
by Kenneth E. Marks

PHP Web Development with MySQL
A Hands On Approach to Application Programming

PHP Web Development
with MySQL

A Hands On Approach to
Application Programming

by Kenneth E. Marks

a php[architect] guide

PHP Web Development with MySQL
A Hands On Approach to Application Programming
Contents Copyright ©2021 Kenneth E. Marks—All Rights Reserved

Book and cover layout, design and text Copyright ©2021 musketeers.me, LLC. and its
predecessors—All Rights Reserved. Print and Digital copies available from
https://www.phparch.com/books/.

php[architect] edition published: July 2021

Print ISBN: 978-1-940111-95-7
PDF ISBN: 978-1-940111-96-4
ePub ISBN: 978-1-940111-97-1
Mobi ISBN 978-1-940111-98-8

Produced & Printed in the United States

No part of this book may be reproduced, stored in a public retrieval system, or publicly
transmitted in any form or by means without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical reviews or articles.

Disclaimer
Although every effort has been made in the preparation of this book to ensure the accuracy of the informa-
tion contained therein, this book is provided "as-is" and the publisher, the author(s), their distributors and
retailers, as well as all affiliated, related or subsidiary parties take no responsibility for any inaccuracy and
any and all damages caused, either directly or indirectly, by the use of such information. We have endeav-
ored to properly provide trademark information on all companies and products mentioned in the book by
the appropriate use of capitals. However, we cannot guarantee the accuracy of such information.

musketeers.me, the musketeers.me logo, php[architect], the php[architect] logo are trademarks or regis-
tered trademarks of musketeers.me, LLC, its assigns, partners, predecessors and successors. All other
trademarks are the property of the respective owners.

Written by
Kenneth E. Marks
Managing Editor
Oscar Merida
Editor
Kara Ferguson
Layout
Oscar Merida

Published by
musketeers.me, LLC.
4627 University Dr
Fairfax, VA 22030 USA

240-348-5PHP (240-348-5747)
info@phparch.com
www.phparch.com

https://www.phparch.com/books/
mailto:info%40phparch.com?subject=
http://www.phparch.com

PHP Web Development with MySQL—A Hands On Approach to Application Programming III

Introduction XVII

1. The Life and Times of a PHP Script 1
Static Vs. Dynamic Websites 2
The Browser and the Server 2
The Server and PHP 3

2. Writing Your First PHP Script 5
Setting Up a Development Environment 6
Hello World! 15
Exercises 21

3. Why Variables Matter 23
Variables in PHP 24
Types of Variables 25
Constants 31
Exercises 31

4. Basic String Interpretation 33
Concatenation 34
Interpolation 34
Escaping 35
Heredoc 36
Exercises 36

5. Operators, Expressions, and Basic Arithmetic 37
Operators and Expressions 38
Math Functions 41

Table of Contents

PHP Web Development with MySQL—A Hands On Approach to Application ProgrammingIV

6. Arrays 43
Simple Arrays in PHP 44
Associative Arrays 45
Adding Values 46
Explicit Versus Short Array Syntax 46
Useful Array Functions 46
Multidimensional Arrays 52
Exercises 54

7. Truth, Comparisons, Conditions, and Compound Conditions 55
Comparison Operators 56
Conditional Logic 59
Compound Conditional Logic Using Logical Operators 62
Exercises 64

8. Verifying Variables and Type Checking 65
Verifying Variables 66
Verifying and Checking Variable Types 68
Exercises 71

9. Looping 73
Counting Loops 74
Sentinel Loops 76
Exiting and Continuing a Loop 78
Exercises 79

10. Functions 81
Simple Function 82
Function Parameters/Arguments 83
Returning Values from a Function 84
Further Advice On Writing Good Functions 85
Exercises 88

PHP Web Development with MySQL—A Hands On Approach to Application Programming V

11. Working with HTML Forms 89
A Simple Form 90
Processing Our Form and Outputting Back to the Web Page 91
Cleaning It Up Using a Self Referencing Page 93
Exercise: Badlibs, Part 1 95

12. Inserting Data Into a MySQL Database 97
Using the MySQL CLI 98
Create a PHP Application to Insert Data 108
 Exercises 116

13. Returning Data from a MySQL Database 117
Returning Database Rows in a PHP Application 118
Exercise: Badlibs, Part 2 121

14. Validating Form Data and Creating Sticky Fields 123
Modifying FullName Behavior Based On Validation 124
Adding Field Validation 125
Making the First and Last Name Fields Sticky 127
Testing Our Script with Sticky Fields 130
Exercise: Contact Form 131

15. Displaying a List of Item Details 133
Designing the Database 134
Creating the Database 135
Adding Movie Data 139
Creating the Main Movie Listing Page 141
Creating the Movie Details Page 149
Exercises 155

16. Adding Data Using the Web Application 157
Creating a Page to Add Movies 158
Complete Code Listing 169
Link to the “Add a Movie” Page from the Listing Page 174
Exercises 174

PHP Web Development with MySQL—A Hands On Approach to Application ProgrammingVI

17. Removing Data Using the Web Application 175
Adding Deletion Links to Movie Listings 176
Creating a “Remove a Movie Page” 178
Complete Code Listing 186
Exercises 189

18. Editing Data Using the Web Application 191
Linking Movie Details to the Edit Page 192
Create the Editing Page 193
Complete Code Listing 209
Exercises 213

19. Working With Files and Feature Additions to Existing Code 215
Add a Field for File Information 217
Create a Folder for Uploaded Movie Image Files 219
Adding File Upload Capability 219
Displaying Thumbnail Images of Movies on Main Page 248
Displaying Movie Image on Details Page 252
Add Image File Uploads to the Editing Page 256
Displaying Image on Deletion Page 269
Exercises 276

20. Basic HTTP Authentication 277
Password Protection with HTTP Authentication 278
How Does HTTP Authentication Work? 279
Create authorizeaccess.php 280
Adding Authorization to Pages 283
Exercises 284

21. Persistence 285
Cookies 286
Session Variables 294
Cookies and Session Variables 299
The Database 300
Best Practices in Solving the Persistence Problem 300
Exercises 300

PHP Web Development with MySQL—A Hands On Approach to Application Programming VII

22. Creating Secure Web Applications 301
Secure Password Protection for Authenticating 302
Guarding Against SQL Injection 306
Leaking Information to Hackers 314
Preventing Cross-Site Scripting Attacks 315
File Uploads 319
Securing Your Session 321
Final Thoughts 322
Exercises 322

23. Adding User Logins 323
Create a user Table 325
Create a Signup.php script 326
Create a login.php Script 341
Create a logout.php Script 351
Allow Users with Administrative Access 352
Exercises 356

24. Adding a Navigation Menu 357
Create Navbar Logic 358
Add the Navigation Bar 362
Add Navigation Bar to Details Page 363
Add Login Link to Navigation Bar 365
Add Logout Link to Navigation Bar 367
Add Sign Up Link to Navigation Bar 368
Add Navigation Bar to addmovie.php 369
Add Navigation Bar to Unauthorizedaccess.php 372
Add Navigation Bar to editmovie.php 372
Add Navigation Bar to removemovie.php 375
Complete Code Listings 376
Exercises 378

PHP Web Development with MySQL—A Hands On Approach to Application ProgrammingVIII

25. Adding Reservation Features 379
Add Number of Copies and Number Reserved 380
Persisting Movie Reservations for Users 397
Checking Movies Reserved by Users 398
Modify Homepage Based On Access Privileges 400
Refactoring to Remove Duplicate Inclusions 405
Script for Reserving Movies 407
Adding Cart to Navigation Menu 418
Add a Script for a Shopping Cart 420
Navigating to Reserved Movies 432
Showing and Returning Reserved Movies 435
Features to Add 448
Flaws in This Application 449
Exercises 450

26. Introduction to Object-Oriented Programming in PHP 451
Classes 452
Properties 453
Encapsulation Using Access Modifiers 454
Accessor Methods 454
The $this Variable 456
General Purpose Methods 458
Instantiating and Using a Class 458
Validating Input to a Setter Method 461
Inheritance 465
Overriding Methods 468
Constructors 469
Creating Parameterized Queries Using OOP 473
Exercises 485

Index 487

PHP Web Development with MySQL—A Hands On Approach to Application Programming IX

Dedications

To my wife, Debbie, who always encourages me to
strive for what’s good and to “do the next right thing.”
I never would have finished this project without your
love, support, and gentle prodding.

To my students, who made me realize I am not here
to teach you, but rather to enable your learning.

PHP Web Development with MySQL—A Hands On Approach to Application Programming XI

Acknowledgements
I never set out to write a book. In fact, when a couple of my colleagues shared their experi-
ence of writing a book, I thought I was sufficiently scared off from the process. So when
I first met my editor (before he even told me he was an editor), he suggested I consider
writing a book after I said I was a PHP web development instructor at our local community
college. I immediately informed him that it would be a bad idea because I would have to
write something that some editor would want just to sell books. Then I asked him what his
vocation was 😂.

To my editor, Oscar, who not only encouraged me to write a book on PHP web develop-
ment but also to make it my own. Thank you for making this such a collaborative and
enjoyable process!

To my friend Beth Tucker Long, who not only encouraged me to engage the local and
broader community of PHP web developers but has been a mentor to me in modeling
how to better engage this wonderful community of people. Thank you for your passionate
devotion to equity in the development community, challenging me, and showing me what it
looks like to be others-centered.

PHP Web Development with MySQL—A Hands On Approach to Application Programming XIII

Foreword
Almost a decade ago, I was running our local PHP user group, and Ken heard about and
attended one of our events. He instantly became an ever-enthusiastic member of our
community. Ken is always ready to say hi to everyone and make sure they feel welcome. On
top of that, he is also always happy to give a talk, which is a surefire way to endear your-
self to a user group leader. When we needed a new space to hold our meetings, Ken once
again stepped up and volunteered his classroom space at the local tech college where he
was teaching. It was a perfect fit with plenty of space, easy transportation access, a projector,
and great Wi-Fi—a user group’s dream come true! Eventually, Ken made the mistake of
mentioning that he wouldn’t mind helping more if we needed anything. He had barely
finished saying that before I made him a co-organizer of the group.

Throughout the years, Ken has been invaluable in building our amazing local PHP commu-
nity. He has an infectious enthusiasm that draws people in, and his love of teaching is
second to none. He doesn’t just teach the material, but he truly cares about helping his
students succeed. Not only that, but you can always rely on him. When he started toying
with the idea of writing a book, Ken wasn’t sure he would be able to finish the book, but I
never doubted he would. I knew that once he agreed to do it, he would persevere and get it
done. That’s just the kind of person Ken is.

Ken’s teaching style focuses on real-world skills and hands-on practice. This book is no
exception. When you are done with this book, you will have working examples of code
talking with databases and interacting with users. You will have a good understanding of
what happens during these interactions, which will help you immensely during your future
debugging sessions and give you a solid foundation to stand on as you learn about more
advanced programming techniques, frameworks, and libraries.

So even though Ken and I agree to disagree on specifically which framework you should
learn next, I am so grateful for his love of PHP and his love of sharing knowledge with
others. Our community is far better for having Ken around, and I’m so excited for you to get
to know him a bit through this book.

Welcome to the PHP community. We are glad you are here!

– Beth Tucker Long, July 2021

PHP Web Development with MySQL—A Hands On Approach to Application Programming XV

About the Author
Ken Marks has been working in his
dream job as a Programming Instructor at
Madison College in Madison, Wisconsin,
teaching PHP web development using
MySQL since 2012. Prior to teaching, Ken
worked as a software engineer for more than
20 years, mainly developing medical device
software.

Ken earned his Bachelors of Science in
Computer Science from California State
University at Fullerton and earned his
Masters of Science in Adult Education from
the University of Wisconsin at Platteville.

Ken is actively involved in the PHP commu-
nity, speaking and teaching at conferences.

In his spare time, he’s a man of many
hobbies such as 3D printing, board game
development, Ham radio, Fly fishing, and of
course, Coffee Roasting :-)

Ken has two grown daughters and lives in
the Madison area with his wife and their cat
Ophelia who thinks she’s a dog.

PHP Web Development with MySQL—A Hands On Approach to Application Programming XVII

Introduction
The best way to predict the future is to invent it.

–Alan Kay

Who Should Use This Book?

Do you want to learn how to create dynamic database-driven web applications? This book
guides you through building a typical CRUD (Create-Read-Update-Delete) application with
PHP and MySQL.

Introductory Programming Knowledge

If you have an introductory understanding of programming concepts, this book is for you.
You should be familiar with the following concepts:

• How to create variables
• The following kinds of logic:

• sequential
• conditional
• looping

• Modularization using functions and object methods
• Arrays

You should be familiar with all of the above concepts using any modern programming
language you are familiar with.

Basic HTML/CSS Knowledge

You should have a basic understanding of how to create simple static web pages using
HTML and CSS. A good place to brush up on these skills is https://www.w3schools.com.

Introductory Knowledge of Databases and SQL

Although not required, it is helpful to understand how relational databases work and have
some introductory knowledge of the Standard Query Language (SQL).

https://www.w3schools.com

PHP Web Development with MySQL—A Hands On Approach to Application ProgrammingXVIII

 Introduction

Why PHP and MySQL?

Both PHP and MySQL are open source which means you can freely download them and modify
the source code if you so desire. Moreover, PHP and MySQL are commonly used together.

Both PHP and MySQL have a low barrier to entry. All you need to develop dynamic web
applications with databases is access to a computer. All the applications necessary to develop
using PHP and MySQL are freely available at no cost.

Who This Book is NOT For?

If you are unfamiliar with any of these concepts, you would be best served by first getting
a hold of an introductory programming book. While we introduce how PHP implements
common programming concepts like loops and arrays, we expect you to know how and
when to use them. Likewise, if you are not comfortable with basic HTML/CSS, you should
spend some time brushing up on these skills as well.

PHP Versions, MySQL, and This Book

PHP version 7.0 provides a significant upgrade over version 5.6 in both performance and
security. Therefore, all PHP code and concepts presented in this book will be based on
version 7.0.

There are many database management systems (DBMS). However, this book uses a DBMS
based on the Standard Query Language (SQL). We use the MySQL DBMS because it is
frequently used with PHP, free to download and use, and it is the most popular DBMS in
the world.

How Code Samples are Presented

Code samples are used throughout the book to illustrate each topic. Longer code listings are
numbered and include line numbers for ease of reference. Syntax highlight similar to what
you find in a modern text editor or integrated development environment (IDE) is used to
make the code more readable by making variables, strings, and keywords stand out. Finally,
you can also download the code samples from the phparch.com website.

Bear in mind that the code samples in the book have been formatted to fit in the narrower
widths afforded by the screens for PDF and electronic readers as well as the printed page.
None of the changes made to accommodate this limitation affect the functionality of the

PHP Web Development with MySQL—A Hands On Approach to Application Programming XIX

code. As such, the code archive for this book also includes the unaltered versions of the
application code found here.

[1] PHP was created in 1994: http://php.net/en/history.php

How to Use This Book

This book is split into two major parts. Part one is a basic reference to the PHP language.
While not an exhaustive reference, it explains all the features needed for the web applica-
tions presented in this book. As more web applications are presented, you will be applying
more of the PHP language concepts. Part two shows how to apply the PHP language
through the presentation of various web applications. It is intended to give the web devel-
oper a complete understanding of how to apply PHP and MySQL for many of the most
common web development challenges. To illustrate the process, it works through the
development of a full-featured application implementing the typical CRUD (Create-Read-
Update-Delete) operations found in one.

A Brief History of PHP

PHP was created in 1994[1] by Rasmus Lerdorf and was originally designed to be a simple set
of Common Gateway Interface (CGI) binaries written using the C-programming language
for interacting with HTML forms. Rasmus called this suite of scripts “Personal Home Page
Tools.” Rasmus continued to add more functionality to his toolset, including database
interaction and a framework for developing dynamic web applications. In early June of 1995,
Rasmus released PHP Tools to the public through the comp.infosystems.www.authoring.
CGI newsgroup. In October of that year, Rasmus released a new version that consisted of an
advanced scripting interface that resembled C and Perl. In April of the next year, Rasmus
added database support for several DBMSs, and in June of 1996, version 2 of PHP was
released. In May of 1998, 1% (approximately 60000) web servers had PHP/FI installed.

In 1997, Andi Gutmans and Zeev Suraski collaborated with Rasmus to rewrite the PHP
Parser. When they released version 3 (in June of 1998), the programming language was
renamed “PHP,” which is a recursive acronym meaning “PHP: Hypertext Preprocessor.” PHP
3 allowed for easy extensibility, with many developers contributing useful modules. PHP 3
also included Object-Oriented Programming (OOP) extensions to the language. PHP 3, at
one point, was installed on 10% of the web servers on the internet.

During the winter of 1998, Andi Gutmans and Zeev Suraski started working on perfor-
mance and modularity improvements to the PHP interpreter. This rewrite of the core of
PHP came to be known as the ‘Zend Engine’ (named for Zeev and Andi’s first names) and

http://php.net/en/history.php

PHP Web Development with MySQL—A Hands On Approach to Application ProgrammingXX

 Introduction

was released in the middle of 1999. The official release of PHP 4 occurred in May of 2000
and added support for more web servers and session management.

In July of 2004, PHP 5 was released was powered by the "Zend Engine 2.0." This release
included improvements for OOP, PHP Data Objects (PDO - which defines connections and
interactions with databases), and other features.

In December of 2015, the PHP development team released version 7.0 of PHP[2]. This
release improved the performance of PHP applications up to twice as fast as version 5.6. It
also included a number of security enhancements and improved Exception handling.

PHP 8.0[3] was released in November of 2020. It further enhances the language’s type hinting
system and adds named arguments while making the language more consistent and perfor-
mant. Like previous releases, the core contributors have worked to minimize the impact
of backward-incompatible changes such that upgrading from PHP 7 is not a monumental
undertaking for most code bases.

[2] 7.0 of PHP: http://php.net/releases/7_0_0.php
[3] PHP 8.0: https://www.php.net/releases/8.0/en.php
[4] Rasmus Lerdorf: https://en.wikipedia.org/wiki/Rasmus_Lerdorf

An Even Briefer History of PHP
• June 8, 1995 PHP 1.0 is posted to the usenet group comp.infosystems.www.authoring.cgi
• It was created by Rasmus Lerdorf[4] as PHP Tools
• Then Rasmus set to work integrating his tools with the Apache web server, and less

than a year later, PHP 2.0 was posted to the same Usenet group
• PHP originally stood for “Personal Home Pages.”
• PHP now stands for “PHP Hypertext Preprocessor” (a recursive acronym)
• It is most likely the fastest and simplest tool available for creating database-enabled

websites
• It will work with any UNIX-based web server on every UNIX flavor out there. The

package is completely free of charge for all uses, including commercial

Here is how Rasmus described PHP at the time:

PHP/FI is a server-side HTML embedded scripting language. It has built-in access
logging and access restriction features and also support for embedded SQL queries to
mSQL and/or Postgres95 backend databases.

http://php.net/releases/7_0_0.php
https://www.php.net/releases/8.0/en.php
https://en.wikipedia.org/wiki/Rasmus_Lerdorf

PHP Web Development with MySQL—A Hands On Approach to Application Programming 1

ChapterChapter

1
The Life and Times of a
PHP Script

Most good programmers do programming not because they expect to get
paid or get adulation by the public, but because it is fun to program.

– Linus Torvalds

PHP Web Development with MySQL—A Hands On Approach to Application Programming2

1. The Life and Times of a PHP Script

Static Vs. Dynamic Websites
HTML alone only allows you to create static web pages. This approach is fine if you just
want to display images of your cat. However, if you want a web application with the ability to
interact with a database and for your web pages to update based on content that can change,
you need a dynamic website. This is where PHP comes in. The PHP interpreter runs in the
webserver. PHP will deliver HTML to the webserver, and since PHP is also a programming
language, it allows you to build the HTML dynamically.

The Browser and the Server
HyperText Transfer Protocol (HTTP) is the protocol used to communicate between a web
server (which I will call the server) and the web browser (which I will call the client).

HTTP Requests and Responses

When you open up a web browser on your
computer and type in a Uniform Resource
Locator (URL) in the address bar (let’s say
flibbertigiblets.com)…

As soon as you press the Return key on your
computer, your browser sends an HTTP
Request to the web server at flibbertigiblets.com. That request might look something like
Listing 1.1.

Listing 1.1.

 1. GET /phpWebDevMySQL/ HTTP/1.1
 2. Host: flibbertigiblets.com
 3. Connection: keep-alive
 4. Cache-Control: max-age=0
 5. Authorization: Basic ZmFsbDIwMTdwaHA6dXNlIHRoZSBmb3JjZQ==
 6. Upgrade-Insecure-Requests: 1
 7. User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6)
 8. AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36
 9. Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,
10. image/apng,*/*;q=0.8
11. Accept-Encoding: gzip, deflate
12. Accept-Language: en-US,en;q=0.9
13. If-Modified-Since: Mon, 13 Nov 2017 21:51:51 GMT

Figure 1.1.

The Server and PHP

PHP Web Development with MySQL—A Hands On Approach to Application Programming 3

The server can send various responses back to your browser (the client). However, the most
common is a 200 OK response that looks like:

HTTP/1.1 200 OK
Server: nginx/1.12.2
Date: Fri, 17 Nov 2017 00:31:35 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive
Last-Modified: Mon, 13 Nov 2017 21:51:51 GMT
Content-Encoding: gzip

Assuming everything is OK with the header,
the server sends HTML to the browser,
so you should see the web page shown in
Figure 1.2.

The Server and PHP
As previously mentioned, PHP runs with
the web server and is responsible for inter-
preting PHP code.

What the PHP Interpreter Does

When the web server encounters PHP code, it hands the code to the PHP interpreter. The
interpreter executes the code according to the rules of the PHP language. Within the code, text
will frequently need to be echoed or printed out to the web page. This text will be sent from
the PHP interpreter back to the web server to be rendered as HTML back to the browser.

Let’s take a look at a simple web page with HTML and PHP integrated together that outputs
today’s date:

<html>
 <head>
 <title>My Awesome Page</title>
 </head>
 <body>
 <h1>Today is <?php echo date("m-d-Y"); ?></h1>
 </body>
</html>

Figure 1.2.

PHP Web Development with MySQL—A Hands On Approach to Application Programming4

1. The Life and Times of a PHP Script

When the web browser encounters the <?php
tag, everything from the opening <?php to
the closing ?> tag is handed off to the PHP
interpreter for processing. When the PHP
script is done processing, any resulting
HTML is sent back to the web server for
output to the client.

The output of the above script is shown in Figure 1.3.

[1] PHP manual: http://php.net/ini

The php.ini File and Important Settings

The php.ini file is where we set and change directives to configure PHP. This file is read every
time the web server is started or restarted, and it is how PHP is initialized. This file is well
documented with comments regarding the various directives. Visit the PHP manual[1] for
a detailed explanation of the php.ini directives. Many directives can affect the security and
behavior of your application, so change them with care.

To find the php.ini file used by the PHP interpreter, you can inspect the output of phpinfo()
in a browser or look at the output of php -i at the command line.

Error Reporting Settings

When working through this book, you should tell PHP to show any errors it encounters
in your browser. You’ll get feedback about parse errors, uninitialized variables, and more.
Otherwise, when you run your code, you may get the dreaded White Screen of Death
(WSOD) when PHP encounters a syntax error like a missing semi-colon. In your php.ini file,
check to verify that display_errors is enabled:

display_errors = On;

In a production environment, this setting should be off to prevent disclosing sensitive infor-
mation.

Figure 1.3.

http://php.net/ini

PHP Web Development with MySQL—A Hands On Approach to Application Programming 5

ChapterChapter

2
Writing Your First PHP
Script

I have always wished for my computer to be as easy to use as my telephone;
my wish has come true because I can no longer figure out how to use my
telephone.

– Bjarne Stroustrup

PHP Web Development with MySQL—A Hands On Approach to Application Programming6

2. Writing Your First PHP Script

Setting Up a Development Environment
To write PHP, all you need is a text editor. However, since PHP runs with a web server,
you need access to a PHP development environment. I will show you how to install and
configure a Unix-based development environment for writing and debugging your PHP
web applications.

Downloading a Unix Operating System (OS)

Since most PHP web applications run on a Linux distribution of the Unix OS, it makes
sense to develop on one. I find Ubuntu Desktop one of the easiest operating systems to
develop in. As of this writing, the current version is Ubuntu 20.04.1 LTS.

LTS stands for long-term support. Canonical, the organization that maintains Ubuntu,
guarantees free security and maintenance updates for five years on LTS releases.

The first thing we need to do is head over to https://www.ubuntu.com/download/desktop
and download the latest 64-bit version of Ubuntu Desktop and press the Download button
as in Figure 2.1.

Figure 2.1.

https://www.ubuntu.com/download/desktop

Setting Up a Development Environment

PHP Web Development with MySQL—A Hands On Approach to Application Programming 7

It takes you to the page shown in Figure
2.2, and the .iso image should begin down-
loading.

Installing the Unix OS

Once your download is complete, you will
need to locate the .iso image file. It should
be named ubuntu-20.04.1-desktop-amd64.iso.
You will need to mount it to be installed
on the computer you want to use. You can
either install it as a standalone OS, on a
partition if your computer is configured
for multi-boot partitioning or in a Virtual
Machine (VM) environment. If you install it
in a VM, I recommend you set the memory
utilization to 4 GB.

Start the installation (Figure 2.3).

When the installation completes, enter
your password and press Enter to log in
(Figure 2.4).

Next, select Activities, type in terminal in the
search box, and run the terminal program.
You’ll see output like Figure 2.5
(following page).

In the terminal window, update
the apt installation package
manager by running the
following command as super-
user. When apt runs, you’ll see
something similar to Figure 2.6.

sudo apt update

Figure 2.2.

Figure 2.3.

Figure 2.4.

