the appropriate 
function in the device's f i l e _ o p e r a t i o n s structure. This structure includes func
tions that perform read, write and other operations on the device. The inode repre
senting the file stores a device special file's f i l e _ o p e r a t i ons structure.141 

After a device's file operations have been loaded into its inode, the VFS will 
use those operations whenever system calls access the device. The system can access 
this inode until a system call closes the device special file. However, once a system 
call closes the file, the inode must be recreated and initialized the next time the file 
is opened.142 

Unlike character devices, block devices allow data stored in fixed-sized blocks of 
bytes to be accessed at any time, regardless of where those blocks are stored on the 
device. To facilitate nonsequential (i.e., random) access to a large amount of data 
(e.g., a file on a hard drive), the kernel must employ a more sophisticated system for 
handling block device I/O than it does for handling character device I/O. For exam
ple, the kernel provides algorithms that attempt to optimize moving-head storage 
(i.e., hard disks). 

Like character devices, block devices are identified by major and minor num
bers. The kernel's block I/O subsystem contains a number of layers to modularize 
block I/O operations by placing common code in each layer. Figure 20.22 depicts 
the layers through which block I/O requests pass. To minimize the amount of time 
spent accessing block devices, the kernel uses two primary strategies: caching data 
and clustering I/O operations. 

20.8.3 Block Device I/O 

To reduce the number of block I/O operations for disk devices, the kernel buffers 
and caches I/O requests. When a process requests data from a block device (typically 

Buffering and Caching 

Figure 20.22 | Block I/O subsystem layers. 
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a hard disk), the kernel searches the page cache for the requested blocks. (Recall 
from Section 20.6.3, Page Replacement, that the page cache is a region of main mem
ory that stores buffered and cached data from I/O requests.) If the page cache con
tains an entry for the requested block, the kernel will copy that page to the user's 
virtual space, provided there are no errors (e.g., improper permission). When a pro
cess attempts to write data to a block device, the request is typically placed on a list of 
pending requests that is sorted according to the kernel's disk scheduling strategy. 

By performing direct I/O, a driver can bypass kernel caches when reading 
from (or writing to) devices. Some applications, such as high-end database applica
tions, implement their own caching mechanisms; as a result, it would be wasteful for 
the kernel to maintain its own cache of the application's data.143 When direct I/O is 
enabled, the kernel performs I/O directly between a process's user address space 
and the device, eliminating the overhead caused by copying data from a user 
address space to the kernel caches, then to the device. 

If an I/O request corresponds to data that is not cached or data that must be written 
to secondary storage, the kernel must perform an I/O operation. Instead of submit
ting I/O requests to devices in the order in which they are received, the kernel adds a 
request to a request list. A request list, which contains pending I/O operations, is cre
ated for each block device in the system. The list allows the kernel to order requests 
to take into account factors such as the location of the disk head if the block device is 
a hard disk. As discussed in Chapter 12, the kernel can improve the performance of 
all block I/O operations by sorting requests for I/O on each block device. 

To associate entries in the request list with page frames, each request contains 
a bio structure, which maps to a number of pages in memory corresponding to the 
request. The kernel maintains at least one request list per driver; each request cor
responds to a read or write operation.144'145 Block drivers do not define read and 
write operations, but rather must implement a request function that the kernel calls, 
once it has queued requests.146 This allows the kernel to improve I/O performance 
by sorting the list of requests according to its disk scheduling algorithm (discussed 
in the next section) before submitting requests to a block device. When the kernel 
calls a request function, the block device must perform all I/O operations in the list 
of I/O requests the kernel provides. 

Although the kernel often reduces seek time by sorting block device requests, 
in some cases the request list is detrimental to performance. For example, certain 
device drivers, such as RAID drivers, implement their own methods for managing 
requests (see Section 12.10, Redundant Arrays of Independent Disks (RAID)). 
Such device drivers operate on bios, unlike traditional block device drivers (e.g.. 
IDE), which are passed a list of requests via a request function.147 

Linux provides several disk scheduling algorithms to allow users to customize I/O 
performance to meet the individual needs of each system. The default disk schedul-

Elevator Disk Scheduling Algorithm 

Request Lists 
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ing algorithm is a variation of the elevator algorithm (i.e., the LOOK variation of 
the SCAN strategy presented in Section 12.5.6, LOOK and C-LOOK Disk Sched
uling). To minimize disk seek time, the kernel arranges the entries in the list accord
ing to their location on disk. The request at the head of the list is closest to the disk 
head, which reduces the amount of time the disk spends seeking and increases I/O 
throughput. When an I/O request is submitted to a disk's request list, the kernel 
determines the location on disk corresponding to the request. The kernel then 
attempts to merge requests to adjacent locations on disk by combining two I/O 
requests into a single, larger request. Merging requests improves performance by 
reducing the number of I/O requests issued to a block device. If a request cannot be 
merged, the kernel attempts to insert that request in the sorted list in the position 
that maintains the list's least-seek-time-first ordering.148 

Although the elevator algorithm provides high throughput by reducing disk 
seek latency, the algorithm allows requests at the end of the queue to be indefinitely 
postponed.149 For example, consider two processes: process P1 writes 200MB of 
data to a file and process P2 recursively reads the contents of a directory on disk 
and prints the result to the terminal. Assume that the system is using an ext2 file 
system and the request list is initially empty. As P1 executes, it may submit several 
write requests without blocking during its time slice—processes rarely block as 
result of write requests because they do not rely on the completion of write opera
tions to execute subsequent instructions. P1 is eventually preempted, at which point 
the request list contains several write requests. Many of the write requests will have 
been merged by the kernel because the ext2 file system attempts to locate file data 
within block groups, as discussed in Section 20.7.3, Second Extended File System 
(ext2fs). Process P1's requests are then submitted to the block device, which moves 
the disk head to the location of the data blocks to be written. 

When P2 executes, it submits a request to read the contents of a directory. This 
request is a synchronous read operation because P2 cannot print the directory con
tents until the read operation completes. Consequently, P2 will submit a single I/O 
request and block. Unless the read request corresponds to a location adjacent to 
the disk head (which is now servicing P1's write requests), the read request is placed 
after the pending write requests in the request list. Because P2 has blocked, process 
Pi may eventually regain control of the processor and submit additional write 
requests. Each subsequent write request will likely be merged with the previous 
requests at the front of the request list. As a result, process P2's read request is 
pushed further back in the request list while P2 remains blocked—meaning that P2 

cannot submit additional I/O requests. As long as process Pi continues to submit 
write requests, process P2's read request is indefinitely postponed. 
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To eliminate indefinite postponement, the kernel provides two LOOK disk sched
uling algorithms: deadline scheduling and anticipatory scheduling. The deadline 
scheduler prevents read requests from being indefinitely postponed by assigning 
each request a deadline—the scheduler attempts to service each request before its 
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deadline passes. When the request has been waiting for the longest time permitted 
by the deadline, the request expires. The deadline scheduler processes requests 
from the head of the request list unless a request expires. At this point, the deadline 
scheduler services any requests that have expired and some that will soon expire. 
Servicing requests that will soon expire reduces the number of times the scheduler 
will be interrupted from servicing requests at the head of the list, which improves 
throughput. After all expired requests have been serviced, the scheduler continues 
by servicing requests from the front of the request list.150 

To meet its deadlines, the scheduler must be able to quickly determine if any 
requests have expired. Using a single request list, the deadline scheduler would 
need to perform a linear search of requests to determine if any had expired. If the 
number of requests in the request list is large, this could require a significant 
amount of time, leading to poor performance and missed deadlines. Consequently, 
the deadline scheduler maintains two FIFO queues, one each for read and write 
requests. When a request is added to the request list, a reference to the request is 
added to the appropriate FIFO queue. Therefore, the request that has waited for 
the longest time is always located at the front of the FIFO queue. This means that 
the deadline I/O scheduler can quickly determine if a request is near its deadline by 
accessing the pointer to the front of each of the FIFO queues.151, 152 

Because the deadline scheduler is designed to prevent read starvation, the 
deadline for read requests is shorter than the deadline for write requests. By 
default, read requests must be serviced 500ms after insertion into the request list, 
whereas write requests must be serviced after 5 seconds. These values were chosen 
because they provide good performance in general, but they can be modified by a 
system administrator at run time.153 

Consider how the deadline scheduler performs given processes P1 and P2 

from the previous section (process P1 writes 200MB of data to a file and process P2 

recursively reads the contents of a directory on disk and prints the result to the 
screen). Recall from the previous section that process P1's write requests are typi
cally performed before read requests because its requests are merged. As a result, 
the disk will most likely be servicing a write request when P2's read request's dead
line expires. This means that the disk will likely perform a seek operation to per
form the read request. Also, because synchronous read requests require process P2 

to block, the number of read requests in the request list is small. Consequently, the 
next request in the request list following the read operation will likely be a write 
operation that requires another seek operation. If several processes issue read 
requests while one or more processes submit write requests, several such pairs of 
seek operations (due to expired read requests) may occur within a short period of 
time. Thus, to reduce the number of seeks, the deadline I/O scheduler attempts to 
group several expired requests so that they will be serviced together before expired 
write requests are serviced, and vice versa.154, 155 

The anticipatory scheduler eliminates read request starvation by preventing 
excessive seek activity and further improves performance by anticipating future 
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requests. Recall that synchronous read requests often occur once per time slice 
because they require processes to block. However, similar to process P2's requests 
for directory entries, many processes issue a series of synchronous read requests for 
contiguous data (or data on a single track). Consequently, if the disk scheduler 
paused briefly after completing a process's read request, that process may issue an 
additional read request that does not require a seek operation.156 Even when there 
are several other requests in the request list, this read request would be placed at 
the head of request list and serviced without causing excessive seek activity. 

By default, the amount of time during which the anticipatory I/O scheduler 
waits for a new request is 6ms —a pause that occurs only after completing a read 
request.157 The 6ms pause (the value of the pause can be modified at run time) cor
responds to the seek latency for many of today's hard disks, or roughly half the 
amount of time required to perform a request located on another track and return 
to the location of the previous read. If a read request is issued during the 6ms pause, 
the anticipatory scheduler can perform the request before seeking to another loca
tion on disk to perform requests for other processes. In this case, a traditional eleva
tor scheduler would have performed two seek operations: one to perform the next 
request from another process and one to service the next read request. Therefore, 
the anticipatory I/O scheduler improves overall I/O throughput if it receives a read 
request within the 6ms pause more than 50 percent of the time. 

The anticipatory scheduler has been shown to perform 5 to 100 times better 
than the traditional elevator algorithm when performing synchronous reads in the 
presence of write requests. However, the anticipatory I/O scheduler can introduce 
significant overhead due to its 6ms pause, leading to reduced I/O throughput. This 
occurs when the I/O scheduler does not receive a request for data near the disk's 
read/write head during the 6ms that it waits for a read request. To minimize this 
overhead, the scheduler maintains a history of process behavior that it uses to pre
dict whether a process will benefit from the 6ms pause.158 
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The kernel's networking subsystem provides an interface for exchanging data with 
other hosts. This interface, however, cannot be accessed directly by user processes, 
which must send and receive data via the IPC subsystem's socket interface (dis
cussed in Section 20.10.3, Sockets). When processes submit network data to the 
socket interface, they specify the network address of the destination, not the net
work device through which to deliver the data. The networking subsystem then 
determines which network device will deliver the packet. An important difference 
between network devices and block or character devices is that the kernel does not 
request data from a network device. Instead, network devices use interrupts to 
notify the kernel as they receive packets. 

Because network traffic travels in packets, which can arrive at any time, the 
read and write operations of a device special file are not sufficient to access data 
from network devices. Instead, the kernel uses net_device structures to describe 
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the network devices.159 These objects are similar to the dev ice_s t ruc t objects that 
represent block and character devices; however, because network devices are not 
represented as files, the net_devi ce structure does not include a f i l e_ope ra t i ons 
structure. Instead, it contains a number of functions defined by drivers that allow the 
kernel to perform actions such as starting a device, stopping a device and sending 
packets to a device.160 

Once the kernel has prepared packets to transmit to another host, it passes 
them to the device driver for the appropriate network interface card (NIC). To 
determine which NIC will send the packet, the kernel examines an internal routing 
table that lists the destination addresses each network interface card can access. 
Once the kernel matches the packet's destination address to the appropriate inter
face in the routing table, the kernel passes the packet to the device driver. Each 
driver processes packets according to a queuing discipline, which specifies the order 
in which its device processes packets, such as the default FIFO policy, or other, 
more sophisticated, priority-based policies. By enabling priority queuing disciplines, 
the system can deliver higher-priority content, such as streaming media, more 
quickly than other network traffic.161 

After passing packets to a network device's queue, the kernel wakes the 
device so that the driver may begin removing packets from the device's queue 
according to its queuing discipline. As packets are removed from the queue, they 
are passed to a packet transmission function specified by the device's driver.162 

When a network interface receives a packet from an external source, it issues 
an interrupt. The interrupt causes processor control to pass to the appropriate inter
rupt handler for packet processing. The interrupt handler allocates memory for the 
packet, then passes the packet to the kernel's networking subsystem. In 
Section 20.11, Networking, we discuss the path taken by packets as they travel 
through the networking subsystem. 
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The unified device model is an attempt to simplify device management in the ker
nel. At the physical level, devices are attached to an interface (e.g., a PCI slot or a 
USB port) that is connected to the rest of the system via a bus. As discussed in the 
previous sections, Linux represents devices as members of device classes. For exam
ple, a mouse connected to a USB port and a keyboard connected to a PS/2 port 
both belong to the input device class, but each device connects to the computer via 
a different bus. Whereas a description of device interfaces and buses is a physical 
view of the system, a device class is a software (i.e., abstract) view of the system that 
simplifies device management by grouping devices of a similar type. 

Before the unified device model, device classes were not related to system 
buses, meaning that it was difficult for the system to determine where in the system a 
device was physically located. This was not a problem when computers did not sup
port hot swappable devices (i.e., devices that can be added and removed while the 
computer is running). In the absence of hot swappable devices, it is sufficient for the 
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system to detect devices exactly once (at boot time). Once the kernel loads a driver 
corresponding to each device, the kernel rarely needs to access a device's physical 
location in the system. However, in the presence of hot swappable devices, the ker
nel must be aware of the physical layout of the system so it can detect when a device 
has been added or removed. Once it has located a new device, the kernel must be 
able to identify its class so the kernel can load the appropriate device driver.163 

For example, devices are commonly added and removed from the USB bus. 
To detect such changes, the kernel must periodically poll the USB interface to 
determine which devices are attached to it.164 If a new device is found, the kernel 
should identify it and load a device driver that supports it so that processes may use 
the device. If a device has been removed, the system should unregister the driver so 
that attempts to access the device are denied. Thus, the kernel must maintain a lay
out of the physical location of devices in the system so that it knows when the set of 
devices in the system changes. To support hot swappable devices, the kernel uses 
the unified device model to access the physical location of a device in addition to its 
device class representation.165 

The unified device model defines data structures to represent devices, device 
drivers, buses, and device classes. The relationship between these structures is 
shown in Fig. 20.23. Each bus data structure represents a particular bus (e.g., PCI) 
and contains pointers to a list of devices attached to the bus and drivers that oper
ate devices on the bus. Each class data structure represents a device class and con
tains pointers to a list of devices and device drivers that belong to that class. The 
unified device model associates each device and device driver with a bus and class. 
As a result, the kernel can access a bus, determine a list of devices and drivers on 
that bus and then determine the class to which each device and device driver 
belongs. Similarly, the kernel can access a device class, follow the pointers to its list 
of devices and device drivers and determine the bus to which each device is 
attached. As Fig. 20.23 demonstrates, the kernel requires a reference only to a sin
gle data structure to access all other data structures in the unified device model. 
This simplifies device management for the kernel as devices are added to and 
removed from the system. 

When devices are registered with the system, these data structures are initial
ized and corresponding entries are placed in the system file system, sysfs, Sysfs pro
vides an interface to devices described by the unified device model. Sysfs allows user 
applications to view the relationship between entities (devices, device drivers, buses 
and classes) in the unified device model.166, 167, 168, 169 

Sysfs, typically mounted at / sy s , organizes devices according to both the bus to 
which they are attached and the class to which they belong.The / s y s / b u s directory 
contains entries for each bus in the system (e.g., / s y s / b u s / p c i ) . Within each bus 
subdirectory is a list of devices and device drivers that use the bus. Sysfs also orga
nizes devices by class in the directory / s y s / c l a s s . For example, the / s y s / c l a s s / 
input contains input devices, such as a mouse or keyboard. Within each class subdi
rectory is a list of devices and device drivers that belong to that class.170-171 
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Figure 20.23 | Unified device model organization. 
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The unified device model has also simplified how the kernel performs power man
agement, an important consideration for battery-powered systems. As the number 
and power of mobile computers increases, a system's ability to manage power to 
increase battery life has become more important. Power management standards 
such as the Advanced Configuration and Power Interface (ACPI) specify several 
device power states, each of which results in different power consumption. For 
example, the ACPI defines four power states from fully on (DO) to fully off (D3). 
When a device transitions from fully on to fully off, the system does not provide any 
power to the device and any volatile data stored in the device, known as the device 
context, is lost.172 The unified device model simplifies power management for the 
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kernel by providing a data structure to store the context for each device when its 
power state changes. 

There are several devices that provide powered connections to other devices. 
For example, a PCI card that contains USB ports may contain connections to USB 
devices. Because some USB devices are powered through the USB cable, if power 
is removed from the PCI card, then power is removed from each of its attached 
devices. Consequently, the PCI card should not enter the fully off state until each of 
its attached devices has entered the fully off state. The unified device model allows 
the kernel to detect such power dependencies by exposing the physical structure of 
devices in the system. As a result, the kernel can prevent a device from transitioning 
to a different power state if the transition will prevent other devices from properly 
functioning.173 

The kernel requires that each device driver register interrupt handlers when the 
driver is loaded. As a result, when the kernel receives an interrupt from a particular 
device, the kernel passes control to its corresponding interrupt handler. Interrupt 
handlers do not belong to any single process context because they are not them
selves programs. Because an interrupt handler is not identified as any t a s k _ s t r u c t 
object's executable code, the scheduler cannot place it in any run queues. This char
acteristic places some restrictions on interrupt handlers; lacking its own execution 
context, an interrupt handler cannot sleep or call the scheduler. If an interrupt han
dler were permitted to sleep or call the scheduler, it never would regain control of 
the processor. 

Similarly, interrupt handlers cannot be preempted, as doing so would invoke 
the scheduler.174 Any preemption requests received during interrupt handling are 
honored when the interrupt handler completes execution. Finally, interrupt han
dlers cannot cause exceptions or faults while executing. In many architectures, the 
system aborts when an exception is raised during an interrupt handler.175 

To improve kernel performance, most drivers attempt to minimize the proces
sor cycles required to handle hardware interrupts. This is another reason why ker
nel memory is never swapped to disk—loading a nonresident page while an 
interrupt handler is executing takes substantial time. In Linux, a driver handling 
one interrupt cannot be preempted by other interrupts that use the same interrupt 
line. If this were not the case, any device driver containing nonreentrant code might 
perform operations that leave a device in an inconsistent state. As a result, when 
one driver is processing an interrupt, the kernel queues or drops any other inter
rupts it receives that use the same interrupt line.176 Therefore, driver developers are 
encouraged to write code that processes interrupts as quickly as possible. 

The kernel helps improve interrupt-handling efficiency by dividing interrupt-
handling routines into two parts—the top half and the bottom half. When the kernel 
receives an interrupt from a hardware device, it passes control to the top half of the 
driver's interrupt handler. The top half of an interrupt handler performs the mini-
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mum work required to acknowledge the interrupt. Other work (such as manipulat
ing data structures)—which should be located in the bottom half of the interrupt 
handler—is scheduled to be performed later by a software interrupt handler. Top 
halves of interrupt routines cannot be interrupted by software interrupt handlers. 

Two primary software interrupt-handler types are softirqs and tasklets. Soft-
irqs can be executed concurrently on multiple processors (up to one per processor), 
making them ideal for SMP systems.177 When a device driver allocates a softirq, it 
specifies the action to be performed each time the softirq is scheduled. Because 
multiple copies of a softirq can run simultaneously softirq actions must be reen
trant to perform reliably. Network devices on Web servers, which constantly receive 
packets of data from external sources, benefit from softirqs because multiple pack
ets can be processed simultaneously on different processors.178 

However, softirqs do not improve performance for several types of interrupt 
handlers. For example, a driver that requires exclusive access to data would need to 
enforce mutual exclusion if its code were executed simultaneously on multiple pro
cessors, fn some cases, the overhead due to enforcing mutual exclusion can out
weigh the benefits of multiprocessing. Other devices transfer data as a series of bits, 
requiring device drivers to sequentialize access to such data. Such devices cannot 
benefit from parallel processing and consequently use tasklets to perform bottom-
half interrupt-handling routines.179 

Tasklets are similar to softirqs but cannot run simultaneously on multiple pro
cessors and therefore cannot take advantage of parallel processing. As a result. 
most drivers use tasklets instead of softirqs to schedule bottom halves. Although 
multiple instances of a single tasklet cannot execute simultaneously, several differ
ent tasklets can execute simultaneously in SMP systems.180 

Softirqs and tasklets normally are handled in interrupt context or in a pro
cess's context immediately after the top-half interrupt handler completes, executing 
with higher priority than user processes. If the system experiences a large number 
of softirqs that reschedule themselves, user processes might be indefinitely post
poned. Thus, when user processes have not executed for a significant period of time, 
the kernel assigns softirqs and tasklets to be executed by the kernel thread ksoft-
irqd, which executes with low-priority (+19). When the kernel is loaded, the Linux 
kernel creates an instance of the kernel thread ksoftirqd for each processor. These 
threads remain sleeping until the kernel wakes them. Once scheduled, ksoftirqd 
enters a loop in which it processes pending tasklets and softirqs sequentially, ksoft
irqd continues processing tasklets and softirqs until the tasklets and/or softirqs have 
completed execution or until ksoftirqd is preempted by the scheduler.181 

Partitioning interrupt handling into top and bottom halves minimizes the 
amount of time that hardware interrupts are disabled. Once a driver handles a 
hardware interrupt (the top half), the kernel can run the software interrupt handler 
(the bottom half), during which incoming interrupts can preempt the software 
interrupt handler.182 This division of driver code improves the response time of a 
system by reducing the amount of time during which interrupts are disabled. 
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A process executing in user mode cannot directly access kernel data, hardware, or 
other critical system resources—such processes must rely on the kernel to execute 
privileged instructions on their behalf. These operations are called kernel control 
paths. If two kernel control paths were to access the same data concurrently, a race 
condition could result.183 To prevent this, the kernel provides two basic mechanisms 
for providing mutually exclusive access to critical sections: locks and semaphores. 

Spin locks allow the kernel to protect critical sections in kernel code executing on 
SMP-enabled systems. Before entering its critical section, a kernel control path 
acquires a spin lock. The region remains protected by the spin lock until the kernel 
control path releases the spin lock. If a second kernel control path attempts to 
acquire the same spin lock to enter its critical section, it will enter a loop in which it 
busy waits, or "spins," until the first kernel control path releases the spin lock. Once 
the spin lock becomes available, the second kernel control path can acquire it.184 

Proper use of spin locks prevents race conditions among multiple kernel con
trol paths executing concurrently in an SMP system, but serves no purpose in a uni
processor system in which two kernel control paths cannot simultaneously execute. 
Consequently, kernels configured for uniprocessor systems exclude the locking por
tion of spin lock calls.185 This improves performance by eliminating the costly 
instructions executed to acquire mutually exclusive access to a critical section in 
multiprocessor systems. 

The kernel provides a set of spin lock functions for use in interrupt handlers. 
Because a hardware interrupt can preempt any execution context, any data shared 
between a hardware interrupt handler and a software interrupt handler must be 
protected using a spin lock. To address this issue, the kernel provides spin locks that 
disable interrupts on the local processor while still allowing concurrent execution 
on SMP systems. On uniprocessor systems, the spin lock code is removed when the 
kernel is compiled, but the code for enabling and disabling interrupts remains 
intact.186 To protect data shared between user contexts and software interrupt han
dlers, the kernel uses bottom-half spin locks. These functions disable software inter
rupt handlers in addition to acquiring the requested spin lock.187 

All spin lock variations disable preemption in both single and multiprocessor 
systems. Although disabling preemption could lead to indefinite postponement or 
even deadlock, allowing code protected by spin locks to be preempted introduces 
the same race conditions spin locks are designed to avoid. The kernel uses a pre
emption lock counter to determine if a kernel control path can be preempted. 
When a kernel control path acquires a spin lock, the preemption lock counter is 
incremented; the counter is decremented when the kernel control path releases the 
spin lock. Code executing in kernel mode can be preempted only when the preemp
tion lock counter is reduced to zero. When a spin lock is released and its associated 
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counter becomes zero, the kernel honors any pending preemption requests by 
invoking the scheduler. 

Kernel developers must abide by certain rules to avoid deadlock when using 
any spin lock variant. First, if a kernel control path has already acquired a spin lock, 
the kernel control path must not attempt to acquire the spin lock again before 
releasing it. Attempting to acquire the spin lock a second time will cause the kernel 
control path to busy wait for the lock it controls to be released, causing deadlock. 
Similarly, a kernel control path must not sleep while holding a spin lock. If the next 
task that is scheduled attempts to acquire the spin lock, deadlock will occur.188 

In some cases, multiple kernel control paths need only to read (not write) the data 
accessed inside a critical section. When no kernel control path is modifying that 
data, there is no need to prevent concurrent read access to the data (see 
Section 6.2.4, Monitor Example: Readers and Writers). To optimize concurrency in 
such a situation, the kernel provides reader/writer locks. Reader/writer spin locks 
and kernel semaphores (Section 20.9.4, Kernel Semaphores) allow multiple kernel 
control paths to hold a read lock, but permit only one kernel control path to hold a 
write lock with no concurrent readers. A kernel control path that holds a read lock 
on a critical section must release its read lock and acquire a write lock if it wishes to 
modify data.189 An attempt to acquire a write lock succeeds only if there are no 
other readers or writers concurrently executing inside their critical sections. 
Reader/writer locks effect a higher level of concurrency by limiting access to a criti
cal section only when writes occur. Depending on the kernel control paths accessing 
the lock, this can lead to improved performance. If readers do not release their read 
locks, it is possible for writers to be indefinitely postponed. To prevent indefinite 
postponement and provide writers with fast access to critical sections, kernel con
trol paths use the seqlock. 

In some situations, the kernel employs another locking mechanism designed to 
allow writers to access data immediately without waiting for readers to release the 
lock. This locking primitive, called a seqlock, represents the combination of a spin 
lock and a sequence counter. Writing to data protected by a seqlock is initiated by 
calling function wri te_seql ock. This function acquires the spin lock component of 
the seqlock (so that no other writers can enter their critical section) and it incre
ments the sequence counter. After writing, function wri te_sequnlock is called. 
which once again increments the sequence counter, then releases the spin lock.190 

To enable writers to access data protected by a seqlock immediately, the ker
nel does not allow readers to acquire mutually exclusive access to that data. Thus, a 
reader executing its critical section can be preempted, enabling a writer to modify 
the data protected by a seqlock. The reader can detect if a writer has modified the 
value of the data protected by the seqlock by examining the value of the seqlock's 
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sequence counter as shown in the following pseudocode. The value of the seqlock's 
sequence counter is initialized to zero. 

After entering its critical section, the reader stores the value of the seqlock's 
sequence counter. Let us assume that this value is stored in variable seqTemp. The 
reader then accesses the data protected by the sequence counter. Consider what 
occurs if the system preempts the reader and a writer enters its critical section to 
modify the protected data. Before modifying the protected data, the writer must 
acquire the seqlock, which increments the value of the sequence counter. When the 
reader next executes, it compares the value stored in seqTemp to the current value 
of the sequence counter. If the two values are not equal, a writer must have entered 
its critical section. In this case, the value read by the reader may not be valid. There
fore, the loop continuation condition in the preceding pseudocode determines if the 
value of the sequence counter has changed since the reader accessed the protected 
data. If so, the reader continues the loop until it has read a valid copy of the pro
tected data. Because the value of the seqlock's sequence counter is initialized to 
zero, a write is being performed when that value is odd. Thus, if seqTemp is odd, the 
reader will read the protected data while a writer is in the process of modifying it. 
In this case, the loop continuation condition ensures that the reader continues the 
loop to ensure that it reads valid data. When no writers have attempted to modify 
the data while the reader executes inside its critical section, the reader exits the 
do. . .while loop. 

Because writers need not wait for readers to release a lock, seqlocks are 
appropriate for interrupt handling and other instances when writers must execute 
quickly to improve performance. In most cases, readers successfully read data on 
the first try. However, it is possible for readers to be indefinitely postponed while 
multiple writers modify shared data, so seqlocks should be used in situations where 
protected data is read more often than it is written.191 

Spin locks and seqlocks perform well when the critical sections they protect contain 
few instructions. However, as the size of the critical section increases, the amount of 
time spent busy waiting increases, leading to significant overhead and performance 
degradation. Also, spin locks can lead to deadlock if a process sleeps while holding 
the lock. When a critical section must be protected for a long time, kernel sema
phores are a better choice for implementing mutual exclusion. For example, only 
one process at a time should be able to read an image from a scanner. Because scan
ners may take several seconds to scan an image, a scanner device driver typically 
enforces mutually exclusive access to its scanner using semaphores. 
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Do 
Store value ofseqlock's sequence counter in local variable seqTemp 
Execute instructions that read the value of the data protected by the seqlock 

While seqTemp is odd or not equal to the value of the seqlock's sequence counter 
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Kernel semaphores are counting semaphores (see Section 5.6.3, Counting 
Semaphores) represented by a wait queue and a counter. The wait queue stores pro
cesses that are waiting on the kernel semaphore. The value of the counter deter
mines how many processes may simultaneously access their critical sections. When a 
kernel semaphore is created, the counter is initialized to the number of processes 
allowed to access the semaphore concurrently. For example, if a semaphore protects 
access to three identical resources, then the initial counter value would be set to 3.192 

When a process attempts to execute its critical section, it calls function down 
on the kernel semaphore. Function down, which corresponds to the P operation 
(see Section 5.6, Semaphores), checks the current value of the counter and 
responds according to the following rules: 

• If the value of the counter is greater than 0, down decrements the counter 
and allows the process to execute. 

• If the value of the counter is less than or equal to 0, down decrements the 
counter, and the process is added to the wait queue and enters the sleeping 
state. By putting a process to sleep, the kernel reduces the overhead due to 
busy waiting because sleeping processes are not dispatched to a processor. 

When a process exits its critical section, it releases the kernel semaphore by 
calling function up. This function inspects the value of the counter and responds 
according to the following rules: 

• If the value of the counter is greater than or equal to 0, up increments the 
counter. 

• If the value of the counter is less than 0, up increments the counter, and a 
process from the wait queue is awakened so that it can execute its critical 
section.193 

Kernel semaphores cause processes to sleep if placed in the semaphore's wait 
queue, so they cannot be used in interrupt handlers or when a spin lock is held. How-
ever, the kernel provides an alternative solution that allows interrupt handlers to 
access semaphores using function down_trylock. If the interrupt handler cannot 
enter the critical section protected by the kernel semaphore, function down_trylock 
will return to the caller instead of causing the interrupt handler to sleep.194 Kernel 
semaphores should be used only for process that need to sleep while holding the 
semaphore; processes that sleep while holding a spin lock can lead to deadlock. 
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Many of the interprocess communication (IPC) mechanisms available in Linux are 
derived from traditional UNIX IPC mechanisms, and they all have a common goal: 
to allow processes to exchange information. Although all IPC mechanisms accom
plish this goal, some are better suited for particular applications, such as those that 
communicate over a network or exchange short messages with other local applica
tions. In this section, we discuss how IPC mechanisms are implemented in the Linux 
kernel and how they are employed in Linux systems. 
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20.10 Interprocess Communication 1001 

Signals were one of the first interprocess communication mechanisms available in 
UNIX systems —the kernel uses them to notify processes when certain events 
occur. In contrast to the other Linux IPC mechanisms we discuss, signals do not 
allow processes to specify more than a word of data to exchange with other pro
cesses; signals are primarily intended to alert a process that an event has 
occurred.195 The signals a Linux system supports depend on the processor architec
ture. Figure 20.24 lists the first 20 signals identified by the POSIX specification (all 
of today's architectures support these signals).196 

Signals, which are created by the kernel in response to interrupts and excep
tions, are sent to a process or thread either as a result of executing an instruction 
(such as a segmentation fault, SIGSEGV), from another process (such as when one 
process terminates another, SIGKILL) or from an asynchronous event (e.g., an I/O 
completion signal).The kernel delivers a signal to a process by pausing its execution 
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Signal Type 
Defauft 
Action Description 

Hang-up detected on terminal or death of 
controlling process 

Interrupt from keyboard 

Quit from keyboard 
Illegal instruction 

Trace/breakpoint trap 

Abort signal from abort function 

Bus error 

Floating point exception 

Kill signal 
User-defined signal 1 

Invalid memory reference 

User-defined signal 2 

Broken pipe: write to pipe with no readers 

Timer signal from alarm function 
Termination signal 

Stack fault on coprocessor 
Child stopped or terminated 

Continue if stopped 

Stop process 

Stop typed at terminal device 

Abort 

Abort 
Dump 
Dump 

Dump 

Dump 

Dump 

Dump 

Abort 
Abort 

Dump 

Abort 

Abort 
Abort 

Abort 

Abort 
Ignore 
Continue 

Stop 

Stop 

SIGHUP 

SICINT 
SIGQUIT 
SIGILL 
SIGTRAP 
SIGABRT 
SIGBUS 
SIGFPE 
SIGKILL 
SIGUSR1 
SIGSEGV 
SIGUSR2 
SIGPIPE 
SIGALRM 
SIGTERM 
SIGSTKFLT 
SIGCHLD 
SIGCONT 
SIGSTOP 
SIGTSTP 

1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
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and invoking the process's corresponding signal handler. Once the signal handler 
completes execution, the process resumes execution.198 

A process or thread can handle a signal in one of three ways. (1) Ignore the 
signal—processes can ignore all but the SIGSTOP and SIGKILL signals. (2) Catch the 
signal—when a process catches a signal, it invokes its signal handler to respond to 
the signal. (3) Execute the default action that the kernel defines for that signal—by 
default, the kernel defines one of five actions that is performed when a process 
receives a signal.199 

The first default action is to abort, which causes the process to terminate 
immediately. The second is to perform a memory dump. A memory dump is similar 
to an abort; it causes a process to terminate, but before it does so, the process gener
ates a core file that contains the process's execution context, which includes the pro
cess's stack, registers and other information useful for debugging. The third default 
action is simply to ignore the signal. The fourth is to stop (i.e., suspend) the pro
cess—often used to debug a process. The fifth is continue, which reverses the fourth 
by switching a process from the suspended state to the ready state.200 

Processes can choose not to handle signals by blocking them. If a process 
blocks a specific signal type, the kernel does not deliver the signal until the process 
stops blocking it. Processes block a signal type by default while handling another 
signal of the same type. As a result, signal handlers need not be reentrant (unless 
the default behavior is not used), because multiple instances of the process's signal 
handler cannot be executed concurrently. It is, however, possible for a signal han
dler to interrupt a signal handler of a different type.201 

Common signals, such as those shown in Fig. 20.24, are not queued by the ker
nel. If a signal is currently being handled by a process and a second signal of the same 
type is generated for that process, the kernel discards the latter signal. If two signals 
are generated simultaneously by an SMP system, the kernel simply drops one as a 
result of the race condition. In certain circumstances, dropped signals do not affect 
system behavior. For example, a single SIGKILL signal is sufficient for the system to 
terminate a process. In mission-critical systems, however, dropped signals could be 
disastrous. For example, a user-defined signal may be used to monitor safety systems 
that protect human life. If such signals were dropped, people's lives could be at risk. 
To ensure that such systems do not miss a signal, Linux supports real-time signals. 
These are queued by the kernel; therefore, multiple instances of the same signal can 
be generated simultaneously and not be discarded.202-203 By default the kernel 
queues up to 1,024 real-time signals of the same type; any further signals are dropped. 

Pipes enable two processes to communicate using the producer/consumer model. 
The producer process writes data to the pipe, after which the consumer process 
reads data from the pipe in first-in-first-out order. 

When a pipe is created, an inode is allocated and assigned to the pipe. Similar 
to procfs inodes (see Section 20.7.4, Proc File System), pipe inodes do not point to 
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disk blocks. Rather, they point to one page of data called a pipe buffer that the ker
nel uses as a circular buffer. Each pipe maintains a unique pipe buffer that stores 
data that is transferred between two processes.204 

When pipes are created, the kernel allocates two file descriptors (see 
Section 20.7.1, Virtual File System) to allow access to the pipe: one for reading from 
the pipe and one for writing to the pipe. Pipes are represented by flies and accessed 
via the virtual file system. To initiate communication using a pipe, one process must 
create the pipe, then fork a child process with which to communicate via the pipe. 
The fork system call enables pipe communication because it allows the child pro
cess to inherit the parent process's file descriptors. Alternatively, two processes can 
share a file descriptor using sockets, discuss in the section that follows. Although the 
kernel represents pipes as files, pipes cannot be accessed from the directory tree. 
This prevents a process from accessing a pipe unless it has obtained the pipe's file 
descriptor from the process that created it.205 

One limitation of pipes is that they support communication only between pro
cesses that share file descriptors. Linux supports a variation of a pipe, called a 
named pipe or FIFO, that can be accessed via the directory tree. When a FIFO is 
created, its name is added to the directory tree. Processes can access the FIFO by 
pathname as they would any other file in the directory tree (the location and name 
of the file are typically known before the processes execute). Therefore, processes 
can communicate using a named pipe the same way they access data in a file sys
tem—by supplying the correct pathname and appropriate file permissions. How
ever, unlike data files, FIFOs point to a buffer located in memory, not on disk. 
Therefore, FIFOs provide the simplicity of sharing data in files without the latency 
overhead created by disk access.206 Another limitation of pipes that the fixed-size 
buffer can result in suboptimal performance if a producer and consumer work at 
different speeds, as discussed in Section 6.2.3, Monitor Example: Circular Buffer, 

The Linux socket IPC mechanism allows pairs of processes to exchange data by 
establishing direct bidirectional communication channels. Each process can use its 
socket to transfer data to and from another process. One limitation of pipes is that 
communication occurs in a single direction (from producer to consumer); however, 
many cooperating processes require bidirectional communication. In distributed 
systems, for example, processes may need to be able to send and receive remote 
procedure calls. In this case, pipes are insufficient, because they are limited to com
munication in one direction and are identified by file descriptors, which are not 
unique among multiple systems. To address this issue, sockets are designed allow 
communication between unrelated processes so that such processes can exchange 
information both locally and across a network. Because sockets allow such flexibil
ity, they may perform worse than pipes in some situations. For example, if an appli
cation requires unidirectional communication between two processes in one system 
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(i.e., sending the output of a decompression program to a file on disk), pipes should 
be used instead of sockets. 

There are two primary socket types that processes can employ. Stream sockets 
transfer information as streams of bytes. Datagram sockets transfer information in 
independent units called datagrams, discussed in Section 16.6.2, User Datagram 
Protocol (UDP).207 

Processes that communicate via stream sockets follow the traditional client/server 
model. The server process creates a stream socket and listens for connection 
requests. A client process can then connect to the server process and begin 
exchanging information. Because data is transferred as a stream of bytes, processes 
communicating with stream sockets can read or write variable amounts of data. 
One useful property of stream sockets is that, unlike datagram sockets, they use 
TCP to communicate, which guarantees that all data transmitted will eventually 
arrive and will be delivered in the correct order. Because stream sockets inherently 
provide data integrity, they are typically the better choice when communication 
must be reliable.208 

Although stream sockets provide powerful IPC features, they are not always neces
sary or practical. Enabling reliable stream sockets creates more overhead than 
some applications can afford. Faster, but less reliable communication can be accom
plished using datagram sockets. For example, in some distributed systems, a server 
with many clients periodically broadcasts status information to all of its clients. In 
this case, datagram sockets are preferable to stream sockets, because they require 
only a single message to be sent from the server socket and do not require any 
responses from clients. Datagrams may also be sent periodically to update client 
information, such as for clock synchronization purposes. In this case, each subse
quent datagram is intended to replace the information contained in previous data
grams. Therefore, the clients can afford not to receive certain datagram packets, 
provided that future datagram packets arrive eventually. In such situations, where 
data loss is either unlikely or unimportant, applications can use datagram sockets in 
lieu of stream sockets to increase performance. 

Although sockets are most often used for Internet communication, Linux enables 
bidirectional communication between multiple processes on the same system using 
sockets. When a process creates a socket in the local system, it specifies a file name 
that is used as the socket's address. Other sockets on that system can use the file 
name to communicate with that socket by reading from, and writing to, a buffer. 
Like many data structures in the Linux kernel, sockets are stored internally as files, 
and therefore can be accessed via the virtual file system using the read and write 
system calls.209 
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Linux provides another IPC mechanism that is implemented using sockets, 
called a socketpair. A socketpair is a pair of connected, unnamed sockets. When a 
process creates a socketpair, the kernel creates two sockets, connects them, and 
returns a file descriptor for each socket.210 Similar to pipes, unnamed sockets are 
limited to use by processes that share file descriptors. Socketpairs are traditionally 
employed when related processes require bidirectional communication. 
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Messages are an IPC mechanism to allow processes to transmit information that is 
composed of a message type and a variable-length data area. Message types are not 
defined by the kernel; when processes exchange information, they specify their own 
message types to distinguish between messages. 

Messages are stored in message queues, where they remain until a process is 
ready to receive them. Message queues, unlike pipes, can be shared by processes 
that are not parent and child. When the kernel creates a message queue, it assigns it 
a unique identifier. Related processes can search for a message queue identifier in a 
global array of message queue descriptors. Each descriptor contains a queue of 
pending messages, a queue of processes waiting for messages (message receivers), a 
queue of processes waiting to send messages (message senders), and data describ
ing the size and contents of the message queue.211 

When a process adds a message to a message queue, the kernel checks the 
queue's list of receivers for a process waiting for messages of that type. If it finds 
any such processes, the kernel delivers the message each of them. If no receiver is 
waiting for a message of the specified type and enough space is available in the mes
sage queue, the kernel adds the message to a queue of pending messages of that 
type. If insufficient space is available, the message sender adds itself to the queue of 
message senders. Senders wait in this queue until space becomes available (i.e., 
when a message is removed from the queue of pending messages).212 

When a process attempts to receive a message, the kernel searches for mes
sages of a specified type in the appropriate message queue. If it finds such a mes
sage, the kernel removes the message from the queue and copies it to a buffer 
located in the address space of the process receiving the message. If no messages of 
the requested type are found, the process is added to the queue of message receiv
ers where it waits until the requested type of message becomes available.213 

20.10.4 Message Queues 

The primary advantage of shared memory over other forms of IPC is that, once a 
region of shared memory is established, access to memory is processed in user 
space and does not require the kernel to access the shared data. Thus, because pro
cesses do not invoke the kernel for each access to shared data, this type of IPC 
improves performance for processes that frequently access shared data. Another 
advantage of shared memory is that processes can share as much data as they can 
address, potentially eliminating the time spent waiting when a producer and con-
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sumer work at different speeds using fixed-size buffers, as discussed in Section 6.2.3. 
Linux supports two standard interfaces to shared memory that are managed via 
tmpfs: System V and POSIX shared memory. [Note: Processes can also share mem
ory using memory-mapped files.] 

The Linux implementation of System V shared memory employs four stan
dard system calls (Fig. 20.25). When a process has successfully allocated and 
attached a region of shared memory, it can reference data in that region as it would 
reference data using a pointer. The kernel maintains a unique identifier that 
describes the physical region of memory to which each shared memory segment 
belongs, deleting the shared memory region only when a process requests its dele
tion and when the number of processes to which it is attached is zero.214 

POSIX shared memory requires the use of the system call shm_open to create 
a pointer to the region of shared memory and the system call shm_unlink to close 
the region. The shared memory region is stored as a file in the system's shared 
memory file system, which must be mounted at /dev/shm; in Linux, a tmpfs file sys
tem is typically mounted there (tmpfs is described in the next section). The 
shm_open call is analogous to opening a file, whereas the shm_unl i nk call is analo
gous to closing a link to a file. The file that represents the shared region is deleted 
when it is no longer attached to any processes. 

Both System V and POSIX shared memory allow processes to share regions 
of memory and map that memory to each process's virtual address space. However, 
because POSIX shared memory does not allow processes to change privileges for 
shared segments, it is slightly less flexible than System V shared memory.215 Neither 
POSIX nor System V shared memory provides any synchronization mechanisms to 
protect access to memory. If synchronization is required, processes typically employ 
semaphores. 

The goal of shared memory in an operating system is to provide access to shared 
data with low overhead while rigidly enforcing memory protection. Linux imple
ments shared memory as a virtual memory area that is mapped to a region of physi
cal memory. When a process attempts to access a shared memory region, the kernel 
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Allocates a shared memory segment. 

Attaches a shared memory segment to a 
process. 

Changes the shared memory segment's 
properties (e.g., permissions). 
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segment from a process. 
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Figure 20.25 | System V shared memory system calls. 



first determines if the process has permission to access it. If so, the kernel allocates a 
virtual memory area that is mapped to the region of shared memory, then attaches 
the virtual memory area to the process's virtual address space. The process may then 
access shared memory as it would any other memory in its virtual address space. 

The kernel keeps track of shared memory usage by treating the region as a file 
in tmpfs, the temporary file system. Tmpfs has been designed to simplify shared 
memory management while maintaining good performance for the POSIX and Sys
tem V shared memory specifications. As its name suggests, tmpfs is temporary, 
meaning that shared memory pages are not persistent. When a file in tmpfs is 
deleted, its page frames are freed. Tmpfs is also swappable; that is, data stored in 
the tmpfs can be swapped to the backing store when available memory becomes 
scarce. The page(s) containing the file can then be loaded from the backing store 
when referenced. This allows the system to fairly allocate page frames to all pro
cesses in the system. Tmpfs also reduces shared memory overhead because it does 
not require mounting or formatting for use. Finally, the kernel can set permissions 
of tmpfs files, which enables the kernel to implement the shmctl system call in Sys
tem V shared memory.216 

When the kernel is loaded, an instance of tmpfs is created. If the user wishes 
to mount a tmpfs file system to the local directory tree (which, as previously dis
cussed, is required for POSIX shared memory), the user can mount a new instance 
of the file system and access it immediately. To further improve shared memory per
formance, tmpfs interfaces directly with the memory manager—it has minimal 
interaction with the virtual file system. Although tmpfs creates dentries, inodes and 
file structures that represent shared memory regions, generic VFS file operations 
are ignored in favor of tmpfs-specific routines that bypass the VFS layer. This 
relieves tmpfs of certain constraints typically imposed by the VFS (e.g., the VFS 
does not allow a file system to grow and shrink while it is mounted).217 

Linux implements two types of semaphores: kernel semaphores (discussed in 
Section 20.9.4, Kernel Semaphores) and System V semaphores. Kernel semaphores 
are synchronization mechanisms employed throughout the kernel to protect critical 
sections. System V semaphores also protect critical sections and are implemented 
using similar mechanisms; however, they are designed for user processes to access 
via the system call interface. For the remainder of this discussion, we refer to Sys
tem V semaphores simply as semaphores. 

Because processes often need to protect a number of related resources, the 
kernel stores semaphores in semaphore arrays. Each semaphore in an array pro
tects a particular resource.218, 219 

Before a process can access resources protected by a semaphore array, the 
kernel requires that there be sufficient available resources to satisfy the process's 
request. Thus, semaphore arrays can be implemented as a deadlock prevention 
mechanism by denying Havender's "wait-for" condition (see Section 7.7.1, Denying 
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the "Wait-For" Condition). If a requested resource in semaphore array has been 
allocated to another process, the kernel blocks the requesting process and places its 
resource request in a queue of pending operations for that semaphore array. When 
a resource is returned to the semaphore array, the kernel examines the semaphore 
array's queue of pending operations for processes, and if a process can proceed, it is 
unblocked.220 

To prevent deadlock from occurring if a process terminates prematurely while 
it holds resources controlled by a semaphore, the kernel tracks the operations each 
process performs on a semaphore. When a process exits, the kernel reverses all the 
semaphore operations it performed to allocate its resources. Finally, note that 
semaphore arrays offer no protection against indefinite postponement caused by 
poor programming in the user processes that access them. 

The networking subsystem performs operations on network packets, each of which 
is stored in a contiguous physical memory area described by an sk_buff structure. 
As a packet traverses layers of the network subsystem, network protocols add and 
remove headers and trailers containing protocol-specific information (see 
Chapter 16, Introduction to Networking).221 

Figure 20.26 illustrates the path taken by network packets as they travel from a net
work interface card (NIC) through the kernel. When a NIC receives a packet, it 
issues an interrupt, which causes the NIC's interrupt handler to execute. The inter
rupt handler calls the network device's driver routine that allocates an sk_buf f for 
the packet, then copies the packet from the network interface into the sk_buf f and 
adds the packet to a queue of packets pending processing. A queue of pending 
packets is assigned to each processor; the interrupt handler assigns a packet to the 
queue belonging to the processor on which it executes.222 

At this point, the packet resides in memory where it awaits further processing. 
Because interrupts are disabled while the top half of the interrupt handler executes. 
the kernel delays processing the packet. Instead, the interrupt handler raises a soft-
irq to continue processing the packet. (Section 20.8.6, Interrupts, discussed soft-
irqs.) After raising the softirq, the device driver routine returns and the interrupt 
handler exits.223 

A single softirq processes all packets that the kernel receives on that proces
sor. Because the kernel uses softirqs to process packets, network routines can exe
cute concurrently on multiple processors in SMP systems, resulting in increased 
performance. When the scheduler dispatches the network softirq, the softirq pro
cesses packets in the processor's queue until either the queue is empty, a predefined 
maximum number of packets are processed or a time limit is reached. If one of the 
latter two conditions is met, the softirq is rescheduled and returns control of the 
processor to the scheduler.224 

20.11.1 Packet Processing 
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Figure 20.26 | Path followed by network packets received by the networking 
subsystem. 

To process a packet, the network device softirq (called NET_RX_SOFTIRQ) 
removes the packet from the current processor's queue and passes it to the appro
priate network layer protocol handler—typically the IP protocol handler. Although 
Linux supports other network layer protocols, they are rarely used. Therefore, we 
limit our discussion to the IP protocol handler. 

When the IP protocol handler receives a packet, it first determines its destina
tion. If the packet destination is another host, the handler forwards the packet to 
the appropriate host. If the packet is destined for the local machine, the IP protocol 
handler strips the IP protocol-specific header from the sk_buff and passes the 
packet to the appropriate transport layer packet handler. The transport layer 
packet handler supports the Transmission Control Protocol (TCP), User Datagram 
Protocol (UDP) and Internet Control Message Protocol (ICMP).225 

The transport layer packet handler determines the port specified by the TCP 
header and delivers the packet data to the socket that is bound to that port. The 
packet data is then transmitted to the process via the socket interface. 



As packets traverse the networking subsystem they encounter elements of the net-
filter framework. Netfilter is a mechanism designed to allow kernel modules to 
directly inspect and modify packets. At various stages of the IP protocol handler, 
software constructs called hooks enable modules to register to examine, alter and/ 
or discard packets. At each hook, modules can pass packets to user processes.226 

Figure 20.27 lists the netfilter hooks and the packets that pass through each 
hook. The first hook packets encounter is NF_IP_PRE_ROUTING. All incoming pack
ets pass it as they enter the IP protocol handler. One possible use for this hook is to 
enable a system that multiplexes network traffic (e.g., a load balancer). For exam
ple, a load balancer attempts to evenly distribute requests to a cluster of Web serv
ers to improve average response times. Thus, the load balancer can register the 
NF_IP_PRE_ROUTINC hook to intercept packets and reroute them according to the 
load on each Web server. 

After a packet passes the NF_IP_PRE_ROUTING hook, the next hook it encoun
ters depends on its destination. If the packet destination is the current network inter
face, it passes through the NF_IP_L0CAL_IN hook. Otherwise, if a packet needs to be 
passed to another network interface, it passes through the NF_IP_F0RWARD hook. 
One possible use for these two hooks is to limit the amount of incoming traffic from 
a particular host by discarding packets once a certain threshold is reached. 

All locally generated packets pass through the NF_IP_LOCAL_OUT hook, 
which, similar to the NF_IP_LOCAL_IN and NF_IP_F0RWARD hooks, can be used to 
filter packets before they are sent across a network. Finally, immediately before 
leaving the system, all packets pass through the NF_IP_POST_ROUTTNG hook. A fire
wall can use this hook to modify the outgoing traffic to make it appear to have come 
from the firewall instead of from the original source. 

The early development of the Linux kernel focused on desktop systems and low-
end servers. As additional features were implemented, Linux's popularit) 
increased. This led to new interest in scaling Linux to larger systems (even main
frame computers) at large computer companies, such as IBM (www.ibm.com) and 
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Hewlitt-Packard (www.hp.com), which cooperated with independent developers to 
scale Linux to be competitive in the high-end server market. 

As Linux's scalability improves, designers must decide how far to enable the 
standard Linux kernel to scale. Increasing its scalability might negatively affect its 
performance on desktop systems and low-end servers. With this in mind, companies 
such as Red Hat (www.redhat.com), SuSE (www.suse.com) and Conectiva 
(www.conectiva.com) provide Linux distributions designed for high-performance 
servers and sell support services tailored to those distributions. By providing kernel 
modifications in a distribution, companies can tailor the Linux kernel to high-end 
servers without affecting users in other environments. 

High-end servers are not the only reason to improve Linux's scalability— 
embedded-device manufacturers also use Linux to manage their systems. To satisfy 
the lesser needs of these limited-capability systems, software companies and indepen
dent developers create modified Linux kernels and applications designed for embed
ded devices. In addition to "home grown" embedded Linux kernels, companies such 
as Red Hat and projects such as uCLinux (www.uclinux.org) have developed Linux 
solutions for embedded systems. These modifications allow the kernel to execute in 
systems that do not support virtual memory, in addition to reducing resource con
sumption and enabling real-time execution. As developers continue to address these 
issues, Linux is becoming a viable choice for use in many embedded systems. 

Much of the effort to increase Linux's performance on servers focuses on improved 
support for SMP systems. Version 2.0 was the first stable kernel release to support 
SMP systems.227 Adding a global spin lock—called the big kernel lock (BKL)—was 
an early attempt at SMP support. When a process acquired the BKL in version 2.0, 
no process on any other processor could execute in kernel mode. Other processes 
were, however, free to execute in user mode.228 The BKL enabled developers to seri
alize access to kernel data structures, which allowed the kernel to execute multiple 
processes concurrently in SMP systems. As one study showed, serializing access to 
the entire kernel meant that the system could not scale effectively to more than four 
processors per system.229 

Locking the entire kernel is usually not required, because multiple processes 
can execute concurrently in kernel mode, provided they do not modify the same 
data structures. Linux kernel version 2.4 replaced most uses of the BKL with fine
grained locking mechanisms. This change allows SMP systems running Linux to 
scale effectively to 16 processors.230 

Fine-grained locks, although a performance enhancement, tend to make devel
oping and debugging the kernel more difficult. These locks force developers to care
fully code the acquisition of the appropriate locks at the appropriate times to avoid 
causing deadlock (for example, by writing code that attempts to acquire the same spin 
lock twice). As a result, the use of fine-grained locks has slowed kernel development 
in many subsystems, as would be expected with the increased software complexity.231 

20.12.1 Symmetric Multiprocessing (SMP) 
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Performance gains similar to those of large SMP systems have been achieved 
using alternative solutions, such as clustering (see Section 18.4, Clustering). Recall 
that a cluster of computer systems consists of several computers that cooperate to 
perform a common set of tasks. Such clusters of computers are typically connected 
by a dedicated, high-speed network. To perform work cooperatively using Linux sys
tems, each system must run a modified kernel. Examples of features such a kernel 
might include are routines to balance workloads within the cluster and data struc
tures to simplify remote interprocess communication, such as global process identifi
ers. If each machine in the Linux cluster contains a single processor, the complexity 
of fine-grained locks can be avoided, because only one kernel control path can exe
cute at a time on each machine. Clusters can equal or outperform SMP systems. 
often at a lower cost of development and hardware.232 For example, Beowulf clus
ters, a popular form of Linux clusters, have been used by NASA and the Depart
ment of Energy (DoE) to build high-performance systems at relatively low cost 
when compared to proprietary, multiprocessor supercomputer architectures.233 

As the number of processors in high-end systems increases, buses that connect each 
processor to components such as memory become increasingly congested. Conse
quently, many system designers have implemented nonuniform memory access 
(NUMA) architectures to reduce the amount of bandwidth necessary to maintain 
high levels of performance in large multiprocessor systems. Recall from 
Section 15.4.2, Nonuniform Memory Access, that NUMA architectures divide a 
system into nodes, each of which provides high-performance interconnections 
between a set of processors, memory and/or I/O devices. The devices within a node 
are called local resources, while resources outside the node are called remote 
resources. Connections to remote resources are typically significantly slower than 
connections to local devices. To achieve high performance, the kernel must be 
aware of the layout of the NUMA system (i.e., the location and contents of each 
node) to reduce unnecessary internode access. 

When the kernel detects a NUMA system, it must initially determine its lay
out (i.e., which devices correspond to which nodes) so that it can better allocate 
resources to processes. Most NUMA systems provide architecture-specific hard
ware that indicates the contents of each node. The kernel uses this information to 
assign each device an integer value indicating the node to which it belongs. Most 
NUMA systems partition a single physical memory address space into regions cor
responding to each node. To support this feature, the kernel uses a data structure to 
associate a range of physical memory addresses with a particular node.234 

To maximize performance, the kernel uses the layout of the NUMA system to 
allocate resources that are local to the node in which a process executes. For exam-
pie, when a process is created on a particular processor, the kernel allocates the 
process local memory (i.e., memory that is assigned to the node containing the pro
cessor) using the data structure we mentioned. If a process were to subsequently 
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execute on a processor on a different node, its data would be stored in remote 
memory, leading to poor performance due to high memory access latency. Recall 
from Section 20.5.2, Process Scheduling, that the process scheduler will dispatch a 
process to the same processor (to improve cache performance) unless the number 
of processes running on each processor becomes unbalanced. To support NUMA 
systems, the load balancing routines attempt to migrate a process only to processors 
within the process's current node. In the case that a processor in another node is 
idle; however, the process scheduler will migrate a process to another node. 
Although this results in high memory access latency for the migrated process, over
all system throughput increases due to increased resource utilization.235 

Several other kernel components support the NUMA architecture. For exam
ple, when a process requests memory and available local memory is low, the kernel 
should swap out pages only in local memory. As a result, the kernel creates a 
kswapd thread for each node to perform page replacement.236 

Despite the kernel's broad support for the NUMA architecture, there are lim
itations to the current implementation. For example, if a process is migrated to a 
processor on a remote node, the kernel provides no mechanisms to migrate the pro
cess's pages to local memory (i.e., memory in the process's current node). Only 
when pages are swapped from disk does the kernel move the process's pages to its 
processor's local memory. Several development projects exist to improve kernel 
support for NUMA systems, and extensions are expected to be released in future 
versions of the kernel. 
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Developers have increased the size of several fields to accommodate the growing 
demands of computer systems. For example, the maximum number of users in a sys
tem increased from 16-bit field (65,536 users) to a 32-bit field (over four billion 
users). This is necessary for institutions such as large universities that have more 
than 100,000 users. Similarly, the number of tasks a system can execute increased 
from 32,000 to 4 million, which was necessary to support mainframe and other high-
end systems, which often execute tens or hundreds of thousands of threads.237 Also, 
the variable that stores time, j i f f i e s , has been increased from a 32-bit to a 64-bit 
value. This means that the value, which is incremented at every timer interrupt, will 
not overflow at the current timer frequency (1,000Hz) for over 2 billion billion 
years. Using a 32-bit number, jiffies would overflow after approximately 50 days 
with a timer frequency of l,000Hz.238, 239, 240 

Fields related to storage also increased in size to accommodate large memo
ries. For example, Linux can reference disk blocks using a 64-bit number, allowing 
the system to access 16 quintillion disk blocks—corresponding to exabytes (billions 
of gigabytes) of data. Linux also supports Intel's Physical Address Extension (PAE) 
technology, which allows systems to access up to 64GB of data (corresponding to a 
36-bit address) using a 32-bit processor.241-242 

20.12.3 Other Scalability Features 



Prior to version 2.6, the kernel could not be preempted by a user process. How
ever, the 2.6 kernel is preemptible, meaning that the kernel will be preempted if an 
event causes a high-priority task to be ready, which improves response times for real
time processes. To ensure mutual exclusion and atomic operations, the kernel dis
ables preemption while executing a critical section. Finally, Linux includes support 
for several high-performance architectures, such as 64-bit processors (both the Intel 
Itanium processors, www. in te l . com/produc ts / se rver /processors / se rver / 
i tanium2/, and AMD Opteron processors, www.amd.com/us-en/Processors/ 
ProductInformation/0, ,30_118_8825,00.html) and Intel's HyperThreadine 
technology (see www.intel.com/info/hyperthreading/).2 4 3-2 4 4 

Porting Linux to embedded devices introduces design challenges much different 
from those in SMP and NUMA systems. Embedded systems provide architectures 
with limited instruction sets, small memory and secondary storage sizes and devices 
that are not commonly found in desktops and workstations (e.g., touch-sensitive 
displays and device-specific input buttons). A variety of Linux distributions are tai
lored to meet the needs of embedded systems. 

Often, providers of embedded Linux distributions must implement hard real
time process scheduling. Examples of systems requiring real-time embedded device 
management include cell phones, digital video recorders (e.g., TiVO; www.tivo.com) 
and network gateways.245 To provide real-time execution in the Linux kernel, compa
nies such as MontaVista Software (www.mvista.com) modify a few key components 
of the kernel. For example, developers must reduce scheduling overhead so that real
time process scheduling occurs quickly enough that the kernel meets real-time pro
cesses' timing constraints.The standard kernel's policy, although somewhat appropri
ate for real-time processes, is not sufficient for providing hard real-time guarantees 
(see Section 8.9, Real-Time Scheduling). This is because the Linux scheduler by 
default does not support deadlines. Embedded-device developers modify the sched
uler to support additional priority levels, deadlines and lower scheduling latency.246 

Other concerns specific to embedded systems also require modification to the 
Linux kernel. For example, some systems may include a relatively small amount of 
memory compared to desktop systems, so developers must reduce the size of the 
kernel footprint. Also, some embedded devices do not support virtual memory. As a 
result, the kernel must be modified to perform additional memory management 
operations (e.g., protection) in software.247 

The kernel provides a minimal set of security features, such as discretionary access 
control. Authentication is performed outside the kernel by user-level applications 
such as login. This simple security infrastructure has been designed to allow sys
tem administrators to redefine access control policies, customize the way Linux 
authenticates users and specify encryption algorithms that protect system resources. 

20.13 Security 
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By default, Linux authenticates its users by requiring them to provide a username 
and password via the login process. Each username is linked to an integer user ID. 
Passwords are hashed using the MD5 or DES algorithms, then stored in entries corre
sponding to user IDs in either the /e tc/passwd or /etc/shadow file. [Note: 
Although DES was originally developed as an encryption algorithm, it can be used as 
a hash algorithm.] The choice of encryption algorithm and location of the password 
file can be modified by a system administrator. Unlike encryption algorithms, which 
can reverse the encryption operation using a decryption key, hash algorithms are not 
reversible. Consequently, Linux verifies a password entered at the login prompt by 
passing it through the hash algorithm and comparing it to the entry that corresponds 
to the user's ID number in the /e tc/passwd or /etc/shadow file.248-249 

As discussed in Section 19.3.1, Basic Authentication, username and password 
authentication is susceptible to brute-force cracking, such as dictionary attacks. 
Linux addresses such problems by allowing system administrators to load pluggable 
authentication modules (PAMs). These modules can reconfigure the system at run 
time to include enhanced authentication techniques. For example, the password sys
tem can be strengthened to disallow terms found in a dictionary and require users 
to choose new passwords regularly. PAM also supports smart card, Kerberos and 
voice authentication systems.250 System administrators can use PAMs to select an 
authentication system that is most suitable for their environment without modifying 
the kernel or utility programs such as login.251 

20.17.1 Authentication 
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Linux secures system resources by controlling access to files. As described in 
Section 20.3, Linux Overview, the root user is given access to all resources in the 
system. To control how other users access resources, each file in the system is 
assigned access control attributes that specify file permissions and file attributes, as 
discussed in Section 20.7.3. In Linux, file permissions consist of a combination of 
read, write and/or execute permissions specified for three categories: user, group 
and other. The user file permissions are granted to the owner of the file. By default, 
a Linux file's owner is initially the user that created the file. Group permissions are 
applied if the user requesting the file is not the owner of the file, but is a member of 
group. Finally, other permissions are applied to users that are members of user nei
ther nor group.252 

File attributes are an additional security mechanism that is supported by some 
file systems (e.g., the ext2 file system). File attributes allow users to specify con
straints on file access beyond read, write and execute. For example, the append-
only file attribute specifies that any changes to the file must be appended to the end 
of the file. The immutable file attribute specifies that a file cannot be modified 
(including renaming and deletion) or linked (i.e., referenced using symbolic or hard 
links).253, 254 

20.13.2 Access Control Methods 



In many environments, security provided by the default access control policy (i.e.. 
discretionary access control) is insufficient. Thus, the kernel supports the Linux 
security modules (LSM) framework to allow a system administrator to customize 
the access control policy for a particular system using loadable kernel modules. To 
choose a different access control mechanism, system administrators need only 
install the kernel module that implements that mechanism. The kernel uses hooks 
inside the access control verification code to allow an LSM to enforce its access con
trol policy. As a result, an LSM is invoked only if a process has been granted access 
to a resource via the default access control policy. If a process is denied access by 
the default access control policy, the registered LSM does not execute, reducing the 
overhead caused by an LSM.255 

One popular LSM is SELinux, developed by the National Security Agency 
(NSA). SELinux replaces Linux's default discretionary access control policy with a 
mandatory access control (MAC) policy (see Section 19.4.2, Access Control Models 
and Policies). Such a policy allows the system administrator to set the security rules 
for all files; these rules cannot be overridden by malicious or inexperienced users. 
The disadvantages of MAC policies result from the need for a greater number of 
complex rules. More information about the LSM framework and modules such as 
SELinux can be found at the official LSM Web site (lsm.imtnunnx.org).256 

When a process is launched by a user, normally it executes with the same privileges 
as the user who launched it. It is sometimes necessary for users to execute applica
tions with privileges other than those defined by their username and group. For 
example, many systems allow users to change their passwords using the passwd 
program. This program modifies the /e tc /passwd or /e tc /shadow file, which can 
be read by everyone, but written only with root privileges. To allow users to execute 
such programs, Linux provides the se tu id and se tg id permission bits. If the s e t -
uid permission bit for an executable file is set, the process that executes that file is 
assigned the same privileges as the owner of the file. Similarly, if the se tg i d permis
sion bit for an executable file is set, the process that executes that file is assigned the 
same privileges as the group specified in the file attributes. Thus, users can modify 
the /e tc /password file if the passwd program is owned by a user with root privi
leges and its se tu id permission bit is set.257 

Poorly written programs that modify the se tu id or se tg id bits can allow 
users access to sensitive data and system resources. To reduce the possibility of such 
a situation occurring, Linux provides the LSM Capabilities module to implement 
capabilities (see Section 19.4.3, Access Control Mechanisms). This allows Linux 
administrators greater flexibility in assigning access control privileges, such as the 
ability to assign privileges to applications rather than to users, which promotes fine
grained security.258 

Privilege Inheritance and Capabilities 

Linux Security Modules (LSM) Framework 
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Although PAM and the LSM framework allow system administrators to create 
secure authentication systems and customized access control policies, they cannot 
protect data that is not controlled by the Linux kernel (e.g., data transmitted over a 
network or stored on disk). To enable users to access several forms of encryption to 
protect their data, Linux provides the Cryptographic API. Using this interface, pro
cesses can encrypt information using powerful algorithms such as DES, AES and 
MD5 (see Section f 9.2, Cryptography). The kernel uses the Cryptographic API to 
implement secure network protocols such as IPSec (see Section 19.10, Secure Com
munication Protocols).259 

The Cryptographic API also allows users to create secure file systems without 
modifying the existing file system's code. To implement such a file system, encryp
tion is implemented using a loopback device (Fig. 20.28), which is a layer between 
the virtual file system and the existing file system (e.g., ext2). When the virtual file 
system issues a read or write call, control passes to the loopback device. If the VFS 
issues a read call, the loopback device reads the requested (encrypted) data from 
the underlying file system. The loopback device then uses the Cryptographic API to 
decrypt the data and returns that data to the VFS. Similarly, the loopback device 
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Figure 20.28 | Loopback device providing an encrypted file system using the Cryp-
tographic API. 



uses the Cryptographic API to encrypt data before transferring it to the file system. 
This technique can be applied to individual directories or the entire file system, so 
that data is protected even if an unauthorized user accesses the hard disk using 
another operating system.260 
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www.kerne l .o rg / 
Official site for hosting the latest Linux kernel releases. It also 
includes a brief description of Linux and contains links to 
Linux resources. 
l x r . l i n u x . n o / 
Contains a cross-reference to recent releases of the Linux 
source code. Users can navigate the source code specific to an 
architecture and version number, search the source for identi
fiers and other text, and compare two different versions of the 
source side by side. The /Documentation directory provides 
links to files referenced in the chapter. 
l o l l . s o u r e e f o r g e . n e t / l i n u x / l i n k s / 
Provides an index of categorized links to a selection of online 
Linux resources. Categories include kernel, documentation, 
distributions, security and privacy, graphics and software appli
cations. 
w w w . l i n u x . o r g / 
Provides updated Linux information including news, develop
ment status and links to documentation, distributions, applica
tions, source code and other resources. 
www.kernelnewbies.org/ 
Provides information for people new to the Linux kernel. Fea
tures include a glossary, FAQ, articles, documentation, useful 
scripts and mailing lists. 
w w w . s p i n i c s . n e t / l i n u x / 
Contains a large number of Linux resources, including links to 
information on kernels, security, embedded Linux and more. 
w w w . t l d p . o r g / L D P / l k i / i n d e x . h t m l 
Part of the Linux Documentation Project hosted at 
www.tldp.org that discusses Linux kernel internals. The 
Linux Documentation Project provides many guides, HOW-
TOs and FAQs for those interested in the kernel, and for users 
and administrators. 
www.tldp.org/LDP/lkmpg/index.html 
Focuses on programming for the Linux environment, including 
details on programming kernel modules and adding entries to 
the proc file system. 
www.tldp.org/HOWTO/Module-HOWTO/ 
Describes how to program Linux loadable kernel modules 
(LKMs) and discusses the use and behavior of LKMs. 

w w w . c s n . u l . i e / ~ m e l / p r o j e c t s / v m / 
Provides documentation of the Linux version 2.4 virtual mem
ory system, which remains largely intact in version 2.6. The 
documents include a comprehensive discussion of Linux vir
tual memory and a companion code commentary. 
www.linuxjournal.com/search.php?query=&topic=4 
The Linux Journal Web site provides numerous articles on 
Linux. Be sure to search the "Linux Kernel" category. 
www.l inuxsymposium.org/2003/ 
Provides information about the Linux Symposia, annual gather
ings of the top Linux kernel developers from over 30 countries. 

lse.sourceforge.net/ 
Home to the Linux Scalability Effort, an organization dedi
cated to porting Linux to larger and more complex computer 
systems. 
www.l inux-mag.com/ 
Online version of Linux Magazine, which provides articles. 
guides and tutorials for Linux systems. 
www. l inuxdevices.com/ 
Provides articles and resources on Linux for embedded sys
tems and discusses how Linux scales to devices such as cell 
phones and PDAs. 
www. l i nuxsecur i t y . com/ 
Contains articles, documentation and other links to informa
tion regarding Linux security for both users and developers. 
kernelnewbi es .o rg /documen ts / kdoc /ke rne l - l ock i ng / 
l k l o c k i nggui de.html 
Contains information written by a kernel developer about ker
nel locks and semaphores. 
www.p l ig .o rg /xwinman/ index .h tml 
Describes the window managers available for the X Window 
Manager as well as some of the desktop environments that run 
on X. 
use r -mode - l i nux . sou rce fo rge .ne t / 
Explains how to download, install and use User-Mode Linux 
(UML). 
l sm. immunix.org 
Provides links to documentation, downloads and mailing lists 
for the Linux Security Modules project. 

