

Darshan Kumar Assoc. Prof. GC Amb

❑ **Behaviour of gases is described by variables P, V, T and mass**

➢ **These variables are inter connected by gas laws**

❖ **Boyles Law**

- ➢ **The volume of given mass of a gas is inversely proportional to its pressure at constant temperature**
- ➢ **PV = constant (at constant temperature)**

$$
\triangleright \quad \mathsf{P}_1 \mathsf{V}_1 = \mathsf{P}_2 \mathsf{V}_2
$$

❖ **Charles Law**

 \triangleright At constant pressure, the volume of a given mass of a gas increases or decreases by 1/273 of its **volume at 0 ^oC for each one degree fall or rise of temperature**

For 1⁰C rise in temperature
\nFor t⁰C rise in temperature
\n
$$
v_{t} = V_0 + \frac{v_0}{2.3} = V_0 (1 + \frac{1}{113})
$$

\n $v_{t} = V_0 + \frac{v_0}{2.3}x^{t} = V_0 (1 + \frac{t}{213})$

 $V \propto \frac{1}{R}$ at cond T

❖ **Charles Law contd….**

➢ **The volume of the given mass of the gas is directly proportional to the absolute temperature at constant pressure**

$$
V+zV_{0}(1+\frac{t}{21})=V_{0}(\frac{211+t}{213})=V_{0}(\frac{T}{T_{0}})=V_{0}\frac{P}{T_{0}}
$$

$$
\frac{V_{+}}{V_{0}}=\frac{T}{T_{0}}\quad \text{or} \quad \frac{V_{+}}{T}=\frac{V_{0}}{T_{0}}\quad J_{0}\overset{V_{-}}{=}=\text{Cultant}\quad (\frac{V_{+}+}{V_{-}})^{2}
$$

❖ **Absolute zero temperature**

- ➢ **Absolute or Kelvin scale of temperature**
- $\sqrt{ }$ -273 ° C = 0 K
- ✓ **0** $O^oC = 273$ K
- ✓ **T(K) = t(^oC) + 273**

Darshan Kumar Assoc. Prof. GC Amb 4

❑ **Avogadro's Law**

- ➢ **Equal volume of all gases contain equal number of molecules under similar conditions of temperature and pressure irrespective of the nature of the gas**
- ➢ **V N at constant T & P**
- \triangleright V^{α} n as n α N

❑ **Graham's Law of diffusion**

➢ **The rate of diffusion of a gas is inversely proportional to the square root of its density at constant pressure**

$$
r \propto \frac{1}{\sqrt{d}}
$$
 $\frac{r_1}{r_2} = \sqrt{\frac{d_2}{d_1}}$ $\frac{r_1}{r_2} = \frac{P_1}{P_2} \sqrt{\frac{d_2}{d_1}} = \frac{P_1}{P_2} \sqrt{\frac{M_2}{M_1}}$

5

❑ **Dalton's Law of Partial pressures**

➢ **At constant temperature, the total pressure exerted by a mixture of two or more non-reacting gases is equal to the sum of their partial pressures**

❑ **Ideal Gas Equation**

➢ **Obtained by combining Boyle's law, Charle's law, and Avogadro's law**

$$
\triangleright \quad V \propto \frac{nT}{P} \text{ or } \quad PV \propto nT \qquad PV = nRT
$$

❑ **Nature of Gas Constant R**

❖ **So R represents work done per degree per mole**

❑ **Numerical value of R depends upon the units in which P and V are expressed**

- ➢ **0.0821 L atm K -1 mol-1**
- \triangleright 8.314 JK⁻¹ mol⁻¹ = 8.314 Pa m³ K⁻¹
- ➢ **8.314 x 10⁷ ergs K -1 mol-1**
- ≥ 1.99 cal_K⁻¹mol⁻¹