PHP Web Development with MySQL—A Hands On Approach to Application Programming8

2. Writing Your First PHP Script

Next, in the terminal window,
upgrade all the applications
with the apt installation package
manager by running the following
command as superuser:

sudo apt upgrade

You will need to type Y or press
Enter to accept the changes. This
update can take several minutes
since the package manager will
be upgrading all of the program
packages that have been updated
since the release of Ubuntu
20.04.31 LTS (Figures 2.7, 2.8, and
2.9).

Figure 2.5.

Figure 2.6

Figure 2.7.

Setting Up a Development Environment

PHP Web Development with MySQL—A Hands On Approach to Application Programming 9

Installing and Testing Apache

In the terminal window, install Apache using
the apt installation package manager by
running the following command as super-
user:

sudo apt install apache2

You will need to type Y or press Enter to
accept the changes (Figure 2.10).

To ensure Apache is running, run the
following command in the terminal window
as superuser. You should see output as
shown in Figure 2.11.

sudo systemctl status apache2

Type the q key to exit the systemctl status command.

Figure 2.8. Figure 2.9.

Figure 2.10.

Figure 2.11.

PHP Web Development with MySQL—A Hands On Approach to Application Programming10

2. Writing Your First PHP Script

The best way to make sure Apache is
running is to bring up a web browser and
navigate to localhost. If you see the webpage
in Figure 2.12, you can be sure your installa-
tion of Apache is running.

Installing and Testing MySQL

In the terminal window, install the MySQL
server and client using the apt installation
package manager by running the following
command as superuser.

sudo apt install mysql-server mysql-client

You will need to type Y or press Enter to
accept the changes (Figure 2.13).

To ensure MySQL is running, run the following
command in the terminal window as superuser.

sudo systemctl status mysql

The startup output looks like Figure 2.14.

Type the q key to exit the systemctl status
command.

Installing, Configuring, and Testing
PHP

As of this writing, the stock version of PHP
for Ubuntu 20.04.1 LTS is 7.4. All the code
in this book should work well with a PHP
version of 7.2 or greater.

In the terminal window, install PHP and
supported modules using the apt installation
package manager by running the following command as superuser:

sudo apt install php php-mysql php-curl php-json php-cgi libapache2-mod-php

Figure 2.12.

Figure 2.13.

Figure 2.14.

Setting Up a Development Environment

PHP Web Development with MySQL—A Hands On Approach to Application Programming 11

You will need to type Y or press
Enter to accept the changes
(Figure 2.15).

Verify PHP is installed
by running the following
command in the terminal
window:

php -v

You should see the output in
Figure 2.16.

Out of the box, PHP installs
with error reporting turned
off. This default is a good thing
since we don’t want to adver-
tise to potential hackers where
our files or bugs are for our
deployed websites. Since we are
creating a development envi-
ronment, we will want to know
when we have PHP errors. Most of our PHP configuration settings are found in the php.ini
file. We will use the installed nano editor that comes installed with Ubuntu to modify this
file for displaying our errors.

In the terminal window, type the following command to edit the php.ini file:

sudo nano /etc/php/7.4/apache2/php.ini

You need to search for the second occur-
rence of display_errors using the ^W “Where
Is” command (ctl+W) in nano and change it
from Off to On (Figures 2.17).

Figure 2.15.

Figure 2.16.

Figure 2.17.

PHP Web Development with MySQL—A Hands On Approach to Application Programming12

2. Writing Your First PHP Script

Then write out the changes using the ^O
(control plus capital letter O) “Write Out”
command (ctl+O). Next, press the return key
to confirm the name of the file to write out.
Finally, exit nano using the ^X Exit command (ctl+X). See Figure 2.18

In the terminal window, type the following command to restart Apache for these changes to
stick:

sudo systemctl restart apache2

[1] phpMyAdmin: https://www.phpmyadmin.net/
[2] Adminer Download Page: https://www.adminer.org/#download

Installing the Database Management Tool Adminer
Next, we’re going to install a web-based
database management tool. There are a few
out there, the most popular being phpMy-
Admin[1]. However, I like to use one called
Adminer because it is contained in a single
PHP file, runs faster, and has a reputation
for having greater security.

Open up a browser and navigate to the
Adminer Download Page[2]. From there,
select the latest version of Adminer for MySQL as in Figure 2.19.

Doing so downloads the Adminer PHP file to your Downloads folder.

Next, we need to rename this file index.php and copy it somewhere into our html/ folder
where Apache serves up our web pages. The root of our html/ folder is located in the direc-
tory /var/www/html. The best way to do this is by using the terminal window.

In the terminal window cd to the /var/www/html directory by typing:

cd /var/www/html

The output of the command is shown in
Figure 2.20.

Figure 2.18.

Figure 2.19.

Figure 2.20.

https://www.phpmyadmin.net/
https://www.adminer.org/#download

Setting Up a Development Environment

PHP Web Development with MySQL—A Hands On Approach to Application Programming 13

Since the root user owns the
html/ directory, we need to
move the Adminer PHP file
using superuser privileges here.
Let’s first create a new folder
called adminer and change
to it by typing the following
commands in the terminal
window (Output is in Figure
2.21):

sudo mkdir adminer
cd adminer

Now let’s move the downloaded PHP file from our Downloads directory to the adminer direc-
tory and rename it index.php by typing the following command as superuser (Figure 2.22):

sudo mv ~/Downloads/adminer-4.7.7-mysql-en.php index.php

Create a Test Database User and Database
By default, we cannot access MySQL data-
bases using the root account. This default
is a robust security constraint. For us to
use Adminer—or PHP for that matter—to
access our databases, we need to use the
MySQL command-line interface (CLI) tool
as root to create a database user account and
grant access to that user to a database.

In a terminal window, enter the MySQL CLI
by typing the following command:

sudo mysql

Then enter your password when prompted as in Figure 2.23

Figure 2.21.

Figure 2.22.

Figure 2.23.

PHP Web Development with MySQL—A Hands On Approach to Application Programming14

2. Writing Your First PHP Script

Now let’s create a test database called testdb
by typing the following command in the
MySQL CLI (Figure 2.24):

CREATE DATABASE testdb;

Next, we need to create a user with a pass-
word for our database, so enter the following command:

CREATE USER 'testuser'@'localhost' IDENTIFIED BY 'testuser';

The command should look like
Figure 2.25.

Finally, we need to grant all privileges
to our testuser for our testdb data-
base. Enter the following command
(Figure 2.26):

GRANT ALL PRIVILEGES ON testdb.*
TO 'testuser'@'localhost';

It’s also a good idea to flush the privi-
leges for the database as a standard
practice. See Figure 2.27.

FLUSH PRIVILEGES;

Exit the MySQL CLI by entering quit
(Figure 2.28).

To make sure Adminer runs correctly,
open up a browser and navigate to http://localhost/adminer/. Enter testuser for the user-
name and the password you selected when you created the testuser account in the MySQL
CLI (testuser), and login as shown in Figure 2.29.

If you see the webpage in Figure 2.30, Adminer is working correctly, and MySQL is also
installed and running correctly.

Figure 2.25.

Figure 2.24.

Figure 2.26.

Figure 2.27.

Figure 2.28.

Hello World!

PHP Web Development with MySQL—A Hands On Approach to Application Programming 15

Hello World!
Now that we have our development environment installed and configured, we can write
our first PHP program! First, since the root user is the owner of the /var/www/html directory,
change the group privileges and access rights on it so that our user can create and modify
files in it.

In the terminal window, navigate to the /var/www directory and change the group privileges
and access rights on the html directory as a superuser by typing the following commands.
Make sure you change the username to yours.

cd /var/www
sudo chgrp kmarks html/
sudo chmod 775 html/

When you perform a long listing (ls -al),
you should see that your user has group and
write access, and you can now create files in
the html/ directory (Figure 2.31).

Now let’s use the Files application (Figure 2.32) to create
a couple of directories.

Figure 2.29. Figure 2.30.

Figure 2.31.

Figure 2.32.

PHP Web Development with MySQL—A Hands On Approach to Application Programming16

2. Writing Your First PHP Script

In the Files application, select the + Other
Locations in the left pane, then Computer
in the main pane (Figure 2.33).

Navigate to the /var/www/html folder, and
create a new folder called “php_development” as in Figure
2.34 and 2.35.

To keep organized, we will create a new folder for each
chapter in the book to hold that particular chapter’s exer-
cises under the php_development/ folder.

In the php_development/ folder, create another folder and
call it “chapter1.”

I will be using the gedit[3] editor that comes with Ubuntu
(Figure 2.36) to write our code. It is a useful editor that
provides line numbering, indentation, and syntax highlighting.

[3] gedit: https://wiki.gnome.org/Apps/Gedit

Figure 2.33.

Figure 2.34.

Figure 2.35.

Figure 2.36. gedit

https://wiki.gnome.org/Apps/Gedit

Hello World!

PHP Web Development with MySQL—A Hands On Approach to Application Programming 17

When you start it up, you will see a blank
document. Here are some preferences I
like to set up for the gedit editor. In the
hamburger menu for the Text Editor
window, select the Preferences menu item
as in Figure 2.37.

In the Preferences dialog under the View tab,
select Display line numbers and Highlight
matching brackets as shown in Figure 2.38.

Under the Editor tab, change the Tab width
to 4, select Insert spaces instead of tabs,
and Enable automatic indentation. See
Figure 2.39.

Figure 2.37.

Figure 2.38. Figure 2.39.

PHP Web Development with MySQL—A Hands On Approach to Application Programming18

2. Writing Your First PHP Script

Alright, finally we can write our first program! It is a tradition among programmers that the
first program we write in a new language we are learning should be called Hello World! Let’s
stick with tradition and create a “Hello World!” PHP program.

In your gedit window, type the lines of code shown in Listing 2.1.

Listing 2.1.

 1. <html>
 2. <head>
 3. <title>PHP-Hello World!</title>
 4. </head>
 5. <body>
 6. <?php
 7. echo "<h1>Hello World!</h1>
";
 8. date_default_timezone_set("America/Chicago");
 9. echo "<h2>Today is: " . date('l jS \of F Y h:i:s A') . "</h2>
";
10. ?>
11. </body>
12. </html>

After keying this code in, save the file as
hello_world.php in the chapter1/ folder
(Figure 2.40).

Notice after you save this as a .php file that
gedit syntax highlights the code as shown in
Figure 2.41.

Figure 2.40.

Figure 2.41.

Hello World!

PHP Web Development with MySQL—A Hands On Approach to Application Programming 19

Open up your web browser and navigate to
http://localhost/php_development/chapter1/.

You will see a listing of the files so far in the
chapter1 directory. You should see a page
like Figure 2.42.

Select hello_world.php. You should see the
following web page (Figure 2.43) with
today’s date and time for the U.S. Central
Timezone (unless you changed it for your
timezone).

Awesome! You just wrote your first PHP
program!

General PHP Format
There are a few general rules required by
PHP.

1. PHP code is enclosed by the <?php and ?> tags

<?php
...
?>

2. Every PHP statement must end in a semicolon ;

echo 'Thanks for submitting the form.';

3. PHP variables must begin with a dollar sign $

$email = $_POST['email'];

• A variable name must be at least one character in length.
• The first character after the dollar sign $ can be a letter or an underscore _, and charac-

ters after that can be a letter, an underscore, or a number.
• Spaces and special characters other than $ at the beginning and _ are not allowed in any

part of a variable name.

If you forget the opening PHP tag, you’ll see your raw code displayed in the browser.
In the interest of space, many of the code examples in this book omit the opening and
closing tags.

Figure 2.42.

Figure 2.43.

PHP Web Development with MySQL—A Hands On Approach to Application Programming20

2. Writing Your First PHP Script

Comments
When we write code, we do it for a reason. Frequently we need to share why something
works the way it does. Like many modern programming languages, PHP allows you to
create single and multi-line comments, as shown in Listing 2.2.

Listing 2.2.

 1. <?php
 2. //Single line comment
 3.
 4. # Also a single line comment
 5.
 6. phpinfo(); //comment after code
 7.
 8. /*
 9. Multi line block, you can add as many
10. lines as you want, but don't write a book
11. */

When we comment our code, our comments should reflect why our code exists instead of
how our code works. The how is most often explained by the actual code.

Here are a few examples of bad and good commenting.

Bad Commenting Example

In Listing 2.3, the comment repeats how the code works instead of explaining why it’s done
that way. If our regular expression changes, we must remember to update the comment—a
step that’s often overlooked. If comments don’t match the code, future developers may get
confused.

Listing 2.3.

 1. <?php
 2. /*
 3. We are formatting phone numbers by stripping all characters
 4. then putting parens around the first 3 numbers adding a
 5. space then grouping the next 3 numbers adding a dash
 6. then the last 4 numbers
 7. */
 8. function formatPhoneNumber($phone_string)
 9. {

Exercises

PHP Web Development with MySQL—A Hands On Approach to Application Programming 21

10. if (preg_match('/^\+\d(\d{3})(\d{3})(\d{4})$/', $data, $matches))
11. {
12. $result = "($matches[1]) $matches[2]-$matches[3]";
13. return $result;
14. }
15. }

Good Commenting Example
Now in Listing 2.4, the comment clearly describes the expected format for phone numbers
and leaves the implementation details to the code.

Listing 2.4.

 1. <?php
 2. /*
 3. The business has a requirement that all phone numbers be
 4. formatted with the (123) 123-1234 format
 5. */
 6. function formatPhoneNumber($phone_string)
 7. {
 8. if (preg_match('/^\+\d(\d{3})(\d{3})(\d{4})$/', $data, $matches))
 9. {
10. $result = "($matches[1]) $matches[2]-$matches[3]";
11. return $result;
12. }
13. }

Exercises
1. Install the LAMP (Linux Apache MySQL & PHP) Stack.
2. Create a hello_world.php script and verify it runs.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 23

Chapter

3
Why Variables Matter

“Always code as if the guy who ends up maintaining your code will be a
violent psychopath who knows where you live.”

– Martin Golding

PHP Web Development with MySQL—A Hands On Approach to Application Programming24

3. Why Variables Matter

Variables in PHP

[1] PSR-1: Basic Coding Standard: http://www.php-fig.org/psr/psr-1/
[2] PSR-2: Coding Style Guide: http://www.php-fig.org/psr/psr-2/
[3] naming constants: http://www.php-fig.org/psr/psr-1/#1-overview

PHP supports several kinds of variables. Predefined variables are defined already by the
PHP language, while user-defined variables are defined by you, the developer, in your code.
Then there are form variables defined by the name attributes in an HTML form and become
keys in a predefined variable.

Valid Variable Names
• PHP variable names must begin with a dollar sign ($).
• A variable name must be at least one character in length.
• The first character after the dollar sign $ can be a letter or an underscore _, and charac-

ters after that can be a letter, an underscore, or a number.
• Spaces and special characters other than _ and $ are not allowed in any part of a vari-

able name.

Here are a few examples of valid variable names:

$name1
$price_tag
$_abc
$Abc_22
$A23

Here are a few examples of invalid variable names:

$10names
box.front
$name#last
A-23
$5

Recommendations for Naming Your Variables
PHP does have a set of coding standards, which this book follows. You can find them on
the PHP-FIG website at PSR-1: Basic Coding Standard[1] and PSR-2: Coding Style Guide[2].
However, the coding standards intentionally give little guidance on how to name your vari-
ables. The standards recommend using camelCase for naming your methods, StudlyCaps for
class names, and ALL_CAPS separated by underscores for naming constants[3].

http://www.php-fig.org/psr/psr-1/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-1/#1-overview

Types of Variables

PHP Web Development with MySQL—A Hands On Approach to Application Programming 25

I like to use the following conventions when creating variables, functions, methods,
constants, and classes in PHP, which I will be using throughout this book:

Property Example
Variable Names $snake_case

Function/Method Names function camelCase()

Classes class StudlyCaps

Constants const ALL_CAPS

Regarding naming your variables, a recommended practice is to choose good descriptive
names for your variables (e.g., $temperature_fahrenheit). Also, most predefined PHP vari-
ables start with a $_ (i.e. $_POST[]). I recommend that you do not create any variables starting
with an underscore (_) as this might be confusing to other PHP developers that have to
maintain your code.

Types of Variables
All data is eventually represented to a computer using 1s and 0s. However, a programming
language interpreter or compiler must know the data type representation before correctly
converting the data into a format the computer can use. Like several other programming
languages (e.g., JavaScript), PHP is a dynamically typed language (as opposed to a statically
typed language like Java). A variable will dynamically change its type implicitly based on the
data type of the value assigned to it or the context in which it’s used.

Scalar Data Types
PHP supports the following scalar data types:

• Boolean
• integer
• float
• string

PHP Web Development with MySQL—A Hands On Approach to Application Programming26

3. Why Variables Matter

Booleans
A Boolean data type contains a logical value that is either TRUE or FALSE. Boolean values are
typically used in conditional logic statements:

$passed_drivers_license_exam = TRUE;

if ($passed_drivers_license_exam == TRUE)
{
 echo "Award driver's license.
";
}

The online PHP documentation has more information about Boolean data types[4].

Integers

An integer data type contains a whole number that can be negative, zero, or positive. They
are typically represented in the base-10 number system but can be represented using base 2,
8, 10, or 16.

For more information, see the PHP docs about integer data types[5].

Floats

A floating-point data type contains real numbers which can be expressed either using deci-
mals and/or scientific notation:

// Pascal to Pound per square inch
$pa_to_psi = 0.000145037738;

// Pascal to Pound per square inch
$pa_to_psi = 145037738e-12;

// Pascal to Pound per square inch
$pa_to_psi = 1.45037738e-4;

See the PHP documentation for more information about floating point data types[6].

[4] Boolean data types: http://php.net/language.types.boolean
[5] integer data types: http://php.net/language.types.integer
[6] floating point data types: http://php.net/language.types.float

http://php.net/language.types.boolean
http://php.net/language.types.integer
http://php.net/language.types.float

Types of Variables

PHP Web Development with MySQL—A Hands On Approach to Application Programming 27

Strings
A string is a group of characters enclosed in either single (') or double (") quotes. The type
of opening quote must match the closing quote:

echo "This is a string";
echo 'This is also a string';
echo "This is a string with 'singe-quotes' embedded";
echo 'This is a string with "double-quotes" embedded';

If you have a string surrounded by double-quotes (") you can contain a double-quote in
your string by escaping it with the back-slash (\). Likewise, you can embed single-quotes by
escaping them if they are inside of a string surrounded by single-quotes:

echo "This is a string surrounded by \"";
echo 'I don\'t like using contractions';

See the PHP manual for more information about string data types[7].

[7] string data types: http://php.net/language.types.string

Compound Data Types

PHP defines several “compound” data types which allow you to contain or aggregate
multiple pieces of data of the same data type under a single entity. PHP supports the
following compound data types:

• array
• object
• callable
• iterable

Array

Arrays in PHP are ordered maps, which are a way to associate a key with its corresponding
value. Therefore, arrays in PHP are known as “associative arrays.”

An array is created using the array() language construct. Here’s how to create an empty
array:

$fahrenheit_temperatures = array();

http://php.net/language.types.string

PHP Web Development with MySQL—A Hands On Approach to Application Programming28

3. Why Variables Matter

PHP also supports short array syntax, which lets you define an array like this:
$temperatures = [];

To add (or push) values onto the end of an array, use the [] syntax immediately following
the variable name. Without specifying a key when adding values to an array, the key will be
the next integer value:

$fahrenheit_temperatures[] = 32; // 32 is associated with key 0
$fahrenheit_temperatures[] = 100; // 100 is associated with key 1

Keys can be specified using either strings or integers. Associative arrays often use strings as
keys to give meaning to the values they associate with in the array. To initialize an array with
named keys, use the rocket (=>) operator:

$us_state_captials = array(
 "Wisconsin" => "Madison",
 "California" => "Sacramento"
);

To add a named key to the end of the array, specify it in between []s:

$us_state_captials["Florida"] = "Tallahassee";

Note that arrays in keys are unique, so if you specify a key that already exists, you will be
replacing its value.

A useful function for viewing the contents of an array is print_r()[8]. Embed print() in a set
of <pre> tags as shown in Listing 3.1.

Listing 3.1.

 1. <pre>
 2. <?php
 3. $us_state_captials = array(
 4. "Wisconsin" => "Madison",
 5. "California" => "Sacramento"
 6.);
 7.
 8. print_r($us_state_captials);
 9. ?>
10. </pre>

[8] print_r(): http://php.net/print_r

http://php.net/print_r

Types of Variables

PHP Web Development with MySQL—A Hands On Approach to Application Programming 29

This function call produces the following output:

Array
(
 [Wisconsin] => Madison
 [California] => Sacramento
)

You can find more information on array data types[9] online.

Object

PHP is an “Object-Oriented” programming language, and it allows you to create objects.
Objects are created from “class” definitions. Class definitions are like complex types that
allow you to group your program data (what your program knows) and your program func-
tions (what your program does) in one place to represent modular components in software
better. We will cover object-oriented programming in more detail later in the book.

To create an object, you “instantiate” it from a class definition using the new keyword as in
Listing 3.2.

Listing 3.2.

 1. <?php
 2.
 3. class Radio
 4. {
 5. function turnOnRadio()
 6. {
 7. echo "Turning radio on";
 8. }
 9. }
10.
11. $car_radio = new Radio();
12. $car_radio->turnOnRadio();

The PHP manual has more information on objects[10].

[9] array data types: http://php.net/language.types.array
[10] objects: http://php.net/language.types.object

http://php.net/language.types.array
http://php.net/language.types.object

PHP Web Development with MySQL—A Hands On Approach to Application Programming30

3. Why Variables Matter

Callable
“Callables” can be created in PHP by naming a function to call as a string and invoking it with
the call_user_func() function[11]. You can do this with simple functions, static class methods,
and instantiated class methods. The following is a simple example of using a callback.

function exampleCallbackFunction()
{
 echo "Hello world!";
}

call_user_func('exampleCallbackFunction');

For more information on callables[12], check the online manual.

Iterable

An iterable[13] is a pseudo-type. It enforces arguments to functions or return values from
functions are traversable like arrays. You may see this typehint when looking at the API for
PHP functions. It mainly means that you can loop through the variable using a foreach.

[11] call_user_func() function: http://php.net/call_user_func
[12] callables: http://php.net/language.types.callable
[13] iterable: http://php.net/language.types.iterable
[14] resources: http://php.net/language.types.resource

Special Data Types

PHP defines a couple of special data types as well. These are:
• resource
• NULL

Resource

A “resource” is a special variable containing a reference to an external resource. Resources
are typically used for working with files and databases:

$db_connection = mysqli_connect(
 'localhost', 'db_user', 'db_password', 'db_to_use'
);

$file_handle = fopen('file.txt' 'r');

For more information on resources[14] and their usages, see the online documentation.

http://php.net/call_user_func
http://php.net/language.types.callable
http://php.net/language.types.iterable
http://php.net/language.types.resource

Constants

PHP Web Development with MySQL—A Hands On Approach to Application Programming 31

NULL
A “NULL” value[15] is a special variable that does not contain a value. A variable is NULL if:

• it is assigned the constant NULL,
• it has not been assigned any value,
• or it has been unset().

[15] “NULL” value: http://php.net/language.types.null
[16] define(): http://php.net/function.define

Constants
Constants are values that do not change. Named constants are created in PHP using the
define()[16] function:

define("BOILING_TEMP_IN_CELCIUS", 100);
echo BOILING_TEMP_IN_CELCIUS; // outputs 100

Exercises
Create a script variables.php and do the following:

1. Assign numbers to two variables and echo their values.
2. Create a variable to hold a name, echo the string "Hello NAME" where NAME is the value

of your variable.
3. Define a constant that represents the acceleration due to gravity (9.81 m/s). Echo the

value of this constant.

http://php.net/language.types.null
http://php.net/function.define

PHP Web Development with MySQL—A Hands On Approach to Application Programming 33

Basic String Interpretation

“The purpose of software engineering is to control complexity, not to create
it.”

– Pamela Zave

Chapter

4

PHP Web Development with MySQL—A Hands On Approach to Application Programming34

4. Basic String Interpretation

Concatenation
In PHP, strings can be joined together by concatenating them using the dot (.) operator:

$name = "Fred Flintstone";
echo "Hello " . $name . " !";

This outputs:

Hello Fred Flintstone!

You can also successively concatenate onto a string variable using the compound assignment
operator .=:

$some_fruit = "apple";
$some_fruit .= ", orange";
$some_fruit .= ", banana";

echo "Here are some fruit: " . $some_fruit . ".";

This outputs:

Here are some fruit: apple, orange, banana.

Interpolation
In PHP, when a variable is contained within a string using double-quotes ("), the variable’s
contents are interpolated, which outputs the value of the variable within the string. An
example would be helpful:

$name = "Fred Flintstone";
echo "Hello $name, how are you today?";

This outputs:

Hello Fred Flintstone, how are you today?

However, variable interpolation does not work within a string defined by single-quotes (').
Whatever is contained in between the single-quotes is literally output to the web page:

$name = "Fred Flintstone";
echo 'Hello $name, how are you today?';

Escaping

PHP Web Development with MySQL—A Hands On Approach to Application Programming 35

This outputs:

Hello $name, how are you today?

[1] single-quoted strings: http://phpa.me/php-single-strings
[2] string escape characters: http://php.net/language.types.string.php#language.types.string.syntax.double

Escaping
Strings can be contained in either double-quotes (") or single-quotes ('). To use a literal ' in
a string with single-quotes, you must escape it using the backslash \ character:

echo 'You\'re an awesome programmer!';

This outputs:

You're an awesome programmer!

To use a literal " in a string with double-quotes, you have to escape it as well (using the \):

echo "A famous programmer, Olav Mjelde said, \"They don't make bugs like Bunny

anymore.\"";

This outputs:

A famous programmer, Olav Mjelde said, "They don't make bugs like Bunny anymore."