Web Resources 

http://www.kernel.org/
http://lxr.linux.no/
http://www.linux.org/
http://www.kernelnewbies.org/
http://www.spinics.net/linux/
http://www.tldp.org/LDP/lki/index
http://www.tldp.org
http://www.tldp.org/LDP/1kmpg/i
http://www.tldp.org/HOWTO/Module-HOWTO/
http://www.csn.ul.ie/~mel/projects/vm/
http://www.%22linuxjournal
http://www.1i
http://www.1i
http://www.1i
http://www.1i
http://www.plig.org/xwinman/index.html
http://user-mode-linux.sourceforge.net/
http://lsm.immunix.org


Key Terms 
capability—Security mechanism that assigns access rights to a 

subject (e.g., a process) by granting it a token for an object 
(i.e., a resource). This enables administrators to specify 
and enforce fine-grained access control. 

code freeze (Linux)—Point at which no new code should be 
added to the kernel unless the code fixes a known bug. 

core file (Linux)—File that contains the execution state of a 
process, typically used for debugging purposes after a pro
cess encounters a fatal exception. 

Cryptographic API (Linux)—Kernel interface through which 
applications and services (e.g., file systems) can encrypt 
and decrypt data. 

datagram socket—Socket that uses the UDP protocol to trans
mit data. 

deadline scheduler (Linux)—Disk scheduling algorithm that 
eliminates indefinite postponement by assigning deadlines 
by which I/O requests are serviced. 

daemon (Linux)—Process that runs periodically to perform 
system services. 

deactivated process (Linux)—Process that has been removed 
from the run queues and can therefore no longer contend 
for processor time. 

dcache (directory entry cache) (Linux)—Cache that stores 
directory entries (dentries), which enables the kernel to 
quickly map file descriptors to their corresponding inodes. 

default action for a signal handler (Linux)—Predefined signal 
handler that is executed in response to a signal when a 
process does not specify a corresponding signal handler. 

dentry (directory entry) (Linux) — Structure that maps a file to 
an inode. 

desktop environment—GUI layer above a window manager 
that provides tools, applications and other software to 
improve system usability. 

device class—Group of devices that perform similar functions. 
device special file (Linux)—Entry in the /dev directory that 

provides access to a particular device. 
direct I/O—Technique that performs I/O without using the 

kernel's buffer cache. This leads to more efficient memory 
utilization in database applications, which typically main
tain their own buffer cache. 

discretionary access control—Access control policy that speci
fies the owner of a file as the user that can assign access 
rights to that file. 

distribution (Linux)—Software package containing the Linux 
kernel, user applications and/or tools that simplify the 
installation process. 

access control attribute (Linux)—Specifies the access rights for 
processes attempting to access a particular resource. 

active list (Linux) —Scheduler structure that contains pro
cesses that will control the processor at least once during 
the current epoch. 

active page (Linux)—Page of memory that will not be replaced 
the next time pages are selected for replacement. 

active state (Linux)—Task state describing tasks that can com
pete for execution on a processor during the current epoch. 

append-only file attribute (Linux)—File attribute that limits 
users to appending data to existing file contents. 

architecture-specific code—Code that specifies instructions 
unique to a particular architecture. 

Beowulf cluster (Linux)—High-performance parallel-process
ing system consisting of a cluster of computers each run
ning the Beowulf modification to the Linux kernel. 

big kernel lock (BKL) (Linux) — Global spin lock that served 
as an early implementation of SMP support in the Linux 
kernel. 

binary buddy algorithm (Linux)—Algorithm that Linux uses 
to allocate physical page frames. The algorithm maintains 
a list of groups of contiguous pages; the number in each 
group is a power of two. This facilitates memory allocation 
for processes and devices that require access to contigu
ous physical memory. 

bio structure (Linux)—Structure that simplifies block I/O 
operations by mapping I/O requests to pages. 

block allocation bitmap (Linux)—Bitmap that tracks the usage 
of blocks in each block group. 

block group (Linux) —Collection of contiguous blocks man
aged by groupwide data structures so that related data 
blocks, inodes and other file system metadata are contigu
ous on disk. 

bottom half of an interrupt handler (Linux)—Portion of inter-
rupt-handling code that can be preempted. 

bounce buffer (Linux)—Region of memory that allows the 
kernel to map data from the high memory zone into mem
ory that it can directly reference. This is necessary when 
the system's physical address space is larger than kernel's 
virtual address space. 

cache-cold process—Process that contains little, if any, of its 
data or instructions in the cache of the processor to which 
it will be dispatched. 

cache-hot process—Process that contains most, if not all, of its 
data and instructions in the cache of the processor to 
which it will be dispatched. 
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hot swappable device—Device that can be added to, or 
removed from, a computer while it is running. 

hook — Software feature that enables developers to add fea
tures to an existing application without modifying its 
source file. An application uses a hook to call a procedure 
that can be defined by another application. 

immutable attribute (Linux)—Attribute specifying that a file 
can be read and executed, but cannot be copied, modified 
or deleted. 

inactive list (Linux)—See expired list. 
inactive page (Linux)—Page in main memory that can be 

replaced by an incoming page. 
indirect pointer—Inode pointer that points to a block of inode 

pointers. 
inode (Linux)—Structure that describes the location of data 

blocks corresponding to a file, directory or link in a file sys
tem. In the VFS, this structure represents any file in the sys
tem. An ext2 inode represents a file in the ext2 file system. 

inode allocation bitmap (Linux)—Bitmap that records a block 
group's inode usage. 

inode cache (Linux) — Cache that improves inode lookup per
formance. 

inode table (Linux) — Structure that contains an entry for each 
allocated inode in a block group. 

kernel control path (Linux)—A kernel execution context that 
may perform operations requiring mutual exclusive access 
to kernel data structures. 

kernel semaphore (Linux) — Semaphore implemented by the 
kernel to provide mutual exclusion. 

kernel thread (Linux)—Thread that executes kernel code. 
ksoftirqd (Linux)—Daemon that schedules software interrupt 

handlers when softirq load is high. 
kswapd (Linux)—Daemon that swaps pages to disk. 
Linux security modules (LSM) framework (Linux)—Frame

work that allows system administrators to specify the 
access control mechanism employed by the system. 

Linux Standard Base (Linux)—Project that aims to specify a 
standard Linux interface to improve application portabil
ity between kernel versions (and distributions). 

loadable kernel module (Linux)—Software that can be inte
grated into the kernel at runtime. 

load balancing—Operation that attempts to evenly distribute 
system load between processors in the system. 

loopback device (Linux)—Virtual device that enables opera-
tions to be performed on data between layers of a system 
service (e.g., the file system). 

DMA memory (Linux)—Region of physical memory between 
zero and 16MB that is typically reserved for kernel boot
strapping code and legacy DMA devices. 

doubly indirect pointer—Inode pointer that locates a block of 
(singly) indirect pointers. 

effective priority (Linux)—Priority assigned to a process by 
adding its static priority to its priority boost or penalty. 

epoch (Linux)—Time during which all processes move from 
the scheduler's active list to its expired list. This ensures 
that processes are not indefinitely postponed. 

expired list (Linux)—Structure containing processes that can
not contend for the processor until the next epoch. Pro
cesses are placed in this list to prevent others from being 
indefinitely postponed. To quickly begin a new epoch, this 
list becomes the active list. 

expired state (Linux)—Task state that prevents a task from 
being dispatched until the next epoch. 

ext2 inode (Linux) — Structure that stores information such as 
file size, the location of a file's data blocks and permis
sions for a single file or directory in an ext2 file system. 

ext2fs (Linux)—Popular inode-based Linux file system that 
enables fast access to small files and supports large file 
sizes. 

feature freeze (Linux)—State of kernel development during 
which no new features should be added to the kernel, in 
preparation for a new kernel release. 

FIFO (Linux)—Named pipe that enables two unrelated pro
cesses to communicate via the producer/consumer rela
tionship using a page-size buffer. 

file attribute—File metadata that implements access control 
information, such as whether a file is append-only or 
immutable, that cannot be specified using standard Linux 
file permissions. 

file permission—Structure that determines whether a user may 
read, write and or execute a file. 

group descriptor (Linux)—Structure that records information 
regarding a block group, such as the locations of the inode 
allocation bitmap, block allocation bitmap and inode table. 

high memory (Linux)—Region of physical memory (which 
begins at 896MB on the IA-32 architecture) beginning at 
the largest physical address that is permanently mapped 
to the kernel's virtual address space and extending to the 
limit of physical memory (64GB on Intel Pentium 4 pro
cessors). Because the kernel must perform expensive 
operations to map pages in its virtual address space to 
page frames in high memory, most kernel data structures 
are not stored in high memory. 
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page cache (Linux)—Cache storing pages of data from disk. 
When a process requests data from disk, the kernel first 
determines if it exists in the page cache, which can elimi
nate an expensive disk I/O operation. 

page global directory (Linux)—Virtual memory structure that 
stores addresses of second-level page-mapping tables. 

page middle directory (Linux)—Virtual memory structure that 
stores addresses of third-level page-mapping tables (also 
called page tables). 

page table (Linux)—Virtual memory structure that contains 
direct mappings between virtual page numbers and physi
cal page numbers. 

PID (process identifier)—Integer that uniquely identifies a 
process. 

pipe—Interprocess communication mechanism that uses a 
page of memory as a first-in-first-out buffer to transfer 
information between processes. 

pipe buffer (Linux)—Page of data that is used to buffer data 
written to a pipe. 

pluggable authentication module (PAM) (Linux)—Module 
that can be installed at runtime to incorporate enhanced 
authentication techniques in the Linux system. 

port of Linux—Version of the Linux kernel that is modified to 
support execution in a different environment. 

preemption lock counter (Linux)—Integer that is used to 
determine whether code executing in kernel mode may be 
preempted. The value of the counter is incremented each 
time a kernel control path enters a critical section during 
which it cannot be preempted. 

priority array (Linux)—Structure within a run queue that 
stores processes of the same priority. 

procfs (proc file system) (Linux)—File system built directly 
into the kernel that provides real-time information about 
the status of the kernel and processes, such as memory 
utilization and system execution time. 

ramfs (Linux)—Region of main memory treated as a block 
device. The ramfs file system must be formatted before use. 

reader/writer lock (Linux)—Lock that allows multiple threads 
to concurrently hold a lock when reading from a resource, 
but only one thread to hold a lock when writing to that 
resource. 

real-time signal (Linux) — Signal implementation that helps to 
implement a real-time system by ensuring that no signals 
are dropped. 

request list (Linux)—Structure that stores pending I/O 
requests. This list is sorted to improve throughput by 
reducing seek times. 

mandatory access control—Access control policy that relegates 
assignment of access rights to the system administrator. 

major device identification number (Linux)—Value that 
uniquely identifies a device in a particular device class. 
The kernel uses this value to determine a device's driver. 

major version number (Linux)—Value that uniquely identifies 
a significant Linux release. 

memory dump (Linux)—Action that generates a core file 
before terminating a process. 

memory footprint (Linux) —Size of unswappable memory con
sumed by the kernel. 

memory pool (Linux) —Region of memory reserved by the 
kernel for a process to ensure that the process's future 
requests for memory are not denied. 

merge I/O requests (Linux)—To combine two I/O requests to 
adjacent locations on disk into a single request. 

message queue (Linux)—Structure that stores messages that 
have yet to be delivered to processes. 

message queue descriptor (Linux)—Structure that stores data 
regarding a message queue. 

message—IPC mechanism that allows data to be transmitted by 
specifying a message type and variable-length field of data. 

minor device identification number (Linux)—Value that 
uniquely identifies devices that are assigned the same 
major number (e.g., a hard drive partition). 

minor version number (Linux)—Value that identifies succes
sive stable (even) and development (odd) versions of the 
Linux kernel. 

mount—Insert a file system into a local directory structure. 
named pipe (Linux)—Pipe that can be accessed via the direc

tory tree, enabling processes that are not parent and child 
to communicate using pipes. See also pipe. 

netfiiter framework (Linux)—Mechanism that allows kernel 
modules to directly inspect and modify packets. This is use
ful for applications such as firewalls, which modify each 
packet's source address before the packet is transmitted. 

nice value (Linux)—Measure of a process's scheduling prior
ity. Processes with a low nice value receive a greater share 
of processor time than other processes in the system and 
are therefore "less nice" to other processes in the system. 

normal memory (Linux)—Physical memory locations beyond 
16MB that the kernel can directly map to its virtual 
address space. This region is used to store kernel data and 
user pages. 

package (Linux)—Portion of a distribution containing an 
application or service. Users can customize their Linux 
systems by adding and removing packages. 



starvation limit (Linux)—Time at which high-priority pro
cesses are placed in the expired list to prevent low-priority 
processes from being indefinitely postponed. 

static priority level (Linux) — Integer value assigned to a pro
cess when it is created that determines its scheduling pri
ority. 

stream socket—Socket that transfers data using the TCP pro
tocol. 

superblock (Linux) —Block containing information regarding 
a mounted file system, such as the root inode and other 
information that protects the file system's integrity. 

superuser (root user) (Linux) —User that may perform 
restricted operations (i.e., those that may damage the ker
nel and/or the system). 

swap cache (Linux) — Cache of page table entries that 
describes whether a particular page exists in the system 
swap file on secondary storage. If a page table entry is 
present in the swap cache, then its corresponding page 
exists in the swap file and does not need to be written to 
the swap file. 

system file system (sysfs) (Linux) —File system that allows pro
cesses to access structures defined by the unified device 
model. 

task (Linux)—User execution context (i.e., process or thread) 
in Linux. 

tasklet (Linux)—Software interrupt handler that cannot be 
executed simultaneously on multiple processors. Tasklets 
are used to execute nonreentrant bottom halves of inter
rupt handlers. 

time slice (Linux)—Another term for quantum. 
tmpfs (temporary file system) (Linux)—Similar to ramfs, but 

does not require formatting before use, meaning that the 
system can store files in the tmpfs without the organiza
tional overhead typical of most file systems. 

top half of an interrupt handler (Linux)—Nonpreemptible 
portion of interrupt-handling code that performs the min
imum work required to acknowledge an interrupt before 
transferring execution to the preemptible bottom-half 
handler. 

triply indirect pointer—Pointer in an inode that locates a block 
of doubly indirect pointers. 

unified device model (Linux)—Internal device representation 
that relates devices to device drivers, device classes and 
system buses. The unified device model simplifies power 
management and hot swappable device management. 

unmap a page (Linux)—To update page table entries to indi
cate that the corresponding page is no longer resident. 

reverse mapping (Linux)—Linked list of page table entries 
that reference a page of memory. This facilitates updating 
all PTEs corresponding to a shared page that is about to 
be replaced. 

root user (Linux)—See superuser. 
run queue (Linux) —List of processes waiting to execute on a 

particular processor. 
second extended file system (ext2fs) (Linux) — See ext2fs. 
semaphore array (Linux)—Linked list of semaphores that pro

tect access to related resources. 
seqlock (Linux)—Mutual exclusion structure that combines a 

spin lock with a sequence counter. Seqlocks are used by 
interrupt handlers, which require immediate exclusive 
access to data. 

Single UNIX Specification—Specification (created by The 
Open Group) to which an operating system must conform 
to earn the right to display the UNIX trademark (see 
www.unix.org/version3/overview.html). 

slab (Linux)—Page of memory that reduces internal fragmen
tation due to small structures by storing multiple struc
tures smaller than one page. 

slab allocator (Linux)—Kernel entity that allocates memory 
for objects placed in the slab cache. 

slab cache (Linux) —Cache that stores recently used slabs. 
socket—Interprocess communication mechanism that allows 

processes to exchange data by establishing direct commu
nication channels. Enables processes to communicate 
over a network using read and wri te calls. 

socketpair (Linux)—Pair of connected, unnamed sockets that 
can be used for bidirectional communication between 
processes on a single system. 

socket address—Unique identifier for a socket. 
software interrupt handler (Linux)—Interrupt-handling code 

that can be performed without masking interrupts and can 
therefore be preempted. 

softirq (Linux) — Software interrupt handler that is reentrant 
and not serialized, so it can be executed on multiple pro
cessors simultaneously. 

source tree (Linux) —Structure that contains source code files 
and directories. Provides a logical organization to the 
monolithic Linux kernel. 

spin lock—Lock that provides mutually exclusive access to 
critical sections. When a process holding the lock is exe
cuting inside its critical section, any process concurrently 
executing on a different processor that attempts to 
acquire the lock before entering its critical section is made 
to busy wait. 
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User-Mode Linux (UML) (Linux)—Linux kernel that exe
cutes as a user process within a host Linux system. 

virtual file system (Linux) — Interface that provides users with 
a common view of files and directories stored across mul
tiple heterogeneous file systems. 

virtual memory area (Linux) —Structure that describes a con
tiguous region of a process's virtual address space so that 
the kernel can perform operations on this region as a 
unit. 

window manager (Linux)—Application that controls the 
placement, appearance, size and other attributes of win
dows in a GUI. 

zone (memory) (Linux)—Region of physical memory. Linux 
divides main memory in the low, normal and high zones to 
allocate memory according to the architectural limitations 
of a system. 

zone allocator—Memory subsystem that allocates pages from 
the zone to which it is assigned. 
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Exercises 
20.1 [Section 20.4.1, Hardware Platforms] Describe several 
applications of User-Mode Linux (UML). 

20.2 [Section 20.4.2, Loadable Kernel Modules] Why is it gen : 

erally unsafe to load a kernel module written for kernel ver
sions other than the current one? 

20.3 [Section 20.5.1, Process and Thread Organization] Which 
threading model (see Section 4.6, Threading Models) can 
threads created using the clone system call implement? How 
do Linux threads differ from traditional threads? Discuss the 
benefits and drawbacks of this implementation. 

20.4 [Section 20.5.2, Process Scheduling] How are the Linux 
process scheduler's run queues similar to multilevel feedback 
queues (see Section 8.7.6, Multilevel Feedback Queues)? How 
are they different? 

20.5 [Section 20.5.2, Process Scheduling] Why should the 
Linux process scheduler penalize processor-bound processes? 

20.6 [Section 20.5.2, Process Scheduling] Why does Linux 
prevent users without root privileges from creating real-time 
processes? 

20.7 [Section 20.6.1, Memory Organization] Why does the 
kernel allocate page frames to processes from normal and high 
memory before allocating pages from DMA memory? 

20.8 [Section 20.6.1, Memory Organization] What are the 
benefits and drawbacks of embedding the kernel virtual 
address space in each process's virtual address space? 

20.9 [Section 20.6.1, Memory Organization] The x86-64 archi
tecture uses four levels of page tables; each level contains 512 
entries (using 64-bit PTEs). However, the kernel provides only 
three levels of page tables. Assuming that each PTE points to a 
4KB page, what is the largest address space the kernel can 
allocate to processes in this architecture? 

20.10 [Section 20.6.2, Physical Memory Allocation and Deallo
cation] How does the kernel reduce the amount of internal 
fragmentation caused by allocating memory to structures that 
are much smaller than a page? 

20.11 [Section 20.6.3, Page Replacement] When is the kernel 
unable to immediately free a page frame to make room for an 
incoming page? 

20.12 [Section 20.6.4, Swapping] When nonresident pages are 
retrieved from the backing store in Linux, the memory man
ager retrieves not only the requested page but also up to eight 
pages contiguous to it in the running process's virtual address 
space. Identify the type of prepaging implemented and 
describe the benefits and disadvantages of such a policy. 

20.13 [Section 20.7.1, Virtual File System] List at least four dif
ferent objects a VFS file can represent and describe the usage 
of each object. 

20.14 [Section20.7.1, Virtual File System] What role does the 
dentry object serve in the Linux VFS? 

20.15 [Section 20.7.2, Virtual File System Caches] Is it possible 
for a file's inode to exist in the inode cache if its dentry is not 
located in the dentry cache? 

20.16 [Section 20.7.3, Second Extended File System (ext2fs)] 
Compare and contrast the VFS and ext2 representation of an 
inode. 

20.17 [Section20.7.3, Second Extended File System (ext2fs)] 
Why do most file systems maintain redundant copies of their 
superblock throughout the disk? 

20.18 [Section 20.7.3, Second Extended File System (ext2fs)] 
What are the primary contents of a block group and what pur
pose do they serve? 

20.19 [Section 20.7.4, Proc File System] In what ways does the 
proc file system differ from a file system such as ext2fs? 

20.20 [Section 20.8.1, Device Drivers] Explain the concept and 
usage of device special files. 

20.21 [Section 20.8.3, Block Device I/O] Identify two mecha
nisms employed by the Linux block I/O subsystem that 
improve performance. Discuss how they improve performance 
and how they may, if ever, degrade performance. 
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20.27 [Section 20.10.4, Message Queues] What could happen if 
a message's size is greater than a message queue's buffer? 

20.28 [Section 20.10.6, System V Semaphores] Name a poten
tial problem that occurs when processes are made to wait on a 
semaphore array. 

20.29 [Section 20.11.2, Netfilter Framework and Hooks] What 
purpose does the netfilter framework serve? 

20.30 [Section 20.12.2, Nonuniform Memory Access (NUMA)] 
Which kernel subsystems were modified to support NUMA? 

20.31 [Section 20.13.1, Authentication] How does Linux pro
tect user passwords from attackers, even if the attacker 
acquires the password file? How can this be circumvented? 

20.32 [Section 20.13.2, Access Control Methods] Why might it 
be dangerous to set the se tu id or se tg id bits for an execut
able file? 

20.22 [Section 20.8.4, Network Device I/O] Compare and con
trast networking I/O operations and block/character I/O oper
ations. 

20.23 [Section 20.8.5, Unified Device Model] How does the 
unified device model facilitate kernel support for hot swappa-
ble devices? 

20.24 [Section 20.8.6, Interrupts] Why does the networking 
subsystem employ softirqs to process packets? 

20.25 [Section 20.9.1, Spin Locks] What occurs if multiple ker
nel control paths concurrently attempt to acquire the same 
spin lock? 

20.26 [Section 20.10.1, Signals] What problems can result from 
dropping a signal while a process handles a signal of the same 
type? 

Recommended Reading 
Linux development is an ongoing process that includes contri
butions from developers worldwide. Because Torvalds fre
quently releases new kernel versions, some documentation can 
be outdated as soon as it is published. Hence, the most current 
information is usually found on the Web. 

Useful resources include the magazines Linux Journal 
and Linux Magazine. Monthly issues cover a variety of Linux 
topics such as desktop and server applications, programming 
and, of course, the kernel. Selected articles and information 
about subscribing can be found at www.linuxjournal.com 
and www.linux-mag.com, respectively. 

Readers looking to dig deeper into the Linux kernel 
should consider the book Understanding the Linux Kernel, 2nd 

ed., by Bovet and Cesati.261 This book includes in-depth dis
cussions of nearly all kernel subsystems. It explains kernel ver
sion 2.4—and, while some material has changed in kernel 2.6. 
much of the book's content is still relevant. 

Another notable book is Linux Device Drivers, 2nd ed.. 
by Rubini and Corbet.262 The title can be misleading, as the 
book also explains a number of kernel subsystems of concern 
to device driver developers. It provides an in-depth explana
tion of the I/O subsystem as well as information about syn
chronization, memory management and networking. Like 
most Linux-related literature, the book is somewhat outdated 
compared to the most recent release of the kernel. The second 
edition discusses kernel version 2.4. 
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<www.dwheeler.com/sloc/>. 
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<www.linux-mag.com/2001-01/linux24_01.html>. 
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But, soft! what light through yonder window breaks? 
It is the east, and Juliet is the sun! 

—William Shakespeare— 

An actor entering through the door, you've got nothing. But if he enters through the 
window, you've got a situation. 

-Billy Wilder-



Chapter 21 

Case Study: Windms XP 
Objectives 
After reading this chapter, you should understand: 

• the history of DOS and Windows operating systems. 

• the Windows XP architecture. 

• the various Windows XP subsystems. 

• asynchronous and deferred procedure calls. 

• how user processes, the executive and the kernel interact. 

• how Windows XP performs process, thread, memory and file management. 

• the Windows XP I/O subsystem. 

• how Windows XP performs interprocess communication. 

• networking and multiprocessing in Windows XP. 

• the Windows XP security model. 
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1036 Case Study: Windows XP 

21.1 Introduction 
Windows XP, released by the Microsoft Corporation in 2001, combines Microsoft's 
corporate and consumer operating system lines. By early 2003, over one-third of all 
Internet users ran Windows XP, making it the most widely used operating system.1 

Windows XP ships in five editions. Windows XP Home Edition is the desktop 
edition, and the other editions provide additional features. Windows XP Profes
sional includes extra security and privacy features, more data recovery support and 
broader networking capabilities. Windows XP Tablet PC Edition is built for note
books and laptops that need enhanced support for wireless networking and digital 
pens. Windows XP Media Center Edition provides enhanced multimedia support.2 

Windows XP 64-Bit Edition is designed for applications that manipulate large 
amounts of data, such as programs that perform scientific computing or render 3D 
graphics. At the time of this writing, Microsoft plans to release a sixth edition, Win
dows XP 64-Bit Edition for 64-Bit Extended Systems, which is designed specifically 
to support AMD Opteron and Athlon 64 processors.3 Windows XP 64-Bit Edition 
currently executes on Intel Itanium II processors. 

Despite their differences, all Windows XP editions are built on the same core 
architecture, and the following case study applies to all editions (except when we 
explicitly differentiate between editions). This case study investigates how a popu
lar operating system implements the components and strategies we have discussed 
throughout the book. 

21.2 History 
In 1975, a Harvard University junior and a young programmer at Honeywell 
showed up at Micro Instrumentation and Telemetry Systems (MITS) headquarters 
with a BASIC compiler. The two men had written the compiler in just eight weeks 
and had never tested it on the computer for which it was intended. It worked on the 
first run. This auspicious beginning inspired the student, Bill Gates, and the pro
grammer, Paul Allen, to drop everything they were doing and move to Albuquer-
que, New Mexico, to found Microsoft (see the Biographical Note, Bill Gates).4-5 By 
2003, the two-man company had become a global corporation, employing over 
50,000 people and grossing a yearly revenue of over $28 billion.6 Microsoft is the 
second most valuable and the sixth most profitable company in the world. Forbes 
Magazine in 2003 listed Bill Gates as the richest man on Earth, worth over $40.7 bil
lion, and Paul Allen as the fourth richest man, worth $20.1 billion.7 

Microsoft released the Microsoft Disk Operating System—MS-DOS 1.0—in 
1981. MS-DOS 1.0 was a 16-bit operating system that supported 1MB of main 
memory (1MB was enormous by the standards of the time). The system ran one 
process at a time in response to user input from a command line. All programs exe
cuted in real mode, which provided them direct access to all of main memory 
including the portion storing the operating system.8 MS-DOS 2.0, released two 
years later, supported a 10MB hard drive and 360KB floppy disks.9 Subsequent 
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Microsoft operating systems continued the trend of increasing disk space and sup
porting an ever-growing number of peripheral devices. 

Microsoft released Windows 1.0, its graphical-user-interface (GUI)-based 
operating system, in 1985. The GUI foundation had been developed by Xerox in 
the 1970s and popularized by Apple's Macintosh computers. The Windows GUI 

Biographical Note 
Bill Gates 
William H. Gates III was born in 
Seattle, Washington, in 1955.10 

His first experience wi th comput
ers was in high school.11'12 He 
befriended Paul Allen, a fel low 
computer enthusiast, and wi th 
two other students formed the 
Lakeside Programming Group. 
The group obtained computer 
t ime from nearby companies by 
arranging deals to f ind bugs in 
the companies' systems. They also 
earned money by forming a small 
and short-lived company named 
Traf-O-Data, wri t ing software to 
process traffic f low data.13, 14 

Gates went on to Harvard 
University, but in 1974 Intel 
announced the 8080 chip, and 
Gates and Paul Allen realized tha t 
the future of computing was 
microprocessing.15, 16, 17 When the 
MITS Altair 8800 was announced 
only months later—the world's 
first microcomputer—Gates and 
Allen quickly contacted MITS to 
say they had a implementation of 
BASIC (Beginner's All-purpose 

Symbolic Instruction Code) for the 
Altair.18, 19 In fact they had no 
such thing, but Altair was inter
ested; Gates took a leave of 
absence from Harvard (he never 
returned) and he and Allen 
ported BASIC to the Altair in just 
over one month, based only on 
Intel's manual for the 8080.20, 21, 22 

Early personal computers did not 
have operating systems, so all that 
was needed was a language inter
preter built for the specific system 
to run programs. Gates' and 
Allen's implementation of BASIC 
was, in effect, the first operating 
system for the Altair. It was also 
the beginning of Microsoft.23, 24 

Over the next several years, 
Microsoft continued to develop 
their BASIC language and licensed 
it to other new microcomputer 
companies including Apple and 
Commodore.25 Microsoft also 
implemented other languages for 
microcomputers and, because 
they had a jump-start on other 
microcomputer software compa-

nies, began to take over the 
field.26 In 1980, Gates hired his 
Harvard classmate, Steve Ballmer, 
to help wi th the business side of 
the growing company (Ballmer is 
the current CEO of Microsoft.)27, 28 

Only two years later, Microsoft 
developed MS-DOS based on 
Seattle Computing Product's 86-
DOS; it was offered as the cheap
est operating system option for 
IBM's new line of personal com
puters and was a great success. In 
1984 they broke into the office 
applications market wi th Word 
and Excel for the Apple Macin
tosh. The fol lowing year they 
released Windows 1.0, one of the 
first GUI operating systems for 
IBM-compatibles.29 Microsoft's 
commercial success has continued 
to mount wi th progressive ver
sions of Windows and their 
Microsoft Office software. Gates is 
currently the Chairman and Chief 
Software Architect of Microsoft.30 

He is also the richest person in the 
world.31 



improved with each version. The window frames in Windows 1.0 could not overlap; 
Microsoft fixed this problem in Windows 2.0. The most important feature in Win
dows 2.0 was its support for protected mode for DOS programs. Although pro
tected mode was slower than real mode, it prevented a program from overwriting 
the memory space of another program, including the operating system, which 
improved system stability. Even in protected mode, however, programs addressed 
memory directly. In 1990, Microsoft released Windows 3.0, quickly followed by 
Windows 3.1. This version of the operating system completely eliminated the unsafe 
real mode. Windows 3.1 introduced an enhanced mode, which allowed Windows 
applications to use more memory than DOS programs. Microsoft also released 
Windows for Workgroups 3.1, an upgrade to Windows 3.1 that included network 
support, especially for local area networks (LANs), which, at the time, were starting 
to become popular. Microsoft attempted to increase system stability in Windows by 
tightening parameter checking during API system calls; these changes broke many 
older programs that exploited "hidden" features in the API.32, 33 

Emboldened by the success of its home-user-oriented operating systems. 
Microsoft ventured into the business market. Microsoft hired Dave Cutler, an expe
rienced operating systems designer who helped develop Digital Equipment Corpo
ration's VMS operating system, to create an operating system specifically for the 
business environment (see the Biographical Note, David Cutler). Developing the 
new operating system took five years, but in 1993, Microsoft released Windows NT 
3.1, a New Technology operating system. In so doing, Microsoft created its corpo
rate line of operating systems, which was built from a separate code base than its 
consumer line. The two lines were not to merge until the release of Windows XP in 
2001, although operating systems from one line used features and ideas from the 
other. For example, Windows NT 3.1 and Windows 95 included different implemen
tations of the same API. In addition, the business and consumer GUI interfaces 
were always similar, although the business version tended to lag behind.34 

Because Windows NT 3.1 was developed for business users, its chief focus was 
security and stability. Windows NT introduced the New Technology File System 
(NTFS), which is more secure and more efficient than the then-popular Windows 
3.1 FAT and IBM OS/2 HPFS file systems (see the Mini Case Study, OS/2). In addi
tion, the 32-bit operating system protects its memory from direct access by user 
applications. The NT kernel runs in its own protected memory space. This extra 
layer of security came at a price; many existing graphics-intensive games could not 
run on Windows NT because they need to access memory directly to optimize per
formance. Windows NT 3.1 also lacks much of the multimedia support that made 
Windows 3.1 popular with home users.35 

Microsoft released Windows NT 4.0 in 1996. The upgraded operating system 
provides additional security and networking support and includes the popular Win
dows 95 user-interface.36 Windows 2000 (whose kernel is NT 5.0), released in 2000. 
introduced the Active Directory. This database of users, computers and devices 
makes it easy for users to find information about resources spread across a network. 
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In addition, system administrators can configure user accounts and computer set
tings remotely. Windows 2000 supports secure Kerberos single sign-on authentica
tion and authorization (see Section 19.3.3, Kerberos). In general, Windows 2000 is 
more secure and has better networking support than previous Windows operating 
systems. It is Microsoft's last purely business-oriented desktop operating system.37 

Microsoft continued developing consumer operating systems. It released Win
dows 95 in 1995 to replace Windows 3.1 for home users. Like Windows NT 3.1, Win
dows 95 makes the jump to 32-bit addressing, although it supports 16-bit 
applications for backward compatibility. Windows 95 permits applications to access 
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Biographical Note 
David Cutler 
David Cutler graduated from 
Olivet College in Michigan in 
196538 wi th a degree in Mathe
matics.39 He first became inter
ested in computers when he 
worked on a software simulation 
project at DuPont.40, 41 Cutler 
moved to its engineering depart
ment, where he was involved in 
various programming projects, 
became interested in operating 
systems and worked on the devel
opment of several small, real-time 
operating systems.42 

In 1971 Cutler moved to Dig
ital Equipment Corporation 
(DEC),43, 44 where he led the team 
developing the RSX-11M operat
ing system. This operating system 
was difficult to design for two 
reasons—there were severe mem
ory limitations due to the PDP-11 's 
16-bit addressing, and it had to be 
compatible w i th all of the popular 
PDP-11 models. A few years later. 

DEC began work on the VAX 32-
bit architecture, because increas
ing application sizes made the 
memory space accessible by a 16-
bit address insufficient.45 

Cutler managed what was 
probably DEC'S most important 
OS project ever—VMS for the 
VAX systems.46, 47 Because the 
PDP-11 was so widely used, VMS 
needed to be backward compati
ble wi th the PDP-11 system and it 
had to be scalable to VAX systems 
of varying power.48, 49 Cutler also 
led the MicroVAX project, DEC's 
microprocessor version of the 
VAX.50 

In 1988, Cutler accepted an 
offer f rom Bill Gates to be one of 
the leaders on Microsoft's succes
sor to OS/2—OS/2 New Technol
ogy, or OS/2 NT, which would use 
the OS/2 API.51, 52 cutler insisted 
on bringing 20 of his developers 
from DEC to form the core of this 

new team. Meanwhile, Microsoft 
released Windows 3.0, and its 
popularity led to a change in 
plans for Cutler's project. His 
operating system would now be 
Windows NT and would primarily 
support the Win32 interface. 
However, it needed to support 
parts of the DOS, POSIX and OS/2 
APIs in addition to running Win
dows 3.0 programs.53 Inspired by 
the Mach microkernel operating 
system. Cutler's team designed 
Windows NT to have a fairly small 
kernel wi th layers of separate 
modules to handle the various 
interfaces. Windows NT, origi
nally intended for Microsoft's pro-
fessional line of operating 
systems, eventually was used for 
the consumer line in version 5.1, 
more popularly known as Win
dows XP. Cutler remains a lead 
operating systems architect at 
Microsoft. 



main memory directly. However, Microsoft introduced DirectX, which simulates 
direct hardware access while providing a layer of protection. Microsoft hoped that 
DirectX, combined with faster hardware, would give game developers a viable 
alternative to accessing the hardware directly. Windows 95 introduced multithread
ing, an improvement on the multitasking support provided by Windows 3.1. 
Microsoft released Windows 98 in 1998, although most of the changes were minor 
(primarily increased multimedia and networking support). The biggest innovation 
was combining Internet Explorer (IE) with the operating system. Bundling IE 
made Windows easier to use when accessing the Internet and the Web. Windows 
Millennium Edition (Windows Me), released in 2000, is the last version in the con
sumer line. Windows Me has even more device drivers and multimedia and net
working support than previous versions of Windows. It is also the first consumer 
version of Windows that cannot boot in DOS mode.54 
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Mini Case Study 
OS/2 
OS/2 was first released in 1987. 
The operating system was a joint 
project between Microsoft and 
IBM designed to run on IBM's new 
PS/2 line of personal computers.55 

OS/2 was based on DOS, the most 
popular operating system at the 
time of OS/2's release, and was 
similar to DOS in many ways (e.g., 
they had similar commands and 
command prompts). OS/2 also 
made significant improvements 
over DOS. OS/2 was the first PC 
operating system to allow multi
tasking (however, only one appli
cation could be on the screen at a 
time). OS/2 also supported multi
threading, interprocess communi
cation (IPC), dynamic linking and 
many other features that were 
not supported by DOS.56 

OS/2 1.1, released in 1988, 
was its first version wi th a graphi
cal user interface. The interface 
was similar to early versions of 
Windows. However, unlike Win
dows and many of today's inter
faces, the coordinate (0,0) 
referred to the lower-left corner 
of the screen as opposed to the 
upper-left comer.57 This made 
transferring programs from OS/2 
to other operating systems diff i
cult. 

OS/2 version 2.0, released in 
1992, was the first 32-bit operating 
system for personal computers. OS/ 
2 2 contained the Integrating Plat
form, designed to run OS/2 2, OS/2 
1, DOS and Windows applications. 
This benefitted OS/2, because 
there were few applications writ-

ten for OS/2 2 at the time. As a 
result, many developers wrote pro
grams specifically for Windows, 
since they would work on both 
platforms.58 

IBM and Microsoft disagreed 
on the progress and direction of 
OS/2 because Microsoft wanted to 
devote more resources to Win
dows than to OS/2, whereas IBM 
wished to further develop OS/2 1. 
In 1990, IBM and Microsoft 
agreed to work independently On 
upcoming OS/2 projects: IBM took 
control of all future versions of 
OS/2 1 and OS/2 2, while Microsoft 
developed OS/2 3. Soon after this 
agreement, Microsoft renamed 
OS/2 3 to Windows NT.59 



Microsoft released Windows XP in 2001 (whose kernel is NT 5.1). Windows 
XP unified the consumer and commercial code bases. Windows XP comes in several 
editions, each of which is built from the same code base but is tailored to fit the 
needs of a specific group of users. Every edition of Windows XP combines the sta
bility, security and network support of the corporate line with the multimedia and 
device support of the consumer line. 
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Microsoft's main design goal for Windows XP was reintegrating the code bases 
from its consumer and business operating system lines. In addition, Microsoft 
attempted to better meet the traditional goals of each individual line. For example, 
the corporate line has often focused on providing security and stability, whereas the 
consumer line provides enhanced multimedia support for games. 

When Microsoft created the NT line for business users, its chief focuses were 
stability, security and scalability.60 Businesses often employ computers to execute 
critical applications and store essential information. It is important for the system 
to be reliable and run continuously without error. The internal architecture 
described in this case study was developed over many years to enhance the stability 
of Microsoft operating systems. 

Corporate computers need to protect sensitive data while being connected to 
multiple networks and the Internet. For this reason, Microsoft devoted a great deal 
of effort to developing an all-encompassing security system. Windows XP uses 
modern security technologies such as Kerberos, access control lists and packet fil
tering firewalls to protect the system. The Windows XP security system is built on 
the codebase of Windows 2000, to which the government gave C2 level certification 
(the C2 certification applies only to Windows 2000 machines unconnected to a net
work).61 At the time of this writing, Microsoft is in the process of gaining the same 
certification for Windows XP Professional. 

Computers must be scalable to meet the needs of different users. Microsoft 
developed Windows XP 64-Bit Edition to support high-performance desktop com
puters and Windows XP Embedded to support devices such as routers. Windows 
XP Professional supports symmetric multiprocessing (see Chapter 15, Multiproces
sor Management). 

Windows XP incorporates many of the features that made the consumer line 
popular. The system contains an improved GUI and more multimedia support than 
previous versions of Windows. For the first time, both business and home users can 
take advantage of these innovations. 

Besides incorporating the strengths of its two lines of operating systems, 
Microsoft added another goal specifically for Windows XP. Customers had often com
plained that Windows started too slowly. As a result, Microsoft aimed at dramatically 
decreasing boot time. Windows XP must be usable in 30 seconds after a user turns on 
the power, 20 seconds after waking from hibernation (on a laptop) and 5 seconds 
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after resuming from standby. Later in the chapter, we describe how Windows XP 
meets these goals by prefetching files necessary to load the operating system.62 
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Windows XP is modeled on a microkernel architecture —often called a modified 
microkernel architecture. On the one hand, Windows XP is a modular operating 
system with a compact kernel that provides base services for other operating system 
components. However, unlike a pure microkernel operating system, these compo
nents (e.g., the file system and memory manager) execute in kernel mode rather 
than user mode. Windows XP is also a layered operating system, composed of dis
crete layers with lower layers providing functionality for higher layers.63 However, 
unlike a pure layered operating system, there are times when non-adjacent layers 
communicate. For a description of microkernel and layered operating system 
designs, see Section 1.13, Operating System Architectures. 

Figure 21.1 illustrates Windows XP's system architecture. The Hardware 
Abstraction Layer (HAL) interacts directly with the hardware, abstracting hard
ware specifics to the rest of the system. The HAL handles device components on 
the mainboard such as the cache and system timers. The HAL abstracts hardware 
specifics that might differ between systems of the same architecture, such as the 
exact layout of the mainboard. In many cases, kernel-mode components do not 
access the hardware directly, but instead call functions exposed by the HAL. There-
fore, kernel-mode components can be constructed with little regard for architec
ture-specific details such as cache sizes and the number of processors included. The 
HAL interacts with device drivers to support access to peripheral devices.64 

The HAL also interacts with the microkernel. The microkernel provides basic 
system mechanisms, such as thread scheduling, to support other kernel-mode compo-
nents. [Note: The Windows XP microkernel should not be confused with the micro
kernel design philosophy discussed in Section 1.13, Operating System Architectures.] 
The microkernel also handles thread synchronization, dispatches interrupts and han
dles exceptions.65 Additionally, the microkernel abstracts architecture-specific fea
tures—features that differ between two different architectures, such as the number of 
interrupts. The microkernel and the HAL combine to make Windows XP portable, 
allowing it to run in many different hardware environments.66 

The microkernel forms only a small part of kernel space. Kernel space 
describes an execution environment in which components can access all system 
memory and services. Components that reside in kernel space execute in kernel 
mode. The microkernel provides the base services for the other components resid
ing in kernel space.67 

Layered on top of the microkernel are the kernel-mode components responsi
ble for administering the operating system subsystems (e.g., the I/O manager and 
virtual memory manager). Collectively, these components are known as the execu
tive. Figure 21.1 displays the key executive components. The rest of this chapter is 
devoted to describing these subsystems and the executive components which man-
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Figure 21.1 | Windows XP system architecture. 

age the subsystems. The executive exposes services through an application pro
gramming interface (API) to user processes.68 This API is called the native API. 

However, most user processes do not call native API functions directly; 
rather, they call API functions exposed by user-mode system components called 
environment subsystems. Environment subsystems are user-mode processes inter
posed between the executive and the rest of user space that export an API for a spe
cific computing environment. For example, the Win32 environment subsystem 
provides a typical 32-bit Windows environment. Win32 processes call functions 
defined in the Windows API; the Win32 subsystem translates these function calls to 
system calls in the native API (although, in some cases, the Win32 subsystem pro
cess itself can fulfill an API request without calling the native API).69 Although 
Windows XP allows user-mode processes to call native API functions, Microsoft 
urges developers to use an environment subsystem's interface.70 

By default, 32-bit Windows XP includes only the Win32 subsystem, but users 
can install a POSIX subsystem. Microsoft replaced the POSIX subsystem in older 
versions of Windows with a more robust UNIX environment, called Service For 
UNIX (SFU) 3.0. Running SFU 3.0, users can port code written for a UNIX envi
ronment to Windows XP. To run 16-bit DOS applications, Windows XP provides a 
Virtual DOS Machine (VDM), which is a Win32 process that provides a DOS envi
ronment for DOS applications.71 



On Windows XP 64-Bit Edition, the default subsystem supports 64-bit appli
cations. However, Windows XP 64-Bit Edition provides a subsystem called the Win
dows on Windows 64 (WOW64) subsystem, which allows users to execute 32-bit 
Windows applications. Windows XP 64-Bit Edition does not support 16-bit applica
tions.72 

The top layer of the Windows XP architecture consists of user-mode pro
cesses. These are typical applications (e.g., word processors, computer games and 
Web browsers) as well as dynamic link libraries (DLLs). DLLs are modules that 
provide data and functions to processes. As shown in Fig. 21.1, the environment 
subsystems' APIs are simply DLLs that processes dynamically link when calling a 
function in a subsystem's API. Because DLLs are dynamically linked, applications 
can be more modular. If the implementation of a DLL function changes, only the 
DLL must be recompiled and not the applications that use it.73 

Windows XP also includes special user-mode processes called system services 
(or Win32 services), which are similar to Linux daemons (see Section 20.3, Linux 
Overview). These processes usually execute in the background whether or not a user 
is logged onto the computer and typically execute the server side of client/server 
applications.74 Examples of system services are the Task Scheduler (which allows 
users to schedule tasks to be executed at specific times), IPSec (which manages Inter
net security usually during data transfer operations) and Computer Browser (which 
maintains a list of computers connected on the local network).75 [Note: Sometimes, 
authors also use the term "system services" to refer to native API functions.] 
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21.5 System Management Mechanisms 
Before we investigate each component in the Windows XP operating system, it is 
important to understand the environment in which these components execute. This 
section describes how components and user processes store and access configura
tion data in the system. We also consider how Windows XP implements objects, 
how these objects are managed and how user- and kernel-mode threads can manip
ulate these objects. Finally, we describe how Windows XP prioritizes interrupts and 
how the system employs software interrupts to dispatch processing. 

The registry is a database, accessible to all processes and kernel-mode components 
that stores configuration information76 specific to users, applications and hardware. 
For example, user information might include desktop settings and printer settings. 
Application configuration includes such settings as recently used menus, user pref
erences and application defaults. Hardware information includes which devices are 
currently connected to the computer, which drivers serve each device and which 
resources (e.g., hardware ports) are assigned to each device. The registry also stores 
system information such as file associations (e.g., .doc files are associated with 
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Microsoft Word). Applications, device drivers and the Windows XP system use the 
registry to store and access data in a centralized manner. For example, when a user 
installs a hardware device, device drivers place configuration information into the 
registry. When Windows XP allocates resources to various devices, it accesses the 
registry to determine what devices are installed in the system and distributes 
resources accordingly.77 

Windows XP organizes the registry as a tree, and each node in the tree repre
sents a registry key. A key stores subkeys and values; values consist of a value name 
and value data.78 The system provides several predefined keys. For example, 
HKEY_LOCAL_MACHINE is a predefined key which forms the root of all configuration 
data for the local computer. Values in the HKEY_LOCAL_MACHINE key or its subkeys 
store such information as the hardware devices connected to the computer, system 
memory and network information (e.g., server names). Predefined keys act as roots 
for a single type of data, such as application-specific data or user preferences.79 

Threads can access subkeys by navigating the tree structure. Beginning with 
any key that is open, a thread can enumerate that key's subkeys and open any of 
them. The system's predefined keys remain open at all times. Once a key is open, 
values and subkeys can be read, modified, added or deleted (assuming the thread 
has access rights for the key to accomplish all these actions).80, 81 

Windows XP stores the registry in a collection of hives, which are portions of 
the registry tree. Most hives are stored as files and flushed to disk periodically to 
protect the data against crashes, whereas other hives remain solely in memory (e.g., 
HKEY_LOCAL_MACHINE\HARDWARE, which stores hardware information that the sys
tem collects at boot time and updates as it runs).82 The configuration manager is the 
executive component responsible for managing the registry. Device drivers, system 
components and user applications communicate with the configuration manager to 
modify or obtain data from the registry. The configuration manager is also responsi
ble for managing registry storage in system memory and in the hives.83 

Windows XP represents physical resources (e.g., peripheral devices) and logical 
resources (e.g., processes and threads) with objects. Note that these objects do not 
refer to objects in any object-oriented programming language, but rather constructs 
that Windows XP uses to represent resources. Windows XP represents objects with 
a data structure in memory; this data structure stores the object's attributes and 
procedures.84 Each object in Windows XP is defined by an object type; the object 
type is also stored as a data structure. Object types are created by executive compo
nents; for example, the I/O manager creates the file object type. The object type 
specifies the types of attributes an instance of this type possesses and the object's 
standard procedures. Examples of standard procedures include the open procedure, 
c lose procedure and d e l e t e procedure.85 Object types in Windows XP include 
files, devices, processes, threads, pipes, semaphores and many others. Each Windows 
XP object is an instance of an object type.86 

21.5.2 Object Manager 



User-mode processes and kernel components can access objects through 
object handles. An object handle is a data structure that allows processes to manip
ulate the object. Using an object handle, a thread can call one of the object's proce
dures or manipulate the object's attributes. A kernel-mode component or user-
mode process with sufficient access rights can obtain a handle to an object by speci
fying the object's name in a call to the object's open method or by receiving a han
dle from another process.87 Once a process obtains a handle to an object, this 
process can duplicate the handle; this can be used by a process that wishes to pass a 
handle to another process and also retain a handle to the object.88 Processes can use 
a handle in similar way as pointers, but a handle gives the system extra control over 
the actions of a user process (e.g., by restricting what the process can do with the 
handle, such as not allowing the process to duplicate it). 

Kernel-mode components can use handles when interacting with user-mode 
processes, but otherwise can access objects directly through pointers. In addition, 
kernel-mode components can create kernel handles, which are handles accessible 
from any process's address space, but only from kernel mode. In this way, a device 
driver can create a kernel handle to an object and be guaranteed access to that 
object, regardless of the context in which the driver executes.89 Objects can be 
named or unnamed, although only kernel-mode components can open a handle to 
an unnamed object. A user-mode thread can obtain a handle to an unnamed object 
only by receiving it from a kernel-mode component.90 

The object manager is the executive component that manages objects for a 
Windows XP system. The object manager is responsible for creating and deleting 
objects and maintaining information about each object type, such as how many 
objects of a certain type exist.91 The object manager organizes all named objects 
into a hierarchal directory structure. For example, all device objects are stored in 
the \Device directory or one of its subdirectories. This directory structure com
poses the object manager namespace (i.e., group of object names in which each 
name is unique in the group).92 

To create an object, a process passes a request to the object manager; the 
object manager initializes the object and returns a handle (or pointer if a kernel-
mode component called the appropriate function) to it. If the object is named, the 
object manager enters it into the object manager namespace.93 For each object, the 
object manager maintains a count of how many existing handles refer to it and a 
count of how many existing references (both handles and pointers) refer to it. When 
the number of handles reaches zero, the object manager removes the object from 
the object manager namespace. When the number of references to the object 
reaches zero, the object manager deletes the object.94 

Interrupt definition and handling are crucial to Windows XP. Because some inter
rupts, such as hardware failure interrupts, are more important than others, Win
dows XP defines interrupt request levels (IRQLs). IRQLs are a measure of 

21.5.3 Interrupt Reqiest levels (IRQLs) 
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interrupt priority; a processor always executes at some IRQL, and different proces
sors in a multiprocessor system can be executing at different IRQLs. An interrupt 
that executes at an IRQL higher than the current one can interrupt the current exe
cution and obtain the processor. The system masks (i.e., delays processing) inter
rupts that execute at an IRQL equal to or lower than the current one.95 

Windows XP defines several IRQLs (Fig. 21.2). User- and kernel-mode threads 
normally execute at the passive IRQL, which is the lowest-priority IRQL. Unless 
user-mode threads are executing asynchronous procedure calls (APCs), which we 
describe in Section 21.5.4, Asynchronous Procedure Calls (APCs), these threads 
always execute at the passive IRQL. In some instances, kernel-mode threads execute 
at a higher IRQL to mask certain interrupts, but typically, the system executes 
threads at the passive level so that incoming interrupts can be serviced promptly. Exe
cuting at the passive IRQL implies that no interrupt is currently being processed and 
no interrupts are masked. APCs, which are procedure calls that threads or the system 
can queue for execution by a specific thread, execute at the APC IRQL. Above the 
APC level is the DPC/dispatch IRQL at which deferred procedure calls (i.e., software 
interrupts that can be executed in any thread's context) and various other important 
kernel functions execute, including thread scheduling.96 We describe DPCs in 
Section 21.5.5, Deferred Procedure Calls (DPCs). All software interrupts execute at 
the APC level or DPC/dispatch level.97 

Hardware interrupts execute at the remaining higher IRQLs. Windows XP 
provides multiple device IRQLs (DIRQLs) at which interrupts from devices exe
cute.98 The number of DIRQLs varies, depending on how many interrupts a given 
architecture supports, but the assignment of these levels to devices is arbitrary; it is 
dependent on the specific interrupt request line at which a device interrupts. There
fore, Windows XP maps device interrupts to DIRQLs without priority; still, if a pro
cessor is executing at a certain DIRQL, interrupts that occur at DIRQLs less than 
or equal to the current one are masked.99 

The system reserves the highest five IRQLs for critical system interrupts. The 
first level above DIRQL is the profile IRQL, which is used when kernel profiling is 
enabled (see Section 14.5.1, Tracing and Profiling). The system clock, which issues 
interrupts at periodic intervals, interrupts at the clock IRQL. Interprocessor 
requests (i.e., interrupts sent by one processor to another such as when shutting 
down the system) execute at the request IRQL. The power IRQL is reserved for 
power failure notification interrupts, although this level has never been used in any 
NT-based operating system. Interrupts issued at the high IRQL (which is the high
est IRQL) include hardware failure interrupts and bus errors.100 

For each processor, the HAL masks all interrupts with IRQLs less than or 
equal to the IRQL at which that processor is currently executing. This allows the 
system to prioritize interrupts and execute critical interrupts as quickly as possible. 
For example, executing at the DPC/dispatch level masks all other DPC/dispatch 
level interrupts and APC level interrupts. Interrupts that execute at an IRQL that is 
currently masked are not discarded (i.e., removed from the system). When the 
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Figure 21.2 | Interrupt request levels (IRQLs) 

IRQL drops low enough, the processor processes the waiting interrupts. Kernel-
mode threads can raise the IRQL, and a thread that does so is responsible for sub-
sequently lowering the IRQL to its previous level; user-mode threads cannot 
change the IRQL. Windows XP attempts to do as much processing as possible at 
the passive level, at which no interrupts are masked, so that all incoming interrupts 
can be serviced immediately.101 

Asynchronous procedure calls (APCs) are procedure calls that threads or the system 
can queue for execution by a specific thread; the system uses APCs to complete vari-
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ous functions that must be done in a specific thread's context. For example, APCs 
facilitate asynchronous I/O. After initiating an I/O request, a thread can perform 
other work. When the I/O request completes, the system sends an APC to that 
thread, which the thread executes to complete the I/O processing. Windows XP 
uses APCs to accomplish a variety of system operations. For example, APCs are 
used by the SFU to send signals to POSIX threads and by the executive to notify a 
thread of an I/O completion or direct a thread to perform an operation.102 

Each thread maintains two APC queues: one for kernel-mode APCs and one 
for user-mode APCs.103 Kernel-mode APCs are software interrupts that are gener
ated by kernel-mode components, and a thread must process all pending kernel-
mode APCs as soon as it obtains a processor. A user-mode thread can create a user-
mode APC and request to queue this APC to another thread; the system queues the 
APC to the target thread if the queuing thread has sufficient access rights. A thread 
executes user-mode APCs when the thread enters an alertable wait state.104 In an 
alertable wait state, a thread awakens either when it has a pending APC or when 
the object or objects on which the thread is waiting become available. A thread can 
specify that it enters an alertable wait state when it waits on an object, or a thread 
can simply enter an alertable wait state without waiting on any object.105 

Windows XP also differentiates between normal kernel APCs and special 
kernel APCs. A thread executes kernel APCs in FIFO order, except that the thread 
executes all special kernel APCs before all normal kernel APCs.106 When the sys
tem queues a kernel APC, the target thread does not execute the APC until the 
thread gains the processor. However, once the thread begins executing at the pas
sive level, it begins executing kernel APCs until it drains (i.e., empties) its queue. 

Unlike kernel APCs, threads can choose when to execute user-mode APCs. A 
thread drains its user-mode APC queue when the thread enters an alertable wait 
state. If the thread never enters such a state, its pending user-mode APCs are dis
carded when it terminates.107 

A thread executing an APC is not restricted, except that it cannot receive new 
APCs. It can be preempted by another higher-priority thread. Because scheduling is 
not masked at the APC level (this occurs at the DPC/dispatch level), a thread exe
cuting an APC can block or access pageable data (which might cause a page fault 
and hence cause Windows XP to execute scheduling code at the DPC/dispatch 
IRQL). APCs can also cause the currently executing thread to be preempted. If a 
thread queues an APC to a thread of higher priority that is in an alertable wait state, 
the waiting thread awakens, preempts the queuing thread and executes the APC.108 
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21.5.5 Defered Procedure Calls (DPCs) 
Most of Windows XP's hardware interrupt processing occurs in deferred procedure 
calls (DPCs). DPCs are software interrupts that execute at the DPC/dispatch 
IRQL109 and which run in the context of the currently executing thread. In other 
words, the routine that creates the DPC does not know the context in which the DPC 
will execute. Therefore, DPCs are meant for system processing, such as interrupt pro-



cessing, that does not need a specific thread context in which to execute.110 These pro
cedure calls are called "deferred" because Windows XP processes most hardware 
interrupts by calling the associated interrupt service routine, which is responsible for 
quickly acknowledging the interrupt and queuing a DPC for later execution. This 
strategy increases the system's responsiveness to incoming device interrupts. 

Windows XP attempts to minimize the time it spends at DIRQLs to maintain 
high responsiveness to all device interrupts. Recall that the system maps device 
interrupts arbitrarily to DIRQLs. Still, device interrupts mapped to a high DIRQL 
can interrupt the processing of a device interrupt mapped to a lower DIRQL. By 
using DPCs, the system returns to an IRQL below all DIRQLs and therefore can 
minimize this difference in the level of interrupt servicing.111 

Device interrupt handlers can schedule DPCs, and Windows XP executes 
some kernel functions, such as thread scheduling, at the DPC/dispatch IRQL.112 

When an event that prompts scheduling occurs—such as when a thread enters the 
ready state, when a thread enters the wait state, when a thread's quantum expires or 
when a thread's priority changes—the system executes scheduling code at the DPC/ 
dispatch IRQL.113 

As we noted above, DPCs are restricted because the routine that creates a 
DPC does not specify the context in which the DPC executes (this context is simply 
the currently executing thread). DPCs are further restricted because they mask 
thread scheduling. Therefore, a DPC cannot cause the thread within whose context 
it is executing to block, because this would cause the system to attempt to execute 
scheduling code. In this case no thread would execute because the executing thread 
blocks, but the scheduler does not schedule a new thread because scheduling is 
masked (in reality, Windows XP halts the system and displays an error message).114 

As a result, DPCs cannot access pageable data because if a page fault occurs, the 
executing thread blocks to wait for the completion of the data access. DPCs, how
ever, can be preempted by hardware interrupts.115, 116 

When a device driver generates a DPC, the system places the DPC in a queue 
associated with a specific processor. The driver routine can request a processor to 
which the DPC should be queued (e.g., to ensure that the DPC routine is executed 
on the processor with relevant cached data); if no processor is specified, the proces
sor queues the DPC to itself.117 The routine can also specify the DPCs priority. 
Low- and medium-priority DPCs are placed at the end of the processor's DPC 
queue; high-priority DPCs enter at the front of the queue. In most cases, when the 
IRQL drops to the DPC/dispatch level, the processor drains the DPC queue. How-
ever, when a low-priority DPC has been waiting for only a short time and the DPC 
queue is short, the processor does not immediately execute the DPC. The next time 
the processor drains the DPC queue, it processes this DPC. This policy allows the 
system to return to the passive level faster to unmask all interrupts and resume nor
mal thread processing.118 
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When a kernel-mode component, such as a device driver or executive component, 
performs some processing on behalf of a user thread, the component's functions 
often execute in the context of the requesting thread. However, in some cases, ker
nel-mode components must accomplish a task that is not in response to a particular 
thread request. For example, the cache manager must periodically flush dirty cache 
pages to disk. Also, a device driver servicing an interrupt might not be able to 
accomplish all necessary processing at an elevated IRQL (i.e., the device's DIRQL 
when it interrupts or the DPC/dispatch level when executing a DPC). For example, 
the driver might need to accomplish some work at the passive IRQL, because it 
must access pageable data.119 

Developers of kernel-mode components have two options to perform this pro
cessing. A component can create a kernel thread, which is a thread that executes in 
kernel mode and typically belongs to the System process—a kernel-mode process to 
which most kernel-mode threads belong. Aside from executing in kernel mode, ker
nel threads behave and are scheduled the same as user threads.120 Kernel threads nor
mally execute at the passive IRQL, but can raise and lower the IRQL.121 

A second option is to use a system worker thread—a thread, which is created 
at system initialization time or dynamically in response to a high volume of 
requests, that sleeps until a work item is received. A work item consists of a func
tion to execute and a parameter describing the context in which to execute that 
function. System worker threads also belong to the System process. Windows XP 
includes three types of worker threads: delayed, critical and hypercritical. The dis
tinction arises from the scheduling priority given to each type. Delayed threads 
have the lowest priority of the three types; critical threads have a relatively high pri
ority; and the hypercritical thread (there is only one), which is reserved for system 
use (e.g., device drivers cannot queue work items to this thread), has the highest 
priority of the three types.122, 123 

21.5.6 System Threads 
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In Windows XP, a process consists of program code, an execution context, resources 
(e.g., object handles) and one or more associated threads. The execution context 
includes such items as the process's virtual address space and various attributes 
(e.g., security attributes and working set size limitations). Threads are the actual 
unit of execution; threads execute a piece of a process's code in the process's con
text, using the process's resources. A thread also contains its own execution context 
which includes its runtime stack, the state of the machine registers and several 
attributes (e.g., scheduling priority).124 Both processes and threads are objects, so 
other processes can obtain handles for processes and threads, and other threads can 
wait on process and thread events just as with other object types.125, 126 
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Windows XP stores process and thread context information in several data struc
tures. An executive process block (EPROCESS block) is the main data structure that 
describes a process. The EPROCESS block stores information that executive compo
nents use when manipulating a process object; this information includes the pro
cess's ID, a pointer to the process's handle table, a pointer to the process's access 
token and working set information (e.g., the process's minimum and maximum 
working set size, page fault history and the current working set). The system stores 
EPROCESS blocks in a linked list.127.128 

Each EPROCESS block also contains a kernel process block (KPROCESS block). 
A KPROCESS block stores process information used by the microkernel. Recall that 
the microkernel manages thread scheduling and thread synchronization. Therefore, 
the KPROCESS block stores such information as the process's base priority class, the 
default quantum for each of its threads and its spin lock.129, 130 

The EPROCESS and KPROCESS blocks exist in kernel space and store informa
tion for kernel-mode components to access while manipulating a process. The sys
tem also stores process information in a process environment block (PEB), which is 
stored in the process's address space. A process's EPROCESS block points to the pro
cess's PEB. The PEB stores information useful for user processes, such as a list of 
DLLs linked to the process and information about the process's heap.131-132 

Windows XP stores thread data in a similar manner. An executive thread 
block (ETHREAD block) is the main data structure describing a thread. It stores 
information that executive components use when manipulating a thread object. 
This information includes the ID of the thread's process, its start address, its access 
token and a list of its pending I/O requests. The ETHREAD block for a thread also 
points to the EPROCESS block of its process.133'134 

Each ETHREAD block stores a kernel thread block (KTHREAD block). The micro
kernel uses information in the KTHREAD block for thread scheduling and synchroni
zation. For example, the KTHREAD block stores information such as the thread's base 
and current priority (later in this section we see how a thread's priority can change), 
its current state (e.g., ready, waiting) and any synchronization objects for which it is 
waiting.135, 136 

The ETHREAD and KTHREAD blocks exist in kernel space and therefore are not 
accessible to users. A thread environment block (TEB) stores information about a 
thread in the thread's process's address space. Each KTHREAD block points to a TEB. 
A thread's TEB stores information such as the critical sections owned by the 
thread, its ID and information about its stack. A TEB also points to the PEB of the 
thread's process.137, 138 

All threads belonging to the same process share a virtual address space. 
Although most of this memory is global, threads can maintain their own data in 
thread local storage (TLS). A thread within a process can allocate a TLS index for 
the process; the thread stores a pointer to local data in a specified location (called a 
TLS slot) in this index. Each thread using the index receives one TLS slot in the 
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index in which it can store a data item. A common use for a TLS index is to store 
data associated with a DLL that a process links. Processes often contain many TLS 
indexes to accommodate multiple purposes, such as for DLL and environment sub
system data. When threads no longer need a TLS index (e.g., the DLL completes 
execution), the process can discard the index.139 A thread also possesses its own 
runtime stack on which it can also store local data. 
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A process can create another process using API functions. For Windows processes, 
the parent (i.e., creating) process and child (i.e., created) process are completely 
independent. For example, the child process receives a completely new address 
space.140 This differs from the fork command in Linux, in which the child receives a 
copy of its parent's address space. The parent process can specify certain attributes 
that the child process inherits (i.e., the child acquires a duplicate from the parent), 
such as most types of handles, environment variables—i.e., variables that define an 
aspect of the current settings, such as the operating system version number—and 
the current directory.141 When the system initializes a process, the process creates a 
primary thread. The primary thread acts as any other thread, and any thread can 
create other threads belonging to that thread's process.142 

A process can terminate execution for a variety of reasons. If all of its threads 
terminate, a process terminates, and any of a process's threads can explicitly termi
nate the process at any time. Additionally, when a user logs off, all the processes 
running in the user's context are terminated. Because parent and child processes 
are independent of one another, terminating a parent process has no affect on its 
children and vice versa.143 

Creating and Terminating Processes 

Sometimes, it is preferable to group several processes together into a unit, called a 
job. A job object allows developers to define rules and set limits on a number of 
processes. For example, a single application might consist of a group of processes. A 
developer might want to restrict the number of processor cycles and amount of 
memory that the application consumes (e.g., so that an application executing on 
behalf of a client does not monopolize all of a server's resources). Also, the devel
oper might want to terminate all the processes of a group at once, which is difficult 
because all processes are normally independent of one another.144 A process can be 
a member of at most one job object. The job object specifies such attributes as a 
base priority class, a security context, a working set minimum and maximum size, a 
virtual memory size limit and both a per-process and jobwide processor time limit. 
Just as a thread inherits these attributes from the process to which it belongs, a pro
cess inherits these attributes from its associated job (if the process belongs to a 
job).145, 146 The system can terminate all processes in a job by terminating the job.147 

Systems executing batch processes, such as data mining, benefit from jobs. 
Developers can limit the amount of processor time and memory a computationally 
intensive job consumes to free more resources for interactive processes. Sometimes 
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it is useful to create a job for a single process, because a job allows the developer to 
specify tighter restrictions than a process allows. For example, with a job object, a 
developer can limit the process's total processor time; a developer cannot use the 
process object to do this.148 

Threads can create fibers, which are similar to threads, except that a fiber is sched
uled for execution by the thread that creates it, rather than the microkernel. Win
dows XP includes fibers to permit the porting of code written for other operating 
systems to Windows XP. Some operating systems, such as many UNIX varieties, 
schedule processes and require them to schedule their own threads. Developers can 
use fibers to port code to and from these operating systems. A fiber executes in the 
context of the thread that creates the fiber.149 

Creating fibers generates additional units of execution within a single thread. 
Each fiber must maintain state information, such as the next instruction to execute 
and the values in a processor's registers. The thread stores this state information for 
each fiber. The thread itself is also a unit of execution, and thus must convert itself 
into a fiber to separate its own state information from other fibers executing in its 
context. In fact, the Windows API forces a thread to convert itself into a fiber before 
creating or scheduling other fibers. Although the thread becomes a fiber, the thread's 
context remains, and all fibers associated with that thread execute in that context.150 

Whenever the kernel schedules a thread that has been converted to a fiber for 
execution, the converted fiber or another fiber belonging to that thread runs. Once 
a fiber obtains the processor, it executes until the thread in whose context the fiber 
executes is preempted, or the fiber switches execution to another fiber (either 
within the same thread or a fiber created by a separate thread). Just as threads pos
sess their own thread local storage (TLS), fibers possess their own fiber local stor
age (FLS), which functions for fibers exactly as TLS functions for a thread. A fiber 
can also access its thread's TLS. If a fiber deletes itself (i.e., terminates), its thread 
terminates.151 

Fibers permit Windows XP applications to write code executed using the 
many-to-many mapping; typical Windows XP threads are implemented with a one-
to-one mapping (see Section 4.6.2, Kernel-Level Threads). Fibers are user-level 
units of execution and invisible to the kernel. This makes context switching between 
fibers of the same thread fast because it is done in user mode. Therefore, a single-
threaded process with many fibers can simulate a multithreaded process. However, 
the Windows XP microkernel only recognizes one thread, and because Windows 
XP schedules threads, not processes, the single-threaded process receives less exe
cution time (all else being equal).152, 153 

Fibers 

Windows XP also provides each process with a thread pool that consists of a num
ber of worker threads, which execute functions queued by user threads. The worker 
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threads sleep until a request is queued to the pool.154 The thread that queues the 
request must specify the function to execute and must provide context informa
tion.155 When a process is created, it receives an empty thread pool; the system allo
cates space for worker threads when the process queues its first request.156 

Thread pools have many purposes. Developers can use them to handle client 
requests. Instead of incurring the costly overhead of creating and destroying a 
thread for each request, the developer simply queues the request to the thread 
pool. Also, several threads that spend most of their time sleeping (e.g., waiting for 
events to occur) can be replaced by a single worker thread that awakens each time 
one of these events occurs. Furthermore, applications can use the thread pool to 
accomplish asynchronous I/O by queuing a worker thread to execute the I/O com
pletion routines. Using thread pools can make an application more efficient and 
simpler because developers do not have to create and delete as many threads. How
ever, thread pools transfer some control from the programmer to the system, which 
can introduce inefficiency. For example, the system grows and shrinks the size of a 
process's thread pool in response to request volume; in some cases, the programmer 
can better guess how many threads are needed. Thread pools also require memory 
overhead, because the system grows a process's (initially empty) thread pool as the 
process's threads queue work items.157 

Windows XP does not contain a specific "thread scheduler" module —the schedul
ing code is dispersed throughout the microkernel. The scheduling code collectively 
is referred to as the dispatcher.158 Windows XP supports preemptive scheduling 
among multiple threads. The dispatcher schedules each thread without regard to 
the process to which the thread belongs. This means that, all else being equal, the 
same process implemented with more threads will get more execution time.159 The 
scheduling algorithm used by Windows XP is based on a thread's priority. Before 
describing the scheduling algorithm in detail, we investigate the lifecycle of a Win
dows XP thread. 