1 Atm = 760 mm of Hg = 76 cm of Hg = 101325 Pa = 101325 Nm-2

1 Atm = 760 mm of Hg = 76 cm of Hg = 1013961.6 dynes cm-2

4.183 X 10⁷ ergs = 1 calorie

Darshan Kumar Assoc. Prof. GC Amb 7

Kinetic Theory of Gases

- ➢ **Given by Maxwell, Boltzmann and Clausius**
- ➢ **Also known as Dynamic particle model or Kinetic gas model**

❑**Postulates**

- **1. Gases consist of tiny particles known as molecules**
- **2. Volume actually occupied by gas molecules is very small as compared to the total volume occupied by gas molecules**
- **3. Molecules are in constant rapid motion in all directions and during motion they collide with one another as well as with the walls of the container**

Kinetic Theory of Gases

❑ **Postulates contd.**

- **4. Collisions are perfectly elastic**
- **5. Molecules move independently of one another(No attractive force)**
- **6. Pressure is due to collisions of molecules on the wall of the container per unit area per second**
- **7. KE of gas molecules is proportional to the absolute temperature**
- **8. Force of gravitation on the molecules is negligible**

- ➢ **Consider n molecules of a sample of gas contained in a cubical vessel of edge length l cm**
- ➢ **Let each molecule is moving with a speed of v cm/s**
- $\triangleright \quad V^2 = v_x^2 + v_y^2 + v_z^2$
- ➢ **Now let a molecule moves along the X axis with v^x speed and strike faces A and B of the vessel**
- ➢ **At face A, Momentum of the gas molecule before** collision = mv_x

- \triangleright **Momentum of molecule after collision = -mv**_x
- ➢ **Change in momentum of the molecule = - mv^x – mv^x = - 2mv^x**
- \triangleright So momentum transferred to the face A = 2mv_x
- ➢ **To strike face A again the molecule has to cover a distance of 2l cm**
- \triangleright So time taken = $21/v_x$
- ➢ **Now number of such collisions on face A in one second = v^x /2l**
- ➢ **Change in momentum at face A in one second = Momentum transferred in one collision x No. of collisions in one second**
- $\frac{1}{2}$ **2mv**_x **x** $v_x/21 = mv_x^2/1$
- ➢ **Similarly same amount of momentum will be transferred to the face B**
- > So total momentum transferred along X axis = $mv_x^2/l + mv_x^2/l = 2mv_x^2/l$

- ➢ **Same amount of momentum will be transferred along Y axis and along Z axis**
- ➢ **So total momentum transferred along all directions due to one molecule** $= \frac{2mvx^2}{l} + \frac{2mv_y^2}{l} + \frac{2mv_z^2}{l} = \frac{2m}{l} (v_x^2 + v_y^2 + v_z^2) =$ \mathbf{l} **2mv^y 2** \mathbf{l} **2mv^z 2** \mathbf{l} **2m** \mathbf{l} **2mv²** \mathbf{l}
- ➢ **And net momentum transferred along all directions due to n molecules** $=$ $\frac{2mv}{1} + \frac{2mv_1}{1} + \frac{2mv_2}{1} + \frac{2mv_3}{1}$ **2mv²** \mathbf{l} $2mv_3^2$ \mathbf{l} $2mv_2^2$ \mathbf{l} $2mv_1^2$ \mathbf{l} **2mvⁿ 2** \mathbf{l}

$$
= \frac{2m}{l}\left(v^2 + v_1^2 + v_2^2 + \dots + v_n^2\right) = \frac{2m \times n}{l} \left(\frac{v^2 + v_1^2 + v_2^2 + \dots + v_n^2}{n}\right)
$$

= $\frac{2mnu^2}{l}$ $u = \sqrt{\frac{v^2 + v_1^2 + v_2^2 + \dots + v_n^2}{n}}$

Net momentum transferred due to all molecules on all faces is the force exerted according to Newton's second Law

 $F = \frac{2mnu^2}{l}$ So P = $\frac{\text{Force}}{\text{Area}} = \frac{2mnu^2}{l} \times \frac{1}{6l^2} = \frac{1}{3} \frac{mnu^2}{l^3} = \frac{1}{3} \frac{mnu^2}{V}$ $PV = \frac{1}{3}$ mnu^2 This is Kinetic gas equation