Note that strings contained in double-quotes can contain single-quotes without escaping
them. Likewise, strings contained in single-quotes can contain double-quotes without
escaping the latter:

echo 'Jane said, "Hi John!"
';
echo "John said, 'Hi Jane!'";

This code outputs:

Jane said, "Hi John!"
John said, 'Hi Jane!'

See the online docs for more on single-quoted strings[1] and on double-quoted strings and
string escape characters[2].

https://www.php.net/manual/en/language.types.string.php#language.types.string.syntax.single
http://php.net/language.types.string.php#language.types.string.syntax.double

PHP Web Development with MySQL—A Hands On Approach to Application Programming36

4. Basic String Interpretation

Heredoc

[3] Strings: http://php.net/language.types.string

PHP defines a special way to delimit strings called heredoc which allows you to define an
identifier after the the <<< sequence followed by a newline. EOT (“end of text”) is a popular
character sequence used as an identifier. Everything after this line up until the same identi-
fier followed by a semicolon ; on its own line is delimited as a string. This syntax allows you
to define large portions of text without the need for escaping single or double quotes:

echo <<<EOT
Cupcake ipsum dolor. Sit amet cake ice cream sweet pudding
tootsie roll marshmallow cake. "Lemon" drops apple pie fruitcake
caramels lollipop's sweet roll. Sesame snaps lemon drops topping.
EOT;

This outputs:

Cupcake ipsum dolor. Sit amet cake ice cream sweet pudding
tootsie roll marshmallow cake. "Lemon" drops apple pie fruitcake
caramels lollipop's sweet roll. Sesame snaps lemon drops topping.

The online documenation has more detail on Strings[3].

Exercises
Create a script strings.php to do the following:

1. Assign a first and a last name to two separate variables. Then, use concatenation to
echo the full name.

2. Again, with first and last name, use string interpolation to output the last name, a
comma, and then the first name.

3. Set the last name to “O’Connor” and output the full name.

http://php.net/language.types.string

PHP Web Development with MySQL—A Hands On Approach to Application Programming 37

Chapter

5
Operators, Expressions,
and Basic Arithmetic

“Don’t worry if it doesn’t work right. If everything did, you’d be out of a job.”

– Mosher’s Law of Software Engineering

PHP Web Development with MySQL—A Hands On Approach to Application Programming38

5. Operators, Expressions, and Basic Arithmetic

Operators and Expressions
Operators

[1] assignment operator: http://php.net/language.operators.assignment

An operator is a symbol that produces a result based on some rules. Examples include:

Some Operators
+

-

=

<

>

Operators can be surrounded by an operand on the left or the right.

Operands

Operands are data objects that are manipulated by operators. Operands can be a string,
number, Boolean, object, or combination of these.

Expressions

An expression is a group of operators and
operands that the PHP interpreter evaluates.
Figure 5.1 shows a simple example of an
expression.

Assignments
Literal values and the contents of variables are assigned to variables using the assignment
(=) operator. The variable on the left of the = is assigned the value or contents of a variable
on the right of the =. Consult the manual for a complete explanation of how the assignment
operator[1] works.

Figure 5.1.

http://php.net/language.operators.assignment

Operators and Expressions

PHP Web Development with MySQL—A Hands On Approach to Application Programming 39

Here is an example using the = operator:

$temperature_fahrenheit = 32;
$current_temperature = $temperature_fahrenheit;

Compound Assignment operators
Like many modern programming languages, PHP has compound assignment operators.
Here are a few examples using the arithmetic compound assignment operators:

Compound Assignment Shorthand for… Meaning
$a += $b $a = $a + $b Addition
$a -= $b $a = $a - $b Subtraction
$a *= $b $a = $a * $b Multiplication
$a /= $b $a = $a / $b Division
$a %= $b $ = $a % $b Modulus

Operator Precedence
In PHP (as in many other programming languages), precedence determines the order in
which operators are evaluated and their associativity. The following table lists the prece-
dence and associativity of all the PHP operators:

Operator Description Associativity
() Parentheses Left to right
new Creates an object Non-associative
[] Array subscript Right to left

++ -- Auto increment, decrement Non-associative
! ~ - Logical not, bitwise not, negation Non-associative

(int) (float)
(string) (array)

(object)

Cast Right

instanceof Determines if a variable is an instantiated
object of some class

Left

! Not Non-associative
() Parentheses Left to right

PHP Web Development with MySQL—A Hands On Approach to Application Programming40

5. Operators, Expressions, and Basic Arithmetic

Operator Description Associativity
* / . Arithmetic multiply, divide, string concatena-

tion
Left

<< >> Bitwise shift left, right Left
< <= > >= Less than, less than or equal, greater than,

greater than or equal comparison
Non-associative

& Bitwise and Left
^ Bitwise xor Left
| Bitwise or Left
&& Logical and Left
|| Logical or Left
?? Null coalesce Right

= += -= *= **= /=
.= %= &= |= ^=
<<= >>= ??=

Assignment, compound assignment,
compound modulus, compound bitwise
logical, compound bitwise shift, compound
null coalesce

Right

See the online docs for more information on Operator Precedence[2].

Basic Arithmetic
Like many programming languages PHP provides five basic arithmetic operators:

Operator Name Example Meaning
+ Addition $a + $b Sum
- Subtraction $a - $b Difference
* Multiplication $a = $a * $b Product
/ Division $a / $b Quotient
% Modulus $a % $b Remainder

[2] Operator Precedence: http://php.net/language.operators.precedence

http://php.net/language.operators.precedence

Math Functions

PHP Web Development with MySQL—A Hands On Approach to Application Programming 41

When performing division the / operator returns an integer if the divisor divides evenly into
the dividend, otherwise a float is returned:

$whole_number = 12 / 4 // $whole_number will be an integer (3)
$float_value = 7 / 2 // $float_value will be a float (3.5)

The modulus (%) operator returns the remainder of a division operation. A typical use of the
modulus operator is to find out if a number is even or odd:

if (($odd_or_even % 2) == 1)
{
 echo "$odd_or_even is an odd number.";
}
else if (($odd_or_even % 2) == 0)
{
 echo "$odd_or_even is an even number.";
}

This further boils down to:

if (($odd_or_even % 2) == 1)
{
 echo "$odd_or_even is an odd number.";
}
else
{
 echo "$odd_or_even is an even number.";
}

The PHP documentation has more information about the basic arithmetic operators[3].

[3] basic arithmetic operators: http://php.net/language.operators.arithmetic

Math Functions
The PHP language provides a relatively standard set of math functions for you to use. Here
are some examples of a few common math functions.

abs()

The abs() function returns the absolute value of the argument given:

$value = -42;
$absolute_value = abs($value);
echo "The absolute value of $value is $absolute_value";

http://php.net/language.operators.arithmetic

PHP Web Development with MySQL—A Hands On Approach to Application Programming42

5. Operators, Expressions, and Basic Arithmetic

Outputs:

The absolute value of -42 is 42

[4] Math Functions: http://php.net/ref.math

pow()
The pow() function returns the first argument raised to the power of the second argument:

echo pow(10, 3) . '
'; // 1000
echo pow(10, -1) . '
'; // 0.1

This outputs:

1000
0.1

round()
The round() function returns the rounded value of a given argument by a default or given
precision in number of digits after the decimal point. If a precision is not specified, the
default precision is 0:

echo round(4.4) . '
'; // 4
echo round(4.5) . '
'; // 5

Outputs:

4
5

See the online docs for more information on the Math Functions[4].

Exercises

Create a script operators.php for the following:
1. Assign two numeric values to separate variables. Output the numbers and their sum,

difference, product, and quotient on a new line.
2. Output the modulus of the two values above.
3. Use pow() to raise your first value to the second and third power. Output each result.
4. Multiply the second value by 1.15 and round it to the nearest whole number—bonus:

round it to 2 decimal places. Output your results.

http://php.net/ref.math

PHP Web Development with MySQL—A Hands On Approach to Application Programming 43

Chapter

6
Arrays

“Python’s a drop-in replacement for BASIC in the sense that Optimus
Prime is a drop-in replacement for a truck.”

– Cory Dodt

PHP Web Development with MySQL—A Hands On Approach to Application Programming44

6. Arrays

When we have data that logically relate to each other, we often want to group that data
together into a single data structure to contain them. The most basic data structure for gath-
ering a collection of related information is an array.

An array in PHP is an ordered map that associates values to keys. Arrays in PHP can be
represented using either integer or string keys that match an associated value.

Simple Arrays in PHP
A simple array uses integers as keys, typically starting from 0 and going to n-1 (where n is the
number of elements in an array). This implementation is similar to how arrays are accessed
in other programming languages. These are called “numeric” or “indexed” arrays.

Creating

Here is how you create a numeric array in PHP:

$us_states = array(); // Empty array

// Populated array
$us_states = array("California", "Florida", "Wisconsin");

Short Array Syntax

Prior to version 5.4 of PHP, programmers had to create arrays using the array() function.
Version 5.4 introduced short array syntax, which allows you to create arrays using square
brackets ([&]). Here is how to create the above arrays using the short array syntax:

$us_states = []; // Empty array (short array syntax)

// Populated array (short array syntax)
$us_states = ["California", "Florida", "Wisconsin"];

Accessing Single Elements

Using $us_states as an example, we can access our array’s individual values through the
numeric keys. The indexed keys for our numeric array will start at zero (0), and we access
the corresponding values by placing the key in between a set of square brackets ([&])
following the variable name of our array:

echo "Sacramento is the capital of $us_states[0].
";
echo "Tallahassee is the capital of $us_states[1].
";
echo "Madison is the capital of $us_states[2].";

Associative Arrays

PHP Web Development with MySQL—A Hands On Approach to Application Programming 45

Associative Arrays
An associative array uses a string as a key connected with a value in an array.

Enumerated Versus Associative

Associative arrays are great to use because they allow the developer to associate a mean-
ingful word as a key to a value instead of relying on an arbitrary numeric value that typically
has no significant association to the value it is mapped to.

Creating

The syntax for creating an associative array in PHP is a little different because it requires that
you specify both the key and it’s associated value upon creation of the element pair. The key
and it’s value are separated by the => operator (sometimes called the “rocket” operator):

$us_state_capitals = array(
 "California" => "Sacramento",
 "Florida" => "Tallahassee",
 "Wisconsin" => "Madison"
);

Short Array Syntax

Here is how to create the above arrays using short array syntax:

$us_state_capitals = [
 "California" => "Sacramento",
 "Florida" => "Tallahassee",
 "Wisconsin" => "Madison"
];

Accessing Single Elements
Using $us_state_capitals as an example, we can access individual values of our array through
the associated keys. Like the numeric array, values are accessed by specifying the key in
between a set of square brackets ([&]) following the variable name of our array:

echo "The capital of California is {$us_state_capitals['California']}.
";
echo "The capital of Florida is {$us_state_capitals['Florida']}.
";
echo "The capital of Wisconsin is {$us_state_capitals['Wisconsin']}.
";

PHP Web Development with MySQL—A Hands On Approach to Application Programming46

6. Arrays

Adding Values

[1] array_push(): http://php.net/array-push
[2] count(): http://php.net/count

Arrays in PHP are immutable. That is, they can change after they are initially created. This
property allows us to add and delete items from an array.

There are two ways to add values to the end of arrays. The first is to use the array_push()[1]
function:

// Add value to end of numeric array
array_push($us_states, 'Wisconsin');

// Add value to end of associative array
array_push($us_state_capitals, 'California' => 'Sacramento');

The second is to use the following syntax:

// Add value to end of numeric array
$us_states[] = 'Wisconsin';

// Add value with this key to end of associative array
$us_state_capitals['California'] = 'Sacramento';

Explicit Versus Short Array Syntax
Short array syntax is generally preferred over using the array keyword because it’s less verbose.

Useful Array Functions
count()

You will often need to know how many elements are in your array. The count()[2] function
returns the number of items in an array:

$us_states_i_lived_in = ["California", "Florida", "Wisconsin"];
$number_of_states = count($us_states_i_lived_in);

echo "I have lived in $number_of_states
";

http://php.net/array-push
http://php.net/count

Useful Array Functions

PHP Web Development with MySQL—A Hands On Approach to Application Programming 47

array_pop()

[3] array_pop(): http://php.net/array_pop
[4] array_shift(): https://php.net/array_shift
[5] array_merge(): http://php.net/array_merge

If you need to get the last element and remove it from an array, you will want to use the
function array_pop()[3]. Here is an example how to use it:

$us_states = ["California", "Florida", "Wisconsin"];
$last_state = array_pop($us_states);

echo "I currently live in $last_state
"; // Wisconsin
// Count of $us_states is now 2
echo "There are now count($us_states) left in the us_states array";

shift()

If you need to get the first element and remove it from an array, you will want to use the
function array_shift()[4]. Here is an example how to use it:

$us_states = ["California", "Florida", "Wisconsin"];
$first_state = array_shift($us_states);

echo "I was born in $first_state
"; // California
// Count of $us_states is now 2
echo "There are now count($us_states) left in the us_states array";

array_merge()

The array_merge()[5] function appends one or more arrays to the end of the previous array:

$us_states = ["California", "Florida", "Wisconsin"];
$more_us_states = ["Virginia", "Maryland", "New York"];
$merged_us_states = array_merge($us_states, $more_us_states);

echo "<pre>";
print_r($merged_us_states);
echo "</pre>";

http://php.net/array_pop
https://php.net/array_shift
http://php.net/array_merge

PHP Web Development with MySQL—A Hands On Approach to Application Programming48

6. Arrays

Results in:

Array
(
 [0] => California
 [1] => Florida
 [2] => Wisconsin
 [3] => Virginia
 [4] => Maryland
 [5] => New York
)

[6] array_key_exists(): https://php.net/array_key_exists
[7] array_keys(): http://php.net/array_keys

array_key_exists()

The array_key_exists()[6] is used to check if a given key exists in an array (Listing 6.1).

Listing 6.1.

 1. <?php
 2. $us_state_capitals = [
 3. "California" => "Sacramento",
 4. "Florida" => "Tallahassee",
 5. "Wisconsin" => "Madison"
 6.];
 7.
 8. if (array_key_exists('California', $us_state_capitals))
 9. {
10. echo "{$us_state_capitals['California']} is the captital of California
";
11. }
12.
13. if (!array_key_exists('Montana', $us_state_capitals))
14. {
15. echo "The key 'Montana' was not found in us_state_capitals
";
16. }

Results in:

Sacramento is the capital of California.
The key 'Montana' was not found in us_state_capitals.

array_keys()
In order to get all of the keys for an array, you can use the array_keys()[7] function as shown
in Listing 6.2.

https://php.net/array_key_exists
http://php.net/array_keys

Useful Array Functions

PHP Web Development with MySQL—A Hands On Approach to Application Programming 49

Listing 6.2.

 1. $us_state_capitals = [
 2. "California" => "Sacramento",
 3. "Florida" => "Tallahassee",
 4. "Wisconsin" => "Madison"
 5.];
 6.
 7. echo "<pre>";
 8. print_r(array_keys($us_state_capitals));
 9. echo "</pre>";

Results in:

Array
(
 [0] => California
 [1] => Florida
 [2] => Wisconsin

)

Here is an example if you are only looking for a key (or keys) mapped to a value (or values)
contained in an array as in Listing 6.3.

Listing 6.3.

 1. $us_state_capitals = [
 2. "California" => "Sacramento",
 3. "Florida" => "Tallahassee",
 4. "Wisconsin" => "Madison"
 5.];
 6.
 7. echo "<pre>";
 8. print_r(array_keys($us_state_capitals, “Madison”));
 9. echo "</pre>";

Results in:

Array
(
 [0] => Wisconsin

)

PHP Web Development with MySQL—A Hands On Approach to Application Programming50

6. Arrays

array_values()

[8] array_values(): http://php.net/array_values
[9] array_splice(): http://php.net/array_splice

In order to get all of the values for an array, you can use the array_values()[8] function as
follows in Listing 6.4.

Listing 6.4.

 1. $us_state_capitals = [
 2. "California" => "Sacramento",
 3. "Florida" => "Tallahassee",
 4. "Wisconsin" => "Madison"
 5.];
 6.
 7. echo "<pre>";
 8. print_r(array_values($us_state_capitals));
 9. echo "</pre>";

Results in:

Array
(
 [0] => Sacramento
 [1] => Tallahassee
 [2] => Madison

)

array_splice()

array_splice()[9] is a useful function that we can use to remove a range of elements from an
array and replace that range with another range of elements or not at all. Listing 6.5 is an
example that removes items from an array.

Listing 6.5.

 1. $us_states = [
 2. "California",
 3. "Arizona",
 4. "Florida",
 5. "Wisconsin"
 6.];
 7. array_splice($us_states, 1, 2); // Removes 'Arizona' and 'Florida'
 8.
 9. echo "<pre>";
10. print_r($us_states);
11. echo "</pre>";

http://php.net/array_values
http://php.net/array_splice

Useful Array Functions

PHP Web Development with MySQL—A Hands On Approach to Application Programming 51

Results in:
Array
(
 [0] => California
 [1] => Wisconsin
)

Listing 6.6 is an example that replaces the removed section with all the elements in another
array.

Listing 6.6.

 1. $us_states = [
 2. "California",
 3. "Arizona",
 4. "Florida",
 5. "Wisconsin"
 6.];
 7.
 8. $more_us_states = ["Virginia", "New York"];
 9. // Removes 'Arizona' and 'Florida', and replaces
10. // them with 'Virginia' and 'New York'
11. array_splice($us_states, 1, 2, $more_us_states);
12.
13. echo "<pre>";
14. print_r($us_states);
15. echo "</pre>";

Results in:
Array
(
 [0] => California
 [1] => Virginia
 [2] => New York
 [3] => Wisconsin
)

PHP Web Development with MySQL—A Hands On Approach to Application Programming52

6. Arrays

Sorting

[10] asort(): http://php.net/asort
[11] arsort(): http://php.net/arsort
[12] “Sorting Arrays”: https://php.net/array.sorting

After populating an array, you may need to work with it in sorted order. asort()[10] will
reorder an array with the values in sorted order and preserve the key-value pairs. Listing 6.7
is an example where that resorts U.S. state capitals in alphabetic order.

Listing 6.7.

 1. $us_state_capitals = [
 2. "California" => "Sacramento",
 3. "Florida" => "Tallahassee",
 4. "Wisconsin" => "Madison"
 5.];
 6.
 7. asort($us_state_capitals);
 8.
 9. echo "<pre>";
10. print_r($us_state_capitals);
11. echo "</pre>";

Results in:
Array
(
 [Wisconsin] => Madison
 [California] => Sacramento
 [Florida] => Tallahassee
)

PHP provides many built-in functions for sorting arrays. For example, if you need to
reverse sort an array, use arsort()[11]. For a complete list, see “Sorting Arrays”[12].

Multidimensional Arrays
The arrays we have dealt with so far are all single-dimensional arrays. However, like many
other programming languages, PHP allows for the creation of multidimensional arrays.
One way to visualize multidimensional arrays is to think of each dimension as an axis of
numbers. For example, a single-dimensional array could be a single number line of values
such as an X-axis. Using this metaphor, you can think of a two-dimensional array as the

http://php.net/asort
http://php.net/arsort
https://php.net/array.sorting

Multidimensional Arrays

PHP Web Development with MySQL—A Hands On Approach to Application Programming 53

X- and Y-axis, which might represent points contained in an area. Taking this example one
step further, a three-dimensional array could represent the X-, Y-, and Z-axis, representing
points contained in a volume.

Multidimensional arrays work for both numeric and associative arrays. Listing 6.8 is an
example of creating and accessing a two-dimensional numeric array holding a simple grid
for a “Battleship” game.

Listing 6.8.

 1. $battleship_grid = [
 2. ["miss", "miss", "miss", "miss"],
 3. ["miss", "miss", "miss", "hit"],
 4. ["miss", "miss", "miss", "hit"],
 5. ["miss", "miss", "miss", "hit"],
 6.];
 7.
 8. // Coordinates to sink my battleship
 9. echo "{$battleship_grid[1][3]},"
10. . "{$battleship_grid[2][3]},"
11. . "{$battleship_grid[3][3]}";

Results in:
hit,hit,hit

Listing 6.9 is an example of how to create and access a two-dimensional associative array
holding some of the cities keyed by the state that Oscar and I have lived in.

Listing 6.9.

 1. $us_cities_we_lived_in = [
 2. "Ken" => [
 3. "California" => "San Diego",
 4. "Florida" => "Orlando",
 5. "Wisconsin" => "Madison"
 6.],
 7. "Oscar" => [
 8. "New York" => "New York",
 9. "Maryland" => "Baltimore",
10. "Virginia" => "Richmond"
11.]
12.];
13.
14. echo "I live in {$us_cities_we_lived_in['Ken']['Wisconsin']},
";
15. echo "and Oscar lives in {$us_cities_we_lived_in['Oscar']['Virginia']}.";

PHP Web Development with MySQL—A Hands On Approach to Application Programming54

6. Arrays

Results in:

I live in Madison,
and Oscar lives in Richmond.

See the online docs for more information about arrays[13].

[13] arrays: http://php.net/language.types.array

Exercises
Create a script arrays.php for the following:

1. Create an array to hold a list of at least five book titles. Echo the title of the third and
fourth books.

2. Create an associative array to hold a list of at least three book titles and their authors.
Use book titles as the keys. Output the title and author of each book on a new line.

3. Append another book and author to the list of books above. Use print_r() to see the
array’s structure.

4. Output how many books are in your list of books.
5. Use asort() to sort your books by title. Use print_r() to confirm the array is sorted

correctly.

http://php.net/language.types.array

PHP Web Development with MySQL—A Hands On Approach to Application Programming 55

Chapter

7
Truth, Comparisons, Conditions,
and Compound Conditions

“I had a nightmare once in which I had convinced a friend how wonderful
C++ is. A while later he came back., and he was mad.”

– Robin Rosenberg

PHP Web Development with MySQL—A Hands On Approach to Application Programming56

7. Truth, Comparisons, Conditions, and Compound Conditions

This chapter deals essentially with conditional logic. This is the part of your code where
decisions are made. You typically find these decisions being made inside if/else statements.
The path of execution the code takes is dependent upon the result of a comparison that is
done within these if/else statements. Let’s take a look at the different ways to create condi-
tional logic statements.

Comparison Operators
We first need to create an expression that produces a Boolean value of true or false. This can
be done using comparison operators. The following table shows all the comparison opera-
tors available in PHP:

Operator and Operands Explanation
$x == $y $x is equal to $y

$x != $y $x is not equal to $y

$x > $y $x is greater than $y

$x >= $y $x is greater than or equal to $y

$x < $y $x is less than $y

$x <= $y $x is less than or equal to $y

$x === $y $x is identical to $y in value and type

$x !== $y $x is not identical to $y in value and/or type

• The result of the comparison is either true or false.
• Numbers are compared as expected.
• Strings are compared letter by letter using ASCII values until an inequality is found.

Here is a simple if/else statement:

if ($age > 18)
{
 echo 'You can vote';
}
else
{
 echo 'You can not vote';
}

Comparison Operators

PHP Web Development with MySQL—A Hands On Approach to Application Programming 57

What is Equality?
• == tests whether the value is equal
• === tests whether the value is equal and also if it’s same data type

The == operator will do automatic type conversion for an equality test, see Listing 7.1.

Listing 7.1.

 1. $age_string = "18";
 2.
 3. if ($age == 18)
 4. {
 5. echo 'You can vote';
 6. }
 7. else
 8. {
 9. echo 'You can not vote';
10. }

Outputs the following:

You can vote

However, === requires that two values be of the same type and equal in order to be true as in
Listing 7.2.

Listing 7.2.

 1. $age_string = "18";
 2.
 3. if ($age === 18)
 4. {
 5. echo 'You can vote';
 6. }
 7. else
 8. {
 9. echo 'You can not vote';
10. }

Which results in:

You can not vote

PHP Web Development with MySQL—A Hands On Approach to Application Programming58

7. Truth, Comparisons, Conditions, and Compound Conditions

Spaceship Operator (<=>)
The <=> is a new operator in PHP added to PHP 7.0. It is used for comparing two expres-
sions and returns -1 if the left-hand expression is less than the right-hand expression, 0 if the
two expressions are equal, and 1 if the left-hand expression is greater than the right-hand
expression:

echo 1 <=> 2 . '
';
echo 1 <=> 1 . '
';
echo 2 <=> 1 . '
';

Results in:

-1
0
1

A better example of how you might use the <=> looks like Listing 7.3.

Listing 7.3.

 1. <?php
 2. $a_number = 1;
 3. $another_number = 2;
 4.
 5. $comparison_result = $a_number <=> $another_number;
 6.
 7. switch ($comparison_result) {
 8. case -1;
 9. echo "$a_number < $another_number";
10. break;
11. case 0;
12. echo "$a_number == $another_number";
13. break;
14. case 1;
15. echo "$a_number > $another_number";
16. break;
17. default:
18. echo "Error!";
19. break;
20. }

Results in:

1 < 2

Conditional Logic

PHP Web Development with MySQL—A Hands On Approach to Application Programming 59

Conditional Logic

[1] elseif: http://php.net/control-structures.elseif

You have already seen how the simple if/else statement works. Let’s take a look at other
ways we can write conditional statements in PHP.

if/else if/else

A typical block of if/else statments looks like Listing 7.4.

Listing 7.4.

 1. if ($age > 18)
 2. {
 3. echo 'You can vote';
 4. }
 5. elseif ($age > 16)
 6. {
 7. echo 'You can drive';
 8. }
 9. else
10. {
11. echo 'Get back to school!';
12. }

You can also embed conditional logic directly into your HTML as follows:

<?php if ($age > 18) : ?>
 <h1>You can vote</h1>
<?php elseif ($age > 16) : ?>
 <h1>You can drive</h1>
<?php else : ?>
 <h1>Get back to school!</h1>
<?php endif; ?>

Note that in the above examples else if can also be substituted for elseif[1] when using curly
braces ({}). However, when using a colon (:) to define if/elseif conditions, a parse error
results if you separate elseif into two words (i.e. else if).

http://php.net/control-structures.elseif

PHP Web Development with MySQL—A Hands On Approach to Application Programming60

7. Truth, Comparisons, Conditions, and Compound Conditions

Ternary

[2] Ternary Operator: http://phpa.me/php-ternary

Most modern programming languages have a ternary operator that works essentially like a
shorthand if/else statement. Suppose you needed a piece of code that held a Boolean value
indicating if someone was old enough to vote. Listing 7.5 shows how you might write it.