21.6.2 Thread Scheduling 

In Windows XP, threads can be in any one of eight states (Fig. 21.3). A thread begins 
in the initialized state during thread creation. Once initialization concludes, the 
thread enters the ready state. Threads in the ready state are waiting to use a proces
sor. A thread that the dispatcher has decided will execute on a particular processor 
next enters the standby state as it awaits its turn for that processor. A thread is in the 
standby state, for example, during the context switch from the previously executing 
thread to that thread. Once the thread obtains a processor, it enters the running 
state. A thread transitions out of the running state if it terminates execution, 
exhausts its quantum, is preempted, is suspended or waits on an object. If a thread 
terminates, it enters the terminated state. The system does not necessarily delete a 
terminated thread; the object manager deletes a thread only when the thread object's 
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Figure 21.3 | Thread state-transition diagram. 

reference count becomes zero. If a running thread is preempted or exhausts its quan
tum, it returns to the ready state. If a running thread begins to wait on an object han
dle, it enters the waiting state. Also, another thread (with sufficient access rights) or 
the system can suspend a thread, forcing it into the waiting state until the thread is 
resumed. When the thread completes its wait, it either returns to the ready state or 
enters the transition state. A thread in the transition state has had its kernel stack 
paged out of memory (e.g., because it has not executed in a while and the system 
needed the memory for other purposes), but the thread is otherwise ready to exe
cute. The thread enters the ready state once the system pages the thread's kernel 
stack back into memory. The system places a thread in the unknown state when the 
system is unsure of the thread's state (usually because of an error).160, 161 

The dispatcher schedules threads based on priority—the next subsection describes 
how thread priorities are determined. When a thread enters the ready state, the ker
nel places it into the ready queue that corresponds to its priority. Windows XP has 
32 priority levels, denoted by integers from 0 through 31, where 31 is the highest 
priority and 0 is the lowest. The dispatcher begins with the highest-priority ready 
queue and schedules the threads in this queue in a round-robin fashion. A thread 
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remains in a ready queue as long as the thread is in either the ready state or the run
ning state. Once the queue empties, the dispatcher proceeds to the next queue; it 
continues in this manner until either all queues are empty or a thread with a higher 
priority than the currently executing thread enters its ready state. In the latter case, 
the dispatcher preempts execution of the lower-priority thread and executes the 
new thread.162 The dispatcher then executes the first thread in the highest-priority 
nonempty ready queue and resumes its normal scheduling procedure.163 

Each thread executes for at most one quantum. In the case of preemption, 
real-time threads have their quantum reset, whereas all other threads finish their 
quantum when they reacquire a processor. Giving real-time threads fresh quanta 
after preemption allows Windows XP to favor real-time threads, which require a 
high level of responsiveness. The system returns preempted threads to the front of 
the appropriate ready queue.164 Note that user-mode threads can preempt kernel-
mode threads in many cases. However, kernel-mode threads can prevent this by 
masking certain interrupts. Events such as a thread entering the ready state, a thread 
exiting the running state or a change in a thread's priority trigger the system to exe
cute dispatcher routines—routines that execute at DPC/dispatch level. By raising 
the IRQL to the DPC/dispatch IRQL, kernel-mode threads can mask scheduling 
and avoid being preempted. However, user-mode threads can still block the execu
tion of system threads if they have a higher priority than the system threads.165 
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Windows XP divides its 32 priority levels (0-31) into two categories. Real-time 
threads (i.e., threads that must maintain a high level of responsiveness to user 
requests) occupy the upper 16 priority levels (16-31), and dynamic threads occupy 
the lower 16 priority levels (0-15). Only the zero-page thread has priority level 0. 
This thread uses spare processor cycles to zero free memory pages so they are ready 
for use. 

Each thread has a base priority, which defines the lower limit that its actual 
priority may occupy. A user-mode thread's base priority is determined by its pro
cess's base priority class and the thread's priority level. A process's base priority 
class specifies a narrow range that the base priority of each of a process's threads 
can have. There are six base priority classes: idle, below normal, normal, above nor
mal, high and real-time. The first five of these priority classes (called the dynamic 
priority classes) encompass priority levels 0 through 15; these are called dynamic 
priority classes, because threads belonging to processes in these classes can have 
their priorities dynamically altered by the operating system. The threads belonging 
to processes in the real-time priority class have a priority between 16 and 31; real
time threads have a static priority. Within each priority class, there are several base 
priority levels: idle, lowest, below normal, normal, above normal, highest and time 
critical. Each combination of base priority class and base priority level maps to a 
specific base priority (e.g., a thread with a normal base priority level and a normal 
priority class has a base priority of 7).166 
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A dynamic-priority thread's priority can change. A thread receives a priority 
boost when the thread exits the waiting state, such as after the completion of an I/O 
or after the thread gains a handle to a resource for which the thread is waiting. Sim
ilarly, a window that receives input (such as from the keyboard, mouse or timer) 
gets a priority boost. The system also can reduce a thread's priority. When a thread 
executes until its quantum expires, its priority is reduced one unit. However, a 
thread's dynamic priority can never dip below its base priority or rise into the real
time range.167 

Finally, to reduce the likelihood of threads being indefinitely postponed, the 
dispatcher periodically (every few seconds) scans the lists of ready threads and 
boosts the priority of dynamic threads that have been waiting for a long time. This 
scheme also helps solve the problem of priority inversion. Priority inversion occurs 
when a high-priority thread is prevented from gaining the processor by a lower-pri
ority thread. For example, a high-priority thread might wait for a resource held by a 
low-priority thread. A third, medium-priority thread obtains the processor, pre
venting the low-priority thread from running. In this way, the medium-priority 
thread is also preventing the high-priority thread from executing—hence, priority 
inversion. The dispatcher will eventually boost the priority of the low-priority 
thread so it can execute and, hopefully, finish using the resource.168 

Multiprocessor thread scheduling extends the preceding uniprocessor scheduling 
algorithm. All editions of Windows XP, except the Home Edition, provide support 
for multiple processors. However, even Home Edition provides support for sym
metric multiprocessing (SMP) using Intel's hyper-threading (HT) technology. 
Recall from Section 15.2.1 that HT technology allows the operating system to view 
one physical processor as two virtual processors. Scheduling in an SMP system is 
similar to that in a uniprocessor system. Generally, when a processor becomes avail
able, the dispatcher tries to schedule the thread at the front of the highest-priority 
nonempty ready queue. However, the system also attempts to keep threads on the 
same processors to maximize the amount of relevant data stored in L1 caches (see 
Section 15.4, Memory Access Architectures). 

Processes and threads can specify the processors on which they prefer to exe
cute. A process can specify an affinity mask, which is a set of processors on which its 
threads are allowed to execute. A thread can also specify an affinity mask, which 
must be a subset of its process's affinity mask.169 Similarly, a job also can have an 
affinity mask, which each of its associated processes must set as its own affinity 
mask. One use of affinity masks is restricting computationally intensive processes to 
a few processors so these processes do not interfere with more time-critical interac
tive processes. 

In addition to affinity masks, each thread stores its ideal processor and last 
processor. Manipulating the value of a thread's ideal processor allows developers to 
influence whether related threads should execute in parallel (by setting related 
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threads' ideal processors to different processors) or on the same processor to share 
cached data (by setting the threads' ideal processors to the same processor). By 
default, Windows XP attempts to assign threads of the same process different ideal 
processors. The dispatcher uses the last processor in an effort to schedule a thread 
on the same processor on which the thread last executed. This strategy increases the 
likelihood that data cached by the thread during an execution can be accessed dur
ing the next execution of that thread.170, 171 

When a processor becomes available, the dispatcher schedules threads by con
sidering each thread's priority, ideal processor, last processor and how long a thread 
has been waiting. Consequently, the thread at the front of the highest-priority non
empty ready queue might not be scheduled to the next available processor (even if 
the processor is in the thread's affinity mask). If this thread has not been waiting 
long and the available processor is not its ideal or last processor, the dispatcher 
might choose another thread from that ready queue which meets one or more of 
these other criteria.172 
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Windows XP provides a rich variety of synchronization objects and techniques, 
designed for various purposes. For example, some synchronization objects execute 
at the DPC/dispatch level. These objects provide certain guarantees —a thread 
holding one of these objects will not be preempted—but restrict functionality (e.g., 
a thread holding one of these objects cannot access pageable data). Some synchro
nization objects are designed specifically for kernel-mode threads, whereas others 
are designed for all threads. In the following subsections, we introduce some syn
chronization mechanisms provided in Windows XP, how they are used and their 
benefits and drawbacks. 

Windows XP provides a number of dispatcher objects that kernel- and user-mode 
threads can use for synchronization purposes. Dispatcher objects provide synchro
nization for resources such as shared data structures or files. These objects include 
many familiar synchronization constructs such as mutexes, semaphores, events and 
timers. Kernel threads use kernel dispatcher objects; synchronization objects avail
able to user processes encapsulate these kernel dispatcher objects (i.e., synchroni
zation objects translate many API calls made by user-mode threads into function 
calls for kernel dispatcher objects). A thread holding a dispatcher object executes at 
the passive IRQL.173 A developer can use these objects to synchronize the actions 
of threads of the same process or different processes.174 

Dispatcher objects can be in either a signaled state or unsignaled state (some 
dispatcher objects also have states relating to error conditions). The object remains 
in the unsignaled state while the resource for which the dispatcher object provides 
synchronization is unavailable. Once the resource becomes available, the object 
enters its signaled state. If a thread wishes to access a protected resource, the thread 
can call a wait function to wait for one or more dispatcher objects to enter a sig-
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naled state. When calling a wait function for a single object, the thread specifies the 
object on which it is waiting (by passing the object's handle) and a maximum wait 
time for the object. Multiple-object wait functions can be used when a thread must 
wait on more than one object. The thread can specify whether it is waiting for all the 
objects or any one of them. Windows XP supplies numerous variations to these 
generic wait functions; e.g., a thread can specify that it enters an alertable wait state, 
allowing it to process any APCs queued to it while waiting. After calling a wait 
function, a thread blocks and enters its wait state. When the required object enters 
its signaled state, one or more threads can access the resource (later in this section, 
we describe how a dispatcher object enters its signaled state).175 In many cases, the 
kernel maintains FIFO queues for waiting resources, but kernel APCs can disrupt 
this ordering. Threads process kernel APCs immediately, and when a thread 
resumes its wait, it is placed at the end of the queue.176 

Threads often synchronize with an event, such as user input or I/O completion, by 
using an event object. When the event occurs, the object manager sets the event 
object to the signaled state. The event object returns to the unsignaled state by one 
of two methods (specified by the object's creator). In the first method, the object 
manager sets the event object to the unsignaled state when one thread is released 
from waiting. This method can be used when only one thread should awaken (e.g.. 
to process the completion of an I/O operation). In the other method, the event 
object remains in the signaled state until a thread specifically sets the event to its 
unsignaled state; this allows multiple threads to awaken. This option can be used, 
for example, when multiple threads are waiting to read data. When a writing thread 
completes its operation, the writer can use an event object to signal all the waiting 
threads to awaken. The next time a thread begins writing, the thread can reset the 
event object to the unsignaled state.177 

Mutex objects provide mutual exclusion for shared resources; they are essentially 
binary semaphores (see Section 5.6, Semaphores). Only one thread can own a 
mutex at a time, and only that thread can access the resource associated with the 
mutex. When a thread finishes using the resource protected by the mutex, it must 
release the mutex to transition it into its signaled state. If a thread terminates before 
releasing a mutex object, the mutex is considered abandoned. In this case the mutex 
enters an abandoned state. A waiting thread can acquire this abandoned mutex. 
However, the system cannot guarantee that the resource protected by the mutex is 
in a consistent state. To be safe, a thread should assume an error has occurred if it 
acquires an abandoned mutex.178 

Semaphore objects extend the functionality of mutex objects; they allow the creat
ing thread to specify the maximum number of threads that can access a shared 
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resource.179 For example, a process might have a small number of preallocated buff
ers; the process can use a semaphore to synchronize access to these buffers.180 

Semaphore objects in Windows XP are counting semaphores (see Section 5.6.3, 
Counting Semaphores). A semaphore object maintains a count, which is initialized 
to the maximum number of threads that can simultaneously access the pool of 
resources. The count is decremented every time a thread acquires access to the pool 
of resources protected by the semaphore and incremented when a thread releases 
the semaphore. The semaphore remains in its signaled state while its count is 
greater than zero; it enters the unsignaled state when the count drops to zero. 

A single thread can decrement the count by more than one by specifying the 
semaphore object in multiple wait functions. For example, a thread might use sev
eral of the process's buffers in separate asynchronous I/O operations. Each time the 
thread issues a buffered I/O request, the thread reacquires the semaphore (i.e., by 
specifying the semaphore object in a wait function), which decrements the sema
phore's count. The thread must release the semaphore, which increments the sema
phore's count, each time a request completes.181 
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Waitable Timer Objects 
Threads might need to perform operations at regular intervals (e.g., autosave a 
user's document) or at specific times (e.g., display a calendar item). For this type of 
synchronization, Windows XP provides waitable timer objects. These objects 
become signaled after a specified amount of time elapses. Manual-reset timer 
objects remain signaled until a thread specifically resets the timer. Auto-reset timer 
objects remain signaled only until one thread finishes waiting on the object. Wait-
able timer objects can be single use, after which they become deactivated, or they 
can be periodic. In the latter case, the timer object reactivates after a specified inter
val and becomes signaled once the specified time expires. Figure 21.4 lists Windows 
XP's dispatcher objects.182 

Several other Windows XP objects, such as console input, jobs and processes, 
can function as dispatcher objects as well. For example, jobs, processes and threads 
are set to the signaled state when they terminate, and a console input object is set to 
the signaled state when the console's input buffer contains unread data. In these 
cases, threads use wait functions and treat these objects just like other dispatcher 
objects.183 

Dispatcher Object Transitions from Unsignaled to Signaled State When 
Event 

Mutex 

Semaphore 

Waitable timer 

Associated event occurs. 

Owner of the mutex releases the mutex. 

Semaphore's count rises above zero. 

Specified amount of time elapses. 

Figure 21.4 | Dispatcher objects in Windows XP. 



Windows XP provides several mechanisms for synchronizing access to kernel data 
structures. If a thread is interrupted while accessing a shared data structure, it might 
leave the data structure in an inconsistent state. Unsynchronized access to a data 
structure can result in erroneous results. If the thread belongs to a user process, an 
application might malfunction; if the thread belongs to a kernel process, the system 
might crash. In a uniprocessor system, one solution to the synchronization problem 
is to raise the IRQL level above the one at which any component that might pre
empt the thread executes and access the data structure. The thread lowers the 
IRQL level when it completes executing the critical code.184 

Raising and lowering the IRQL level is inadequate in a multiprocessor sys
tem—two threads, executing concurrently on separate processors, can attempt to 
access the same data structure simultaneously. Windows XP provides spin locks to 
address this problem. Threads holding spin locks execute at the DPC/dispatch level 
or DIRQL, ensuring that the holder of the spin lock is not preempted by another 
thread. Threads should execute the fewest instructions possible while holding a spin 
lock to reduce wasteful spinning by other threads. 

When a thread attempts to access a resource protected by a spin lock, it 
requests ownership of the associated spin lock. If the resource is available, the 
thread acquires the lock, accesses the resource, then releases the spin lock. If the 
resource is not available, the thread keeps trying to acquire the spin lock until suc
cessful. Because threads holding spin locks execute at the DPC/dispatch level or 
DIRQL, developers should restrict the actions these threads perform. Threads 
holding spin locks should never access pageable memory (because a page fault 
might occur), cause a hardware or software exception, attempt any action that 
could cause deadlock (e.g., attempt to reacquire that spin lock or attempt to acquire 
another spin lock unless the thread knows that this will not cause deadlock) or call 
any function that performs any of these actions.185 

Windows XP provides generic spin locks and queued spin locks. A queued 
spin lock enforces FIFO ordering of requests and is more efficient than a normal 
spin lock,186 because it reduces the processor-to-memory bus traffic associated with 
the spin lock. With a normal spin lock, a thread continually attempts to acquire the 
lock by executing a test-and-set instruction (see Section 5.5.2, Test-and-Set Instruc
tion) on the memory line associated with the spin lock. This creates bus traffic on 
the processor-to-memory bus. With a queued spin lock, a thread that releases the 
lock notifies the next thread waiting for it. Threads waiting for queued spin locks do 
not create unnecessary bus traffic by repeating test-and-set. Queued spin locks also 
increase fairness by guaranteeing FIFO ordering of requests, because the releasing 
thread uses a queue associated with the spin lock to notify the appropriate waiting 
thread.187 Windows XP supports both spin locks (for legacy compatibility) and 
queued spin locks, but Microsoft recommends the use of the latter.188 

Alternatively, kernel-mode threads can use fast mutexes, a more efficient vari
ant of mutexes that operate at the APC level. Although they require less overhead 
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than mutexes, fast mutexes somewhat restrict the actions of the thread owning the 
lock. For example, threads cannot specify a maximum wait time to wait for a fast 
mutex—they can either wait indefinitely or not wait at all for an unavailable fast 
mutex. Also, if a thread attempts to acquire a fast mutex that it already owns, it cre
ates a deadlock (dispatcher mutexes allow a thread to reacquire a mutex the thread 
already owns as long as it releases the mutex for each acquisition of the mutex).189 

Fast mutexes operate at the APC IRQL, which masks APCs that might require the 
thread to attempt to acquire a fast mutex it already owns.190 However, some threads 
might need to receive APCs. For example, a thread might need to process the result 
of an asynchronous I/O operation; the system often uses APCs to notify threads that 
an asynchronous I/O request has been processed. For this purpose, Windows XP 
provides a variant of fast mutexes that execute at the passive IRQL.191 

Another synchronization resource available only to kernel-mode threads is 
the executive resource lock. Executive resource locks have two modes: shared and 
exclusive. Any number of threads can simultaneously hold an executive resource 
lock in shared mode, or one thread can hold an executive resource lock in exclusive 
mode. This lock is useful for solving the readers-and-writers problem (see 
Section 6.2.4, Monitor Example: Readers and Writers). A reading thread can gain 
shared access to a resource if no other thread currently holds or is waiting for exclu
sive (i.e., write) access to the resource. A writing thread can gain exclusive access to 
a resource as long as no other thread holds either shared (i.e., read) or exclusive 
(i.e., write) access to it.192 

Aside from dispatcher objects and kernel-mode locks, Windows XP provides to 
threads several other synchronization tools. Kernel-mode locks are not applicable 
in all situations—they cannot be used by user-mode threads, and many of them 
operate at an elevated IRQL, restricting what threads can do while holding them. 
Dispatcher objects facilitate general synchronization but are not optimized for spe
cific cases. For example, dispatcher objects can be used by threads of different pro
cesses but are not optimized for use among threads of the same process. 

Critical section objects provide services similar to mutex objects but can be 
employed only by threads within a single process. Moreover, critical section objects 
do not allow threads to specify a maximum wait time (it is possible to wait indefi
nitely for a critical section object), and there is no way to determine if a critical sec
tion object is abandoned. However, critical section objects are more efficient than 
mutex objects because critical section objects do not transition to kernel mode if 
there is no contention. This optimization requires that critical section objects be 
employed only to synchronize threads of the same process. Also, critical section 
objects are implemented with a processor-specific test-and-set instruction, further 
increasing efficiency.193'194 

A timer-queue timer is an alternate method for using waitable timer objects 
that allows threads to wait on timer events while executing other pieces of code. 
When a thread wishes to wait on a timer, it can place a timer in a timer queue and 

Other Available Synchronization Tools 

21.6 Process and Thread Management 1063 



specify a function to perform when the timer becomes signaled. At that time, a 
worker thread from a thread pool performs the specified function. In cases where 
the thread waits on both a timer and another object, the thread should use a wait-
able timer object with a wait function.195 

For variables shared among multiple threads, Windows XP provides inter
locked variable access through certain functions. These functions provide atomic 
read and write access to variables, but they do not ensure the order in which 
accesses are made. For example, the In ter lockedlncrement function combines 
incrementing a variable and returning the result into a single atomic operation. This 
can be useful, for example, when providing unique ids. Each time a thread needs to 
obtain a unique id, it can call In ter lockedlncrement . This avoids a situation in 
which one thread increments the value of the id variable but is interrupted before 
checking the result. The interrupting thread might then access the id variable, caus
ing two items to have the same id. Because In ter lockedlncrement both incre
ments the variable and returns the result in an atomic operation, this situation will 
not occur.196 Windows XP also provides interlocked singly linked lists (SLists). 
which provide atomic insertion and deletion operations.197 

This section provided a broad survey of Windows XP's synchronization tools. 
However, Windows XP provides other tools; readers interested in more informa
tion should visit the MSDN Library at msdn.microsof t .com/l ibrary. In addition 
to these synchronization tools, threads can synchronize by communicating through 
various IPC mechanisms (described in Section 21.10, Interprocess Communication) 
or by queuing APCs to other threads. 

The Windows XP virtual memory manager (VMM) creates the illusion that each 
process has a 4GB contiguous memory space. Because the system allocates more 
virtual memory to processes than can fit into main memory, the VMM stores some 
of the data on disk in files called pagefiles. Windows XP divides virtual memory into 
fixed-size pages which it stores either in page frames in main memory or files on 
disk. The VMM uses a two-level hierarchical addressing system. 

Windows XP has two strategies for optimizing main memory usage and reduc
ing disk I/O. The VMM uses copy-on-write pages (see Section 10.4.6, Sharing in a 
Paging System) and employs lazy allocation, which is a policy of postponing allocat
ing pages and page table entries in main memory until absolutely necessary. How
ever, when the VMM is forced to perform disk I/O, it prefetches pages from disk 
and places pages into main memory before they are needed (see Section 11.4. 
Anticipatory Paging). Heuristics ensure that the gain in the rate of disk I/O out
weighs the cost of filling main memory with potentially unused pages. When main 
memory fills, Windows XP performs a modified version of the LRU page-replace-
ment algorithm. The following sections describe the internals of the Windows XP 
memory management system. 
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Windows XP systems provide either a 32-bit or a 64-bit address space, depending 
on the processor and the edition of Windows XP. We limit our discussion to mem
ory operations using the Intel IA-32 architecture (e.g., Intel Pentium and AMD 
Athlon systems), because the vast majority of today's Windows systems are built 
for that platform. See the MSDN Library for more information on Windows XP 64-
Bit Edition.198 

Windows XP allocates a unique 4GB virtual address space to each process. By 
default, a process can access only the first 2GB of its virtual address space. The sys
tem reserves the other two gigabytes for kernel-mode components—this space is 
called system space.199 

Physical memory is divided into fixed-size page frames, which are 4KB on a 
32-bit system (except in the case when the system uses large pages as described 
later in this section). The VMM maintains a two-level memory map in the system 
portion of each process's virtual address space that stores the location of pages in 
main memory and on disk.200 The VMM assigns each process one page directory 
table. When a processor switches contexts, it loads the location of the new process's 
page directory table into the page directory register. The page directory table is 
composed of page directory entries (PDEs); each PDE points to a page table. Page 
tables contain page table entries (PTEs); each PTE points to a page frame in main 
memory or a location on disk. The VMM uses the virtual address in conjunction 
with the memory map to translate virtual addresses into physical addresses. A vir
tual address is composed of three portions; the offset in a page directory table, the 
offset in a page table and the offset on a page in physical memory201 

Windows XP translates a virtual address in three stages, as shown in Fig. 21.5. 
In the first stage of address translation, the system calculates the sum a + d, which is 
the value in the page directory register plus the first portion of the virtual address, 
to determine the location of the page directory entry (PDE) in the page directory 
table. In the second stage, the system calculates the sum b + t, which is the value in 
the PDE plus the second portion of the virtual address, to find the page table entry 
(PTE) in the page table. This entry contains c, the page frame number correspond
ing to the virtual page's location in main memory. Finally, in the last stage, the sys
tem concatenates c and the page offset, o, to form the physical address (see 
Section 10.4.4, Multilevel Page Tables). The system performs all of these operations 
quickly; the delay occurs when the system must read the PDE and PTE from main 
memory.202 Address translation is often accelerated by the Translation Look-aside 
Buffer (TLB) as discussed in Section 10.4.3, Paging Address Translation with 
Direct/Associative Mapping. 

The PTE is structured differently depending on whether it points to a page in 
memory or a page in a pagefile. Five of the PTE's 32 bits are for protection—they 
indicate whether a process may read the page, write to the page and execute code 
on the page. These protection bits also tell the system whether the page is a copy-
on-write page and whether the system should raise an exception when a process 
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Figure 21.5 | Virtual address translation. 

accesses the page.203 Twenty bits index a frame in memory or offset in a pagefile on 
disk; this is enough to address 1,048,576 virtual pages. If the page is stored on disk, a 
designated four bits indicate in which of 16 possible pagefiles the page is located. If 
the page is in memory, a different set of three bits indicate the state of the page. 
Figure 21.6 lists these three bits and their meaning. 

Windows XP allows applications to allocate large pages. A large page is a set of 
contiguous pages that the operating system treats as one page. Large pages are use
ful when the system knows it will repeatedly need the same large chunk of code or 
data. The system needs to store only one entry in the TLB. Because the page is big
ger, it is more likely to be accessed, and less likely to be deleted from the TLB. Page 
access is accelerated because the VMM can look up address translations in the TLB 
rather than consulting page tables.204 Windows XP stores information that cannot be 
swapped to disk (i.e., the nonpaged pool) and memory maps on large pages.205 

Page state bit Definition 
Valid 

Modified 

Transition 

PTE is valid—it points to a page of data. 
Page in memory is no longer consistent with the version on disk. 

VMM is in the process of moving the page to or from disk. Pages in 
transition are always invalid. 

Figure 21.6 | Page states.206 



Windows XP imposes several restrictions on the use of large pages: 

• Each type of processor has a minimum size for large pages, usually 2MB or 
greater. The size of every large page must be a multiple of that minimum 
large page size.207 

• Large pages always allow read and write access. This means that read-only 
data, such as program code and system DLLs, cannot be stored in large 
pages.208 

• The pages that compose a large page must be contiguous in both virtual 
and physical memory.209, 210 

Windows XP uses copy-on-write pages (see Section 10.4.6, Sharing in a Paging Sys
tem) as one of its lazy allocation mechanisms. The system manages copy-on-write 
pages using prototype page tables. The system also uses prototype page tables to 
manage file mappings. A file mapping is a portion of main memory that multiple 
processes may access simultaneously to communicate with one another (this is dis
cussed further in Section 21.10.3, Shared Memory). The PTE of a copy-on-write 
page does not point directly to the frame in which the page is stored. Instead, it 
points to a Prototype Page Table Entry (PPTE), a 32-bit record that points to the 
location of the shared page. 

When a process modifies a page whose PTE protection bits indicate that it is a 
copy-on-write page, the VMM copies the page to a new frame and sets the process's 
PPTE to reference the new location. All of the other processes's PPTE's continue 
pointing to the original frame. Using copy-on-write pages conserves memory, 
because processes share main memory page frames. As a result, each process can 
store more of its pages in main memory. This causes fewer page faults, because 
there is more space in main memory, and once the VMM fetches a page from disk, 
it is less likely to move the page back to disk. However, PPTEs add a level of indi
rection; it takes four memory references instead of three to translate an address. 
Therefore, translating an address that is not in the TLB is more expensive for copy-
on-write pages than for normal pages.211 
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Windows XP performs memory allocation in three stages (Fig. 21.7). A process 
must first reserve space in its virtual address space. Processes can either specify 
what virtual addresses to reserve or allow the VMM to decide. A process may not 
access space it has reserved until it commits the space. When a process commits a 
page, the VMM creates a PTE and ensures that there is enough space in either main 
memory or a pagefile for the page. A process usually commits a page only when it is 
ready to write to the page; however, the Windows API supports single-step reserve 
and commit. Separating memory allocation into two steps allows a process to 
reserve a large contiguous virtual memory region and sparsely commit portions of 
it.212. 213 Finally, when a process is ready to use its committed memory, it accesses 
the committed virtual memory. At that point, the VMM writes the data to a zeroed 

21.7.2 Memory Allocation 



1068 Case Study: Windows XP 

Figure 21.7 | Memory allocation stages. 

page in main memory. This three-stage process ensures that processes use only as 
much space in main memory as they need, rather than the amount they reserve.214 

A system rarely has enough main memory to satisfy all processes. Previous 
versions of Windows allowed an application that required more main memory to 



function properly to issue must-succeed requests. Device drivers often issued these 
requests, and the VMM always fulfilled a must-succeed request. This led to system 
crashes when the VMM was forced to allocate main memory when none was avail
able. Windows XP does not suffer from this problem; it denies all must-succeed 
requests. The system expects components to handle a denied memory allocation 
request without crashing.215, 216 

Windows XP has a special mechanism for handling low-memory conditions 
when all or most of main memory is allocated. Under normal circumstances, Win
dows XP optimizes performance by handling multiple memory allocation requests 
simultaneously. When there are few page frames in main memory to allocate, the sys
tem runs into the same scarce-resource problem faced by all multiprogramming sys
tems. Windows XP solves this problem via a process called I/O throttling; when the 
system detects that it has only a few available page frames, it begins to manage mem
ory one page at a time. I/O throttling slows the system, because the VMM ceases to 
manage multiple requests in parallel but instead retrieves pages from disk only one at 
a time. However, it does make the system more robust and helps prevent crashes.217 

To track main memory, Windows XP uses a page frame database, which lists 
the state of each frame, ordered by page frame number. There are eight possible 
states, as shown in Fig. 21.8. 

The system tracks page frames by state. It has a singly linked list, called a 
page list, for each of the eight states. A page list is referred to by the state of its 
pages; for example, the Free Page List contains all free pages, the Zeroed Page List 
contains all zeroed pages and so on. The page lists permit the VMM to swap pages 
and allocate memory quickly. For example, to allocate two new pages, the VMM 
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Frame State Definition 

Valid 

Transition 

Standby 

Modified 

Modified No-Write 

Free 

Page belongs to a process's working set and its PTE is set to valid. 
Page is in the process of being transferred to or from disk. 

Page has just been removed from a process's working set; its PTE 
is set to invalid and in transition. 
Page has just been removed from a process's working set; it is not 
consistent with the on-disk version. The VMM must write this 
page to disk before freeing this page. The PTE of this page is set 
to invalid and in transition. 

Page has just been removed from a process's working set; it is not 
consistent with the on-disk version. The VMM must write an entry 
to the log file before freeing this page. The PTE of this page is set 
to invalid and in transition. 
Page frame does not contain a valid page; however it might con
tain an invalid page that has no PTE and is not part of any work
ing set. 

Figure 21.8 | Page frame states.218(Part 1 of 2.) 



needs to access only the first two frames in the Zeroed Page List. If the Zeroed 
Page List is empty, the VMM takes a page from another list, using the algorithm 
described in Section 21.7.3, Page Replacement.219 

The system uses Virtual Address Descriptors (VADs) to manage the virtual 
address space of each process. Each VAD describes a range of virtual addresses 
allocated to the process.220 

Windows XP attempts to anticipate requests for pages on disk and move 
pages to main memory to prevent page faults. A process can invoke API functions 
to tell the system the process's future memory requirements.221 In general, the sys
tem employs a policy of demand paging, loading pages into memory only when a 
process requests them. It also loads several nearby pages—spatial locality implies. 
that these pages are likely to be referenced soon. The Windows file systems divide 
disk space into clusters of bytes; pages in the same cluster are, by definition, part of 
the same file. Windows XP takes advantage of spatial locality by loading all pages in 
the same cluster at once, a paging policy referred to as clustered demand paging. 
These two mechanisms reduce disk seek time because only one disk seek is needed 
to fetch the entire cluster. Prefetching, however, potentially places some unneeded 
pages into main memory, leaving less space for needed pages and increasing the 
number of page faults. It might also decrease efficiency during periods of heavy disk 
I/O by forcing the system to page out pages that are needed right away for pages 
that are not needed yet.222 

Windows XP reduces the time needed to load (i.e., start) applications, includ
ing the operating system itself, by prefetching files. The system records what pages 
are accessed and in what order during the last eight application loads. Before load
ing an application, the system asks for all of the pages it will need in one asynchro-
nous request, thus decreasing disk seek time.223, 224 

The system decreases the time it takes to load Windows by simultaneously 
prefetching pages and initializing devices. When Windows XP starts, it must direct 
numerous peripheral hardware devices to initialize—the system cannot continue 
loading until they are done. This is the ideal time to perform prefetching, because 
the system is otherwise idle.225 

Windows XP uses the Logical Prefetcher to perform prefetching. The user can 
set a special registry key to tell Windows XP for which scenarios, such as all applica
tion loads or Windows start-up, the user wants the system to run the Logical 
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Frame State Definition 
Zeroed 

Bad 

Page frame is not part of any working set and all of its bits have 
been set to zero. For security reasons, only zeroed page frames 
are allocated to processes. 

Page frame has generated a hardware error and should not be 
used. 



Prefetches226 When an application loads, Windows XP stores a trace of memory 
accesses in a scenario file. Each application, including the Windows operating sys
tem, has its own scenario file. The system updates scenario files ten seconds after a 
successful application load. Storing scenario files has a price: recording each mem
ory access uses processor cycles and occupies space on the disk. However, the 
reduced disk I/O offsets the extra time it takes to store the memory trace, and most 
users are willing to give up some disk space in return for significantly faster load 
time for all applications, including for Windows itself.227 

The Logical Prefetcher accesses pages based on their location on disk rather 
than waiting for a process to explicitly request them. As a result, Windows XP can 
load applications faster and more efficiently. However, the pages and files indicated 
in scenario files could be scattered throughout the disk. To further optimize applica
tion load time, the Logical Prefetcher periodically reorganizes portions of the hard 
drive to ensure that all files that the system has previously prefetched are contigu
ous on disk. Every few days, when the system is idle, the Logical Prefetcher updates 
a layout file which contains the ideal disk layout and uses this layout to rearrange 
pages on disk.228 
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Windows XP bases its page-replacement policy on the working set model. Recall 
from Section 11.7, Working Set Model, that a process's working set is the set of 
pages that a process is currently using. Because this is difficult to determine, Win
dows XP simply considers a process's working set to be all of its pages in main 
memory Pages not in the process's working set, but mapped to its virtual address 
space, are stored on disks in pagefiles.229, 230 Storing pagefiles on different physical 
disks accelerates swapping because it enables the system to read and write multiple 
pages concurrently231 

When memory becomes scarce, the balance set manager moves parts of differ
ent processes' working sets to pagefiles. Windows XP employs a localized least-
recently used (LRU) policy to determine which pages to move to disk. The policy is 
localized by process. When the system needs to free a frame to meet a process's 
request, it removes a page belonging to the process which the process has not 
recently accessed. The VMM assigns each process a working set maximum and a 
working set minimum that denote an acceptable range for the size of the process's 
working set. Whenever a process whose working set size is equal to its working set 
maximum requests an additional page, the balance set manager moves one of the 
process's pages to secondary storage, then fulfills the request. A process using less 
than its working set minimum is not in danger of losing pages unless available mem
ory drops below a certain threshold. The balance set manager checks the amount of 
free space in memory once per second and adjusts the working set maximums 
accordingly. If the number of available bytes exceeds a certain threshold, the work
ing set maximums of processes working at their working set maximum shift upward; 
if it drops below a certain threshold, all working set maximums shift downward.232 

21.7.3 Page Restatement 



Windows XP does not wait until main memory is full to move pages to disk. It 
regularly tests each process to ensure that only the pages the process needs are in 
main memory. Windows XP uses page trimming to remove pages from memory. 
Periodically, the balance set manager moves all of a process's pages above the work
ing set minimum from the Valid Page List to the Standby Page List, Modified Page 
List, or Modified No-Write Page List, as appropriate. Collectively, these are called 
the transitional page list, although there is no such actual list in memory.233 

The VMM chooses which pages to trim, using the localized LRU policy, as 
illustrated in Fig. 21.9. The system sets the status bits of the PTEs of trimmed pages 
to invalid, meaning the PTEs no longer point to a valid frame, but the system does 
not modify the PTEs in any other way. The state in the page frame database of 
trimmed pages is set to transition, standby, modified or modified no-write.234 If the 
process requests a page that is in one of these transitional page lists, the MMU 
issues a transitional fault. In this situation, the VMM removes the page from the 
transitional list and puts it back on the Valid Page List. Otherwise, the page is 
reclaimed. A system thread writes pages in the Modified Page List to disk. Compo
nents, such as file systems, use the Modified No-Write Page List to ensure that the 
VMM does not write a dirty page to disk without first making an entry in a log file. 
The application notifies the VMM when it is safe to write the page.235 Once a modi-
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Figure 21.9 | Page-replacement process. 



fled or modified no-write page becomes consistent with the data on disk, the VMM 
moves the page to the Standby Page List. After a waiting period, the VMM moves 
pages on the Standby Page List to the Free Page List. Later, another low-priority 
thread zeroes the bits of pages on the Free Page List and moves the pages to the 
Zeroed Page List. Windows XP zeroes pages to prevent a process that is allocated a 
page from reading the (potentially sensitive) information that another process pre
viously stored on that page. When the system needs to allocate a new page to a pro
cess, it claims a page from the Zeroed Page List.236 

The localized LRU algorithm requires certain hardware features not available 
on all systems. Because portability between different platforms is an important 
design criterion for all Windows operating systems, many early Windows systems 
avoided using hardware-specific features to ensure that the same operating system 
could be used on multiple platforms. Operating systems commonly simulate LRU 
page replacement with the clock algorithm (see Section 11.6.7, Modifications to 
FIFO: Second-Chance and Clock Page Replacement). Doing so requires an 
accessed bit which the system sets on for each page that has been accessed within a 
certain time interval. Many early computers did not have an accessed bit. As a 
result, early versions of Windows NT used the FIFO page-replacement policy (see 
Section 11.6.2, First-In-First-Out (FIFO) Page Replacement) or even an effectively 
random page replacement. Microsoft later developed versions of Windows specifi
cally for Intel IA-32 and other platforms that support the accessed bit, allowing 
Windows XP to employ the more effective LRU algorithm.237 

Some data cannot be paged out of memory. For example, code that handles 
interrupts must stay in main memory, because processing a page fault during an 
interrupt would cause an unacceptable delay and might even crash the system. Pag
ing passwords presents a security risk if the system crashes, because an unencrypted 
copy of secret data would be stored on disk. All such data is stored in a designated 
area of system space called the nonpaged pool. Data that can be sent to disk is 
stored in the paged pool.238 Portions of device drivers and VMM code are stored in 
the nonpaged pool.239 

A device driver developer must consider several trade-offs when deciding 
what portions of the code to place in the nonpaged pool. Space in the nonpaged 
pool is limited. In addition, code in the nonpaged pool may not access paged pool 
code or data because the VMM might be forced to access the disk, which defeats 
the purpose of nonpaged pool code.240 
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Windows XP file systems consist of three layers of drivers. At the very bottom are 
various volume drivers that control a specific hardware device, such as the hard 
disk. File system drivers, which compose the next level, implement a particular file 
system format, such as New Technology File System (NTFS) or File Allocation 
Table (FAT). These drivers implement what a typical user views as the file system: a 
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hierarchical organization of files and the related functions to manipulate these files. 
Finally, file system filter drivers accomplish high-level tasks such as virus protection, 
compression and encryption.241242 NTFS is the native Windows XP file system (and 
the one described in depth in this case study), but FAT16 and FAT32 are also sup
ported (see Section 13.6.3, Tabular Noncontiguous File Allocation) and typically 
used for floppy disks. Windows XP also supports Compact Disc File System (CDFS) 
for CDs and Universal Disk Format (UDF) for CDs and DVDs. The following sub
sections introduce Windows XP file system drivers and describe the NTFS file sys
tem.243 
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File system drivers cooperate with the I/O manager to fulfill file I/O requests. File 
system drivers provide a link between the logical representation of the file system 
exposed to applications and its corresponding physical representation on a storage 
volume. The I/O manager interface enables Windows XP to support multiple file 
systems. Windows XP divides each data storage device into one or more volumes, 
and associates each volume with a file system. 

To understand how file system drivers and the I/O manger interact, consider 
the flow of a typical file I/O request. A user-mode thread that wishes to read data 
from a file sends an I/O request via a subsystem API call. The I/O manager trans
lates the thread's file handle into a pointer to the file object and passes the pointer 
to the appropriate file system driver. The file system driver uses the pointer to 
locate the file object and determine the location of the file on disk. Next, the file sys
tem driver passes the read request through the layers of drivers and eventually the 
request reaches the disk. The disk processes the read request and returns the 
requested data.244 

A file system driver can be either a local file system driver or a remote file 
system driver. Local file system drivers process I/O for hardware devices such as 
hard disk drives or DVD drives. The preceding paragraph described the role of a 
local file system driver in fulfilling a disk I/O request. Remote file system drivers 
transfer files to and from remote file servers via network protocols. Remote file 
system drivers cooperate with the I/O manager, but instead of interacting with vol
ume drivers, remote file system drivers interact with remote file system drivers on 
other computers.245 

In general, a file system driver can act as a black box; it provides support for a 
particular file system, such as NTFS, independent of the underlying storage volume 
on which the files reside. File system drivers provide the link between the user's 
view of a file system and the data's actual representation on a storage volume. 

21.8.1 File System Drivers 

NTFS is the default file system for Windows XP. When creating the NT line of oper
ating systems, Microsoft decided to construct a new file system to address the limi
tations of the FAT file system used in DOS and older versions of Windows. FAT. 

21.8.2 NTFS 
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which uses a tabular noncontiguous allocation scheme (see Section 13.6.3, Tabular 
Noncontiguous File Allocation), does not scale well to large disk drives. For exam
ple, a file allocation table for FAT32 (the file system included in Windows ME) on a 
32GB hard drive using 2KB clusters consumes 64MB of memory. Furthermore, 
FAT32 can address no more than 232 data blocks. FAT's addressing limitation was a 
problem for FAT12 (12-bit FAT) and FAT16 (16-bit FAT) and undoubtedly will be 
a problem in the future for FAT32. To avoid these shortcomings, NTFS uses an 
indexed approach (see Section 13.6.4, Indexed Noncontiguous File Allocation) with 
64-bit pointers. This allows NTFS to address up to 16 exabytes (i.e., 16 billion 
gigabytes) of storage. Furthermore, NTFS includes additional features that make a 
file system more robust. These features include file compression, file encryption, 
support for multiple data streams and user-level enhancements (e.g., support for 
hard links and easy file system and directory browsing). 

The most important file on an NTFS volume is the Master File Table (MFT). The 
MFT stores information about all files on the volume, including file metadata (e.g., 
time of creation, the filename and whether the file is read-only, archive, etc.). The 
MFT is divided into fixed-size records, usually 1KB long. Each file has an entry in 
the MFT, which consists of at least one record, plus additional ones if necessary.246 

NTFS stores all information about a file in attributes, each consisting of a 
header and data. The header contains the attribute's type (e.g., f i 1 e_name), name 
(necessary for files with more than one attribute of the same type) and flags. If any 
of a file's attributes do not fit into the file's first MFT record, NTFS creates a special 
attribute that stores pointers to the headers of all attributes located on different 
records. An attribute's data can be of variable length. Attribute data that fits in an 
MFT entry is stored in the entry for quick access; attributes whose data reside in the 
MFT entry are called resident attributes. Because the actual file data is an attribute, 
the system stores small files entirely within their MFT entry. NTFS stores nonresi
dent attributes, the attributes whose data does not fit inside the MFT entry, else
where on disk.247 

The system records the location of nonresident attributes using three num
bers. The logical cluster number (LCN) tells the system on which cluster on disk the 
attribute is located. The run length indicates how many clusters the attribute spans. 
Because a file attribute might be split into multiple fragments, the virtual cluster 
number (VCN) tells the system to which cluster in the attribute the LCN points. 
The first VCN is zero.248 

Figure 21.10 shows a sample multirecord MFT entry that contains both resi
dent and nonresident attributes. Attribute 3 is a nonresident attribute. The data 
portion of attribute 3 contains a list of pointers to the file on disk. The first 10 clus
ters are stored on disk clusters (i.e., LCNs) 1023-1032. The eleventh cluster, VCN 
10, is stored on disk cluster 624. Attributes 1 and 2 are resident attributes, so they 
stored on the first MFT record; attributes 3 and 4 are nonresident attributes stored 
on the second MFT record. 

Master File Table 
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NTFS stores directories as files. Each directory file contains an attribute called 
index that stores the list of files inside the directory. Each file's directory entry con
tains the file's name and standard file information, such as the time of the most 
recent modification to the file and the file's access (e.g., read-only). If the index 
attribute is too large to be a resident attribute, NTFS creates index buffers to con
tain the additional entries. An additional attribute, the index_root, describes 
where on disk any index buffers are stored. 

For easy directory searching, NTFS sorts directory entries alphabetically. 
NTFS structures a large directory (one that is not a resident attribute) in a two-level 
B-tree. Figure 21.11 shows a sample directory. Suppose the system directs NTFS to 
find the file e . txt . NTFS begins searching in the i ndex attribute, where it finds 
a. txt . The file a . tx t comes before e. txt , so NTFS scans to the next file, j . txt. 
Because j . tx t comes after e. txt , NTFS proceeds to the appropriate child node 
of a . txt . NTFS searches in the first index buffer, obtaining its location on the vol
ume from information in the i ndex_root attribute. This index buffer begins with 
b. txt; NTFS scans the first index buffer until it finds e.txt.249 

Windows XP allows multiple directory entries (either in the same directory or 
in different directories) to point to the same physical file. The system can create a 
new path (i.e., a new directory entry) to an already existing file, i.e., a hard link (see 
Section 13.4.2, Metadata). It first updates the existing file's MFT entry by adding a 
new file_name attribute and incrementing the value of the hard_link attribute. 
Next, it creates the new directory entry to point to the MFT entry of the existing 
file. NTFS treats each newly created hard link to a file exactly as it treats the origi
nal file name. If a user "moves" the file, the value of a file_name attribute is 
changed from the old to the new path name. NTFS does not delete the file until all 
hard links to the file are removed. It does not permit hard links to directory files. 

Figure 21.10 | Master File Table (MFT) entry for a sample file. 
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and because hard links point directly to MFT entries, a hard link must point to a file 
residing on the same physical volume.250, 251 

Figure 21.11 | Directory contents are stored in B-trees. 

The contents (i.e., the actual file data) of an NTFS file are stored in one or more 
data streams. A data stream is simply an attribute in an NTFS file that contains file 
data. Unlike many other file systems, including FAT, NTFS allows users to place 
multiple data streams into one file. The unnamed default data stream is what most 
people consider to be the "contents" of a file. NTFS files can have multiple alter
nate data streams. These streams can store metadata about a file, such as author, 
summary or version number. They also can be a form of supplemental data, such as 
a small preview image associated with a large bitmap or a backup of a text file. 

NTFS considers each data stream of a file to be an attribute of type Data. 
Recall that header information for an attribute stores both the attribute type (in 
this case Data) and the attribute's name. NTFS differentiates between different 
alternate data streams using the attribute's name; the default data stream is 
unnamed. Using separate attributes for each data stream enables the system to 
access any data stream without scanning through the rest of the file.252 

Data Streams 

NTFS permits users to compress files and folders through the GUI interface or via 
system calls. When a user compresses a folder, the system compresses any file or 

File Compression 



folder that is added to the compressed folder. Compression is transparent; applica
tions can open, manipulate and save compressed files using the same API calls as 
they would with uncompressed files. This capability exists because NTFS decom
presses and recompresses files at the system level; i.e., the system reads the com
pressed file and decompresses it in memory, and then recompresses when the file is 
saved.253 

NTFS uses the Lempel-Ziv algorithm to compress files.254 Lempel-Ziv is one 
of the most commonly used compression algorithms. For example, the Windows 
application WinZip and the application gzip, which is popular on UNIX-compatible 
systems, both use Lempel-Ziv compression.255 

NTFS uses segmented compression, dividing files into compression units and 
compressing one unit at a time. A compression unit consists of 16 clusters; on most 
systems the cluster size is 2KB or 4KB, but clusters can range anywhere from 512 
bytes to 64KB. Sometimes compressing a portion of the file does not significantly 
reduce its size. In that case, compression and decompression add unnecessary over
head. If the compressed version of a compression unit still occupies 16 clusters, 
NTFS stores the compression unit in its uncompressed state.256 

Although larger files (or sections of files) tend to compress better than small 
files, this segmented approach decreases file access time. Segmented compression 
enables applications to perform random file I/O without decompressing the entire 
file. Segmented compression also enables NTFS to compress a file while an applica
tion modifies it. Modified portions of the file are cached in memory. Because a por
tion of the file that has been modified once is likely to be modified again, constantly 
recompressing the file while it is open is inefficient. A low-priority lazy-writer 
thread is responsible for compressing the modified data and writing it to disk.257 

NTFS performs file encryption, like file compression, by dividing the file into units 
of 16 clusters and encrypting each unit separately. Applications can specify that a 
file should be encrypted on disk when created, or if the user has sufficient access 
rights, an application executing on the user's behalf can encrypt an existing file. The 
system will encrypt any file or folder for a user-mode thread, except system files, 
system folders and root directories. Because these files and folders are shared 
among all users, no user-mode thread can encrypt them (and therefore not allow 
other users access to them).258 

NTFS uses a public/private key pair (see Section 19.2, Cryptography) to 
encrypt files. NTFS creates recovery keys that administrators can use to decrypt any 
file. This prevents files from being permanently lost when users forget their private 
keys or change jobs.259 

NTFS stores encryption keys in the nonpaged pool in system memory. This is 
done for security reasons to ensure that the encryption keys are never written to 
disk. Storing keys on disk would compromise the security of the storage volume, 
because malicious users could first access the encryption keys, then use them to 

File Encryption 
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decrypt the data.260 Instead of storing the actual keys, NTFS encrypts private keys 
using a randomly generated "master key" for each user; the master key is a sym
metric key (i.e., it does both encryption and decryption). The private key is stored 
on disk in this encrypted form. The master key itself is encrypted by a key gener
ated from the user's password and stored on disk. The administrator's recovery key 
is stored on disk in a similar manner.261 

When NTFS encrypts a file, it encrypts all data streams of that file. NTFS's 
encryption and decryption of files is transparent to applications. Note that NTFS 
encryption ensures that files residing on a secondary storage volume are stored in 
an encrypted form. If data is stored on a remote server, the user must take extra 
precautions to protect it during network transfer, such as using a Secure Sockets 
Layer (SSL) connection.262 
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A file in which most of the data is unused (i.e., set to zero), such as an image file that 
is mostly white space, is referred to as a sparse file. Sparse files can also appear in 
databases and scientific data with sparse matrices. A 4MB sparse file might contain 
only 1MB of nonzero data; storing the 3MB of zeroes on disk is wasteful. Compres
sion, although an option, degrades performance, owing to the need to decompress 
and compress the files when they are used. Therefore, NTFS provides support for 
sparse files.263 

A thread explicitly specifies that a file is sparse. If a thread converts a normal 
file to a sparse file, it is responsible for indicating areas of the file that contain large 
runs of zeroes. NTFS does not store these zeroes on disk but keeps track of them in 
a zero block list for the file. Each entry in the list contains the start and end position 
of a run of zeroes in the file. The used portion of the file is stored in the usual man
ner on disk. Applications can access just the used file segments or the entire file, in 
which case NTFS generates streams of zeroes where necessary.264 

When an application writes new data to a sparse file, the writing thread is 
responsible for indicating areas of the data that should not be stored on disk but 
rather in the zero block list. If a write contains an entire compression unit of zeroes 
(i.e., 16 clusters of zeroes), NTFS recognizes this and records the empty block in the 
zero block list instead of writing the compression unit full of zeroes to disk. (The 
write operation must be done using a special API call that notifies NTFS that the 
written data consists exclusively of zeroes.) As a result, while an application can 
specify exact ranges of zeroes for better memory management, the system also per
forms some memory optimizations on its own.265 

Sparse Files 

Recall our earlier discussion of NTFS hard links from the Master File Table subsec
tion. We noted that they are limited because they cannot point to directories, and 
the data to which they point must reside on the same volume as the hard link. NTFS 
includes a file attribute, called a reparse point, to address these limitations. A rep-
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arse point contains a 32-bit tag and can contain up to 16KB of attribute data. When 
the system accesses a file with a reparse point, the system first processes the infor
mation in the reparse point. NTFS uses the tag to determine which file system filter 
driver should handle the data in the reparse point. The appropriate filter driver 
reads the attribute data and performs some function, such as scanning for viruses, 
decrypting a file or locating the file's data.266 

Reparse points permit applications to establish links to files on another volume. 
For example, little-used hard disk data is sometimes moved to a tertiary storage 
device such as a tape drive. Although NTFS might delete the file's data after it is cop
ied to the tertiary storage (to save space on the hard disk), it retains the file's MFT 
record. NTFS also adds a reparse point specifying from where to retrieve the data. 
When an application accesses the data, NTFS encounters the reparse point and uses 
its tag to call the appropriate file system driver, which retrieves the data from tertian 
storage and copies it back to disk. This operation is transparent to the application.267 

Additionally, reparse points are used to mount volumes. The reparse point 
data specifies the root directory of the volume to mount and how to find the vol
ume, and the file system driver uses this information to mount that volume. In this 
way, a user can browse a single directory structure that includes multiple volumes. 
A reparse point can associate any directory within an NTFS volume with the root 
directory of any volume; this directory is called a mounting directory. NTFS redi
rects all access to the mounting directory to the mounted volume.268 

A reparse point can be used to create a directory junction—a directory refer
ring to another directory, similar to a symbolic directory link in Linux. The reparse 
point specifies the pathname of the directory to which the directory junction refers. 
This is similar to mounting volumes, except that both directories must be within the 
same volume. The referring directory must be empty; a user must remove the direc
tory junction before inserting files or folders into the referring directory.269 

Managing input/output (I/O) in Windows XP involves many operating system com
ponents (Fig. 21.12). User-mode processes interact with an environment subsystem 
(such as the Win32 subsystem) and not directly with kernel-mode components. The 
environment subsystems pass I/O requests to the I/O manager, which interacts with 
device drivers to handle such requests. Often, several device drivers, organized into 
a driver stack, cooperate to fulfill an I/O request.270 The Plug and Play (PnP) man
ager dynamically recognizes when new devices are added to the system (as long as 
these devices support PnP) and allocates and deallocates resources, such as I/O 
ports or DMA channels, to them. Most recently developed devices support PnP. 
The power manager administers the operating system's power management policy. 
The power policy determines whether to power down devices to conserve energy or 
keep them fully powered for high responsiveness.271 We describe the PnP manager 
and power manager in more detail later in this section. First, we describe how these 
components and device drivers cooperate to manage I/O in Windows XP. 

21.9 Input/Output Management 

1080 Case Study: Windows XP 



Windows XP stores information about each device in one or more device objects. A 
device object stores device-specific information (e.g., the type of device and the cur
rent I/O request being processed) and is used for processing the device's I/O 
requests. Often, a particular device has several device objects associated with it, 
because several drivers, organized into a driver stack, handle I/O requests for that 
device. Each driver creates a device object for that device.272 

The driver stack consists of several drivers that perform different tasks for I/O 
management. A low-level driver—a driver that interacts most closely with the 
HAL—controls a peripheral device and does not depend on any lower-level driv
ers; a bus driver is a low-level driver. A high-level driver abstracts hardware specif
ics and passes I/O requests to low-level drivers. An NTFS driver is a high-level 
driver that abstracts how data is stored on disk. An intermediate driver can be inter
posed between high- and low-level drivers to filter or process I/O requests and 
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export an interface for a specific device; a class driver (i.e., a driver that implements 
services common to a class of devices) is an intermediate driver. 

For example, a driver stack that handles mouse input might include a PCI bus 
driver, a USB controller driver, a USB hub driver, a driver that performs mouse 
acceleration and a driver that provides the user interface and processes incoming 
mouse data. The drivers cooperate to process mouse input. The drivers for the vari
ous hardware buses (i.e., the PCI bus, USB controller and USB hub) process inter
rupts and handle PnP and power management for the mouse; the intermediate 
driver manipulates the data, providing mouse acceleration; and the high-level 
driver translates the incoming data and sends it to a user-level GUI application.273 

These driver types all refer to kernel-mode drivers. Other drivers, such as 
some printer drivers, can be user-mode drivers; these drivers execute in user space 
and are specific to an environment subsystem.274 

Kernel-mode drivers operate in the thread context of the currently executing 
thread, implying that developers cannot assume that a driver will execute in the 
context of the same thread each time driver code executes. However, drivers need 
to store context information such as device state information, driver data and han
dles to kernel objects. Drivers store this information in a device extension. Windows 
XP allocates a portion of the nonpaged memory for drivers to store device exten
sions. Each device object points to a device extension, and a driver uses the device 
extension for each device it serves to store information and objects needed to pro
cess I/O for that device.275 

The system represents a device driver with a driver object which stores the 
device objects for the devices the driver services. The driver object also stores point
ers to standard driver routines.276 Many of the standard driver routines must be 
implemented by all kernel-mode drivers. These include functions for adding a 
device, unloading the driver and certain routines for processing I/O requests (such 
as read and write). Other standard driver routines are implemented only by certain 
classes of drivers. For example, only low-level drivers need to implement the stan
dard routine for handling interrupts. In this way, all drivers expose a uniform inter
face to the system by implementing a subset of the standard driver routines.277 

Plug and Play (PnP), introduced in Section 2.4.4, describes the ability of a system to 
dynamically add or remove hardware components and redistribute resources (e.g.. 
I/O ports or DMA channels) appropriately. A combination of hardware and soft
ware support enables this functionality. Hardware support involves recognizing 
when a user adds or removes components from a system and easily identifying 
these components. Both the operating system and third-party drivers must cooper
ate to provide software support for PnP. Windows XP support for PnP involves uti
lizing information provided by hardware devices, the ability to dynamically allocate 
resources to devices and a programming interface for device drivers to interact with 
the PnP system.278 

Plug and Play (PnP) 
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Windows XP implements PnP with the PnP manager, which is divided into 
two components, one in user space and the other in kernel space. The kernel-mode 
PnP manager configures and manages devices and allocates system resources. The 
user-mode PnP manager interacts with device setup programs and notifies user-
mode processes when some device event has occurred for which the process has 
registered a listener. The PnP manager automates most device maintenance tasks 
and adapts to hardware and resource changes dynamically.279 

Driver manufacturers must adhere to certain guidelines to support PnP for 
Windows XP. The PnP manager collects information from drivers by sending driver 
queries. These queries are called PnP I/O requests, because they are sent in the 
form of I/O request packets (IRPs). IRPs are described in Section 21.9.2, Input/ 
Output Processing. PnP drivers must implement functions that respond to these 
PnP I/O requests. The PnP manager uses information from the requests to allocate 
resources to hardware devices. PnP drivers must also refrain from searching for 
hardware or allocating resources, because the PnP manager handles these tasks.280 

Microsoft urges all driver vendors to support PnP, but Windows XP supports non-
PnP drivers for legacy compatibility.281 

21.9 Input/Output Management 1083 

The power manager is the executive component that administers the system's 
power policy.282 The power policy dictates how the power manager administers sys
tem and device power consumption. For example, when the power policy empha
sizes conservation, the power manager attempts to shut down devices that are not 
in use. When the power policy emphasizes performance, the power manager leaves 
these devices on for quick response times.283 Drivers that support power manage
ment must be able to respond to queries or directives made by the power man
ager.284 The power manager queries a driver to determine whether a change in the 
power state of a device is feasible or will disrupt the device's work. The power man
ager also can direct a driver to change the power state of a device.285 

Devices have power states DO, D1, D2 and D3. A device in state DO is fully 
powered, and a device in D3 is off.286 In states Dl and D2, the device is in a sleep 
(i.e., low-powered) state, and when the device returns to the DO state, the system 
will need to reinitialize some of its context. A device in Dl retains more of its con
text and is in a higher-powered state than a device in D2.287 In addition to control
ling devices' power states, the power manager controls the overall system's power 
state, which is denoted by values S0-S5. State SO is the fully powered working state, 
and S5 denotes that the computer is off. States S1-S4 represent states in which the 
computer is on, but in a sleeping state; a system in S1 is closest to fully powered, 
and in S4 is closest to off.288 

Power Maanagement 

Microsoft has defined a standard driver model—the Windows Driver Model 
(WDM)—to promote source-code compatibility across all Windows platforms. 
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Windows XP supports non-WDM drivers to maintain compatibility with legacy 
drivers, but Microsoft recommends that all new drivers be WDM drivers. This sec
tion briefly outlines the WDM guidelines.289 

WDM defines three types of device drivers. Bus drivers interface with a hard
ware bus, such as a SCSI or PCI bus, provide some generic functions for the devices 
on the bus, enumerate these devices and handle PnP I/O requests. Each bus must 
have a bus driver, and Microsoft provides bus drivers for most buses.290 

Filter drivers are optional and serve a variety of purposes. They can modify the 
behavior of hardware (e.g., provide mouse acceleration or enable a joystick to emu
late a mouse) or add additional features to a device (e.g., implement security checks 
or merge audio data from two different applications for simultaneous playback). 
Additionally, filter drivers can sort I/O requests among several devices. For example, 
a filter driver might serve multiple storage devices and sort read and write requests 
between the devices. Filter drivers can be placed in numerous locations in the device 
stack—a filter driver that modifies hardware behavior is placed near the bus driver, 
whereas one that provides some high-level feature is placed near the user interface.291 

A function driver implements a device's main function. A device's function 
driver does most of the I/O processing and provides the device's interface. Windows 
XP groups devices that perform similar functions into a device class (such as the 
printer device class).292 A function driver can be implemented as a class/miniclass 
driver pair.293 A class driver provides generic processing for a particular device class 
(e.g., a printer); a miniclass driver provides the functionality specific to a particular 
device (e.g., a particular printer model). Typically, Microsoft provides class drivers, 
and software vendors provide the miniclass drivers.294 

All WDM drivers must be designed as either a bus driver, filter driver or func
tion driver.295 Additionally, WDM drivers must support PnP, power management 
and Windows Management Instrumentation (WMI).296 Drivers that support WMI 
provide users with measurement and instrumentation data. This data includes con
figuration data, diagnostic data and custom data. Also, WMI drivers permit user 
applications to register for WMI driver-defined events. The main purpose of WMI is 
to provide hardware and system information to user processes and allow user pro
cesses greater control in configuring devices.297 
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Windows XP describes I/O requests with I/O request packets (IRPs). IRPs contain 
all the information necessary to process an I/O request. An IRP (Fig. 21.13) consists 
of a header block and an I/O stack. Most header block information does not change 
during request processing. The header block records such information as the 
requestor's mode (either kernel or user), flags (e.g., whether to use caching) and 
information about the requestor's data buffer.298 The header block also contains the 
I/O status block, which indicates whether an I/O request completed successfully or. 
if not, the request's error code.299 

21.9.2 Input/Output Processing 
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Figure 21.13 | I/O request packet (IRP). 

The I/O stack portion of an IRP contains at least one different stack location 
for each driver in the device stack of the target device. Each I/O stack location con
tains specific information that each driver needs in order to process the IRP, in par
ticular the IRP's major function code and the minor function code. Figure 21.14 lists 
several major function codes. The major function code specifies the general IRP 
function such as read (IRP_MJ_READ) or write (IRP_MJ_WRITE). In some cases, it 
designates a class of IRPs, such as IRP_MJ_PNP, which specifies that the IRP is a PnP 

Major function code 
Typical reason to send an IRP with this major 
function code 

IRP_MJ_READ 

IRP_MJ_WRITE 

IRP_MJ_CREATE 

IRP_MJ_CLOSE 

IRP_MJ_POWER 

User-mode process requests to read from a file. 

User-mode process requests to write to a file. 

User-mode process requests a handle to a file object. 
All handles to a file object have been released and all out
standing I/O requests have been completed. 

Power manager queries a driver or directs a driver to 
change the power state of a device. 

Figure 21.14 | Major function code examples in Windows XP. (Part 1 of 2.) 
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Major function code 
Typical reason to send an IRP with this major 
function code 

IRP_MJ_PNP 

IRP_MJ_DEVICE_CONTROL 

PnP manager queries a driver, allocates resources to a 
device or directs a driver to perform some operation. 
User-mode process calls a device I/O control function to 
retrieve information about a device or direct a device to per
form some operation (e.g., format a disk). 

Figure 21.14 | Major function code examples in Windows XP. (Part 2 of 2.) 