Average KE of gas molecules

❖ **We can use the Kinetic gas equation to calculate KE of a gas molecule at temperature T**

> PV =
$$
\frac{1}{3}mnu^2 = \frac{2}{3}\cdot\frac{1}{2}mnu^2 = \frac{2}{3}K.E
$$
 or KE = 3/2 PV (KE = 1/2 mnu²)

 \triangleright **Now PV** = RT for One mole so KE = $\frac{3}{2}$ RT **3** $\overline{\mathbf{2}}$

For one molecule KE =
$$
\frac{3RT}{2N} = \frac{3kT}{2}
$$
 where k is Boltzmann constant

- ➢ **Here we can show that KE α T**
- ❖ **Molecular motion is said to be thermal motion** \triangleright **KE** = $\frac{1}{2}$ mnu² So KE \ltimes u² Also KE \ltimes T Hence u² \ltimes T or u \ltimes T **1** $\overline{\mathbf{2}}$
- ➢ **Further at absolute zero, u become zero and all type of molecular motion ceases**

 $\frac{R}{N} = k$

Derivation of gas laws from Kinetic gas equation

❑ **Boyle's Law**

$$
PV = \frac{1}{3}mnu^2 = \frac{2}{3} \cdot \frac{1}{2}mnu^2 = \frac{2}{3}K.E
$$

\n \triangleright KE \triangleleft to $KE = kT$ Hence $\overline{PV} = \frac{2}{3}kT$ and at constant temperature $PV = \text{constant}$

❑ **Charle's Law**

$$
\triangleright \quad \text{As derived above PV} = \frac{2}{3} \text{ kT or V} = \frac{2kT}{3P}
$$

SO at constant pressure V \ltimes **T**

❑ **Avogadro' s Law**

\n $P_1 V_1 = \frac{1}{3} m_1 n_1 u_1^2$ \n	\n $\frac{1}{3} m_1 n_1 u_1^2 = \frac{1}{3} m_2 n_2 u_2^2$ \n	\n $\frac{1}{2} m_1 u_1^2 = \frac{1}{2} m_2 u_2^2$ \n
\n $P_2 V_2 = \frac{1}{3} m_2 n_2 u_2^2$ \n	\n $m_1 n_1 u_1^2 = \frac{1}{3} m_2 n_2 u_2^2$ \n	\n $m_1 u_1^2 = \frac{1}{2} m_2 u_2^2$ \n

 So $n_1 = n_2$

Derivation of gas laws from Kinetic gas equation

❑ **Ideal gas equation**

$$
PV = \frac{1}{3}mnu^2 = \frac{2}{3} \cdot \frac{1}{2}mnu^2 = \frac{2}{3}K.E
$$

\n \triangleright KEXT so KE=kT Hence PV = $\frac{2}{3}kT$ if $\frac{2}{3}k = R$ then PV = nRT

❑ **Graham's Law of diffusion**

$$
PV = \frac{1}{3} m n u^2 = \frac{1}{3} M u^2
$$

\nNow $r \propto u$ so $r \propto \sqrt{\frac{3P}{d}}$
\n
$$
u = \sqrt{\frac{3P}{d}}
$$

\nNow $r \propto u$ so $r \propto \sqrt{\frac{3P}{d}}$

Derivation of gas laws from Kinetic gas equation

❑ **Dalton's Law partial pressures**

- \triangleright As already derived KE = $\frac{5}{3}$ PV 3
- ➢ **If we have two gases at same temperature then** $\overline{2}$
- \triangleright **For** gas 1 **KE**₁ = $\frac{3}{2}$ **p**₁ **V** $\overline{\mathbf{2}}$

$$
\triangleright \quad \text{For gas 2} \quad \text{KE}_2 = \frac{3}{2} \, \text{p}_2 \, \text{V}
$$

- ➢ **If these two gases are put in together in the same vessel then total KE**
- \triangleright **KE** = **KE**₁ + **KE**₂