Listing 7.5.

 1. $able_to_vote = NULL;
 2.
 3. if ($age > 18)
 4. {
 5. $able_to_vote = true;
 6. }
 7. else
 8. {
 9. $able_to_vote = false;
10. }

A more compact way to write this code would be to use the ternary operator like so:

$able_to_vote = ($age > 18) ? true : false;

The ternary operator has a conditional statement in between two parentheses, followed by
a question mark (?), then the value that will be assigned if the condition is true, followed by
a colon (:), then a value that will be assigned if the condition is false. You typically create
a variable and assign the results of the ternary operation to the variable. See the Ternary
Operator[2] documentation for more information.

http://phpa.me/php-ternary

Compound Conditional Logic Using Logical Operators

PHP Web Development with MySQL—A Hands On Approach to Application Programming 61

Switch
Another useful way to write conditional statements are with a switch and several case
statements. Programmers typically use a switch statement when they have more than four
conditions they want to check for. Listing 7.6 is an example of how you might use a switch
and case statements.

Listing 7.6.

 1. $hungry_for = 'ice cream'
 2. switch ($hungry_for)
 3. {
 4. case 'burgers':
 5. echo 'The Nitty Gritty on Frances St. is great!';
 6. break;
 7. case 'ice cream':
 8. echo 'Get some Babcock Ice Cream at the Memorial Union at UW Madison!';
 9. break;
10. case 'chocolate':
11. echo 'Gail Ambrosius Chocolatier on Atwood Ave. is my favorite!';
12. break;
13. case 'laotian':
14. echo 'Lao Laan Xang on Atwood Ave. is the best!';
15. break;
16. default:
17. echo 'There are so many great places to eat in Madison!!';
18. break;
19. }

The switch statement will contain several case statements with each case ending in a colon
(:). The code statements following the colon (:) will be executed upon the case matching the
variable specified in the parenthesis following the switch up until the first break statement is
encountered. Therefore, it is very important (in most cases) to have a break statement sepa-
rating your case statements. Note that it is a best practice to always have a default case, even
if you do not expect your default case to be executed. It can be very helpful in debugging
and error handling.

PHP Web Development with MySQL—A Hands On Approach to Application Programming62

7. Truth, Comparisons, Conditions, and Compound Conditions

Compound Conditional Logic Using Logical Operators

[3] operator precedence: http://php.net/language.operators.precedence

We can create quite complex conditions by combining them using various logical operators.

Logical Operators

PHP defines several logical operators. Here is a table of them:

Operator Example Meaning Result
&& $a && $b AND TRUE if both $a AND $b are TRUE
|| $a || $b OR TRUE if either $a OR $b is TRUE
! !$a NOT TRUE if $a is NOT TRUE
xor $a xor $b XOR TRUE if either $a OR $b is TRUE, but not both.

(operates at different precedence)
and $a and $b AND TRUE if both $a AND $b are TRUE.

(operates at different precedence)
or $a or $b OR TRUE if either $a OR $b is TRUE.

(operates at different precedence)

Note that the use of and, or, and xor use a lower order of operator precedence[3] than &&
and ||. I do not recommend using and & or, but prefer && and || for a couple of reasons. The
first is as mentioned, or & and operate at different precedences and would almost always
require the use parenthesis for correct use. Second, most every modern programming
language has standardized on the use of || for logical OR and && for logical AND. Regarding
xor, it would be nice if ^^ were used as a standardized symbol for logical XOR and it oper-
ated at the same precedence level as && and ||, however most programming languages do not
have a logical XOR symbol. A good solution to this problem that operates at the same level
of precedence would be: !$a != !$b

Compound Conditional Statements

The combining of logical operators within conditional statements can be quite handy and
add to the readability of your code. Consider the problem of executing some code only if a
number is within a certain range. Suppose we want to assign a letter grade of “B” only if a

http://php.net/language.operators.precedence

Compound Conditional Logic Using Logical Operators

PHP Web Development with MySQL—A Hands On Approach to Application Programming 63

student gets a score of between 80 and 90 (inclusive) on a test. We might solve this problem
with the code in Listing 7.7.

Listing 7.7.

 1. $letter_grade = NULL;
 2.
 3. if ($score >= 80)
 4. {
 5. if ($score <= 90)
 6. {
 7. $letter_grade = 'B';
 8. }
 9. }

A better, and more readable solution, would be to use the logical operator && to eliminate the
interior if:

$letter_grade = NULL;

if ($score >= 80 && $score <= 90)
{
 $letter_grade = 'B';
}

Using logical AND to create compound conditional statements is often used when matching
inclusive range values. Conversely, the use of logical OR is used in a compound conditional
statement when you want to exclude a certain range. Consider the problem of applying a ten
percent discount for people that are either children or senior citizens. For this example let’s
arbitrarily say someone is a child if they are under 18 years old and a senior citizen if they
are 55 years or older:

$child_or_senior_discount_applies = false;

if ($age < 18 || $age >= 55)
{
 $child_or_senior_discount_applies = true;
}

PHP Web Development with MySQL—A Hands On Approach to Application Programming64

7. Truth, Comparisons, Conditions, and Compound Conditions

Exercises
Create a script comparisons.php for the following:

1. Use $x = random_int(1,10) to pick a number between 1 and 10. Output the value of $x.
Then indicate if it is between 3 and 7 inclusive.

2. Use $x = random_int(1,10) to pick a number between 1 and 10. Output the value of $x.
Indicate if it’s less than 3, between 3 and 7 inclusive, or greater than 7.

3. Redo the previous exercise using compound conditional statements.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 65

Chapter

8
Verifying Variables and
Type Checking

“A C program is like a fast dance on a newly waxed dance floor by people
carrying razors.”

–Waldi Ravens

PHP Web Development with MySQL—A Hands On Approach to Application Programming66

8. Verifying Variables and Type Checking

Verifying Variables

[1] isset(): https://php.net/isset
[2] empty(): https://php.net/empty

PHP is most often used for developing web applications. As such, you need to get data from
your form entries. For security reasons and standard practice, you want to verify the content
of this input. Maybe you want to check if a user entered anything at all into a field. You
could use == to check for empty strings, however it is better to use the built-in PHP func-
tions isset()[1] and empty()[2]. isset() checks that a variable exists and is set. empty() checks
that a variable has any contents. See Listing 8.1.

Listing 8.1.

 1. <?php
 2. $word1 = 'flibertigibbits'; // $word1 is set, but not empty
 3. $word2 = ''; // $word2 is set, but it is also empty
 4.
 5. if (isset($word1))
 6. {
 7. echo '$word1 is set
';
 8. }
 9. else
10. {
11. echo '$word1 is NOT set
';
12. }
13.
14. if (empty($word1))
15. {
16. echo '$word1 is empty
';
17. }
18. else
19. {
20. echo '$word1 is NOT empty
';
21. }
22.
23. if (isset($word2))
24. {
25. echo '$word2 is set
';
26. }
27. else
28. {
29. echo '$word2 is NOT set
';
30. }
31.

https://php.net/isset
https://php.net/empty

Verifying and Checking Variable Types

PHP Web Development with MySQL—A Hands On Approach to Application Programming 67

32. if (empty($word2))
33. {
34. echo '$word2 is empty
';
35. }
36. else
37. {
38. echo '$word2 is NOT empty
';
39. }
40.
41. if (isset($word3))
42. {
43. echo '$word3 is set
';
44. }
45. else
46. {
47. echo '$word3 is NOT set
'; // $word3 doesn't exist so it is not set
48. }
49.
50. if (empty($word3))
51. {
52. echo '$word3 is empty
'; // $word3 is considered empty although it doesn't exist
53. }
54. else
55. {
56. echo '$word3 is NOT empty
';
57. }

This outputs:

$word1 is set
$word1 is NOT empty
$word2 is set
$word2 is empty
$word3 is NOT set
$word3 is empty

PHP Web Development with MySQL—A Hands On Approach to Application Programming68

8. Verifying Variables and Type Checking

Verifying and Checking Variable Types

[3] built-in functions: https://php.net/book.var

Since PHP is a dynamically typed language, you might also want to use some of the built-in
functions[3] to verify the types of PHP variables:

Function Type Checked Explanation
is_bool() boolean returns true if parameter is a boolean
is_int() integer returns true if parameter is an integer
is_float() float returns true if parameter is a float
is_string() string returns true if parameter is a string
is_scalar() scalar data types returns true if parameter is a scalar type, any

of the above

Listing 8.2 shows how to check for types.

Listing 8.2.

 1. <?php
 2. $bool_value = false;
 3. $int_value = 42;
 4. $float_value = 37.4;
 5. $string_value = "The answer to life, the universe, and everything";
 6.
 7. if (is_bool($bool_value))
 8. {
 9. echo '$bool_value IS a boolean data type
';
10. }
11.
12. if (is_int($int_value))
13. {
14. echo '$int_value IS an integer data type
';
15. }
16.
17. if (is_float($float_value))
18. {
19. echo '$float_value IS a floating point data type
';
20. }
21.
22. if (is_string($string_value))
23. {
24. echo '$string_value IS a string data type
';
25. }

https://php.net/book.var

Verifying and Checking Variable Types

PHP Web Development with MySQL—A Hands On Approach to Application Programming 69

This code outputs:

$bool_value IS a boolean data type
$int_value IS an integer data type
$float_value IS a floating point data type
$string_value IS a string data type

Listing 8.3 is an example of checking variables if they are scalar types.

Listing 8.3.

 1. <?php
 2.
 3. $a_word = "serendipity";
 4. $some_words = array("some", "random", "words");
 5.
 6. if (is_scalar($a_word))
 7. {
 8. echo '$a_word IS a scalar variable
';
 9. }
10.
11. if (!is_scalar($some_words))
12. {
13. echo '$some_words IS NOT a scalar variable
';
14. }

This outputs:

$a_word IS a scalar variable
$some_words IS NOT a scalar variable

Note that Booleans, integers, floats, and strings are scalar types. Arrays, objects, call-
ables, and resources are not.

It is also sometimes handy to use gettype()[4] to determine the type of a variable. Consider
the following code that outputs an HTML table of several PHP variable types, their values,
and the gettype() response. See Listing 8.4.

[4] gettype(): https://php.net/gettype

https://php.net/gettype

PHP Web Development with MySQL—A Hands On Approach to Application Programming70

8. Verifying Variables and Type Checking

Listing 8.4.

 1. <?php
 2.
 3. class Car {}
 4.
 5. $boolean = true;
 6. $integer = 123;
 7. $integer_negative = -13;
 8. $float_double = 12.35;
 9. $string = "Hello World";
10. $array = array('one', 'fish', 'two', 'fish', 'red', 'fish');
11. $object = new Car();
12. $null = NULL;
13. ?>
14.
15. <table border='1px solid;'>
16. <tr>
17. <th>Type</th>
18. <th>Value</th>
19. <th>gettype() response</th>
20. </tr>
21. <tr>
22. <td>Boolean</td>
23. <td><?= $boolean ?></td>
24. <td><?= gettype($boolean); ?></td>
25. </tr>
26. <tr>
27. <td>Integer</td>
28. <td><?= $integer ?></td>
29. <td><?= gettype($integer); ?></td>
30. </tr>
31. <tr>
32. <td>Integer Negative</td>
33. <td><?= $integer_negative ?></td>
34. <td><?= gettype($integer_negative); ?></td>
35. </tr>
36. <tr>
37. <td>Float</td>
38. <td><?= $float_double ?></td>
39. <td><?= gettype($float_double); ?></td>
40. </tr>
41. <tr>
42. <td>String</td>
43. <td><?= $string ?></td>
44. <td><?= gettype($string); ?></td>
45. </tr>
46. <tr>
47. <td>Array</td>
48. <td><?= implode(',', $array); ?></td>
49. <td><?= gettype($array); ?></td>
50. </tr>

Exercises

PHP Web Development with MySQL—A Hands On Approach to Application Programming 71

51. <tr>
52. <td>Object</td>
53. <td><?php print_r($object); ?></td>
54. <td><?= gettype($object); ?></td>
55. </tr>
56. <tr>
57. <td>Null</td>
58. <td><?php print_r($null); ?></td>
59. <td><?= gettype($null); ?></td>
60. </tr>
61. </table>

Figure 8.1 shows the output.

Exercises
Create a script types.php for the following:

1. Write and run the code in Listing 8.4 using gettype().
2. Change the values of the variables in Listing 8.4 and run it again to see if the output

changes.

Figure 8.1.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 73

Chapter

9
Looping

“They don’t make bugs like Bunny anymore.”

– Olav Mjelde

PHP Web Development with MySQL—A Hands On Approach to Application Programming74

9. Looping

Looping in PHP is used to run a block of code either a predetermined number of times or
until a specific condition is reached. When looping a predetermined number of times, this is
known as a counting loop. We don’t know how many times a code block will repeat, but we
know the condition for ending the repetition. This state is known as a sentinel loop.

There are four loop structures in PHP.
1. for

2. while

3. do/while

4. foreach

for and while loops are the most common looping structures in all programming languages.

Counting Loops
for and foreach are considered counting loops. They repeat a block of code based on a
counter variable or the number of items in a collection.

for Loops

A for loop has three clauses separated by two semi-colons (;). We call the first clause the
“initializer.” It is executed only the first time upon encountering the loop. The second clause
is called the “conditional” and is executed every time the compiler encounters the loop. The
last clause is called the “incrementer” and is used to either increment or decrement a vari-
able upon completing a loop iteration.

The syntax looks like this:

for (_initializer_; _conditional_; _incrementer_)
{
 code to execute
}

Listing 9.1 is a simple for loop that adds ten to a variable ten times.

Counting Loops

PHP Web Development with MySQL—A Hands On Approach to Application Programming 75

Listing 9.1.

 1. $looping_value = 0;
 2. $counter;
 3.
 4. for ($counter = 0; $counter < 10; $counter++)
 5. {
 6. $looping_value += 10;
 7. }
 8.
 9. echo "After $counter times through the loop, looping_value = $looping_value";

This outputs:

After 10 times through the loop, looping_value = 100

It is important to note when incrementing a variable in a loop, the variable to increment
(in this case, $looping_value) must be initialized. Otherwise, you end up with a NULL value as
your final result. This bug is common in looping. Also, note the incrementer (in this case,
$counter) will be set to 10 because the last successful iteration of the loop increments the
variable to the next value. This final value causes the loop to exit—the incrementer at this
point no longer passes the conditional expression with a value of true.

foreach Loops
The foreach loop is a convenient way to iterate through all values in an array without the
need for indexing each array item. The foreach loop has two values separated by the word as.
The first value is the actual array you will iterate over. The second value is an arbitrary vari-
able name used for accessing each element of the array from the beginning to the end.

The syntax looks like this:

foreach (_array_ as _array_element_)
{
 code to be executed
}

Here is a simple foreach loop that outputs each value in an array:

$colors = array('red', 'green', 'blue', 'orange');

foreach ($colors as $color)
{
 echo "The current color is $color
";
}

PHP Web Development with MySQL—A Hands On Approach to Application Programming76

9. Looping

This loop produces this output:

The current color is red
The current color is green
The current color is blue
The current color is orange

Sentinel Loops
while and do/while are sentinel loops. They execute until some condition is false.

while Loops

When new programmers learn about looping, they are first taught how to use the while loop
because it only has one clause and is the simplest loop to create. In fact, it is typically shown
as a counting loop:

$looping_value = 0;
$counter = 0;

while ($counter < 10)
{
 $looping_value += 10;
 $counter++;
}

This example, however, is not the best use of a while loop because the programmer has to
separately initialize the counter variable and then remember to increment the counter vari-
able at the bottom of the loop. The for loop was designed to be used as a counting loop.

It’s essential to ensure your loops terminate. If not, you create an infinite loop that only
ends if PHP’s max execution time is reached.

The proper use of the while loop is to continue executing a block of code until a particular
event occurs.

Let us assume we have a MySQL database that contains product information stored in a
table. Let us say we want to output the product name and unit price for every row in the
table, but we don’t know how many rows it contains. We just want to output all of them.

Sentinel Loops

PHP Web Development with MySQL—A Hands On Approach to Application Programming 77

PHP offers several functions for storing and retrieving data in MySQL databases. When
querying a database, we get an associative array returned that contains the whole result
set. This result set needs to be passed into a function (mysqli_fetch_array()) that returns
the next row in the record set as an associative array that uses the field names as element
references for the values contained for this row. Each subsequent call to mysqli_fetch_array()
returns the next row until there are no more rows left in the record set. When there are no
more rows in the record set, NULL is returned, which allows you to exit a loop. Listing 9.2 an
example of a while loop.

Listing 9.2.

 1. <html>
 2. <head>
 3. <title>Fetching Multiple Rows</title>
 4. </head>
 5. <body>
 6. <?php
 7. $dbc = mysqli_connect('localhost', 'testuser', 'testuser', 'northwind')
 8. or trigger_error('Error connecting to MySQL server.', E_USER_ERROR);
 9.
10. $query = "SELECT ProductName, UnitPrice FROM Products";
11.
12. $result = mysqli_query($dbc, $query)
13. or trigger_error('Error querying database.', E_USER_ERROR);
14. ?>
15. <table border='1px solid;'>
16. <tr><th>Product Name</th>
17. <th>Unit Price</th></tr>
18. <?php
19. while($row = mysqli_fetch_array($result))
20. {
21. echo '<tr><td>' . $row['ProductName'] . '</td><td>'
22. . $row['UnitPrice'] . '</td></tr>';
23. }
24. mysqli_close($dbc);
25. ?>
26. </table>
27. </body>
28. </html>

PHP Web Development with MySQL—A Hands On Approach to Application Programming78

9. Looping

Figure 9.1 shows the table of product infor-
mation from the database using a while loop.

We will look at creating and using func-
tions and working with databases in
upcoming chapters.

do/while[1] loops are helpful if you can guar-
antee you will enter the loop at least once. In
PHP, you can rarely guarantee this condi-
tion. Therefore it is seldom used.

[1] do/while: http://php.net/control-structures.do.while

Exiting and Continuing a Loop
Occasionally, you will want to either exit a loop early or continue iterating through a loop
but skip executing some code for the rest of the current iteration. PHP offers the break and
continue commands for this.

break

Use the break command in a loop if you want to exit a loop. Listing 9.3 is an example that
exits a foreach loop if an element in an array equals finished.

Listing 9.3.

 1. <?php
 2. $random_words = ['happy', 'sad', 'finished', 'anxious', 'ecstatic'];
 3.
 4. foreach ($random_words as $word)
 5. {
 6. if ($word == 'finished')
 7. {
 8. break;
 9. }
10. echo "$word
";
11. }

Here’s the output:

happy
sad

Figure 9.1.

http://php.net/control-structures.do.while

Exercises

PHP Web Development with MySQL—A Hands On Approach to Application Programming 79

continue
Use the continue command in a loop if you want to skip the rest of the current iteration and
continue to the next. See Listing 9.4 for an example that skips every third iteration of a loop.

Listing 9.4.

 1. <?php
 2. $random_words = ['one', 'two', 'three', 'anxious', 'ecstatic'];
 3.
 4. for ($i = 1; $i <= 9; i++)
 5. {
 6. if ($i % 3)
 7. {
 8. continue;
 9. }
10.
11. echo "$i
";
12. }

This loop produces the following output:

1
2
4
5
7
8

Exercises
Create a script loops.php for the following:

1. Write a loop to count from one to ten and output each value in one column. In a
second column, output the square of the number.

2. Use a foreach loop to output your list of book titles from arrays.php in Chapter 6.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 81

Chapter

10
Functions

“Walking on water and developing software from a specification are easy if
both are frozen.”

– Edward V. Berard

PHP Web Development with MySQL—A Hands On Approach to Application Programming82

10. Functions

It is very easy to write code and continue to add functionality to it. The problem is that our
program code becomes too large and unwieldy. It is common to write code modularized
into functions and limit that functionality to a specific task. Doing so allows us to reuse
these modules throughout our program. Functions also give us the ability to pass in argu-
ments and return results.

Simple Function
The simplest function takes no arguments and does not return anything; it just performs
some functionality. Let’s say you want a function that will output the greeting, “Welcome to
my Website!” you display for every page of your website. Here is what it might look like:

function outputGreetingToWebsite()
{
 echo "<h1>Welcome to my Website!</h1>";
}

When creating a function in PHP, you always start using the function keyword. Next, you
want to give your function a good name. Since your function is invoked to do something, it
is usually a good idea to start the name of your function with a verb. In this case, we want
to output a greeting to the website. Naming your function as specifically as possible helps
with the readability and maintainability of our code. Therefore outputGreetingToWebsite is a
good name. Although not specified in the PHP Standards, I usually like to name my func-
tions using something called “camel case.” As you can see by the above example, we start
the first word of the function using a lowercase letter, then with each subsequent word
joined together in the function, we capitalize the first character of the joined word. Next,
the function defines parameters that are passed into the function in between a set of paren-
thesis. In this case, we do not have any parameters to pass, so we will just use an empty set
of parenthesis. Next, the code within the function is contained within two curly braces ({}).
Additionally, each time a new opening curly brace is encountered, you will want to indent
your code. I usually use four spaces for indentation levels and double indentation (eight
spaces) for line continuations.

It is also a good idea to organize our functions. Later, when I talk about object-oriented
programming, we will put functions (called methods) into something called a “class.” For
now, let’s assume we have several functions used to output information to our website
collected into a single PHP script called outputToWebsite.php.

Function Parameters/Arguments

PHP Web Development with MySQL—A Hands On Approach to Application Programming 83

When we want to invoke or call our function somewhere else in our code (like in another
PHP script), we need to do a couple of things. First, we need to make sure we include the
code where our function is defined. We do that using the require_once() statement and
include the name of the script containing the function we want to use inside a set of quotes:

<?php
require_once('outputToWebsite.php')

Next, we call our function. In the example
below, let’s call it twice:

outputGreetingToWebsite();
outputGreetingToWebsite();

The output of calling the function twice
looks like Figure 10.1.

Function Parameters/Arguments
Functions can also take parameters. Let’s say we want to create a function that adds two
numbers as arguments to the function. Let’s call this function addTwoNumbers. We need two
parameters in between the parenthesis separated by a comma. These variables are param-
eters to the function and are considered local variables scoped to the function. It is a good
idea to be descriptive if you can with the name of these parameters as well:

function addTwoNumbers($num1, $num2)
{
 $sum = $num1 + $num2;
 echo "$num1 + $num2 = $sum
";
}

When we call this function, we need to pass in two arguments to this function in the same
order they are defined in the function:

addTwoNumbers(4, 5);

This results in the output:

4 + 5 = 9

Figure 10.1.

PHP Web Development with MySQL—A Hands On Approach to Application Programming84

10. Functions

This will also work when passing in variables:

$the_first_number = -2;
$the_second_number = 5;
addTwoNumbers($the_first_number, $the_second_number);

Resulting in the output:

-2 + 5 = 3

When calling the function, the values passed in are considered arguments to the function.
However, from the function’s perspective, the values are considered parameters. I don’t think
this bit of Computer Science will get you into any trouble if you happen to mix these two
perspectives up. When you call the function, the values of the arguments (whether literal
values or variable values) are copied to the function’s parameter variables.

Returning Values from a Function
Finally, we can write functions so that they return results to us. Expanding upon our adding
two numbers example above, let’s modify this function. Instead of echoing out the results
of the function, we can return the result and allow the code that called the function to do
whatever it wants with the result. First, let’s change the name of this function to sum since
this would be a more accurate name for what the function is doing. The only modification
we need to make to the code is to replace the echo statement to return the variable $sum:

function sum($num1, $num2)
{
 $sum = $num1 + $num2;
 return $sum;
}

Now when we call this function we can create a variable that will hold the result of the call
and set it equal to the call of the function:

$first_num = 5;
$second_num = 7;

$sum_of_two_numbers = sum($first_num, $second_num);
echo "The result of adding $first_num and $second_num is $sum_of_two_numbers
";

Further Advice On Writing Good Functions

PHP Web Development with MySQL—A Hands On Approach to Application Programming 85

This results in the following output:

The result of adding 5 and 7 is 12

If a function returns a result, and you fail to assign that result to a variable, the result
is lost.

Further Advice On Writing Good Functions
As we close this chapter, I want to give advice regarding writing good functions. Writing
functions is tricky, and it’s more of an art than science, but it’s also 90% common sense. Let’s
look at some advice for writing functions with high readability and maintainability.

Global Variables are Evil!

I cannot overemphasize this point that global variables are evil. The problem with global
variables is all of your code (at a minimum, the code within a single script) has access to
it and could change its value. This practice makes debugging and maintenance difficult.
Unfortunately, it is a lazy substitute for proper design.

In software design, it is a best practice to limit data exchanges between functions. In other
words, we pass data into functions through arguments/parameters, and we get data out of
functions through return values without affecting the rest of the program. You should not
use the global keyword inside of a function or method in PHP.

The Only Good Global is a Constant

This is not to say you cannot or should not have any global values. Constant values are a
good use of global values because any code that needs them can access them. However,
because it is constant, it cannot change. However, you want to be careful to limit the number
of global constants to what is needed.

Variable Scope

Variable scope is defined as what parts of your code can access which variables. Global
scope is the outer- or top-most level.

PHP Web Development with MySQL—A Hands On Approach to Application Programming86

10. Functions

Scoping Operators ({})
In PHP (and most other programming languages), we limit the scope of variables using
scoping operators ({}). For example, all function code is contained within a set of scoping
operators:

function sum($num1, $num2)
{
 $sum = $num1 + $num2;
 return $sum;
}

In the above example, the parameters $num1 and $num2 are defined outside the func-
tion scoping operators in the function signature. However, because we are defining a
function, these parameters only have scope—that is, hold a value—within the function
scoping operators. This is also true of variables defined within a for() loop.