I/O request. The minor function code then indicates the particular I/O function to 
perform.300 For example, the PnP manager starts a device by specifying the major 
function code IRP_MD_PNP and the minor function code IRP_MN_START_DEVICE. 
Each I/O stack location contains several other fields, including a pointer to the target 
device object and some driver-specific parameters.301 Each driver accesses one loca
tion in the stack, and before passing the IRP to the next driver, the currently execut
ing driver initializes the stack location of the next driver by assigning each field in the 
stack a value.302 

The I/O manager and device drivers cooperate to fulfill an I/O request. Figure 21.15 
describes the path an IRP travels as the system fulfills a read I/O request from a user-
mode process. First, a thread passes the I/O request to the thread's associated envi
ronment subsystem (1). The environment subsystem passes this request to the I/O 
manager (2). The I/O manager interprets the request and builds an IRP (3). Each 
driver in the stack accesses its I/O stack location, processes the IRP, initializes the 
stack location for the next driver and passes the IRP to the next driver in the stack (4 
and 5). Additionally, a high-level or intermediate driver can divide a single I/O 
request into smaller requests by creating more IRPs. For example, in the case of a 
read to a RAID subsystem, the file system driver might construct several IRPs, 
enabling different parts of the data transfer to proceed in parallel.303 Any driver, 
except a low-level driver, can register an I/O completion routine with the I/O man
ager. Low-level drivers complete the I/O request and, therefore, do not need I/O 
completion routines. When processing of an IRP completes, the I/O manager pro
ceeds up the stack, calling all registered I/O completion. A driver can specify that its 
completion routine be invoked if an IRP completes successfully, produces an error 
and/or is canceled. An I/O completion routine can be used to retry an IRP that 
fails.304 Also, drivers that create new IRPs are responsible for disposing of them when 
processing completes; they accomplish task by using an I/O completion routine.305 

Once the IRP reaches the lowest-level driver, this driver checks that the input 
parameters are valid, then notifies the I/O manager that an IRP is pending for a 
particular device (6). The I/O manager determines whether the target device is 
available.306 If it is, the I/O manager calls the driver routine that handles the I/O 
operation (7). The driver routine cooperates with the HAL to direct the device to 
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Figure 21.15 | Servicing an IRP. 

perform an action on behalf of the requesting thread (8). Finally, the data is sent to 
the calling process's address space (9). The different methods for transferring I/O 
are described later in this section. If the device is not available, the I/O manager 
queues the IRP for later processing.307 Section 21.9.3, Interrupt Handling, describes 
how Windows XP completes I/O processing. 

Windows XP supports both synchronous and asynchronous I/O requests. Microsoft 
uses the term overlapped I/O to mean asynchronous I/O. If a thread issues a 
synchronous I/O request, the thread enters its wait state. Once the device services the 
I/O request, the thread enters its ready state, and when it obtains the processor, it 

Synchronous and Asynchronous I/O 



completes I/O processing. However, a thread that issues an asynchronous I/O request 
can continue executing other tasks while the target device services the request.308 

Windows XP provides several options for managing asynchronous I/O 
requests. A thread can poll the device to determine whether an I/O has completed. 
Polling can be useful when a thread is executing a loop. In this case, the thread can 
perform useful work while waiting for the I/O to complete and process the comple
tion of the I/O as soon as it occurs. 

Alternatively, a thread can employ an event object and wait for this object to 
enter its signaled state.309 This method is similar to synchronous I/O, except the 
thread does not enter the wait state immediately, but instead might perform some 
processing. After completing this processing, the thread waits for the completion of 
the I/O just as with synchronous I/O. 

As a third option, a thread can perform alertable I/O. When the system com
pletes servicing an alertable I/O request, it queues an APC to the requesting thread. 
The next time this thread enters an alertable wait state, it processes this APC.310 

Additionally, threads can accomplish asynchronous I/O using an I/O comple
tion port. Several file handles can be associated with an I/O completion port. When 
I/O processing completes for a file associated with one of these handles, the I/O 
manager queues an I/O completion packet to the I/O completion port. A number of 
threads register with the port and block, waiting for these packets. When a packet 
arrives, the system awakens one of these threads to complete the I/O processing.311 

A driver can choose from three methods for transferring data between a device and 
a process's memory space by setting flags in the device object for that device.312 If 
the driver chooses buffered I/O, the I/O manager allocates system pages to form a 
buffer equal to the size of the requesting thread's buffer. On read requests, the 
driver reads the data into the system buffer. The I/O manager transfers the data to 
the thread's buffer the next time the requesting thread gains the processor.313 For 
writes, the I/O manager transfers the data from the thread's buffer to the newly 
allocated system buffer before passing the IRP to the top-level driver.314 The system 
buffer does not act as a cache; it is reclaimed after I/O processing completes. 

Buffered I/O is useful for small transfers, such as mouse and keyboard input, 
because the system does not need to lock physical memory pages due to the fact 
that the system transfers the data first between the device and nonpaged pool. 
When the VMM locks a memory page, the page cannot be paged out of memory. 
However, for large transfers (i.e., more than one memory page), the overhead of 
first copying the data into the system buffer and then making a second copy to the 
process buffer reduces I/O performance. Also, because system memory becomes 
fragmented as the system executes, the buffer for a large transfer likely will not be 
contiguous, further degrading performance.315 

As an alternative, drivers can employ direct I/O, with which the device trans
fers data directly to the process's buffer. Before passing the IRP to the first driver, 
the I/O manager creates a memory descriptor list (MDL), which maps the applica-
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ble range of the requesting process's virtual addresses to physical memory 
addresses. The VMM then locks the physical pages listed in the MDL and con
structs the IRP with a pointer to the MDL. Once the device completes transferring 
data (using the MDL to access the process's buffer), the I/O manager unlocks the 
memory pages.316 

Drivers can choose not to use buffered I/O or direct I/O and, instead, use a 
technique called neither I/O. In this technique, the I/O manager passes IRPs that 
describe the data's destination (for a read) or origin (for a write) using the virtual 
addresses of the calling thread. Because a driver performing neither I/O needs 
access to the calling thread's virtual address space, the driver must execute in the 
calling thread's context. For each IRP, the driver can decide to set up a buffered I/O 
transfer by creating the two buffers and passing a buffered I/O IRP to the next low
est driver (recall that the I/O manager handles this when the buffered I/O flag is 
set). The driver can also choose to create an MDL and set up a direct I/O IRP. 
Alternatively, the driver can perform all the necessary transfer operations in the 
context of the calling thread. In any of these cases, the driver must handle all excep
tions that might occur and ensure that the calling thread has sufficient access rights. 
The I/O manager handles these issues when direct I/O or buffered I/O is used.317 

Because a driver employing neither I/O must execute in the context of the 
calling thread, only high-level drivers can use neither I/O. High-level drivers can 
guarantee that they will be entered in the context of the calling thread; on the other 
hand, an intermediate or low-level driver is called by another driver and cannot 
assume that the other driver will execute in the context of the calling thread.318 All 
drivers in a device stack must use the same transfer technique for that device—oth
erwise the transfer would fail due to device drivers' executing conflicting opera
tions—except that the highest-level driver can use neither I/O instead.319 

Once a device completes processing an I/O request, it notifies the system with an 
interrupt. The interrupt handler calls the interrupt service routine (ISR) associated 
with that device's interrupt.320 An ISR is a standard driver routine used to process 
interrupts. It returns false if the device with which it is associated is not interrupting; 
this can occur because more than one device can interrupt at the same DIRQL. If 
the associated device is interrupting, the ISR processes the interrupt and returns 
true.321 When a device that generates interrupts is installed on a Windows XP sys
tem, a driver for that device must register an ISR with the I/O manager. Typically, 
low-level drivers are responsible for providing ISRs for the devices they serve. 

When a driver registers an ISR, the system creates an interrupt object.322 An 
interrupt object stores interrupt-related information, such as the specific DIRQL at 
which the interrupt executes, the interrupt vector of the interrupt and the address 
of the ISR.323 The I/O manager uses the interrupt object to associate an interrupt 
vector in the kernel's Interrupt Dispatch Table (IDT) with the ISR. The IDT maps 
hardware interrupts to interrupt vectors.324 

21.9.3 Interrupt Handling 
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When an interrupt occurs, the kernel maps a hardware-specific interrupt 
request into an entry in its IDT to access the correct interrupt vector.325 Often, there 
are more devices than entries in the IDT, so the processor must determine which 
ISR to use. It does this by executing, in succession, each ISR associated with the 
applicable vector. When an ISR returns false, the processor calls the next ISR.326 

An ISR for a Windows XP system should execute as quickly as possible, then 
queue a DPC to finish processing the interrupt. While a processor is executing an 
ISR, it executes at the device's DIRQL. This masks interrupts from devices with 
lower DIRQLs. Quickly returning from an ISR, therefore, increases a system's 
responsiveness to all device interrupts. Also, executing at a DIRQL restricts the sup
port routines that can be called (because some of these routines must run at some 
IRQL below DIRQL). Additionally, executing an ISR can prevent other processors 
from executing the ISR—and some other pieces of the driver's code—because the 
kernel interrupt handler holds the driver's spin lock while processing the ISR. There
fore, an ISR should determine if the device with which it is associated is interrupting. 
If it is not interrupting, the ISR should return false immediately; otherwise, it should 
clear the interrupt, gather the requisite information for interrupt processing, queue a 
DPC with this information and return true. The driver can use the device extension to 
store the information needed for the DPC. Typically, the DPC will be processed the 
next time the IRQL drops below DPC/dispatch level.327 
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Not all I/O operations require the process outlined in the previous sections. When 
requested data resides in the system's file cache, Windows XP can fulfill an I/O 
request without a costly device access and without executing device driver code. 
The cache manager is the executive component that manages Windows XP's file 
cache, which consists of main memory that caches file data.328 Windows XP does 
not implement separate caches for each mounted file system, but instead maintains 
a single systemwide cache.329 

Windows XP does not reserve a specific portion of RAM to act as the file 
cache, but instead allows the file cache to grow or shrink dynamically, depending on 
system needs. If the system is running many I/O-intensive routines, the file cache 
grows to facilitate fast data transfer. If the system is executing large programs that 
consume lots of system memory, the file cache shrinks to reduce page faults. Further
more, the cache manager never knows how much cached data currently resides in 
physical memory. This is because the cache manager caches by mapping files into the 
system's virtual address space, rather than managing the cache from physical mem
ory. The memory manager is responsible for paging the data in these views into or 
out of physical memory. This caching method allows easy integration of Windows 
XP's two data access methods: memory-mapped files (see Section 13.9, Data Access 
Techniques) and traditional read/write access. The same file can be accessed via both 
methods (i.e., as a memory-mapped file through the memory manager and as a tradi
tional file through the file system), because the cache manager maps file data into 
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virtual memory. The cache manager bridges the gap between these two file represen
tations, ensuring consistency in file data between the two views.330 

When a file is read from a disk, its contents are stored in the system cache, 
which is a portion of the system address space. Then, a user-mode process copies 
the data from the cache into its own address space. A thread can set a flag that over
rides this default behavior; in this case, the transfer occurs directly between the disk 
and the process's address space. Similarly, instead of writing directly to the disk, a 
process writes new data to the cache entry (unless a flag is set).331 Fulfilling an I/O 
request without generating an IRP or accessing a device is called fast I/O.332 

Dirty cache entries can be written to disk in several ways. The memory man
ager might need to page a dirty cache page out of memory to make room for 
another memory page. When this occurs, the contents of the cache page are queued 
to be written to disk. If a dirty cache page is not paged out of memory by the mem
ory manager, the cache manager must flush the page back to disk. It accomplishes 
this by using a lazy writer thread. The lazy writer is responsible for, once per sec
ond, choosing one-eighth of the dirty pages to be flushed to disk. It constantly 
reevaluates how often dirty pages are being created and adjusts the amount of 
pages it queues to be flushed accordingly. The lazy writer chooses pages based on 
how long a page has been dirty and the last time the data on that page was accessed 
for a read operation. Additionally, threads can force a specific file to be flushed. 
Threads can also specify write-through caching (see Section 12.8, Caching and Buff
ering) by setting a flag when creating the file object.333 
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Windows XP provides many interprocess communication (IPC) mechanisms to 
allow processes to exchange data and cooperate to complete tasks. It implements 
many traditional UNIX IPC mechanisms, such as pipes, message queues (called 
mailslots by Windows XP)334 and shared memory. In addition to these "data-ori
ented" IPCs, Windows XP allows processes to communicate through "procedure-
oriented" or "object-oriented" techniques, using such tools as remote procedure 
calls or Microsoft's Component Object Model. Users on a Windows XP system also 
can initiate IPC with familiar features such as the clipboard and drag-and-drop 
capabilities. In each of Windows XP's IPC mechanisms, a server process makes 
some communication object available. A client process can contact the server pro
cess via this communication object to place a request. The request might be for the 
server to execute a function or to return data or objects. The remainder of this sec
tion describes these IPC tools. Section 21.11, Networking, introduces techniques 
and tools, such as sockets, that processes can use to communicate across a network. 

21.10 Interprocess Communication 

Windows XP provides pipes for direct communication between two processes.335 If 
communicating processes have access to the same memory bank, pipes use shared 
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memory. Thread can manipulate pipes using standard file system routines (e.g., read, 
write and open). A process that creates the pipe is called the pipe server; processes 
that connect to a pipe are referred to as pipe clients.336 Each pipe client communi
cates solely with the pipe server (i.e., not with other clients using the same pipe) 
because the pipe server uses a unique instance of the pipe for each client process.337 

The pipe server specifies a mode (read, write or duplex) when the pipe is created. In 
read mode, the pipe server receives data from clients; in write mode, it sends data to 
pipe clients; in duplex mode, it can both send and receive data via the pipe.338 Win
dows XP provides two types of pipes: anonymous pipes and named pipes. 

Anonymous pipes are used for unidirectional communication (i.e., duplex mode is 
not allowed) and can be used only among local processes. Local processes are pro
cesses that can communicate with each other without sending messages over a net
work.339 A process that creates an anonymous pipe receives both a read handle and a 
write handle for the pipe. A process can read from the pipe by passing the read han
dle as an argument in a read function call, and a process can write to the pipe by 
passing the write handle as an argument in a write function call (for more informa
tion on handles see Section 21.5.2, Object Manager). To communicate with another 
process, the pipe server must pass one of these handles to another process. Typically, 
this is accomplished through inheritance (i.e., the parent process allows the child 
process to inherit one of the pipe handles). Alternatively, the pipe server can send a 
handle for the pipe to another, unrelated process via some IPC mechanism.340 

Anonymous pipes support only synchronous communication. When a thread 
attempts to read from the pipe, it waits until the requested amount of data has been 
read from the pipe. If there is no data in the pipe, the thread waits until the writing 
process places the data in the pipe. Similarly, if a thread attempts to write to a pipe 
containing a full buffer (the buffer size is specified at creation time), it waits until 
the reading process removes enough data from the pipe to make room for the new 
data. A thread that is waiting to read data via a pipe can stop waiting if all write 
handles to the pipe are closed or if some error occurs. Similarly, a thread waiting to 
write data to a pipe can stop waiting if all read handles to the pipe are closed or if 
some error occurs.341 

Anonymous Pipes 
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Named pipes support several features absent in anonymous pipes. Named pipes can 
be bidirectional, be shared between remote processes342 and support asynchronous 
communication. However, named pipes introduce additional overhead. When the 
pipe server creates a pipe, the pipe server specifies its mode, its name and the maxi
mum number of instances of the pipe. A pipe client can obtain a handle for the pipe 
by specifying the pipe's name when attempting to connect to the pipe. If the num
ber of pipe instances is less than the maximum, the client process connects to a new 
instance of the pipe. If there are no available instances, the pipe client can wait for 
an instance to become available.343 
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Named pipes permit two pipe writing formats. The system can transmit data 
either as a stream of bytes or as a series of messages. All instances of a pipe must 
use the same write format (recall that a single pipe server can communicate with 
multiple clients by creating a unique instance of the pipe for each client). Although 
sending data as a series of bytes is faster, messages are simpler for the receiver to 
process because they package related data.344 

Windows XP permits a process to enable write-through mode. When the write-
through flag is set, write operations do not complete until the data reaches the receiv
ing process's buffer. In the default mode, once the data enters the writer's buffer, the 
write method returns. Write-through mode increases fault tolerance and permits 
greater synchronization between communicating processes because the sender knows 
whether a message successfully reaches its destination. However, write-through mode 
degrades performance, because the writing process must wait for the data to be trans
ferred across a network from the writer's end of the pipe to the reader's end.345 The 
system always performs writes using the write-through method when a process is 
using messages to ensure that each message remains a discrete unit.346 

Asynchronous I/O capability increases named pipes' flexibility. Threads can 
accomplish asynchronous communication via named pipes in several ways. A 
thread can use an event object to perform an asynchronous read or write request. 
In this case, when the function completes, the event object enters its signaled state 
(see Section 21.6.3, Thread Synchronization). The thread can continue processing, 
then wait for one or more of these event objects to enter signaled states to complete 
a communication request. Alternatively, a thread can specify an I/O completion 
routine. The system queues this routine as an APC when the function completes, 
and the thread executes the routine the next time the thread enters an alertable 
wait state.347 In addition, a pipe can be associated with an I/O completion port 
because pipes are manipulated like files. 
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Windows XP provides mailslots for unidirectional communication between a server 
and clients.348 The process that creates the mailslot is the mailslot server, whereas 
the processes that send messages to the mailslot are mailslot clients. Mailslots act as 
repositories for messages sent by mailslot clients to a mailslot server. Mailslot cli
ents can send messages to either local or remote mailslots; in either case, there is no 
confirmation of receipt. Windows XP implements mailslots as files in the sense that 
a mailslot resides in memory and can be manipulated with standard file functions 
(e.g., read, write and open). Mailslots are temporary files (the Windows XP docu
mentation refers to them as "pseudofiles"); the object manager deletes a mailslot 
when no process holds a handle to it.349 

Mailslot messages can be transmitted in two forms. Small messages are sent as 
datagrams, which are discussed in Section 16.6.2, User Datagram Protocol (UDP). 
Datagram messages can be broadcast to several mailslots within a particular 
domain. A domain is a set of computers that share common resources such as print-
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ers.350, 351 Larger messages are sent via a Server Message Block (SMB) connec
tion.352 SMB is a network file sharing protocol used in Windows operating 
systems.353 Both SMB and datagram messages can be sent from a mailslot client to 
a mailslot server by specifying the server name in a write operation.354 
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Processes can communicate by mapping the same file to their respective address 
spaces, a technique known as shared memory. The Windows XP documentation 
calls this mechanism file mapping. A process can create a file mapping object that 
maps any file, including a pagefile, to memory The process passes a handle for the 
file mapping object to other processes, either by name or through inheritance. The 
process communicates by writing data into these shared memory regions, which 
other processes can access. 

A process can use the handle to create a file view that maps all or part of the 
file to the process's virtual address space. A process may own multiple file views of 
the same file. This allows a process to access the beginning and end of a large file 
without mapping all of the file to memory, which would reduce its available virtual 
address space. Because identical file views map to the same memory frames, all 
processes see a consistent view of a memory-mapped file. If one process writes to its 
file view, the change will be reflected in all file views of that portion of the file.355, 356 

File mapping objects accelerate data access. The system maps file views inde
pendently to each process's virtual address space, but the data is located in the same 
frames in main memory. This minimizes the necessity of reading data from the disk. 
The VMM treats file mappings the same way it treats copy-on-write pages (see 
Section 21.7.1, Memory Organization). Because the VMM has been optimized to 
deal with paging, file access is efficient. Due to its efficient implementation, file 
mapping has uses beyond communication. Processes can use file mapping to per
form random and sequential I/O quickly. File mapping is also helpful for databases 
that need to overwrite small sections of large files.357, 358 

File mapping objects do not provide synchronization mechanisms to protect 
the files they map. Two processes can overwrite the same portion of the same file 
simultaneously. To prevent race conditions, processes must use synchronization 
mechanisms, such as mutexes and semaphores, that are provided by Windows XP 
and described in Section 21.6.3, Thread Synchronization.359 

21.10.3 Shared Memory 

Many IPC mechanisms facilitate data exchange between two processes. Local pro
cedure calls (LPCs) and remote procedure calls (RPCs), which we described in 
Section 17.3.2, provide a more procedural form of IPC and largely hide the underly
ing network programming. LPCs and RPCs allow a process to communicate with 
another process by calling functions executed by the other process.360 The process 
that calls the function is the client process, and the one that executes the function is 
the server process. 

21.10.4 Local and Remote Procedure Calls 
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When client and server processes reside on the same physical machine, pro
cesses execute LPCs; when they reside on separate machines, processes execute 
RPCs.361A designer employs LPCs and RPCs the same as procedure calls within a 
process. However, in some cases, the programmer takes a few extra steps to estab
lish a connection (these are described shortly). 

Note that Microsoft does not publicly document the LPC interface, and user-
mode threads cannot expose LPCs. The system reserves LPCs for use by the Win
dows XP kernel. For example, when a user thread calls a function in an environment 
subsystem's API, the kernel might convert the call into an LPC. Also, Windows XP 
converts RPCs between two processes on the same machine (called local remote 
procedure calls or LRPCs) into LPCs, because LPCs are more efficient.362 LPCs 
have less overhead than RPCs, because all data transfers using LPCs involve direct 
memory copying rather than network transport.363 Although the name "local remote 
procedure call" might sound like an oxymoron, it is simply a descriptive name for a 
procedure call made with the RPC interface between local processes. 

Figure 21.16 describes the path through which data travels during an LPC or 
RPC call. In both an RPC and an LPC, the client process calls a procedure that maps 
to a stub (1). This stub marshals the necessary function arguments (i.e., gathers the 
function arguments into a message to send to the server) and converts them to Net
work Data Representation (NDR), which is a standard network data format, 
described in The Open Group's Distributed Computing Environment (DCE) stan
dard (2).364, 365 Next, the stub calls the appropriate functions from a runtime library to 
send the request to the server process. The request traverses the network (in the case 
of an RPC) to reach the server-side runtime library (3), which passes the request to 

Figure 21.16 | Flow of an LPC or RPC call. 



the server stub (4). The server stub unmarshals the data (i.e., converts the client's 
message into a call to the intended procedure) for the server function (5). The server 
process executes the requested function and sends any return values to the client via 
the reverse path (6 through 10).366 Developers can employ RPCs using many differ
ent transport and network protocols such as TCP/IP and Novell Netware's Internet
working Packet eXchange/Sequenced Packet eXchange (IPX/SPX).367 Both client 
processes and server processes can execute RPCs either synchronously or asynchro
nously, and the communicating processes need not use the same method.368 

1096 Case Study: Windows XP 

To expose a procedure as an RPC, the server process must create an Interface Def
inition Language (IDL) file. This file specifies the interfaces that the RPC server 
presents to other processes.369 The developer writes the interface in Microsoft IDL 
(MIDL), which is Microsoft's extension of IDL—The Open Group's Distributed 
Computing Environment (DCE) standard for RPC interoperability.370 The IDL file 
consists of a header and an interface body. The header describes information global 
to all interfaces defined in the body such as the universally unique identifier 
(UUID) for the interface and an RPC version number.371 The body contains all 
variable and function prototype declarations. The MIDL compiler builds the client 
and server stubs from the IDL file.372 The server and client also can create applica
tion configuration files (ACFs), which specify platform-specific attributes, such as 
the manner in which data should be marshalled or unmarshalled.373 

The physical communication in an RPC is accomplished through an endpoint 
that specifies the network-specific address of the server process and is typically a 
hardware port or named pipe. The server creates an endpoint before exposing the 
RPC to other processes.374 Client-side runtime library functions are responsible for 
establishing a binding to this endpoint, so that a client can send a request to the 
server. A binding is a connection between the client and the server. To create a bind
ing, the client process must obtain a binding handle, which is a data structure that 
stores the connection information.375 The binding handle stores such information as 
the name of the server, address of the endpoint and the protocol sequence.376 The 
protocol sequence specifies the RPC protocol (e.g., connection-oriented, LRPC), the 
transport protocol (e.g., TCP) and the network protocol (e.g., IP).377 

Windows XP supports three types of binding handles: automatic, implicit and 
explicit handles. Using an automatic handle, the client process calls the remote 
function, and the stub manages all the communication tasks. Implicit handles per
mit the client process to specify the particular server to use with an RPC, but once 
the client process passes the handle to the runtime library functions, it no longer 
needs to manage the handle. With explicit handles, the client process must specify 
the binding information as well as create and manage the handle.378 This extra con
trol permits client processes using explicit handles to connect to more than one 
server process and simultaneously execute multiple RPCs.379 

Communication via an LPC is similar to an RPC, although some steps are 
omitted. The server must still create an IDL file, which is compiled by a MIDL 
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compiler. The client process must include the client-side runtime library with the 
file that calls the LPC. The stub handles the communication, and the client and 
server processes communicate over a port for procedure calls that involve small 
data transfers. Procedure calls in which processes transfer a large amount of data 
must use shared memory. In this case, the sender and receiver place message data 
into a section of shared memory.380 

Microsoft's Component Object Model (COM) provides a software architecture 
allowing interoperability between diverse software components. In the COM archi
tecture, the relative location of two communicating components is transparent to 
the programmer and can be in process, cross process or cross network. COM is not 
a programming language, but a standard designed to promote interoperability 
between components written in different programming languages. COM also is 
implemented on some flavors of UNIX and Apple Macintosh operating systems. 
Developers use COM to facilitate cooperation and communication between sepa
rate components in large applications.381 

COM objects (a COM object is the same as a COM component) interact indi
rectly and exclusively through interfaces.382 A COM interface, which is written in 
MIDL, is similar to a Java interface; it contains function prototypes that describe 
function arguments and return values, but does not include the actual implementa
tion of the functions. As with Java, a COM object must implement all of the meth
ods described in the interface and can implement other methods as well.383 Once 
created, a COM interface is immutable (i.e., it cannot change). A COM object can 
have more than one interface; developers augment COM objects by adding a new 
interface to the object. This permits clients dependent on the old features of a COM 
object to continue functioning smoothly when the object is upgraded. Each inter
face and object class possesses a globally unique ID (GUID), which is a 128-bit 
integer that is, for all practical purposes, guaranteed to be unique in the world. 
Interface IDs (IIDs) are GUIDs for interfaces, and class IDs (CLSIDs) are GUIDs 
for object classes. Clients refer to interfaces using the IID, and because the interface 
is immutable and the IID is globally unique, the client is guaranteed to access the 
same interface each time.384 

COM promotes interoperability between components written in diverse lan
guages by specifying a binary standard (i.e., a standard representation of the object 
after it has been translated into machine code) for calling functions. Specifically, 
COM defines a standard format for storing pointers to functions and a standard 
method for accessing the functions using these pointers.385 Windows XP, and other 
operating systems with COM support, provide APIs for allocating and deallocating 
memory using this standard. The COM library in Windows XP provides a rich vari
ety of support functions that hide most of the COM implementations.386 

COM servers can register their objects with the Windows XP registry. Clients 
can query the registry using the COM object's CLSID to obtain a pointer to the 
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COM object.387 A client can also obtain a pointer to a COM object's interface from 
another COM object or by creating the object. A client can use a pointer to any 
interface for a COM object to find a pointer to any other interface that the COM 
object exposes.388 

Once the client obtains a pointer to the desired interface, the client can exe
cute a function call to any procedure exposed by this interface (assuming the client 
has appropriate access rights). For in-process procedure calls, COM executes the 
function directly, adding essentially no overhead. For cross-process procedure calls 
in which both processes reside on the same computer, COM uses LRPCs (see 
Section 21.10.4, Local and Remote Procedure Calls), and Distributed COM 
(DCOM) supports cross-network function calls.389 COM marshals and unmarshals 
all data, creates the stubs and proxies (proxies are client-side stubs) and transports 
the data (via direct execution, LRPCs or DCOM).390 

COM supports several threading models a process can employ to maintain its 
COM objects. In the apartment model, only one thread acts as a server for each 
COM object. In the free thread model, many threads can act as the server for a sin
gle COM object (each thread operates on one or more instances of the object). A 
process can also use the mixed model in which some of its COM objects reside in 
single apartments and others can be accessed by free threads. In an apartment 
model, COM provides synchronization by placing function calls in the thread's win
dow message queue. COM objects that can be accessed by free threads must main
tain their own synchronization (see Section 21.6.3, Thread Synchronization, for 
information on thread synchronization).391 

Microsoft has built several technologies on top of COM to further facilitate 
cooperation in component software design. COM+ extends COM to handle 
advanced resource management tasks; e.g., it provides support for transaction pro
cessing and uses thread pools and object pools, which move some of the responsibil
ity for resource management from the component developer to the system.392 

COM+ also adds support for Web services and optimizes COM scalability.393 Dis
tributed COM (DCOM) provides a transparent extension to basic COM services 
for cross-network interactions and includes protocols for finding DCOM objects on 
remote services.394 Object Linking and Embedding (OLE), discussed in the next 
section, builds on COM to provide standard interfaces for applications to share 
data and objects. ActiveX Controls are self-registering COM objects (i.e., they 
insert entries in the registry upon creation). Typically, ActiveX Controls support 
many of the same embedding interfaces as OLE objects; however, ActiveX Con
trols do not need to support all of them. This makes ActiveX Controls ideal for 
embedding in Web pages because they have less overhead.395 

21.10.6 Drag-and-Drop and Compound Documents 
Windows XP provides several techniques that enable users to initiate IPC. A famil
iar example is permitting users to select text from a Web page, copy this text and 
paste it into a text editor. Users can also embed one document inside another; e.g., a 
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user could place a picture created in a graphical design program into a word pro
cessing document. In both of these cases, the two applications represent different 
processes that exchange information. Windows XP provides two primary tech
niques for this type of data transport: the clipboard and Object Linking and 
Embedding (OLE). 

The clipboard is a central repository of data, accessible to all processes.396 A 
process can add data to the clipboard when the user invokes either the copy or the 
cut command. The selected data is stored in the clipboard along with the data's for
mat.397 Windows XP defines several standard data formats, including text, bitmap 
and wave. Processes can register new clipboard formats, create private clipboard 
formats and synthesize one or more of the existing formats.398 Any process can 
retrieve data from the clipboard when the user invokes the paste command.399 

Conceptually, the clipboard acts as a small area of globally shared memory. 
OLE builds on COM technology by defining a standard method for processes 

to exchange data. All OLE objects implement several standard interfaces that 
describe how to store and retrieve data for an OLE object, how to access the object 
and how to manipulate the object. Users can create compound documents—docu
ments with objects from more than one application—either by linking outside objects 
or embedding them. When a document links an object from another source, it does 
not maintain the object inside its document container (the document container pro
vides storage for the document's objects and methods for manipulating and viewing 
these objects). Rather, the document maintains a reference to the original object. The 
linked object reflects updates made by the server process to the object. Embedding 
an object places it, along with the interfaces for manipulating the object, inside the cli
ent document. The linked or embedded object is a COM component complete with a 
set of interfaces that the client can use to manipulate the object.400 
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Windows XP supports many networking protocols and services. Developers employ 
networking services to accomplish IPC with remote clients and make services and 
information available to users. Users exploit networks to retrieve information and 
access resources available on remote computers. This section investigates various 
aspects of Windows XP's networking model. We examine network I/O and the 
driver architecture employed by Windows XP. We consider the network, transport 
and application protocols supported by Windows XP. Finally, we describe the net
work services that Windows XP provides, such as the Active Directory and .NET. 

21.11 Networking 

Windows XP provides a transparent I/O programming interface. In particular, pro
grammers use the same functions regardless of where the data reside. However, the 
Windows XP system must handle network I/O differently than local I/O.401 
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Figure 21.17 illustrates how Windows XP handles a network I/O request. The 
client contains a driver called a redirector (or network redirector).402 A redirector is 
a file system driver that directs network I/O requests to appropriate devices over a 
network.403 First, the client process passes an I/O request to an environment sub
system (1). The environment subsystem then sends this request to the I/O manager 
(2), which packages the request as an IRP, specifying the file's location in Uniform 
Naming Convention (UNC) format. UNC format specifies the file's pathname, 
including on which server and in which directory on that server the file is located. 
The I/O manager sends the IRP to the Multiple UNC Provider (MUP), which is a 
file system driver that determines the appropriate redirector to which to send the 
request (3). Later in this section we see that Windows XP ships with two file sharing 
protocol, CIFS and WebDAV, which use different redirectors. After the redirector 
receives the IRP (4), the redirector sends the request over the network to the 
appropriate server file system driver (5). The server driver determines whether the 
client has sufficient access rights for the file, then communicates the request to the 
target device's driver stack via an IRP (6). The server driver receives the result of 
the I/O request (7). If there is an error processing the request, the server driver 
informs the client. Otherwise, the server driver passes the data back to the redirec
tor (8), and this data is passed to the client process (9).404,405 

The Common Internet File System (CIFS) is Windows XP's native file sharing 
protocol. CIFS is used for the application layer of the TCP/IP stack (see Section 16.4, 
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Figure 21.17 | Handling & network I/O request. 



TCP/IP Protocol Stack). VMS and several varieties of UNIX also support CIFS. 
Developers often pair CIFS with NetBIOS (discussed later in this section) over TCP/ 
IP for the network and transport layers, but CIFS can use other network and trans
port protocols as well.406 CIFS is meant to complement HTTP and replace older file 
sharing protocols such as FTP.407 Windows XP also supports other network file shar
ing protocols such as Web-based Distributed Authoring and Versioning (WebDAV). 
WebDAV allows users to write data directly to HTTP servers and is designed to sup
port collaborative authoring between groups in remote locations.408 

To share files using CIFS, the client and server must first establish a connec
tion. Before a client can access a file, the client and server connect, and the server 
authenticates the client (see Section 19.3, Authentication) by evaluating the user-
name and password sent by the client. The redirectors interact to set up the session 
and transfer data.409 CIFS provides several types of opportunistic locks (oplocks) to 
enhance I/O performance. A client uses an oplock to secure exclusive access to a 
remote file. Without one of these oplocks, a client cannot cache network data 
locally, because other clients also might be accessing the data. If two clients both 
cache data locally and write to this data, their caches will not be coherent (see 
Section 15.5, Multiprocessor Memory Sharing). Therefore, a client obtains an 
oplock to ensure that it is the only client accessing the data.410 When a second client 
attempts to gain access to the locked file (by attempting to open it), the server may 
break (i.e., invalidate) the first client's oplock. The server allows the client enough 
time to flush its cache before granting access to the second client.411 

Windows XP uses a driver stack to communicate network requests and transmit 
network data. This driver stack is divided into several layers, which promotes mod
ularity and facilitates support for multiple network protocols. This subsection 
describes the low-level driver architecture employed in Windows XP. 

Microsoft and 3Com developed the Network Driver Interface Specification 
(NDIS), which specifies a standard interface between lower-level drivers in the net
work driver stack. NDIS drivers provide the functionality of the link layer and 
some functionality of the network layer of the TCP/IP protocol stack (see 
Section 16.4, TCP/IP Protocol Stack).412 NDIS drivers communicate through func
tions provided in Windows XP's NDIS library. The NDIS library functions translate 
one driver's function call into a call to a function exposed by another driver. This 
standard interface increases the portability of NDIS drivers.413 NDIS allows the 
same programming interface (e.g., Windows sockets, see Section 21.11.3, Network 
Protocols) to establish connections using different network protocols, such as IP 
and Internet Packet eXchange (IPX).414 

Figure 21.18 illustrates the architecture that Windows XP employs to process 
network data. Windows XP divides the network architecture into three layers that 
map to layers of the TCP/IP protocol stack. The physical network hardware, such as 
the network interface card (NIC) and the network cables, form the physical layer. 

21.11.2 Network Driver Architecture 
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Figure 21.18 | Networking driver architecture. 

NDIS drivers (described in the following paragraphs) manage the data link and net
work layers. Transport Driver Interface (TDI) drivers and TDI clients compose the 
top layer. The TDI drivers provide a transport interface between NDIS drivers and 
TDI clients. TDI clients are low-level application drivers and might interact with 
other application-layer drivers. 

Designers implement the NDIS layer with several drivers. An NDIS miniport 
driver manages the NIC and transmits data between the NIC and higher-level driv
ers. The miniport driver interfaces with the drivers above it in the driver stack to 
transmit outgoing network data to the NIC. An upper-level driver invokes an NDIS 
function that passes the packet to the miniport driver, and the miniport driver 
passes the data to the NIC. The miniport driver also processes the NIC's interrupts 
and passes data that the NIC receives up the driver stack.415 
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NDIS intermediate drivers are optional drivers that reside between a miniport 
driver and a higher-level driver. Intermediate drivers translate packets between dif
ferent communication media, filter packets or provide load balancing across several 
NICs.416 

NDIS protocol drivers are the highest-level NDIS drivers. Protocol drivers 
place data into packets and pass these packets to lower-level drivers (such as inter
mediate drivers or miniport drivers). Protocol drivers provide an interface between 
the transport drivers and other NDIS drivers and can be used as the lowest layer in 
the implementation of a transport protocol stack (such as TCP/IP).417 

The NDIS protocol driver interacts with TDI drivers. A TDI driver exports a 
network interface to upper-level kernel-mode clients. The redirectors described in 
the previous subsection are TDI clients. Winsock applications (described in the next 
subsection) also are TDI clients. TDI drivers implement transport protocols such as 
UDP and TCP; NDIS protocol drivers often implement the network protocol (e.g., 
IP). Alternatively, a TDI transport driver can implement both the network and 
transport protocols. Upper-level kernel-mode drivers send network requests to TDI 
drivers.418 These drivers implement the application layer of the TCP/IP protocol 
stack. The next subsections describe the various protocols and network services 
available to Windows XP applications. 

Windows XP supports several different protocols for the network, transport and 
application layers of the TCP/IP stack. Windows XP supports some of these proto
cols to provide compatibility with popular legacy programs or other network clients. 

21.11.3 Network Protocols 

IP is installed by default on Windows XP systems; IP provides routing for packets 
traversing a network and is the Internet's network protocol. Users can install other 
network protocols, such as the Internetwork Packet exchange (IPX) protocol, 
which is used by Novell's Netware.419 IPX provides services similar to IP; IPX 
routes packets between different locations in a network, but is designed for 
LANs.420 Because the NDIS library supports a standard interface between protocol 
drivers and NICs, Windows XP can use the same NIC to operate both protocols.421 

Windows XP also supports several transport protocols. TCP, by far the most 
commonly used transport protocol, is installed by default. TCP provides a connec
tion-oriented transport; i.e., the participants of a network communication must cre
ate a session before communicating.422 For connectionless transport, Windows XP 
supports UDP.423 Users can also install support for Sequenced Packet eXchange 
(SPX), which offers connection-oriented services for IPX packets. Windows XP 
provides SPX for interoperability with clients and servers using IPX/SPX protocols, 
such as Netware,424 

Before the explosion of interest in the Internet and World Wide Web, the 
DOS and Windows operating systems supported NetBIOS Extended User Inter-
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face (NetBEUI) as the native network and transport protocols. Network Basic 
Input/Output System (NetBIOS) is the programming API that supports NetBEUI. 
NetBEUI is a fairly primitive protocol most applicable for small networks. It has 
several limitations; for example, it does not provide for network connection routing 
outside a LAN.425 Windows XP does not provide support for NetBEUI, although 
support can be manually installed by a user. 

However, NetBIOS over TCP/IP (NBT) is still supported by Windows XP to 
provide compatibility with old applications that employ the NetBIOS API.426 Net
BIOS layered over TCP and IP provides connection-oriented communication using 
NBT. Alternatively, developers can layer NetBIOS over UDP and IP for connec
tionless communication using NBT. CIFS is commonly used with NBT as the 
underlying network and transport protocols. However, in Windows XP, CIFS can 
execute over TCP/IP without NetBIOS encapsulation.427 

At the application layer, Windows XP supports HTTP for Web browsing and CIFS 
for file and print sharing. For HTTP support, Windows XP provides WinHTTP and 
WinlNet. WinHTTP supports communication between clients and servers over an 
HTTP session. It provides SSL security and is integrated with Microsoft Passport 
(see Section 19.3.4, Single Sign-On). WinHTTP also provides other HTTP services, 
such as tracing and Kerberos authentication (see Section 19.3.3, Kerberos) and 
allows synchronous and asynchronous communication.428 WinlNet is an older API 
that allows applications to interact with the FTP, HTTP and Gopher protocols to 
access resources over the Internet.429 WinlNET is designed for client applications, 
whereas WinHTTP is ideal for servers.430 

CIFS, described in the previous section, is an extension of the Server Message 
Block (SMB) file sharing protocol. SMB is the native file sharing protocol of older 
Windows operating systems such as Windows NT and Windows 95. SMB uses Net
BIOS to communicate with other computers in a virtual LAN. A virtual LAN con
sists of computers that share the same NetBIOS namespace; the computers can be 
anywhere in the world. To share files with SMB, two computers on the same virtual 
LAN set up an SMB session; this includes acknowledging the connection, authenti
cating the identity of both parties and determining the access rights of the client. 
CIFS extends SMB, adding a suite of protocols that improve access control and han
dle announcing and naming of network resources. The familiar My Network Places 
program included with Windows XP allows users to share files through CIFS.431 

Application Layer Protocols 

1104 Case Study: Windows XP 

Windows XP supports network communication through sockets. Windows sockets 2 
(Winsock 2) is an application of BSD sockets (see Section 20.10.3, Sockets) to the 
Windows environment. Sockets create communication endpoints that a process can 
use to send and receive data over a network.432 Sockets are not a transport protocol; 
consequently, they need not be used at both ends of a communication connection. 
Developers can layer Winsock 2 on top of any transport and network protocols (e.g. 
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TCP/IP or IPX/SPX). Users can port code written for UNIX-style sockets to Win-
sock applications with minimal changes. However, Winsock 2 includes extended 
functionality that might make porting an application from Windows XP to a UNIX-
based operating system implementing Berkeley sockets difficult.433, 434 

The Winsock specification implements many of the same functions that Ber
keley sockets implement to provide compatibility with Berkeley socket applica
tions. As with Berkeley sockets, a Windows socket can be either a stream socket or 
a datagram socket. Recall that stream sockets provide reliability and packet order
ing guarantees.435 Winsock adds extra functionality to sockets, such as asynchronous 
I/O, protocol transparency (i.e., developers can choose the network and transport 
protocols to use with each socket) and quality-of-service (QoS) capabilities.436 The 
latter provide to processes information about network conditions and the success or 
failure of socket communication attempts.437 
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Windows XP includes various network services that allow users to share informa
tion, resources and objects across a network. Active Directory provides directory 
services for shared objects (e.g., files, printers, services, users, etc.) on a network.438 

Its features include location transparency (i.e., users do not know the address of an 
object), hierarchical storage of object data, rich and flexible security infrastructure 
and the ability to locate objects based on different object properties.439 

Lightweight Directory Access Protocol (LDAP) is a protocol for accessing, 
searching and modifying Internet directories. An Internet directory contains a list
ing of computers or resources accessible over the Internet. LDAP employs a client/ 
server model.440 LDAP clients can access an Active Directory.441 

Windows XP provides Remote Access Service (RAS), which allows users to 
remotely connect to a LAN. The user must be connected to the network through a 
WAN or a VPN. Once the user connects to the LAN through RAS, the user oper
ates as though directly on the LAN.442 

Support for distributed computing on Windows XP is provided through the 
Distributed Component Object Model (DCOM) and .NET. DCOM is an extension 
of COM, which we described in Section 21.10.5, Component Object Model (COM), 
for processes that share objects across a network. Constructing and accessing 
DCOM objects is done just as with COM objects, but the underlying communica
tion protocols support network transport. For information on using DCOM for dis
tributed computing see Section 17.3.5, DCOM (Distributed Component Object 
Model).443 The next section introduces .NET. 

21.11.4 Network Services 

Microsoft has developed a technology called .NET, which supplants DCOM for dis
tributed computing in newer applications. .NET is aimed at transforming computing 
from an environment where users simply execute applications on a single computer 
to a fully distributed environment. In this computing model, local applications com-
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municate with remote applications to execute user requests. This contrasts with the 
traditional view of a computer as merely fulfilling a single user's requests. .NET is a 
middleware technology, which provides a platform- and language-neutral develop
ment environment for components that can easily intemperate.444, 445 

Web services are the foundation of .NET; they encompass a set of XML-based 
standards that define how data should be transported between applications over 
HTTP. Because of XML's large presence in this technology, .NET Web services are 
often called XML Web services. Developers use Web services to build applications 
that can be accessed over the Internet. Web service components can be exposed over 
the Internet and used in many different applications (i.e., Web services are modular). 
Because XML messages (which are sent and retrieved by Web services) are simply 
text messages, any application can retrieve and read XML messages. Web services 
make .NET interoperable and portable between different platforms and languages.446 

The .NET programming model is called the .NET framework. This framework 
provides an API which expands on the Windows API to include support for Web 
services. The .NET framework supports many languages, including Visual Basic 
.NET, Visual C++ .NET and C#. The .NET framework facilitates development of 
.NET Web services.447 

.NET server components include Web sites and .NET enterprise servers, such 
as Windows Server 2003. Many Web service components that home users access are 
exposed on these two platforms. Although desktop operating systems, such as Win
dows XP, or server systems running Windows XP can expose Web services, Win
dows XP systems are mainly consumers (i.e., clients) of .NET services.448-449 
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To increase Windows XP's flexibility, Microsoft developed several editions. For 
example, Windows XP Home Edition is tailored for home users, whereas Windows 
XP Professional is more applicable in a corporate environment. Microsoft has also 
produced editions of Windows XP to address scalability concerns. Although all edi
tions of Windows XP support symmetric multiprocessing (SMP), Windows XP 64-
Bit Edition is specifically designed for high-performance desktop systems, which 
are often constructed as SMP systems (see Section 15.4.1, Uniform Memory 
Access). Additionally, Microsoft has developed an embedded operating system 
derived from Windows XP, called Windows XP Embedded. An embedded system 
consists of tightly coupled hardware and software designed for a specific electronic 
device, such as a cellular phone or an assembly-line machine. This section describes 
the features included in Windows XP to facilitate scaling up to SMP systems and 
down to embedded systems. 

21.12 Scalability 

Windows XP scales to symmetric multiprocessor (SMP) systems. Windows XP sup
ports multiprocessor thread scheduling, locking the kernel, a 64-bit address space 
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(in Windows XP 64-Bit Edition) and API features that support programming server 
applications. 

Windows XP can schedule threads efficiently on multiprocessor systems, as 
described in Section 21.6.2, Thread Scheduling. Windows XP attempts to schedule a 
thread on the same processor on which it recently executed to exploit data cached 
on a processor's private cache. The system also uses the ideal processor attribute to 
increase the likelihood that a process's threads execute concurrently, thus increas
ing performance. Alternatively, developers can override this default and use the 
ideal processor attribute to increase the likelihood that a process's threads execute 
on the same processor to share cached data.450 

Windows XP implements spin locks (described in Section 21.6.3, Thread Syn
chronization), which are kernel locks designed for multiprocessor systems. Specifi
cally, the queued spin lock decreases traffic on the processor-to-memory bus, 
increasing Windows XP's scalability.451 In addition, as the original NT kernel has 
evolved (recall that Windows XP is NT 5.1), designers have reduced the size of crit
ical sections, which reduces the amount of time a processor is busy waiting to obtain 
a lock. Sometimes, a processor cannot perform other work when waiting for a spin 
lock, such as when a processor needs to execute thread scheduling code. Reducing 
the size of this critical section increases Windows XP's scalability.452 Additionally, 
Windows XP provides a number of other fine-grained locks (e.g., dispatcher objects 
and executive resource locks), so that developers need only lock specific sections of 
the kernel, allowing other components to execute without disruption.453 

Memory support for large SMP systems emanates from Windows XP 64-Bit 
Edition. 64-bit addressing provides 264 bytes (or 16 exabytes) of virtual address 
space; this contrasts with 232 bytes (or 4 gigabytes) for 32-bit versions of Windows 
XP. In practice, Windows XP 64-Bit Edition provides processes with 7152GB of vir
tual memory address range.454 Windows XP 64-Bit Edition currently supports up to 
1 terabyte of cache memory, 128 gigabytes of paged system memory and 128 
gigabytes of nonpaged pool. Windows XP 64-Bit Edition has been ported to Intel 
Itanium II processors, which are described in Section 14.8.4, Explicitly Parallel 
Instruction Computing (EPIC)455. Soon (as of this writing), Microsoft plans to 
release Windows XP 64-Bit Edition for Extended Systems to support AMD 
Opteron and Athlon 64 processors.456 The 64-bit editions of Windows also offer 
greater performance and precision when manipulating floating point numbers, 
because these systems store floating point numbers using 64 bits.457 

Finally, Windows XP has added several programming features tailored for 
high-performance systems, which is an environment in which many SMP systems are 
employed. The job object (described in Section 21.6.1, Process and Thread Organiza
tion) allows servers to handle resource allocation to a group of processes. In this way, 
a server can manage the resources it commits to a client request.458 Also, I/O com
pletion ports (described in Section 21.9.2, Input/Output Processing) facilitate the 
processing of large numbers of asynchronous I/O requests. In a large server pro
gram, many threads might issue asynchronous I/O requests; I/O completion ports 
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provide a central area where dedicated threads can wait and process incoming I/O 
completion notifications.459 Additionally, thread pools (described in Section 21.6.1, 
Process and Thread Organization) permit server processes to handle incoming client 
requests without the costly overhead of creating and deleting threads for each new 
request. Instead, these requests can be queued to the thread pool.460 

Microsoft has created an operating system called Windows XP Embedded, which 
scales Windows XP for embedded devices. Microsoft divides Windows XP into 
clearly defined functional units called components. Components range from user-
mode applications such as Notepad to portions of kernel space such as the CD-
ROM interface and power management tools. The designer of a Windows XP 
Embedded system chooses from over 10,000 components to customize a system for 
a particular device.461 Components for Windows XP Embedded contain the same 
code as Windows XP Professional, providing full compatibility with Windows XP. 
Windows XP Embedded also contains the core Windows XP microkernel.462 

Windows XP Embedded is designed for more robust embedded devices such 
as printers, routers, point-of-sale systems and digital set-top boxes. Microsoft pro
vides a different operating system, Windows CE, for lighter devices such as cellular 
phones and PDAs. The goal of Windows XP Embedded is to allow devices with lim
ited resources to take advantage of the Windows XP computing environment.463 

Devices such as medical devices, communication equipment and manufactur
ing equipment would benefit from Windows XP Embedded, but require hard real
time guarantees. Recall from Section 8.9, Real-Time Scheduling, the difference 
between soft real-time scheduling (like that provided by Windows XP) and hard 
real-time scheduling. Soft real-time scheduling assigns higher priority to real-time 
threads, whereas hard real-time scheduling provides guarantees that, given a start 
time, a thread will finish by a certain deadline. Venturcom464 has designed a Real-
Time Extension (RTX) for Windows XP Embedded and Windows XP. RTX 
includes a new threading model (implemented as a device driver), a collection of 
libraries and an extended HAL. Venturcom's RTX achieves hard real-time goals by 
masking all non-real-time interrupts when real-time threads execute, never mask
ing real-time interrupts (recall that interrupt masking is accomplished through the 
HAL) and enforcing strict thread priorities. For example, threads waiting for syn
chronization objects, such as mutexes and semaphores, are placed in the ready state 
in priority order (as opposed to FIFO order). RTX implements 128 priority levels 
to increase scheduling flexibility. 

21.12.2 Windows XP Embedded 

Any operating system aimed at the corporate market must offer substantial security 
capabilities. Windows XP Professional provides a wide variety of security services 
to its users, whereas Windows XP Home Edition has a slightly more limited range 
and is targeted at consumers with simple security needs. The following subsections 
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describe security in Windows XP Professional. Much of the information, especially 
non-networking related material, applies to Windows XP Home Edition as well. 

Windows XP provides users with a range of authentication and authorization 
options that permit access a physical terminal, a local network or the Internet. A 
database of users' credentials helps provide users with single sign-on; once a user 
logs onto Windows XP, the system takes care of authenticating the user to other 
domains and networks without prompting for credentials. The operating system 
includes a built-in firewall (see Section 19.6.1, Firewalls) that protects the system 
from malicious access. 
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Windows XP has a flexible authentication policy. Users provide the system with cre
dentials which consists of their identity (e.g. username) and proof of identity (e.g. 
password). For local access, the system authenticates a user's credentials against the 
Security Account Manager (SAM) database. A designated computer, called the 
domain controller, handles remote authentication. The native authentication sys
tem for network access is Kerberos V5 (see Section 19.3.3, Kerberos). Windows XP 
also supports the NT LanMan (NTLM) authentication protocol for backward com
patibility with domain controllers running NT 4.O.465 

Authentication begins at a logon screen; this can be either the standard logon 
program (called MSGINA) or a third-party Graphical Identification and Authentica
tion (GINA) DLL.466 GINA passes the user's username and password to the Winl-
ogon program, which passes the credentials to the Local Security Authority (LSA). 
The LSA is responsible for handling all authentication and authorization for users 
physically accessing that particular machine.467 

If the user is logging on only to the local machine, the LSA verifies the user's 
credentials with the local SAM database. Otherwise, the LSA passes the credentials 
over the network to the domain controller (the computer responsible for handling 
authentication) via the Security Support Provider Interface (SSPI). This is a stan
dard interface for obtaining security services for authentication that is compatible 
with both Kerberos V5 and NTLM. The domain controller first attempts to authen
ticate using Kerberos, which verifies credentials using the Active Directory. If Ker
beros fails, GINA resends the username and password. This time the domain 
controller attempts to authenticate via the NTLM protocol, which relies on a SAM 
database stored on the domain controller. If both Kerberos and NTLM fail, GINA 
prompts the user to reenter the username and password.468, 469 Figure 21.19 illus
trates the authentication process. 

Computers, especially mobile ones such as laptops, often use different creden
tials to connect to different domains. This is done for security reasons; if one 
domain is compromised, accounts on the other domains remain secure.(Windows 
XP lets users store domain-specific credentials in Stored User Names and Pass
words. Upon an authentication error, the LSA first attempts to authenticate using a 
saved credential for that domain. Upon failure, the LSA activates the GINA screen 

21.13.1 Authentication 



Any user, group, service or computer that performs an action in a Windows XP sys
tem is considered a security principal. A user can set security permissions for any 
security principal.471 It is often advantageous to place users with the same security 
privileges into a security group, then set security permissions based on the security 
group. Security groups can be nested and grouped to form larger security groups. 
Using security groups simplifies managing the security policy for a large system.472 

The system assigns each security principal a unique security identifier (SID). 
When a security principal logs on, the system uses the security principal's SID to 
assign an access token. The access token stores security information about the secu
rity principal, including its SID, the SID of all groups to which the security principal 
belongs and the default access control list (see Section 19.4.3, Access Control 
Mechanisms) to assign to all objects the security principal creates. The system 
attaches a copy of the access token to every process and thread that the security 
principal runs. The system uses a thread's access token to verify that the thread is 
authorized to perform a desired action.473 

Windows XP uses access tokens to implement fast user switching—enabling a 
new user to log on without logging off the current user. (Fast user switching works 
only on computers that are not members of a domain). Often, especially in home 
environments, a user may start a long-running process, then leave the computer to 

21.13.2 Authorization 

to prompt the user for a credential. The screen lets the user select a stored creden
tial from a drop-down menu. The system records every credential that a user enters 
to a GINA (as long as the user selects a box giving the system permission to do so). 
In addition, users may use a special GUI to add, edit and remove credentials.470 

Figure 21.19 | Authentication process in a Windows XP network. 
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execute unattended. Fast user switching permits another person to log on, run pro
grams, check e-mail, play a game, and so on. The first user's processes continue exe
cuting in the background; however, this is transparent to the new user. An access 
token stores a session ID that is unique to each logon session. The system uses the 
access token attached to each thread and process to determine to which user a pro
cess or thread belongs.474, 475 

Every resource, such as a file, folder or device, has a security descriptor that 
contains the resource's security information. A descriptor contains the resource 
owner's SID and a discretionary access control list (DACL) that determines which 
security principals may access the resource. The DACL is an ordered list of access 
control entries (ACEs); each ACE contains the SID of a security principal and the 
type of access (if any) the security principal has to that particular resource.476 

When a thread attempts to access a resource, Windows XP uses the thread's 
access token and the resource's security descriptor to determine whether to permit 
access. The system traverses the DACL and stops when it finds an ACE with a SID 
that matches one of the SIDs in the access token. The thread is permitted to per
form the requested operation only if the first matching ACE authorizes the action. 
If the security descriptor has no DACL, access is granted; if the DACL has no 
matching ACE, access is denied.477 

Windows XP offers users flexibility in specifying the security policy of their 
system. The main role of the operating system is to enforce the policy that its users 
set. However, with so many options to choose from, an administrator might inad
vertently create an insecure security policy. To prevent this, Windows XP includes 
many useful features to help administrators maintain system security. 

Recall the notion of security groups mentioned at the start of the section. 
Windows XP defines three basic security groups: Everyone (all authenticated secu
rity principals), Anonymous (all unauthenticated security principals) and Guest (a 
general-purpose account). System administrators can use these three security 
groups as the building blocks of their security policy. In addition, Windows XP 
includes several default security policies that administrators can employ as a start
ing point for creating their own policy. In general, each default policy uses the high
est level of security, and system administrators are responsible for increasing user 
privileges. For example, by default, users who log on from a remote machine are 
forced to use Guest privileges. Although this might be an annoyance, this policy is 
preferable to inadvertently overlooking a security hole.478 
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Windows XP has a built-in packet filtering firewall (see 18.6.1, Firewalls) called the 
Internet Connection Firewall (ICF). This firewall can be used to protect either an 
entire network or a single computer.479 ICF filters out all unsolicited inbound traf
fic, with the exception of packets sent to ports explicitly designated as open. The 
firewall stores information about all outgoing packets in a flow table. It permits an 
incoming packet to enter the system only if there is an entry in the flow table corre-
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sponding to an outgoing packet sent to the home address of the incoming packet.480 

ICF does not filter outgoing packets; it assumes that only legitimate processes 
would send an outgoing packet. (This can cause problems if a Trojan Horse pro
gram gains access to the system.)481 

ICF supports common Internet communication protocols such as FTP and 
LDAP. To permit applications to communicate with a Windows XP system via these 
protocols, ICF leaves certain ports open for all incoming traffic. Also, many applica
tions such as MSN Messenger and online games require an open port to run success
fully. Users and applications with administrative privileges can designate a particular 
port open for all incoming traffic; this process is called port mapping.482, 483 

21.13.4 Other Features 
Windows XP comes with many features that help keep the system secure. For exam
ple, users can encrypt files and folders using the Encrypting File System (see 
Section 21.8.2, NTFS, for more information). Users can control which Web sites may 
store cookies (small temporary files used by a server to store user-specific informa
tion) on their computer. Administrators can limit which applications may execute on 
the system; each application can be identified by its file hash, so that moving or 
renaming it would not bypass the restriction. Windows XP can also check whether 
the application is signed with a trusted certificate (i.e., a signature from an entity that 
the user specified as trustworthy) or comes from a trusted Internet Zone (i.e., an 
Internet domain that the user specified as safe).484 Users can use Automatic Update 
to get notification, or even installation, of the latest security patches.485 
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msdn .m ic roso f t . com/ l i b ra r y 
The MSDN Library provides information about Microsoft 
products and services, including the most recent platform Soft
ware Development Kit (SDK) and Driver Development Kit 
(DDK). Go to the menu on the left side of the screen and click 
on Windows Development, followed by Windows Base Services, 
to research the Windows XP SDK. To research the DDK, click 
on Windows Development, followed by Driver Development 
Kit. Particularly useful information can be found by next click
ing Kernel-Mode Driver Architecture, followed by Design 
Guide. The MSDN Library also provides networking informa
tion (click Networking and Directory Services) and COM infor
mation (click Component Development). 

www.microsoft.com/windowsxp/default.asp 
Microsoft's homepage for Windows XP. From here, the reader 
can find XP overviews, support information and gateways to 
other areas of Microsoft with more technical information on 
Windows XP. 

www.microsoft.com/technet/prodtechnol/winxppro 
Microsoft TechNet provides technical information on 
Microsoft products. This section is devoted to Windows XP 
Professional; particularly useful is the Resource Kit (click 
Resource Kits), 
www.winnetmag.com 
Publishes technical articles about Windows & .NET ranging 
from introductions for novice users to in-depth internals 
descriptions for advanced developers. 
www.osronline.com 
Features technical articles and tutorials about the internals of 
Windows operating systems. It offers online articles, as well as 
a free subscription to NT Insider, a technical magazine about 
the NT line of operating systems. 
www.extremetech.com/category2/0,3971,23445,00.asp 
ExtremeTech's page for operating systems. It includes news 
articles, some technical insight and a forum to discuss operat
ing systems. 

Web Resources 



www.winsupersi te.com 
Provides updated information about Windows products. It 
evaluates them from both technical and user perspectives. 
deve loper . in te l . com 
Provides technical documentation regarding Intel products, 
including Pentium and Itanium processors. Their system pro
grammer guides (e.g., for the Pentium 4 processor, devel
oper. intel .com/design/Pentium4/manuals/) provide 
information about how Intel processors interact with the oper
ating system, 
developer.amd.com 
Provides technical documentation regarding AMD products, 
including Athlon and Opteron processors. Their system pro
grammer guides (e.g., for the Opteron processor, 
www.amd.com/us-en/Processors/DevelopWithAMD/ 
0,,30_2252_739_7044,00.html) provide information about 
how AMD processors interact with the operating system. 

www.theeldergeek.com/index.htm 
Describes Windows XP from the user's perspective, including 
excellent information about the registry, system services and 
networking. 

www.windowsi t l ib rary .com 
Provides free articles and sells books and articles about Win
dows operating systems. Some of these articles and books pro
vide technical internals information. 

www.sysinternals .com 
Dedicated to providing internals information about Windows 
operating systems, especially the NT line. 

msdn.microsoft.com/msdnmag/default.aspx 
The MSDN Magazine (formerly know as Microsoft Systems 
Journal) contains articles about Microsoft's products, targeted 
for developers. 
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ActiveX Controls—Self-registering COM objects useful for 
embedding in Web pages. 

affinity mask (Windows XP)—List of processors on which a 
process's threads are allowed to execute. 

alertable I/O (Windows XP)—Type of asynchronous I/O in 
which the system notifies the requesting thread of the 
completion of the I/O with an APC. 

alertable wait state (Windows XP)—State in which a thread 
cannot execute until it is awakened either by an APC 
entering the thread's APC queue or by receiving a handle 
to the object (or objects) for which the thread is waiting. 

alternate data stream—File attribute that stores the contents 
of an NTFS file that are not in the default data stream. 
NTFS files may have multiple alternate data streams. 

anonymous pipe (Windows XP)—Unnamed pipe that can be 
used only for synchronous one-way communication 
between local processes. 

apartment model—COM object threading model in which 
only one thread acts as a server for each COM object. 

APC IRQL (Windows X P ) - I R Q L at which APCs execute 
and incoming asynchronous procedure calls (APCs) are 
masked. 

application configuration file (ACF) (Windows XP)—File that 
specifies platform-specific attributes (e.g., how data 
should be formatted) for an RPC function call. 

.NET—Microsoft initiative aimed at transforming computing 
from an environment in which users simply execute appli
cations on a single computer to a fully distributed envi
ronment; .NET provides a platform- and language-neutral 
development environment for components that can easily 
interoperate. 

.NET framework—Programming model for creating XML-
based Web services and applications. The .NET frame
work supports over 20 programming languages and facili
tates application programming by providing libraries to 
perform common operations (e.g., input/output, string 
manipulation and network communication) and access 
data via multiple database interfaces (e.g., Oracle and 
SQL Server). 

abandoned mutex (Windows XP)—Mutex that was not 
released before the termination of the thread that held it. 

access control entry (ACE) (Windows XP)—Entry in a discre
tionary access control list (DACL) for a specific resource 
that contain the security identifier (SID) of a security 
principal and the type of access (if any) the security prin
cipal has to that particular resource. 

access token (Windows XP)—Data structure that stores secu
rity information, such as the security identifier (SID) and 
group memberships, about a security principal. 

Active Directory (Windows XP)—Network service that pro
vides directory services for shared objects (e.g., files, print
ers, services, etc.) on a network. 

Key Terms 
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cluster (NTFS)—Basic unit of disk storage in an NTFS vol
ume, consisting of a number of contiguous sectors; a sys
tem's cluster size can range from 512 bytes to 64KB, but is 
typically 2KB, 4KB or 8KB. 

COM+—Extension of COM (Microsoft's Common Object 
Model) that handles advanced resource management 
tasks, such as providing support for transaction processing 
and using thread and object pools. 

commit memory (Windows XP)—Necessary stage before a 
process can access memory. The VMM ensures that there 
is enough space in a pagefile for the memory and creates 
page table entries (PTEs) in main memory for the com
mitted pages. 

Common Internet File System (CIFS)—Native file sharing 
protocol of Windows XP. 

Component Object Model (COM)—Microsoft-developed 
software architecture that allows interoperability between 
diverse components through the standard manipulation of 
object interfaces. 

component (Windows XP)—Functional unit of Windows XP. 
Components range from user-mode applications such as 
Notepad to portions of kernel space such as the CD-ROM 
interface and power management tools. Dividing Win
dows XP into components facilitates operating system 
development for embedded systems. 

compression unit (NTFS)—Sixteen clusters. Windows XP 
compresses and encrypts files one compression unit at a 
time. 

configuration manager (Windows XP)—Executive component 
that manages the registry. 

critical section object (Windows XP)—Synchronization object, 
which can be employed only by threads within a single 
process, that allows only one thread to own a resource at a 
time. 

data stream (NTFS)—File attribute that stores the file's con
tent or metadata; a file can have multiple data streams. 

default data stream (NTFS)—File attribute that stores the pri
mary contents of an NTFS file. When an NTFS file is cop
ied to a file system that does not support multiple data 
streams, only the default data stream is preserved. 

deferred procedure call (DPC) (Windows XP)—Software 
interrupt that executes at the DPC/dispatch IRQL and 
executes in the context of the currently executing thread. 

device extension (Windows XP)—Portion of the nonpaged 
pool that stores information a driver needs to process I/O 
requests for a particular device. 

device IRQL (DIRQL) (Windows X P ) - I R Q L at which 
devices interrupt and at which APC, DPC/dispatch and 

asynchronous procedure call (APC) (Windows XP)—Proce
dure calls that threads or the system can queue for execu
tion by a specific thread. 

automatic binding handle (Windows XP) —RPC binding han
dle in which the client process simply calls a remote func
tion, and the stub manages all communication tasks. 

auto-reset timer object (Windows XP)—Timer object that 
remains signaled only until one thread finishes waiting on 
the object. 

Bad Page List (Windows XP)—List of page frames that have 
generated hardware errors; the system does not store 
pages on these page frames. 

balance set manager (Windows XP)—Executive component 
responsible for adjusting working set minimums and max
imums and trimming working sets. 

base priority class (Windows XP)—Process attribute that 
determines a narrow range of base priorities the process's 
threads can have. 

base priority level (Windows XP)—Thread attribute that 
describes the thread's base priority within a base priority 
class. 

binding (Windows XP) — Connection between the client and 
the server used for network communication (e.g., for an 
RPC). 

binding handle (Windows XP)—Data structure that stores the 
connection information associated with a binding between 
a client and a server. 

bus driver—WDM (Windows Driver Model) driver that pro
vides some generic functions for devices on a bus, enu
merates those devices and handles Plug and Play I/O 
requests. 

cache manager (Windows XP)—Executive component that 
handles file cache management. 

class ID (CLSID)- Globally unique ID given to a COM 
object class. 

class/miniclass driver pair (Windows XP)—Pair of device driv
ers that act as a function driver for a device; the class 
driver provides generic processing for the device's partic
ular device class, and the miniclass driver provides pro
cessing for the specific device. 

clipboard (Windows XP)—Central repository of data that is 
accessible to all processes, typically used with copy, cut 
and paste commands. 

clock IRQL (Windows XP)—IRQL at which clock interrupts 
occur and at which APC, DPC/dispatch, DIRQL and pro
file-level interrupts are masked. 
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executive (Windows XP)—Portion of the Windows XP operat
ing system that is responsible for managing the operating 
system's subsystems (e.g., I/O subsystem, memory sub
system and file system). 

executive resource lock (Windows XP)—Synchronization lock 
available only to kernel-mode threads and that may be 
held either in shared mode by many threads or in exclu
sive mode by one thread. 

executive process (EPROCESS) block (Windows XP)—Execu
tive data structure that stores information about a pro
cess, such as that process's object handles and the 
process's ID; an EPROCESS block also stores the process's 
KPROCESS block. 

executive thread (ETHREAD) block (Windows XP)—Executive 
data structure that stores information about a thread, 
such as the thread's pending I/O requests and the thread's 
start address; an ETHREAD block also stores the thread's 
KTHREAD block. 

explicit handle (Windows XP)—Binding handle in which the 
client must specify all binding information and create and 
manage the handle. 

fast mutex (Windows XP)—Efficient mutex variant that oper
ates at the APC level with some restrictions (e.g., a thread 
cannot specify a maximum wait time to wait for a fast 
mutex). 

fast user switching (Windows XP)—Ability of a new user to 
logon to a Windows XP machine without logging off the 
previous user. 

fiber (Windows XP)—Unit of execution created by a thread 
and scheduled by that thread. 

fiber local storage (FLS) (Windows XP)—Area of a process's 
address space where a fiber can store data that only the 
fiber can access. 

file mapping (Windows XP)—Interprocess communication 
mechanism in which multiple processes access the same 
file by placing it in their virtual memory space. The differ
ent virtual addresses correspond to the same main mem
ory addresses. 

file mapping object (Windows XP) —Object used by processes 
to map any file into memory. 

file view (Windows XP)—Portion of a file specified by a file 
mapping object that a process maps into its memory. 

filter driver—WDM (Windows Driver Model) driver that 
modifies the behavior of a hardware device (e.g., provid
ing mouse acceleration) or adds some extra services (e.g., 
security checks). 

lower DIRQLs are masked; the number of DIRQLs is 
architecture dependent. 

device object (Windows XP)—Object that a device driver uses 
to store information about a physical or logical device. 

direct I/O —I/O transfer method whereby data is transferred 
between a device and a process's address space without 
using a system buffer. 

directory junction (Windows XP)—Directory that refers to 
another directory within the same volume, used to make 
navigating the file system easier. 

discretionary access control list (DACL) (Windows XP) — 
Ordered list that tells Windows XP which security princi
pals may access a particular resource and what actions 
those principals may perform on the resource. 

dispatcher (Windows XP)—Thread scheduling code dispersed 
throughout the microkernel. 

dispatcher object (Windows XP)—Object, such as a mutex, 
semaphore, event or waitable timer, that kernel and user 
threads can use for synchronization purposes. 

domain (Windows XP) — Set of computers that share common 
resources. 

domain controller (Windows XP) — Computer responsible for 
security on a network. 