>
$$
\frac{3}{2}
$$
 PV = $\frac{3}{2}$ p₁ V + $\frac{3}{2}$ p₂ V
\n> $\frac{3}{2}$ PV = $\frac{3}{2}$ V (p₁ + p₂) Or P = p₁ + p₂

Maxwell's distribution of molecular speeds

- ➢ **The molecules of a gas have wide range of velocities due to molecular collisions**
- ➢ **According to Maxwell the fraction of molecules having velocities in the range c to c + dc remains constant at a constant temperature**

$$
\frac{dn_c}{n} = 4\pi \left[\frac{M}{2\pi RT} \right]^{3/2} e^{-Mc^2/2RT} c^2 . d c
$$

$$
\left(\frac{1}{n} \cdot \frac{dn_c}{dc}\right) = 4\pi \left[\frac{M}{2\pi RT}\right]^{3/2} e^{-Mc^2/2RT}c^2
$$

P \rightarrow Probability of finding molecules with speed c

Maxwell's distribution of molecular speeds

❑ **Features of Maxwell distribution curves**

- ➢ **Fraction of molecules with very low and very high speeds is low**
- ➢ **The fraction of molecules having higher and higher velocities goes on increasing till it reaches maximum and then starts decreasing**
- ➢ **The velocity possessed by maximum fraction of gas molecules is called as most probable speed**
- ➢ **Area under the curve gives total number of gas molecules**

Maxwell's distribution of molecular speeds

❑ **Effect of temperature on distribution of speeds**

- ➢ **With increase in temperature, the curve flattens and the peak shifts forward and downward**
- ➢ **The most probable speed increases**
- ➢ **The fraction of molecules possessing most probable speed decreases**
- ➢ **The fraction of molecules having lower speeds decreases but having higher speeds increases**
- ➢ **The total number of molecules remains the same ie area under the curve remains unchanged**

Maxwell's distribution of molecular Energies

Re. 4π dixde, but it is done if 2π if 3π if 3

Darshan Kumar Assoc. Prof. GC Amb

Maxwell's distribution of molecular Energies

Darshan Kumar Assoc. Prof. GC Amb 22

Different types of molecular speeds

❑ **Most probable velocity (α)**

➢ **It is the speed possessed by maximum fraction of the gas molecules at a particular temperature**

$$
\Box
$$
 Average velocity or mean velocity (v or \bar{c})

➢ **It is the average of different velocities possessed by all the molecules of a gas at a particular temperature**

Root mean square velocity	$u = \sqrt{\frac{v_1^2 + v_2^2 + v_3^2 + \dots}{n}}$	$u = \sqrt{\frac{n_1 v_1^2 + n_2 v_2^2 + n_3 v_3^2 + \dots}{n_1 + n_2 + n_3 + \dots}}$
It is the square root of the mean of the squares of different velocities possessed by various gas molecules at particular temperature		

Darshan Kumar Assoc. Prof. GC Amb 23

$$
\alpha = \sqrt{\frac{2RT}{M}}
$$

$$
v = \frac{n_1 v_1 + n_2 v_2 + n_3 v_3 + \dots}{n_1 + n_2 + n_3 + \dots} \qquad v = \sqrt{\frac{8RT}{\pi M}}
$$

 $v_1 + v_2 + v_3 + \ldots$

Relation between different types of molecular velocities

$$
\alpha = \sqrt{\frac{2RT}{M}}
$$
\n
$$
v = \sqrt{\frac{8RT}{\pi M}}
$$
\n
$$
\alpha = \sqrt{\frac{2}{3}}u
$$
\n
$$
\alpha = \sqrt{\frac{2}{3}}u
$$
\n
$$
\alpha = 0.816 u
$$
\n
$$
v = 0.921 u
$$

$$
\lambda \alpha : v : u = \sqrt{\frac{2RT}{M}} : \sqrt{\frac{8RT}{\pi M}} : \sqrt{\frac{3RT}{M}}
$$