Therefore, variables created within a set of scoping operators can only be directly accessed
by the code within these scoping variables. However, variables (and constants) defined
outside of scoping operators are accessible by code within the scoping operators. Consider
the example in Listing 10.1.

Listing 10.1.

 1. <?php
 2.
 3. function doSomething()
 4. {
 5. $value1 = 10;
 6.
 7. if ($value1 >= 10)
 8. {
 9. $value2 = $value1;
10. }
11. else
12. {
13. $value3 = $value1;
14. }
15.
16. echo $value2; // This outputs an undefined value
17. }

Further Advice On Writing Good Functions

PHP Web Development with MySQL—A Hands On Approach to Application Programming 87

In the code above on line 9, $value2 can access $value1 because $value1 is within $value2’s
scope. This is also true of $value3 on line 13. However, on line 16, we create a new variable
called $value2 because the one created on line 9 went out of scope after encountering the
closing scoping operator on line 10. The result of echoing out $value2 on line 16 is undefined.

Scalers are Passed in by Value

In PHP, arguments are passed to functions by value (i.e., a copy). Therefore you cannot
modify the passed-in variable. The values of the arguments are copied to the parameters.
Consider the following function and a call to it. See Listing 10.2.

Listing 10.2.

 1. <?php
 2. function incrementValueNotWorking($value)
 3. {
 4. $value++;
 5. }
 6.
 7. $number = 42;
 8.
 9. echo "Before function call: $number
";
10.
11. incrementValueNotWorking($number);
12.
13. echo "After function call: $number";

Because scaler values are passed by value, the output of $number on lines 9 and 13 are the same,
thus failing to increment $number. What happens if we re-write the code like Listing 10.3?

Listing 10.3.

 1. <?php
 2. function incrementValue($value)
 3. {
 4. $value++;
 5.
 6. return $value;
 7. }
 8.
 9. $number = 42;
10.
11. echo "Before function call: $number
";
12.
13. $number = incrementValue($number);
14.
15. echo "After function call: $number";

PHP Web Development with MySQL—A Hands On Approach to Application Programming88

10. Functions

Now the output of $number on line 15 will be one greater than on line 11.

Functions Should Do One Thing and One Thing Only.

When designing your functions, make sure they do one thing. First, it lowers the complexity
of your code, and second, it increases the reusability of your code.

Name Your Functions Completely and Succinctly.

Back in the early days of programming, we did not have the luxury of adequately naming
our functions because of the limited amount of memory available to program code. I
can remember sitting on the floor with reams of code printed out, trying to decipher the
meaning of functions called x and y as if I were using a secret decoder ring. Today, there is
no excuse for poorly naming your functions.

You want to name your functions completely and succinctly because it makes your code self
documenting. For example, if I needed to write a function for calculating the state income
tax for an employee, a good name for this function might be:
calculateEmployeeStateIncomeTax(). I know. It’s long, but there is no ambiguity as to what this
function is intended to do.

As mentioned earlier, a good template to follow is to name your function using a verb+noun
with adjectives sprinkled in as needed. If your function returns a boolean true or false (your
function answers a question), consider naming it something like isX() or hasY(). Look for
other conventions like this in the projects your work in. For example, some projects use
fetchQ() to indicate a method that works with the database or an external API.

Exercises
Create a script functions.php for the following:

1. Create functions to add, subtract, divide, multiply two numbers that return the result.
Echo the result of each operation and the two input values.

2. Create a function that accepts two arguments: a total and a sales tax rate expressed as
a percent (so 5% sales tax is expressed as 0.05). Return the sales tax owed on the total.
Then echo the total, the tax rate, and the sales tax owed.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 89

ChapterChapter

11
Working with HTML Forms

“Debugging is twice as hard as writing the code in the first place. There-
fore, if you write the code as cleverly as possible, you are, by definition, not
smart enough to debug it.”

-Brian W. Kernighan.

PHP Web Development with MySQL—A Hands On Approach to Application Programming90

11. Working with HTML Forms

PHP was designed from the beginning to be a Web programming language. Working with
data entered into HTML forms is an excellent example of how easy it is to develop Web
applications with PHP. This chapter discusses how data gets from your HTML forms into
your PHP code and how to work with it. We will create a simple form and output what the
user enters into the form back to the web page as a greeting.

A Simple Form
Let’s start by creating a simple form. Figure 11.1 shows a
simple form for entering the full name.

Listing 11.1 is the HTML markup for our form.

Listing 11.1.

 1. <html>
 2. <head>
 3. <title>Form for Entering Full Name</title>
 4. </head>
 5. <body>
 6. <h2>Enter Full Name</h2>
 7. <form action="postfullname.php" method="POST">
 8. First name:

 9. <input name="first_name"/>

10. Last name:

11. <input name="last_name"/>

12. <p>
13. <input type="submit" value="Submit Name" />
14. </form>
15. </body>
16. </html>

Note the value of the name attributes for the input elements of the form. In our PHP code, we
get access to data the user enters into the input field through the value of the name attribute.
These are called form variables. We access them using these values, which are first_name for
what the user enters into the input field for the first name and last_name for what the user
enters for the last name.

Note that once the user selects the submit button, the form sends an HTTP POST message to
the URL location identified by the action attribute. In this case, it is the PHP script postfull-
name.php residing on the local server in the current directory. All the data from the form will
be sent via the POST message and be available to this script.

Figure 11.1.

Processing Our Form and Outputting Back to the Web Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 91

Processing Our Form and Outputting Back to the Web Page
Once the form is submitted, the browser sends the form data to our postfullname.php script.
Here, we take the form data, process a greeting out of it, and then display it on the webpage.

Assuming I enter "Ken" for the first name and "Marks" for the last name, I would like the
greeting to look like Figure 11.2. Our postfullname.php script is shown in Listing 11.2.

Listing 11.2.

 1. <html>
 2. <head>
 3. <title>Full Name</title>
 4. </head>
 5. <body>
 6. <h2>Greetings!</h2>
 7. <?php
 8. $first_name = $_POST['first_name'];
 9. $last_name = $_POST['last_name'];
10.
11. echo "Hello " . $first_name . " " . $last_name . ". Thanks for submitting the form!";
12. ?>
13. </body>
14. </html>

There are several things I want you to notice. First, PHP was designed to be mixed with
HTML. You can move in and out of PHP and HTML with ease. Second, if you have any
PHP code in your script, you need to name the script using the .php extension.

$_POST Superglobal Variable

$_POST is a special variable built into PHP that holds form data, and it is available throughout
your entire set of scripts as a result of an HTTP POST. $_POST is an associative array. You
access the form data by using the name attributes from the form as associated keys into the
$_POST superglobal array.

Looking at the postfullname.php script, you can see that $_POST['first_name'] comes from
the input element name attribute identified by first_name (<input name="first_name"/>) from
postfullname.html. Likewise, $_POST['last_name'] comes from the input element name attribute
identified by last_name (<input name="last_name"/>).

You will also notice that I assigned the $_POST['first_name'] and $_POST['last_name'] to local
variables. Doing so is not necessary. However, it is often done to aid in the readability of
the code. I want to point out that using echo to output HTML to a web page should be used

Figure 11.2.

PHP Web Development with MySQL—A Hands On Approach to Application Programming92

11. Working with HTML Forms

Figure 11.3.

sparingly as it can be cumbersome to create HTML output using echo. Listing 11.3 is a
modified example of our postfullname.php script showing another method of moving in and
out of HTML and PHP to output HTML.

Listing 11.3.

 1. <html>
 2. <head>
 3. <title>Full Name</title>
 4. </head>
 5. <body>
 6. <h2>Greetings!</h2>
 7. Hello <?= $_POST['first_name'] . " " . $_POST['last_name'] ?>
 8. Thanks for submitting the form!
 9.

10. <?php print_r($_POST) ?>
11. </body>
12. </html>

Instead of using echo we use the PHP short tag <?=. This syntax is a shortcut for <?php echo,
which is incredibly convenient since you will more than likely be using PHP to process data
before turning it into HTML for output.

One other thing to notice about this simplified example is that I removed the local variables
and directly access the appropriate elements using the $_POST superglobal.

One final note about using the $_POST superglobal or working with arrays in general. Often
you need to inspect the contents of an array. For example, it might be nice to know if you
got what you expected from your form. You can use the developer tools that come with your
browser for this (most developers do this), but this only shows you what the client will send.
It is handy to quickly output the contents of an array from your PHP script under develop-
ment. You can easily do that by using the function print_r()[1].

If I add the following lines just before the closing </body> tag of the above script, I get the
output shown in Figure 11.3.

 <?php print_r($_POST) ?>
 </body>
</html>

[1] print_r(): https://php.net/print_r

https://php.net/print_r

Cleaning It Up Using a Self Referencing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 93

Cleaning It Up Using a Self Referencing Page
One thing to note when running this small web program is that we first navigate to a URL
that contains our form. Then after submitting our form, we navigate to a second page
containing our PHP code. We don’t have to do this, and it would be better if we could
somehow contain the entire form into a single script and call ourselves when the user is
ready to submit the form.

We can accomplish this by creating what’s known as a self-referencing page. To do this, we
need to use another superglobal provided by PHP that references the current web page URL
called $_SERVER['PHP_SELF'].

Let’s use our above example of outputting a greeting to a user who enters their first and last
name.

The script is made up of two sections: the form and the output of the greeting. For this
program, we want to output the form first. Then when the user submits the form, we want
to output the greeting without the form. Note that some designs will have you output the
greeting along with the form again (after submitting), but for this example, we want to
output the greeting without the form once the user submits it.

This behavior requires a little conditional logic (if/else), so I suggest making a simple deci-
sion tree or some pseudo-code:

IF user submitted form
 Output greeting with first and last name.
ELSE IF
 Output first and last name form
END IF

So how do we know if the user has submitted the form? We know this if $_POST['submit']
exists or not by passing it as an argument to the function isset(). If we get to this page
without the user pressing the Submit Name button (i.e., this is the first time the page was
rendered), then $_POST['submit'] is not set and is NULL. Let’s take a look at the modified script
that is now self-referencing. See Listing 11.4.

PHP Web Development with MySQL—A Hands On Approach to Application Programming94

11. Working with HTML Forms

Listing 11.4.

 1. <html>
 2. <head>
 3. <title>Form for Entering Full Name</title>
 4. </head>
 5. <body>
 6. <?php if (!isset($_POST['submit'])) { ?>
 7. <h2>Enter Full Name</h2>
 8. <form action="<?= $_SERVER['PHP_SELF'] ?>" method="POST">
 9. First name:

10. <input name="first_name"/>

11. Last name:

12. <input name="last_name"/>

13. <p>
14. <input type="submit" name="submit" value="Submit Name" />
15. </form>
16. <?php } else { ?>
17. <h2>Greetings!</h2>
18. Hello <?= $_POST['first_name'] . " " . $_POST['last_name'] ?>
19. Thanks for submitting the form!
20. <?php } ?>
21. </body>
23. </html>

The above code splits what to display in the body of the HTML document depending on
whether the user has submitted the form. The first time this page is rendered, the user has
not submitted the form, so $_POST['submit'] will not be set. As a result, all the HTML within
the first if statement—which displays the form—is rendered to the page. None of the HTML
from within the else statement will be rendered.

Once the user submits the form, the browser sends the HTTP POST to the very same script
(as evidenced from the form’s action attribute set to $_SERVER['PHP_SELF']). The script starts
executing from the beginning. However, when the if statement is next encountered, it is
false because the user did submit the form, and $_POST['submit'] is now set.

At this point, the code and HTML within the else statement will execute and render, respec-
tively, which causes the greeting to be output to the web page (instead of the form).

Incidentally, $_SERVER[2] is another superglobal associative array provided by PHP. It contains
information about the webserver and the execution environment. Be careful in using its
contents because they depend on the server you use and how it’s configured.

[2] $_SERVER: http://php.net/reserved.variables.server

http://php.net/reserved.variables.server

Exercise: Badlibs, Part 1

PHP Web Development with MySQL—A Hands On Approach to Application Programming 95

Exercise: Badlibs, Part 1
1. Create the self-referencing postfullname.php script and ensure it works.
2. Create the “BadLibs” part 1 program.

This exercise is based on the
popular game fill-in-the-blanks
word game. Write a simple web
application with a form that takes
a: noun, verb, adjective, and adverb.
Once the user submits the form,
your application should join the
noun, verb, adjective, and adverb
into a funny sentence or short para-
graph of your creation. For an extra
challenge, consider making it a
self-referencing form and making a
more extensive story/paragraph by
using more nouns, verbs, adjectives,
and adverbs, etc.

Figure 11.4 is an example of what it
might look like.

And Figure 11.5 is an example of
the output.

Figure 11.4. Badlibs form

Figure 11.5. Badlibs output

PHP Web Development with MySQL—A Hands On Approach to Application Programming 97

Inserting Data Into a
MySQL Database

“For a long time, it puzzled me how something so expensive, so leading
edge could be so useless. And then it occurred to me that a computer is
a stupid machine with the ability to do incredibly smart things, while
computer programmers are smart people with the ability to do incredibly
stupid things. They are, in short, a perfect match.”

–Bill Bryson

Chapter

12

PHP Web Development with MySQL—A Hands On Approach to Application Programming98

12. Inserting Data Into a MySQL Database

MySQL is the most popular Open-Source Standard Query Language[1] (SQL) database
management system. A database provides a fast and reliable method for retrieving persistent
information that can be stored and managed securely. PHP was designed to integrate seam-
lessly with databases, and PHP provides specific functions that simplify interacting with
MySQL.

[1] Standard Query Language: https://en.wikipedia.org/wiki/SQL

Using the MySQL CLI
There are several tools available for interacting with your MySQL server. Some are easier
to use than others and provide a web interface that makes interacting with your databases
more intuitive. In the Writing your first PHP chapter, you saw how to install one of those
visual tools called Adminer.

However, before getting too comfortable using Adminer, you should become familiar with
the Command Line Interface (CLI) tool installed with every installation of the MySQL
server. That is what we will use here.

First, you will want to open a Terminal window in your OS. Every time you bring up a new
Terminal window, you start in your home directory (denoted by the ~) with the Bash shell
running (indicated by the $ just before the cursor). The Bash shell is one common way we
interact with our OS—commonly referred to as the command line.

To use the MySQL CLI_tool, type the following command in the Terminal:

sudo mysql

After entering your password,
you should see Figure 12.1
displayed in your Terminal
window.

You have left the Bash shell and
are now in the MySQL CLI tool
as denoted by the mysql> prompt
preceding the cursor.

At this point, the tool is ready
to respond to SQL commands.
This book is not meant to be a
complete resource for using MySQL, nor the topics around database design. For a complete

Figure 12.1.

https://en.wikipedia.org/wiki/SQL

Using the MySQL CLI

PHP Web Development with MySQL—A Hands On Approach to Application Programming 99

reference guide on how to use SQL with MySQL, consult the MySQL documentation[2]—
currently version 8.0 in the Ubuntu LTS release. More than likely, you will be interested in
the SQL Statement Syntax[3].

You can quickly identify the version of your MySQL installation by typing the following
command in the Bash shell
(not the MySQL CLI). You
should see output similar to
Figure 12.2.

mysql --version

[2] MySQL documentation: https://dev.mysql.com/doc/refman/8.0/en/
[3] SQL Statement Syntax: https://dev.mysql.com/doc/refman/8.0/en/sql-statements.html

Creating the “Northwind” Database
To demonstrate some of the functionality of MySQL, let’s download a famous sample
database Microsoft created years ago for teaching people how to use the Access database
application. Since then, it has been ported to support IIS and MySQL. The Northwind data-
base holds sales, inventory, and employee data for the fictitious company called “Northwind
Traders.”

First, we need to create an empty database
using SQL. We do that by typing the following
command in the MySQL CLI tool (Figure 12.3).

CREATE DATABASE northwind;

If you typed everything correctly, you should get
a Query OK, 1 row affected message.

In chapter 2, we created a user called testuser. Let’s grant privileges on the northwind data-
base to testuser. Enter the following command (Figure 12.4).

GRANT ALL PRIVILEGES ON northwind.* TO 'testuser'@'localhost';

Exit the MySQL CLI tool by
typing exit, and return to the
Bash shell:

Figure 12.2.

Figure 12.3.

Figure 12.4.

https://dev.mysql.com/doc/refman/8.0/en/
https://dev.mysql.com/doc/refman/8.0/en/sql-statements.html

PHP Web Development with MySQL—A Hands On Approach to Application Programming100

12. Inserting Data Into a MySQL Database

Loading Up the Northwind Database
The Northwind database is contained in two SQL files;
one containing the schema, the second containing the
data. It is available to download from:

• https://raw.githubusercontent.com/jpwhite3/northwind-MySQL/master/northwind.sql
• https://raw.githubusercontent.com/jpwhite3/northwind-MySQL/master/northwind-data.sql

You can download them using wget in the Bash shell. I like to download files into a Downloads
folder under my home folder. Once you have navigated to the folder where you want to
download the Northwind SQL file, type the following commands:

wget https://raw.githubusercontent.com/jpwhite3/northwind-MySQL/master/northwind.sql
wget https://raw.githubusercontent.com/jpwhite3/northwind-MySQL/master/northwind-data.sql

You will see the output shown in Figure 12.6 after downloading the files and doing a direc-
tory listing (ls).

Figure 12.5.

Figure 12.6.

https://raw.githubusercontent.com/jpwhite3/northwind-MySQL/master/northwind.sql
https://raw.githubusercontent.com/jpwhite3/northwind-MySQL/master/northwind-data.sql

Using the MySQL CLI

PHP Web Development with MySQL—A Hands On Approach to Application Programming 101

Now let’s import the Northwind SQL schema and data files into the MySQL CLI tool by
redirecting the Unix Standard Input from the keyboard to use the files we downloaded by
typing the following commands in the Bash shell:

mysql -u testuser -p northwind < northwind.sql
mysql -u testuser -p northwind < northwind-data.sql

If everything works OK, in typical Unix fashion, we won’t get any responses. See Figure 12.7.

Basic SQL Commands

The following sections will demonstrate some basic SQL commands we will use to work
with databases and tables.

Let’s log back into the MySQL CLI tool by typing in the Bash shell:

mysql -u testuser -p

Show Databases

If we are interested in the names of the databases that are
available to us, we can type the following SQL command:

SHOW DATABASES;

We should see the output in Figure 12.8.

Figure 12.7.

Figure 12.8.

PHP Web Development with MySQL—A Hands On Approach to Application Programming102

12. Inserting Data Into a MySQL Database

Use a Databases
Let’s verify we imported the
Northwind database correctly.
To work with a database, we
need to issue an SQL command
indicating we want to use it. At
the mysql> prompt type:

USE northwind;

You should see something like Figure 12.9.

Show Tables

We can show all the tables in the northwind database by issuing the
following SQL command:

SHOW TABLES;

You should see output like Figure 12.10.

Describe a Table

Let’s say we are interested in finding out more information about
the structure of the products table. We can describe all the fields (or
columns) in a table by issuing the following SQL command:

DESCRIBE products;

Figure 12.11 shows the output.

DESCRIBEing a table shows the
Field names in order, their data
types, and other important
information regarding the table.

Figure 12.9.

Figure 12.10.

Figure 12.11.

Using the MySQL CLI

PHP Web Development with MySQL—A Hands On Approach to Application Programming 103

SELECTing from a Table
Selecting data from a table is incredibly powerful and allows us to retrieve rows and specific
columns from a table based on criteria we specify in the SELECT statement.

If we are interested in retrieving ALL the rows and columns in the invoices table, we can
issue the following command:

SELECT * FROM invoices;

And we will see a table with all our columns as in Figure 12.12.

Figure 12.12.

PHP Web Development with MySQL—A Hands On Approach to Application Programming104

12. Inserting Data Into a MySQL Database

Let’s say instead, we want to retrieve ALL the rows in the products table, but we only want
data from the id, product_name, list_price, and reorder_level columns. We would issue the
following command:

SELECT id, product_name, list_price, reorder_level FROM products;

You should see a potentially long
list of rows as in Figure 12.13 and
12.14.

Or maybe we just want to
retrieve the same information as
above, but just products where
the reorder level is greater than
25. We need to qualify the rows
we are going to retrieve using a
WHERE clause. Our query would
look like this:

SELECT id, product_name,
list_price, reorder_level
FROM products
WHERE reorder_level > 25;

Figure 12.15 shows the matching
rows.

We can have multiple criteria in
our WHERE clause as well by adding
a boolean value. For example, we
might be interested in only the
products with a reorder_level
greater than 20 AND less than
100. We would use a query like
this:

SELECT id, product_name, list_
price, reorder_level
FROM products
WHERE reorder_level > 20 AND reorder_level < 100;

Figure 12.13.

Figure 12.14.

Figure 12.15.

Using the MySQL CLI

PHP Web Development with MySQL—A Hands On Approach to Application Programming 105

And get the results shown in
Figure 12.16.

There are far more examples of
how to use SELECT[4]. If you want
to dig in deeper, you should
refer to the online documenta-
tion.

[4] SELECT: https://dev.mysql.com/doc/refman/8.0/en/select.html

Creating and Inserting Data

Creating tables using the
MySQL CLI tool is pretty
straightforward. As a simple example, let’s create a database with one table for holding first
and last names.

I use the following naming convention for naming databases, tables, and column or field
names:

• All names will be singular (not plural)
• Database names will use StudlyCaps (e.g. FullName).
• Table names will use camelCase (e.g. fullName).
• Column/Field names will use snake_case (e.g. first_name).

Creating a Table

We want to create a table called fullName with fields for a first_name and a last_name. It is also
a good idea to create a field for an id that gives each row a unique identifier. This id field
will be created as a primary key. A field used as a primary key must be unique, cannot be
repeated, must have a value (it cannot be NULL), and cannot be changed, and it should be
efficient. Auto-incrementing integers make great primary keys.

First, let’s exit the MySQL CLI tool as testuser, log back in to the MySQL CLI tool as sudo,
and grant all privileges to this new database we’ll call FullName to testuser. To create a new
database and users, you generally have to log in as MySQL’s root user.

exit

Figure 12.16.

https://dev.mysql.com/doc/refman/8.0/en/select.html

PHP Web Development with MySQL—A Hands On Approach to Application Programming106

12. Inserting Data Into a MySQL Database

Then in Bash:

sudo mysql

Next, we create the user for our FullName database.

GRANT ALL PRIVILEGES ON FullName.* TO 'testuser'@'localhost';
FLUSH PRIVILEGES;
exit

Your MySQL command line
should look similar to Figure
12.17.

Now let’s log back into the
MySQL CLI tool as testuser:

mysql -u testuser -p

Next, let’s create our database,
which we need to call FullName.
We’ll do that with the following
SQL command:

CREATE DATABASE FullName;

Next, we need to USE our FullName
database to work with it.

USE FullName;

Now let’s create our fullName table using the
following CREATE TABLE command for all the fields
in our table using the following SQL command.
You can type this all on one line. The CLI ignores
returns and looks for a ; to terminate a command.

Figure 12.17.

Figure 12.18.

Figure 12.19.

Using the MySQL CLI

PHP Web Development with MySQL—A Hands On Approach to Application Programming 107

CREATE TABLE fullName (
 id INT NOT NULL AUTO_INCREMENT,
 first_name varchar(20),
 last_name varchar(20),
 PRIMARY KEY (id)
);

If we describe our fullName
table, we get Figure 12.21.

DESCRIBE fullName;

Inserting Data Into a Table

Now we want to use our table
and insert a few names using the INSERT INTO SQL command:

INSERT INTO fullName (first_name, last_name) VALUES ('Ken', 'Marks');
INSERT INTO fullName (first_name, last_name) VALUES ('Oscar', 'Merida');

We can perform a SELECT on all the rows in the table to see what we inserted:

SELECT * FROM fullName;

And we see Figure 12.23.

Figure 12.20.

Figure 12.21.

Figure 12.22. Figure 12.23.

PHP Web Development with MySQL—A Hands On Approach to Application Programming108

12. Inserting Data Into a MySQL Database

Create a PHP Application to Insert Data

[5] mysqli: https://php.net/book.mysqli

What is cool about PHP is that it lets you easily insert data into your MySQL database. PHP
provides several ways for accomplishing this. One way is using mysqli function calls, and
another is PHP Data Objects (PDO). PDO is a more object-oriented way of interacting with
your database. For this example, we’ll use the mysqli[5] functions.

Let’s take our self-referencing postfullname.php script from chapter 11 and modify it to insert
the first and last name into the fullName table of our FullName database. Listing 12.1 shows
our initial form.

Listing 12.1.

 1. <html>
 2. <head>
 3. <title>Form for Entering Full Name</title>
 4. </head>
 5. <body>
 6. <?php if (!isset($_POST['submit'])) { ?>
 7. <h2>Enter Full Name</h2>
 8. <form action="<?= $_SERVER['PHP_SELF'] ?>" method="POST">
 9. First name:

10. <input type="text" name="first_name"/>

11. Last name:

12. <input type="text" name="last_name"/>

13. <p>
14. <input type="submit" name="submit" value="Submit Name" />
15. </form>
16. <?php } else { ?>
17. <h2>Greetings!</h2>
18. <p>Hello <?= $_POST['first_name'] . " " . $_POST['last_name'] ?>
19. Thanks for submitting the form!</p>
19. <?php } ?>
20. </body>
21. </html>

Add Code to Insert the Data Into the Database
In this else block of code:

 <?php } else { ?>
 <h2>Greetings!</h2>
 <p>Hello <?=$_POST['first_name'] . " " . $_POST['last_name'];?>
 Thanks for submitting the form!</p>
 <?php } ?>

https://php.net/book.mysqli

Create a PHP Application to Insert Data

PHP Web Development with MySQL—A Hands On Approach to Application Programming 109

You want to do three things:
1. Connect to the database
2. Query the database
3. Close the connection to the database

Before we do these three things, lets create two variables for our first and last names:

 $first_name = $_POST['first_name'];
 $last_name = $_POST['last_name'];

Opening the Database Connection

Right after the else { statement (but before the closing ?>) we connect to the database using
the mysqli_connect()[6] function. This function takes four string parameters (by default): host,
username, password, and database_name. Our mysqli_connect() statement should look like this:

$dbc = mysqli_connect('localhost', 'testuser', 'testuser', 'FullName')
 or trigger_error('Error connecting to MySQL server.', E_USER_ERROR);

It is not a good idea to have our password entered in clear text in our source code
(especially if we accidentally post it up on some git repository). The better way to
manage this is to use a configuration or environment variable.