DPC/dispatch IRQL (Windows X P ) - I R Q L at which DPCs 
and the thread scheduler execute and at which APC and 
incoming DPC/dispatch level interrupts are masked. 

driver object (Windows XP)—Object used to describe device 
drivers; it stores pointers to standard driver routines and to 
the device objects for the devices that the driver services. 

driver stack—Group of related device drivers that cooperate 
to handle the I/O requests for a particular device. 

dynamic-linked library (DLL) (Windows XP)—Module that 
provides data or functions to which processes or other 
DLLs link at execution time. 

dynamic priority class (Windows XP)—Priority class that 
encompasses the five base priority classes within which a 
thread's priority can change during system execution; 
these classes are idle, below normal, normal, above nor
mal and high. 

environment subsystem (Windows XP)—User-mode compo
nent that provides a computing environment for other 
user-mode processes; in most cases, only environment 
subsystems interact directly with kernel-mode compo
nents in Windows XP. 

event object (Windows XP)—Synchronization object that 
becomes signaled when a particular event occurs. 
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I/O manager (Windows XP)—Executive component that 
interacts with device drivers to handle I/O requests. 

I/O throttling (Windows XP)—Technique that increases stabil
ity when available memory is low; the VMM manages 
memory one page at a time during I/O throttling. 

I/O status block (Windows XP)—Field in an IRP that indicates 
whether an I/O request completed successfully or, if not, 
the request's error code. 

Interface Definition Language (IDL) file (Windows XP)—File 
that specifies the interfaces that an RPC server exposes. 

interface ID (IID) — Globally unique ID for a COM interface. 
interlocked singly linked list (SList) (Windows XP) —Singly 

linked list in which insertions and deletions are performed 
as atomic operations. 

interlocked variable access (Windows XP)—Method of access
ing variables that ensures atomic reads and writes to 
shared variables. 

intermediate driver (Windows XP)—Device driver that can be 
interposed between high- and low-level drivers to filter or 
process I/O requests for a device. 

Internet Connection Firewall (ICF)—Windows XP's packet 
filtering firewall. 

Internetwork Packet eXchange (IPX)—Novell Netware's net
work protocol designed specifically for LANs. 

Interrupt Dispatch Table (IDT)—Kernel data structure that 
maps hardware interrupts to interrupt vectors. 

interrupt request level (IRQL) (Windows XP)—Measure of 
interrupt priority; an interrupt that occurs at an IRQL 
equal to or lower than the current IRQL is masked. 

interrupt service routine (ISR) (Windows XP)—Function,reg
istered by a device driver, that processes interrupts issued 
by the device that the driver services. 

job object (Windows XP)—Object that groups several pro
cesses and allows developers to manipulate and set limits 
on these processes as a group. 

kernel handle (Windows XP)—Object handle accessible from 
any process's address space, but only in kernel mode. 

kernel-mode APC (Windows XP)—APC generated by a ker
nel-mode thread and queued to a specified user-mode 
thread; the user-mode thread must process the APC as 
soon as the user-mode thread obtains the processor. 

kernel-mode driver—Device driver that executes in kernel 
mode. 

kernel process (KPROCESS) block (Windows XP)—Kernel data 
structure that stores information about a process, such as 
that process's base priority class. 

free model—COM (Microsoft's Component Object Model) 
object threading model in which many threads can act as 
the server for a COM object. 

Free Page List (Windows XP)—List of page frames that are 
available for reclaiming; although these page frames do 
not contain any valid data, they may not be used until the 
zero-page thread sets all of their bits to zero. 

function driver—WDM (Windows Driver Model) device driver 
that implements a device's main functions; it does most of 
the I/O processing and provides the device's interface. 

globally unique ID (GUID) —128-bit integer that is, for all 
practical purposes, guaranteed to be unique in the world. 
COM (Microsoft's Component Object Model) uses 
GUIDs to uniquely identify interfaces and object classes. 

Graphical Identification and Authentication (GINA) (Windows 
XP) — Graphical user interface used that prompts users for 
credentials, usually in the form of a username and pass
word. Windows XP ships with its own implementation of 
GINA called MSCINA, but it accepts third-party DLLs. 

Hardware Abstraction Layer (HAL) (Windows XP)—Operat
ing system component that interacts directly with the 
hardware and abstracts hardware details for other system 
components. 

high IRQL (Windows XP)—Highest-priority IRQL, at which 
machine check and bus error interrupts execute and all 
other interrupts are masked. 

high-level driver (Windows XP)—Device driver that abstracts 
hardware specifics and passes I/O requests to low-level 
drivers. 

ideal processor (Windows XP)—Thread attribute that speci
fies a processor on which the system should attempt to 
schedule the thread for execution. 

inheritance (Windows XP)—Technique by which a child pro
cess obtains attributes (e.g., most types of handles and the 
current directory) from its parent process upon creation. 

initialized state (Windows XP) —State in which a thread is 
created. 

I/O completion port (Windows XP)—Port at which threads 
register and block, waiting to be awakened when process
ing completes on an I/O request. 

I/O completion routine (Windows XP)—Function registered 
by a device driver with the I/O manager in reference to an 
IRP; the I/O manager calls this function when processing 
of the IRP completes. 

I/O request packet (IRP) (Windows XP)—Data structure that 
describes an I/O request. 
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memory descriptor list (MDL) (Windows XP)—Data struc
ture used in an I/O transfer that maps a process's virtual 
addresses to be accessed in the transfer to physical mem
ory addresses. 

memory map—Data structure that stores the correspondence 
between a process's virtual address space and main mem
ory locations. 

Microsoft IDL (MIDL)—Microsoft's extension of Interface 
Definition Language (IDL)—The Open Group's Distrib
uted Computing Environment (DCE) standard for RPC 
interoperability. 

minor function code (Windows XP)—Field in an IRP that, 
together with the major function code, describes the spe
cific function that should be performed to fulfill an I/O 
request (e.g., to start a device, a PnP major function code 
is used with a start device minor function code). 

mixed model—COM threading model, in which some COM 
objects reside in single apartments and others can be 
accessed by free threads. 

Modified No-write Page List (Windows XP)—List of page 
frames for which the VMM must write an entry to a log 
file before freeing. 

Modified Page List (Windows XP)—List of page frames that 
the VMM must write to the pagefile before freeing. 

Multiple UNC Provider (MUP) (Windows XP)-Fi le system 
driver that determines the appropriate redirector to which 
to send a network I/O request. 

must-succeed request (Windows XP) —Request for space in 
main memory that a process issues when it requires more 
main memory to continue functioning properly. Windows 
XP always denies must-succeed requests; previous ver
sions of Windows always fulfilled them. 

mutex object (Windows XP) — Synchronization object that 
allows at most one thread access to a protected resource 
at any time; it is essentially a binary semaphore. 

named pipe (Windows XP)—Type of pipe that can provide 
bidirectional communication between two processes on 
local or remote machines and that supports both synchro
nous and asynchronous communication. 

native API (Windows XP)—Programming interface exposed 
by the executive, which environment subsystems employ 
to make system calls. 

NDIS intermediate driver (Windows XP)—NDIS driver that 
can be interposed between a miniport driver and a higher-
level driver and adds extra functionality, such as translat
ing packets between different communication media, fil
tering packets or providing load balancing across several 
NICs. 
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kernel thread (KTHREAD) block (Windows XP)-Kernel data 
structure that stores information about a thread, such as 
the objects on which that thread is waiting and the loca
tion in memory of the thread's kernel stack. 

large page (Windows XP) — Set of pages contiguous in mem
ory that the VMM treats as a single page. 

last processor (Windows XP)—Thread attribute equal to the 
processor that most recently executed the thread. 

lazy allocation—Policy of waiting to allocate resources, such as 
pages in virtual memory and page frames in main mem
ory, until absolutely necessary. 

Lempel-Ziv compression algorithm—Data compression algo
rithm that NTFS uses to compress files. 

Lightweight Directory Access Protocol (LDAP) (Windows 
XP)—Protocol for accessing, searching and modifying 
Internet directories (e.g., Active Directory). 

localized least-recently used page replacement (Windows 
XP)—Policy of moving to disk the least-recently used 
page of a process at its working set maximum when that 
process requests a page in main memory. The policy is 
localized by process, because Windows XP moves only the 
requesting process's pages; Windows XP approximates 
this policy using the clock algorithm. 

local procedure call (LPC) (Windows XP)—Procedure call 
made by a thread in one process to a procedure exposed 
by another process in the same domain (i.e., set of com
puters that share common resources); LPCs can be cre
ated only by system components. 

local remote procedure call (LRPCs) (Windows X P ) - R P C s 
between two processes on the same machine. 

low-level driver (Windows XP)—Device driver that controls a 
peripheral device and does not depend on any lower-level 
drivers. 

mailslot (Windows XP)—Message queue, which a process can 
employ to receive messages from other processes. 

mailslot client (Windows XP)—Process that sends mailslot 
messages to mailslot servers. 

mailslot server (Windows XP)—Process that creates a mailslot 
and receives messages in it from mailslot clients. 

major function code (Windows XP)—Field in an IRP that 
describes the general function (e.g., read or write) that 
should be performed to fulfill an I/O request. 

manual-reset timer object (Windows XP)—Timer object that 
remains signaled until a thread specifically resets the timer. 

Master File Table (MFT) (NTFS)-File which is structured as 
a table in which NTFS stores information (e.g. name, time 
stamp, and location) about all files in the volume. 



object manager namespace (Windows XP)—Group of object 
names in which each name is unique in the group. 

opportunistic lock (oplock) (Windows XP) —Lock used by a 
CIFS client to secure exclusive access to a remote file, 
ensuring that the client can cache data locally and keep its 
cache coherent. 

overlapped I/O (Windows XP)—Microsoft synonym for asyn
chronous I/O. 

page directory register—Hardware register that stores a 
pointer to the current process's page directory table. 

page directory table (Windows XP)—4KB page that contains 
1024 entries that point to frames in memory. 

paged pool (Windows XP)—Pages in memory that may be 
moved to the pagefile on disk. 

pagefile (Windows XP)—File on disk that stores all pages that 
are mapped to a process's virtual address space but do not 
currently reside in main memory. 

page frame database (Windows XP)—Array that contains the 
state of each page frame in main memory. 

page list (Windows XP)—List of page frames that are in the 
same state. The eight state lists are: the Valid Page List, the 
Standby Page List, the Modified Page List, the Modified 
No-write Page List, the Transitional Page List, the Free 
Page List, the Zeroed Page List, and the Bad Page List. 

page trimming (Windows XP)—Technique in which Windows 
XP takes a page belonging to a process and sets the page's 
PTE to invalid to determine whether the process actually 
needs the page. If the process does not request the page 
within a certain time period, the system removes it from 
main memory. 

passive IRQL (Windows XP)—IRQL at which user- and ker
nel-mode normally execute and no interrupts are masked. 
Passive IRQL is the lowest-priority IRQL. 

periodic timer (Windows XP)—Waitable timer object that reac
tivates after a specified interval. 

pipe client (Windows XP)—Process that connects to an exist
ing pipe to communicate with that pipe's server. 

pipe server (Windows XP)—Process that creates a pipe and 
communicates with pipe clients that connect to the pipe. 

PnP I/O requests (Windows X P ) - I R P s generated by the PnP 
manager to query a driver for information about a device, 
to assign resources to a device or to direct a device to per
form some action. 

Plug and Play (PnP) manager (Windows XP)—Executive 
component (which also exists partly in user space) that 
dynamically recognizes when new devices are added to 

NDIS miniport driver (Windows XP)—NDIS driver that man
ages a NIC and sends and receives data to and from the 
NIC. 

NDIS protocol driver (Windows XP)—NDIS driver that 
places data into packets and passes these packets to 
lower-level drivers. NDIS protocol drivers provide an 
interface between the transport drivers and other NDIS 
drivers and can be used as the lowest layer in the imple
mentation of a transport protocol stack such as TCP/IP. 

neither I/O (Windows XP)—I/O transfer technique in which a 
high-level driver executes in the context of the calling 
thread to set up a buffered I/O transfer or direct I/O 
transfer or to directly perform the transfer in the process's 
address space. 

NetBIOS Extended User Interface (NetBEUI) (Windows 
XP)—Native network and transport protocol for DOS 
and older Windows operating systems. 

NetBIOS over TCP/IP (NBT) (Windows XP)-Replacement 
protocol for NetBEUI that provides backward compati
bility with older applications (by keeping the NetBIOS 
interface) and takes advantage of TCP/IP protocols. 

Network Basic Input/Output System (NetBIOS) (Windows 
XP)—API used to support NetBEUI and now used with 
NBT. 

Network Data Representation (NDR)—Standard format for 
network data described in the The Open Group's Distrib
uted Computing Environment (DCE) standard. 

Network Driver Interface Specification (NDIS) (Windows 
XP)—Specification that describes a standard interface 
between lower-level layered drivers in the network driver 
stack; NDIS drivers provide the functionality of the link 
layer in the TCP/IP stack and are used on Windows XP 
systems. 

network redirector—See redirect or (Windows XP). 

nonpaged pool—Area of main memory that stores pages that 
are never moved to disk. 

nonresident attribute—NTFS file attribute whose data does 
not fit inside the MFT entry and is stored elsewhere. 

object handle (Windows XP)—Data structure that allows 
threads to manipulate an object. 

Object Linking and Embedding (OLE)—Microsoft technol
ogy built on COM that defines a standard method for pro
cesses to exchange data by linking or embedding COM 
objects. 

object manager (Windows XP)—Executive component that 
manages objects. 
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when a user has forgotten the private key needed to 
decrypt the file. 

redirector (Windows XP)—File system driver that interacts 
with a remote server driver to facilitate network I/O oper
ations. 

registry (Windows XP)—Central database in which user, sys
tem and application configuration information is stored. 

Remote Access Service (RAS) (Windows XP)—Network ser
vice, which allows users to remotely connect to a LAN. 

reparse point (NTFS)—File attribute containing a tag and a 
block of up to 16KB of data that a user associates with a 
file or directory; when an application accesses a reparse 
point, the system executes the file system filter driver 
specified by the reparse point's tag. 

request IRQL (Windows XP) —IRQL at which interprocess 
interrupts execute and all interrupts except power-level 
and high-level interrupts are masked. 

reserve memory (Windows XP)—To indicate to the VMM that a 
process intends to use an area of virtual memory; the VMM 
allocates memory in the process's virtual address space but 
does not allocate any page frames in main memory. 

resident attribute (NTFS)—File attribute whose data is stored 
within the MFT entry. 

running state (Windows XP) —State in which a thread is cur
rently in execution. 

Security Accounts Manager (SAM) (Windows XP)—Data
base that administers information about all security prin
cipals in the system. It provides services such as account 
creation, account modification and authentication. 

security descriptor (Windows XP)—Data structure that stores 
information about which security principals may access a 
resource and what actions they may perform on that 
resource. The most important element of a security 
descriptor is its discretionary access control list (DACL). 

security identifier (SID) (Windows XP)—Unique identification 
number assigned to each security principal in the system. 

security principal (Windows XP) —Any user, process, service 
or computer that can perform an action in a Windows XP 
system. 

Security Support Provider Interface (SSPI) (Windows XP) — 
Microsoft's standardized protocol for authentication and 
authorization recognized by both the Kerberos and 
NTLM authentication services. 

semaphore object (Windows XP) — Synchronization object 
that allows a resource to be owned by up to a specified 
number of threads; it is essentially a counting semaphore. 
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the system (as long as these devices support PnP), allo
cates and deallocates resources to devices and interacts 
with device setup programs. 

port mapping (Windows XP)—Process of explicitly allowing 
the Internet Connection Firewall (ICF) to accept all 
incoming packets to a particular port. 

power IRQL (Windows XP) —IRQL at which power failure 
interrupts execute and at which all interrupts except high-
IRQL interrupts are masked. 

power manager (Windows XP)—Executive component that 
administers the operating system's power management 
policy. 

power policy (Windows XP)—Policy of a system with regard 
to balancing power consumption and responsiveness of 
devices. 

primary thread (Windows XP)—Thread created when a pro
cess is created. 

priority inversion—Situation which occurs when a high-prior
ity thread is waiting for a resource held by a low-priority 
thread, and the low-priority thread cannot obtain the pro
cessor because of a medium-priority thread; hence, the 
high-priority thread is blocked from execution by the 
medium-priority thread. 

process environment block (PEB) (Windows XP) —User-
space data structure that stores information about a pro
cess, such as a list of DLLs linked to the process and infor
mation about the process's heap. 

profile IRQL (Windows XP)—IRQL at which debugger inter
rupts execute and at which APC, DPC/dispatch, DIRQL 
and incoming debugger interrupts are masked. 

protocol sequence (Windows XP)—String used by a client in 
an RPC call that specifies the RPC protocol, transport 
protocol and network protocol for that RPC. 

Prototype Page Table Entry (PPTE) (Windows XP)-32-bit 
record that points to a frame in memory that contains 
either a copy-on-write page or a page that is part of a pro
cess's view of a mapped file. 

queued spin lock (Windows XP)—Spin lock in which a thread 
releasing the lock notifies the next thread in the queue of 
waiting threads. 

ready state (Windows XP)—State in which a thread is waiting 
to use a processor. 

real-time priority class (Windows XP)—Base priority class 
encompassing the upper 16 priority levels; threads of this 
class have static priorities. 

recovery key (NTFS)—Key that NTFS stores that can decrypt 
an encrypted file; administrators can use recovery keys 



transition state (Windows XP)—Thread state denoting a thread 
that has completed a wait but is not yet ready to run 
because its kernel stack has been paged out of memory. 

Transport Driver Interface (TDI) driver (Windows XP) -Ne t 
work driver that exports a network interface to upper-
level kernel-mode clients and interacts with low-level 
NDIS drivers. 

universally unique identifier (UUID)—ID that is guaranteed, 
for all practical purposes, to be unique in the world. 
UUIDs uniquely identify an RPC interface. 

Uniform Naming Convention (UNC) format (Windows XP) — 
Format that specifies a file's pathname, including on which 
server and in which directory on that server the file is 
located. 

unknown state (Windows XP)—Thread state denoting that the 
some error has occurred and the system does not know 
the state of the thread. 

unsignaled state (Windows XP)—State in which a synchroni
zation object can be; threads waiting on this object do not 
awaken until the object transitions to the signaled state. 

user-mode APC (Windows XP)—APC queued by user-mode 
thread and executed by the target thread when the target 
thread enters an alertable wait state. 

user-mode driver (Windows XP)—Device driver that executes 
in user space. 

Valid Page List (Windows XP)—List of page frames that are 
currently in a process's working set. 

Virtual Address Descriptor (VAD) (Windows XP)—Structure 
in memory that contains a range of virtual addresses that 
a process may access. 

virtual memory manager (VMM) (Windows XP)—Executive 
component that manages virtual memory. 

VMS—Operating system for the DEC VAX computers, 
designed by David Cutler's team. 

waitable timer object (Windows XP) — Synchronization object 
that becomes signaled after a specified amount of time 
elapses. 

wait function (Windows XP)—Function called by a thread to 
wait for one or more dispatcher objects to enter a signaled 
state; calling this function places a thread in the waiting 
state. 

waiting state (Windows XP)—Thread state denoting that a 
thread is not ready for execution until it is awakened (e.g.. 
by obtaining a handle to the object on which it is waiting). 

Web-based Distributed Authoring and Versioning (WebDAV) 
(Windows XP)—Network file-sharing protocol that 
allows users to write data directly to HTTP servers and is 

Sequenced Packet eXchange (SPX)—Novell Netware's trans
port protocol, which offers connection-oriented services 
for IPX packets. 

Server Message Block (SMB)—Network file-sharing protocol 
used in Windows operating systems on top of which CIFS 
(Common Internet File System) is built. 

single-use timer (Windows XP)—Waitable timer object that is 
used once and then discarded. 

signaled state (Windows XP)—State in which a synchroniza
tion object can be placed, allowing one or more threads 
waiting on this object to awaken. 

sparse file (NTFS)—File with large blocks of regions filled with 
zeroes that NTFS tracks using a list of empty regions 
rather than explicitly recording each zero bit. 

Standby Page List (Windows XP)—List of page frames that 
are consistent with their on-disk version and can be freed. 

standby state (Windows XP)—Thread state denoting a thread 
that has been selected for execution. 

system service (Windows XP)—Process that executes in the 
background whether or not a user is logged into the com
puter and typically executes the server side of a client/ 
server application; a system service for Windows XP is 
similar to a daemon for Linux. 

system worker thread (Windows XP)—Thread controlled by 
the system that sleeps until a kernel-mode component 
queues a work item for processing. 

terminated state (Windows XP)—Thread state that denotes a 
thread is no longer available for execution. 

thread local storage (TLS) (Windows XP)—Area of a thread's 
process's address space where the thread can store private 
data, inaccessible to other threads. 

thread environment block (TEB) (Windows XP)—User-space 
data structure that stores information about a thread, 
such as the critical sections owned by a thread and excep
tion-handling information. 

thread pool (Windows XP) — Collection of worker threads that 
sleep until a request is queued to them, at which time one 
of the threads awakens and executes the queued function. 

timer-queue timer (Windows XP)—Timer that signals a 
worker thread to perform a specified function at a speci
fied time. 

transitional fault (Windows XP)—Fault issued by the MMU 
when it tries to access a page that is in main memory, but 
whose page frame's status is set to standby, modified, or 
modified no-write. 

Transitional Page List (Windows XP)—List of page frames 
whose data is in the process of being moved to or from disk. 
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WinHTTP (Windows XP)—API that supports communication 
between clients and servers over an HTTP session. 

Windows sockets version 2 (Winsock 2)—Adaptation and 
extension of BSD sockets for the Windows environment. 

worker thread (Windows XP)—Kernel-mode thread that the 
system uses to execute functions queued by user-mode or 
other kernel-mode threads. 

working set (Windows XP)—All of the pages in main memory 
that belong to a specific process. 

working set maximum (Windows XP)—Upper limit on the 
number of pages a process may have simultaneously in 
main memory. 

working set minimum (Windows XP)—Number of pages in 
main memory the working set manager leaves a process 
when it executes the page-trimming algorithm. 

write-through mode (Windows XP)—Method of writing to a 
pipe whereby write operations do not complete until the 
data being written is confirmed to be in the buffer of the 
receiving process. 

Zeroed Page List (Windows XP)—List of page frames whose 
bits are all set to zero. 

designed to support collaborative authoring between 
groups in remote locations. 

Win32 environment subsystem (Windows XP)—User-mode 
process interposed between the executive and the rest of 
user space that provides a typical 32-bit Windows environ
ment. 

Win32 service (Windows XP)—See system service (Windows 
XP). 

Windows Driver Model (WDM) (Windows XP)-Standard 
driver model that enables source-code compatibility 
across all Windows platforms; each WDM driver must be 
written as a bus driver, function driver or filter driver and 
support PnP, power management and WML 

Windows Management Instrumentation (WMI) (Windows 
XP)—Standard that describes how drivers provide mea
surement and instrumentation data to users (e.g., configu
ration data, diagnostic data or custom data) and allow user 
applications to register for WMI driver-defined events. 

Windows XP Embedded—Embedded operating system, which 
uses the same binary files as Windows XP but allows 
designers to choose only those components applicable for 
a particular device. 

WinlNet (Windows XP)—API that allows applications to 
interact with FTP, HTTP and Gopher protocols to access 
resources over the Internet. 
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21.7 [Section 21.6.1, Process and Thread Organization] What 
entity schedules fibers? 
21.8 [Section 21.6.1, Process and Thread Organization] How 
might thread pools introduce inefficiency? 
21.9 [Section 21.6.2, Thread Scheduling] The dispatcher sched
ules each thread without regard to the process to which the 
thread belongs, meaning that, all else being equal, the same pro
cess implemented with more threads receives a greater share of 
execution time. Name a disadvantage of this strategy. 
21.10 [Section 21.6.2, Thread Scheduling] Why does the system 
reset a real-time thread's quantum after preemption? 
21.11 [Section 21.6.2, Thread Scheduling] Under what circum
stances would Windows XP increase a dynamic-priority 
thread's priority? Under what circumstances would Windows 
XP decrease it? 
21.12 [Section 21.6.2, Thread Scheduling] How can policies 
implemented in Windows XP lead to priority inversion? How 
does Windows XP handle priority inversion? In what ways is 
this a good policy? What are its drawbacks? 

21.1 [Section 21.4, System Architecture] What aspects of the 
Windows XP architecture make the system modular and por
table to different hardware? In what ways has Microsoft sacri
ficed modularity and portability for performance? 

21.2 [Section 21.5.2, Object Manager] What are the benefits of 
managing all objects in a centralized object manager? 

21.3 [Section 21.5.5, Deferred Procedure Calls (DPCs)] Why 
might a routine that generates a DPC specify the processor (in 
a multiprocessor system) on which the DPC executes? 

21.4 [Section 21.5.5, Deferred Procedure Calls (DPCs)] How 
do DPCs increase the system's responsiveness to incoming 
device interrupts? 

21.5 [Section 21.5.5, Deferred Procedure Calls (DPCs)] Why 
is it that DPCs cannot access pageable data? 

21.6 [Section 21.6.1, Process and Thread Organization] Give 
an example of why it may be useful to create a job for a single 
process. 
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This creates extra overhead whenever the process accesses a 
new portion of an open file. What would happen if the operat
ing system tried to save time by creating all PTEs at once? 

21.22 [Section 21.7.2, Memory Allocation] Windows XP elimi
nated must-succeed requests to make the system more stable. 
Suppose an enterprising programmer rewrote the operating 
system to accept must-succeed requests, but only when the sys
tem had enough main memory to fulfill the requests. What are 
the pitfalls of this policy? 

21.23 [Section 21.7.3, Page Replacement] Why does Windows 
XP enable pagefiles to be stored on separate disks? 

21.24 [Section 21.7.3, Page Replacement] Why does Windows 
XP zero pages? 

21.25 [Section 21.7.3, Page Replacement] Suppose process A 
requests a new page from disk. However, the Zeroed Page List 
and the Free Page List are empty. One page frame originally 
belonging to process B is in the Standby Page List, and one 
page frame belonging to process A is in the Modified Page 
List. Which page frame will the system take and what will hap
pen to that page frame? What are the pros and cons of taking 
the other page frame? 

21.26 [Section 21.8.1, File System Drivers] The operating system 
uses different local file system drivers to access different storage 
devices. Would it make sense to develop a remote block file sys
tem driver and remote character file system driver to access dif
ferent types of storage devices on remote computers? 

21.27 [Section 21.8.2, NTFS] In Windows XP, shortcuts (the 
icons that users put on their desktop) are implemented as soft 
links—if the file or program to which they are connected is 
moved, the shortcuts point to nothing. What are the advan
tages and disadvantages of replacing shortcuts with hard links? 

21.28 [Section 21.8.2, NTFS] A user wants to compress a 
256KB file stored on an NTFS volume with 4KB clusters. Lem-
pel-Ziv compression reduces the four 64KB compression units 
to 32KB, 31KB, 62KB, and 48KB. How much space does the 
compressed file take on the disk? 

21.29 [Section 21.8.2, NTFS] Windows XP performs file 
encryption using reparse points. The file is piped through the 
Encrypting File System filter, which does all of the encryption 
and decryption. Windows XP allows an application to ignore a 
reparse point and access the file directly. Does this compro
mise the security of encrypted data? Why or why not? 

21.30 [Section 21.9.1, Device Drivers] What are the advantages 
of servicing device I/O requests with a clearly defined driver 
stack rather than a single device driver? 

21.31 [Section 21.9.1, Device Drivers] What are some of the 
benefits that systems and users realize from Plug and Play? 

21.13 [Section 21.6.2, Thread Scheduling] Why might a devel
oper manipulate the value of a thread's ideal processor? 

21.14 [Section 21.6.3, Thread Synchronization] Windows XP 
does not explicitly detect deadlock situations for threads using 
dispatcher objects. How might threads using dispatcher objects 
create a deadlock? What mechanisms does Windows XP 
include to help avoid these situations? 

21.15 [Section 21.6.3, Thread Synchronization] In what ways 
are threads executing at an IRQL equal to or greater than 
DPC/dispatch level restricted? Why is this so? 

21.16 [Section 21.6.3, Thread Synchronization] Why use a 
queued spin lock in preference to a generic spin lock? 

21.17 [Section 21.6.3, Thread Synchronization] Explain how an 
executive resource can be used to solve the readers-and-writ-
ers problem. 

21.18 [Section 21.7.1, Memory Organization] Suppose an 
enterprising programmer modifies the Windows XP virtual 
memory manager so that it allocates space for all page table 
entries that a process may need as soon as the process is cre
ated. Assume that page table entries cannot be moved to sec
ondary storage and that no page table entries are shared. 

a. How much space would be needed to store all the 
page table entries for one process (on a 32-bit sys
tem)? 

b. Windows XP stores each process's page table entries 
in system space, which is shared between all pro
cesses. If a system devoted all of its system space to 
page table entries, what is the maximum number of 
processes that could be active simultaneously? 

21.19 [Section 21.7.1, Memory Organization] Large pages need 
to be stored contiguously in main memory. There are several 
ways to do this: a system can designate a portion of main mem
ory exclusively for large pages, a system can rearrange pages in 
main memory whenever a process requests a large page, or a 
system can do nothing and deny large-page memory allocation 
requests whenever necessary. Discuss the pros and cons of 
each of these three policies. 

21.20 [Section 21.7.1, Memory Organization] A Windows XP 
TLB entry contains the full 32-bit virtual address and the 32-
bit physical address to which it corresponds. Associative mem
ory is very expensive. Suggest a space-saving optimization for 
the TLB. 

21.21 [Section 21.7.2, Memory Allocation] When a process 
opens a file, Windows XP does not move the entire file into 
main memory. Instead, the system waits to see which portions 
of the file the process will access. The VMM moves only the 
accessed pages into main memory and creates PTEs for them. 
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21.37 [Section 21.13.1, Authentication] Suppose a company 
network has only Windows XP machines. What are the advan
tages of allowing both NTLM and Kerberos authentication? 
What are the disadvantages? 

21.38 [Section 21.13.2, Authorization] When Windows XP 
compares an access token to a DACL (discretionary access 
control list), it scans the ACEs (access control entries) one by 
one and stops when it finds the first ACE whose SID (security 
identifier) matches an SID in the access token. Consider an 
administrator that wants to permit all authenticated users 
except interns to use a printer. The first ACE in the printer's 
DACL would deny the security group Interns and the second 
ACE would permit the security group Everyone. Assume that 
an intern's access token lists the security group Everyone first 
and the security group Interns second. What would happen if 
instead the system scanned the access token and stopped when 
it found an SID in the DACL? 

21.39 [Section 21.13.3, Internet Connection Firewall] The Win
dows XP ICF filters only inbound packets. What are the advan
tages of not checking outgoing packets? What are the 
disadvantages? 

21.32 [Section 21.9.2, Input/Output Processing] We discussed 
four types of asynchronous I/O: polling, waiting on an event 
object that signals the completion of the I/O, alertable I/O and 
using I/O completion ports. For each technique, describe a sit
uation for which it is useful; also, state a drawback for each 
technique. 

21.33 [Section 21.9.3, Interrupt Handling] Why should an ISR 
do as little processing as necessary and return quickly, saving 
most of the interrupt processing for a DPC? 

21.34 [Section 21.11.2, Network Driver Architecture] Suppose a 
new set of protocols were to replace TCP and IP as standard 
network protocols. How difficult would it be to incorporate 
support for these new protocols into Windows XP? 

21.35 [Section 21.11.3, Network Protocols] Winsock adds new 
functionality on top of BSD sockets, extending sockets' func
tionality, but hindering portability. Do you think this was a 
good design decision? Support your answer. 

21.36 [Section 21.12.1, Symmetric Multiprocessing (SMP)] 
Why does Windows XP attempt to schedule a thread on the 
same processor on which it recently executed? 
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from the MSDN Library at msdn.microsoft .com/l ibrary. 
Also, Microsoft Windows XP Professional Resource Kit Docu
mentation by the Microsoft Corporation and published by 
Microsoft Press provides useful documentation about Win
dows XP. Some of the chapters of this book are available on 
Microsoft Technet at www.microsoft.com/technet/ 
prodtechnol/winxppro/Defaul t .asp. The NT Insider and 
Windows & .NET Magazine both provide excellent articles on 
Windows internals. Both of these magazines have archives of 
old editions. The NT Insider archives are available at 
www.osronline.com, and the Windows & .NET Magazine 
archives are available at www.wi nntmag.com. 

A superb exposition of Windows NT-line internals can be 
found in Inside Windows 2000, 3d ed., by Mark Russinovich 
and David Solomon and published by Microsoft Press. These 
authors also discuss kernel enhancements from Windows 2000 
to Windows XP in their article "Windows XP: Kernel Improve
ments Create a More Robust, Powerful, and Scalable OS," 
published in the December 2001 edition of MSDN Magazine. 
Helen Custer's Inside Windows NT, published by Microsoft 
Press, introduces many NT concepts still applicable for Win
dows XP. For the most updated reference on Windows XP, see 
the platform Software Development Kit (SDK) and Driver 
Development Kit (DDK) for Windows XP. Both are available 
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Glossary 
Numerics 
2-D mesh network—Multiprocessor interconnection scheme that 

arranges nodes in an m x n rectangle. 
3DES-See Triple DES. 

4-connected 2-D mesh network—2-D mesh network in which nodes are 
connected with the nodes directly to the north, south, east and 
west. 

A 
abandoned mutex (Windows XP)—Mutex that was not released before 

the termination of the thread that held it. 

abort—Action that terminates a process prematurely. Also, in the IA-32 
specification, an error from which a process cannot recover. 

absolute loading —Loading technique in which the loader places the 
program in memory at the address specified by the programmer 
or compiler. 

absolute path—Path beginning at the root directory. 

absolute performance measure—Measure of the efficiency with which 
a computer system meets its goals, described by an absolute quan
tity such as the amount of time in which a system executes a cer
tain benchmark. This contrasts with relative performance 
measures such as ease of use, which only can be used to make 
comparisons between systems. 

Accelerated Graphics Port (AGP)-Popular bus architecture used for 
connecting graphics devices; AGPs typically provide 260MB/s of 
bandwidth. 

access control attribute (Linux) —Specifies the access rights for pro
cesses attempting to access a particular resource. 

access control entry (ACE) (Windows XP)-Entry in a discretionary 
access control list (DACL) for a specific resource that contains the 
security identifier (SID) of a security principal and the type of 
access (if any) the security principal has to that particular resource. 

access control list—List that stores one entry for each access right 
granted to a subject for an object. An access control list consumes 
less space than an access control matrix. 

Access Control List (ACL) (Multics)—Multics' discretionary access 
control implementation. 

access control matrix-Matrix that lists system's subjects in the rows 
and the objects to which they require access in the columns. Each 
cell in the matrix specifies the actions that a subject (defined by 

the row) can perform on an object (defined by the column). 
Access control matrices typically are not implemented because 
they are sparsely populated. 

access control mode —Set of privileges (e.g., read, write, execute and/or 
append) that determine how a page or segment of memory can be 
accessed. 

Access Isolation Mechanism (AIM) (Multics)—Multics' mandatory 
access control implementation. 

access method—Technique a file system uses to access file data. See 
also queued access methods and basic access methods. 

access right—Defines how various subjects can access various objects. 
Subjects may be users, processes, programs or other entities-
Objects are information-holding entities; they may be physical 
objects that correspond to disks, processors or main memory or 
abstract objects that correspond to data structures, processes or 
services. Subjects are also considered to be objects of the system; 
one subject may have rights to access another. 

access token (Windows XP)—Data structure that stores security infor
mation, such as the security identifier (SID) and group member
ships, about a security principal. 

access transparency—Hides the details of networking protocols that 
enable communication between computers in a distributed system. 

accessed bit—See referenced bit. 

accessibility (file)—File property that places restrictions on which users 
can access file data. 

acknowledgement segment (ACK)-In TCP, a segment that is sent to 
the source host to indicate that the destination host has received a 
segment. If a source host does not receive and ACK for a seg-
ment, it will retransmit that segment. This guarantees that each 
transmitted segment is received. 

acquire operation—In several coherence strategies, an operation indy-
eating that a process is about to access shared memory. 

Active Directory (Windows XP)-Network service that provides direc-
tory services for shared objects (e.g., files, printers, services, etc.) 
on a network. 

active list (Linux) —Scheduler structure that contains processes that 
will control the processor at least once during the current epoch. 

active page (Linux)—Page of memory that will not be replaced the 
next time pages are selected for replacement. 

active state (Linux)—Task state describing tasks that can compete for 
execution on a processor during the current epoch. 
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ActiveX Controls—Self-registering COM objects useful for embed
ding in Web pages. 

activity (file)—Percentage of a file's records accessed during a given 
period of time. 

actuator—See disk arm. 

ad hoc network—Network characterized as being spontaneous—any 
number of wireless or wired devices may be connected to it at any 
time. 

Ada—Concurrent, procedural programming language developed by 
the DoD during the 1970s and 1980s. 

adaptive lock—Mutual exclusion lock that allows processes to switch 
between using a spin lock or a blocking lock, depending on the 
current condition of the system. 

adaptive mechanism—Control entity that adjusts a system in response 
to its changing behavior. 

add-on card—Device that extends the functionality of a computer (e.g., 
sound and video cards). 

address binding—Assignment of memory addresses to program data 
and instructions. 

address bus—Part of a bus that specifies the memory location from or 
to which data is to be transferred. 

address space—Set of memory locations a process can reference. 

address translation map—Table that assists in the mapping of virtual 
addresses to their corresponding real memory addresses. 

admission scheduling—See high-level scheduling. 

Advanced Configuration and Power Interface (ACPI)—Power man
agement specification supported by many operating systems that 
allows a system to turn off some or all of its devices without loss 
of work. 

Advanced Encryption Standard (AES)—Standard for symmetric 
encryption that uses Rijndael as the encryption method. AES has 
replaced the Data Encryption Standard (DES) because AES pro
vides enhanced security. 

Advanced Research Projects Agency (ARPA)—Government agency 
under the Department of Defense that laid the groundwork for 
the Internet; it is now called the Defense Advanced Research 
Projects Agency (DARPA). 

advertisement (in JXTA)—XML document formatted according to 
JXTA specifications that is used by a peer to advertise itself and 
notify others of its existence. 

advisable process lock (APL)—Locking mechanism in which an 
acquirer estimates how long it will hold the lock; other processes 
can use this estimate to determine whether to block or spin when 
waiting for the lock. 

affinity mask (Windows XP) —List of processors on which a process's 
threads are allowed to execute. 

agent level (in JMX)—JMX level that provides services for exposing 
the managed resources. 

aging of priorities—Method of preventing indefinite postponement by 
increasing a process's priority gradually as it waits. 

air gap technology—Network security solution that complements a 
firewall. It secures private data from external users accessing the 
internal network. 

alertable I/O (Windows XP)—Type of asynchronous I/O in which the 
system notifies the requesting thread of the completion of the I/O 
with an APC. 

alertable wait state (Windows XP) —State in which a thread cannot 
execute until it is awakened either by an APC entering the 
thread's APC queue or by receiving a handle to the object (or 
objects) for which the thread is waiting. 

alternate data stream—File attribute that stores the contents of an 
NTFS file that are not in the default data stream. NTFS files may 
have multiple alternate data streams. 

analytic model—Mathematical representation of a computer system or 
component of a computer system for the purpose of estimating its 
performances quickly and relatively accurately. 

Andrew File System (AFS) —Scalable distributed file system that 
would grow to support a large community while being secure. 
AFS is a global file system that appears as a branch of a tradi
tional UNIX file system at each workstation. AFS is completely 
location transparent and provides a high degree of availability. 

anonymous pipe (Windows XP)—Unnamed pipe that can be used only 
for synchronous one-way communication between local pro
cesses. 

anticipatory buffering—Technique that allows processing and I/O 
operations to be overlapped by buffering more than one record at 
a time in main memory. 

anticipatory movement—Movement of the disk arm during disk arm 
anticipation. 

anticipatory paging—Technique that preloads a process's nonresident 
pages that are likely to be referenced in the near future. Such 
strategies attempt to reduce the number of page faults a process 
experiences. 

antivirus software—Program that attempts to identify, remove and oth
erwise protect a system from viruses. 

anycast—Type of IPv6 address that enables a datagram to be sent to 
any host within a group of hosts. 

Apache Software Foundation—Provides open-source software, such as 
Tomcat, the official reference implementation of JSP and servlet 
specifications. 

apartment model—COM object threading model in which only one 
thread acts as a server for each COM object. 

APC IRQL (Windows X P ) - I R Q L at which APCs execute and incom
ing asynchronous procedure calls (APCs) are masked. 

append access—Access right that enables a process to write additional 
information at the end of a segment but not to modify its existing 
contents; see also execute access, read access and write access. 

append-only file attribute (Linux)—File attribute that limits users to 
appending data to existing file contents. 

application base—Combination of the hardware and the operating sys
tem environment in which applications are developed. It is diffi-
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cult for users and application developers to convert from an 
established application base to another. 

application configuration file (ACF) (Windows XP)— File that specifies 
platform-specific attributes (e.g., how data should be formatted) 
for an RPC function call. 

application layer (in grid computing) —Contains applications that use 
lower-level layers to access the distributed resources. 

application layer (in OSI)—Interacts with the applications and pro
vides various network services, such as file transfer and e-mail. 

application layer (in TCP/IP)—Protocols in this layer allow applica
tions on remote hosts to communicate with each other. The appli
cation layer in TCP/IP performs the functionality of the top three 
layers of OSI — the application, presentation and session layers. 

application-level gateway—Hardware or software that protects the 
network against the data contained in packets. If the message con
tains a virus, the gateway can block it from being sent to the 
intended receiver. 

application programming—Software development that entails writing 
code that requests services and resources from the operating sys
tem to perform tasks (e.g., text editing, loading Web pages or pay
roll processing). 

application programming interface (API) —Set of functions that allows 
an application to request services from a lower level of the system 
(e.g., the operating system or a library module). 

application vector—Vector that contains the relative demand on oper
ating system primitives by a particular application, used in an 
application-specific performance evaluation. 

architecture-specific code—Code that specifies instructions unique to a 
particular architecture. 

Arithmetic and Logic Unit (ALU) —Component of a processor that 
performs basic arithmetic and logic operations. 

ARPAnet—Predecessor to the Internet that enabled researchers to 
network their computers. ARPAnet's chief benefit proved to be 
quick and easy communication via what came to be known as 
electronic mail (e-mail). 

array processor—SIMD (single-instruction-stream, multiple-data-stream) 
system consisting of many (possibly tens of thousands) simple pro
cessing units, each executing the same instruction in parallel on many 
data elements. 

arrival rate—Rate at which new requests are made for a resource. 

artificial contiguity—Technique employed by virtual memory systems 
to provide the illusion that a program's instructions and data are 
stored contiguously when pieces of them may be spread through
out main memory; this simplifies programming. 

ASCII (American Standard Code for Information Interchange) — 
Character set, popular in personal computers and in data commu
nication systems, that stores characters as 8-bit bytes. 

assembler—Translator program that converts assembly-language pro
grams to machine language. 

assembly language—Low-level language that represents basic com
puter operations as English-like abbreviations. 

associative mapping—Content-addressed associative memory that 
assists in the mapping of virtual addresses to their corresponding 
real memory addresses; all entries of the associative memory are 
searched simultaneously. 

associative memory—Memory that is searched by content, not by loca
tion; fast associative memories can help implement high-speed 
dynamic address translation mechanisms. 

asynchronous cancellation (POSIX) —Cancellation mode in which a 
thread is terminated immediately upon receiving the cancellation 
signal. 

asynchronous concurrent threads—Threads that exist simultaneously 
but operate independently of one another and that occasionally 
communicate and synchronize to perform cooperative tasks. 

asynchronous procedure call (APC) (Windows XP)—Procedure calls 
that threads or the system can queue for execution by a specific 
thread. 

asynchronous real-time process—Real-time process that executes in 
response to events. 

asynchronous signal—Signal generated for reasons unrelated to the 
current instruction of the running thread. 

asynchronous transmission—Transferring data from one device to 
another that operates independently via a buffer to eliminate the 
need for blocking; the sender can perform other work once the 
data arrives in the buffer, even if the receiver has not yet read the 
data. 

atomic broadcast—Guarantees that all messages in a system are 
received in the same order at each process. Also known as totally 
ordered or agreed broadcast. 

atomic operation—Operation performed without interruption. 

atomic transaction—Group of operations that have no effect on the 
state of the system unless they complete in their entirety. 

attenuation—Deterioration of a signal due to physical characteristics 
of the medium. 

attraction memory (AM)—Main memory in a COMA (cache-only mem
ory architecture) multiprocessor, which is organized as a cache. 

attribute (of an object)—See property. 

authentication (secure transaction) —One of the five fundamental 
requirements for a successful, secure transaction. Authentication 
deals with how the sender and receiver of a message verify their 
identities to each other. 

authentication header (AH) (IPSec)—Information that verifies the 
identity of a packet's sender and proves that a packet's data was 
not modified in transit. 

authentication server scripts—Single sign-on implementation that 
authenticates users via a central server, which establishes connec
tions between the user and the applications the user wishes to 
access. 

authorization (secure transaction)—One of the five fundamental 
requirements for a successful, secure transaction. Authorization 
deals with how to manage access to protected resources on the 
basis of user credentials. 
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Berkeley Software Distribution (BSD) U N I X - U N I X version modi

fied and released by a team led by Bill Joy at the University of 
California at Berkeley. BSD UNIX is the parent of several UNIX 
variations. 

best-fit memory placement strategy—Memory placement strategy that 
places an incoming job in the smallest hole in memory that can 
hold the job. 

bidding algorithm—Dynamic load balancing algorithm in which proces
sors with smaller loads "bid" for jobs on overloaded processors; the 
bid value depends on the load of the bidding processor and the dis
tance between the underloaded and overloaded processors. 

big kernel lock (BKL) (Linux) —Global spin lock that served as an 
early implementation of SMP support in the Linux kernel. 

binary buddy algorithm (Linux)—Algorithm that Linux uses to allo
cate physical page frames. The algorithm maintains a list of groups 
of contiguous pages; the number in each group is a power of two. 
This facilitates memory allocation for processes and devices that 
require access to contiguous physical memory. 

binary relation—Relation (in a relational database) of degree 2. 

binary semaphore —Semaphore whose value can be no greater than 
one, typically used to allocate a single resource. 

binding (Windows XP) — Connection between the client and the server 
used for network communication (e.g., for an RPC). 

binding handle (Windows XP)—Data structure that stores the connec
tion information associated with a binding between a client and a 
server. 

bio structure (Linux)—Structure that simplifies block I/O operations 
by mapping I/O requests to pages. 

biometrics—Technique that uses an individual's physical characteris
tics, such as fingerprints, eyeball iris scans or face scans, to identify 
the user. 

BIPS (billion instructions per second)—Unit commonly used to catego
rize the performance of a particular computer; a rating of one BIPS 
means a processor can execute one billion instructions per second. 

bisection width—Minimum number of links that need to be severed to 
divide a network into two unconnected halves. 

bit pattern—Lowest level of the data hierarchy. A bit pattern is a group 
of bits that represent virtually all data items of interest in com
puter systems. 

bitmap—Free space management technique that maintains one bit for 
each block in memory, where the ith bit corresponds to the ith 
block in memory. Bitmaps enable a file system to more easily allo
cate contiguous blocks but can require substantial execution time 
to locate a free block. 

block—Fixed-size unit of contiguous data, typically much larger than a 
byte. Placing contiguous data records in blocks enables the system 
to reduce the number of I/O operations required to retrieve them. 

block allocation—Technique that enables the file system to manage 
secondary storage more efficiently and reduce file traversal over
head by allocating extents (blocks of contiguous sectors) to files. 

auto-reset timer object (Windows XP)—Timer object that remains sig
naled only until one thread finishes waiting on the object. 

automatic binding handle (Windows XP)—RPC binding handle in 
which the client process simply calls a remote function, and the 
stub manages all communication tasks. 

auxiliary storage—See secondary storage. 
auxiliary storage management—Component of file systems concerned 

with allocating space for files on secondary storage devices. 
available volume storage group (AVSG) (in Coda)—Members of the 

VSG with which the client can communicate. 

back-door program—Resident virus that allows an attacker complete, 
undetected access to the victim's computer resources. 

backup—Creation of redundant copies of information. 

Bad Page List (Windows XP)—List of page frames that have gener
ated hardware errors; the system does not store pages on these 
page frames. 

balance set manager (Windows XP) —Executive component responsi
ble for adjusting working set minimums and maximums and trim
ming working sets. 

bandwidth—Information-carrying capacity of a communications line. 
Also, a the amount of data transferred over a unit of time. 

base priority class (Windows XP)—Process attribute that determines a 
narrow range of base priorities the process's threads can have. 

base priority level (Windows XP)—Thread attribute that describes the 
thread's base priority within a base priority class. 

base register—Register containing the lowest memory address a pro
cess may reference. 

baseline network—Type of multistage network. 

basic access method—File access method in which the operating sys
tem responds immediately to user I/O demands. It is used when 
the sequence in which records are to be processed cannot be 
anticipated, particularly with direct accessing. 

basic input/output system (BIOS)—Low-level software instructions 
that control basic hardware initialization and management. 

batch process—Process that executes without user interaction. 

behavior (of an object)—See method. 

Belady's anomaly—See FIFO anomaly. 

benchmark—Real program that an evaluator executes on the system 
being evaluated to determine how efficiently the system executes 
that program; benchmarks are used to compare systems. 

Beowulf cluster—Linux clustering solution, which is a high-perfor
mance cluster. A Beowulf cluster may contain several nodes or 
several hundred. Theoretically, all nodes have Linux installed as 
their operating system and are interconnected with high-speed 
Ethernet. Usually, all the nodes in the cluster are connected 
within a single room to form a supercomputer. 

B 
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directly reference. This is necessary when the system's physical 
address space is larger than kernel's virtual address space. 

boundary register—Register for single-user operating systems that was 
used for memory protection by separating user memory space 
from kernel memory space. 

bounded buffer—See circular buffer. 

bounds register—Register that stores information regarding the range 
of memory addresses accessible to a process. 

branch penalty—Performance loss in pipelined architectures associ
ated with a branch instruction; this occurs when a processor can
not begin processing the instruction after the branch until the 
processor knows the outcome of the branch. The branch penalty 
can be reduced by using delayed branching, branch prediction or 
branch predication. 

branch predication—Technique used in EPIC processors whereby a 
processor executes all possible instructions that could follow a 
branch in parallel and uses only the result of the correct branch 
once the predicate (i.e., the branch comparison) is resolved. 

branch prediction—Technique whereby a processor uses heuristics to 
determine the most probable result of a branch in code; when the 
processor predicts correctly, performance increases, because the 
processor can continue to execute instructions immediately after 
the branch. 

brute-force cracking—Technique to compromise a system simply by 
attempting all possible passwords or by using every possible 
decryption key to decrypt a message. 

buffer—Temporary storage area that holds data during I/O between 
devices operating at different speeds. Buffers enable a faster 
device to produce data at its full speed (until the buffer fills) while 
waiting for the slower device to consume the data. 

buffer overflow—Attack that sends input that is larger than the space 
allocated for it. If the input is properly coded and the system's 
stack is executable, buffer overflows can enable an attacker to 
execute malicious code. 

bullet server—Standard file server used in the Amoeba file system. 

burping the memory—See memory compaction. 

bus—Collection of traces that form a high-speed communication chan
nel for transporting information between different devices on a 
mainboard. 

bus driver—WDM (Windows Driver Model) driver that provides some 
generic functions for devices on a bus, enumerates those devices 
and handles Plug and Play I/O requests. 

bus mastering—DMA transfer in which a device assumes control of the 
bus (preventing others from accessing the bus simultaneously) to 
access memory. 

bus network—Network in which the nodes are connected by a single 
bus link (also known as a linear network). 

bus snooping—Coherence protocol in which processors "snoop" the 
shared bus to determine whether a requested write is to a data 
item in that processor's cache or, if applicable, local memory. 

block allocation bitmap (Linux)—Bitmap that tracks the usage of 
blocks in each block group. 

block cipher—Encryption technique that divides a message into fixed-
size groups of bits to which an encryption algorithm is applied. 

block device—Device such as a disk that transfers data in fixed-size 
groups of bytes, as opposed to a character device, which transfers 
data one byte at a time. 

block group (Linux)—Collection of contiguous blocks managed by 
group-wide data structures so that related data blocks, inodes and 
other file system metadata are contiguous on disk. 

block map table—Table containing entries that map each of a process's 
virtual blocks to a corresponding block in main memory (if there 
is one). Blocks in a virtual memory system are either segments or 
pages. 

block map table origin register—Register that stores the address in 
main memory of a process's block map table; this high-speed reg
ister facilitates rapid virtual address translation. 

block mapping—Mechanism that, a virtual memory system, reduces 
the number of mappings between virtual memory addresses and 
real memory addresses by mapping blocks in virtual memory to 
blocks in main memory. 

blocked list—Kernel data structure that contains pointers to all 
blocked processes. This list is not maintained in any particular pri
ority order. 

blocked record—Record that may contain several logical records for 
each physical record. 

blocked state—Process (or thread) state in which the process (or thread) 
is waiting for the completion of some event, such as an I/O comple
tion, and cannot use a processor even if one is available. 

blocking—Grouping of contiguous records into larger blocks that can be 
read using a single I/O operation. This technique reduces access 
times by retrieving many records with a single I/O operation. 

boom—See disk arm. 

boot sector—Specified location on a disk in which the initial operating 
system instructions are stored; the BIOS instructs the hardware to 
load these initial instructions when the computer is turned on. 

boot sector virus—Virus that infects the boot sector of the computer's 
hard disk, allowing it to load with the operating system and take 
control of the system. 

bootstrapping—Process of loading initial operating system compo
nents into system memory so that they can load the rest of the 
operating system. 

born state—Thread state in which a new thread begins its life cycle. 

bottleneck—Condition that occurs when a resource receives requests 
faster than it can process them, which can slow process execution 
and reduce resource utilization. Hard disks are a bottleneck in 
most systems. 

bottom half of an interrupt handler (Linux)—Portion of interrupt-han-
dling code that can be preempted. 

bounce buffer (Linux)—Region of memory that allows the kernel to 
map data from the high memory zone into memory that it can 
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cancellation of a thread—Thread operation that terminates the target 
thread. Three modes of cancellation are disabled, deferred and 
asynchronous cancellation. 

capability — Security mechanism that assigns access rights to a subject 
(e.g., a process) by granting it a token for an object (i.e., a 
resource). This enables administrators to specify and enforce fine
grained access control. The token is analogous to a ticket the 
bearer may use to gain access to a sporting event. 

capacity—Measure of the maximum throughput a system can attain, 
assuming that whenever the system is ready to accept more jobs, 
another job is immediately available. 

Carrier Sense Multiple Access with Collision Avoidance (CSMA/ 
CA)—Protocol used in 802.11 wireless communication. Devices 
must send a Request To Send (RTS) and receive a Clear To Send 
(CTS) from the destination host before transmitting. 

Carrier Sense Multiple Access with Collision Detection (CSMA/ 
CD)—Protocol used in Ethernet that enables transceivers to test 
a shared medium to see if it is available before transmitting data. 
If a collision is detected, transceivers continue transmitting data 
for a period of time to ensure that all transceivers recognize the 
collision. 

causal broadcast—Ensures that when a message is sent from one pro
cess to all other processes, any given process will receive the mes
sage before it receives a response to the message from a different 
process. 

causal ordering—Ensures that all processes recognize that a causally 
dependent event must occur only after the event on which it is 
dependent. 

causally dependent—Event B is causally dependent on event A if event 
B may occur only if event A occurs. 

cell (in AFS-3)—Unit in AFS-3, which preserves namespace continuity 
while allowing different systems administrators to oversee each 
cell. 

central deadlock detection—A strategy in distributed deadlock detec
tion, in which one site is dedicated to monitoring the TWFG of 
the entire system. Whenever a process requests or releases a 
resource, it informs the central site. The site continuously checks 
the global TWFG for cycles. 

central migration server—Workstation in a Sprite distributed operating 
system that keeps information about idle workstations. 

central processing unit (CPU)—Processor responsible for the general 
computations in a computer. 

centralized P2P application—Uses a server that connects to each peer. 
certificate authority (CA)—Financial institution or other trusted third 

party, such as VeriSign, that issues digital certificates. 
certificate authority hierarchy — Chain of certificate authorities, begin

ning with the root certificate authority, that authenticates certifi
cates and CAs. 

certificate repositories—Locations where digital certificates are stored. 

certificate revocation list (CRL) —List of cancelled and revoked certifi
cates. A certificate is cancelled/revoked if a private key is compro
mised before its expiration date. 

Business Application Performance Corporation (BAPCo) — Organiza
tion that develops standard benchmarks, such as the popular SYS-
Mark for processors. 

business-critical system —System that must function properly, but 
whose failure of which leads to reduced productivity and profit
ability; not as crucial as a mission-critical system, where failure 
could put human lives could be at risk. 

busy waiting—Form of waiting where a thread continuously tests a 
condition that will let the thread proceed eventually; while busy 
waiting, a thread uses processor time. 

byte—Second-lowest level in the data hierarchy. A byte is typically 8 bits. 
bytecode—Intermediate code that is intended for virtual machines 

(e.g., Java bytecode runs on the Java Virtual Machine). 

C—Procedural programming language developed by Dennis Ritchie 
that was used to create UNIX. 

C-threads—Threads supported natively in the Mach micro-kernel (on 
which Macintosh OS X is built). 

C#—Object-oriented programming language developed by Microsoft 
that provides access to .NET libraries. 

C++ —Object-oriented extension of C developed by Bjarne Stroustup. 

cache coherence—Property of a system in which any data item read 
from a cache has the value equal to the last write to that data item. 

cache-coherent NUMA (CC-NUMA) —NUMA multiprocessor that 
maintains cache coherence, usually through a home-based approach. 

cache-cold process—Process that contains little, if any, of its data or 
instructions in the cache of the processor to which it will be dis
patched. 

cache hit—Request for data that is present in the cache. 

cache-hot process—Process that contains most, if not all, of its data and 
instructions in the cache of the processor to which it will be dis
patched. 

cache line—Entry in a cache. 

cache manager (Windows XP)—Executive component that handles file 
cache management. 

cache memory—Small, expensive, high-speed memory that holds cop
ies of programs and data to decrease memory access times. 

cache miss—Request for data that is not present in the cache. 

cache miss latency—Extra time required to access data that does not 
reside in the cache. 

cache-only memory architecture (COMA) multiprocessor—Multipro
cessor architecture in which nodes consist of a processor, cache 
and memory module; main memory is organized as a large cache. 

cache snooping—Bus snooping used to ensure cache coherency. 

callback (in AFS) —Sent by the server to notify the client that the 
cached file is modified. 

C 
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chaining—Indexed noncontiguous allocation technique that reserves 

the last few entries of an index block to store pointers to more 
index blocks, which in turn point to data blocks. Chaining enables 
index blocks to reference large files by storing references to its 
data across several blocks. 

chaining (hash tables)—Technique that resolves collisions in a hash 
table by placing each unique item in a data structure (typically a 
linked list). The position in the hash table at which the collision 
occurred contains a pointer to that data structure. 

character—In the data hierarchy, a fixed-length pattern of bits, typi
cally 8,16 or 32 bits. 

character device—Device such as a keyboard or mouse that transfers 
data one byte at a time, as opposed to a block device, which trans
fers data in fixed-size groups of bytes. 

character set—Collection of characters. Popular character sets include 
ASCII, EBCDIC and Unicode. 

checkpoint (transaction logging)—Marker indicating which transac
tions in a log have been transferred to permanent storage. The 
system need only reapply the transactions from the latest check
point to determine the state of the file system, which is faster than 
reapplying all transactions starting at the beginning of the log. 

checkpoint (deadlock recovery)—Record of a state of a system so that 
it can be restored later if a process must be prematurely termi
nated (e.g., to perform deadlock recovery). 

checkpoint/rollback—Method of deadlock and system recovery that 
undoes every action (or transaction) of a terminated process since 
the process's last checkpoint. 

checksum—Result of a calculation on the bits of a message. The check
sum calculated at the receiver is compared to the checksum calcu
lated by the sender (which is embedded in the control information). 
If the checksums do not match, the message has been corrupted. 

child process—Process that has been spawned from a parent process. A 
child process is one level lower in the process hierarchy than its 
parent process. In UNIX systems, child processes are created 
using the fork system call. 

chipset—Collection of controllers, coprocessors, buses and other hard
ware specific to the mainboard that determine the hardware capa
bilities of a system. 

cipher—Mathematical algorithm for encrypting messages. Also called 
cryptosystem. 

ciphertext—Encrypted data. 

circular buffer—In the producer/consumer relationship, a fixed-size 
region of shared memory that stores multiple values produced by 
a producer. If the producer occasionally produces values faster 
than the consumer, a circular buffer reduces the time the pro
ducer spends waiting for a consumer to consume the values, when 
compared to a buffer that stores a single value. If the consumer 
temporarily consumes values faster than the producer, a circular 
buffer can similarly reduce the time a consumer spends waiting 
for the producer to produce values. 

circular LOOK (C-LOOK) disk scheduling—Disk scheduling strategy 
that moves the arm in one direction, servicing requests on a short-

est-seek basis. When there are no more requests on a current 
sweep, the read-write head moves to the request closest to the cyl
inder opposite its current location (without servicing requests in 
between) and begins the next sweep. The C-LOOK policy is char
acterized by potentially lower variance of response times com
pared to LOOK; it offers high throughput (although lower than 
that of LOOK). 

circular SCAN (C-SCAN) disk scheduling—Disk scheduling strategy 
that moves the arm in one direction, servicing requests on a short-
est-seek basis. When the arm has completed its sweep, it jumps 
(without servicing requests) to the cylinder opposite its current 
location, then resumes its inward sweep, processing requests. C-
SCAN maintains high levels of throughput while further limiting 
variance of response times by avoiding the discrimination against 
the innermost and outermost cylinders. 

circular wait—Condition for deadlock that occurs when two or more 
processes are locked in a "circular chain," in which each process in 
the chain is waiting for one or more resources that the next pro
cess in the chain is holding. 

circular-wait necessary condition for deadlock—One of the four neces
sary conditions for deadlock; states that if a deadlock exists, there 
will be two or more processes in a circular chain such that each pro
cess is waiting for a resource held by the next process in the chain. 

class—Type of an object. Determines an object's methods and attributes. 

class ID (CLSID)—Globally unique ID given to a COM object class. 

class/mini class driver pair (Windows XP)—Pair of device drivers that 
act as a function driver for a device; the class driver provides 
generic processing for the device's particular device class, and the 
miniclass driver provides processing for the specific device. 

Clear to Send (CTS)—Message that a receiver broadcasts in the 
CSMA/CA protocol to indicate that the medium is free. A CTS 
message is sent in response to a Request to Send (RTS). 

client—Process that requests a service from another process (a server). 
The machine on which the client process runs is also called a cli
ent. 

client caching—Clients keep local copies of files and flush them to the 
server after having modified the files. 

client modification log (CML) (in Coda)—Log which is updated to 
reflect file changes on disk. 

client stub—Stub at the client side that prepares outbound data for 
transmission and translates incoming data so that it may be cor
rectly interpreted. 

client/server model—Popular networking paradigm in which processes 
that need various services performed (clients) transmit their 
requests to processes that provide these services (servers). The 
server processes the request and returns the result to the client. 
The client and the server are typically on different machines on 
the network. 

clipboard (Windows XP) —Central repository of data that is accessible 
to all processes, typically used with copy, cut and paste commands 
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clock IRQL (Windows XP) — IRQL at which clock interrupts occur 
and at which APC, DPC/dispatch, DIRQL and profile-level inter
rupts are masked. 

clock page-replacement strategy—Variation ot the second-chance page-
replacement strategy that arranges the pages in a circular list 
instead of a linear list. A list pointer moves around the circular list, 
much as the hand of a clock rotates, and replaces the page nearest 
the pointer (in circular order) that has its referenced bit turned off. 

clocktick—See cycle. 

close (file) — Operation that prevents further reference to a file until it 
is reopened. 

cluster—Set of nodes that forms what appears to be a single parallel 
machine. 

cluster (NTFS) — Basic unit of disk storage in an NTFS volume, consist
ing of a number of contiguous sectors; a system's cluster size can 
range from 512 bytes to 64KB, but is typically 2KB, 4KB or 8KB. 

clustering—Interconnection of nodes within a high-speed LAN so that 
they function as a single parallel computer. 

CMS Batch Facility (VM)—VM Component that allows the user to run 
longer jobs in a separate virtual machine so that the user can con
tinue interactive work. 

coalescing memory holes—Process of merging adjacent holes in mem
ory in variable-partition multiprogramming systems. This helps 
create the largest possible holes available for incoming programs 
and data. 

coarse-grained strip (RAID) —Strip size that enables average files to 
be stored in a small number of strips. In this case, some requests 
can be serviced by only a portion of the disks in the array, so it is 
more likely that multiple requests can be serviced simultaneously. 
If requests are small, they are serviced by one disk at a time, 
which reduces their average transfer rates. 

Coda Optimistic Protocol—Protocol used by Coda clients to write a 
copy of the file to each of the members of the AVSG, which pro
vides a consistent view of a file within an AVSG. 

code freeze (Linux)—Point at which no new code should be added to 
the kernel unless the code fixes a known bug. 

code generator—Part of a compiler responsible for producing object 
code from a higher-level language. 

collective layer (in grid computing) — Layer responsible for coordinat
ing distributed resources, such as scheduling a task to analyze data 
received from a scientific device. 

collision (CSMA/CD protocol) —Simultaneous transmission in CSMA/ 
CD protocol. 

collision (hash tables)—Event that occurs when a hash function maps 
two different items to the same position in a hash table. Some 
hash tables use chaining to resolve collisions. 

COM+—Extension of COM (Microsoft's Common Object Model) that 
handles advanced resource management tasks, such as providing 
support for transaction processing and using thread and object 
pools. 

commit memory (Windows XP)—Necessary stage before a process can 
access memory. The VMM ensures that there is enough space in a 
pagefile for the memory and creates page table entries (PTEs) in 
main memory for the committed pages. 

committed transaction—Transaction that has completed successfully. 

COmmon Business Oriented Language (COBOL)—Procedural pro
gramming language developed in the late 1950s that was designed 
for writing business software that manipulates large volumes of 
data. 

Common Internet File System (CIFS)—Native file sharing protocol of 
Windows XP. 

Common Object Request Broker Architecture (CORBA) —Conceived 
in the early 1990s by the Object Management Group (OMG), 
CORBA is a standard specification of distributed systems archi
tecture that has gained wide acceptance. 

communication deadlock—One of the two types of distributed dead
lock, which is a circular waiting for communication signals. 

compact disk (CD)—Digital storage medium in which data is stored as 
a series of microscopic pits on a flat surface. 

compile—Translate high-level-language source code into machine code. 

compiler—Application that translates high-level-language source code 
into machine code. 

complex instruction set computing (CISC) —Processor-design philoso
phy, emphasizing expanded instruction sets that incorporate sin
gle instructions that perform several operations. 

component (Windows XP)—Functional unit of Windows XP. Compo
nents range from user-mode applications such as Notepad to por
tions of kernel space such as the CD-ROM interface and power 
management tools. Dividing Windows XP into components facili
tates operating system development for embedded systems. 

Component Object Model (COM)—Microsoft-developed software 
architecture that allows interoperability between diverse compo
nents through the standard manipulation of object interfaces. 

compression unit (NTFS) —Sixteen clusters. Windows XP compresses 
and encrypts files one compression unit at a time. 

compute-bound—See processor-bound. 

concurrent—The description of a process or thread that exists in a sys
tem simultaneously with other processes and/or threads. 

concurrent (happens-before relation)—Two events are concurrent if it 
cannot be determined which occurred earlier by following the 
happens-before relation. 

concurrent program execution—Technique whereby processor time is 
shared among multiple active processes. On a uniprocessor sys
tem, concurrent processes cannot execute simultaneously; on a 
multiprocessor system, they can. 

concurrent write sharing—Occurs when two clients modify cached cop
ies of the same file. 

condition variable—Variable that contains a value and an associated 
queue. When a thread waits on a condition variable inside a moni
tor, it exits the monitor and is placed in the condition variable's 
queue. Threads wait in the queue until signaled by another thread. 
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configurable lock — See adaptive lock 

configuration manager (Windows XP) —Executive component that 
manages the registry. 

congestion control—Means by which TCP restricts the number of seg
ments sent by a single host in response to network congestion. 

connection-oriented transport—Method of implementing the transport 
layer in which hosts send control information to govern the ses
sion. Handshaking is used to set up the connection. The connec
tion guarantees that all data will arrive and in the correct order. 

connectionless transport—Method of implementing the transport layer 
in which there is no guarantee that data will arrive in order or at all. 

connectivity layer (in grid computing)—Layer that carries out reliable 
and secure transactions between distributed resources. 

consumer thread—Thread whose purpose is to read and process data 
from a shared object. 

contention —In multiprocessing, a situation in which several processors 
compete for the use of a shared resource. 

context switching —Action performed by the operating system to 
remove a process from a processor and replace it with another. 
The operating system must save the state of the process that it 
replaces. Similarly, it must restore the state of the process being 
dispatched to the processor. 

contiguous memory allocation —Method of assigning memory such 
that all of the addresses in the process's entire address space are 
adjacent to one another. 

control information —Data in the form of headers and/or trailers that 
allows protocols of the same layer on different machines to com
municate. Control information might include the addresses of the 
source and destination hosts and the type of data or size of the 
data that is being sent. 

