# Ethers **Ethereal oxygen**

## **Classification of Ethers**



CH<sub>3</sub>—O—CH<sub>3</sub> Dimethyl ether

#### Unsymmetrical Ethers

 $CH_3 - O - C_2H_5$ Ethyl methyl ether



Epoxide Ethylene oxide

12-Crown-4

#### **Cyclic ethers**





**Crown Ethers** 

## **Nomenclature of Ethers**



## Methods of preparation of Ethers

Williamson's Synthesis

## Methods of preparation of Ethers

#### Mechanism of Williamson's Synthesis

Involves nucleophilic substitution of halide ion by the alkoxide ion

$$RONa \qquad \longleftrightarrow \qquad RO^{-} + Na^{+}$$

$$RO^{\delta_{+}} \xrightarrow{\delta_{-}} \qquad \longrightarrow \qquad RO^{-} + Na^{+}$$

$$RO^{\delta_{+}} \xrightarrow{\delta_{-}} \qquad \longrightarrow \qquad RO^{-} + Na^{+}$$

#### Limitations

- 1. We can not take aryl halides for the synthesis of alkyl phenyl ethers since aryl halides are less reactive. Diaryl ethers can not be prepared by this method
- 2. Due to the attack of strongly basic alkoxide ion, elimination of alkyl halide can also take place, particularly in the case of tertiary alkyl halides Order of preference
- Pr. Alkyl halide > Sec. Alkyl halide > Tert. Alkyl halide
- Tert. Alkoxides > Sec. alkoxides > Pr. Alkoxides

## **Physical properties of Ethers**

#### Boiling points

- > Have much lower boiling points than alcohols of comparable molecular masses ?
- ✓ It is due to absence of intermolecular hydrogen bonding
- Have higher boiling points than alkanes of comparable molecular masses ?
   ✓ Due to their polar nature

#### Solubility

Lower ethers dissolve in water due to formation of hydrogen bonding with water molecules.



6

#### Basic character (Formation of oxonium salts)

> Lone pair on oxygen can be donated to proton

$$CH_{3} - \ddot{Q} - CH_{3} + HCI \longrightarrow \begin{pmatrix} H \\ I \\ CH_{3} - \dot{Q}^{+} - CH_{3} \end{pmatrix} CI^{-}$$
  
Dimethyl oxonium chloride  
$$\begin{pmatrix} H \\ I \\ C_{2}H_{5} - \ddot{Q} - C_{2}H_{5} + H_{2}SO_{4} \longrightarrow \begin{pmatrix} H \\ I \\ C_{2}H_{5} - \dot{Q}^{+} - C_{2}H_{5} \end{pmatrix} HSO_{4}^{-}$$

Diethyl oxonium hydrogen sulphate

7

#### **Given Service And Service And**

> Due to donation of lone pair of electrons on oxygen atom (Lewis base character)

$$C_{2}H_{5} \longrightarrow \ddot{O}: + BF_{3} \longrightarrow C_{2}H_{5} \longrightarrow C_{1}H_{5} \longrightarrow C_{2}H_{5} \longrightarrow C_{1}H_{5} \longrightarrow C_{2}H_{5} \longrightarrow C_{1}H_{5} \longrightarrow$$



Boron trifluoride etherate

#### **Cleavage by halogen acids**

On heating with equimolar amount of halogen acids, ethers cleave to give alkyl halide and alcohol

In the presence of excess of an acid

 $R \longrightarrow RX + R'X + H_2O$ 

#### Mechanism of Cleavage by halogen acids н > Formation of oxonium $\vec{P}_{R'} + \vec{H} \vec{X} = R + X$ Rion Oxonium ion $R^{+}$ $\xrightarrow{\text{Slow}} R^+ + R'OH$ > Attack of halide ion by -R' SN₁ manner $R^+ + X^-$ <u>Fast</u> RX OR δ-> Attack of halide ion by $X^- + R - O^+ - R'$ RX + R'OH SN<sub>2</sub> manner Transition state Darshan Kumar Assoc. Prof. GC Amb 9

#### **Point of cleavage**

In case of mixed ethers, alkyl halide is formed from smaller alkyl group





## Point of cleavage contd.....

In the case of alkyl aryl ethers, Phenol is formed rather than alcohol

$$\begin{array}{c} \overbrace{O} & -OCH_3 + HI & \longrightarrow & \overbrace{O} & -OH + CH_3I \\ \\ \hline \text{Anisole} & Phenol \end{array}$$



#### **Ziesel Method for estimation of alkoxy groups**

Based upon cleavage of alkyl aryl ethers by with hydroiodic acid



## Questions

- I. What is the point of cleavage on cleavage of methyl propyl ether by HCl? Give mechanism.
- II. Arrange the following in increasing order of their boiling points giving reasons:
  - 1. Dimethyl ether 2. Propane 3. Ethyl alcohol
- iii. What happens when
  - 1. Methyl tert. Butyl ether is reacted with Hydroiodic acid
  - 2. Phenetole is treated with HI