If the call to mysqli_connect() is successful, $dbc will contain a resource connection referring
to our database. It is a good idea to use the or trigger_error() statement so that you can
determine if you run into a problem connecting to your database. If there is a failure, you
will see the error message displayed on the web page, and execution of your PHP script will
halt.

Why not or die()? You’re likely to run into legacy code or old tutorials online that use
the die() statement to stop and display a message. Since it halts the execution of the
PHP interpreter, your error messages are not logged to PHP’s error logs and not passed
to any custom error handlers. Furthermore, the only way to be notified that a user
ran into an error is to wait for someone to report an outage. trigger_error() with the
E_USER_ERROR severity have the same effect without the downsides.

[6] mysqli_connect(): http://php.net/function.mysqli-connect

http://php.net/function.mysqli-connect

PHP Web Development with MySQL—A Hands On Approach to Application Programming110

12. Inserting Data Into a MySQL Database

Inserting the Full Name Into the Database
Next we want to build a SQL SELECT query and send it to our database using the
mysqli_query() function[7]. This function takes two parameters: a database connection resource,
and a query string. Our query string and mysqli_query() statement should look like this:

$query = "INSERT INTO fullName (first_name, last_name)"
 . " VALUES ('$first_name', '$last_name')";

$result = mysqli_query($dbc, $query);

If the call to mysqli_query() is successful, $result contains TRUE. Otherwise, if the query fails,
FALSE is returned. You can also use an or trigger_error() statement as well.

Closing the Database Connection

Finally, close the database connection using the function mysqli_close(). This function takes
one parameter: the database connection. Our mysqli_close() statement should look like this:

mysqli_close($dbc);

Whenever we want to query a database, one approach is to connect to the database,
perform the query, and close the database connection. It is not a good idea to leave a
database connection open. It takes up thread resources and can be a potential problem if
you have a large-scale application where multiple connections can be open simultaneously.
Suppose you’re writing a large-scale application that may have many open connections to
the database at one time. In that case, you should consider closing connections when you
finish interacting with the database rather than waiting for the script to finish.

On the other hand, PHP will automatically close any open database connections when
your script terminates. For small to medium-size applications, or if your queries are spread
out across many functions, you can skip calling mysqli_close() explicitly.

Putting it all together, our script now looks like Listing 12.2.

[7] mysqli_query() function: http://php.net/mysqli_query

http://php.net/mysqli_query

Create a PHP Application to Insert Data

PHP Web Development with MySQL—A Hands On Approach to Application Programming 111

Listing 12.2.

 1. <html>
 2. <head>
 3. <title>Form for Entering Full Name</title>
 4. </head>
 5. <body>
 6. <?php if (!isset($_POST['submit'])) { ?>
 7. <h2>Enter Full Name</h2>
 8. <form action="<?= $_SERVER['PHP_SELF'] ?>" method="POST">
 9. First name:

10. <input type="text" name="first_name"/>

11. Last name:

12. <input type="text" name="last_name"/>

13. <p>
14. <input type="submit" name="submit" value="Submit Name" />
15. </form>
16. <?php } else { ?>
17. <h2>Greetings!</h2>
18. <?php
19. // Grab full name from form
20. $first_name = $_POST['first_name'];
21. $last_name = $_POST['last_name'];
22.
23. // Insert full name into database
24. $dbc = mysqli_connect('localhost', 'testuser', 'testuser', 'FullName')
25. or trigger_error('Error connecting to MySQL server.', E_USER_ERROR);
26.
27. $query = "INSERT INTO fullName (first_name, last_name)"
28. . " VALUES ('$first_name', '$last_name')";
29.
30. $result = mysqli_query($dbc, $query;
31. or trigger_error('Error querying database.', E_USER_WARNING);
32.
33. if (!$result)
34. {
35. trigger_error("Query Error description: "
36. . mysqli_error($dbc), E_USER_WARNING);
37. }
38.
39. mysqli_close($dbc);
40. ?>
41.
42.

Hello <?= $first_name . " " . $last_name; ?>
43. Thanks for submitting the form!
44. <?php } ?>
45. </body>
46. </html>

PHP Web Development with MySQL—A Hands On Approach to Application Programming112

12. Inserting Data Into a MySQL Database

Test and Verify

[8] Xdebug: http://xdebug.org

Expected Results

Let’s run our application and verify we are inserting
items in our database correctly.

If all goes well, we should get the expected output
shown in Figure 12.25.

Now let’s check to see if our full name actually was
inserted into our fullName table. In the MySQL CLI tool,
select all fields and rows in the fullName table:

SELECT * FROM FullName;

Depending on your input, you should see a
new row like the one in Figure 12.26.

SUCCESS!

Things That Can Go Wrong

A few common bugs may crop up now, and
then that will prevent your application from
running successfully. The most common
tend to be those related to communi-
cating with the database. Bugs due to PHP
coding errors can be found with a standard
debugger and using tools like Xdebug[8] and
PHP Integrated Development Environments
(IDE) like JetBrains’ PhpStorm.

Regarding database communication bugs,
it is helpful to use a database management
tool like Adminer or (for our example) the MySQL CLI tool to verify your connection
parameters work. Database communication bugs typically involve a failure to connect to the
database or a malformed SQL query. Let’s look at both of these.

Figure 12.24.

Figure 12.25.

Figure 12.26.

http://xdebug.org

Create a PHP Application to Insert Data

PHP Web Development with MySQL—A Hands On Approach to Application Programming 113

Failed Database Connection
Failing to connect to the database usually involves one or more incorrect parameters to the
mysqli_connect() function, which could be incorrect credentials or a non-existent database name.

For example, you might see
output like Figure 12.27.

Error output can be pretty tricky
to decipher. However, we do
know that our mysqli_connect()
call failed. We can also see the
reason given is:

php_network_getaddresses: getaddrinfo failed: Name or service not known in

The fact that we see a problem with the network address is a clue as to what’s wrong.
Looking up the mysqli_connect()[9] function definition in the PHP manual, we see that the
first parameter expected is the hostname or IP address of the SQL server we are trying to
connect to. Looking at line 24 of our code, we see Figure 12.28.

We quickly identify that we typed
localhosed instead of localhost,
which we can quickly fix.

Let’s say we see the output in
Figure 12.29 instead.

The reason given is:
Access denied for user

'testusers'@'localhost'…
Because we see that access was
denied, it tells us that either
the username or password
parameter to mysqli_connect() is
incorrect. Looking at line 24 of
our code, we see Figure 12.30.

Looking at the user name parameter, we can see it is misspelled and has an extra s on the
end.

[9] mysqli_connect(): https://php.net/mysqli_connect

Figure 12.27.

Figure 12.28.

Figure 12.29.

Figure 12.30.

https://php.net/mysqli_connect

PHP Web Development with MySQL—A Hands On Approach to Application Programming114

12. Inserting Data Into a MySQL Database

One other connection error you might see is shown in Figure 12.31. Here the reason given is:

Access denied for user 'testuser'@'localhost' to database 'FullNames'

This error is more interesting
because it is also giving you an
access denied error. However, it
is not denying the credentials for
the user, just access to the specific
database named FullNames. If you recall, the name of our database is not FullNames but FullName
(singular). FullNames doesn’t exist. If we look at line 4 of our code, we see Figure 12.32.

If we go into the MySQL CLI tool and
GRANT PRIVILEGES to testuser on all tables in
FullNames, we get a different error, shown in
Figure 12.33.

Now, if we rerun postfullname.php we see the error
in Figure 12.34.

This error message tells us that the database FullNames we tried to connect to does not exist.
There are subtle differences between this and the previous error. If a user has been granted
privileges to all databases (a bad idea, by the way), then you would get this error if the data-
base does not exist. In the previous error, no attempt is made to connect to a database that a
user does not have access rights to regardless if it exists or not.

Figure 12.31.

Figure 12.32.

Figure 12.33.

Figure 12.34.

Create a PHP Application to Insert Data

PHP Web Development with MySQL—A Hands On Approach to Application Programming 115

Malformed SQL Query

Another frequent error that occurs is due to malformed SQL queries. In our above example,
if we have an error in our query string, we should see an error like the one shown in
Figure 12.35

Not very useful other than we know we have a query error. It is possible to retrieve the error
and display it. If we add the following code below our INSERT query:

if (!$result)
{
 trigger_error("Query Error description: " . mysqli_error($dbc), E_USER_WARNING);
}

Again, we use trigger_error() to display the warning. In this case, on a local site with
display_errors set to on, you see the errors. The error would be logged on a production
site and shouldn’t display anything to the user because display_errors should be off in
that environment.

We see the output shown in Figure 12.36. It tells us specifically that there is no table named
fullNames in the FullName database.

SQL Injection

I’ll leave you hanging on this one and address it in the chapter on Security later on.

Figure 12.35.

Figure 12.36.

PHP Web Development with MySQL—A Hands On Approach to Application Programming116

12. Inserting Data Into a MySQL Database

 Exercises
1. Create the code samples in this chapter in your development environment and ensure

they work.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 117

Returning Data from a
MySQL Database

“Sometimes it pays to stay in bed on Monday, rather than spending the rest
of the week debugging Monday’s code.”

–Christopher Thompson

Chapter

13

PHP Web Development with MySQL—A Hands On Approach to Application Programming118

13. Returning Data from a MySQL Database

In the previous chapter, we created a database with a table for holding a first and last name.
In this chapter, we’ll query data from that table and display it on a webpage.

If you recall, when we were using the MYSQL CLI tool, I introduced the SQL SELECT
command that shows all the rows in a table:

SELECT * FROM fullName;

This query gives us the output seen in Figure 13.1.

Within PHP, we can use the mysqli function calls to
retrieve data from our database queries and write code
that allows us to display our results to the webpage.

We already know how to use mysqli_connect() and
mysqli_query() to connect to and query our database.
With the function mysqli_fetch_assoc(), I’ll show you
how to iterate through the rows you get back from your
queries.

Returning Database Rows in a PHP Application
Querying for Data from the fullName Table

We know that if we want to display the results for all the fields (first_name, and last_name) in
the fullName table, we can use the SQL SELECT command with the *:

SELECT * FROM fullName;

However, let’s assume we only want to display the results
for the first_name field. We need to use this query:

SELECT first_name FROM fullName;

Testing this in the MYSQL CLI tool, we see Figure 13.2.

Our query string in our PHP code looks like this:

$query = "SELECT first_name FROM fullName";

Figure 13.1.

Figure 13.2.

Returning Database Rows in a PHP Application

PHP Web Development with MySQL—A Hands On Approach to Application Programming 119

When we pass our query string to mysqli_query(), this function returns the results of our
query so we need to assign it to a variable:

$result = mysqli_query($dbc, $query)
 or trigger_error('Error querying database.');

The $result variable contains the results of our query, which is all the rows in the fullName
table for the first_name field.

[1] mysqli_fetch_assoc(): http://php.net/mysqli-result.fetch-assoc

Looping Through the Row Set

Since the query results return the entire row set, we need a mechanism to operate on each
row in the results. This scenario is where the function mysqli_fetch_assoc() comes into play.

The manual reference for mysqli_fetch_assoc()[1] says this function returns an associative
array that corresponds to the fetched row or NULL if there are no more rows. The field names
in the table you are querying are the keys of the associative array, whereas the values will
contain the data in that row for the key/field.

For example, consider the snippet of PHP code in 13.1.

Listing 13.1.

 1. <?php
 2.
 3. $dbc = mysqli_connect('localhost', 'testuser', 'testuser', 'FullName')
 4. or trigger_error('Error connecting to MySQL server.', E_USER_ERROR);
 5.
 6. $query = "SELECT first_name FROM fullName";
 7.
 8. $result = mysqli_query($dbc, $query)
 9. or trigger_error('Error querying database.', E_USER_ERROR);
10.
11. // show first row
12. $row = mysqli_fetch_array($result);
13.
14. echo "First Name: " . $row['first_name'] . "";
15.
16. // show second row
17. $row = mysqli_fetch_array($result);
18.
19. echo "
First Name: " . $row['first_name'] . "";

http://php.net/mysqli-result.fetch-assoc

PHP Web Development with MySQL—A Hands On Approach to Application Programming120

13. Returning Data from a MySQL Database

This code produces the output shown in Figure 13.3.

In the above code, the first call to mysqli_fetch_assoc()
immediately following the call to mysqli_query() will
return the first row in the table. The manual entry for
mysqli_fetch_assoc() does not clarify that subsequent calls
to mysqli_fetch_assoc() return the next row in the table
unless there are no more rows.

So, if we add the following code to the end of our example:

 $row = mysqli_fetch_assoc($result);

 echo "
First Name: " . $row['first_name'] . "";
?>

We will see output like Figure 13.4.

In the case there are no more rows in the table, NULL is
returned. We can use this to our advantage by placing the
mysqli_fetch_assoc() call in a while loop that checks for
NULL.

So, if I want to output all the first names from the fullName
table to the web page, I could use the code in Listing 13.2.

Listing 13.2.

 1. <?php
 2. $dbc = mysqli_connect('localhost', 'testuser', 'testuser', 'FullName')
 3. or trigger_error('Error connecting to MySQL server.', E_USER_ERROR);
 4.
 5. $query = "SELECT first_name FROM fullName";
 6.
 7. $result = mysqli_query($dbc, $query)
 8. or trigger_error('Error querying database.', E_USER_ERROR);
 9.
10. while ($row = mysqli_fetch_array($result))
11. {
12. echo "
First Name: " . $row['first_name'] . "";
13. }

Figue 13.5 shows the output produced.

Figure 13.3.

Figure 13.4.

Figure 13.5.

Exercise: Badlibs, Part 2

PHP Web Development with MySQL—A Hands On Approach to Application Programming 121

Exercise: Badlibs, Part 2
Let’s take our Badlibs application we wrote for the exercise in chapter 12 and add the
following features:

1. Create a database called Badlibs with a table called badlibs.
2. Create the following fields in your badlibs table:

• A primary key called id,
• varchar fields for your noun, verb, adjective, and adverb,
• and a sufficiently long enough varchar field called story to hold your completed story.

3. When a user submits a Badlib, insert the noun, verb, adjective, adverb, and constructed
story into the database.

4. Below the form, display all the stories from newest to oldest.
Figure 13.6 is an example of what the output might look like after our modifications.

Figure 13.6.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 123

Validating Form Data and
Creating Sticky Fields

“C is quirky, flawed, and an enormous success.”

–Dennis M. Ritchie

Chapter

14

PHP Web Development with MySQL—A Hands On Approach to Application Programming124

14. Validating Form Data and Creating Sticky Fields

When creating a web application that requires form data, it is crucial to validate the data
being entered before processing it. At a minimum, we usually want to make sure that the
user entered text into all the form fields.

Likewise, it is always annoying from the user’s perspective if a user is sent back to a form
that they missed entering a field of data, only to find out that all the data they entered in the
other fields didn’t persist. In this case, we want to create sticky fields that will fill in the form
fields with the user’s data if we have to redisplay the form.

We will take the FullName application we’ve been working on in the last two chapters and
add validation and sticky fields for the form entries.

Modifying FullName Behavior Based On Validation
When a user brings up the FullName application, we want to process the first and last name
entries only if they enter text into both fields. Otherwise, we want to send the user back to
the form.

Therefore, we want to add logic to display the form as long as any field is empty and display
an appropriate error message indicating what data needs to be filled in for missing fields. If
the fields validate correctly, we can output our thanks to the user for submitting their full
name.

Let’s start by adding conditional logic that runs when the user submits the form, or navi-
gates to this script the first time:

<?php
 if (isset($_POST['submit']))
 {
 // ...
 }
 else
 {
 // ...
 }
 // ...

Adding Field Validation

PHP Web Development with MySQL—A Hands On Approach to Application Programming 125

Next create a Boolean variable called $output_form that we can set to true or false based on
the success of our validation. We’ll set it to true in the else clause because we want to output
the FullName form when a user first navigates to this script:

if (isset($_POST['submit']))
{
 // ...
}
else
{
 $output_form = true;
 // ...
}
// ...

Adding Field Validation
If you remember, we named the form variables first_name and last_name:

<input name="first_name"/>
...
<input name="last_name"/>

Working inside the condition where the user submits the form, we’ll create a couple of vari-
ables for our first and last name as shown in Listing 14.1.

Listing 14.1.

 1. <?php
 2. if (isset($_POST['submit']))
 3. {
 4. $first_name = $_POST['first_name'];
 5. $last_name = $_POST['last_name'];
 6. // ...
 7. }
 8. else
 9. {
10. $output_form = true;
11. // ...
12. }

PHP Web Development with MySQL—A Hands On Approach to Application Programming126

14. Validating Form Data and Creating Sticky Fields

Next, we want to add linear nested conditional logic that tests if the first name, last name, or
both are empty, then output an appropriate message to the user if necessary. See Listing 14.2.

Listing 14.2.

 1. if (isset($_POST['submit']))
 2. {
 3. $first_name = $_POST['first_name'];
 4. $last_name = $_POST['last_name'];
 5.
 6. // Validate first and last name fields
 7. if (empty($first_name) && empty($last_name))
 8. {
 9. echo '<p class="text-danger">You forgot to enter first name and last name</p>';
10. $output_form = true;
11. }
12. else if (empty($first_name) && !empty($last_name))
13. {
14. echo '<p class="text-danger">You forgot to enter first name</p>';
15. $output_form = true;
16. }
17. else if (!empty($first_name) && empty($last_name))
18. {
19. echo '<p class="text-danger">You forgot to enter last name</p>';
20. $output_form = true;
21. }
22. else
23. {
24. // Both first name AND last name are filled in, form entry is validated
25. }
26. }

We want to add our code to insert the first and last name into the FullName table in the last
else clause above. Then, we echo our message thanking the user for submitting their full
name. Let’s add that code now. See Listing 14.3.

Listing 14.3.

 1. else // Both first name AND last name are filled in, form entry is validated
 2. {
 3. // Insert full name into database
 4. $dbc = mysqli_connect('localhost', 'testuser', 'testuser', 'FullName')
 5. or trigger_error("Error connecting to MySQL server.", E_USER_ERROR);
 6.
 7. $query = "INSERT INTO fullName (first_name, last_name) "
 8. . "VALUES ('$first_name', '$last_name')";
 9.

Making the First and Last Name Fields Sticky

PHP Web Development with MySQL—A Hands On Approach to Application Programming 127

10. $result = mysqli_query($dbc, $query)
11. or trigger_error('Error querying database.', E_USER_WARNING);
12.
13. if (!$result)
14. {
15. echo("Query Error description: " . mysqli_error($dbc));
16. }
17.
18. mysqli_close($dbc);
19.
20. echo "

Hello $first_name $last_name Thanks for submitting your full name!";
21.
22. $output_form = false;
23. }

The last thing we should do in the above block is to set the $output_form variable to false to
prevent outputting the form again.

Making the First and Last Name Fields Sticky
Let's go back to the else block that follows the if (isset($_POST['submit'])):

if (isset($_POST['submit']))
{
 // ...
}
else
{
 $output_form = true;
 // ...
}

We need to initialize $first_name and $last_name to empty strings. Then, when the user first
navigates to the script, empty strings are displayed in the first_name and last_name form fields:

}
else
{
 $output_form = true;
 $first_name = "";
 $last_name = "";
}

The final thing we need to do is add conditional code following the previous else block that
outputs the FullName form if the $output_form variable is set to true and make the first and
last name fields sticky as in Listing 14.4.

PHP Web Development with MySQL—A Hands On Approach to Application Programming128

14. Validating Form Data and Creating Sticky Fields

Listing 14.4.

 1. if ($output_form): ?>
 2. <h2>Enter Full Name</h2>
 3. <form action="<?= $_SERVER['PHP_SELF'] ?>" method="POST">
 4. <div class="form-group">
 5. <label for="first_name">First Name</label>
 6. <input class="form-control" id="first_name" name="first_name"
 7. value="<?= $first_name ?>" placeholder="First Name">
 8. </div>
 9. <div class="form-group">
10. <label for="last_name">Last Name</label>
11. <input class="form-control" id="last_name" name="last_name"
12. value="<?= $last_name ?>" placeholder="Last Name">
13. </div>
14. <button type="submit" class="btn btn-primary"
15. name="submit">Submit Name</button>
16. </form>
17. <?php endif; ?>

Notice in the prior block of code that value attributes for the first_name and last_name form
fields are filled in with whatever the user entered in from the previous post if validation does
not pass, and we redisplay the form. Listing 14.5 shows what the complete code looks like.

Listing 14.5.

 1. <?php
 2. if (isset($_POST['submit']))
 3. {
 4. $first_name = $_POST['first_name'];
 5. $last_name = $_POST['last_name'];
 6.
 7. // Validate first and last name fields
 8. if (empty($first_name) && empty($last_name))
 9. {
10. echo '<p class="text-danger">You forgot to enter first name and last name</p>';
11. $output_form = true;
12. }
13. else if (empty($first_name) && !empty($last_name))
14. {
15. echo '<p class="text-danger">You forgot to enter first name</p>';
16. $output_form = true;
17. }
18. else if (!empty($first_name) && empty($last_name))
19. {
20. echo '<p class="text-danger">You forgot to enter last name</p>';
21. $output_form = true;
22. }

Making the First and Last Name Fields Sticky

PHP Web Development with MySQL—A Hands On Approach to Application Programming 129

23. else
24. {
25. // Both first name AND last name are filled in, form entry is validated
26. // Insert full name into database
27. $dbc = mysqli_connect('localhost', 'testuser', 'testuser', 'FullName')
28. or trigger_error("Error connecting to MySQL server.", E_USER_ERROR);
29.
30. $query = "INSERT INTO fullName (first_name, last_name) "
31. . "VALUES ('$first_name', '$last_name')";
32.
33. $result = mysqli_query($dbc, $query)
34. or trigger_error('Error querying database.', E_USER_WARNING);
35.
36. if (!$result)
37. {
38. echo("Query Error description: " . mysqli_error($dbc));
39. }
40.
41. mysqli_close($dbc);
42.
43. echo "

Hello $first_name $last_name Thanks for submitting your full name!";
44.
45. $output_form = false;
46. }
47. }
48. else
49. {
50. $output_form = true;
51. $first_name = "";
52. $last_name = "";
53. }
54.
55. if ($output_form): ?>
56. <h2>Enter Full Name</h2>
57. <form action="<?= $_SERVER['PHP_SELF'] ?>" method="POST">
58. <div class="form-group">
59. <label for="first_name">First Name</label>
60. <input class="form-control" id="first_name" name="first_name"
61. value="<?= $first_name ?>" placeholder="First Name">
62. </div>
63. <div class="form-group">
64. <label for="last_name">Last Name</label>
65. <input class="form-control" id="last_name" name="last_name"
66. value="<?= $last_name ?>" placeholder="Last Name">
67. </div>
68. <button type="submit" class="btn btn-primary"
69. name="submit">Submit Name</button>
70. </form>
71. <?php endif; ?>

PHP Web Development with MySQL—A Hands On Approach to Application Programming130

14. Validating Form Data and Creating Sticky Fields

Normally, once you save form data to the database, you would typically redirect the
user to a separate confirmation page. Doing so prevents unintentional form submis-
sion due to page refreshes by users. For simplicity in this example, we kept this all in
the same script.

Testing Our Script with
Sticky Fields

Now we can test all the use cases for our
FullName application to see if we are
correctly validating our form fields and if
our field data is sticky.

Figure 14.1 shows the application as it first
comes up.

When we submit the form without entering
anything into either the first or last name
field, we should see Figure 14.2.

Notice that we redisplayed the form, and
we received the correct error message: “You
forgot to enter first name and last name”.

When we enter a first name and then select
submit, we should see something like
Figure 14.3.

Again, we showed the form and received the
correct error message: “You forgot to enter
last name.” This time our first name entry
persisted—or stuck—after the submission.

Now let’s delete the first name from the
first_name field, enter a last name, then press
Submit Name. Figure 14.4 shows what we
should see.

Figure 14.1.

Figure 14.2.

Figure 14.3.

Exercise: Contact Form

PHP Web Development with MySQL—A Hands On Approach to Application Programming 131

Now, the code redisplayed the form. We
received the correct error message: “You
forgot to enter first name”, and our last name
entry persisted or stuck.

Finally, let’s enter a first name, keep the last
name, and select Submit Name. We should
see Figure 14.5.

Once our application successfully validates
all the fields, and we can insert the user’s
values into the database. To finish the inter-
action, we display a message thanking the
user for submitting their full name.

Exercise: Contact Form
1. Create the code samples adding valida-

tion to the form.
2. Create the code samples making your

form fields sticky.

Figure 14.4.

Figure 14.5.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 133

Chapter

15
Displaying a List of Item
Details

“Programming today is a race between software engineers striving to build
bigger and better idiot-proof programs, and the universe trying to build
bigger and better idiots. So far, the universe is winning.”

-Rick Cook

PHP Web Development with MySQL—A Hands On Approach to Application Programming134

15. Displaying a List of Item Details

In this chapter, we create a database-driven movie listing web application that contains a list
of items with links to another page to get more detailed information about the movie. Over
the following chapters, we will be adding features to this application such as:

• Administrative ability to upload new movies
• Ability to upload a thumbnail image of a new movie
• User logins
• The ability for users to check out movies.
• The ability for users to return movies.