Control Program (CP) (VM) — Component of VM that runs the physi
cal machine and creates the environment for the virtual machine. 

controller —Hardware component that manages access to a bus by 
devices. 

Conversational Monitor System (CMS) (VM)—Component of VM 
that is an interactive application development environment. 

cooperative multitasking—Process scheduling technique in which pro
cesses execute on a processor until they voluntarily relinquish 
control of it. 

coprocessor—Processor, such as a graphics or digital signal processor, 
designed to efficiently execute a limited set of special-purpose 
instructions (e.g., 3D transformations). 

copy (file) — Operation that creates another version of a file with a new 
name. 

copy-on-reference migration—Process migration technique in which 
only a process's dirty pages are migrated with the process, and the 
process can request clean pages either from the sending node or 
from secondary storage. 

copy-on-write—Mechanism that improves process creation efficiency 
by sharing mapping information between parent and child until a 
process modifies a page, at which point a new copy of the page is 

created and allocated to that process. This can incur substantial 
overhead if the parent or child modifies many of the shared pages. 

core file (Linux)—File that contains the execution state of a process, 
typically used for debugging purposes after a process encounters 
a fatal exception. 

coschediiling—Job-aware process scheduling algorithm that attempts 
to execute processes from the same job concurrently by placing 
them in adjacent global-run-queue locations. 

cost of an interconnection scheme—Total number of links in a network. 

counting semaphore — Semaphore whose value may be greater than 
one, typically used to allocate resources from a pool of identical 
resources. 

CP/CMS—Timesharing operating system developed by IBM in the 
1960s. 

cracker—Malicious individual that is usually interested in breaking 
into a system to disable services or steal data. 

create (file) —Operation that builds a new file. 

credential—Combination of user identity (e.g., username) and proof of 
identify (e.g., password). 

critical region —See critical section. 

critical section—Section of code that performs operations on a shared 
resource (e.g., writing data to a shared variable). To ensure pro
gram correctness, at most one thread can simultaneously execute 
in its critical section. 

critical section object (Windows XP)—Synchronization object, which 
can be employed only by threads within a single process, that 
allows only one thread to own a resource at a time. 

crossbar-switch matrix—Processor interconnection scheme that main
tains a separate path from every sender node to every receiver 
node. 

cryptanalytic attack—Technique that attempts to decrypt ciphertext 
without possession of the decryption key. The most common such 
attacks are those in which the encryption algorithm is analyzed to 
find relations between bits of the encryption key and bits of the 
ciphertext. 

Cryptographic API (Linux)—Kernel interface through which applica
tions and services (e.g., file systems) can encrypt and decrypt data. 

cryptography—Study of encoding and decoding data so that it can be 
interpreted only by the intended recipients. 

cryptosystem—Mathematical algorithm for encrypting messages. Also 
called a cipher. 

CTSS—Timesharing operating system developed at MIT in the 1960s. 

cycle (clock)—One complete oscillation of an electrical signal. The 
number of cycles that occur per second determines a device's fre-
quency (e.g., processors, memory and buses) and can be used by 
the system to measure time. 

cycle stealing—Method that gives channels priority over a processor 
when accessing the bus to prevent signals from channels and pro-
cessors from colliding. 
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cylinder—Set of tracks that can be accessed by the read/write heads for 

a specific position of the disk arm. 

D 
daemon (Linux)—Process that runs periodically to perform system ser

vices. 

data bus—Bus that transfers data to or from locations in memory that 
are specified by the address bus. 

data compression—Technique that decreases the size of a data record 
by replacing repetitive patterns with shorter bit strings. This can 
reduce seeks, and transmission times, but may require substantial 
processor time to compress the data for storage on the disk, and 
to decompress the data to make it available to applications. 

data definition language (DDL)—Type of language that specifies the 
organization of data in a database. 

data-dependent application—Application that relies on a particular file 
system's organization and access techniques. 

Data Encryption Standard (DES)—Symmetric encryption algorithm 
that uses a 56-bit key and encrypts data in 64-bit blocks. For many 
years, DES was the encryption standard set by the U.S. government 
and the American National Standards Institute (ANSI). However, 
due to advances in computing power, DES is no longer considered 
secure—in the late 1990s, specialized DES cracker machines were 
built that recovered DES keys after a period of several hours. 

data hierarchy—Classification that groups different numbers of bits to 
extract meaningful data. Bit patterns, bytes and words contain 
small numbers of bits that are interpreted by hardware and low-
level software. Fields, records and files may contain large numbers 
of bits that are interpreted by operating systems and user applica
tions. 

data independence—Property of applications that do not rely on a par
ticular file organization technique or access technique. 

data link layer (in OSI)—At the sender, converts the data representa
tion from the network layer into bits to be transmitted over the 
physical layer. At the receiver, converts the bits into the data rep
resentation for the network layer. 

data manipulation language (DML)—Type of language that enables 
data modification. 

data regeneration (RAID)—Reconstruction of lost data (due to disk 
errors or failures) in RAID systems. 

data region—Section of a process's address space that contains data (as 
opposed to instructions). This region is modifiable. 

data stream (NTFS)—File attribute that stores the file's content or 
metadata; a file can have multiple data streams. 

data striping (RAID)—Technique in RAID systems that divides con
tiguous data into fixed-size strips that can be placed on different 
disks. This enables multiple disks to service requests for data. 

database—Centrally controlled collection of data that is stored in a 
standardized format and can be searched based on logical rela
tions between data. Databases organize data according to content 

as opposed to pathname, which tends to reduce or eliminate 
redundant information. 

database language—Language that provides for organizing, modifying 
and querying of structured data. 

database management system (DBMS)—Software that controls data
base organization and operations. 

database system—A particular set of data, the storage devices on 
which it resides and the software that controls its storage and 
retrieval (called a database management system or DBMS). 

datagram—Piece of data transferred using UDP or IP. 

datagram socket—Socket that uses the UDP protocol to transmit data. 

dcache (directory entry cache) (Linux)—Cache that stores directory 
entries (dentries), which enables the kernel to quickly map file 
descriptors to their corresponding inodes. 

deactivated process (Linux)—Process that has been removed from the 
run queues and can therefore no longer contend for processor time. 

dead state—Thread state entered after a thread completes its task or 
otherwise terminates. 

deadline rate-monotonic scheduling—Scheduling policy in real-time 
systems that meets a periodic process's deadline that does not 
equal its period. 

deadline scheduler (Linux)—Disk scheduling algorithm that eliminates 
indefinite postponement by assigning deadlines by which I/O 
requests are serviced. 

deadline scheduling—Scheduling a process or thread to complete by a 
definite time; the priority of the process or thread may need to be 
increased as its completion deadline approaches. 

deadlock—Situation in which a process or thread is waiting for an event 
that will never occur and therefore cannot continue execution. 

deadlock avoidance—Strategy that eliminates deadlock by allowing a 
system to approach deadlock, but ensuring that deadlock never 
occurs. Avoidance algorithms can achieve higher performance 
than deadlock prevention algorithms. (See also Dijktra's Banker's 
Algorithm.) 

deadlock detection—Process of determining whether or not a system is 
deadlocked. Once detected, a deadlock can be removed from a 
system, typically resulting in loss of work. 

deadlock prevention—Process of disallowing deadlock by eliminating 
one of the four necessary conditions for deadlock. 

deadlock recovery—Process of removing a deadlock from a system. 
This can involve suspending a process temporarily (and preserv
ing its work) or sometimes killing a process (thereby losing its 
work) and restarting it. 

deadly embrace—See deadlock. 

decentralized peer-to-peer application—Also called a pure peer-to-peer 
application. It does not have a server and therefore does not suffer 
from the same deficiencies as applications that depend on servers. 

decryption—Technique that reverses data encryption so that data can 
be read in its original form. 
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dedicated resource—Resource that may be used by only one process at 
a time. Also known as a serially reusable resource. 

default action for a signal handler (Linux)—Predefined signal handler 
that is executed in response to a signal when a process does not 
specify a corresponding signal handler. 

default data stream (NTFS)—File attribute that stores the primary 
contents of an NTFS file. When an NTFS file is copied to a file sys
tem that does not support multiple data streams, only the default 
data stream is preserved. 

deferred cancellation (POSfX) —Cancellation mode in which a thread 
is terminated only after explicitly checking that it has received a 
cancellation signal. 

deferred procedure call (DPC) (Windows XP) —Software interrupt 
that executes at the DPC/dispatch IRQL and executes in the con
text of the currently executing thread. 

defragmentation—Moving parts of files so that they are located in con
tiguous blocks on disk. This can reduce access times when reading 
from or writing to files sequentially. 

degree—Number of attributes in a relation in a relational database. 

degree of a node — Number of other nodes with which a node is directly 
connected. 

degree of multiprogramming—Total number of processes in main 
memory at a given time. 

Dekker's Algorithm—Algorithm that ensures mutual exclusion 
between two threads and prevents both indefinite postponement 
and deadlock. 

delayed blocking—Technique whereby a process spins on a lock for a 
fixed amount of time before it blocks; the rationale is that if the 
process does not obtain the lock quickly, it will probably have to 
wait a long time, so it should block. 

delayed branching—Optimization technique for pipelined processors 
in which a compiler places directly after a branch an instruction 
that must be executed whether or not the branch is taken; the pro
cessor begins executing this instruction while determining the 
outcome of the branch. 

delayed consistency —Memory coherence strategy in which processors 
send update information after a release, but a receiving node does 
not apply this information until it performs an acquire operation 
on the memory. 

delegation (in NFS) —Allows the server to temporarily transfer the 
control of a file to a client. When the server grants a read delega
tion of a particular file, then no other clients can write to that file, 
but they can read it. When the server grants a write delegation of 
a particular file to the client, then no other clients can read or 
write that file. 

delete (file) —Operation that removes a data item from a file. 

demand fetch strategy—Method of bringing program parts or data into 
main memory as they are requested by a process. 

demand paging—Technique that loads a process's nonresident pages 
into memory only when the process explicitly references the pages. 

denial-of-service (DoS) attack—Attack that prevents a system from 
properly servicing legitimate requests. In many DoS attacks, 
unauthorized traffic saturates a network's resources, restricting 
access for legitimate users. Typically, the attack is performed by 
flooding servers with data packets. 

dentry (directory entry) (Linux)—Structure that maps a file to an inode. 
derived speed—Actual speed of a device as determined by the front-

side bus speed and clock multipliers or dividers. 

desktop environment—GUI layer above a window manager that pro
vides tools, applications and other software to improve system 
usability. 

destroy (file) — Operation that removes a file from the file system. 

device class — Group of devices that perform similar functions. 
device driver—Software through which the kernel interacts with hard

ware devices. Device drivers are intimately familiar with the spe
cifics of the devices they manage —such as the arrangement of 
data on those devices—and they deal with device-specific opera
tions such as reading data, writing data and opening and closing a 
DVD drive's tray. Drivers are modular, so they can be added and 
removed as a system's hardware changes, enabling users to add 
new types of devices easily; in this way they contribute to a sys
tem's extensibility. 

device extension (Windows XP)—Portion of the nonpaged pool that 
stores information a driver needs to process I/O requests for a 
particular device. 

device independence—Property of files that can be referenced by an 
application using a symbolic name instead of a name indicating 
the device on which it resides. 

device IRQL (DIRQL) (Windows X P ) - I R Q L at which devices inter
rupt and at which APC, DPC/dispatch and lower DIRQLs are 
masked; the number of DIRQLs is architecture dependent. 

device object (Windows XP) —Object that a device driver uses to store 
information about a physical or logical device. 

device special file (Linux)—Entry in the / d e v directory that provides 
access to a particular device. 

Dhrystone —Classic synthetic program that measures how effectively 
an architecture runs systems programs. 

digital certificate—Digital document that identifies a user or organiza
tion and is issued by a certificate authority. A digital certificate 
includes the name of the subject (the organization or individual 
being certified), the subject's public key, a serial number (to 
uniquely identify the certificate), an expiration date, the signature 
of the trusted certificate authority and any other relevant infor
mation. 

digital envelope—Technique that protects message privacy by sending 
a package including a message encrypted using a secret key and 
the secret key encrypted using public-key encryption. 

digital notary service —See time-stamping agency. 

digital signature —Electronic equivalent of a written signature. To cre
ate a digital signature, a sender first applies a hash function to the 
original plaintext message. Next, the sender uses the sender's pri
vate key to encrypt the message digest (the hash value). This step 
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creates a digital signature and validates the sender's identity, 
because only the owner of that private key could encrypt the mes
sage. 

Digital Signature Algorithm (DSA)—U.S. government's digital 
authentication standard. 

digital watermark—Popular application of steganography that hides 
information in unused (or rarely used) portions of a file. 

Dijkstra's algorithm—Efficient algorithm to find the shortest paths in a 
weighted graph. 

Dijkstra's Banker's Algorithm—Deadlock avoidance algorithm that 
controls resource allocation based on the amount of resources 
owned by the system, the amount of resources owned by each 
process and the maximum amount of resources that the process 
will request during execution. Allows resources to be assigned to 
processes only when the allocation results in a safe state. (See also 
safe state and unsafe state.) 

Dining Philosophers—Classic problem introduced by Dijkstra that 
illustrates the problems inherent in concurrent programming, 
including deadlock and indefinite postponement. The problem 
requires the programmer to ensure that a set of n philosophers at 
a table containing n forks, who alternate between eating and 
thinking, do not starve while attempting to acquire the two adja
cent forks necessary to eat. 

direct file organization—File organization technique in which a record 
is directly (randomly) accessed by its physical address on a direct 
access storage device (DASD). 

direct I/O—Technique that performs I/O without using the kernel's 
buffer cache. This leads to more efficient memory utilization in 
database applications, which typically maintain their own buffer 
cache. 

direct mapping—Address translation mechanism that assists in the map
ping of virtual addresses to their corresponding real addresses, 
using an index into a table stored in location-addressed memory. 

direct memory access (DMA)—Method of transferring data from a 
device to main memory via a controller that requires interrupting 
the processor only when the transfer completes. I/O transfer via 
DMA is more efficient than programmed I/O or interrupt-driven 
I/O because the processor does not need to supervise the transfer 
of each byte or word of data. 

directory—File storing references to other files. Directory entries often 
include a file's name, type, and size. 

directory junction (Windows XP)—Directory that refers to another 
directory within the same volume, used to make navigating the 
file system easier. 

dirty bit—Page table entry bit that specifies whether the page has been 
modified (also known as the modified bit). 

dirty eager migration—Process migration method in which only a pro
cess's dirty pages are migrated with the process; clean pages must 
be accessed from secondary storage. 

disable (mask) interrupts—When a type of interrupt is disabled 
(masked), interrupts of that type are not delivered to the process 
that has disabled (masked) the interrupts. The interrupts are 

either queued to be delivered later or dropped by the processor. 
This technique can be used to temporarily ignore interrupts, 
allowing a thread on a uniprocessor system to execute its critical 
section atomically. 

disabled cancellation (POSIX) —Cancellation mode in which a thread 
does not receive pending cancellation signals. 

discovery (in Jini)—Process of finding the lookup services and obtain
ing references to them. 

discretionary access control (DAC)—Access control model in which 
the creator of an object controls the permissions for that object. 

discretionary access control list (DACL) (Windows XP) — Ordered list 
that tells Windows XP which security principals may access a par
ticular resource and what actions those principals may perform on 
the resource. 

disk arm—Moving-head disk component that moves read/write heads 
linearly, parallel to disk surfaces. 

disk arm anticipation—Moving the disk arm to a location that will min
imize the next seek. Disk arm anticipation can be useful in envi
ronments where process disk-request patterns exhibit locality and 
when the load is light enough that there is sufficient time to move 
the disk arm between disk requests without degrading perfor
mance. 

disk cache buffer—A region of main memory that the operating system 
reserves for disk data. In one context, the reserved memory acts 
as a cache, allowing processes quick access to data that would oth
erwise need to be fetched from disk. The reserved memory also 
acts as a buffer, allowing the operating system to delay writing the 
data to improve I/O performance by batching multiple writes into 
a small number of requests. 

disk mirroring (RAID)—Data redundancy technique in RAID that 
maintains a copy of each disk's contents on a separate disk. This 
technique provides high reliability and simplifies data regenera
tion but incurs substantial storage overhead, which increases cost. 

disk reorganization—Technique that moves file data on disk to 
improve its access time. One such technique is defragmentation, 
which attempts to place sequential file data contiguously on disk. 
Another technique attempts to place frequently requested data 
on tracks that result in low average seek times. 

disk scheduler —Operating system component that determines the order 
in which disk I/O requests are serviced to improve performance. 

disk scheduling—Technique that orders disk requests to maximize 
throughput and minimize response times and the variance of 
response times. Disk scheduling strategies improve performance 
by reducing seek times and rotational latencies. 

dispatcher —Operating system component that assigns the first process 
on the ready list to a processor. 

dispatcher (Windows XP)—Thread scheduling code dispersed 
throughout the microkernel. 

dispatcher object (Windows XP) —Object, such as a mutex, sema
phore, event or waitable timer, that kernel and user threads can 
use for synchronization purposes. 

dispatching—Act of assigning a processor to a process. 
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dispersion—Measure of the variance of a random variable. 

displacement—Distance of an address from the start of a block, page 
or segment, also called offset. 

Distributed Component Object Model (DCOM)—Distributed systems 
extension of Microsoft's COM. 

distributed computing—Using multiple independent computers to per
form a common task. 

distributed database—Database that is spread throughout the com
puter systems of a network. 

distributed deadlock—Similar to deadlock in a uniprocessor system, 
except that the processes concerned are spread over different 
computers. 

distributed deadlock detection strategy—Technique used to find dead
lock in a distributed system. 

distributed denial-of-service attack—Attack that prevents a system 
from servicing requests properly by initiating packet flooding 
from separate computers sending traffic in concert. 

distributed file system—File system that is spread throughout the com
puter systems of a network. 

distributed operating system—Provides all of the same services as a 
traditional operating system, but must provide adequate transpar
ency such that objects in the system are unaware of the computers 
that provide the service. 

distributed search—Searching technology used in peer-to-peer applica
tions to make networks more robust by removing single points of 
failure, such as servers. In a distributed search, if a peer cannot 
answer the client's request, the peer forwards the request to its 
directly connected peers, and the search is distributed to the 
entire peer-to-peer network. 

distributed system—Collection of remote computers that cooperate via 
a network to perform a common task. 

distribution (Linux) — Software package containing the Linux kernel, 
user applications and/or tools that simplify the installation process. 

distribution of response times—Set of values describing the response 
times for jobs in a system and the relative frequencies with which 
those values occur. 

DMA memory (Linux) —Region of physical memory between zero 
and 16MB that is typically reserved for kernel bootstrapping code 
and legacy DMA devices. 

DNS (domain name system) attack—Attack that modifies the address 
to which network traffic for a particular Web site is sent. Such 
attacks can be used to redirect users of a particular Web site to 
another, potentially malicious Web site. 

domain—Set of possible values for attributes in a relational database 
system. 

domain (in Sprite file system)—Unit that represents a portion of the 
global file hierarchy and is stored at one server. 

domain (Windows XP) —Set of computers that share common 
resources. 

domain controller (Windows XP)—Computer responsible for security 
on a network. 

Domain Name System (DNS) —System on the Internet used to trans
late a machine's name to an IP address. 

double data rate (DDR)—Chipset feature that enables a frontside bus 
to effectively operate at twice its clock speed by performing two 
memory transfers per clock cycle. This feature must be supported 
by the system's chipset and RAM. 

doubly indirect pointer—Inode pointer that locates a block of (singly) 
indirect pointers. 

DPC/dispatch IRQL (Windows X P ) - I R Q L at which DPCs and the 
thread scheduler execute and at which APC and incoming DPC/ 
dispatch level interrupts are masked. 

drafting algorithm—Dynamic load balancing algorithm that classifies 
each processor's load as low, normal or high; each processor 
maintains a table of the other processors' loads, and the system 
uses a receiver-initiated policy to exchange processes. 

driver object (Windows XP) —Object used to describe device drivers; it 
stores pointers to standard driver routines and to the device 
objects for the devices that the driver services. 

driver stack—Group of related device drivers that cooperate to handle 
the I/O requests for a particular device. 

dynamic address translation (DAT)—Mechanism that converts virtual 
addresses to physical addresses during execution; this is done at 
extremely high speed to avoid slowing execution. 

dynamic-linked library (DLL) (Windows XP)—Module that provides 
data or functions to which processes or other DLLs link at execu
tion time. 

dynamic linking—Linking mechanism that resolves references to 
external functions when the process first makes a call to the func
tion. This can reduce linking overhead because external functions 
that are never called while the process executes are not linked. 

dynamic load balancing—Technique that attempts to distribute pro
cessing responsibility equally by changing the number of proces
sors assigned to a job throughout the job's life. 

dynamic loading—Method for loading that specifies memory addresses 
at runtime. 

dynamic partitioning—Job-aware process scheduling algorithm that 
divides processors in the system evenly among jobs, except that 
no single job can be allocated more processors than runnable pro
cesses; this algorithm maximizes processor affinity. 

dynamic priority class (Windows XP)—Priority class that encompasses 
the five base priority classes within which a thread's priority can 
change during system execution; these classes are idle, below nor
mal, normal, above normal and high. 

dynamic RAM (DRAM)—RAM that must be continuously read by a 
refresh circuit to keep the contents in memory. 

dynamic real-time scheduling algorithm—Scheduling algorithm that uses 
deadlines to assign priorities to processes throughout execution. 

E 
eager migration—Process migration strategy that transfers the entire 

address space of a process during the initial phases of migration to 
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eliminate a migrated process's residual dependencies on its origi
nal node. 

earliest-deadline-first (EDF) — Scheduling policy that gives a processor 
to the process with the closest deadline. 

ease of use—Measure of the comfort and convenience associated with 
system use. 

EBCDIC (Extended Binary-Coded Decimal Interchange Code) — 
Eight-bit character set for representing data in mainframe com
puter systems, particularly systems developed by IBM. 

effective priority (Linux)—Priority assigned to a process by adding its 
static priority to its priority boost or penalty. 

efficient operating system—Operating system that exhibits high 
throughput and small turnaround time. 

elevator algorithm—See SCAN disk scheduling. 

embedded system—Small computer containing limited resources and 
specialized hardware to run devices such as PDAs or cellular 
phones. 

emulation stage—When a Coda client becomes disconnected, it is said 
to enter the emulation stage. During this stage all file read 
requests are satisfied from cache. Write requests during the emu
lation stage occur in two steps. First, the file is updated on disk. 
Second, a log called the client modification log (CML) is updated 
to reflect file changes. 

encapsulating security payload (ESP) (IPSec)—Message data 
encrypted using symmetric-key ciphers to protect the data from 
eavesdroppers while the IP packet is transmitted across public 
communication lines. 

Encrypting File System (EFS)—NTFS feature that uses cryptography to 
protect files and folders in Windows XP Professional and Windows 
2000. EFS uses secret-key and public-key encryption to secure files. 
Each user is assigned a key pair and certificate that are used to 
ensure that only the user that encrypted the files can access them. 

encryption—Technique that transforms data to prevent it from being 
interpreted by unauthorized users. 

entry queue—See entry set. 

entry set—In Java, a queue of threads waiting to enter a monitor after 
calling a synchronized method. 

environment subsystem (Windows XP)—User-mode component that 
provides a computing environment for other user-mode pro
cesses; in most cases, only environment subsystems interact 
directly with kernel-mode components in Windows XP. 

epoch (Linux)—Time during which all processes move from the sched
uler's active list to its expired list. This ensures that processes are 
not indefinitely postponed. 

Ethernet (IEEE 802.3)—Network that supports many speeds over a 
variety of cables. Ethernet uses the Carrier Sense Multiple Access 
with Collision Detection (CSMA/CD) protocol. Ethernet is the 
most popular type of LAN. 

event-driven simulator—Simulator controlled by events that are made 
to occur according to probability distributions. 

event object (Windows XP) —Synchronization object that becomes sig
naled when a particular event occurs. 

exception—Error caused by a process. Processor exceptions invoke the 
operating system, which determines how to respond. Processes 
can register exception handlers that are executed when the oper
ating system receives the corresponding exception. 

exception (Intel IA-32 specification)—Hardware signal generated by 
an error. In the Intel IA-32 specification, exceptions are classified 
as traps, faults and aborts. 

execute access (virtual memory)—Access right that enables a process 
to execute instructions from a page or segment; see also read 
access, write access and append access. 

execute access (file) —Permission that enables a user to execute a file. 

execution mode—Operating system execution mode (e.g., user mode 
or kernel mode) that determines which instructions can be exe
cuted by a process. 

executive (Windows XP) —Portion of the Windows XP operating sys
tem that is responsible for managing the operating system's sub
systems (e.g., I/O subsystem, memory subsystem and file system). 

executive mode—Protected mode in which a processor can execute 
operating system instructions on behalf of a user (also called ker
nel mode). 

executive process (EPROCESS) block (Windows XP) —Executive data 
structure that stores information about a process, such as that pro
cess's object handles and ID; an EPROCESS block also stores the 
process's KPROCESS block. 

executive resource lock (Windows XP) — Synchronization lock avail
able only to kernel-mode threads and that may be held either in 
shared mode by many threads or in exclusive mode by one thread. 

executive thread (ETHREAD) block (Windows XP)—Executive data 
structure that stores information about a thread, such as the 
thread's pending I/O requests and the thread's start address; an 
ETHREAD block also stores the thread's KTHREAD block. 

expected value—Sum of a series of values each multiplied by its 
respective probability of occurrence. 

expired list (Linux) —Structure containing processes that cannot con
tend for the processor until the next epoch. Processes are placed 
in this list to prevent others from being indefinitely postponed. To 
quickly begin a new epoch, this list becomes the active list. 

expired state (Linux)—Task state that prevents a task from being dis
patched until the next epoch. 

explicit acknowledgement—The client sends an acknowledgement to 
the server in an additional packet when the client receives the 
response from the server. 

explicit handle (Windows XP)—Binding handle in which the client must 
specify all binding information and create and manage the handle. 

Explicitly Parallel Instruction Computing (EPIC)—Processor-design 
philosophy whose goals are to provide a high degree of instruc
tion-level parallelism, reduce processor hardware complexity and 
improve performance. 
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exponential backoff—Method employed by Ethernet to calculate the 
interval before retransmission after a collision; this reduces the 
chance of subsequent collisions on the same transmission, thus 
increasing throughput. 

export local file—Performed by an NFS server to make the local direc
tory of files available to the remote client via the mount protocol. 

ext2 inode (Linux) —Structure that stores information such as file size, 
the location of a file's data blocks and permissions for a single file 
or directory in an ext2 file system. 

ext2fs (Linux) —Popular inode-based Linux file system that enables 
fast access to small files and supports large file sizes. 

Extensible Firmware Interface (EFT) —Interface designed by Intel that 
improves upon a traditional BIOS by supporting device drivers 
and providing a shell interface at boot time. 

Extensible Markup Language (XML) —Language for marking up data 
so that information can be exchanged between applications and 
platforms. 

extensible operating system—An operating system that can incorpo
rate new features easily. 

extent—Block of contiguous sectors. 

external fragmentation—Phenomenon in variable-partition memory 
systems in which there are holes distributed throughout memory 
that are too small to hold a process. 

external name —Symbol defined in a module that can be referenced by 
other modules. 

external reference—Reference from one module to an external name 
in a different module. 

thest from any referenced page in the graph and that has not been 
referenced recently. 

fast instruction set computing (FISC)—Term describing the processor-
design philosophy resulting from the convergence of RISC and 
CISC design philosophies. The FISC design philosophy stresses 
inclusion of any construct that improves performance. 

fast mutex (Windows XP)—Efficient mutex variant that operates at the 
APC level with some restrictions (e.g., a thread cannot specify a 
maximum wait time to wait for a fast mutex). 

fast mutual exclusion algorithm—Implementation of mutual exclusion 
that avoids the overhead of a thread performing multiple tests 
when no other thread is contending for its critical section. This 
first fast mutual exclusion algorithm was proposed by Lamport. 

fast user switching (Windows XP) —Ability of a new user to log onto a 
Windows XP machine without logging off the previous user. 

FAT file system—An implementation of tabular noncontiguous file 
allocation developed by Microsoft. 

fault—In the Intel IA-32 specification, an exception as the result of an 
error such as division by zero or illegal access to memory. Some 
faults can be corrected by appropriate operating system exception 
handlers. 

fault tolerance —Operating system's ability to handle software or hard
ware errors. 

feature freeze (Linux) —State of kernel development during which no 
new features should be added to the kernel, in preparation for a 
new kernel release. 

feedback loop—Technique in which information about the current 
state of the system can influence the number of requests arriving 
at a resource (e.g., positive and negative feedback loops). 

fetch strategy—Method of determining when to obtain the next piece 
of program or data for transfer from secondary storage to main 
memory. 

liber (Windows XP)—Unit of execution in Windows XP created by a 
thread and scheduled by that thread. Fibers facilitate portability 
for applications that schedule their own threads. 

Fiber Distributed Data Interface (FDDI)—Protocol that shares many 
properties of a Token Ring, but operates over fiber-optic cable, 
allowing the transfer of more information at greater speeds. In 
FDDI, a token circulates around the optical fiber ring; stations can
not transmit until they obtain the token by receiving it from a pre
ceding station. FDDI uses a second Token Ring as backup or to 
circulate tokens in the reverse direction of the primary Token Ring. 

fiber local storage (FLS) (Windows XP)—Area of a process's address 
space where a fiber can store data that only the fiber can access. 

field—In the data hierarchy, a group of characters (e.g., a person's 
name, street address or telephone number). 

FIFO (Linux)—Named pipe that enables two unrelated processes to 
communicate via the producer/consumer relationship using a 
page-size buffer. 

FIFO anomaly—Phenomenon in FIFO page-replacement strategy 
whereby increasing a process's page frame allocation increases 

fabric layer (in grid computing)—Layer that accesses physical 
resources, such as disks. 

failure transparency—Method by which a distributed system provides 
fault tolerance so that the client is unaware of the failure of a 
computer. 

fair share group — Group of processes that receives a percentage of the 
processor time under a fair share scheduling (FSS) policy. 

fair share scheduling (FSS) —Scheduling policy developed for AT&T's 
UNIX system that places processes in groups and assigns these 
groups a percentage of processor time. 

fairness—Property of a scheduling algorithm that treats all processes 
equally. 

false sharing —Situation that occurs when processes on separate pro
cessors are forced to share a page because they are each accessing 
a data item on that page, although not the same data item. 

family of computers—Series of computers that are compatible in that 
they can run the same programs. 

far page-replacement strategy—Graph-based page-replacement strat
egy that analyzes a program's reference patterns to determine 
which page to replace. This strategy replaces the page that is fur-

F 
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file system identifier—Value that uniquely identifies the file system a 
storage device is using. 

file system manager —Operating system component that organizes 
named collections of data on storage devices and provides an 
interface for accessing data on those devices. 

File Transfer Protocol (FTP) —Application layer protocol that moves 
files between different hosts on a network. FTP specifies connec
tions between two pairs of ports: one pair sends control informa
tion that governs the session, the other sends the actual data. 

file view (Windows XP) — Portion of a file specified by a file mapping 
object that a process maps into its memory. 

filter driver—WDM (Windows Driver Model) driver that modifies the 
behavior of a hardware device (e.g., providing mouse accelera
tion) or adds some extra services (e.g., security checks). 

fine-grained strip (RAID)—Strip size that causes average files to be 
stored in multiple stripes. Fine-grained strips can reduce each 
request's access time and increase transfer rates because multiple 
disks simultaneously retrieve portions of the requested data. 

firewall — Software or hardware that protects a local area network from 
packets sent by malicious users from an external network. 

firmware—Microcode that specifies simple, fundamental instructions 
necessary to implement machine-language instructions. 

first-come-first-served (FCFS) disk scheduling—Disk scheduling strat
egy in which the earliest arriving request is serviced first. FCFS is 
a fair method of allocating service, but when the request rate (i.e., 
the load) becomes heavy, FCFS can result in long waiting times. 
FCFS exhibits a random seek pattern in which successive requests 
can cause time-consuming seeks from the innermost to the outer
most cylinders. 

first-come-first-served (FCFS) process scheduling—Job-blind multi
processor scheduling algorithm that places arriving processes in a 
queue; the process at the head of the queue executes until it freely 
relinquishes the processor. 

first-fit memory placement strategy—Memory placement strategy that 
places an incoming process in the first hole that is large enough to 
hold it. 

first-in-first-out (FIFO)—Nonpreemptive scheduling policy that dis
patches processes according to their arrival time in the ready 
queue. 

first-in-first-out (FIFO) page replacement—Page-replacement strat
egy that replaces the page that has been in memory longest. FIFO 
incurs low overhead but generally does not predict future page 
usage accurately. 

fixed-partition multiprogramming—Memory organization that divides 
main memory into a number of fixed-size partitions, each holding 
a single job. 

flat directory structure—File system organization containing only one 
directory. 

flow control —Means by which TCP regulates the number of segments 
sent by a host to avoid overwhelming the receiver. 

flushing—Process migration strategy in which the sending node writes 
all of the process's memory pages to a shared disk at the start of 

the number of page faults it experiences; normally, page faults 
should decrease as more page frames become available. 

FIFO broadcast —Guarantees that when two messages are sent from 
one process to another, the message that was sent first will arrive 
first. 

file—Named collection of data that may be manipulated as a unit by 
operations such as open, close, create, destroy, copy, rename and 
list. Individual data items within a file may be manipulated by 
operations like read, write, update, insert and delete. File charac
teristics include location, accessibility, type, volatility and activity. 
Files can consist of one or more records. 

file allocation table (FAT)—Table storing pointers to file data blocks in 
Microsoft's FAT file system. 

file attribute (Linux)—File metadata that implements access control 
information, such as whether a file is append-only or immutable, 
that cannot be specified using standard Linux file permissions. 

file control block —Metadata containing information the system needs 
to manage a file, such as access control information. 

file descriptor—Non-negative integer that indexes into an opened-file 
table. A process references a file descriptor instead of a pathname 
to access file data without incurring the overhead of a directory 
structure traversal. 

file handle — Identifies a file on the file server with file type, location 
and access permissions. 

file identifiers (fids) (in AFS) — Entity that specifies a volume, an index 
within a volume and an identifier to guarantee object uniqueness 
within a volume. 

file integrity mechanism—Mechanism that ensures that the informa
tion in a file is uncorrupted. When file integrity is assured, files 
contain only the information they are intended to have. 

file management—Component of a file system concerned with provid
ing the mechanisms for files to be stored, referenced, shared and 
secured. 

file mapping (Windows XP)—Interprocess communication mechanism 
in which multiple processes access the same file by placing it in 
their virtual memory space. The different virtual addresses corre
spond to the same main memory addresses. 

file mapping object (Windows XP) —Object used by processes to map 
any file into memory. 

file organization—Manner in which the records of a file are arranged 
on secondary storage (e.g., sequential, direct, indexed sequential 
and partitioned). 

file permission —Structure that determines whether a user may read, 
write and or execute a file. 

file server—System dedicated to provide remote processes access to its 
files. 

file system —Component of an operating system that organizes files 
and manages access to data. File systems are concerned with orga
nizing files logically (using pathnames) and physically (using 
metadata). They also manage their storage device's free space, 
enforce security policies, maintain data integrity and so on. 
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migration; the process then accesses the pages from the shared 
disk as needed on the receiving node. 

flushing a page—Copying the contents of a modified page in main 
memory to secondary storage so another page can be placed in its 
frame. When this occurs, the page's dirty bit is cleared, which 
enables the operating system to quickly determine that the page 
can be overwritten by an incoming page, which can reduce page-
wait times. 

format a storage device—To prepare a device for a file system by per
forming operations such as inspecting its contents and writing 
storage management metadata. 

Fortran—Procedural programming language developed by IBM in the 
mid-1950s for scientific applications that require complex mathe
matical computations. 

fragmentation (of main memory)—Phenomenon wherein a system is 
unable to make use of certain areas of available main memory. 

fragmented disk—Disk that stores files in discontinuous blocks as the 
result of file creation and deletion. Such disks exhibit high seek 
times when reading files sequentially. Disk defragmentation can 
reduce or eliminate the problem. 

frame—Piece of data in the link layer. Contains both the message and 
the control information. 

free list—Linked list of blocks that contain the addresses of free blocks. 

free memory list—Operating system data structure that points to avail
able holes in memory. 

free model—COM (Microsoft's Component Object Model) object 
threading model in which many threads can act as the server for a 
COM object. 

Free Page List (Windows XP) — List of page frames that are available 
for reclaiming; although these page frames do not contain any 
valid data, they may not be used until the zero-page thread sets all 
of their bits to zero. 

frontside bus (FSB)—Bus that connects a processor to main memory. 

FSCAN disk scheduling—Disk scheduling strategy that uses SCAN to 
service only those requests waiting when a particular sweep 
begins (the "F" stands for "freezing" the request queue at a cer
tain time). Requests arriving during a sweep are grouped together 
and ordered for optimum service during the return sweep. 

fully-connected mesh network—Mesh network in which each node is 
directly connected to every other node. These networks are faster 
and more fault tolerant than other networks, but also unrealizable 
on all but the smallest of networks because of the cost of the 
potentially enormous number of connections. 

function driver—WDM (Windows Driver Model) device driver that 
implements a device's main functions; it does most of the I/O pro
cessing and provides the device's interface. 

G 
gang scheduling— Another name for rescheduling. 

garbage collection—See memory compaction. 

general protection fault (GPF) (IA-32 Intel architecture) —Occurs 
when a process references a segment to which it does not have 
appropriate access rights or references an address outside of the 
segment. 

General Public License (GPL)—Open-source software license which 
specifies that software distributed under it must contain the com
plete source code, must clearly indicate any modifications to the 
original code and must be accompanied by the GPL. End users 
are free to modify and redistribute any software under the GPL. 

general-purpose register—Register that can be used by processes to 
store data and pointer values. Special-purpose registers cannot be 
accessed by user processes. 

general semaphore—See counting semaphore. 

global descriptor table (GDT) (IA-32 Intel architecture)—Segment 
map table that contains mapping information for process seg
ments or local descriptor table (LDT) segments, which contain 
mapping information for process segments. 

global least-recently-used (gLRU) page replacement—Global page-
replacement strategy that replaces the page that has not been ref
erenced for the longest time in the entire system. LRU can per
form poorly because variants of round-robin scheduling cause the 
system to exhibit a large-scale looping reference pattern. The 
SEQ variant of gLRU page replacement attempts to improve per
formance by replacing the most-recently-used page when it 
detects a looping reference pattern. 

global run queue—Process scheduling queue used in some multiproces
sor scheduling algorithms, which is independent of the processors 
in a system and into which every process or job in the system is 
placed. 

globally unique ID (GUID)—128-bit integer that is, for all practical 
purposes, guaranteed to be unique in the world. COM 
(Microsoft's Component Object Model) uses GUlDs to uniquely 
identify interfaces and object classes. 

GNU—Project initiated by Stallman in the 1980s aimed at producing 
an open-source operating system with the features and utilities of 
UNIX. 

granularity bit (IA-32 Intel architecture)—Bit that determines how the 
processor interprets the size of each segment, specified by the 20-
bit segment limit. When the bit is off, segments range in size from 
1 byte to 1MB, in 1-byte increments. When the bit is on, segments 
range in size from 4KB to 4GB, in 4KB increments. 

graph reduction—Altering a resource-allocation graph by removing a 
process if that process can complete. This also involves removing 
any arrows leading to the process (from the resources allocated to 
the process) or away from the process (to resources the process is 
requesting). A resource-allocation graph can be reduced by a pro
cess if all of that process's resource requests can be granted. 
enabling that process to run to completion and free its resources. 

Graphical Identification and Authentication (GINA) (Windows XP) — 
Graphical user interface that prompts users for credentials, usu
ally in the form of a username and password. Windows XP ships 
with its own implementation of GINA called MSCINA, but it 
accepts third-party DLLs. 
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hash value—Value returned by a hash function that corresponds to a 
position in a hash table. 

Havender's linear ordering—See linear ordering. 

hbench microbenchmark suite—Popular microbenchmark suite, which 
enables evaluators to effectively analyze the relationship between 
operating system primitives and hardware components. 

head node (in a Beowulf cluster)—Node, also called master node, that 
acts as a server to distribute the workload, control access to the 
cluster and handle the shared resources. 

header—Control information placed in front of a data message. 

heavyweight process (HWP)—A traditional process, which may con
tain one or more threads. The process is "heavyweight" because it 
is allocated its own address space upon creation. 

heuristic scanning—Antivirus technique that detects viruses by their 
program behavior. 

heuristics—Technique that solves complex problems using rules of 
thumb or other approximations that incur low execution over
head and generally provide good results. 

hierarchical deadlock detection—A strategy in distributed deadlock, 
which arranges each site in the system as a node in a tree. Each 
node, except the leaf nodes, collects the resource allocation infor
mation of all dependent nodes. 

hierarchical process structure—Organization of processes when parent 
processes spawn child processes and, in particular, only one par
ent creates a child. 

hierarchically structured file system—File system organization in which 
each directory can contain multiple subdirectories but exactly one 
parent. 

high-availability cluster—Cluster in which only some of the nodes are 
working while other nodes act as backups. The goal of a high-
availability cluster is to stay up all the time. 

high IRQL (Windows XP)—Highest-priority IRQL, at which machine 
check and bus error interrupts execute and all other interrupts are 
masked. 

high-level driver (Windows XP)—Device driver that abstracts hard
ware specifics and passes I/O requests to low-level drivers. 

high-level language—Programming language that uses English-like iden
tifiers and common mathematical notation to represent programs 
using fewer statements than assembly-language programming. 

high-level scheduling—Determining which jobs a system allows to 
compete actively for system resources. 

high memory (Linux) —Region of physical memory (which begins at 
896MB on the IA-32 architecture) beginning at the largest physi
cal address that is permanently mapped to the kernel's virtual 
address space and extending to the limit of physical memory 
(64GB on Intel Pentium 4 processors). Because the kernel must 
perform expensive operations to map pages in its virtual address 
space to page frames in high memory, most kernel data structures 
are not stored in high memory. 

high-performance cluster—Cluster in which all the nodes work to 
achieve maximum performance. 

graphical user interface (GUI)—User-friendly point of access to an 
operating system that uses graphical symbols such as windows, 
icons and menus to facilitate program and file manipulation. 

grid computing—Links computational resources that are distributed 
over the wide area network (such as computers, data storages and 
scientific devices) to solve complex problems. 

group (file access control) —Set of users with the same file access rights 
(e.g., members of a group that is working on a particular project). 

group descriptor (Linux) — Structure that records information regard
ing a block group, such as the locations of the inode allocation bit
map, block allocation bitmap and inode table. 

H 
hacker—Experienced programmer who often program as much for per

sonal enjoyment as for the functionality of the application. This 
term is often used when the term cracker is more appropriate. 

Hamming error-correcting codes (Hamming ECCs)—Technique of 
generating parity bits that enables systems to detect and correct 
errors in data transmission. 

handshaking—Mechanism in a connection-oriented transport layer in 
which hosts send control information to create a logical connec
tion between the hosts. 

happens before relation—A happens before B if A and B belong to the 
same process and A occurred before B; or A is the sending of a 
message and B is the receiving of that message. 

hard affinity—Type of processor affinity in which the scheduling algo
rithm guarantees that a process only executes on a single node 
throughout its life cycle. 

hard disk drive—Magnetic, rotational secondary storage device that 
provides persistent storage for, and random access to, data. 

hard link—Directory entry specifying the location of a file on its stor
age device. 

hard real-time scheduling—Scheduling policy that ensures processes 
meet their deadlines. 

Hardware Abstraction Layer (HAL) (Windows XP)—Operating sys
tem component that interacts directly with the hardware and 
abstracts hardware details for other system components. 

Hartstone—Popular synthetic benchmark used to evaluate real-time 
systems. 

hash anchor table—Hash table that points to entries in an inverted 
page table. Increasing the size of the hash anchor table decreases 
the number of collisions, which improves the speed of address 
translation, at the cost of the increased memory overhead 
required to store the table. 

hash function—Function that takes a number as input and returns a 
number, called a hash value, within a specified range. Hash func
tions facilitate rapidly storing and retrieving information from 
hash tables. 

hash table—Data structure that indexes items according to their hash 
values; used with hash functions to rapidly store and retrieve 
information. 
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between a client and a server. This is the key protocol of the 
World Wide Web. 

I 
I/O-bound—Process (or job) that tends to use a processor for a short 

time before generating an I/O request and relinquishing the pro
cessor. 

I/O channel — Component responsible for handling device I/O inde
pendently of a main processor. 

I/O completion interrupt—Message issued by a device when it finishes 
servicing an I/O request. 

I/O completion port (Windows XP)—Port at which threads register 
and block, waiting to be awakened when processing completes on 
an I/O request. 

I/O completion routine (Windows XP)—Function registered by a 
device driver with the I/O manager in reference to an IRP; the I/ 
O manager calls this function when processing of the IRP com
pletes. 

I/O manager —Operating system component that receives, interprets 
and performs I/O requests. 

I/O manager (Windows XP)—Executive component that interacts with 
device drivers to handle I/O requests. 

I/O request packet (IRP) (Windows XP)—Data structure that 
describes an I/O request. 

I/O status block (Windows XP)—Field in an IRP that indicates 
whether an I/O request completed successfully or, if not, the 
request's error code. 

I/O throttling (Windows XP)—Technique that increases stability when 
available memory is low; the VMM manages memory one page at 
a time during I/O throttling. 

IBSYS —Operating system for the IBM 7090 mainframe. 

ideal processor (Windows XP)—Thread attribute that specifies a pro
cessor on which the system should attempt to schedule the thread 
for execution. 

idempotent request—A requested operation that if performed several 
times will return the same result, so it is acceptable to perform the 
same operation twice. 

IEEE 1394 port—Commonly used serial port that provides transfer 
speeds of up to 800MB per second, sometimes supplies power to 
devices and allows devices to be hot swappable; these ports are 
commonly referred to as Fire Wire (from Apple) or iLink (from 
Sony). 

IEEE 802.11 —One of the standards that governs wireless communica
tion. It dictates that hosts follow the CSMA/CA protocol. 

immutable attribute (Linux)—Attribute specifying that a file can be 
read and executed, but cannot be copied, modified or deleted. 

immutable file—A file that cannot be modified after it is created. 

implicit acknowledgement—The response message implies the 
acknowledgement for the request message. 

inactive list (Linux) —See expired list. 

highest-response-ratio-next (HRRN) —Scheduling policy that assigns 
priority based on a process's service time and the amount of time 
the process has been waiting. 

hoarding stage (in Coda)—Stage that clients enter when they are con
nected to Coda. In this stage, clients prepare for a possible discon
nection from the system by caching any requested file. 

hole —An unused area of memory in a variable-partition multipro
gramming system. 

home-based consistency—Memory-coherence strategy in which pro
cessors send coherence information to a home node associated 
with the page being written; the home node forwards update 
information to other nodes that subsequently access the page. 

home computer (in process migration) —Computer on which the pro
cess originates. 

home node—Node that is the "home" for a physical memory address 
or page and is responsible for maintaining the data's coherence. 

hook — Software feature that enables developers to add features to an 
existing application without modifying its source file. An applica
tion uses a hook to call a procedure that can be defined by 
another application. 

host —Entity, such as a computer or Internet-enabled cellular phone, 
that receives and/or provides services over a network. Also called 
a node. 

host-based intrusion detection—IDS that monitors system and applica
tion log files. 

hot spare disk (RAID)—Disk in a RAID system that is not used until a 
disk fails. Once the system regenerates the failed disk's data, the 
hot spare disk replaces the failed disk. 

hot spot—Disk cylinder that contains frequently requested data. Some 
disk arm anticipation techniques move the disk head to hot spots 
to reduce average seek times. 

hot swappable device—Device that can be added to, or removed from, 
a computer while it is running. 

HTTP request —Resource request from an HTTP client to an HTTP 
server. 

HTTP response—Reply message from an HTTP server to an HTTP 
client, consisting of a status, header and data. 

hub —Central node (such as in a star network) responsible for relaying 
messages between nodes. 

hybrid methodology—Performance evaluation technique that com
bines the vector-based methodology with trace data to measure 
performance for applications whose behavior depends strongly 
on user input. 

hypercube—Multiprocessor interconnection scheme that consists of 2n 
nodes (where n is an integer); each node is linked with n neighbor 
nodes. 

HyperText Markup Language (HTML)—Language that specifies the 
content and arrangement of information on a Web page and pro
vides hyperlinks to access other pages. 

Hypertext Transfer Protocol (HTTP)—Application layer protocol 
used for transferring HTML documents and other data formats 
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inactive page (Linux)—Page in main memory that can be replaced by 
an incoming page. 

incremental backup—Backup technique that copies only data in the 
file system that has changed since the last backup. 

indefinite postponement—Situation in which a thread waits for an 
event that might never occur. 

independent software vendor (ISV) —Organization that develops and 
sells software. ISVs prospered after the release of the IBM PC. 

index block—Block that contains a list of pointers to file data blocks. 

indexed sequential file organization—File organization that arranges 
records in a logical sequence according to a key contained in each 
record. 

indirect block—Index block containing pointers to data blocks in 
inode-based file systems. 

indirect pointer—Inode pointer that points to a block of inode pointers. 

indivisible operation —See atomic operation. 

information hiding—Software architectural technique that facilitates 
the development of more reliable software systems by preventing 
direct access to data within an object by outside objects. 

inheritance (Windows XP)—Technique by which a child process 
obtains attributes (e.g., most types of handles and the current 
directory) from its parent process upon creation. 

initialized state (Windows XP)—Thread state in which the thread is 
created by the operating system. 

inode—Index block in a UNIX-based system that contains the file con
trol block and pointers to singly, doubly and triply indirect blocks 
of pointers to file data. 

inode (Linux) — Structure that describes the location of data blocks 
corresponding to a file, directory or link in a file system. In the 
VFS, this structure represents any file in the system. An ext2 
inode represents a file in the ext2 file system. 

inode allocation bitmap (Linux)—Bitmap that records a block group's 
inode usage. 

inode cache (Linux) — Cache that improves inode lookup performance. 

inode map—Block of metadata written to the log of a log-structured 
file system that indicates the location of the file system's inodes. 
Inode maps improve LFS performance by reducing the time 
required to determine file locations in the LFS. 

inode table (Linux) —Structure that contains an entry for each allo
cated inode in a block group. 

input/output control system (IOCS)—Precursor to modern operating 
systems that provided programmers with a basic set of functions 
to perform I/O. 

insert (file)—Operation that adds a new data item to a file. 

instruction decode unit —Component of a processor that interprets 
instructions and generates appropriate control signals that cause 
the processor to perform each instruction. 

instruction fetch unit—Component of a processor that loads instructions 
from the instruction cache so they can be decoded and executed. 

instruction length—Number of bits that comprise an instruction in a 
given architecture. Some architectures support variable-length 
instructions; instruction lengths also vary among different archi
tectures. 

instruction-level parallelism (ILP)—Parallelism that permits two 
machine instructions to be executed at once. Two instructions 
exhibit ILP if the execution of one does not affect the outcome of 
the other (i.e., the two instructions do not depend on each other). 

instruction set—Set of machine instructions a processor can perform. 

instruction set architecture (ISA)—Interface exposed by a processor 
that describes the processor, including its instruction set, number 
of registers and memory size. 

instrumentation level (in JMX)—Makes any Java-based object man
ageable so that the management application can access and oper
ate these objects. 

integrity (secure transaction)—One of the five fundamental require
ments for a successful, secure transaction. Integrity deals with 
how to ensure that the information you send or receive has not 
been compromised or altered. 

intensive resource management—Notion of devoting substantial 
resources to managing other resources to improve overall utiliza
tion. 

interactive operating system —Operating system that allows applica
tions to respond quickly to user input. 

Interactive Problem Control System (IPCS) (VM)—VM component 
that provides online analysis and correction of VM software prob
lems. 

interactive process—Process that requires user input as it executes. 

interactive users—Users that are present when the system processes 
their jobs. Interactive users communicate with their jobs during 
execution. 

interconnection scheme—Design that describes how a multiprocessor 
system physically connects its components, such as processors and 
memory modules. 

Interface Definition Language (IDL)—A language used to specify the 
details of the RPCs, which provides a language-independent rep
resentation of interfaces and allows distributed applications to 
transparently call procedures on remote computers. 

Interface Definition Language (IDL) file (Windows XP)— File that 
specifies the interfaces that an RPC server exposes. 

interface ID (IID) —Globally unique ID for a COM interface. 

interfault time—Time between a process's page faults. This is used in 
the page-fault-frequency page-replacement strategy to determine 
when to increase or decrease a program's page frame allocation. 

interlocked singly linked list (SList) (Windows XP)—Singly linked list in 
which insertions and deletions are performed as atomic operations. 

interlocked variable access (Windows XP)—Method of accessing vari
ables that ensures atomic reads and writes to shared variables. 

intermediate code generator—Stage of the compilation process that 
receives input from the parser and outputs a stream of instruc
tions to the optimizer. 
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interrupting clock—Hardware device that issues an interrupt after a cer
tain amount of time (called a quantum), e.g., to prevent a process 
from monopolizing a processor. This can ensure that a processor 
will not be monopolized by a malicious or malfunctioning process. 

interval timer—See interrupting clock. 
intrusion detection system (IDS)—Application that monitors networks 

and application log files, which record information about system 
behavior, such as the time at which operating services are 
requested and the name of the process that requests them. 

invalidate—To invalidate a file, the client checks the time stamp of the 
copy of the file on the server. If this copy has been updated since 
the client last copied the file, then the client must download the 
latest version. If the server copy has not been updated since the 
client copied it, then the client can work on its cached copy. 

invalidation—Memory-coherence protocol in which a process first 
invalidates—i.e., voids —all other copies of a page before writing 
to the page. 

inverted page table—Page table containing one entry for each page 
frame in main memory. Inverted page tables incur less table frag
mentation than traditional page tables, which typically maintain 
in memory a greater number of page table entries than page 
frames. Hash functions map virtual page numbers to an index in 
the inverted page table. 

IOStone—Popular synthetic benchmark that evaluates file systems. 
IP address—Address of a particular host on the Internet. 
IP spoofing—Attack in which an attacker simulates the IP address of 

an authorized user or host to obtain unauthorized access to 
resources. 

intermediate driver (Windows XP)—Device driver that can be inter
posed between high- and low-level drivers to filter or process I/O 
requests for a device. 

intermediate-level scheduling—Determining which processes may 
enter the low-level scheduler to compete for a processor. 

internal fragmentation—Phenomenon in fixed-partition multiprogram
ming systems in which holes occur when the size of a process's 
memory and data is smaller than the partition in which the pro
cess executes. 

Internet—Network of communication channels that provides the back
bone for telecommunication and the World Wide Web. Each com
puter on the Internet determines which services it uses and which 
it makes available to other computers connected to the Internet. 

Internet Connection Firewall (ICF)—Windows XP's packet filtering 
firewall. 

Internet Key Exchange (IKE) (IPSec)—Key-exchange protocol used 
in IPSec to perform key management, which allows secure key 
exchange. 

Internet Protocol (IP)—Primary protocol for directing information 
over a network. Destinations on the Internet are specified by 32-
bit numbers called IP addresses. 

Internet Protocol Security (IPSec)—Transport-layer security protocol 
that provides data privacy, integrity and authentication. 

Internet Protocol version 6 (IPv6)—New version of the Internet Proto
col that uses 128-bit addresses and specifies three types of 
addresses: unicast, anycast and multicast. 

Internetwork Packet exchange (IPX)—Novell Netware's network 
protocol designed specifically for LANs. 

interoperability—Permits software components to interact among dif
ferent hardware and software platforms, programming languages 
and communication protocols. 

interpreter—Application that can execute code other than machine 
code (e.g., high-level-language instructions). 

interprocess communication (IPC) manager—Operating system com
ponent that governs communication between processes. 

interrupt—Hardware signal indicating that an event has occurred. 
Interrupts cause the processor to invoke a set of software instruc
tions called an interrupt handler. 

Interrupt Dispatch Table (IDT)—Kernel data structure that maps 
hardware interrupts to interrupt vectors. 

interrupt handler—Kernel code that is executed in response to an 
interrupt. 

interrupt request level (IRQL) (Windows XP)—Measure of interrupt 
priority; an interrupt that occurs at an IRQL equal to or lower 
than the current IRQL is masked. 

interrupt service routine (ISR) (Windows XP)—Function, registered 
by a device driver, that processes interrupts issued by the device 
that the driver services. 

interrupt vector—Array in protected memory containing pointers to 
the locations of interrupt handlers. 

J 
Jakarta project—Provides commercial-quality server solutions based 

on the Java platform that are developed in an open and coopera
tive fashion. 

Java—Object-oriented programming language developed by Sun 
Microsystems that promotes portability by running on a virtual 
machine. 

Java Community Process—Open organization that focuses on develop
ing Java technology specifications, including servlet and JavaSer-
ver Pages. 

Java Management Extensions (JMX)—Developed by Sun and net
work management industry leaders, which defines a component 
framework that enables developers to build automated, intelli
gent and dynamic network management solutions. 

Java Virtual Machine (JVM)—Virtual machine that enables Java pro
grams to execute on many different architectures without recom
piling Java programs into the native machine language of the 
computer on which they execute. The JVM promotes application 
portability and simplifies programming by freeing the program
mer from architecture-specific considerations. 

JavaServer Pages (JSP)—Allows Web-page programmers to create 
pages that use encapsulated Java functionality and even to write 
scriptlets of actual Java code directly in the page. 
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kernel handle (Windows XP)—Object handle accessible from any pro
cess's address space, but only in kernel mode. 

kernel-level thread—Thread created by an operating system (also 
called kernel thread). 

kernel mode—Execution mode of a processor that allows processes to 
execute privileged instructions. 

kernel-mode APC (Windows XP)—APC generated by a kernel-mode 
thread and queued to a specified user-mode thread; the user-
mode thread must process the APC as soon as the user-mode 
thread obtains the processor. 

kernel-mode driver—Device driver that executes in kernel mode. 

kernel process (KPROCESS) block (Windows XP)—Kernel data struc
ture that stores information about a process, such as that process's 
base priority class. 

kernel program—Typical program that might be run at an installation; 
it is executed "on paper" using manufacturers' instruction timings 
and used for application-specific performance evaluation. 

kernel semaphore (Linux) — Semaphore implemented by the kernel to 
provide mutual exclusion. 

kernel thread (Linux)—Thread that executes kernel code. 

kernel thread (KTHREAD) block (Windows XP)—Kernel data structure 
that stores information about a thread, such as the objects on 
which that thread is waiting and the location in memory of the 
thread's kernel stack. 

key—Input to a cipher to encrypt data; keys are represented by a string 
of digits. 

key agreement protocol—Rules that govern key exchange between 
two parties over an insecure medium. 

key distribution center (KDC) — Central authority that shares a differ
ent secret key with every user in the network. 

key generation—Creation of encryption keys. 

ksoftirqd (Linux) —Daemon that schedules software interrupt han
dlers when softirq load is high. 

kswapd (Linux)—Daemon that swaps pages to disk. 

Lamport's bakery algorithm—N-thread mutual exclusion algorithm 
based on a "take a ticket" system. 

lane—Route between two points in a PCI Express bus. PCI Express 
devices are connected by a link that may contain up to 32 lanes. 

large page (Windows XP)—Set of pages contiguous in memory that 
the VMM treats as a single page. 

last processor (Windows XP)—Thread attribute equal to the processor 
that most recently executed the thread. 

latency (process scheduling)—Time a task spends in a system before it 
is serviced. 

laxity—Value determined by subtracting the sum of the current time 
and a process's remaining execution time from the process's dead
line. This value decreases as a process nears its deadline. 

JavaSpaces—Jini service that implements a simple, high-level architec
ture for building distributed systems. The JavaSpaces service 
provides distributed, shared storage (and shared memory) for 
Java objects and enables Java objects to communicate, share 
objects and coordinate tasks using the storage. 

Jini—Framework for building reliable and fault-tolerant distributed 
systems with existing Java technologies. Jini extends the idea of 
providing services beyond industry-based computer networks and 
into home-based networks. 

job—Set of work to be done by a computer. 

job-aware scheduling—Multiprocessor scheduling algorithms that 
account for job properties when making scheduling decisions; 
these algorithms typically attempt to maximize parallelism or pro
cessor affinity. 

job-blind scheduling—Multiprocessor scheduling algorithms that 
ignore job properties when making scheduling decisions; these 
algorithms are typically simple to implement. 

job control language — Commands interpreted by a job stream proces
sor that define and facilitate the setup of the next job in a single-
stream batch-processing system. 

job object (Windows XP) —Object that groups several processes and 
allows developers to manipulate and set limits on these processes 
as a group. 

job scheduling—See high-level scheduling. 

job stream processor—Entity in single-stream batch-processing sys
tems that controls the transition between jobs. 

job-to-job transition—Time during which jobs cannot execute in sin
gle-stream batch-processing systems while one job is purged from 
the system and the next job is loaded and prepared for execution. 

join—Thread operation that causes the calling thread to block until the 
thread it joins terminates. A primary thread often joins each of 
threads it creates so that its corresponding process does not exit 
until all of its threads have terminated. 

join (database) —Operation that combines relations. 

journaling file system—See log-structured file system (LFS). 

JXTA—Project created at Sun Microsystems, Inc., which creates a 
standard, low-level, platform- and language-independent protocol 
that promotes interoperability among peer-to-peer applications. 

Kerberos—Freely available, open-source authentication and access 
control protocol developed at MIT that provides protection 
against internal security attacks. It employs secret-key cryptogra
phy to authenticate users in a network and to maintain the integ
rity and privacy of network communications. 

kernel—Software that contains the core components of an operating 
system. 

kernel control path (Linux)—A kernel execution context that may per
form operations requiring mutual exclusive access to kernel data 
structures. 

K 
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lightweight process (LWP)—A single thread of program instructions 
(also called a thread of execution or thread of control). Threads 
are "lightweight" because they share their address space with 
other threads in the same process. 

limit register—Register used in fixed-partition multiprogramming sys
tems to mark where a process's memory partition ends. 

linear address space (IA-32 Intel architecture)—32-bit (4GB) virtual 
address space. Under pure segmentation, this address space is 
mapped directly to main memory. Under segmentation/paging, 
this address space is divided into page frames that are mapped to 
main memory. 

linear ordering (Havender)—Logical arrangement of resources that 
requires that processes request resources in a linear order. This 
method denies the circular-wait necessary condition for deadlock. 

link (file system)—Directory entry that references an existing file. 
Hard links reference the location of the file on its storage device; 
soft links store the file's pathname. 

link (network)—Medium over which services are physically transmit
ted in a network. 

link layer (in TCP/IP)—Responsible for interfacing with and control
ling the physical medium over which data is sent. 

linking—Process of integrating a program's object modules into a sin
gle executable file. 

linking loader—Application that performs both linking and loading. 

Linux security modules (LSM) framework (Linux)—Framework that 
allows system administrators to specify the access control mecha
nism employed by the system. 

Linux Standard Base (Linux)—Project that aims to specify a standard 
Linux interface to improve application portability between kernel 
versions (and distributions). 

list (file)—Operation that prints or displays a file's contents. 

lmbench microbenchmark—Microbenchmark suite that enables evalu-
ators to measure and compare system performance on a variety of 
UNIX platforms. 

load—See request rate. 

load balancer—Node in a load balancing cluster that distributes the 
workload (such as thousands of requests from the clients) to a set 
of nodes so that all hardware is efficiently utilized. 

load balancing—Operation that attempts to evenly distribute system 
load between processors in the system. 

load balancing cluster—Cluster in which one particular node works as 
a load balancer to distribute the load to a set of nodes, so that all 
hardware is efficiently utilized. 

load module—Integrated module produced by a linker that consists of 
object code and relative addresses. 

loadable kernel module (Linux)—Software that can be integrated into 
the kernel at runtime. 

loader—Application that loads linked executable modules into memory. 

local area network (LAN)—Type of network used to interconnect 
resources using high-speed communication paths optimized for 

layer—Level of abstraction in the TCP/IP protocol stack associated 
with certain conceptual functions. These layers are the application 
layer, transport layer, network layer and link layer. 

layered biometric verification (LBV)—Authentication technique that 
uses multiple measurements of human features (such as face, fin
ger and voice prints) to verify a user's identity. 

layered operating system—Modular operating system that places simi
lar components in isolated layers. Each layer accesses the services 
of the layer below and returns results to the layer above. 

lazy allocation—Policy of waiting to allocate resources, such as pages in 
virtual memory and page frames in main memory, until absolutely 
necessary. 

lazy copying—Process migration strategy that transfers pages from the 
sender only when the process at the receiving node references 
these pages. 

lazy data propagation—Technique in which writing processors send 
coherence information after a release, but not the data; a proces
sor retrieves the data when it accesses a page that it knows is not 
coherent. 

lazy migration—Process migration strategy in multiprocessor systems 
that does not transfer all pages during initial migration. This 
increases residual dependency but reduces initial migration time. 

lazy release consistency—Memory-coherence strategy in which a pro
cessor does not send coherence information after writing to a 
page until a new processor attempts an acquire operation on that 
memory page. 

lease—Agreement between the client and server for controlling file 
locks. 

least-frequently-used (LFU) page replacement—Page-replacement 
strategy that replaces the page that is least frequently used or 
least intensively referenced. LFU is easy to implement, but gener
ally does not predict future page usage well. 

least-recently-used (LRU) page replacement—Page-replacement strat
egy that replaces the page that has not been referenced for the 
longest time. LRU generally predicts future page usage well but 
incurs significant overhead. 

Lempel-Ziv compression algorithm—Data compression algorithm that 
NTFS uses to compress files. 

level (RAID)—A particular organization of a RAID system, such as 
level 1 (mirroring) or level 2 (Hamming ECC parity). See also 
RAID level 0, RAID level 1, RAID level 2, RAID level 3, RAID 
level 4 and RAID level 5. 

level of multiprogramming—See degree of multiprogramming. 

lexer—See lexical analyzer. 

lexical analyzer—Part of a compiler that separates the source code into 
tokens. 

library module—Precompiled module that performs common com
puter routines, such as I/O routines or mathematical functions. 

Lightweight Directory Access Protocol (LDAP) (Windows XP)—Pro
tocol for accessing, searching and modifying Internet directories 
(e.g., Active Directory). 
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logical backup—Backup technique that stores file data and the file sys
tem's directory structure, often in a common, compressed format. 

logical block—See logical record. 

logical clock—Assigns a timestamp to each event that happens in a sys
tem in order to create a total ordering of events. 

logical record—Collection of data treated as a unit by software. 

logical topology—Map of a network that depicts which nodes are 
directly connected. 

logical view—View of files that hides the devices that store them, their 
format and the system's physical access techniques. 

long-term scheduling—See high-level scheduling. 

LOOK disk scheduling—Variation of the SCAN disk scheduling strat
egy that "looks" ahead to the end of the current sweep to deter
mine the next request to service. If there are no more requests in 
the current direction, LOOK changes the preferred direction and 
begins the next sweep, stopping when passing a cylinder that cor
responds to a request in the queue. This strategy eliminates 
unnecessary seek operations experienced by other variations of 
SCAN by preventing the read/write head from moving to the 
innermost or outermost cylinder unless it needs to service a 
request at those cylinders. 

lookup service—Heart of the Jini architecture, which maintains infor
mation about available Jini services and enables clients to dis
cover and use them. 

loopback device (Linux)—Virtual device that enables operations to be 
performed on data between layers of a system service (e.g., the 
file system). 

loosely coupled system—System in which processors do not share most 
resources; these systems are flexible and fault tolerant but per
form worse than tightly coupled systems. 

low-level driver (Windows XP)—Device driver that controls a periph
eral device and does not depend on any lower-level drivers. 

low-level scheduling—Determining which process will gain control of a 
processor. 

Lucifer algorithm—Encryption algorithm created by Horst Feistel of 
IBM, which was chosen as the DES by the United States govern
ment and the National Security Agency (NSA) in the 1970s. 

M 
Mac OS—Line of operating systems for Apple Macintosh computers 

first introduced in 1997. 

Mach—Early microkernel operating system, designed at Carnegie-
Mellon University by a team led by Richard Rashid. Mach has 
influenced the design of Windows NT and has been used to imple
ment Mac OS X. 

machine language—Language that is defined by a computer's hard
ware design and can be natively understood by the computer. 