$$
\lambda = \sqrt{2} : \sqrt{\frac{8}{\pi}} : \sqrt{3} = 1.414:1.595:1.732
$$

$$
= 1: 1.128: 1.224
$$

$$
\lambda \alpha = 1: 1.128: 1.224
$$

$$
\alpha \alpha = 1: 1.128: 1.224
$$

$$
\alpha \alpha = 1: 1.128: 1.224
$$

 \blacksquare

Darshan Kumar Assoc. Prof. GC Amb

Numerical problems on molecular velocities

- **1) Calculate the root mean square velocity, average velocity, and most probable velocity of SO² gas at 427^oC**
- **2) At what temperature, the RMS velocity of SO² molecule will be equal to the RMS velocity of O² molecule at 27^oC**
- **3) At what temperature the rms velocity of methane becomes double of its value at N.T.P.?**
- **4) Calculate the rms speed of argon gas at N.T.P.**
- **5) Calculate the rms speed of nitrogen gas at 27^oC and 700 mm pressure**
- **6) Oxygen gas has a density of 1.429 g/L at N.T.P. Calculate the rms and average speeds of oxygen molecules.**
- **7) Prove that rms velocity of hydrogen gas at any temperature is 4 times that of oxygen gas at that temperature.**
- **8) At what temperature, the rms speed of CO² is same as that of Cl² at 293K?**

[Redox Titration between MnO4-](https://www.youtube.com/watch?v=ci4cHGLVZQY&t=35s) and Fe2+ - YouTube

Collision Properties

❑ **Collision diameter (σ)**

- ➢ **It is the distance between the centres of two molecules when they are at a closest distance of approach.**
- ❑ **Collision number (Nc)**
- ➢ **It is the number of collisions which a molecule makes with the other molecules in one second**
- ❑ **Collision frequency (Z)**
- ➢ **It is the number of collisions taking place in 1 cc of a gas in one second**
- ❑ **Collision Cross section**
- ➢ **It is an area of imaginary sphere of radius σ around the molecule into which the centres of other molecules cannot penetrate**

Derivation of expression for Collision number

❑ **Collision number (Nc)**

- ➢ **Consider a cylinder of length 'v' cm and with radius of cross section as σ**
- ➢ **Volume of cylinder = πσ²v**
- Let 'n' is the number of molecules per unit volume, so number of molecules in the cylinder = $(\pi\sigma^2 v)n$
- \triangleright Let a molecule moves through the cylinder. It will collide with all the molecules whose centres lie within **the cylinder**
- ➢ **So number of collisions undergone by it in one second or Nc = (πσ²v)n**
- \triangleright Since all the molecules are moving so we have to consider relative velocity and all angles of collision are **equally probable and we take average angle of collision ie 90^o**
- ➢ **Replacing v with** √**2v we get**

Derivation of expression for collision frequency

❑ **Collision frequency (Z)**

➢ **Since n is the number of molecules per unit volume so total number of collisions taking place in 1 cc of the gas in one second**

$$
\triangleright z = N_c \times n = (\sqrt{2} \pi v \sigma^2 n) \times n = \sqrt{2} \pi v \sigma^2 n^2
$$

➢ **One collision involves two molecules so total number of collisions will be half ie**

$$
Z = \frac{1}{2}(\sqrt{2} \pi v \sigma^2 n^2) \qquad Z = \frac{1}{\sqrt{2}} \pi v \sigma^2 n^2
$$

➢ **Further if we put the expression for v we get**

$$
\triangleright \quad Z = \frac{1}{\sqrt{2}} \pi \left(\frac{8RT}{\pi M} \right)^{1/2} \sigma^2 n^2 \qquad \text{OR} \qquad Z = 2 \sigma^2 n^2 \sqrt{\frac{\pi RT}{M}}
$$

Effect of T and P on Collision number & collision frequency

❑ **On Collision frequency (Z)**

$$
Z = \frac{1}{\sqrt{2}} \pi v \sigma^2 n^2
$$
 Z \alpha v n² also PV = n'RT or n'/V = P/RT or n = PN₀/RT so n \alpha P/T & v \alpha T