Designing the Database
When thinking about the features for this application, we should consider the data we need
first. Since this is an application containing information about movies, we should have the
following:

• title
• rating
• director
• running time
• genre
• (eventually an image)

The opening page of our application will have a list of the movies with a link to another page
for more detailed information. We can use a single table to keep our movie data in and call
it movieListing. We will name our database Movie.

In our movieListing table we will have the following columns/fields:
• id for the primary key
• title

• rating

• director

• running_time_in_minutes

• genre

Creating the Database

PHP Web Development with MySQL—A Hands On Approach to Application Programming 135

Creating the Database
We will use the Adminer tool to create our database and our tables. However, before we do,
it is a good and secure practice to create a separate database user for our movie database.

Creating a Separate Database User

We will use the MySQL CLI tool to create a new user called movieguru and grant all privileges
on all the tables in the Movie database.

Logging in as root in the MySQL CLI tool, execute the following commands:

CREATE USER 'movieguru'@'localhost' IDENTIFIED BY 'ilikemovies';

GRANT ALL PRIVILEGES ON Movie.* TO 'movieguru'@'localhost';

FLUSH PRIVILEGES;

Running this in the MySQL CLI tool to create a user and grant all privileges for the movie
database, we see Figure 15.1.

We do not need to have the database created before we grant privileges on it.

Figure 15.1.

PHP Web Development with MySQL—A Hands On Approach to Application Programming136

15. Displaying a List of Item Details

Creating Our Movie Database
Using our browser, let’s log into Adminer as movieguru and create our database and table as in
Figure 15.2.

Click on Create database (Figure 15.3).

Type Movie as the name of the
database to create and select
Save as shown in Figure 15.4

You should see the page in
Figure 15.5 which shows
Adminer and the Movie data-
base created.

Figure 15.2.

Figure 15.3.

Figure 15.4.

Figure 15.5.

Creating the Database

PHP Web Development with MySQL—A Hands On Approach to Application Programming 137

Now we want to create our table. Select Create table as
in Figure 15.6.

Enter movieListing for the Table name:

For the id Field:
1. Enter id under Column name
2. Keep the Type as int
3. Select the AI radio button for auto increment

By naming a field id and making it auto-incrementing, Adminer will set this field to be
the primary key for this table.

For the title Field:
1. In the Column name below id, enter title
2. Select the Type as varchar
3. Enter 50 for the length

For the rating Field:
1. In the Column name below title, enter rating
2. Select the Type as varchar
3. Enter 10 for the length

For the director Field:
1. In the Column name below rating, enter director
2. Select the Type as varchar
3. Enter 25 for the length

For the running_time_in_minutes Field:
1. In the Column name below director, enter running_time_in_minutes
2. Select the Type as int

For the genre Field:
• In the Column name below running_time_in_minutes, enter genre
• Select the Type as varchar
• Enter 50 for the length

Figure 15.6.

PHP Web Development with MySQL—A Hands On Approach to Application Programming138

15. Displaying a List of Item Details

Then select Save. Figure 15.7 is what the
“Create Table” form should look like before
saving the table.

Once you select Save, the table description
should look like Figure 15.8.

Figure 15.7.

Figure 15.8.

Adding Movie Data

PHP Web Development with MySQL—A Hands On Approach to Application Programming 139

Adding Movie Data

[1] IMDB: https://www.imdb.com

We can also use Adminer to add some data
to our tables. For example, let’s add some
data for three movies. IMDB[1] is always
an excellent place to find information on
movies.

Select movieListing to get back to the
movieListing table in Adminer.

To add a new movie listing, select New item,
see Figure 15.9.

Add the following movie listing data for
these titles (or any of your choosing):

• Sleepless in Seattle
• Star Wars: The Force Awakens
• Deadpool

Add the following listing data for Sleepless in
Seattle (Figure 15.10):

• title: Sleepless in Seattle
• rating: PG
• director: Nora Ephron
• running_time_in_minutes: 105
• genre: Comedy, Drama, Romance

Add the following listing data for Star Wars: The Force Awakens:
• title: Star Wars: The Force Awakens
• rating: PG-13
• director: J.J. Abrams
• running_time_in_minutes: 135
• genre: Action, Adventure, Science Fiction, Fantasy

Figure 15.9.

Figure 15.10.

https://www.imdb.com

PHP Web Development with MySQL—A Hands On Approach to Application Programming140

15. Displaying a List of Item Details

Add the following listing data for Deadpool:
• title: Deadpool
• rating: R
• director: Tim Miller
• running_time_in_minutes: 108
• genre: Action, Adventure, Comedy

Select Save and insert next for the first two
movie listings. Doing so saves the data and
refreshes the data entry form. Press Save for
the last one (Figure 15.11).

After selecting Save, the Select: movieListing page is displayed (Figure 15.12), showing all the
movie listings you entered.

Figure 15.11.

Figure 15.12.

Creating the Main Movie Listing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 141

Creating the Main Movie Listing Page

[2] Bootstrap: https://getbootstrap.com

We start by creating an index.php page that lists all the
movie titles in the movieListing table of the Movie database.

Laying Out the Main Page

To make our page look clean, I use the Bootstrap[2] CSS
framework and use a striped table. Figure 15.13 shows
what we want our main movie listing to look like.

Getting familiar with the Bootstrap CSS framework
To learn more about the Bootstrap CSS framework
and get more comfortable using it, head over to https://
getbootstrap.com and click the Get Started button. I’ll be using version 4.2 in this edition
of the book.

First, let’s create our main Movie Listing script and call it index.php. We start with a simple
boilerplate that includes the necessary Bootstrap framework components and call the page
title: “Movies I Like”. See Listing 15.1.

Listing 15.1.

 1. <html>
 2. <head>
 3. <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 4. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 5. crossorigin="anonymous">
 6. <title>Movies I Like</title>
 7. </head>
 8. <body>
 9. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
10. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
11. crossorigin="anonymous"></script>
12. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
13. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
14. crossorigin="anonymous"></script>
15. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
16. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
17. crossorigin="anonymous"></script>
18. </body>
19. </html>

Figure 15.13.

https://getbootstrap.com
https://getbootstrap.com
https://getbootstrap.com

PHP Web Development with MySQL—A Hands On Approach to Application Programming142

15. Displaying a List of Item Details

Storing Database Connection Definitions
Next, let’s create a separate file called dbconnection.php (Listing 15.2) for our database creden-
tials that we will create constants for. Since we’ll need these values in multiple scripts, we
store them in a file we can require or include across our application.

Listing 15.2.

 1. <?php
 2. /* dbconnection.php */
 3.
 4. // Database connection constants
 5. define('DB_HOST', 'localhost');
 6. define('DB_USER', 'movieguru');
 7. define('DB_PASSWORD', 'ilikemovies');
 8. define('DB_NAME', 'Movie');

Typically, you would use an environment variable to hold sensitive information, but
for these examples, this is sufficient.

Displaying a Movie Listings Table
Now let’s create our main Movie Listing script and call it index.php. Starting right after our
opening <body> tag, we display our heading “Movies I Like”. Next, let’s switch back to our
index.php page and add a couple of nested <div> tags right below our opening <body> tag to
display our movies in What Bootstrap calls a “card” as shown in Listing 15.3.

Listing 15.3.

 1. <body>
 2. <div class="card">
 3. <div class="card-body">
 4. </div>
 5. </div>
 6. <script ...
 7. ...
 8. </body>
 9. </html>

Within the inner most <div> tag, add an <h1> heading called “Movies I Like”:

<body>
 <div class="card">
 <div class="card-body">
 <h1>Movies I Like</h1>

Creating the Main Movie Listing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 143

Next (right after the <h1> tag), we’ll add some PHP code to include our database connec-
tion constants and connect to our database (Listing 15.4). We use require_once() to make
our dbconnection.php values available to our script and ensure that this file is only loaded one
time when our script runs.

Listing 15.4.

 1. <h1>Movies I Like</h1>
 2.
 3. <?php
 4. require_once('dbconnection.php');
 5.
 6. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 7. or trigger_error('Error connecting to MySQL server for DB_NAME.', E_USER_ERROR);

Then, we’ll create a query string for getting the id, title fields from all the movies in the
movieListing table and query the database:

$query = "SELECT id, title FROM movieListing ORDER BY title";

$result = mysqli_query($dbc, $query)
 or trigger_error('Error querying database movieListing', E_USER_ERROR);

Note that we will need the id for each movie listing when we navigate to the “Movie Details”
page so we can query and retrieve the individual details for the selected movie.

At this point, we only want to display a table of the movies if there are movies in the data-
base:

 if (mysqli_num_rows($result) > 0):
 ?>
 <table class="table table-striped">
 <thead>
 <tr>
 <th scope="col">Movie Title</th>
 </tr>
 </thead>

Assuming we have movies to display, this while loop iterates and outputs through the movie
titles as in Listing 15.5.

PHP Web Development with MySQL—A Hands On Approach to Application Programming144

15. Displaying a List of Item Details

Listing 15.5.

 1. <tbody>
 2. <?php
 3. while($row = mysqli_fetch_assoc($result)):
 4. ?>
 5. <tr>
 6. <td><?= $row['title'] ?></td>
 7. </tr>
 8. <?php
 9. endwhile;
10. ?>

Then we close the <table>:

 </tbody>
 </table>

If we do not have any movies to list, add an else: condition, indicate there are no movies,
then close the conditional. Messages like this prevent users from wondering if the applica-
tion doesn’t have any databases or encountered an error or bug.

<?php
 else:
?>
 <h3>No Movies Found :-(</h3>
<?php
 endif;
?>

Listing 15.6 is what the code should look like within the <body> (and <div>) tags of the
index.php script so far.

Listing 15.6.

 1. <body>
 2. // ...
 3. <h1>Movies I Like</h1>
 4.
 5. <?php
 6. require_once('dbconnection.php');
 7.
 8. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 9. or trigger_error('Error connecting to MySQL server for ' . DB_NAME, E_USER_ERROR);
10.
11. $query = "SELECT id, title FROM movieListing ORDER BY title";
12.

Creating the Main Movie Listing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 145

13. $result = mysqli_query($dbc, $query)
14. or trigger_error('Error querying database movieListing', E_USER_ERROR);
15.
16. if (mysqli_num_rows($result) > 0):
17. ?>
18. <table class="table table-striped">
19. <thead>
20. <tr>
21. <th scope="col">Movie Title</th>
22. </tr>
23. </thead>
24. <tbody>
25. <?php
26. while($row = mysqli_fetch_assoc($result)):
27. ?>
28. <tr>
29. <td><?= $row['title'] ?></td>
30. </tr>
31. <?php
32. endwhile;
33. ?>
34. </tbody>
35. </table>
36. <?php
37. else:
38. ?>
39. <h3>No Movies Found :-(</h3>
40. <?php
41. endif;
42. ?>
43. // ...
44. </body>

Linking Listings to Detail Pages
Now that we have our movie title listings, we want to create links for each movie that takes
us to a moviedetails.php page. We want to send a query parameter containing the id field for
each movie to the moviedetails.php page. Query parameters are sent to a PHP script within
the $_GET superglobal variable.

Using GET versus POST

We have two options for sending data along with our page request. Usually, this is to send
form data to be saved or include information we need to lookup saved data. Many program-
mers use GET and POST interchangeably, but they make different assumptions about these bits
of data.

PHP Web Development with MySQL—A Hands On Approach to Application Programming146

15. Displaying a List of Item Details

POST is intended to change the state on the server. As such, POST is typically used in forms and
with file uploads.

<form method="POST" action="doSomethingGood.php">

GET can be sent from a form as well (set the method attribute to GET). But it assumes the data
is not being saved or persisted in any way. One typical use is a search format to send the
keywords you want to find.

<form method="GET" action="doSomethingGreat.php">

When a URL includes query parameters, this is a GET request.

Sleepless in Seattle

Query parameters are sent in URLs as key-value pairs. So, in the above href example, id
is the key and 1 is its value, and title is the next key, and Sleepless in Seattle is its value.
When sending multiple query parameters, separate them with an ampersand (&), as is seen
following 1 and preceding title. One other thing to note is that spaces are represented in
a URL using the percent character (%20). Several other symbols with special meaning in a
URI must also be encoded. PHP’s http_build_query()[3] simplifies building complicated query
strings.

Building query parameters for links in PHP from row data returned from
mysqli_fetch_assoc() could look like this:

while($row = mysqli_fetch_assoc($result))
{
 echo "<tr><td>" .
 "<a class='nav-link' href='moviedetails.php?id=" . $row['id'] .
 "&title=" . $row['title'] . "'>" . $row['title'] . "</td></tr>";
}

When sending query parameters originating from database queries, a more secure practice
is to send only the primary key field and query the other fields needed from the database
within the destination script.

[3] http_build_query(): https://php.net/http_build_query

https://php.net/http_build_query

Creating the Main Movie Listing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 147

So, a better query of the above code would look like this:

while($row = mysqli_fetch_assoc($result))
{
 echo "<tr><td>" .
 "<a class='nav-link' href='moviedetails.php?id=" . $row['id'] .
 "'>" . $row['title'] . "</td></tr>";
}

When a user clicks a link to a specific movie title, we want to send the primary key for that
row in the movieListing table as a query parameter to the moviedetails.php page. Therefore,
we want to send $row['id'] as the query parameter.

In index.php, replace the code in Listing 15.7

Listing 15.7.

 1. <?php
 2. while($row = mysqli_fetch_assoc($result)):
 3. ?>
 4. <tr>
 5. <td><?=$row['title']?></td>
 6. </tr>
 7. <?php
 8. endwhile;
 9. ?>

with:

<?php
 while($row = mysqli_fetch_assoc($result))
 {
 echo "<tr><td>" .
 "<a class='nav-link' href='moviedetails.php?id=" . $row['id'] .
 "'>" . $row['title'] . "</td></tr>";
 }
?>

Listing 15.8 shows what the code should look like now within the <body> tags of the index.php file.

PHP Web Development with MySQL—A Hands On Approach to Application Programming148

15. Displaying a List of Item Details

Listing 15.8.

 1. <body>
 2. //...
 3. <h1>Movies I Like</h1>
 4.
 5. <?php
 6. require_once('dbconnection.php');
 7.
 8. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 9. or trigger_error(
10. 'Error connecting to MySQL server for ' . DB_NAME, E_USER_ERROR
11.);
12.
13. $query = "SELECT id, title FROM movieListing ORDER BY title";
14.
15. $result = mysqli_query($dbc, $query)
16. or trigger_error('Error querying database movieListing', E_USER_ERROR);
17.
18. if (mysqli_num_rows($result) > 0):
19. ?>
20. <table class="table table-striped">
21. <thead>
22. <tr>
23. <th scope="col">Movie Title</th>
24. </tr>
25. </thead>
26. <tbody>
27. <?php
28. while($row = mysqli_fetch_assoc($result))
29. {
30. echo "<tr><td>" .
31. "<a class='nav-link' href='moviedetails.php?id=" . $row['id'] .
32. "'>" . $row['title'] . "</td></tr>";
33. }
34. ?>
35. </tbody>
36. </table>
37. <?php
38. else:
39. ?>
40. <h3>No Movies Found :-(</h3>
41. <?php
42. endif;
43. ?>
44. // ...
45. </body>

Creating the Movie Details Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 149

Figure 15.14 shows what our main movie listings page looks
like now.

Creating the Movie Details Page
Now we create a moviedetails.php page that displays the details
of the movie we selected from the Movie Listings page.

Laying Out the Details Page

Using the Bootstrap CSS framework and a striped table, Figure
15.15 displays what we want our movie details to look like.

Scripting the Details Page

Create another PHP script and call it moviedetails.php.
Again, we will start with a simple boilerplate that includes
the necessary Bootstrap framework components and call the
page title: “Movie Details”. We also add a couple of nested
<div> tags right below our opening <body> tag to display our
movies in What Bootstrap calls a “card” (Listing 15.9).

Listing 15.9.

 1. <html>
 2. <head>
 3. <link rel="stylesheet"
 4. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 5. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 6. crossorigin="anonymous">
 7. <title>Movie Details</title>
 8. </head>
 9. <body>
10. <div class="card">
11. <div class="card-body">
12. </div>
13. </div>
14. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
15. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
16. crossorigin="anonymous"></script>
17. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
18. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
19. crossorigin="anonymous"></script>
20. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
21. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
22. crossorigin="anonymous"></script>
23. </body>
24. </html>

Figure 15.14.

Figure 15.15.

PHP Web Development with MySQL—A Hands On Approach to Application Programming150

15. Displaying a List of Item Details

Now within the innermost <div> tag, add a nav link back to the main Movie Listings page
“Movies I Like” as in Listing 15.10.

Listing 15.10.

 1. <body>
 2. <div class="card">
 3. <div class="card-body">
 4. <nav class="nav">
 5. Movies I Like
 6. </nav>
 7. </div>
 8. </div>

We only want to display the details of the selected
movie if the user navigated from one of the movie
title links instead of just typing moviedetails.php
into the URL navigation bar (Figure 15.16).

Figure 15.17 shows the incorrect navigation from
Movie Listing to Movie Details.

If a user does incorrectly navigate by typing
moviedetails.php into the URL navigation bar, we
want to display Figure 15.18.

Therefore, we need to add an if condition that
checks that we received and set the query param-
eter.

Before we do that, an understanding of the $_GET[]
super global variable is needed.

Super Global $_GET

Similar to a $_POST[], $_GET[] is a superglobal array
variable that holds either form data when sent
from a form or query parameters embedded as
data in a URL.

When sending a GET request from a form, the data
is automatically sent and accessed using the name
attributes as indexed keys into the array.

Figure 15.16.

Figure 15.17.

Figure 15.18.

Creating the Movie Details Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 151

When embedded as query parameters in a URL,
the data is built as key-value pairs as part of the
URL. Each value in the array is indexed using the
key as mentioned earlier. See Figure 15.19.

Add the PHP conditional block from Listing
15.11 below the navigation link we just added.

Listing 15.11.

 1. <nav class="nav">
 2. Movies I Like
 3. </nav>
 4. <?php
 5. if (isset($_GET['id'])):
 6.
 7. else:
 8. ?>
 9. <h3>No Movie Details :-(</h3>
10. <?php
11. endif;
12. ?>

We only want to display the movie listing details if a user navigated to this page due to
selecting a movie listing link from the main page. Therefore, we will put our code that gets
and displays the movie listing details in between the if and else statements.

In between the if and else clauses, let’s add code to get all the fields from the movieListing
table WHERE the id field equals the value specified by $_GET['id']. We need all the usual
boilerplate code to connect and query the database as in Listing 15.12.

Listing 15.12.

 1. <?php
 2. if (isset($_GET['id'])):
 3.
 4. require_once('dbconnection.php');
 5.
 6. $id = $_GET['id'];
 7.
 8. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 9. or trigger_error('Error connecting to MySQL server for ' . DB_NAME, E_USER_ERROR);
10.
11. $query = "SELECT * FROM movieListing WHERE id = $id";
12.
13. $result = mysqli_query($dbc, $query)
14. or trigger_error('Error querying database movieListing', E_USER_ERROR);
15. else:
16. ?>

Figure 15.19.

PHP Web Development with MySQL—A Hands On Approach to Application Programming152

15. Displaying a List of Item Details

This query should only return one row, and we should ensure that it always does or show no
movie details if it does not. Calling the function mysqli_num_rows() on the result gives us the
number of rows returned from the query.

Add the following (Listing 15.13) if and else condition clause below the mysqli_query() func-
tion, and output another no movie details within an <h3> tag set after the inner else clause
before the endif:

Listing 15.13.

 1. $result = mysqli_query($dbc, $query)
 2. or trigger_error('Error querying database movieListing', E_USER_ERROR);
 3.
 4. if (mysqli_num_rows($result) == 1):
 5.
 6. else:
 7. ?>
 8. <h3>No Movie Details :-(</h3>
 9. <?php
10. endif;
11. else:
12. ?>
13. <h3>No Movie Details :-(</h3>
14. <?php
15. endif;
16. ?>

If we do get one row back from our query, we can display a table containing the movie
listing details. Add the code in Listing 15.14 below the statement:
 if (mysqli_num_rows($result) == 1):.

Listing 15.14.

 1. <?php
 2. ...
 3. if (mysqli_num_rows($result) == 1):
 4.
 5. $row = mysqli_fetch_assoc($result)
 6. ?>
 7. <h1><?= $row['title'] ?></h1>
 8. <table class="table table-striped">
 9. <tbody>
10. <tr>
11. <th scope="row">Rating</th>
12. <td><?= $row['rating'] ?></td>
13. </tr>
14. <tr>

Creating the Movie Details Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 153

15. <th scope="row">Director</th>
16. <td><?= $row['director'] ?></td>
17. </tr>
18. <tr>
19. <th scope="row">Running Time (minutes)</th>
20. <td><?= $row['running_time_in_minutes'] ?></td>
21. </tr>
22. <tr>
23. <th scope="row">Genre</th>
24. <td><?= $row['genre'] ?></td>
25. </tr>
26. </tbody>
27. </table>
28. <?php
29. else:
30. ?>
31. <h3>No Movie Details :-(</h3>
32. <?php
33. endif;
34. else:
35. ?>
36. <h3>No Movie Details :-(</h3>
37. <?php
38. endif;
39. ?>

Listing 15.15 has what the code should look like within the <body> tags of the
moviedetails.php script when we are done.

Listing 15.15.

 1. <body>
 2. //...
 3. <nav class="nav">
 4. Movies I Like
 5. </nav>
 6. <?php
 7. if (isset($_GET['id'])):
 8.
 9. require_once('dbconnection.php');
10.
11. $id = $_GET['id'];
12.
13. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
14. or trigger_error('Error connecting to MySQL server for ' . DB_NAME, E_USER_ERROR);
15.
16. $query = "SELECT * FROM movieListing WHERE id = $id";
17.

PHP Web Development with MySQL—A Hands On Approach to Application Programming154

15. Displaying a List of Item Details

18. $result = mysqli_query($dbc, $query)
19. or trigger_error('Error querying database movieListing', E_USER_ERROR);
20.
21. if (mysqli_num_rows($result) == 1):
22.
23. $row = mysqli_fetch_assoc($result)
24. ?>
25. <h1><?= $row['title'] ?></h1>
26. <table class="table table-striped">
27. <tbody>
28. <tr>
29. <th scope="row">Rating</th>
30. <td><?= $row['rating'] ?></td>
31. </tr>
32. <tr>
33. <th scope="row">Director</th>
34. <td><?= $row['director'] ?></td>
35. </tr>
36. <tr>
37. <th scope="row">Running Time (minutes)</th>
38. <td><?= $row['running_time_in_minutes'] ?></td>
39. </tr>
40. <tr>
41. <th scope="row">Genre</th>
42. <td><?= $row['genre'] ?></td>
43. </tr>
44. </tbody>
45. </table>
46. <?php
47. else:
48. ?>
49. <h3>No Movie Details :-(</h3>
50. <?php
51. endif;
52. else:
53. ?>
54. <h3>No Movie Details :-(</h3>
55. <?php
56. endif;
57. ?>
58. // ...
59. </body>

Figure 15.20 shows what our Movie Details
page looks like now.

Figure 15.20.

Exercises

PHP Web Development with MySQL—A Hands On Approach to Application Programming 155

Exercises
1. Create the database for movie listings and add data via Adminer or the mysql console.
2. Create the index page to show all movies.
3. Create the movie details page to show one movie’s information. Link title on the index

page to the correct detail page.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 157

Chapter

16
Adding Data Using the
Web Application

“In My Egotistical Opinion, most people’s C programs should be indented
six feet downward and covered with dirt.”

– Blair P. Houghton

PHP Web Development with MySQL—A Hands On Approach to Application Programming158

16. Adding Data Using the Web Application

This chapter adds the ability to add movie listing data to our Movie Listing application we
created in the last chapter.

When creating an application that lists various kinds of data, it is also a reasonable expec-
tation to provide the ability to add data using a web interface. For example, let us create a
script that allows a user to add new movie listing data.

Note that you generally want to limit access to who can add items to a database. In
a follow-on chapter on security, I will show you how to properly limit access to a web
application’s ability to add data through user logins.

Creating a Page to Add Movies
We start by creating an addmovie.php page that displays a form to the user for entering all the
movie listing data. When the user submits the form, the data will be validated and inserted
into the MovieListing table of the Movie database.

Create an “Add a Movie” Form

Figure 16.1 displays what we want our “Add a Movie” page to look like when we first navi-
gate to it.

Figure 16.1.

Creating a Page to Add Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 159

Initial Page Layout
Create another PHP script and call it addmovie.php. Again, we will start with a simple boiler-
plate that includes the necessary Bootstrap framework components and call the page title:

“Add a Movie”. We will also add a couple of nested <div> tags below our opening <body> tag to
display our movies in a Bootstrap card. See Listing 16.1

Listing 16.1.

 1. <html>
 2. <head>
 3. <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 4. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 5. crossorigin="anonymous">
 6. <title>Add a Movie</title>
 7. </head>
 8. <body>
 9. <div class="card">
10. <div class="card-body">
11. </div>
12. </div>
13. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
14. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
15. crossorigin="anonymous"></script>
16. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
17. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
18. crossorigin="anonymous"></script>
19. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
20. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
21. crossorigin="anonymous"></script>
22. </body>
23. </html>

Now within the innermost <div> tag, add
the title “Add a Movie” to our page in an
<h1> tag, followed by a <nav> link back to the
main Movie Listings page, “Movies I Like,”
and then a horizontal line as in Listing 16.2
and Figure 16.2.

Figure 16.2.

PHP Web Development with MySQL—A Hands On Approach to Application Programming160

16. Adding Data Using the Web Application

Listing 16.2.

 1. <body>
 2. <div class="card">
 3. <div class="card-body">
 4. <h1>Add a Movie</h1>
 5. <nav class="nav">
 6. Movies I Like
 7. </nav>
 8. <hr/>
 9. </div>
10. </div>

Next, we want to display our form. Later, we will add conditional code to display our form
when we first navigate to the addmovie.php page or if there is a validation error.