Macintosh—Apple Computer's PC line that introduced the GUI and 
mouse to mainstream computer users. 

local area environments, such as office buildings or college cam
puses. 

local descriptor table (LDT) (IA-32 Intel architecture) —Segment map 
table that contains mapping information for process segments. 
The system may contain up to 8,191 LDTs, each containing 8,192 
entries. 

local procedure call (LPC) (Windows XP)—Procedure call made by a 
thread in one process to a procedure exposed by another process 
in the same domain (i.e., set of computers that share common 
resources); LPCs can be created only by system components. 

local remote procedure call (LRPCs) (Windows XP)—RPCs between 
two processes on the same machine. 

locality—Empirical phenomenon describing events that are closely 
related in space or time. When applied to memory access patterns, 
spatial locality states that when a process references a particular 
address, it is also likely to access nearby addresses; temporal 
locality states that when a process references a particular address, 
it is likely to reference it again soon. 

localized least-recently used page replacement (Windows XP)—Policy 
of moving to disk the least-recently used page of a process at its 
working set maximum when that process requests a page in main 
memory. The policy is localized by process, because Windows XP 
moves only the requesting process's pages; Windows XP approxi
mates this policy using the clock algorithm. 

location (file)—Address of a file on a storage device or in the system's 
logical file organization. 

location-dependent call—System call that depends on the workstation 
(in Sprite) on which the call is executed. Location-dependent calls 
produce different results for different workstations. 

location-independent call—System call that does not depend on the 
workstation (in Sprite) on which the call is executed. Location-
independent calls produce the same result for all workstations. 

location transparency—Builds on access transparency to hide the loca
tion of resources in a distributed system from those attempting to 
access them. 

lockstep synchronization—Situation where asynchronous threads exe
cute code in strict alternation. 

log file—Records information about system behavior, such as the time 
at which operating services are requested and the name of the 
process that requests them. 

log-structured file system (LFS)—File system that performs all file 
operations as transactions to ensure that file system data and 
metadata is always in a consistent state. An LFS generally exhibits 
good write performance because data is also appended to the end 
of a system-wide log file. To improve read performance, an LFS 
typically distributes metadata throughout the log and employs 
large caches to store that metadata so that the locations of file 
data can be found quickly. 

logic bomb—Virus that executes its code when a specified condition is 
met. 

logical address space (IA-32 Intel architecture)—Set of addresses con
tained in a segment. 
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magnetic tape storage—Rewritable magnetic storage medium that 
accesses data sequentially. Its sequential nature makes it unsuit
able for direct access applications. 

mailslot (Windows XP) — Message queue, which a process can employ 
to receive messages from other processes. 

mailslot client (Windows XP)—Process that sends mailslot messages to 
mailslot servers. 

mailslot server (Windows XP)—Process that creates a mailslot and 
receives messages in it from mailslot clients. 

main memory — Volatile memory that stores instructions and data; it is 
the lowest level of the memory hierarchy that can be directly ref
erenced by a processor. 

main thread of execution—Thread created upon process creation (also 
called primary thread). 

mainboard — Printed circuit board that provides electrical connections 
between computer components such as processor, memory and 
peripheral devices. 

major device identification number (Linux)—Value that uniquely iden
tifies a device in a particular device class. The kernel uses this 
value to determine a device's driver. 

major function code (Windows XP)—Field in an IRP that describes 
the general function (e.g., read or write) that should be performed 
to fulfill an I/O request. 

major version number (Linux)—Value that uniquely identifies a signif
icant Linux release. 

manager level (in JMX)—Level that gives a management application 
access to managed resources (created in the instrumentation 
level) and operates these resources via the JMX agents. 

mandatory access control (MAC)—Access control model in which pol
icies predefine a central permission scheme by which all subjects 
and objects are controlled. 

manual-reset timer object (Windows XP)—Timer object that remains 
signaled until a thread specifically resets the timer. 

many-to-many (m-to-n) thread mapping—Threading model in which a 
set of user threads is assigned to a set of kernel threads so that 
applications can benefit both from kernel-level threads and user-
level features such as scheduler activations. In practice the num
ber of user threads is greater than or equal to the number of ker
nel threads in the system to minimize memory consumption. 

many-to-one thread mapping—Threading model in which all user-level 
threads in a process are assigned to one kernel thread. 

marshaling of data—A routine for the client stub to package procedure 
arguments and return values for transmission over a network. 

mask a signal—Prevent a signal from being delivered. Signal masking 
enables a multithreaded process to specify which of its threads 
will handle signals of a particular type. 

massive parallelism—Property of a system containing large numbers of 
processors so that many parts of computations can be performed 
in parallel. 

massively parallel processor—Processor that performs a large number 
of instructions on large data sets at once; array processors are 
often called massively parallel processors. 

Master File Table (MFT) (NTFS)-File which is structured as a table 
in which NTFS stores information (e.g. name, time stamp, and 
location) about all files in the volume. 

master node (in a Beowulf cluster)—Node, also known as the head 
node, that acts as a server to distribute the workload, control the 
access to the cluster and handle the shared resources. 

master/slave multiprocessor organization — Scheme for delegating 
operating system responsibilities in which only one processor (the 
"master") can execute the operating system, and the other pro
cessors (the "slaves") can execute only user processes. 

maximum need (Dijkstra's banker's algorithm) —Characteristic of a 
process in Dijkstra's banker's algorithm that describes the largest 
number of resources (of a particular type) the process will need 
during execution. 

MD5 Message Digest Algorithm—Hash algorithm developed by Pro
fessor Ronald L. Rivest at MIT that is widely used to implement 
digital signatures. 

mean — Average of a set of values. 

mean response time (disk scheduling)—Average time a system spends 
waiting for a disk request to be serviced. 

mean-time-to-failure (MTTF) (RAID)—Average time before a single-
disk failure. 

member—Sequential subfile of a partitioned file. 

memory coherence —State of a system in which the value obtained 
from reading a memory address is always the same as the most-
recently written value at that address. 

memory compaction — Relocating all partitions in a variable-partition 
multiprogramming system to one end of main memory to create 
the largest possible memory hole. 

memory descriptor list (MDL) (Windows XP)—Data structure used in 
an I/O transfer that maps a process's virtual addresses to be 
accessed in the transfer to physical memory addresses. 

memory dump (Linux) —Action that generates a core file before termi
nating a process. 

memory footprint (Linux) —Size of unswappable memory consumed 
by the kernel. 

memory hierarchy—Classification of memory from fastest, lowest-
capacity, most expensive memory to slowest, highest-capacity, 
least expensive memory. 

memory line—Entry in memory that stores one machine word of data, 
which is typically four or eight bytes. 

memory management strategy—Specification of how a particular 
memory organization performs operations such as fetching, plac
ing and replacing memory. 

Memory Management Unit (MMU) —Special-purpose hardware that 
performs virtual-to-physical address translation. 
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microkernel operating system —Scalable operating system that puts a 

minimal number of services in the kernel and requires user-level 
programs to implement services generally delegated to the kernel 
in other types of operating systems. 

microprogramming — Layer of programming below a computer's 
machine language that includes instructions necessary to imple
ment machine-language operations. This enables processors to 
divide large, complex instructions into simpler ones that are per
formed by its execution unit. 

Microsoft IDL (MIDL)—Microsoft's extension of Interface Definition 
Language (IDL)—The Open Group's Distributed Computing 
Environment (DCE) standard for RPC interoperability. 

middleware —Layer of software that enables communication between 
different applications. Middleware simplifies application pro
gramming by performing work such as network communication 
and translation between different data formats. 

migration transparency—Masks the movement of an object from one 
location to another in the system, such as the movement of a file 
from one server to another. 

minimum-laxity-first —Scheduling policy that assigns higher priority to 
processes that will finish with minimal processor usage. 

minor device identification number (Linux)—Value that uniquely iden
tifies devices that are assigned the same major number (e.g., a 
hard drive partition). 

minor function code (Windows XP)—Field in an IRP that, together 
with the major function code, describes the specific function that 
should be performed to fulfill an I/O request (e.g., to start a 
device, a PnP major function code is used with a start device 
minor function code). 

minor version number (Linux)—Value that identifies successive stable 
(even) and development (odd) versions of the Linux kernel. 

MfPS (million instructions per second) — Unit commonly used to cate
gorize the performance of a particular computer; a rating of one 
MIPS means a processor can execute one million instructions per 
second. 

mirroring (RAID) —See disk mirroring. 

missing-segment fault—Fault that occurs when a process references a 
segment that is not currently in main memory. The operating sys
tem responds by loading the segment from secondary storage into 
main memory when space is available. 

mission-critical system —System that must function properly; its failure 
could lead to loss of property, money or even human life. 

mixed model —COM threading model, in which some COM objects 
reside in single apartments and others can be accessed by free 
threads. 

MobileMark—Popular benchmark for evaluating systems installed on 
mobile devices developed by Business Application Performance 
Corporation (BAPCo). 

modified bit—Page table entry bit that indicates whether a page has 
been modified and hence must be copied to secondary storage 
before being replaced (also known as the dirty bit). 

memory manager—Component of an operating system that imple
ments the system's memory organization and memory manage
ment strategies. 

memory map—Data structure that stores the correspondence between 
a process's virtual address space and main memory locations. 

memory-mapped file—File whose data is mapped to a process's virtual 
address space, enabling a process to reference file data as it would 
other data. Memory-mapped files are useful for programs that 
frequently access file data. 

memory organization—Manner in which the system views main mem
ory, addressing concerns such as how many processes exist in 
memory, where to place programs and data in memory and when 
to replace those pieces with other pieces. 

memory pool (Linux) — Region of memory reserved by the kernel for a 
process to ensure that the process's future requests for memory 
are not denied. 

memory protection—Mechanism that prevents processes from access
ing memory used by other processes or the operating system. 

merge I/O requests (Linux)—To combine two I/O requests to adjacent 
locations on disk into a single request. 

mesh network—Network in which at least two nodes have more than 
one path connecting them. Faster and more fault tolerant than all 
but fully-connected mesh networks. 

message — IPC mechanism that allows data to be transmitted by speci
fying a message type and variable-length field of data. 

message digest—Hash value produced by algorithms such as SHA-1 
and MD5 when applied to a message. 

message integrity—Property indicating whether message has been 
altered in transmission. 

message passing—Mechanism to allow unrelated processes to commu
nicate by exchanging data. 

message queue (Linux) —Structure that stores messages that have yet 
to be delivered to processes. 

message queue descriptor (Linux) —Structure that stores data regard
ing a message queue. 

metadata—Data that a file system uses to manage files and that is inac
cessible to users directly. Inodes and superblocks are examples of 
metadata. 

method (of an object) —Part of an object that manipulates object 
attributes or performs a service. 

micro-op—Simple, RISC-like instruction that is the only type of 
instruction processed by a Pentium processor; the Pentium's 
instruction decoder converts complex instructions into a series of 
micro-ops. 

microbenchmark—Performance evaluation tool that measures the 
speed of a single operating system operation (e.g., process cre
ation). 

microbenchmark suite—Program that consists of a number of 
microbenchmarks, typically used to evaluate many important 
operating system operations. 

microcode—Microprogramming instructions. 
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Modified No-write Page List (Windows XP)—List of page frames for 
which the VMM must write an entry to a log file before freeing. 

Modified Page List (Windows XP)—List of page frames that the VMM 
must write to the pagefile before freeing. 

module—Independently developed subprogram that can be combined 
with other subprograms to create a larger, more complex pro
gram; programmers often use precompiled library modules to 
perform common computer functions such as I/O manipulations 
or random number generation. 

monitor—Concurrency construct that contains both the data and pro
cedures needed to provide mutual exclusion while allocating a 
serially reusable shared resource or group of serially reusable 
shared resources. 

monitor entry routine—Monitor routine that can be called by any 
thread, but that can be executed by only one thread at a time. 
Unlike private monitor routines, which can be called only by 
threads executing inside the monitor, monitor entry routines 
enforce mutual exclusion. 

monolithic operating system—Operating system whose kernel contains 
every component of the operating system. The kernel typically 
operates with unrestricted access to the computer system. 

Moore's law—Prediction regarding the evolution of processor design 
that asserts the number of transistors in a processor will double 
approximately every 18 months. 

most trusted user status—See kernel mode. 

motherboard—See mainboard. 

mount—Insert a file system into a local directory structure. 

mount operation—Operation that combines disparate file systems into a 
single namespace so they can be accessed by a single root directory. 

mount point—User-specified directory within the native file system 
hierarchy where the mount command places the root of a 
mounted file system. 

mount tables—Tables that store the locations of mount points and 
their corresponding devices. 

moving-arm assembly—See disk arm. 

MS-DOS—Popular operating system for the first IBM Personal Com
puter and compatible microcomputers. 

multi-op instruction—Instruction word used by an EPIC system in 
which the compiler packages a number of smaller instructions for 
the processor to execute in parallel. 

multicast—Type of IPv6 address used to send packets to all hosts in a 
group of related hosts. 

multicomputer system—System in which processors do not share a 
common memory or bus. Each processor has access to its own 
resources. These independent processors are connected in a net
work to operate cooperatively to form a multicomputer system. 

Multics—One of the first operating systems to implement virtual mem
ory. Developed by MIT, GE and Bell Laboratories as the succes
sor to MIT's CTSS. 

Multics Relational Data Store (MRDS)—First commercial relational 
database system, included in Multics. 

multilevel feedback queue—Process scheduling structure that groups 
processes of the same priority in the same round-robin queue. 
Processor-bound processes are placed in lower-priority queues 
because they are typically batch processes that do not require fast 
response times. I/O-bound processes, which exit the system 
quickly due to I/O, remain in high-priority queues. These pro
cesses often correspond to interactive processes that should expe
rience fast response times. 

multilevel paging system—Technique that enables the system to store 
portions of a process's page table in discontiguous locations in 
main memory and store only those portions that a process is 
actively using. Multilevel page tables are implemented by creating 
a hierarchy of page tables, each level containing a table that stores 
pointers to tables in the level below. The bottom-most level is 
comprised of tables containing the page-to-page-frame mappings. 
This reduces memory waste compared to single-level page tables, 
but incurs greater overhead due to the increased number of mem
ory accesses required to perform address translation when corre
sponding mappings are not contained in the TLB. 

multiple-instruction-stream, multiple-data-stream (MIMD) com
puter—Computer architecture consisting of multiple processing 
units, which execute independent instructions and manipulate 
independent data streams; this design describes multiprocessors. 

multiple-instruction-stream, single-data-stream (MISD) computer-
Computer architecture consisting of several processing units, 
which execute independent instruction streams on a single stream 
of data; these architectures have no commercial application. 

multiple shared bus architecture—Interconnection scheme that 
employs several shared buses connecting processors and memory. 
This reduces contention, but increases cost compared to a single 
shared bus. 

Multiple UNC Provider (MUP) (Windows XP)-Fi le system driver 
that determines the appropriate redirector to which to send a net
work I/O request. 

Multiple Virtual Spaces (MVS)—IBM operating system for System/ 
370 mainframes allowing any number of 16MB virtual address 
spaces. 

multiprocessing system—Computing system that employs more than 
one processor. 

multiprogramming—Ability to store multiple programs in memory at 
once so that they can be executed concurrently. 

Multipurpose Internet Mail Extensions (MIME)—Electronic mail 
standard defining five content types: text, image, audio, video and 
application. 

multistage network—Multiprocessor interconnection scheme that uses 
switch nodes as hubs for communication between processor 
nodes that each have their own local memory. 

multithreading—Technique that incorporates multiple threads of exe
cution within a process to perform parallel activities, possibly 
simultaneously. 

must-succeed request (Windows XP)—Request for space in main 
memory that a process issues when it requires more main memory 
to continue functioning properly. Windows XP always denies 
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must-succeed requests; previous versions of Windows always ful
filled them. 

mutex object (Windows XP) —Synchronization object that allows at 
most one thread access to a protected resource at any time; it is 
essentially a binary semaphore. 

mutual exclusion—Restriction whereby execution by a thread of its 
critical section precludes execution by other threads of their criti
cal sections. Mutual exclusion is crucial to correct execution when 
multiple threads access shared writable data. 

mutual exclusion lock—Variable that indicates if a thread is executing 
its critical section; if the lock indicates that a thread is in its critical 
section, other threads are locked out of their own critical sections. 

mutual exclusion necessary condition for deadlock—One of the four 
necessary conditions for deadlock; states that deadlock can occur 
only if processes cannot claim exclusive use of their resources. 

mutual exclusion primitives—Fundamental operations that are needed 
to implement mutual exclusion: enterMutualExclusion() and 
exitMutualExclusion(). 

NDIS miniport driver (Windows XP)—NDIS driver that manages a 
NIC and sends and receives data to and from the NIC. 

NDIS protocol driver (Windows XP)—NDIS driver that places data 
into packets and passes these packets to lower-level drivers. NDIS 
protocol drivers provide an interface between the transport driv
ers and other NDIS drivers and can be used as the lowest layer in 
the implementation of a transport protocol stack such as TCP/IP. 

necessary condition for deadlock—Condition that must be true for 
deadlock to occur. The four necessary conditions are the mutual 
exclusion condition, no-preemption condition, wait-for condition 
and circular-wait condition. 

negative feedback—Data informing the system that a resource is hav
ing difficulty servicing all requests and the processor should 
decrease the arrival rate for requests at that resource. 

neither I/O (Windows XP)—I/O transfer technique in which a high-
level driver executes in the context of the calling thread to set up 
a buffered I/O transfer or direct I/O transfer or to directly per
form the transfer in the process's address space. 

.NET—Microsoft initiative aimed at transforming computing from an 
environment in which users simply execute applications on a sin
gle computer to a fully distributed environment; .NET provides a 
platform- and language-neutral development environment for 
components that can easily interoperate. 

.NET framework—Programming model for creating XML-based Web 
services and applications. The .NET framework supports over 20 
programming languages and facilitates application programming by 
providing libraries to perform common operations (e.g., input/out
put, string manipulation and network communication) and access 
data via multiple database interfaces (e.g., Oracle and SQL Server). 

NetBIOS Extended User Interface (NetBEUI) (Windows X P ) -
Native network and transport protocol for DOS and older Win
dows operating systems. 

NetBIOS over TCP/IP (NBT) (Windows XP)-Replacement protocol 
for NetBEUI that provides backward compatibility with older 
applications (by keeping the NetBIOS interface) and takes 
advantage of TCP/IP protocols. 

netfilter framework (Linux)—Mechanism that allows kernel modules 
to directly inspect and modify packets. This is useful for applica
tions such as firewalls, which modify each packet's source address 
before the packet is transmitted. 

network-based intrusion detection—IDS that monitors traffic on a net
work for any unusual patterns that might indicate DoS attacks or 
attempted entry into a network by an unauthorized user. 

Network Basic Input/Output System (NetBIOS) (Windows X P ) - A P I 
used to support NetBEUI and now used with NBT. 

Network Data Representation (NDR) — Standard format for network 
data described in the The Open Group's Distributed Computing 
Environment (DCE) standard. 

network diameter—Shortest path between the two most remote nodes 
in a system. 

Network Driver Interface Specification (NDIS) (Windows XP) —Spec
ification that describes a standard interface between lower-level 

n-ary relation—Relation of degree n. 

JV-Step SCAN disk scheduling—Disk scheduling strategy that services 
the first n requests in the queue using the SCAN strategy. When 
the sweep is complete, the next n requests are serviced. Arriving 
requests are placed at the end of the request queue. JV-Step 
SCAN offers good performance due to high throughput, low 
mean response times and a lower variance of response times than 
SSTF and SCAN. 

n-tier system—Architecture for network-based applications. The three-
tier system, for example, has a client tier, an application logic tier 
and a data tier. 

named pipe (Linux)—Pipe that can be accessed via the directory tree, 
enabling processes that are not parent and child to communicate 
using pipes. See also pipe. 

named pipe (Windows XP)—Type of pipe that can provide bidirec
tional communication between two processes on local or remote 
machines and that supports both synchronous and asynchronous 
communication. 

namespace—Set of files that can be identified by a file system. 

National Institute of Standards and Technology (NIST) — Organization 
that sets cryptographic (and other) standards for the U.S. govern
ment. 

native API (Windows XP)—Programming interface exposed by the 
executive, which environment subsystems employ to make system 
calls. 

NDIS intermediate driver (Windows XP)—NDIS driver that can be 
interposed between a miniport driver and a higher-level driver 
and adds extra functionality, such as translating packets between 
different communication media, filtering packets or providing 
load balancing across several NICs. 

N 
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nonresident attribute—NTFS file attribute whose data does not fit 
inside the MFT entry and is stored elsewhere. 

nonuniform-memory-access (NUMA) multiprocessor—Multiproces
sor architecture in which each node consists of a processor, cache 
and memory module. Access to a processor's associated memory 
module (called local memory) is faster than access to other mem
ory modules in the system. 

nonuniform request distribution—Set of disk requests that are not uni
formly distributed across disk surfaces. This occurs because pro
cesses exhibit spatial locality, leading to localized request patterns. 

nonvolatile storage—The contents of nonvolatile storage are not lost 
when the machine loses power or is powered off. 

normal memory (Linux)—Physical memory locations beyond 16MB 
that the kernel can directly map to its virtual address space. This 
region is used to store kernel data and user pages. 

not-used-recently (NUR) page replacement—Low-overhead approxi
mation to the LRU page-replacement strategy; uses referenced 
bits and dirty bits to replace a page. NUR first attempts to replace 
a page that has not been referenced recently and that has not 
been modified. If no such page is available, the strategy replaces a 
dirty page that has not been referenced recently, a clean page that 
has been referenced recently or a referenced page that has been 
referenced recently, in that order. 

notify—Thread operation that transitions its target thread from the 
waiting to the ready state. 

notify (Java)—Java method that wakes one thread in a monitor's wait 
set. The thread that is awakened depends on the JVM implemen
tation. 

notifyAll —Java method that awakens all threads in a monitor's wait 
and entry sets. Method no t i fyAl l ensures that waiting threads 
are not indefinitely postponed, but incurs more overhead than 
no t i fy . 

O 
object—Reusable software component that can model real-world 

items through properties and actions. 

object code—Code generated by a compiler that contains machine-lan
guage instructions that must be linked and loaded before execu
tion. 

object handle (Windows XP)—Data structure that allows threads to 
manipulate an object. 

Object Linking and Embedding (OLE)—Microsoft technology built 
on COM that defines a standard method for processes to 
exchange data by linking or embedding COM objects. 

object manager (Windows XP) —Executive component that manages 
objects. 

object manager namespace (Windows XP) —Group of object names in 
which each name is unique in the group. 

object-oriented operating system (OOOS) —Operating system in 
which components and resources are represented as objects. 
Object-oriented concepts such as inheritance and interfaces help 

layered drivers in the network driver stack; NDIS drivers provide 
the functionality of the link layer in the TCP/IP stack and are used 
on Windows XP systems. 

network file system—System that allows clients to access files on 
remote computers. Network file systems do not provide location 
transparency as distributed file systems do. 

Network File System (NFS) —Current de facto standard created by 
Sun Microsystems for network file sharing, natively supported in 
most varieties of UNIX (and many other operating systems) with 
client and server software available for other common platforms. 

network layer—Protocols responsible for sending data to the next host 
toward the destination. This layer exists in both the TCP/IP model 
and the OSI model of network communication. 

network link—Connection between two nodes. 

network operating system — Operating system that can manipulate 
resources at remote locations but does not hide the location of 
these resources from applications (as distributed systems can). 

network redirector—See redirector (Windows XP). 

network topology—Representation of the relationships of nodes in a 
network. Some examples are bus networks, ring networks, star 
networks, tree networks and mesh networks. 

next-fit memory placement strategy—Variation of the first-fit memory 
placement strategy that begins each search for an available hole 
at the point where the previous search ended. 

nice value (Linux)—Measure of a process's scheduling priority. Pro
cesses with a low nice value receive a greater share of processor 
time than other processes in the system and are therefore "less 
nice" to other processes in the system. 

no-preemption necessary condition for deadlock—One of the four nec
essary conditions for deadlock; states that deadlock can occur 
only if resources cannot be forcibly removed from processes. 

no-remote-memory-access (NORMA) multiprocessor—Multiproces
sor architecture that does not provide global shared memory. 
Each processor maintains its own local memory. NORMA multi
processors implement a common shared virtual memory. 

node—System component, such as a processor, memory module or 
switch, attached to a network; sometimes a group of components 
might be viewed as a single node. 

noncontiguous memory allocation—Method of memory allocation that 
divides a program into several, possibly nonadjacent, pieces that 
the system places throughout main memory. 

nonpaged pool—Area of main memory that stores pages that are never 
moved to disk. 

nonpreemptible resource — Resource that cannot be forcibly removed 
from a process, e.g., a tape drive. Such resources are the kind that 
can become involved in deadlock. 

nonpreemptive scheduling—Scheduling policy that does not allow the 
system to remove a processor from a process until that process 
voluntarily relinquishes its processor or runs to completion. 

nonrepudiation—Issue that deals with how to prove that a message 
was sent or received. 
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facilitate application development. They also help make system 
resources conveniently available to users while providing a reliable, 
secure and responsive environment to applications and users. 

Operationally Critical Threat, Asset and Vulnerability Evaluation 
(OCTAVE) method—Technique for evaluating security threats of 
a system developed at the Software Engineering Institute at Car
negie Mellon University. 

opportunistic lock (oplock) (Windows XP) —Lock used by a CIFS cli
ent to secure exclusive access to a remote file, ensuring that the 
client can cache data locally and keep its cache coherent. 

optimal (OPT) page replacement—Unrealizable page-replacement 
strategy that replaces the page that will not be used until furthest 
in the future. This strategy has been shown to be optimal. 

optimizer—Part of the compiler that attempts to improve the execu
tion efficiency and reduce the space requirement of a program. 

Orange Book —Document published by U.S. Department of Defence 
(DoD) to establish guidelines for evaluating the security features 
of operating systems. 

OS/360—Operating system for the IBM System/360 mainframes. OS/ 
360 had two major options, MFT and MVT, which stood for "Mul
tiprogramming with a Fixed number of Tasks" and "Multipro
gramming with a Variable number of Tasks." OS/360-MVT 
evolved into MVS, the ancestor of the current IBM mainframe 
operating system z/OS. 

OSF/1—UNIX clone built by the Open Software Foundation to com
pete with Solaris. 

out-of-order execution (OOO)—Technique in which a processor ana
lyzes a stream of instructions and dynamically reorders instruc
tions to isolate groups of independent instructions for parallel 
execution. 

overlapped I/O (Windows XP)—Microsoft synonym for asynchronous 
I/O. 

overlay—Concept created to enable programs larger than main mem
ory to run. Programs are broken into pieces that do not need to 
exist simultaneously in memory. An overlay contains one such 
piece of a program. 

owner (file access control) —User who created the file. 

P operation—Operation on a semaphore. If the variable in the sema
phore is 0, then the P operation blocks the calling thread. If the 
variable is greater than 0, the operation will decrement the vari
able by one and allow the calling thread to proceed. 

package (Linux)—Portion of a distribution containing an application 
or service. Users can customize their Linux systems by adding and 
removing packages. 

packet-filtering firewall—Hardware or software that examines all data 
sent from outside its LAN and rejects data packets based on pre
defined rules, such as reject packets that have local network 
addresses or reject packets from certain addresses or ports. 

P 

create modular operating systems that are easier to maintain and 
extend than operating systems built with previous techniques. 
Many operating systems use objects, but few are written entirely 
using object-oriented languages. 

object-oriented programming (OOP) —Style of programming that 
allows programmers to quickly build complex software systems 
by reusing components called objects, built from "blueprints" 
called classes. 

Object Request Broker (ORB) —Component residing on both 
CORBA client and server, which is responsible for initiating com
munication between systems. 

object serialization—Allows objects to be encoded into byte streams 
and transmitted from one address space to another. 

offset—See displacement. 

on-board device—Device that is physically connected to a computer's 
mainboard. 

on-demand migration—Another name for lazy process migration. 

one-to-one mapping—Threading model in which each user-level 
thread is assigned to a kernel-level thread. 

online —State describing a computer that is turned on (i.e., active) and 
directly connected to a network. 

Online Certificate Status Protocol (OCSP) —Protocol that validates 
certificates in real time. 

online spare—See hot spare disk. 

online transaction processing (OLTP)—Type of system that typically 
receives many disk requests to randomly distributed locations 
containing small amounts of data (e.g., databases and Web serv
ers). Such systems significantly improve performance using disk 
scheduling algorithms. 

open (file) —Operation that prepares a file to be referenced. 

Open DataBase Connectivity (ODBC) Protocol for middleware that 
permits applications to access a variety of databases that use dif
ferent interfaces. The ODBC driver handles connections to the 
database and retrieves information requested by applications. 
This frees the application programmer from writing code to spec
ify database-specific commands. 

Open Software Foundation (OSF) — Coalition of UNIX developers 
that built the OSF/1 UNIX clone to compete with AT&T's and 
Sun's Solaris. The OSF and the AT&T/Sun partnership were the 
participants in the UNIX Wars. 

open-source initiative (OSI)—Group that supports and promotes 
open-source software (see www. opensou r c e . com). 

open-source software — Software that includes the application's source 
code and is often distributed under the General Public License 
(GPL) or a similar license. Open-source software is typically 
developed by teams of independent programmers worldwide. 

OpenBSD—BSD UNIX system whose primary goal is security. 

operating system—Software that manages system resources to provide 
services that allow applications to execute properly. An operating 
system may manage both hardware and software resources. Oper
ating systems provide an application programming interface to 
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page—Fixed-size set of contiguous addresses in a process's virtual 
address space that is managed as one unit. A page contains por
tions of a process's data and/or instructions and can be placed in 
any available page frame in main memory. 

page cache (Linux)—Cache storing pages of data from disk. When a pro
cess requests data from disk, the kernel first determines if it exists 
in the page cache, which can eliminate an expensive disk I/O opera
tion. 

page directory entry (IA-32 Intel architecture)—Entry in a page direc
tory that maps to the base address of a page table, which stores 
page table entries. 

page directory register—Hardware register that stores a pointer to the 
current process's page directory table. 

page directory table (Windows XP)—4KB page that contains 1,024 
entries that point to frames in memory. 

page fault—Fault that occurs as the result of an error when a process 
attempts to access a nonresident page, in which case the operating 
system can load it from disk. 

page-fault-frequency (PFF) page replacement—Algorithm that adjusts 
a process's resident page set based on the frequency with which 
the process is faulting. If a process is switching to a larger working 
set, then it will fault frequently, and PFF will allocate more page 
frames. Once the process has accumulated its new working set, 
the page fault rate will stabilize, and PFF will either maintain the 
resident page set or reduce it. The key to the proper and efficient 
operation of PFF is maintaining the thresholds at appropriate val
ues. 

page frame—Block of main memory that can store a virtual page. In 
systems with a single page size, any page can be placed in any 
available page frame. 

page frame database (Windows XP)—Array that contains the state of 
each page frame in main memory. 

page global directory—In a two-tiered multilevel page table, the page 
global directory is a table of pointers to portions of a process's 
page table. Page global directories are the top level of a multilevel 
page table hierarchy. 

page global directory (Linux)—Virtual memory structure that stores 
addresses of second-level page-mapping tables. 

page list (Windows XP) — List of page frames that are in the same state. 
The eight state lists are: the Valid Page List, the Standby Page 
List, the Modified Page List, the Modified No-write Page List, the 
Transitional Page List, the Free Page List, the Zeroed Page List, 
and the Bad Page List. 

page map table—See page table. 

page middle directory (Linux)—Virtual memory structure that stores 
addresses of third-level page-mapping tables (also called page 
tables). 

page migration—Technique in which the system transfers pages to the 
processor (or processors when used with page replication) that 
accesses the pages most. 

page-replacement strategy—Strategy that determines which page to 
replace to provide space for an incoming page. Page replacement 

strategies attempt to optimize performance by predicting future 
page usage. 

page replication—Technique in which the system maintains multiple 
copies of a page at different nodes so that it can be accessed 
quickly by multiple processors. 

page table—Table that stores entries that map page numbers to page 
frames. A page table contains an entry for each of a process's vir
tual pages. 

page table entry (PTE)—Entry in a page table that maps a virtual page 
number to a page frame number. Page table entries store other 
information about a page, such as how the page may be accessed 
and whether the page is resident. 

page table origin register—Register that holds the location of a pro
cess's page table in main memory; having this information accessi
ble in a high-speed register facilitates rapid virtual-to-physical 
address translation. 

page trimming (Windows XP)—Technique in which Windows XP takes 
a page belonging to a process and sets the page's PTE to invalid to 
determine whether the process actually needs the page. If the pro
cess does not request the page within a certain time period, the 
system removes it from main memory. 

paged pool (Windows XP)—Pages in memory that may be moved to 
the pagefile on disk. 

pagefile (Windows XP)—File on disk that stores all pages that are 
mapped to a process's virtual address space but do not currently 
reside in main memory. 

paging—Virtual memory organization technique that divides an address 
space into fixed-size blocks of contiguous addresses. When applied 
to a process's virtual address space, the blocks are called pages, 
which store process data and instructions. When applied to main 
memory, the blocks are called page frames. A page is stored on sec
ondary storage and loaded into a page frame if one is available. 
Paging trivializes the memory placement decision and does not 
incur external fragmentation (for systems that contain a single page 
size); paging does incur internal fragmentation. 

parallel port—Interface to a parallel I/O device such as a printer. 

parent directory—In hierarchically structured file systems, the direc
tory that points to the current directory. 

parent process—Process that has spawned one or more child processes. 
In UNIX, this is accomplished by issuing a fork system call. 

parity—Technique that detects an even number of errors in data trans
mission. Parity information is generated by determining whether 
the data contains an even (or odd) number of l 's (or O's). This 
parity information is generated after transmission and compared 
to the value generated before transmission. Error-correction 
codes (ECCs), such as Hamming or XOR, use the parity of a 
string of bits to detect and correct errors. Parity enables RAID 
systems to provide fault tolerance with lower storage overhead 
than mirrored systems. 

parity logging (RAID)—Technique that increases write performance 
in RAID systems using parity by postponing writes to the parity 
disk while the system is busy. Because parity logging stores infor-
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per-node run queue—Process scheduling queue associated with a 
group of processors; processes entering the queue are scheduled 
on the associated node's processors independently of the schedul
ing decisions made in rest of the system. 

per-processor run queue—Process scheduling queue associated with a 
specific processor; processes entering the queue are scheduled on 
the associated processor independently of the scheduling deci
sions made in rest of the system. 

performance monitoring—Collection and analysis of system perfor
mance information for existing systems; the information includes 
a system's throughput, response times, predictability, bottlenecks, 
etc. 

performance projection—Estimate of the performance of a system that 
does not exist, useful for deciding whether to build that system or 
to modify an existing system's design. 

periodic real-time process—Real-time process that performs computa
tion at a regular time interval. 

periodic timer (Windows XP)— Waitable timer object that reactivates 
after a specified interval. 

Peripheral Components Interconnect (PCI) bus—Popular bus used to 
connect peripheral devices, such as network and sound cards, to 
the rest of the system. PCI provides a 32-bit or 64-bit bus interface 
and supports transfer rates of up to 533MB per second. 

persistence transparency—Hides the information about where the 
resource is stored—memory or disk. 

persistent storage—See secondary storage. 

phantom deadlock—Situation due to communications delay associated 
with distributed computing, when a deadlock detection algorithm 
(DDA) might detect a deadlock that does not exist. 

physical address—See real address. 

Physical Address Extension (PAE) (IA-32 Intel architecture)—Mech
anism that enables IA-32 processors to address up to 64GB of 
main memory. 

physical address space—Range of physical addresses corresponding to 
the size of main memory in a given computer. The physical 
address space may be (and is often) smaller than each process's 
virtual address space. 

physical backup —Copy of each bit of the storage device; no attempt is 
made to interpret the contents of its file system. 

physical block—See physical record. 

physical device name—Name given to a file that is specific to a particu
lar device. 

physical layer (in OSI)—Transmits bits over physical media, such as 
cables. The data link layer and physical layer in OSI correspond to 
the link layer in TCP/IP. 

physical memory—See main memory. 

physical record—Unit of information actually read from or written to 
disk. 

physical view—View of file data concerned with the particular devices 
on which data is stored, the form the data takes on those devices, 

mation in volatile memory, parity information could be lost if the 
system loses power. 

parser—Part of the compiler that receives a stream of tokens from the 
lexical analyzer and groups the tokens so they can be processed 
by the intermediate code generator. 

partial ordering—An ordering of events that follows the happens-
before relation. Some events cannot be ordered using this system 
which is why it is only a partial ordering. 

partition (file system) —Area of a disk whose boundaries cannot be 
crossed by file data. Partitions can reduce disk fragmentation. 

partition (real memory organization)—Portion of main memory allo
cated to a process in fixed- and variable-partition multiprogram
ming. Programs are placed into partitions so that the operating 
system can protect itself from user processes and so that processes 
are protected from each other. 

partitioned file—File composed of sequential subfiles. 

Pascal—Structured programming language developed in 1971 by Wirth 
that became popular for teaching introductory programming 
courses. 

passive IRQL (Windows XP) —IRQL at which user- and kernel-mode 
normally execute and no interrupts are masked. Passive IRQL is 
the lowest-priority IRQL. 

password aging—Technique that attempts to improve security by 
requiring users to change their passwords periodically. 

password protection—Authentication technique that relies on a user's 
presenting a username and corresponding password to gain access 
to a resource or system. 

password salting—Technique that inserts characters at various posi
tions in the password before encryption to reduce vulnerability to 
brute-force attacks. 

pathname—String identifying a file or directory by its logical name, 
separating directories using a delimiter (e.g., " / " or " \ " ) . An 
absolute pathname specifies the location of a file or directory 
starting at the root directory; a relative pathname specifies the 
location of a file or directory beginning at the current working 
directory. 

payload—Code inside a logic bomb that is executed when a specified 
condition is met. 

peer—Single computer in a peer-to-peer system. 

peer discovery—Finding peers in a peer-to-peer application. 

peer group—Logical construct that represents a set of peers. A peer 
group is one of the basic types of entities in a network built with 
the JXTA protocols. 

peer-to-peer (P2P) application—Distributes processing responsibilities 
and information to many computers, thus reclaiming otherwise 
wasted computing power and storage space and eliminating cen
tral points of failure. In a peer-to-peer system, each peer performs 
both client and server functions. 

pending signal—Signal that has not been delivered to a thread because 
the thread is not running and/or because the thread has masked 
signals of that type. 
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port of Linux—Version of the Linux kernel that is modified to support 
execution in a different environment. 

portability—Property of software that can run on different platforms. 

portable operating system—Operating system that is designed to oper
ate on many hardware configurations. 

Portable Operating Systems Interface (POSIX)—API based on early 
UNIX operating systems. 

positioning time—Access time plus latency. Positioning time is used by 
the SPTF strategy to order requests. 

positive feedback—Data informing the system that a resource has 
excess capacity, so the processor can increase the arrival rate for 
requests at that resource. 

power IRQL (Windows XP)—IRQL at which power failure interrupts 
execute and at which all interrupts except high-IRQL interrupts 
are masked. 

power manager (Windows XP)—Executive component that adminis
ters the operating system's power management policy. 

power policy (Windows XP)—Policy of a system with regard to balanc
ing power consumption and responsiveness of devices. 

precopy—Process migration strategy in which the sender begins trans
ferring dirty pages before the original process is suspended; once 
the number of untransferred dirty pages at the sender reaches 
some threshold, the process migrates. 

predicate—Logical decision made on a subject (e.g., a branch compari
son). 

predictability—Measure of the variance of an entity, such as response 
time. Predictability is particularly important for interactive sys
tems, where users expect predictable (and short) response times. 

preemptible resource—Resource that may be removed from a process 
such as a processor or memory. Such resources cannot be 
involved in deadlock. 

preemption lock counter (Linux) —Integer that is used to determine 
whether code executing in kernel mode may be preempted. The 
value of the counter is incremented each time a kernel control 
path enters a critical section during which it cannot be preempted. 

preemptive scheduling—Scheduling policy that allows the system to 
remove a processor from a process. 

preferred direction—Direction in which the disk head is moving in 
SCAN-based scheduling algorithms. 

preferred server (PS) (in Coda)—Member of the AVSG that provides 
copies of files for Venus. 

prefetching—See anticipatory paging. 

prefix table (in Sprite)—Table that stores domain information to aid in 
file lookups. Each entry in the table represents a separate domain 
and consists of the absolute path to the root directory within the 
domain, the server which houses the domain and a token that 
identifies the domain. 

prepaging—See anticipatory paging. 

and the physical means of transferring data to and from those 
devices. 

PID (process identifier) —Integer that uniquely identifies a process. 

pipe—Interprocess communication mechanism that uses a page of 
memory as a first-in-first-out buffer to transfer information 
between processes. 

pipe (in JXTA)—Virtual communication channel that connects two or 
more peers for sending and receiving messages among peers. 

pipe buffer (Linux)—Page of data that is used to buffer data written to 
a pipe. 

pipe client (Windows XP)—Process that connects to an existing pipe to 
communicate with that pipe's server. 

pipe server (Windows XP)—Process that creates a pipe and communi
cates with pipe clients that connect to the pipe. 

placement strategy (main memory) — Strategy that determines where 
in the main memory to place incoming programs and data. 

plaintext—Unencrypted data. 

Platform for Privacy Preferences (P3P)—Protects the privacy of infor
mation submitted to single sign-on and other applications by allow
ing users to control the personal information that sites collect. 

platter—Magnetic disk medium that stores bits on its surfaces. 

plug-and-play—Technology that facilitates driver installation and hard
ware configuration performed by the operating system. 

Plug and Play (PnP) manager (Windows XP)—Executive component 
(which also exists partly in user space) that dynamically recog
nizes when new devices are added to the system (as long as these 
devices support PnP), allocates and deallocates resources to 
devices and interacts with device setup programs. 

pluggable authentication module (PAM) (Linux)—Module that can be 
installed at runtime to incorporate enhanced authentication tech
niques in the Linux system. 

PnP I/O requests (Windows XP)—IRPs generated by the PnP man
ager to query a driver for information about a device, to assign 
resources to a device or to direct a device to perform some action. 

policy creation authority—Organization that sets policies for obtaining 
digital certificates. 

polling—Technique to discover hardware status by repeatedly testing 
each device. Polling can be implemented in lieu of interrupts but 
typically reduces performance due to increased overhead. 

polymorphic virus—Virus that attempts to evade known virus lists by 
modifying its code (e.g., via encryption, substitution, insertion, 
and the like) as it spreads. 

port (hardware interface)—Bus that connects two devices. 

port (networking)—Identifies the specific socket on a machine to 
which to send data. For example, HTTP communicates by default 
on port 80. 

port mapping (Windows XP)—Process of explicitly allowing the Inter
net Connection Firewall (ICF) to accept all incoming packets to a 
particular port. 
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presentation layer (in OSI)—Solves compatibility problems by trans

lating the application data into a standard format that can be 
understood by other layers. 

Pretty Good Privacy (PGP)—Public-key encryption system primarily 
used to encrypt e-mail messages and files, designed in 1991 by 
Phillip Zimmermann. 

primary key—In a relational database, a combination of attributes 
whose value uniquely identifies a tuple. 

primary thread—Thread created upon process creation (also called 
main thread of execution). When the primary thread returns, its 
process terminates. 

primary thread (Windows XP)—Thread created when a process is cre
ated. 

principle of least privilege—Resource access policy that states that a 
user should only be granted the amount of privilege and access 
that the user needs to accomplish its designated task. 

printed circuit board (PCB)—Piece of hardware that provides electri
cal connections to devices that can be placed at various locations 
throughout the board. 

priority—Measure of a process's or thread's importance used to deter
mine the order and duration of execution. 

priority array (Linux) — Structure within a run queue that stores pro
cesses of the same priority. 

priority inversion—Situation which occurs when a high-priority thread 
is waiting for a resource held by a low-priority thread, and the 
low-priority thread cannot obtain the processor because of a 
medium-priority thread; hence, the high-priority thread is 
blocked from execution by the medium-priority thread. 

priority of a process—Importance or urgency of a process relative to 
other processes. 

privacy (secure transaction)—One of the five fundamental requirements 
for a successful, secure transaction. Privacy deals with how to 
ensure that the information transmitted over the Internet has not 
been captured or passed to a third party without user knowledge. 

private key—Key in public-key cryptography that should be known 
only by its owner. If its corresponding public key encrypts a mes
sage, only the private key should be able to decrypt it. 

privilege (access right)—The manner in which a subject can access an 
object. 

privileged instruction—Instruction that can be executed only from ker
nel mode. Privileged instructions perform operations that access 
protected hardware and software resources (e.g., switching the pro
cessor between processes or issuing a command to a hard disk). 

problem state—See user mode. 

procedural programming language—Programming language that is 
based on functions rather than objects. 

process—Entity that represents a program in execution. 

process cloning—Creates a copy of a process on a remote machine. 

process control block (PCB)—Data structure containing information 
that characterizes a process (e.g., PID, address space and state); 
also called a process descriptor. 

process descriptor—See process control block (PCB). 

process environment block (PEB) (Windows XP)—User-space data 
structure that stores information about a process, such as a list of 
DLLs linked to the process and information about the process's 
heap. 

process identification number (PID)—Value that uniquely identifies a 
process. 

process migration—Transferring a process and its associated state 
between two processors. 

process priority—Value that determines the importance of a process 
relative to other processes. It is often used to determine how a 
process should be scheduled for execution on a processor relative 
to other processes. 

process scheduler—Operating system component that determines 
which process can gain access to a processor and for how long. 

process state—Status of a process (e.g., running, ready, blocked, etc.). 

process table—Table of known processes. In a segmentation/paging 
system, each entry points to a process's virtual address space, 
among other items. 

processor—Hardware component that executes machine-language 
instructions and enforces protection for system resources such as 
main memory. 

processor affinity—Relationship of a process to a particular processor 
and a corresponding memory bank. 

processor-bound—Process (or job) that consumes its quantum when 
executing. These processes (or jobs) tend to be calculation inten
sive and issue few, if any, I/O requests. 

processor pool—Component in Amoeba system, which contains a col
lection of processors, each having its own memory and Ethernet 
connection. 

processor scheduling discipline—See processor scheduling policy. 

processor scheduling policy—Strategy used by a system to determine 
when and for how long to assign processors to processes. 

procfs (proc file system) (Linux)—File system built directly into the 
kernel that provides real-time information about the status of the 
kernel and processes, such as memory utilization and system exe
cution time. 

producer—Thread or process that creates and places data into a shared 
object. 

producer thread—Thread that creates and places data into a shared 
object. 

producer/consumer relationship—Interaction between threads that 
produce data (called producers) and threads that consume pro
duced data (called consumers) that illustrates many of the intrica
cies of asynchronous concurrent execution. 

production program—Program that is run regularly at an installation. 

profile—Record of kernel activity taken during a real session, which 
indicates the operating system functions that are used most often 
and should therefore be optimized. 
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profile IRQL (Windows XP) —IRQL at which debugger interrupts 
execute and at which APC, DPC/dispatch, DIRQL and incoming 
debugger interrupts are masked. 

program counter—Pointer to the instruction a processor is executing 
for a running process. After the processor completes the instruc
tion, the program counter is adjusted to point to the next instruc
tion the processor should execute. 

programmed I/O (PIO)—Implementation of I/O for devices that do 
not support interrupts in which the transfer of every word from 
memory must be supervised by the processor. 

projection (database) —Operation that creates a subset of attributes. 

property (of an object)—Part of an object that stores data about the 
object. 

protected variable (semaphores)—Integer variable storing the state of 
a semaphore that can be accessed and altered only by calling P or 
V on that semaphore. 

protection—Mechanism that implements a system's security policy by 
preventing applications from accessing resources and services 
without authorization. 

protection domain—Collection of access rights. Each access right in a 
protection domain is represented as an ordered pair with fields 
for the object name and applicable privileges. 

protocol—Set of rules that govern how two entities should interact. 
Common examples include Transmission Control Protocol (TCP), 
Internet Protocol (IP) and Hypertext Transfer Protocol (HTTP). 

protocol sequence (Windows XP) —String used by a client in an RPC 
call that specifies the RPC protocol, transport protocol and net
work protocol for that RPC. 

Prototype Page Table Entry (PPTE) (Windows XP)-32-bit record that 
points to a frame in memory that contains either a copy-on-write 
page or a page that is part of a process's view of a mapped file. 

proxy—In DCOM, the client-side stub that is responsible for marshal
ing and unmarshaling messages. 

Pthread (POSIX 1003.1c thread) -Thread that conforms to the POSIX 
1003.1c standard. 

public (file access control)—File that may be accessed by any member 
of the system's user community. 

public key—Key in public cryptography that is available to all users 
that wish to communicate with its owner. If the public key 
encrypts a message, only the corresponding private key can 
decrypt it. 

public-key cryptography—Asymmetric cryptography technique that 
employs two inversely related keys: a public key and a private 
key. To transmit a message securely, the sender uses the receiver's 
public key to encrypt the message. The receiver then decrypts the 
message using his or her unique private key. 

Public Key Infrastructure (PKI) —Technique that integrates public-key 
cryptography with digital certificates and certificate authorities to 
authenticate parties in a transaction. 

purchase priority—To pay to receive higher priority in a system. 

pure paging—Memory organization technique that employs paging 
only, not segmentation. 

pure peer-to-peer application—Also called a decentralized peer-to-peer 
application. It does not have a server and therefore does not suffer 
from the same deficiencies as applications that depend on servers. 

quad pumping—Technique for increasing processor performance by 
performing four memory transfers per clock cycle. 

quantum—Unit of time during which a process can execute before it is 
removed from the processor. Helps prevent processes from 
monopolizing processors. 

query language—Language that allows users to search a database for 
data that meets certain criteria. 

queued access method—File access method that does not immediately 
service user I/O demands. This can improve performance when 
the sequence in which records are to be processed can be antici
pated and requests can be ordered to minimize access times. 

queued spin lock (Windows XP) —Spin lock in which a thread releasing 
the lock notifies the next thread in the queue of waiting threads. 

Q 

R 
race condition—Occurs when multiple threads simultaneously com

pete for the same serially reusable resource, and that resource is 
allocated to these threads in an indeterminate order. This can 
cause subtle program errors when the order in which threads 
access a resource is important. 

RAID (Redundant Array of Independent Disks)—Family of tech
niques that use an array of disks to improve disk transfer rates 
while providing fault tolerance. 

RAID controller—Special-purpose hardware that efficiently performs 
operations such as dividing files into strips, forming files from 
strips, determining the locations of strips in the array and imple
menting the array's fault-tolerance mechanism. 

RAID level 0—RAID system that uses a striped disk array with no 
redundancy. Level 0 arrays are not fault tolerant; if one disk fails, 
all the data in the array that depend on the failed disk are lost. 
Depending on the array's strip size, all data stored in the array 
could become unusable with the loss of a single disk. Although 
RAID 0 is not fault tolerant, it is simple to implement, yields high 
transfer rates and does not incur any storage overhead. Level 0 
arrays are implemented in systems where performance is more 
important than fault tolerance, such as supercomputers. 

RAID level 1—RAID system that employs disk mirroring (also called 
shadowing) to provide redundancy, so that each disk in the array 
is duplicated. Stripes are not implemented in level 1, reducing 
both hardware complexity and system performance. While this 
results in the highest degree of fault tolerance of any RAID level, 
only half of the array's capacity can be used to store unique data, 
which increases cost. Level 1 arrays are implemented in systems 
where high availability is more important than cost, such as data
base systems. 
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random policy—Dynamic load balancing policy in which the system 
arbitrarily chooses a processor to receive a migrated process. 

random-scanning algorithm—Algorithm that uses pseudorandom 
numbers to generate a broad distribution of IP addresses. 

random seek pattern—Series of requests to cylinders randomly distrib
uted across disk surfaces. FCFS causes random seek patterns that 
result in high response times and low throughput. 

random variable —Variable that can assume a certain range of values, 
where each value has an associated probability. 

rate-monotonic (RM) scheduling—Real-time scheduling policy that 
sets priority to a value that is proportional to the rate at which the 
process must be dispatched. 

read (file) —Operation that inputs a data item from a file to a process. 

read access (virtual memory) —Access right that enables a process to 
read data from a page or segment; see also execute access, write 
access and append access. 

read access (file) —Permission to access a file for reading. 

read-modify-write cycle (RAID) —Operation that reads a stripe, mod
ifies its contents and parity, then writes the stripe to the array. It is 
performed for each write request in RAID systems that use par
ity. Some systems reduce the cost of read-modify-write cycles by 
caching strips or by updating parity information only periodically. 

read-modify-write (RMW) memory operation —Operation that atom-
ically reads the contents of a variable, changes the contents (possi
bly based on what it has read) and writes the new value to 
memory. These operations simplify mutual exclusion algorithms 
by providing atomic operations. 

read operation (in JavaSpaces) —Operation that is similar to the take 
operation, but does not remove the object from the JavaSpaces 
service so that other clients can still find it. 

read/write head—Moving-head disk component that hovers over a disk 
surface, reading and writing bits as the disk moves. 

read/write lock—Lock that allows a single writer process or multiple 
reading processes (i.e., processes that will not alter shared vari
ables) to enter a critical section. 

reader/writer lock (Linux)—Lock that allows multiple threads to con
currently hold a lock when reading from a resource, but only one 
thread to hold a lock when writing to that resource. 

ready (or runnable) state—Thread state from which a thread can tran
sition to the running state and execute on a processor. In Win
dows XP, a ready thread transitions to the standby state, from 
which it transitions to the running state. 

ready list—Kernel data structure that organizes all ready processes in 
the system. The ready list is typically ordered by process schedul
ing priority. 

ready state—Process (or thread) state from which a process (or thread) 
may be dispatched to the processor. 

real address—Address in main memory. 

real memory—See main memory. 

RAID level 2—RAID system that is striped at the bit level (i.e., each 
strip stores one bit). Level 2 arrays are designed to reduce the 
storage overhead incurred by implementing fault tolerance using 
mirroring. Instead of maintaining redundant copies of each data 
item, RAID level 2 uses a version of Hamming error-correcting 
codes (Hamming ECCs) to store parity information that allows 
the system to detect up to two errors, correct up to one error and 
determine the location of the error in a stripe. The size of Ham
ming ECC codes, and thus the number of parity disks, increases 
according to the logarithm (base 2) of the number of data disks. 
Thus, level 2 arrays containing a large number of disks incur sig
nificantly less storage overhead than level 1 arrays. 

RAID level 3—RAID system that stripes data at the bit or byte level. 
RAID 3 uses XOR (exclusive-or) error-correcting codes (XOR 
ECCs), which use the logical XOR operation to generate parity 
information. XOR ECC uses only one disk to hold parity infor
mation, regardless of the size of the array. The system can use the 
parity bits to recover from any single disk failure. Due to parity 
checking, RAID level 3 reads and writes require access to the 
entire array. Similar to RAID level 2, this yields high transfer 
rates when reading and writing large files, but only one request 
can be serviced at a time. 

RAID level 4—RAID system that is striped using fixed-size blocks (typ
ically larger than a byte) and uses XOR ECC to generate parity 
data that is stored on a single parity disk. Because level 4 arrays 
enable coarse-grained striping, the system can potentially service 
multiple read requests simultaneously, if parity is not determined 
for each read. When servicing a write request, however, the system 
must update parity information to ensure that no data is lost in the 
event of a disk failure. This means that write requests must be per
formed one at a time, creating a write bottleneck. 

RAID level S — RAID system that is striped at the block level and uses 
XOR ECC for parity, but distributes parity blocks throughout the 
array of disks. Because parity blocks are distributed across many 
disks, multiple parity strips can be accessed simultaneously, 
removing the write bottleneck for many requests. Although 
RAID level 5 increases performance relative to RAID levels 2-4, 
it is complex to implement and more costly. Level 5 arrays are 
considered general-purpose arrays and are often found in file and 
application servers, enterprise resource planning (ERP) and other 
business systems. 

RAMAC (Random Access Method of Accounting and Control) —First 
commercial hard drive produced by IBM. 

ramfs (Linux) — Region of main memory treated as a block device. The 
ramfs file system must be formatted before use. 

random access memory (RAM)—Memory whose contents can be 
accessed in any order. 

random delay—Interval of time calculated by the exponential backoff 
method of CSMA/CD before a transceiver can retransmit a frame 
after a collision. 

random (RAND) page replacement—Page-replacement strategy in 
which each page in main memory has an equal likelihood of being 
selected for replacement. Although this strategy is fair and incurs 
little overhead, it does not attempt to predict future page usage. 
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real-time priority class (Windows XP)—Base priority class encompass
ing the upper 16 priority levels; threads of this class have static 
priorities. 

real-time scanner—Software that resides in memory and actively pre
vents viruses. 

real-time scheduling—Scheduling policy that bases priority on timing 
constraints. 

real-time signal (Linux) —Signal implementation that helps to imple
ment a real-time system by ensuring that no signals are dropped. 

real-time system—System that attempts to service requests within a 
specified (usually short) time period. In mission-critical real-time 
systems (e.g., air traffic control and petroleum refinery monitors), 
money, property or even human life could be lost if requests are 
not serviced on time. 

receiver-initiated policy—Dynamic load balancing policy in which pro
cessors with low utilization attempt to find overloaded processors 
from which to receive a migrated process. 

record—In the data hierarchy, a group of fields (e.g., for storing several 
related fields containing information about a student or a cus
tomer). 

recovery—Restoration of the system's data after a failure. 

recovery key (NTFS)—Key that NTFS stores that can decrypt an 
encrypted file; administrators can use recovery keys when a user 
has forgotten the private key needed to decrypt the file. 

redirector (Windows XP)—File system driver that interacts with a 
remote server driver to facilitate network I/O operations. 

reduced instruction set computing (RISC)—Processor-design philoso
phy that emphasizes small, simple instruction sets and optimiza
tion of the most-frequently used instructions. 

redundancy—Technique that maintains multiple identical resources to 
enable recovery upon failure. 

Redundant Array of Independent Disks (RAID)—See RAID. 

reentrant code—Code that cannot be changed while in use and there
fore can be shared among processes and threads. 

referenced bit—Page table entry bit indicating whether a page has 
been referenced recently. Several strategies reset this bit to more 
accurately determine how recently a page has been referenced. 

register—High-speed memory located on a processor that holds data 
for immediate use by the processor. 

registry (Windows XP) —Central database in which user, system and 
application configuration information is stored. 

reintegration stage (in Coda) —Stage right after the client reconnects 
to the system during which Venus asynchronously updates the 
server using the CML. 

relation—A set of tuples in the relational model. 

relational model—A model of data proposed by Codd that is the basis 
for most modern database systems. 

relative address—Address that is specified based on its location in rela
tion to the beginning of a module. 

relative path—Path that specifies the location of a file relative to the 
current working directory. 

relaxed consistency—Category of memory-coherence strategies that 
permit the system to be in an incoherent state for a few seconds 
after a write, but improve performance over strict consistency. 

release consistency—Memory-coherence strategy in which multiple 
accesses to shared memory are considered a single access; these 
accesses begin with an acquire and end with a release, after which 
coherence is enforced throughout the system. 

release operation—In several coherence strategies, this operation indi
cates that a process is done accessing shared memory. 

reliability—Measure of fault tolerance. The more reliable a resource, 
the less likely it is to fail. 

reliable network—Network which does not damage or lose packets. 

relocatable loading—Method of loading that translates relative addresses 
in a load module to absolute addresses based on the location of a 
requested block of memory. 

relocating—Process of adjusting the addresses of program code and 
data. 

relocation transparency—Masks the relocation of an object from other 
objects that communicate with it. 

Remote Access Service (RAS) (Windows XP)—Network service, 
which allows users to remotely connect to a LAN. 

remote method invocation (RMI)—Allows Java programmers to 
implement distributed systems without having to explicitly pro
gram sockets. 

remote procedure call (RPC)—Allows a process executing on one 
computer to invoke a procedure (or function) in a process execut
ing on another computer. 

remote reference layer (RRL)—Works with the transport layer to send 
marshaled messages between the client and server in RMI. 

Remote Spooling Communications Subsystem (RSCS) (VM) —Com
ponent of VM that provides the capability to send and receive 
files in a distributed system. 

rename (file) —Operation that changes a file's name. 

reparse point (NTFS)—File attribute containing a tag and a block of up 
to 16KB of data that a user associates with a file or directory: 
when an application accesses a reparse point, the system executes 
the file system filter driver specified by the reparse point's tag. 

replacement strategy (main memory)—Method that a system uses to 
determine which piece of program or data to displace to accom
modate incoming programs or data. 

replication—Provides multiple resources that perform the same func
tion in a system. 

replication transparency—Hides the fact that multiple copies of a 
resource are available in the system. All access to a group of repli
cated resources occurs as if there were one such resource avail
able. 

request IRQL (Windows XP) —IRQL at which interprocess interrupts 
execute and all interrupts except power-level and high-level inter
rupts are masked. 
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request list (Linux) —Structure that stores pending I/O requests. This 
list is sorted to improve throughput by reducing seek times. 

request rate—Measure of request frequency. The higher the request 
rate, the greater the system load. Systems experiencing a high disk 
request rate tend to benefit from disk scheduling. 

Request to Send (RTS) — Message sent from a wireless device in the 
CSMA/CA protocol that indicates a desire to transmit data, the 
length of the transmission, the sender address and the receiver 
address. If the medium is available, the receiver will send a Clear 
To Send (CTS) message. 

reserve memory (Windows XP)—To indicate to the VMM that a pro
cess intends to use an area of virtual memory; the VMM allocates 
memory in the process's virtual address space but does not allo
cate any page frames in main memory. 

resident attribute (NTFS)—File attribute whose data is stored within 
the MFT entry. 

resident page set—Set of a process's pages that are currently in mem
ory; these pages may be referenced without generating a page 
fault. The resident page set might differ in size from a process's 
working set, which is the set of pages that must be in memory for 
a process to execute efficiently. 

resident virus—Virus that, once loaded into memory, executes until the 
computer is powered down. 

residual dependency—Dependency of a migrated process on its origi
nal node after process migration because some of the process's 
state remains on the original node. 

resource-allocation graph—Graph that shows processes and resources 
in a system. An arrow pointing from a process to a resource indi
cates that the process is requesting the resource. An arrow point
ing from a resource to a process indicates that the resource is 
allocated to the process. Such a graph helps determine if a dead
lock exists and, if so, helps identify the processes and resources 
involved in the deadlock. 

resource type—Grouping of resources that perform a common task. 

resources layer (in grid computing)—Layer that enables applications to 
query and share a resource. 

response time—In an interactive system, the time from when a user 
presses an Enter key or clicks a mouse until the system delivers a 
final response. 

restricted algorithm—Algorithm that provides security by relying on 
the sender and receiver to use the same encryption algorithm and 
maintain its secrecy. 

resume—Remove a process from a suspended state. 

reverse mapping (Linux)—Linked list of page table entries that refer
ence a page of memory. This facilitates updating all PTEs corre
sponding to a shared page that is about to be replaced. 

Rijndael—Block cipher developed by Dr. Joan Daemen and Dr. Vin
cent Rijmen of Belgium. The algorithm can be implemented on a 
variety of processors. 

ring network—Network consisting of a set of nodes, each maintaining 
exactly two connections to other nodes in that network. These 

networks have a low fault tolerance since the failure of any single 
node can cause the whole network to fail. 

robust operating system—Operating system that is fault tolerant and 
reliable—the system will not fail due to unexpected application or 
hardware errors (but if it must fail, it does so gracefully). Such an 
operating system will provide services to each application unless 
the hardware those services requires fails to function. 

role (RBAC)—Represents a set of tasks assigned to a member of an 
organization. Each role is assigned a set of privileges, which 
define the objects that users in each role can access. 

role-based access control (RBAC)—Access control model in which 
users are assigned roles. 

roll—See swap. 

roll back a transaction—To return the system to the state that existed 
before the transaction was processed. 

root—Beginning of a file system's organizational structure. 

root directory—Directory that points to the various user directories. 

root key—Used by the Internet Policy Registration Authority (IPRA) 
to sign certificates exclusively for policy creation authorities. 

root user (Linux)—See superuser. 

rotational latency—Time required for a disk to rotate a requested data 
item from its current position to a position adjacent to the read/ 
write head. 

rotational optimization—Disk scheduling technique that reduces 
access times by next servicing the request to the nearest sector in 
the read/write head's current cylinder. 

round-robin (RR) scheduling—Scheduling policy that permits each 
ready process to execute for at most one quantum per round. After 
the last process in the queue has executed once, the scheduler 
begins a new round by scheduling the first process in the queue, 

round-robin job (RRJob) scheduling—Job-aware process scheduling 
algorithm employing a global run queue in which jobs are dis
patched to processors in a round-robin fashion. 

round-robin process (RRprocess) scheduling—Job-blind multiproces
sor scheduling algorithm that places each process in a global run 
queue and schedules these process in a round-robin manner. 

router—Computer that is an intermediate destination between the 
sending host and the receiving host. The router is responsible for 
determining where to send a datagram next in order for it to 
eventually reach its destination. 

routing—Determining the best route between two points and sending 
packets along this route. 

Routing Information Protocol (RIP) — Protocol that defines how rout
ing information is propagated throughout networks. RIP requires 
routers to share their entire routing table with other routers; this 
limits its use to small networks. 

routing table—Representation of a network used to determine where 
routers should send datagrams next on their path to their destina
tion. 

RSA—Popular public-key algorithm, which was developed in 1977 by 
MIT professors Ron Rivest, Adi Shamir and Leonard Adleman. 
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decrypts the message using the same secret key. Also called sym
metric cryptography. 

secondary storage—Memory that typically stores large quantities of data 
persistently. Secondary storage is one level lower than main mem
ory in the memory hierarchy. After a computer is powered on, 
information is shuttled between secondary storage and main mem
ory so that program instructions and data can be accessed by a pro
cessor. Hard disks are the most common form of secondary storage. 

sector—Smallest portion of a track that can be accessed by an I/O 
request. 

sector queuing—See rotational optimization. 

Secure Hash Algorithm (SHA-1)—Popular hash function used to cre
ate digital signatures; developed by NIST. 

secure operating system—Operating system that prevents users and 
software from gaining unauthorized access to services and data. 

Secure Sockets Layer (SSL)—Nonproprietary protocol developed by 
Netscape Communications that secures communication between 
two computers on the Internet. 

Security Accounts Manager (SAM) (Windows XP)—Database that 
administers information about all security principals in the sys
tem. It provides services such as account creation, account modifi
cation and authentication. 

security descriptor (Windows XP)—Data structure that stores informa
tion about which security principals may access a resource and 
what actions they may perform on that resource. The most impor
tant element of a security descriptor is its discretionary access 
control list (DACL). 

security identifier (SID) (Windows XP)—Unique identification num
ber assigned to each security principal in the system. 

security mechanism—Method by which the system implements its 
security policy. In many systems, the policy changes over time, but 
the mechanism remains unchanged. 

security model—Entity that defines a system's subjects, objects and 
privileges. 

security patch—Code that addresses a security flaw. 

security policy—Rules that govern access to system resources. 

security principal (Windows XP)—Any user, process, service or com
puter that can perform an action in a Windows XP system. 

Security Support Provider Interface (SSPI) (Windows X P ) -
Microsoft's standardized protocol for authentication and authori
zation recognized by both the Kerberos and NTLM authentica
tion services. 

seek operation — Operation that moves the disk head to a different cyl
inder. 

seek optimization—Disk scheduling technique that reduces seek times 
by generally servicing requests to the cylinder near the read/write 
head. 

seek time—Time it takes for the read/write head to move from its cur
rent cylinder to the cylinder containing the requested data record. 

segment (TCP)—Piece of data sent by TCP. It includes the message 
and the TCP header. 

run queue (Linux)—List of processes waiting to execute on a particular 
processor. 

running state—Process (or thread) state in which a process (or thread) 
is executing on a processor. 

safe asynchronous write (in NFS-3)—Allows a server to return before 
a write has been completed. 

safe state —State of a system in Dijkstra's banker's algorithm in which 
there exists a sequence of actions that will allow every process in 
the system to finish without the system becoming deadlocked. 

saturation — Condition of a resource that has no excess capacity to ful
fill new requests. 

saturation threshold—A level of resource utilization above which the 
resource will refuse access. Designed to reduce deadlock, it also 
reduces throughput. 

scalability (scheduler) —Characteristic of a scheduler that ensures sys
tem performance degrades gracefully under heavy loads. 

scalable operating system—Operating system that is able to employ 
resources as they are added to the system. It can readily adapt its 
degree of multiprogramming to meet the needs of its users. 