 \checkmark Z α \overline{J} x P²/T² or Z α P²/T^{3/2} so z α P² at constant T and Z α 1/T^{3/2} at constant pressure \checkmark and at constant volume P α T so Z α T² / T^{3/2} or Z α \sqrt{I} and Z α P²/P^{3/2} or Z α \sqrt{P}

❑**Collision number**

$$
\sqrt{N_c} = \sqrt{2} \pi v \sigma^2 n
$$
 Ncavn or Nc α/T x P/T or P/T

✓ **At constant T , Nc α P and at constant pressure Nc α 1/ T**

✓ **At constant volume P α T so Nc α T/ T ie Nc α T or Nc α P/ P ie Nc α P**

Mean free path

❑ **Mean free path(**l **or λ)**

- ➢ **It is the mean distance travelled by a molecule between any two successive collisions.**
- ➢ **The distance travelled by a molecule before it collides with another molecule is called as free path**

 ℓ or λ = $\frac{\text{Determine theorem}}{\text{No. of collisions undergone by the molecule in one second}}$ = $\frac{\text{No.atrix}}{\text{collision number}}$ = **Distance travelled by a molecule in one second**

Av. velocity collision number v Nc

$$
l = \frac{v}{\sqrt{2}\,\pi\,v\,\sigma^2 n}
$$

$$
l = \frac{1}{\sqrt{2}\,\pi\,\sigma^2 n}
$$

$$
2 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}
$$

Mean free path

❑ **Effect of temperature and pressure on Mean free path(l or λ)**

- \triangleright **PV** = $\boldsymbol{n'}$ **RT** or $\boldsymbol{n'}/V$ = \boldsymbol{P} **/RT** or \boldsymbol{n} = \boldsymbol{P} NO/RT
- ➢ **Put this value of n in the expression for l**

$$
\triangleright \qquad l = \frac{1}{\sqrt{2} \pi \sigma^2} \cdot \frac{RT}{PN_0} \qquad l = \frac{kT}{\sqrt{2} \pi \sigma^2 P} \qquad \text{for } T/P \quad \text{for } T \text{ s. for } 1/P
$$

➢ **At constant volume P α T so l is independent of T and P at constant. volume**

- ➢ **Viscosity is property of fluids(Gases or liquids)**
- ➢ **The resistance offered by one layer of fluid to the flow of other layer of the fluid is called as viscosity**
- ➢ **For gases we can consider laminar flow**
- ➢ **The gas molecules are always in motion. There is exchange of molecules between the layers**
- ➢ **The layer touching the surface has zero velocity and has least momentum**
- ➢ **As we move up the momentum of the layer is retarded by the lower layer**
- ➢ **So there is internal friction which retards the relative motion of adjacent layers and is called as viscosity.**

Viscosity in liquids

➢ **Force is required to maintain a uniform velocity difference between adjacent layers**

➢ **F α A** ρ **F** = η**A** dv dx dv

- ρ If A = 1 cm² & dv/dx = 1 then F = η dx
- ➢ **So Coefficient of viscosity is the force per unit area required to maintain a unit velocity gradient between two adjacent parallel layers**

❑ **Units of coefficient of viscosity(CGS system)**

 ρ **η** = $\frac{1}{4}$ $\frac{u_0}{v_0}$ = $\frac{u_0 v_0}{2}$ $\frac{v_0}{2}$ = dynes sec cm⁻² = 1 poise dx dv F A dynes cm² cm cm sec -1

 \triangleright **If** we put $F = ma$

$$
\frac{1}{2} \text{ then } \eta = \frac{ma}{A} \frac{dx}{dv} = \frac{g \text{ cm} \sec - 2x \text{ cm}}{cm 2x \text{ cm} \sec^{-1}} = 1 g \text{ cm}^{-1} \text{ s}^{-1} = 1 \text{ poise}
$$

➢ **Smaller units are cP or mP I P = 100 cP or I P = 1000 mP**

❑**Relation between coefficient of viscosity and mean free path**

- ➢ **Consider layer P at height h**
- ➢ **If velocity gradient is dv/dx, then at height h, velocity will**

 $be = h\left(\frac{dv}{dx}\right)$ $\mathbf{d}\mathbf{v}$ dx

- ➢ **If mean free path is l , then the molecules of layer P will collide and interchange with molecules at a distance l above(layer R) and l below(layer Q)**
- \triangleright **Now** velocity of molecules in layer Q below = $(h-l)\frac{dv}{dx}$

 \triangleright **Now** velocity of molecules in layer **R** above = $(h+l)\frac{dv}{dx}$

❑**Relation between coefficient of viscosity and mean free path contd.**

- ➢ **Due to interchange of molecules there is transfer of momentum from one layer to another**
- ➢ **Consider transfer of momentum from layer P to Q and R**
- ➢ **1/3 rd of the molecules in each layer move along three perpendicular directions and 1/6 th of the molecules move in upward direction and 1/6 th of the molecules move in downward direction**

 \triangleright Number of molecules moving upward or downward = $\frac{1}{6}$ n v 6

- ❑**Relation between coefficient of viscosity and mean free path contd.**
- ➢ **From layer Q the momentum transferred upwards towards layer P per square cm per sec =** $\mathbf{1}$ 6 mnv(h-l) $\frac{dv}{dx}$ \boldsymbol{dx} ➢ **From layer R the momentum transferred downwards towards layer P per square cm per sec =** $\mathbf{1}$ 6 **mnv(h+l)** \boldsymbol{dv} \boldsymbol{dx}
- ➢ **Net downward flow of momentum per second toward the layer P =** $\mathbf{1}$ 6 **mnv (h+l)** \boldsymbol{dv} $\frac{dv}{dx} \mathbf{1}$ 6 **mnv** (h-l) $\frac{dv}{dx}$ \boldsymbol{dx}

$$
= \frac{1}{6} \text{ mnv } \left[\text{(h+l)-(h-l)} \right] \frac{dv}{dx} = \frac{1}{6} \text{ mnv } \text{(h+l-h+l)} \frac{dv}{dx} = \frac{1}{6} \text{ mnv } \text{(2l)} \frac{dv}{dx} = \frac{1}{3} \text{ mnv } \frac{dv}{dx}
$$

❑ **Relation between coefficient of viscosity and mean free path contd.**

➢ **Now momentum transferred is equal to the force so F =** $\mathbf{1}$ 3 mnvl $\frac{dv}{dx}$ \boldsymbol{dx} **also F =** η $\boldsymbol{d}\boldsymbol{v}$ $\frac{dv}{dx}$ for A = 1 sq.cm

$$
\frac{dv}{dx} = \frac{1}{3} \text{ mrv} \frac{dv}{dx}
$$

$$
\frac{dv}{dx} = \frac{1}{3} \text{ mrv} \frac{dv}{dx}
$$

❑**Effect of Temperature & pressure on coefficient of viscosity**

$$
\triangleright \eta = \frac{1}{3} \text{ mmV1 and putting the expressions for v and I, we get}
$$
\n
$$
\triangleright \eta = \frac{1}{3} \text{ mm} \left(\sqrt{\frac{8kT}{\pi m}} \right) \left(\frac{1}{\sqrt{2\pi \sigma^2 n}} \right), \qquad \eta = \frac{2}{3} \frac{\sqrt{mkT}}{\pi^{3/2} \sigma^2} \qquad \text{so } \eta \text{ a.} \sqrt{T}
$$

➢ **With increase in temperature, coefficient of viscosity increases because KE of molecules increases which increases transfer of momentum from one layer to another layer.**

➢ **Sutherland relationship**

 $\eta = \frac{\eta_0 \sqrt{T}}{(1 + C/T)}$

➢ **We can see there is no effect of pressure on coefficient of viscosity**

❑**Calculation of molecular diameter from Coefficient of viscosity**

Put the expression for I, we get 1 3

$$
\triangleright \ \eta = \frac{1}{3} \frac{m \, n \, v}{\sqrt{2} \pi \sigma^2 n}
$$

➢ **η = Knowing m, v, & η, we can calculate molecular diameter** 1 3 **m v**