SCAN disk scheduling—Disk scheduling strategy that reduces unfair
ness and variance of response times as compared to SSTF by ser
vicing the request that requires the shortest seek distance in a 
preferred direction. SCAN behaves much like SSTF in terms of 
high throughput and good mean response times. However, 
because SCAN ensures that all requests in a given direction will 
be serviced before the requests in the opposite direction, it offers 
a lower variance of response times than SSTF. Also called the ele
vator algorithm. 

scanner—See lexical analyzer. 

scheduler activation—Mechanism that allows a user-level library to 
schedule kernel threads. 

script-driven simulator—Simulator controlled by data carefully 
designed to reflect the anticipated environment of the simulated 
system; evaluators derive this data from empirical observations. 

scriptlet—Java code embedded in a JSP. 

second-chance page-replacement strategy — Variation of FIFO page 
replacement that uses the referenced bit and a FIFO queue to 
determine which page to replace. If the oldest page's referenced 
bit is off, second chance replaces the page; otherwise it turns off 
the referenced bit on the oldest page and moves it to the tail of 
the FIFO queue. If its referenced bit is on, the strategy turns off 
the bit and examines the next page or pages until it locates a page 
with its referenced bit turned off. 

second extended file system (ext2fs) (Linux) —See ext2fs. 

secret-key cryptography—Technique that performs encryption and 
decryption using the same secret key to encrypt and decrypt a 
message. The sender encrypts a message using the secret key, then 
sends the encrypted message to the intended recipient, who 

S 
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segment (virtual memory)—Variable-size set of contiguous addresses 
in a process's virtual address space that is managed as one unit. A 
segment is typically the size of an entire set of similar items, such 
as a set of instructions in a procedure or the contents of an array, 
which enables the system to protect such items with fine granular
ity using appropriate access rights. For example, a data segment 
typically is assigned read-only or read/write access, but not exe
cute access. Similarly, a segment containing executable instruc
tions typically is assigned read/execute access, but not write 
access. Segments tend to create external fragmentation in main 
memory but do not suffer from internal fragmentation. 

segment descriptor (IA-32 Intel architecture) —Segment map table 
entry that stores a segment's base address, present bit, limit 
address and protection bits. 

segment map table origin register—Register that holds the location of 
a process's segment map table in main memory; having this infor
mation accessible in a high-speed register facilitates rapid virtual-
to-physical address translation. 

segment-overflow exception—Exception that occurs when a process 
attempts to access an address that is outside a segment. 

segment-protection exception — Exception that occurs when a process 
attempts to access a segment in ways other than those specified by 
its access control mode (e.g., attempting to write to a read-only 
segment). 

segment selector (IA-32 Intel architecture) —16-bit value indicating 
the offset into the segment map table at which the corresponding 
segment descriptor (i.e., segment map table entry) is located. 

selection evaluation—Analysis regarding whether obtaining a 
computer system or application from a particular vendor is appro
priate. 

selfish round-robin (SRR) scheduling—Variant of round-robin sched
uling in which processes age at different rates. Processes that 
enter the system are placed in a holding queue, where they wait 
until their priority is high enough for them to be placed in the 
active queue, in which processes compete for processor time. 

semaphore—Mutual exclusion abstraction that uses two atomic opera
tions (P and V) to access a protected integer variable that deter
mines if threads may enter their critical sections. 

semaphore array (Linux) — Linked list of semaphores that protect 
access to related resources. 

semaphore object (Windows XP) — Synchronization object that allows 
a resource to be owned by up to a specified number of threads; it 
is essentially a counting semaphore. 

sender-initiated policy—Dynamic load balancing policy in which over
loaded processors attempt to find underloaded processors to 
which to migrate a process. 

separate kernels multiprocessor organization —Scheme for delegating 
operating system responsibilities in which each processor exe
cutes its own operating system, but the processors share some glo
bal system information. 

seqlock (Linux)—Mutual exclusion structure that combines a spin lock 
with a sequence counter. Seqlocks are used by interrupt handlers, 
which require immediate exclusive access to data. 

Sequenced Packet exchange (SPX)—Novell Netware's transport pro
tocol, which offers connection-oriented services for IPX packets. 

sequential consistency — Category of memory-coherence strategies in 
which coherence protocols are enforced immediately after a write 
to a shared memory location. 

sequential file organization—File organization technique in which 
records are placed in sequential physical order. The "next" record 
is the one that physically follows the previous record. 

sequential write sharing—Occurs when one client modifies a file, then 
another client tries to read or write its own cached copy of the file. 
Sequential write sharing introduces cache inconsistency. 

serial port—Interface to a device that transfers one bit at a time (e.g. 
keyboards and mice). 

serialize—To control access to a shared variable such that only one 
thread can access the variable at a time; another thread can access 
the variable only after the first has finished. 

serially reusable code —Code that can be modified but is reinitialized 
each time it is used. Such code can be used by only one process or 
thread at a time. 

serially reusable resource —See dedicated resource. 

serially reusable shared resource—Resource that can be used by only 
one thread at a time. 

server—Process that provides services to other processes (called cli
ents). The machine on which these processes run is also called a 
server. 

Server Message Block (SMB)—Network file sharing protocol used in 
Windows operating systems on top of which CIFS (Common 
Internet File System) is built. 

server stub—A stub at the server side in RPC that prepares outbound 
data for transmission and translates incoming data so that it may 
be correctly interpreted. 

service rate —Rate at which requests are completed by a resource. 

service ticket (Kerberos)—Ticket that authorizes the client's access to 
specific network services. 

servlet—Enhances the functionality of Web servers to provide capabil
ities such as secure access to Web sites, interacting with databases 
on behalf of a client, dynamically generating custom documents 
to be displayed by browsers and maintaining unique session infor
mation for each client. 

servlet container — Server that executes a servlet. Also known as serv
let engine. 

session key —Secret key that is used for the duration of a transaction 
(e.g., a customer's buying merchandise from an online store). 

session layer (in OSI)—Establishes, manages and terminates the com
munication between two end users. 

setup time—Time required by a system operator and the operating sys
tem to prepare the next job to be executed. 

shadow page—Block of data whose modified contents are written to a 
new block. Shadow pages are one way to implement transactions. 
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shadow paging—Transaction implementation that writes modified 
blocks to a new block. The copy of the block that is unmodified is 
released as free space when the transaction has been committed. 

shadow password file (UNIX)—Protects the password file from crack
ers by storing information other than the encrypted passwords in 
the normal password file and storing the encrypted passwords in 
the shadow password file that can be accessed only by users with 
root privileges. 

shadowing (RAID) —See mirroring. 

shared bus—Multiprocessor interconnection scheme that uses a single 
communication path to connect all processors and memory mod
ules. 

shared library—Collection of functions shared between several pro
grams. 

shared resource—Resource that can be accessed by more than one 
process. 

shared virtual memory (SVM)—An extension of virtual memory con
cepts to multiprocessor systems; SVM presents the illusion of 
shared physical memory between processors and ensures coher
ence for pages accessed by separate processors. 

shell—Application (typically GUI or text based) that enables a user to 
interact with an operating system 

shortest-access-time-first (SATF) disk scheduling—Disk scheduling 
strategy that next services the request that requires the shortest 
access time (i.e., positioning time plus transmission time). SATF 
exhibits higher throughput than SPTF, but large requests can be 
indefinitely postponed by a series of smaller requests, and 
requests to the innermost or outermost cylinders can be indefi
nitely postponed by requests to intermediate cylinders. 

shortest-latency-time-first (SLTF) disk scheduling—Disk scheduling 
strategy that examines all of the waiting requests and services the 
one with the shortest rotational delay first. This strategy has been 
shown to be close to the theoretical optimum and is relatively 
easy to implement. 

shortest-positioning-time-first (SPTF) disk scheduling—Disk schedul
ing strategy that next services the request that requires the short
est positioning time. SPTF results in high throughput and a low 
mean response time, similar to SSTF, and can also indefinitely 
postpone requests to the innermost and outermost cylinders. 

shortest-process-first (SPF) scheduling (multiprocessor)—Job-blind 
multiprocessor scheduling algorithm, employing a global run 
queue, that selects the process with the smallest processor time 
requirement to execute on an available processor. 

shortest-process-first (SPF) scheduling (uniprocessor)—Nonpreemp-
tive scheduling algorithm in which the scheduler selects a process 
with the smallest estimated runtime-to-completion and runs the 
process to completion. 

shortest-remaining-time (SRT) scheduling—Preemptive version of 
SPF in which the scheduler selects a process with the smallest esti
mated remaining runtime-to-completion. 

shortest-seek-time-first (SSTF) disk scheduling—Disk scheduling strat
egy that next services the request that is closest to the read/write 

head's current cylinder (and thus incurs the shortest seek time), 
even if that is not the first one in the queue. By reducing average 
seek times, SSTF achieves higher throughput rates than FCFS, 
and mean response times tend to be lower for moderate loads. 
One significant drawback is that higher variances occur on 
response times because of the discrimination against the outer
most and innermost tracks; in the extreme, starvation of requests 
far from the read/write heads could occur. 

signal—Message sent by software to indicate that an event or error has 
occurred. Signals cannot pass data to their recipients. 

signal (semaphores) — Operation on a semaphore that increments the 
value of the semaphore's variable. If threads are sleeping on the 
semaphore, the signal wakes one and decrements the semaphore's 
value by 1. 

signal-and-continue monitor—Monitor that allows a thread to signal 
that the monitor is available, but does not require the thread to 
release the lock until it exits the monitor, at which point a sig
naled thread may enter the monitor. 

signal-and-exit monitor—Monitor that requires a thread to release the 
lock on the monitor as soon as the thread signals another thread. 

signal handler—Code that is executed in response to a particular signal 
type. 

signal mask—Data structure that specifies which signals are not deliv
ered to a thread. Depending on the signal type and default action, 
masked signals are either queued or dropped. 

signaled state (Windows XP) —State in which a synchronization object 
can be placed, allowing one or more threads waiting on this object 
to awaken. 

signature-scanning virus detection—Antivirus technique that relies on 
knowledge of virus code. 

Simple Object Access Protocol (SOAP)—Messaging protocol for 
transporting information and instructions between Web services, 
using XML as a foundation for the protocol. 

simulation—Performance evaluation technique in which an evaluator 
develops a computerized model of a system being evaluated. The 
model is then run to reflect the behavior of the system being eval
uated. 

single-instruction-stream, multiple-data-stream (SIMD) computer-
Computer architecture consisting of one or more processing ele
ments that execute instructions from a single instruction stream 
that act on multiple data items. 

single-instruction-stream, single-data-stream (SISD) computer—Com
puter architecture in which one processor fetches instructions 
from a single instruction stream and manipulates a single data 
stream; this architecture describes traditional uniprocessors. 

single-level directory structure—See flat directory structure. 

single sign-on—Simplifies the authentication process by allowing the 
user to log in once, using a single password. 

single-stream batch-processing system—Batch-processing system that 
places ready jobs in available partitions from one queue of pend
ing jobs. 
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Single UNIX Specification —Specification (created by The Open 
Group) to which an operating system must conform to earn the 
right to display the UNIX trademark (see www.unix.org/ 
version3/overview.html). 

single-use timer (Windows XP)—Waitable timer object that is used 
once and then discarded. 

single-user contiguous memory allocation system—System in which 
programs are placed in adjacent memory addresses and the sys
tem services only one program at a time. 

size (file) —Amount of information stored in a file. 

skeleton—Server-side stub. 

slab (Linux)—Page of memory that reduces internal fragmentation 
due to small structures by storing multiple structures smaller than 
one page. 

slab allocator (Linux) —Kernel entity that allocates memory for objects 
placed in the slab cache. 

slab cache (Linux)—Cache that stores recently used slabs. 

slave node (in a Beowulf cluster)—Beowulf cluster node that is not a 
head node. 

sleep interval—Period of time (specified by the thread that is about to 
enter the sleeping state) during which a thread remains in the 
sleeping state. 

sleep/wakeup lock—Mutual exclusion lock in which waiting processes 
block, and a releasing process wakes the highest-priority waiting 
process and gives it the lock. 

sleeping state—Thread state in which a thread cannot execute until 
being returned to the ready state after the sleep interval expires. 

Small Computer Systems Interface (SCSI) Interface designed to sup
port multiple devices and high-speed connections. The SCSI inter
face supports a larger number of devices than the less inexpensive 
IDE interface and is popular in Apple systems and computers 
containing large numbers of peripheral devices. 

smallest-number-of-processes-first (SNPF) scheduling—Job-aware 
process scheduling algorithm, employing a global job-priority 
queue, where job priority is inversely proportional to the number 
of processes in a job. 

smart card—Credit card size data store that serves many functions, 
including authentication and data storage. 

socket—Interprocess communication mechanism that allows processes 
to exchange data by establishing direct communication channels. 
Enables processes to communicate over a network using read 
and wri te calls. 

socket (network) —Software construct that represents one endpoint of 
a connection. 

socket address—Unique identifier for a socket. 
socketpair (Linux)—Pair of connected, unnamed sockets that can be 

used for bidirectional communication between processes on a sin
gle system. 

soft affinity—Type of processor affinity in which the scheduling algo
rithm tries, but does not guarantee, to schedule a process only on 
a single node throughout its life cycle. 

soft link—File that specifies the pathname corresponding to the file to 
which it is linked. 

soft real-time scheduling—Scheduling policy that guarantees that real
time processes are scheduled with higher priority than non-real
time processes. 

softirq (Linux)—Software interrupt handler that is reentrant and not 
serialized, so it can be executed on multiple processors simulta
neously. 

software interrupt handler (Linux)—Interrupt-handling code that can 
be performed without masking interrupts and can therefore be 
preempted. 

Solaris—UNIX version based on both System V Release 4 and SunOS, 
designed by AT&T and Sun collaboratively. 

Solo —Small operating system created by Per Brinch Hansen to dem
onstrate fail-safe concurrent programming. 

source code —Program code typically written in a high-level language 
or assembly language that must be compiled or interpreted before 
it can be understood by a computer. 

source tree (Linux) —Structure that contains source-code files and 
directories. Provides a logical organization to the monolithic 
Linux kernel. 

space-partitioning scheduling—Multiprocessor scheduling strategy 
that attempts to maximize processor affinity by scheduling collab
orative processes on a single processor (or single set of proces
sors); the underlying assumption is that these processes will access 
the same shared data. 

space-time product—Value that measures the product of a process's 
execution time (i.e., the duration for which a process occupies 
memory) and the amount of real-memory space the process occu
pies. Ideally, memory management strategies should reduce this 
quantity to increase a system's degree of multiprogramming. 

sparse file (NTFS)—File with large blocks of regions filled with zeroes 
that NTFS tracks using a list of empty regions rather than explic
itly recording each zero bit. 

spatial locality—Empirical property that, in paging systems, states that 
processes tend to favor certain subsets of their pages, and that 
these pages tend to be near one another in a process's virtual 
address space. A process accessing sequential indices of an array 
exhibits spatial locality. 

spawning a process—A parent process creating a child process. 

specified user (file access control) —Identity of an individual user 
(other than the owner) that may use a file. 

SPECmark—Standard benchmark for testing systems; SPECmarks are 
published by the Standard Performance Evaluation Corporation 
(SPEC). 

speculative loading—Technique whereby a processor retrieves from 
memory data specified by an instruction that has yet to be exe
cuted; when the instruction is executed, the processor performs a 
verifying load to ensure the data's consistency. 

spin lock—Lock that provides mutually exclusive access to critical sec
tions. When a process holding the lock is executing inside its criti
cal section, any process concurrently executing on a different 

http://www.unix.org/version3/overview.html
http://www.unix.org/version3/overview.html
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processor that attempts to acquire the lock before entering its 
critical section is made to busy wait. 

spindle —Moving-head disk component that spins platters at high 
speeds. 

spool (simultaneous peripheral operations online) — Method of I/O in 
which processes write data to secondary storage where it is buff
ered before being transferred to a low-speed device. 

Sprite —Distributed operating system whose goal is transparency and 
complete consistency. 

stability—Condition of a system that functions without error or signifi
cant performance degradation. 

stack region—Section of process's address space that contains instruc
tions and values for open procedure calls. The contents of the 
stack grow as a process issues nested procedure calls and shrink as 
called procedures return. 

Standard Application (SAP) benchmarks—Popular benchmarks used 
to evaluate a system's scalability. 

Standard Performance Evaluation Corporation (SPEC)—Organization 
that develops standard, relevant benchmarks (called SPECmarks), 
which are used to evaluate a variety of systems; SPEC publishes the 
results of tests with these benchmarks on real systems. 

standardized interface —Allows each client/server pair to communicate 
using a single, common interface that is understood by both sides. 

Standby Page List (Windows XP) — List of page frames that are consis
tent with their on-disk version and can be freed. 

standby state (Windows XP)—Thread state denoting a thread that has 
been selected for execution. 

star network —Network containing a hub that is directly connected to 
all other nodes in the network. The hub is responsible for relaying 
messages between nodes. 

starvation —Situation in which a thread waits for an event that might 
never occur, also called indefinite postponement. 

starvation limit (Linux)—Time at which high-priority processes are 
placed in the expired list to prevent low-priority processes from 
being indefinitely postponed. 

state information—Data that describes the status of one or more 
resources. 

state transition — Change of a process from one state to another. 

stateful server—Keeps state information of the client requests—such 
as the file name, a pointer to the file and the current position in 
the file —so that the subsequent access to the file is easier and 
faster. 

stateless server—The server does not keep state information of the cli
ent requests, so the client must specify which file to access in each 
request. 

static analysis—Intrusion detection method which attempts to detect 
when applications have been corrupted by a hacker. 

static load balancing—Category of load balancing algorithms that assign 
a fixed number of processors to a job when it is first scheduled. 

static priority level (Linux)—Integer value assigned to a process when 
it is created that determines its scheduling priority. 

static RAM (SRAM)—RAM that does not need to be refreshed and 
will hold data as long as it receives power. 

static real-time scheduling algorithm—Scheduling algorithm that uses 
timing constraints to assign fixed priorities to processes before 
execution. 

steganography—Technique that hides information within other infor
mation, derived from Latin roots meaning "covered writing." 

stream—Sequence of objects fed to the processor. 

STREAM —Popular synthetic benchmark which tests the memory sub
system. 

stream socket—Socket that transfers data using the TCP protocol. 

strip (RAID)—Smallest unit of data operated on by a RAID system. 
The set of strips at the same location on each disk is called a stripe. 

stripe (RAID) —Set of strips at the same location on each disk in a 
RAID system. Striping enables RAID systems to access files 
using multiple disks at once, which improves transfer times. 

structured programming—Disciplined approach to creating programs 
that are clear, correct and easy to modify. 

Structured Query Language (SQL) —Database language that allows 
users to find data items that have certain properties, and also to 
create tables, specify integrity constraints, manage consistency 
and enforce security. 

stub—prepares outbound data for transmission and translates incom
ing data so that it may be correctly interpreted 

stub/skeleton layer in RMI — Contains parameter-marshaling struc
tures analogous to the client and server stubs of RPC. 

substitution cipher—Encryption technique whereby every occurrence 
of a given letter is replaced by a different letter. For example, if 
every "a" were replaced by a "b," every "b" by a "c," and so on the 
word "security" would encrypt to "tfdvsjuz." 

sufficient conditions for deadlock—The four conditions—mutual 
exclusion, no-preemption, wait-for and circular-wait—which are 
necessary and sufficient for deadlock. 

Sun Open Net Environment (Sun ONE) —Consists of three compo
nents—a vision, an architecture and a conceptual model for 
developing standards-based software. 

superblock—Block containing information critical to the integrity of 
the file system (e.g., the location of the file system's free block list 
or bitmap, the file system identifier and the location of the file sys
tem root). 

superscalar architecture—Technique in which a processor contains 
multiple execution units so that it can execute more than one 
instruction in parallel per clock cycle. 

superuser (root user) (Linux) —User that may perform restricted oper
ations (i.e., those that may damage the kernel and/or the system). 

supervisor call—Request by a user process to the operating system to 
perform an operation on its behalf (also called a system call). 

supervisor state—See kernel mode. 
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suspend/resume—Method of halting a process, saving its state, releas

ing its resources to other processes, then restoring its resources 
after the other processes have released them. 

suspended state—Process state (either suspendedblocked or sus
pended-ready) in which a process is indefinitely removed from 
contention for time on a processor without being destroyed. His
torically, this operation allowed a system operator to manually 
adjust the system load and/or respond to threats of system failure. 

suspendedblocked state—Process state resulting from the process 
being suspended while in the blocked state. Resuming such a pro
cess places it into the blocked state. 

suspendedready state—Process state resulting from the process being 
suspended while in the ready state. Resuming such a process 
places it into the ready state. 

swap—Method of copying a process's memory contents to secondary 
storage, removing the process from memory and allocating the 
freed memory to a new process. 

swap cache (Linux)—Cache of page table entries that describes 
whether a particular page exists in the system swap file on second
ary storage. If a page table entry is present in the swap cache, then 
its corresponding page exists in the swap file and does not need to 
be written to the swap file. 

swap instruction—Operation that exchanges the values of two variables 
atomically. This instruction simplifies mutual exclusion implemen
tations by eliminating the possibility that a thread will be pre
empted while performing a read-modify-write memory operation. 

switch—Node that routes messages between component nodes. 

Symbian OS —Small operating system for smart phones (mobile 
phones with the functionality of a PDA). 

symbol resolution—Procedure performed by a linker that matches 
external references in one module to external names in another. 

symbol table—Part of an object module that lists an entry for each 
external name and each external reference found in the module. 

symbolic name—Device-independent name (e.g., a pathname). 

symmetric cryptography—See secret-key cryptography. 

symmetric multiprocessor (SMP)—Multiprocessor system in which 
processors share all resources equally, including memory, I/O 
devices and processes. 

symmetric policy—Dynamic load balancing policy that combines the 
sender-initiated policy and the receiver-initiated policy to provide 
maximum versatility to adapt to environmental conditions. 

symmetrical multiprocessor organization—Scheme for delegating 
operating system responsibilities in which each processor can exe
cute the single operating system. 

synchronization—Coordination between asynchronous concurrent 
threads to sequentialize their access to shared resources. 

synchronization segment (SYN)—In TCP, the first handshaking seg
ment sent; contains the sequence number of the source host. 

synchronization/acknowledgement segment (SYN/ACK)—In TCP, the 
second handshaking segment sent; acknowledges that the SYN 

segment was received and contains the sequence number of the 
destination host. 

synchronized—Java keyword that imposes mutual exclusive access to 
code inside an object. 

synchronous signal—Signal generated due to execution of the cur
rently running thread's instructions. 

syntax analyzer—See parser. 

synthetic benchmark—Another name for a synthetic program. 

synthetic program —Artificial program used to evaluate a specific com
ponent of a system or constructed to mirror the characteristics of 
a large set of programs. 

SYSmark benchmark—Popular benchmark for desktop systems devel
oped by Business Application Performance Corporation (BAPCo). 

system call—Procedure call that requests a service from an operating 
system. When a process issues a system call, the processor execu
tion mode changes from user mode to kernel mode to execute 
operating system instructions that respond to the call. 

system file system (sysfs) (Linux)—File system that allows processes to 
access structures defined by the unified device model. 

system penetration—Successful breach of computer security by an 
unauthorized external user. 

system reaction time—Time from when a job is submitted to a system 
until the first time slice of service is given to that job. 

system service (Windows XP)—Process that executes in the back
ground whether or not a user is logged into the computer and typ
ically executes the server side of a client/server application; a 
system service for Windows XP is similar to a daemon for Linux. 

system tuning—Process of making fine adjustments to a system based 
on performance monitoring to optimize the system's execution 
for a specific operating environment. 

system vector—Vector containing the results of microbenchmarks for a 
number of operating system primitives for a specific system, used 
in an application-specific evaluation. 

system worker thread (Windows XP)—Thread controlled by the sys
tem that sleeps until a kernel-mode component queues a work 
item for processing. 

systems programming—Development of software to manage a sys
tem's devices and applications. 

table fragmentation—Wasted memory consumed by block mapping 
tables; small blocks tend to increase the number of blocks in the 
system, which increases table fragmentation. 

take operation (in JavaSpaces)—Removes from the JavaSpaces service 
an object that matches the given criteria. Take operations, together 
with write and read operations, allow distributed applications to 
dynamically exchange objects within JavaSpaces services. 

target computer (in process migration) —Computer to which the pro
cess is migrated. 

task (Linux)—User execution context (i.e., process or thread) in Linux. 

T 
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tasklet (Linux) —Software interrupt handler that cannot be executed 
simultaneously on multiple processors. Tasklets are used to exe
cute nonreentrant bottom halves of interrupt handlers. 

TCP window—Flow-control and congestion-control mechanism in 
which only a certain amount of data can be sent by the network 
layer without the receiver explicitly authorizing the sender to 
send more. 

TCP/IP Protocol Stack—Hierarchical decomposition of computer 
communications functions into four levels of abstraction called 
layers. These layers are the application layer, transport layer, net
work layer and link layer. 

teardown time—Time required by a system operator and the operating 
system to remove a job from a system after the job has completed. 

temporal locality—Property of events that are closely related over 
time. In memory references, temporal locality occurs when pro
cesses reference the same memory locations repeatedly within a 
short period. 

terminated state (Windows XP)—Thread state that denotes a thread 
has finished executing. 

termination housekeeping—In the case of mutual exclusion algorithms, 
task performed by the operating system to ensure that mutual 
exclusion is not violated and that threads can continue to execute 
if a thread terminates while executing its critical section. 

ternary relations—Relation of degree 3. 

test-and-set—Instruction implemented in hardware that atomically 
tests the value of a variable and sets the value of the variable to 
true. This instruction simplifies mutual exclusion implementations 
by eliminating the possibility that a thread will be preempted 
while performing a read-modify-write memory operation. 

text region—Section of a process's address space that contains instruc
tions that are executed by a processor. 

THE Multiprogramming System—First layered operating system archi
tecture, created by Edsger Dijkstra. 

thin client—Application that requires minimal client-side support. 

thrashing—Excessive paging activity causing low processor utilization 
that occurs when a process's memory allocation is smaller than its 
working set. This results in poor performance, as the process 
spends most of its time waiting as pages are transferred between 
secondary storage and main memory. 

thread—Entity that describes an independently executable stream of 
program instructions (also called a thread of execution or thread 
of control). Threads facilitate parallel execution of concurrent 
activities within a process. 

thread environment block (TEB) (Windows XP) —User-space data 
structure that stores information about a thread, such as the critical 
sections owned by a thread and exception-handling information. 

thread local storage (TLS) (Windows XP)—Area of a thread's pro
cess's address space where the thread can store private data, inac
cessible to other threads. 

thread pool (Windows XP) —Collection of worker threads that sleep 
until a request is queued to them, at which time one of the threads 
awakens and executes the queued function. 

thread pooling—Threading technique that employs a number of kernel 
threads that exist for the duration of the process that creates 
them. This technique can improve performance by reducing the 
number of costly thread creation and termination operations. 

thread state—Status of a thread (e.g., running, ready, blocked, and so on). 

three-tier system — System which offers a separation of the application 
logic, the user interface and the data. The user interface tier (also 
called the client tier) communicates with the user. The application 
logic tier is responsible for the logic associated with the system's 
function. The data tier stores the information that the user wishes 
to access. 

throughput—Amount of work performed per unit time. Throughput 
can be measured as the number of processes that complete per 
unit time. 

thundering herd—Phenomenon that occurs when many processes 
awaken when a resource becomes available; only one process 
acquires the resource, and the others test the lock's availability 
and reblock, wasting processor cycles. 

Ticket Granting Service (TGS) (Kerberos)—Server that authenticates 
client's rights to access specific network services. 

Ticket-Granting Ticket (TGT) (Kerberos)-Ticket returned by Ker-
beros's authentication server. It is encrypted with the client's 
secret key that is shared with the authentication server. The client 
sends the decrypted TGT to the Ticket Granting Service to 
request a service ticket. 

tightly coupled system—System in which processors share most 
resources; these systems provide higher performance but are less 
fault tolerant and flexible than loosely coupled systems. 

time bomb—Virus that is activated when the clock on the computer 
matches a certain time or date. 

time-of-day clock—Clock that measures time as perceived outside of a 
computer system, typically accurate to thousandths or millionths 
of a second. 

time slice—See quantum. 

time slicing—Scheduling each process to execute for at most one quan
tum before preemption. 

time stamp—Records the local time at which the message was sent. 

time stamping (nonrepudiation)—Technique that binds a time and 
date to a digital document, which helps solve the problem of non-
repudiation. 

time-stamping agency—Organization that digitally time stamps a docu
ment that has been digitally signed. 

timer-queue timer (Windows XP)—Timer that signals a worker thread 
to perform a specified function at a specified time. 

timesharing scheduling—Multiprocessor scheduling technique that 
attempts to maximize parallelism by scheduling collaborative pro
cesses concurrently on different processors. 

timesharing system—Operating system that enables multiple simulta
neous interactive users. 

timing—Raw measure of an isolated hardware performance metric, such 
as a BIPS rating, used for quick comparisons between systems. 
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to see if it is available before transmitting data, and monitor the 
medium to detect a simultaneous transmission called a collision. 

transient virus—Virus that attaches itself to a particular computer pro
gram. The virus is activated when the program is run and deacti
vated when the program is terminated. 

transistor—Miniature switch that either allows or prevents current 
from passing to enable processors to perform operations on bits. 

transition state (Windows XP)—Thread state denoting a thread that 
has completed a wait but is not yet ready to run because its kernel 
stack has been paged out of memory. 

transitional fault (Windows XP)—Fault issued by the MMU when it 
tries to access a page that is in main memory, but whose page 
frame's status is set to standby, modified, or modified no-write. 

Transitional Page List (Windows XP)—List of page frames whose data 
is in the process of being moved to or from disk. 

translation lookaside buffer (TLB) —High-speed associative memory 
map that holds a small number of mappings between virtual page 
numbers and their corresponding page frame numbers. The TLB 
typically stores recently used page table entries, which improves 
performance for processes exhibiting locality. 

Transmission Control Protocol (TCP) —Connection-oriented trans
mission protocol designed to provide reliable communication 
over unreliable networks. 

Transmission Control Protocol/Internet Protocol (TCP/IP)—Family of 
protocols that provide a framework for networking on the Internet. 

transmission medium—Material used to propagate a signal (e.g., opti
cal fiber or copper wire). 

transmission time—Time required for a data record to pass by the 
read/write head. 

transparency—Hides the distribution aspects from users of a distrib
uted system. 

Transport Driver Interface (TDI) driver (Windows XP) —Network 
driver that exports a network interface to upper-level kernel-
mode clients and interacts with low-level NDIS drivers. 

transport layer—Set of protocols responsible for end-to-end communi
cation of data in a network. This layer exists in both the TCP/IP 
model and the OSI model of network communication. 

transport layer (in RMI)—Works with the RRL to send marshaled 
messages between the client and server in RMI. 

transposition cipher—Encryption technique whereby the ordering of 
the letters is shifted. For example, if every other letter, starting 
with "s," in the word "security" creates the first word in the 
ciphertext and the remaining letters create the second word in the 
ciphertext, the word "security" encrypts to "scrt euiy." 

trap—In the IA-32 specification, an exception generated by an error 
such as overflow (when the value stored by a register exceeds the 
capacity of the register). Also generated when program control 
reaches a breakpoint in code. 

tree network—Hierarchical network that consists of multiple star net
works. The hub of the first star network is the root of the tree. 

timing constraint—Time period during which a process (or subset of a 
process's instructions) must complete. 

TIPS (trillion instructions per second)—Unit used to categorize the 
performance of a particular computer; a rating of one TIPS means 
a processor can execute one trillion instructions per second. 

tmpfs (temporary file system) (Linux) —Similar to ramfs, but does not 
require formatting before use, meaning that the system can store 
files in the tmpfs without the organizational overhead typical of 
most file systems. 

token—Empty frame used to ensure that only one host is transmitting 
data at a time in the Token Ring and FDDI protocols. 

token (in compiling) —Characters in a program, separated by the lexi
cal analyzer, that generally represent keywords, identifiers, opera
tors or punctuation. 

token (in token-based authentication)—Unique identifier for authenti
cation. 

token-based authentication—Authentication technique that issues a 
token unique to each session, enabling users to access specific 
applications. 

Token Ring—Protocol in which a token is circulated around a ring net
work. Only one host can own the token at a time, and only its 
owner can transmit data. 

Tomcat —Official reference implementation of the JSP and servlet 
standards. 

top half of an interrupt handler (Linux)—Nonpreemptible portion of 
interrupt-handling code that performs the minimum work 
required to acknowledge an interrupt before transferring execu
tion to the preemptible bottom-half handler. 

total ordering—Ensures that all events are observed in the same order 
by all processes. 

trace—Tiny electrically conducting line that forms part of a bus. 

trace (performance evaluation)—Record of real system activity, which 
is executed on systems to test how the system handles a sample 
workload. 

track—Circular region of data on a platter. Sequential file data is typi
cally placed contiguously on one track to improve access time by 
reducing seeking activity. 

trailer—Control information appended to the end of a data message. 

transaction—Atomic, mutually exclusive operation that either com
pletes or is rolled back. Modifications to database entries are 
often performed as transactions to enable high performance and 
reduce the cost of deadlock recovery. 

Transaction Processing Performance Council (TPC) benchmarks — 
Popular benchmarks which target database systems. 

transaction transparency—Allows a system to achieve consistency by 
masking the coordination among a set of resources. 

transaction wait-for graph (TWFG) —Graph that represents processes 
as nodes and dependencies as directed edges, which is used for 
distributed deadlock detection algorithms. 

transceiver—Hardware device that attaches an Ethernet node to the 
network transmission medium. Transceivers test a shared medium 



1184 Glossary 

Uniform Naming Convention (UNC) format (Windows XP)—Format 
that specifies a file's pathname, including on which server and in 
which directory on that server the file is located. 

Uniform Resource Identifier (URI)—Name that references a specific 
resource on the Internet. 

Uniform Resource Locator (URL)—A URI used to access a resource 
in a common protocol such as HTTP and FTP. Consists of the 
protocol, host name, port and path of the resource. 

UNIVAC 1 (UNIVersal Automatic Computer)—First computer to 
introduce a magnetic storage tape. 

Universal Description, Discovery and Integration (UDDI)—Defines 
XML-based rules for building directories in which companies 
advertise themselves and their Web services. 

universal serial bus (USB) —Serial bus interface that transfers data up 
to 480Mbits per second, can supply power to its devices and sup
ports hot swappable devices. 

universally unique identifier (UUID)—ID that is guaranteed, for all 
practical purposes, to be unique in the world. UUIDs uniquely 
identify an RPC interface. 

UNIX—Operating system developed at Bell Laboratories that was 
written using the C high-level programming language. 

unknown state (Windows XP)—Thread state denoting that the some 
error has occurred and the system does not know the state of the 
thread. 

unmap a page (Linux)—To update page table entries to indicate that 
the corresponding page is no longer resident. 

unreliable network—Network that may damage or lose packets. 

unsafe state—State of a system in Dijkstra's banker's algorithm that 
might eventually lead to deadlock because there might not be 
enough resources to allow any process to finish. 

unsignaled state (Windows XP)—State in which a synchronization 
object can be; threads waiting on this object do not awaken until 
the object transitions to the signaled state. 

update (file) —Operation that modifies an existing data item in a file. 

update image (RAID)—Method to reduce parity computation time by 
storing the difference between new and old parities in memory 
instead of performing a read-modify-write cycle. 

update set (in Coda)—Specifies, to each member of the AVSG, the 
members of the AVSG that have successfully performed the write. 

usable operating system—Operating system that has the potential to 
serve a significant user base by providing an easy-to-use interface 
and supporting a large set of user-oriented applications. 

user classes —Classification scheme that specifies individual users or 
groups of users that can access a file. 

User Datagram Protocol (UDP) —Connectionless transmission proto
col which allows datagrams to arrive out of order, duplicated or 
not at all. 

user directory—Directory that contains an entry for each of a user's 
files; each entry points to where the corresponding file is stored on 
its storage device. 

Each node that this hub connects serves as a hub for another star 
network and is a root of a subtree. 

Triple DES — Variant of DES that can be thought of as three DES sys
tems in series, each with a different secret key that operates on a 
block. Also called 3DES. 

triply indirect pointer—Pointer in an inode that locates a block of dou
bly indirect pointers. 

Trojan horse—Malicious program that hides within a trusted program 
or simulates the identity of a legitimate program or feature, while 
actually causing damage to the computer or network when the 
program is executed. 

TSS —Operating system designed by IBM in the 1960s that offered 
timesharing and virtual memory capabilities. Although it was 
never released commercially, many of its capabilities appeared in 
later IBM systems. 

tunneling—Process of placing IPv6 datagrams in the body of IPv4 data
grams when communicating with routers that do not support IPv6. 

tuple—Particular element of a relation. 

turnaround time—Time from when a request is submitted until the sys
tem completes servicing it. 

two-factor authentication—Authentication technique that employs two 
means to authenticate the user, such as biometrics or a smart card 
used in combination with a password. 

two-tier system—A system in which the user interface resides on the 
client, the data resides on the server and the application logic lies 
on one or both of these components. 

type (file) —Description of a file's purpose (e.g., an executable pro
gram, data or directory). 

unblock—Remove a process from the blocked state after the event on 
which it was waiting has completed. 

unblocked record—Record containing exactly one logical record for 
each physical record. 

undivided coscheduling algorithm—Job-aware process scheduling 
algorithm in which processes of the same job are placed in adja
cent locations in the global run queue, and processes are sched
uled round-robin. 

unicast address—IP address used to deliver data to a single host. 

Unicode — Character set that supports international languages and is 
popular in Internet and multilingual applications. 

unified device model (Linux) —Internal device representation that 
relates devices to device drivers, device classes and system buses. 
The unified device model simplifies power management and hot 
swappable device management. 

uniform-memory-access (UMA) multiprocessor—Multiprocessor 
architecture that requires all processors to share all of main mem
ory; in general, memory-access time is constant, regardless of 
which processor requests data, except when the data is stored in a 
processor's cache. 

U 
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user-level threads—Threading model in which all threads in a process 
are assigned to one execution context. 

user mode—Mode of operation that does not allow processes to 
directly access system resources. 

user-mode APC (Windows XP)—APC queued by user-mode thread 
and executed by the target thread when the target thread enters 
an alertable wait state. 

user-mode driver (Windows XP)—Device driver that executes in user 
space. 

User-Mode Linux (UML) (Linux) — Linux kernel that executes as a 
user process within a host Linux system. 

user state—See user mode. 

utilization—Fraction of time that a resource is in use. 

V operation—Operation on a semaphore that increments the value of 
the semaphore's variable if there are no threads waiting on the 
semaphore. If threads are waiting, the V operation wakes one of 
these. 

Valid Page List (Windows XP)—List of page frames that are currently 
in a process's working set. 

validate a model—To demonstrate that a computer model is an accu
rate representation of the real system the model is simulating. 

variable-partition multiprogramming—Method of assigning partitions 
that are the exact size of the job entering the system. 

variance in response times—Measure of how much individual response 
times deviate from the mean response time. 

variant—Virus whose code has been modified from its original form, 
yet still retains its malicious payload. 

vector-based methodology—Method of calculating an application-spe
cific evaluation of a system based on the weighted average of the 
microbenchmark results for the target system's primitives; the 
weights are determined by the target application's relative 
demand for each primitive. 

vector processor—Type of SIMD computer containing one processing 
unit that executes instructions that operate on multiple data 
items. 

Venus (in AFS)—User-level process that interacts with the Vice pro
cesses run on distributed file servers to govern distributed file 
access. 

very long instruction word (VLIW)—Technique in which a compiler 
chooses which instructions a processor should execute in parallel 
and packages them into a single (very long) instruction word; the 
compiler guarantees that there are no dependencies between 
instructions that the processor executes at the same time. 

Vice (in AFS) —Entity that governs distributed file access in AFS. 

virtual address—Address that a process accesses in a virtual memory 
system; virtual addresses are translated to real addresses dynami
cally at execution time. 

V 

Virtual Address Descriptor (VAD) (Windows XP)—Structure in mem
ory that contains a range of virtual addresses that a process may 
access. 

virtual address space —Set of memory addresses that a process can ref
erence. A virtual address space may allow a process to reference 
more memory than is physically available in the system. 

virtual file system (Linux)—Interface that provides users with a com
mon view of files and directories stored across multiple heteroge
neous file systems. 

virtual file system (VFS) (in distributed systems) — Provides the 
abstraction of a common file system at each client and is responsi
ble for all distributed file operations. 

virtual machine —Application that emulates the functionality of a com
puter system. A virtual machine can execute applications that are 
not directly compatible with the physical system that runs the vir
tual machine. The user "sees" the computer not as the virtual 
machine, but as the underlying physical machine. 

virtual machine operating system —Software that creates the virtual 
machine. 

virtual memory — Capability of operating systems that enables pro
grams to address more memory locations than are actually pro
vided in main memory. Virtual memory systems help remove 
much of the burden of memory management from programmers, 
freeing them to concentrate on application development. 

virtual memory area (Linux) —Structure that describes a contiguous 
region of a process's virtual address space so that the kernel can 
perform operations on this region as a unit. 

virtual memory manager (VMM) (Windows XP) —Executive compo
nent that manages virtual memory. 

Virtual Private Network (VPN)—Technique that securely connects 
remote users to a private network using public communication 
lines. VPNs are often implemented using IPSec. 

virus—Executable code (often sent as an attachment to an e-mail mes
sage or hidden in files such as audio clips, video clips and games) 
that attaches to or overwrites other files to replicate itself, often 
harming the system on which it resides. 

virus signature — Segment of code that does not vary between virus 
generations. 

VM operating system — One of the first virtual machine operating sys
tems; developed at IBM in the 1960s and still used widely today; 
its latest version is the z/VM. 

VMS—Operating system for the DEC VAX computers, designed by 
David Cutler's team. 

volatile storage — Storage medium that loses data in the absence of 
power. 

volatility (file)—Frequency with which additions and deletions are 
made to a file. 

volume—Unit of storage that may hold multiple files. 

volume (in AFS-2)—Introduced in AFS-2 to manage subtrees. Volumes 
are primarily of administrative value, allowing replication and iso
lation of certain subtrees, and are therefore transparent to users. 
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WebMark—Popular benchmark for Internet performance developed 
by Business Application Performance Corporation (BAPCo). 

WebNFS—Allows NFS clients to access WebNFS-enabled servers with 
a minimum of protocol overhead. Marketed as the file system for 
the Web, WebNFS is designed to improve NFS functionality and 
performance over wide area Internet and intranets. 

Whetstone—Classic synthetic program which measures how well sys
tems handle floating point calculations, and has thus been helpful 
in evaluating scientific programs. 

wide area network (WAN)—Type of network connecting two or more 
local area networks, usually operating over great geographical 
distances. WANs are generally implemented with a mesh topology 
and high-capacity connections. The largest WAN is the Internet. 

Wi-Fi Protected Access (WPA)—Wireless security protocol intended 
to replace WEP by providing improved data encryption and by 
enabling user authentication. 

Win32 environment subsystem (Windows XP) —User-mode process 
interposed between the executive and the rest of user space that 
provides a typical 32-bit Windows environment. 

Win32 service (Windows XP) —See system service (Windows XP). 

Win32 thread—Threads natively supported in the Microsoft 32-bit 
Windows line of operating systems. 

WinBench 99—Popular synthetic program used extensively today in 
testing a system's graphics, disk and video subsystems in a 
Microsoft Windows environment. 

window manager (Linux)—Application that controls the placement, 
appearance, size and other attributes of windows in a GUI. 

Windows API—Microsoft's interface for applications that execute in a 
Windows environment. The API enables programmers to request 
operating system services, which free the application programmer 
from writing the code to perform these operations and enables 
the operating system to protect its resources. 

Windows Driver Model (WDM) (Windows XP) —Standard driver 
model that enables source-code compatibility across all Windows 
platforms; each WDM driver must be written as a bus driver, 
function driver or filter driver and support PnP, power manage
ment and WMI. 

Windows Management Instrumentation (WMI) (Windows XP) —Stan
dard that describes how drivers provide measurement and instru
mentation data to users (e.g., configuration data, diagnostic data 
or custom data) and allow user applications to register for WMI 
driver-defined events. 

Windows sockets version 2 (Winsock 2)—Adaptation and extension of 
BSD sockets for the Windows environment. 

Windows XP Embedded—Embedded operating system, which uses 
the same binary files as Windows XP but allows designers to 
choose only those components applicable for a particular device. 

WinHTTP (Windows XP)—API that supports communication 
between clients and servers over an HTTP session. 

WinlNet (Windows XP)—API that allows applications to interact with 
FTP, HTTP and Gopher protocols to access resources over the 
Internet. 

volume storage group (VSG) (in Coda)—Volumes are logical pieces of 
the file system and are replicated physically across multiple file 
servers. Servers that hold the same volume are known as a volume 
storage group (VSG). 

voluntary page release—Occurrence when a process explicitly releases 
a page frame that it no longer needs. This can improve perfor
mance by reducing the number of unused page frames allocated 
to a process, leaving more memory available. 

wait (semaphores) —If the variable in the semaphore is 0, then the 
operation blocks the calling thread. If the variable is greater than 
0, the operation will decrement the variable by one and allow the 
calling thread to proceed. Wait is also called the P operation. 

wait-die deadlock prevention strategy—Prevents deadlock by denying 
the wait-for condition. Assigns individual processes unique priori
ties based on when they were created. A process will wait if it was 
created after the process it is waiting on. A process will die if it 
was created before the process it is waiting on. 

wait-for condition—One of the four necessary conditions for deadlock; 
states that deadlock can occur only if a process is allowed to wait 
for a resource while it holds another. 

wait function (Windows XP)—Function called by a thread to wait for 
one or more dispatcher objects to enter a signaled state; calling 
this function places a thread in the waiting state. 

wait queue—See wait set. 

wait set—In Java, a set of threads waiting to reacquire the lock on a 
monitor. 

waitable timer object (Windows XP) —Synchronization object that 
becomes signaled after a specified amount of time elapses. 

waiting state—Thread state from which a thread cannot execute until 
transitioning to the ready state via a wake or notify operation. 

wake—Thread operation that transitions its target from the waiting 
state to the ready state. 

wall clock time—Measure of time as perceived by a user. 

Web-based Distributed Authoring and Versioning (WebDAV) (Win
dows XP)—Network file sharing protocol that allows users to 
write data directly to HTTP servers and is designed to support 
collaborative authoring between groups in remote locations. 

Web defacing—Attack that maliciously modifies an organization's Web 
site. 

Web service methods (in .NET) —Methods contained in a .NET Web 
service class. 

Web services—Set of services and related standards that can allow any 
two computer applications to communicate and exchange data 
over the Internet. Web services operate using open, text-based 
standards that enable components written in different languages 
and on different platforms to communicate. They are ready-to-use 
pieces of software on the Internet. 

Web Services Description Language (WSDL)—Provides a standard 
method of describing Web services and their specific capabilities. 

W 
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cess requesting a resource held by another process will wound 
that process if the first one was created before the other. A pro
cess will wait if it was created after the process it is waiting on. 

write (file)—Operation that outputs a data item from a process to a file. 

write access (virtual memory)—Access right that enables a process to 
modify the contents of a page or segment; see also execute access, 
read access and append access. 

write access (file)—Permission to access a file for writing. 

write-back caching—Technique that writes buffered data to disk peri
odically, enabling the operating system to batch multiple I/Os that 
are serviced using a single request, which can improve system per
formance. 

write broadcast—Technique for maintaining memory coherence in 
which the processor that performs a write broadcasts the write 
throughout the system. 

Write-Once, Read-Many (WORM) medium—Storage medium that 
can be modified only once, but whose contents can be accessed 
repeatedly. 

write operation (in JavaSpaces) — Operation that adds an object into 
the JavaSpaces serviceA 

write-through caching—Technique that writes data both to the disk 
cache buffer and to disk each time cached data is modified. This 
technique prevents the system from batching requests, but reduces 
the possibility of inconsistent data in the event of a system crash. 

write-through mode (Windows XP)—Method of writing to a pipe 
whereby write operations do not complete until the data being 
written is confirmed to be in the buffer of the receiving process. 

XOR (exclusive-or) operation —Operation on two bits that returns 1 if 
the two bits are not the same, 0 otherwise. RAID levels 3-5 use 
the XOR operation to generate parity bits. 

z/OS—IBM operating system for zSeries mainframes and the latest 
version of MVS. 

Zeroed Page List (Windows XP) — List of page frames whose bits are 
all set to zero. 

zone (memory) (Linux) — Region of physical memory. Linux divides 
main memory in the low, normal and high zones to allocate mem
ory according to the architectural limitations of a system. 

zone allocator—Memory subsystem that allocates pages from the zone 
to which it is assigned. 

X 
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Wired Equivalent Privacy (WEP)—Wireless security protocol that 
encrypts transmitted data and prevents unauthorized access to the 
wireless network. 

word—Number of bits a system's processor(s) can process at once. In 
the data hierarchy, words are one level above bytes. 

worker thread—Kernel thread that is a member of a thread pool. 
Worker threads may be mapped to any user thread in the process 
that created its thread pool. 

working directory—Directory that contains files that a user can access 
directly. 

working set —A program's favored subset of pages in main memory. 
Given a working set window, w, the process's working set of pages 
W(t, w), is defined as the set of pages it references during the pro
cess-time interval t - w to t. 

working set (Windows XP)—All of the pages in main memory that 
belong to a specific process. 

working set maximum (Windows XP)—Upper limit on the number of 
pages a process may have simultaneously in main memory. 

working set minimum (Windows XP)—Number of pages in main mem
ory the working set manager leaves a process when it executes the 
page-trimming algorithm. 

working set theory of program behavior—Theory presented by Den
ning, which asserts that for a program to run efficiently, the sys
tem must maintain that program's favored subset (i.e., its working 
set) of pages in main memory. Given a working set window, w, the 
process's working set of pages W(t, w), is defined as the set of 
pages referenced by the process during the process-time interval 
t - w to t. Choosing the window size, w, is a crucial aspect of imple
menting working set memory management. 

working set window size—Value that determines how far into the past 
the system should consider to determine what pages are in the 
process's working set. 

workload—Measure of the amount of work that has been submitted to 
a system; evaluators determine typical workloads for a system and 
evaluate the system using these workloads. 

workstation login scripts—Simple form of single sign-on in which users 
log in at their workstations, then choose applications from a menu. 

World Wide Web (WWW) —Collection of hyperlinked documents 
accessible via the Internet using the Hypertext Transfer Protocol 
(HTTP). Web documents are typically written in languages such 
as HyperText Markup Language (HTML) and Extensible 
Markup Language (XML). 

worm—Executable code that spreads and infects files over a network. 
Worms rarely require any user action to propagate, nor do they 
need to be attached to another program or file to spread. 

worst-fit strategy—Memory placement strategy that places an incom
ing job in the largest hole in memory. 

wound—When a process is wounded by another process, it will be 
rolled back. 

wound-wait deadlock prevention strategy—Prevents deadlock by 
denying the no-preemption condition. Assigns individual pro
cesses unique priorities based on when they were created. A pro-
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cache line, 78 
cache manager, 1090 
cache miss, 78 
cache miss latency, 704 
Cache-Only Memory Architec

ture (COMA) 
multiprocessor, 704 

Caching, 65 
Caesar Cipher, 874 
callback (in AFS), 823 
cancellation, 154 
capability, 890,1016 
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Carrier Sense Multiple Access 

with Collision Avoidance 
(CSMA/CA), 768 

Carrier Sense Multiple Access 
with Collision Detection 
(CSMA/CD), 765 

causal broadcast, 795 
causal dependence, 794 
CC-NUMA (cache-coherent 

NUMA), 708 
CD (compact disk), 66 
CD-ROM, 600 
cell (in AFS-3), 824 
central deadlock detection, 800 
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central migration server in 

Sprite, 803 
central processing unit (CPU), 60 
centralized control, 619 
centralized P2P application, 836 
CERN (the European Organiza
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Research), 17 

certificate authority (CA), 911 
certificate authority 

hierarchy, 912 
certificate repository, 911 
certificate revocation list 

(CRL), 912 
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Change Is the Rule Rather Than 

the Exception, 389 
channel, 128 
character, 586 

character device, 70,984,985,987 
character set, 586 
checkpoint, 616 
checkpoint/recovery, 786 
checkpoint/rollback, 317,318 
checksum, 764 
child process, 117,119,133,1003 
chipset, 60 
Chord operating system, 39 
Chorus, 141 
chrdevs vector, 986 
chunk fragmentation, 470 
CIFS (Common Internet File 

System), 1100 
cipher, 873 
ciphertext, 873 
circular buffer, 254, 271, 276 
circular list, 494 
circular wait, 798 
circular wait necessary condition 

for deadlock, 293,300, 305, 
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Ci rcularBufferTest sets up a 
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plication and instantiates pro
ducer and consumer 
threads, 276 

CISC (complex instruction set 
computing), 661 

claim (in Dijkstra's Banker's 
Algorithm), 308 

class, 84 
class ID (CLSID), 1097 
class/miniclass driver pair, 1084 
Clear to Send (CTS), 768 
client, 15,619,768 
client caching, 819 
client connect to server, 844 
client modification log (CML) in 

Coda, 826, 857 
client stub, 790 
client/server model, 15,768 
client/server network, 836 
client/server relationship, 843 
clipboard, 1099 
clock IRQL, 1047 
clock variation of FIFO page re

placement strategy, 494 
clocktick, 62 
clone Linux system call, 167 
clone system call, 953 
C-LOOK disk scheduling 

strategy, 541,542 
close file operation, 587 
CLSID (class ID), 1097 
cluster, 832,1012,1070 

clustered demand paging, 1070 
clustering, 832 
CML (client modification log) in 

Coda, 826,857 
CMS, 462 
CMS (Conversational Monitor 

System), 462 
CMS Batch Facility, 461 
coalescing memory holes, 397, 
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coarse-grained stripe, 552 
COBOL (COmmon Business 

Oriented Language), 82 
Coda file system, 39 
Coda Optimistic Protocol, 825 
code freeze, 946 
code generator, 87 
code library, 87 
code/data bit, 458 
Coffman, E. G., 299 
collective layer (in grid 

computing), 842 
collision, 436,765 
c o l o s s a l s t o r a g e . n e t / 

co lossa l l l .h tm, 566 
COM (Component Object 

Model), 793,1097 
COM+, 1098 
COMA (Cache-Only Memory 

Architecture) 
multiprocessor, 704 

combined paging/segmentation 
organization, 503 

command-and-control 
system, 147 

commit, 616 
commit memory, 1067 
COmmon Business Oriented 

Language (COBOL), 82 
Common Internet File System 

(CIFS), 1100 
Common Object Request Broker 

Architecture (CORBA), 792, 
793 

communicating sequential 
processes, 248 

communication binding, 1096 
communication deadlock, 797 
communication delay, 794 
compact disk (CD), 66 
compaction, 397 
Compartmentalization, 393 
compatible time-sharing system 

(CTSS) operating system, 11, 
112,462 

compiler, 81, 86 

Compiling 
code generator, 87 
defined, 86 
intermediate code 

generator, 86 
lexical analyzer (lexer), 86 
optimizer, 87 
parser, 86 
token, 86 

complex instruction set comput
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compression, 1077 
Compression and 

Decompression, 550 
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file), 1078 
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compute-bound process, 369 
computer network, 15,215, 247 
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Computer Theory in Operating 

Systems, 481 
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concurrency, 111, 147 
concurrent, 187, 794 
Concurrent C, 248 
Concurrent Pascal, 248 
concurrent process, 187,997,998, 
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concurrent programming, 24, 

198,247,248 
concurrent programming in 

Java, 260 
concurrent threads, 197 
concurrent write-sharing, 828 
condition variable, 247,251, 259 
configurable lock, 730 
configuration manager, 1045 
congestion control, 761 
connection-oriented, 759 
connectionless, 759 
connectivity layer (in grid 

computing), 842 
Consequences of Errors, 789 
consistency in distributed file 

systems, 819 
console window, 265 
consumer, 265 
Consumer represents the consum

er thread in a producer/con
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content protection, 883 
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context switch, 122 
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contiguous file allocation, 599 
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control information, 755 
Control Program (CP), 461 
Control Program for Microcom

puters (CP/M) operating 
system, 604 
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CMS), 11 

control statements, 88 
controller, 60, 67 
Conversational Monitor System 

(CMS), 461,462 
cooperative multitasking, 116 
coprocessor, 60,667 
copy-on-reference migration, 722 
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copy-on-write sharing, 440 
copyright, 837 
CORBA (Common Object Re
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critical section, 197, 202, 209, 215 
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CRL (certificate revocation 

list), 912 
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Applications, 111 
Cutler, Dave, 1038 
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control), 888 
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device), 598 
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data compression techniques, 549 
data definition language 

(DDL), 621 
Data Encryption Standard 

(DES), 876 
data hierarchy, 586 
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data manipulation language 

(DML), 621 
data regeneration, 556 
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Data Replication and 

Coherency, 707 
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Data Structures in Operating 
Systems, 118 

database, 257, 619,620,769 
database access, 844 
database language, 621 
datagram, 761,762,1004,1093 
datagram socket, 1004 
dcache (directory entry 

cache), 975 
DCOM (distributed component 

object model), 793,1098,1105 
DDA (deadlock detection 

algorithm), 797 
DDDA (distributed deadlock 

detection algorithm), 800 
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language), 621 
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algorithm, 989 
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798 
deadlock recovery, 291, 301 
deadlocked process or 
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degree (of a relation), 622 
degree of multiprogramming, 9, 
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demand fetch strategy, 383,479 
demand paging, 480,499,1070 
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device class, 984 
device driver, 29, 983,986, 995, 

1081 
device extension, 1082 
device IRQL (DIRQL), 1047 
device object, 1081 
device special file, 984, 987 
device_s t ruc t structure, 986, 

992 
Dhrystone, 655 
dies, 798 
Diffie-Hellman algorithm, 915 
Diffie, Whitfield, 877 
digital authentication 

standard, 911 
digital certificate, 911, 912 
digital envelope, 908 
digital notary service, 910 
digital signature, 910 
Digital Signature Algorithm 

(DSA), 911 
digital versatile disc (DVD), 67, 

600 
digital video disc (DVD), 67 
digital watermark, 917 
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Dijkstra, E.W., 227 
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Dijkstra's Algorithm, 227 
Dijkstra's Banker's 
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direct access storage device 

(DASD), 598 
direct I/O, 1088 
direct input/output, 988 
direct mapping, 428,433,444,453 
direct memory access (DMA), 68 
direct memory access (DMA) 

channel, 68, 69 
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directory, 589,590,598 
directory entry, 980 
directory entry cache 
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directory junction, 1080 
directory structure, 981 
directory tree, 949,972,973,1003 
DIRQL (device IRQL), 1047 
dirty bit, 485 
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disable thread cancellation, 166 
disabled interrupt, 232 
disabling interrupts, 129 
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discretionary access control, 1016 
discretionary access control 

(DAC), 888 
discretionary access control list 

(DACL), 1111 
disk, 79,257,379,419 
disk arm, 530 
disk arm anticipation, 551 
disk cache buffer, 548 
disk event, 355 
disk mirroring, 553, 556 
Disk Operating System 

(DOS), 20 
disk performance, 540,545, 547 
disk queues, 531 
disk quota, 944 
disk reorganization, 549 
disk scheduler, 30 
disk scheduling, 532 
Disk Scheduling Strategies 

C-LOOK, 541,542 
C-SCAN, 538, 539,542 
FCFS, 532, 535, 539,540, 542 
FSCAN, 542 
LOOK, 541,542,989 
N-Step SCAN, 539,540, 542 
SATF, 544 
SCAN, 537,538,542 
SLTF, 543 
SPTF, 543 
SSTF, 536, 537, 542 
VSCAN, 575 

dispatch a process, 115,118 
dispatcher, 115,337,1055 
dispatcher object, 1059,1061 
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displacement, 421,424,428,433, 
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Model (DCOM), 793,1098, 
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distributed computing, 19,130 
distributed database, 621 
distributed deadlock, 797 
distributed deadlock detection al

gorithm (DDDA), 800 
distributed denial-of-service 

attack, 895 
distributed file system, 619,783, 

817 
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fault tolerance, 818 
high availability, 818 
scalable, 818 
security, 818 
transparency, 817 

distributed multiprocessor, 19 
distributed operating system, 39, 

783,787 
distributed parity, 563 
distributed search, 839 
distributed system, 39, 783, 789, 

794 
distributed system nucleus, 233 
distribution (Linux), 943, 951, 
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times, 646 
DMA (direct memory access), 68 
DMA (direct memory access) 

channel, 68, 69 
DMA memory, 965 
DML (data manipulation 

language), 621 
DNS (domain name server) 

attack, 895 
DNS (Domain Name 

System), 756,763 
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domain, 622 
domain (in Sprite), 827 
domain controller, 1109 
Domain Name System 

(DNS), 756, 763 
DOS (Disk Operating 

System), 20,25 
double data rate (DDR), 68 
doubly linked list, 601 
doubly-indirect pointer, 977 
down function, 1000 
down_trylock function, 1000 
DPC (deferred procedure 

call), 1049 
DPC/dispatch IRQL, 1047 
drafting algorithm, 726 
DRAM (dynamic RAM), 65 
driver object, 1082 
driver stack, 1081 
DSA (Digital Signature 

Algorithm), 911 
DVD (digital versatile disk), 67, 

600 
dynamic address translation, 419, 

424,429,432,444,445,451, 
453,462 

dynamic content, 844 
dynamic link library (DLL), 1044 
dynamic linking, 91 
dynamic load balancing, 724 
dynamic loading, 91 

dynamic network, 691 
dynamic partitioning, 717 
dynamic priority, 339 
dynamic priority class, 1057 
dynamic RAM (DRAM), 65 
dynamic real-time scheduling 

algorithm, 359 

e-mail (electronic mail), 17 
eager migration, 722 
earliest-deadline-first 

(EDF), 359 
Early History of the VM Operat

ing System, 461 
ease of use, 645 
EBCDIC (Extended Binary-Coded 

Decimal Interchange Code), 586 
ECC (error-correcting 

code), 559,560, 562,563 
effective priority, 958 
EFI (Extensible Firmware 

Interface), 76 
EFS (Encrypting File 

System), 904 
e-Gap System, 898 
EISA (extended ISA) bus, 69 
Eisenberg, M. A., 215 
electronic funds transfer (EFT) 

system, 589 
elevator algorithm, 537, 541 
e-mail (electronic mail), 15 
embedded system, 26,1014 
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encapsulating security payload 

(ESP), 915 
Encrypting File System 

(EFS), 904 
encryption, 14, 590,884,919, 

1078 
key, 873,874 

Encryption and Decryption, 590 
Engelbart, Doug, 16 
Engineering, 163 
entermutualexclusion, 198 
enterMutualExclusionO, 198, 

202 
entry queue, 260 
entry set, 260 
environment subsystem, 1043 
EPIC (Explicitly Parallel Instruc

tion Computing), 668 
epoch, 957 
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EPROCESS block (executive pro
cess block), 1052 

error handling, 462 
error-correcting code 

(ECC), 560,562, 563 
ESP (encapsulating security 

payload), 915 
ESS (NASA Earth and Space 

Sciences), 833 
Ethernet, 13 
Ethernet protocol, 765 
ethical issues, xxiv 
Ethical Systems Design, 872 
ETHREAD block (executive thread 

block), 1052 
event, 121 
event object, 1060 
event-driven simulation, 655 
Every Problem Has a Solution 

and Every Solution Has a 
Problem, 536 

EWD, 227 
Examples 

Buffer interface used in pro
ducer/consumer 
examples, 190 

Ci rcularBufferTest sets up 
a producer/consumer GUI 
application and instanti
ates producer and consum
er threads, 276 

Consumer represents the con
sumer thread in a produc
er/consumer 
relationship, 192 

Producer represents the pro
ducer thread in a producer/ 
consumer 
relationship, 191 

SynchronizedBuffer moni
tors access to a shared ar
ray of integers, 271 

Synch roni zedBuffe r syn
chronizes access to a 
shared integer, 262 

Threads modifying a shared 
object with 
synchronization, 267 

Threads modifying a shared 
object without 
synchronization, 195 

Threads sleeping and 
printing, 174 

Examples (cont.) 
UnsynchronizedBuffer 

maintains the shared inte
ger that is accessed by a 
producer thread and a con
sumer thread via methods 
se t and get, 194 

exception, 74,127,128 
Exceptions (IA-32 architecture) 

abort, 128 
fault, 128 
trap, 128 

exclusive access, 188 
exclusive or error-correcting code 

(XOR ECC), 560, 562,563 
exec UNIX system call, 135 
execute access, 448,449,589 
execute permission, 611 
execution context, 117,130,995, 

1002 
execution mode, 72 
executive, 1042 
executive mode, 388 
executive process block (EPR0-

CESS block), 1052 
executive resource lock, 1063 
executive thread block (ETHREAD 

block), 1052 
Exhaustive Testing Is 

Impossible, 248 
ex i t UNIX system call, 135 
exitMutualExclusionO, 198 
expectation, 646 
expired list, 957 
explicit acknowledgement, 804 
explicit handle, 1096 
Explicitly Parallel Instruction 

Computing (EPIC), 668 
exponential backoff, 765 
export local file, 820 
ext2inode, 977 
ext2 inode contents, 978 
ext2fs (second extended file 

system), 977 
Extended Binary-Coded Decimal 

Interchange Code 
(EBCDIC), 586 

extended ISA (EISA) bus, 69 
Extensible Firmware Interface 

(EFI), 76 
Extensible Markup Language 

(XML), 851 
extent, 600 
external fragmentation 

(disk), 396,600 
external name, 87 

external reference, 87 
eyeball iris scan, 882 

Fiber Distributed Data Interface 
(FDDI), 766 

fiber local storage (FLS), 170, 
1054 

fiber-optic cable, 766 
fid (file identifier), 824 
FIFO (first-in-first-out) 

pipe, 1002 
FIFO (first-in-first-out queuing 

discipline), 229 
FIFO (first-in-first-out) 

scheduling, 348 
FIFO anomaly, 488 
FIFO broadcast, 795 
file, 586 
file allocation 

contiguous, 599 
indexed noncontiguous, 605 
tabular noncontiguous, 602 

file allocation table (FAT), 602, 
604 

file attribute, 981 
file compression, 1077 
file control block, 595 
file descriptor, 595, 973,1003, 

1005 
file encryption, 1078 
file handle (in NFS), 820 
file identifier (fid), 824 
file integrity, 589 
file manager, 589 
file mapping, 1067,1094 
file mapping object, 1094 
file organization, 547,598 
file permission, 981 
file scan, 599 
file server, 546,619 
file sharing application, 838 
file system, 589, 971 
file system directory, 1077 
file system identifier, 595 
file system manager, 29 
File Systems 

Andrew File System 
(AFS), 822 

Coda, 39 
Common Internet File System 

(CIFS), 1100 
FAT12, 602,603 
FAT16, 604 
FAT32, 604 
NFS, 38,619, 820 
NFS (Network File 

System), 38 
NTFS, 606,904 

fabric layer (in grid 
computing), 842 

face scan, 882 
face-scanning device, 883 
failure, 766 
failure transparency, 786 
fair share group, 354 
fair share scheduler, 356 
fair share scheduling (FSS), 354 
Fairness, 342 
fairness in scheduling 

algorithms, 341 
false negative virus 

detection, 901 
false positive virus alert, 901 
false sharing, 711 
family of computers, 649 
far page replacement 

strategy, 494 
fast I/O, 1091 
fast instruction set computing 

(FISC), 666 
fastmutex, 1062 
fast mutual exclusion 

algorithm, 215 
fast user switching, 1110 
FAT (file allocation table), 602, 

604 
FAT file system 

FAT12, 602,603 
FAT16, 604 
FAT32, 604 

fault, 128 
fault tolerance, 31,553,554,721 
fault tolerance in distributed file 

systems, 818 
favored subset of pages, 497 
favored thread, 208 
FCFS (first-come-first-served) 

multiprocessor 
scheduling, 714 

FCFS disk scheduling 
strategy, 532,535, 539,540, 
542 

FDDI (Fiber Distributed Data 
Interface), 766 

feature freeze, 946 
feedback loop, 659 
Feistel, Horst, 876 
fetch strategy, 383 
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File Systems (cont.) 
NTFS (New Technology File 

System), 606,904,1074 
VFS(virtual file system), 822, 

950,972,975,1074 
file transfer, 15,839 
File Transfer Protocol 

(FTP), 756,758 
file view, 1094 
fi le_operationsstructure, 986, 

992 
filter driver, 1084 
fine-grained stripe, 552, 553 
fingerprint, 882 
fingerprint-scanning device, 883 
firewall, 897,944 

packet-filtering firewall, 898 
FireWire (IEEE 1394), 71 
firmware, 93 
first-come-first-served (FCFS) 

multiprocessor 
scheduling, 714 

first-come-first-served (FCFS) 
scheduling, 344 

Page Replacement Strategies 
first-fit, 384,399,400,442 

first-fit placement strategy, 384, 
399,400,442 

first-in-first-out (FIFO) 
pipe, 1002 

first request to a servlet, 844 
first-in-first-out (FIFO) queuing 

discipline, 229,232 
first-in-first-out (FIFO) 

scheduling, 344 
first-in-first-out queuing, 251 
FISC (fast instruction set 

computing), 666 
fixed partition 

multiprogramming, 391 
absolute translation and 

loading, 391 
memory waste, 392 
relocatable translation and 

loading, 392,395 
fixed-length blocks, 601 
fixed-length record, 588 
floating-point operations per sec

ond (FLOPS), 686 
FLOPS (floating-point operations 

per second), 686 
flow control, 761 
FLS (fiber local storage), 170, 

1054 
flush, 548 
flush a modified page, 485 

flushing migration, 723 
flushing the TLB, 963 
Flynn,M., 688 
fork system call, 1003 
fork UNIX system call, 133 
fork UNIX system call, 167 
formatting a storage device, 595 
FORmula TRANslator (Fortran) 

programming language, 82 
Fortran (FORmula TRANslator) 

programming language, 82 
fragmentation, 394 
fragmentation (disk), 549, 599 
frame, 764 
free list, 608 
free memory list, 397 
Free Page List, 1069 
free thread model, 1098 
free_area vector, 967 
Freenet, 838,839 
frontside bus (FSB), 62,67 
FSB (frontside bus), 67 
FSCAN disk scheduling 

strategy, 542 
f t p . c s . v u . n l / p u b / p a p e r s / 
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FTP (File Transfer 

Protocol), 756,758 
fully-connected mesh 

network, 751,753 
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garbage collection, 397 
Gates, Bill, 872,1036,1037 
general protection fault 

(GPF), 458 
General Public License 

(GPL), 21 
general-purpose registers, 62 
general semaphore, 231 
getName, 173 
getName method of Thread, 173 
GINA (Graphical Identification 

and Authentication), 1109 
Giovanni digital watermarks, 917 
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global descriptor table 

(GDT), 457 
global descriptor table register 

(GDTR), 457 
global LRU (gLRU) page re

placement strategy, 507 
global memory, 703 

global runtime queue, 714 
globally unique ID (GUID), 1097 
Globus Alliance, 842 
gLRU (global LRU) page re
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