You will notice I added placeholder text,
shown in Figure 16.3, in the text input
elements in the form. This text should not
be a substitute for the use of label elements:

<form ...>
 <div class="form-group row">
 <label for="movie_title"
 class="col-sm-3 col-form-label-lg">Title</label>
 <div class="col-sm-8">
 <input type="text" class="form-control" id="movie_title"
 name="movie_title" placeholder="Title" required>
 ...

Bootstrap uses many div elements and class attributes for styling, especially when
using its grid layout system, which is based on Flexbox[1]. See the online documenta-
tion for more information on how to use Bootstrap’s grid layout[2] system (version 4.3).

[1] Flexbox: https://css-tricks.com/snippets/css/a-guide-to-flexbox/
[2] grid layout: https://getbootstrap.com/docs/4.3/layout/grid/

Figure 16.3.

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://getbootstrap.com/docs/4.3/layout/grid/

Creating a Page to Add Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 161

Creating an Array with Checkboxes for Genre
A movie can fit into
multiple genres. Since we
want to include various
selections for “Genre,” we
need to use checkboxes
(Figure 16.4). It also cuts
down on duplication of HTML markup if we create an array containing our genres.

Listing 16.3 shows what the PHP code and HTML markup look like for “Genre”.

Listing 16.3.

 1. <?php
 2. $genres = [
 3. 'Action', 'Adventure', 'Comedy', 'Documentary', 'Drama',
 4. 'Fantasy', 'Horror', 'Romance', 'Science Fiction'
 5.];
 6. ?>
 7. // ...
 8. <?php
 9. foreach ($genres as $genre)
10. {
11. ?>
12. <div class="form-check form-check-inline col-sm-3">
13. <input class="form-check-input" type="checkbox"
14. id="movie_genre_checkbox_action"
15. name="movie_genre_checkbox[]"
16. value="<?= $genre ?>">
17. <label class="form-check-label"
18. for="movie_genre_checkbox_action"><?= $genre ?></label>
19. </div>
20. <?php
21. }
22. ?>

The previous code and markup create a checkbox input for each item in our genres array.
Every genre checked by the user gets added to the movie_genre_checkbox array (note the []
added to the name attribute). Be aware that if the user does not select any genre, the
movie_genre_checkbox name attribute will not exist in the $_POST[] superglobal array.

Figure 16.4.

PHP Web Development with MySQL—A Hands On Approach to Application Programming162

16. Adding Data Using the Web Application

PHP Code and HTML Markup for Form
Listing 16.4 is what the PHP code and HTML markup look like for the entire form.

Listing 16.4.

 1. <?php
 2. $genres = [
 3. 'Action', 'Adventure', 'Comedy', 'Documentary', 'Drama',
 4. 'Fantasy', 'Horror', 'Romance', 'Science Fiction'
 5.];
 6. ?>
 7. ...
 8. <form class="needs-validation" novalidate method="POST"
 9. action="<?= $_SERVER['PHP_SELF'] ?>">
10. <div class="form-group row">
11. <label for="movie_title"
12. class="col-sm-3 col-form-label-lg">Title</label>
13. <div class="col-sm-8">
14. <input type="text" class="form-control" id="movie_title"
15. name="movie_title" placeholder="Title" required>
16. <div class="invalid-feedback">
17. Please provide a valid movie title.
18. </div>
19. </div>
20. </div>
21. <div class="form-group row">
22. <label for="movie_rating"
23. class="col-sm-3 col-form-label-lg">Rating</label>
24. <div class="col-sm-8">
25. <select class="custom-select" id="movie_rating"
26. name="movie_rating" required>
27. <option value="" disabled selected>Rating...</option>
28. <option value="G">G</option>
29. <option value="PG">PG</option>
30. <option value="PG-13">PG-13</option>
31. <option value="R">R</option>
32. </select>
33. <div class="invalid-feedback">
34. Please select a movie rating.
35. </div>
36. </div>
37. </div>
38. <div class="form-group row">
39. <label for="movie_director"
40. class="col-sm-3 col-form-label-lg">Director</label>
41. <div class="col-sm-8">
42. <input type="text" class="form-control" id="movie_director"
43. name="movie_director" placeholder="Director" required>

Creating a Page to Add Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 163

44. <div class="invalid-feedback">
45. Please provide a valid movie director.
46. </div>
47. </div>
48. </div>
49. <div class="form-group row">
50. <label for="movie_running_time_in_minutes"
51. class="col-sm-3 col-form-label-lg">Running Time (min)</label>
52. <div class="col-sm-8">
53. <input type="number" class="form-control"
54. id="movie_running_time_in_minutes"
55. name="movie_running_time_in_minutes"
56. placeholder="Running time (in minutes)" required>
57. <div class="invalid-feedback">
58. Please provide a valid running time in minutes.
59. </div>
60. </div>
61. </div>
62. <div class="form-group row">
63. <label class="col-sm-3 col-form-label-lg">Genre</label>
64. <div class="col-sm-8">
65. <?php
66. foreach ($genres as $genre)
67. {
68. ?>
69. <div class="form-check form-check-inline col-sm-3">
70. <input class="form-check-input" type="checkbox"
71. id="movie_genre_checkbox_action"
72. name="movie_genre_checkbox[]"
73. value="<?= $genre ?>">
74. <label class="form-check-label"
75. for="movie_genre_checkbox_action"><?= $genre ?></label>
76. </div>
77. <?php
78. }
79. ?>
80. </div>
81. </div>
82. <button class="btn btn-primary" type="submit"
83. name="add_movie_submission">Add Movie</button>
84. </form>

Note that the page is self referencing as the action attribute is set to $_SERVER['PHP_SELF']:

<form ... action="<?= $_SERVER['PHP_SELF']; ?>">

PHP Web Development with MySQL—A Hands On Approach to Application Programming164

16. Adding Data Using the Web Application

Using Bootstrap’s Client Side Validation
Also, notice that we are using Bootstrap’s client-side validation. This requires we do the
following:

1. Set the form’s class attribute to needs-validation and add the novalidate attribute:
<form class="needs-validation" novalidate ...

2. Marking input elements with a required attribute to ensure the fields we want to be
validated get validated and sent by the user’s browser as part of the POST request.

<input type="number" ... required>

3. Adding <div> elements with class attributes set to invalid-feedback containing the
validation text we want the user to see if they forget to fill in the field. We add these
directly under the <input> elements we want validated. Listing 16.5 is the complete
HTML markup for the “Running Time” input field along with the invalid feedback we
want the user to see if they forget to enter a value.

Listing 16.5.

 1. <div class="form-group row">
 2. <label for="movie_running_time_in_minutes"
 3. class="col-sm-3 col-form-label-lg">Running Time (min)</label>
 4. <div class="col-sm-8">
 5. <input type="number" class="form-control"
 6. id="movie_running_time_in_minutes"
 7. name="movie_running_time_in_minutes"
 8. placeholder="Running time (in minutes)" required>
 9. <div class="invalid-feedback">
10. Please provide a valid running time in minutes.
11. </div>
12. </div>
13. </div>

4. Adding the JavaScript code from Listing 16.6 in <script> tags following the form.

A complete write-up on how to implement client-side validation using Bootstrap[3]
(version 4.3) can be found online.

[3] client-side validation using Bootstrap: https://getbootstrap.com/docs/4.3/components/forms/#validation

https://getbootstrap.com/docs/4.3/components/forms/#validation

Creating a Page to Add Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 165

Listing 16.6.

 1. </form>
 2. <script>
 3. // JavaScript for disabling form submissions if there are invalid fields
 4. (function() {
 5. 'use strict';
 6. window.addEventListener('load', function() {
 7. // Fetch all the forms we want to apply custom Bootstrap validation styles to
 8. var forms = document.getElementsByClassName('needs-validation');
 9. // Loop over them and prevent submission
10. var validation = Array.prototype.filter.call(forms, function(form) {
11. form.addEventListener('submit', function(event) {
12. if (form.checkValidity() === false) {
13. event.preventDefault();
14. event.stopPropagation();
15. }
16. form.classList.add('was-validated');
17. }, false);
18. });
19. }, false);
20. })();
21. </script>

Figure 16.5 displays what our “Add a Movie”
page look likes if we forget to add an entry
for “Running Time.”

Note that the “Title”, “Rating”, and “Director”
have been validated successfully. However,

“Running Time” failed to validate.

Displaying the “Add a Movie” Form

The “Add a Movie” form should only be
displayed when first navigating to the
addmovie.php page or if there are validation
errors after submitting the form. Therefore,
we will create a Boolean variable called $display_add_movie_form immediately following the
<hr/> element and set it to true:

<hr/>
 <?php
 $display_add_movie_form = true;

Figure 16.5.

PHP Web Development with MySQL—A Hands On Approach to Application Programming166

16. Adding Data Using the Web Application

Next, we wrap our form and JavaScript validation code in a conditional that checks this
variable. See Listing 16.7.

Listing 16.7.

 1. if ($display_add_movie_form)
 2. {
 3. ?>
 4. <form ...>
 5. ...
 6. </form>
 7. <script>
 8. ...
 9. </script>
10. <?php
11. } // Display add movie form
12. ?>

Inserting Movie Data Into the Database

When the user successfully enters the required data into the form fields and submits the
form, we will insert the data into the movieListing table of the Movie database.

Also, even though we are validating the field inputs on the client-side, it is still important to
validate the field inputs on the server-side as well. We can’t trust that every browser or user
visiting our site performs any validation. Therefore, we create a conditional check to ensure
the required fields are present before inserting them into the database and place this code
before the form markup as in Listing 16.8.

Listing 16.8.

 1. // pro-tip: you can test multiple variables within a single isset() call
 2. if (isset($_POST['add_movie_submission'], $_POST['movie_title'],
 3. $_POST['movie_rating'], $_POST['movie_director'],
 4. $_POST['movie_running_time_in_minutes']))
 5. {
 6. // Code to insert new movie into database
 7. ...
 8. }
 9. ...
10. if ($display_add_movie_form) {
11. ?>
12. <form ...>

In the code above, we are making sure that the fields we require to be filled in are set.

Creating a Page to Add Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 167

Note that you can test multiple variables in a single isset() function call.

Assuming the user enters all the required data, we can now insert the data into the database.
Refer to Listing 16.9.

Listing 16.9.

 1. <?php
 2. if (isset($_POST['add_movie_submission'], $_POST['movie_title'],
 3. $_POST['movie_rating'], $_POST['movie_director'],
 4. $_POST['movie_running_time_in_minutes']))
 5. {
 6. require_once('dbconnection.php');
 7.
 8. $movie_title = $_POST['movie_title'];
 9. $movie_rating = $_POST['movie_rating'];
10. $movie_director = $_POST['movie_director'];
11. $movie_runtime = $_POST['movie_running_time_in_minutes'];
12. $checked_movie_genres = $_POST['movie_genre_checkbox'];
13.
14. $movie_genre_text = "";
15. if (isset($checked_movie_genres))
16. {
17. $movie_genre_text = implode(",", $checked_movie_genres);
18. }
19.
20. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
21. or trigger_error(
22. 'Error connecting to MySQL server for ' . DB_NAME,
23. E_USER_ERROR
24.);
25.
26. $query = "INSERT INTO movieListing (title, rating, director,
27. running_time_in_minutes, genre) "
28. . "VALUES ('$movie_title', '$movie_rating', '$movie_director',
29. '$movie_runtime', '$movie_genre_text')";
30.
31. mysqli_query($dbc, $query)
32. or trigger_error(
33. 'Error querying database movieListing: Failed to insert movie listing',
34. E_USER_ERROR
35.);
36.
37. //

PHP Web Development with MySQL—A Hands On Approach to Application Programming168

16. Adding Data Using the Web Application

Extracting the Genre from the Checkbox Array
Notice the section of code above that deals with the movie genre:

$movie_genre_text = "";

if (isset($checked_movie_genres))
{
 $movie_genre_text = implode(", ", $checked_movie_genres);
}

Since a movie can have multiple genres, we create a comma-delimited list of the selected
genres from the checkbox array. We do this by calling the implode() function ONLY if the user
chose at least one genre. If the user doesn’t select any genres, the checkbox array doest not
exist. Therefore we need to check that it is set first before calling implode(). If the user does
not select a genre, we insert an empty string into the genre field of the movieListing table.

Preventing the Display of the “Add a Movie” Form
After inserting the new movie information into the database, we prevent the form from
displaying again by setting $display_add_movie_form to false:

mysqli_query($dbc, $query)
 or trigger_error(
 'Error querying database movieListing: Failed to insert movie listing',
 E_USER_ERROR

);

$display_add_movie_form = false;

Displaying the Added Details and a Link to Add
Another Movie

To make this page more useful, we should let
the user know their movie information was
successfully added to the database. Let us do
this by displaying a page and a table that looks
like Figure 16.6, including a link to add another
movie as shown.

Listing 16.10 lists the HTML markup and PHP
code to display the added movie details.

Figure 16.6.

Complete Code Listing

PHP Web Development with MySQL—A Hands On Approach to Application Programming 169

Listing 16.10.

 1. $display_add_movie_form = false;
 2. ?>
 3. <h3 class="text-info">The Following Movie Details were Added:</h3>

 4.
 5. <h1><?= $movie_title ?></h1>
 6. <table class="table table-striped">
 7. <tbody>
 8. <tr>
 9. <th scope="row">Rating</th>
10. <td><?= $movie_rating ?></td>
11. </tr>
12. <tr>
13. <th scope="row">Director</th>
14. <td><?= $movie_director ?></td>
15. </tr>
16. <tr>
17. <th scope="row">Running Time (minutes)</th>
18. <td><?= $movie_runtime ?></td>
19. </tr>
20. <tr>
21. <th scope="row">Genre</th>
22. <td><?= $movie_genre_text ?></td>
23. </tr>
24. </tbody>
25. </table>
26. <hr/>
27. <p>Would you like to <a href='<?= $_SERVER['PHP_SELF'] ?>'> add another movie?</p>
28. <?php
29. }
30.
31. if ($display_add_movie_form) {

Complete Code Listing
And now, Listing 16.11 is the complete source code for the addmovie.php page.

Listing 16.11.

 1. <!DOCTYPE html>
 2. <html>
 3. <head>
 4. <title>Add a Movie</title>
 5. <link rel="stylesheet"
 6. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 7. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 8. crossorigin="anonymous">
 9. </head>

PHP Web Development with MySQL—A Hands On Approach to Application Programming170

16. Adding Data Using the Web Application

10. <body>
11. <div class="card">
12. <div class="card-body">
13. <h1>Add a Movie</h1>
14. <nav class="nav">
15. Movies I Like
16. </nav>
17. <hr/>
18. <?php
19. $display_add_movie_form = true;
20.
21. $genres = [
22. 'Action', 'Adventure', 'Comedy', 'Documentary', 'Drama',
23. 'Fantasy', 'Horror', 'Romance', 'Science Fiction'
24.];
25. // pro-tip: you can test multiple variables within a single isset() call
26. if (isset($_POST['add_movie_submission'], $_POST['movie_title'],
27. $_POST['movie_rating'], $_POST['movie_director'],
28. $_POST['movie_running_time_in_minutes']))
29. {
30. require_once('dbconnection.php');
31.
32. $movie_title = $_POST['movie_title'];
33. $movie_rating = $_POST['movie_rating'];
34. $movie_director = $_POST['movie_director'];
35. $movie_runtime = $_POST['movie_running_time_in_minutes'];
36. $checked_movie_genres = $_POST['movie_genre_checkbox'];
37.
38. $movie_genre_text = "";
39. if (isset($checked_movie_genres))
40. {
41. $movie_genre_text = implode(",", $checked_movie_genres);
42. }
43.
44. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
45. or trigger_error(
46. 'Error connecting to MySQL server for' . DB_NAME,
47. E_USER_ERROR
48.);
49.
50. $query = "INSERT INTO movieListing (title, rating, director, "
51. . " running_time_in_minutes, genre) "
52. . " VALUES ('$movie_title', '$movie_rating', '$movie_director', "
53. . " '$movie_runtime', '$movie_genre_text')";
54.
55. mysqli_query($dbc, $query)
56. or trigger_error(
57. 'Error querying database movieListing: Failed to insert movie listing',
58. E_USER_ERROR
59.);
60.
61. $display_add_movie_form = false;
62. ?>

Complete Code Listing

PHP Web Development with MySQL—A Hands On Approach to Application Programming 171

63. <h3 class="text-info">The Following Movie Details were Added:</h3>

64.
65. <h1><?= $movie_title ?></h1>
66. <table class="table table-striped">
67. <tbody>
68. <tr>
69. <th scope="row">Rating</th>
70. <td><?= $movie_rating ?></td>
71. </tr>
72. <tr>
73. <th scope="row">Director</th>
74. <td><?= $movie_director ?></td>
75. </tr>
76. <tr>
77. <th scope="row">Running Time (minutes)</th>
78. <td><?= $movie_runtime ?></td>
79. </tr>
80. <tr>
81. <th scope="row">Genre</th>
82. <td><?= $movie_genre_text ?></td>
83. </tr>
84. </tbody>
85. </table>
86. <hr/>
87. <p>Would you like to <a href='<?= $_SERVER['PHP_SELF'] ?>'>add another movie?</p>
88. <?php
89. }
90.
91. if ($display_add_movie_form)
92. {
93. ?>
94. <form class="needs-validation" novalidate method="POST"
95. action="<?= $_SERVER['PHP_SELF'] ?>">
96. <div class="form-group row">
97. <label for="movie_title"
98. class="col-sm-3 col-form-label-lg">Title</label>
99. <div class="col-sm-8">
100. <input type="text" class="form-control" id="movie_title"
101. name="movie_title" placeholder="Title" required>
102. <div class="invalid-feedback">
103. Please provide a valid movie title.
104. </div>
105. </div>
106. </div>
107. <div class="form-group row">
108. <label for="movie_rating"
109. class="col-sm-3 col-form-label-lg">Rating</label>
110. <div class="col-sm-8">
111. <select class="custom-select" id="movie_rating"
112. name="movie_rating" required>
113. <option value="" disabled selected>Rating...</option>

PHP Web Development with MySQL—A Hands On Approach to Application Programming172

16. Adding Data Using the Web Application

114. <option value="G">G</option>
115. <option value="PG">PG</option>
116. <option value="PG-13">PG-13</option>
117. <option value="R">R</option>
118. </select>
119. <div class="invalid-feedback">
120. Please select a movie rating.
121. </div>
122. </div>
123. </div>
124. <div class="form-group row">
125. <label for="movie_director"
126. class="col-sm-3 col-form-label-lg">Director</label>
127. <div class="col-sm-8">
128. <input type="text" class="form-control" id="movie_director"
129. name="movie_director" placeholder="Director" required>
130. <div class="invalid-feedback">
131. Please provide a valid movie director.
132. </div>
133. </div>
134. </div>
135. <div class="form-group row">
136. <label for="movie_running_time_in_minutes"
137. class="col-sm-3 col-form-label-lg">Running Time (min)</label>
138. <div class="col-sm-8">
139. <input type="number" class="form-control"
140. id="movie_running_time_in_minutes"
141. name="movie_running_time_in_minutes"
142. placeholder="Running time (in minutes)" required>
143. <div class="invalid-feedback">
144. Please provide a valid running time in minutes.
145. </div>
146. </div>
147. </div>
148. <div class="form-group row">
149. <label class="col-sm-3 col-form-label-lg">Genre</label>
150. <div class="col-sm-8">
151. <?php
152. foreach ($genres as $genre)
153. {
154. ?>
155. <div class="form-check form-check-inline col-sm-3">
156. <input class="form-check-input" type="checkbox"
157. id="movie_genre_checkbox_action"
158. name="movie_genre_checkbox[]"
159. value="<?= $genre ?>">
160. <label class="form-check-label"
161. for="movie_genre_checkbox_action"><?= $genre ?></label>
162. </div>
163. <?php
164. }
165. ?>

Complete Code Listing

PHP Web Development with MySQL—A Hands On Approach to Application Programming 173

166. </div>
167. </div>
168. <button class="btn btn-primary" type="submit"
169. name="add_movie_submission">Add Movie</button>
170. </form>
171. <script>
172. // JavaScript for disabling form submissions if there are invalid fields
173. (function() {
174. 'use strict';
175. window.addEventListener('load', function() {
176. // Fetch all the forms we want to apply custom Bootstrap validation styles to
177. var forms = document.getElementsByClassName('needs-validation');
178. // Loop over them and prevent submission
179. var validation = Array.prototype.filter.call(forms, function(form) {
180. form.addEventListener('submit', function(event) {
181. if (form.checkValidity() === false) {
182. event.preventDefault();
183. event.stopPropagation();
184. }
185. form.classList.add('was-validated');
186. }, false);
187. });
188. }, false);
189. })();
190. </script>
191. <?php
192. } // Display add movie form
193. ?>
194. </div>
195. </div>
196. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
197. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
198. crossorigin="anonymous"></script>
199. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
200. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
201. crossorigin="anonymous"></script>
202. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
203. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
204. crossorigin="anonymous"></script>
205. </body>
206. </html>

PHP Web Development with MySQL—A Hands On Approach to Application Programming174

16. Adding Data Using the Web Application

Link to the “Add a Movie” Page from the Listing Page
Now that our “Add a Movie” page is
complete, let’s add a link to the addmovie.php
script from the main “Movies I Like”
index.php script. (Figure 16.7).

Add the link to the addmovie.php script in the
<body> element, right below the “Movies I
Like” title index.php script:

<body>
 <div class="card">
 <div class="card-body">
 <h1>Movies I Like</h1>
 <p>If you have a movie you would like to include, feel free to
 add one</p>

Exercises
1. Create an “Add Movie” page with a form that allows users to insert a movie in the

database.
1. Ensure users submit a title, rating, director, running time, and genre.
2. Put an “Add Movie” button on the movie listings page.

2. Add at least one new genre of movies to the form. Ensure the data is saved to the data-
base. Display the value (if selected) on the details page.

3. Add a field for the year the movie was released to the form. Allow years from 1900
to ten years in the future. Ensure the data is saved to the database. Display the year
released on the details page.

Figure 16.7.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 175

Chapter

17
Removing Data Using the
Web Application

“Most of you are familiar with the virtues of a programmer. There are three,
of course: laziness, impatience, and hubris.”

–Larry Wall

PHP Web Development with MySQL—A Hands On Approach to Application Programming176

17. Removing Data Using the Web Application

In this chapter, we add the ability to remove movie listing data to our Movie Listing application.

In addition to providing a mechanism to add movies, it also seems reasonable to provide the
means for removing movies using a web interface. So, let us add a script that allows the user
to remove movie listing data.

Note that you generally want to limit access to who can remove items from a database.
In a follow-on chapter on security, I will show you how to properly limit access to a
web application’s ability to remove data through user logins.

Adding Deletion Links to Movie Listings
There are several ways we could design our Movie Listing application to include the ability to
remove movies. I have chosen to add links to each movie listing on the main “Movies I Like”
index.php page for removing each movie. If we use an icon that looks like a trashcan, the
purpose of the link should be apparent as in Figure 17.1

Each trashcan link will take us to the (yet to be written) removemovie.php script and send over
the primary key of the specified movie (from the movieListing table) as a query parameter.

Figure 17.1.

Adding Deletion Links to Movie Listings

PHP Web Development with MySQL—A Hands On Approach to Application Programming 177

Adding Font Awesome

[1] Font Awesome: https://fontawesome.com

To use this trashcan link, we need to add a link to the free Font Awesome[1] stylesheet within
the <head> element tag set. Font Awesome provides many icons as fonts, so we don’t need to
create dozens or hundreds of tiny, custom graphics.

<head>
 ...
 <link rel="stylesheet"
 href="https://use.fontawesome.com/releases/v5.8.1/css/all.css"
 integrity="sha384-50oBUHEmvpQ+1lW4y57PTFmhCaXp0ML5d60M1M7uH2+nqUivzIebhndOJK28

anvf"
 crossorigin="anonymous">
</head>

Add a “Remove Link” Column to the Movie Listing Table
Next, we need to add a column to our movie listing table by adding a blank table head
column. Then, we can add a data item for each movie listing with a link to removemovie.php
and the id of the movie as a query parameter to the table row. Let us name the query param-
eter: id_to_delete as in Listing 17.1.

Listing 17.1.

 1. <table class="table table-striped table-hover">
 2. <thead>
 3. <tr>
 4. <th scope="col">Movie Title</th>
 5. <th scope="col"></th>
 6. </tr>
 7. </thead>
 8. <tbody>
 9. <?php
10. while($row = mysqli_fetch_assoc($result))
11. {
12. echo "<tr><td><a class='nav-link' href='moviedetails.php?id="
13. . $row['id'] . "'>" . $row['title'] ."</td>"
14. . "<td><a class='nav-link' href='removemovie.php?id_to_delete="
15. . $row['id'] ."'><i class='fas fa-trash-alt'></i></td></tr>";
16. }
17. ?>
18. </tbody>
19. </table>

https://fontawesome.com

PHP Web Development with MySQL—A Hands On Approach to Application Programming178

17. Removing Data Using the Web Application

Reload the updated index.php script in a
browser. Now, when we hover our cursor
over a trashcan icon of one of the movie list-
ings, we see that our destination hyperlink
is the removemovie.php script. The hyperlink
includes a query parameter of id_to_delete
set to the primary key of the movie we are
interested in deleting. See Figure 17.2.

The browser sends this query parameter, and
PHP parses that into the $_GET[] superglobal
array.

Creating a “Remove a Movie
Page”

Any page dedicated to removing data from
our application should clearly display what
we want to delete. Doing so allows users to
confirm if they want to delete this informa-
tion or not. For example, when we select a
movie we want to delete, our browser should
take us to a page that looks like Figure 17.3.

Although it is not necessary, I like putting
important text and actions—like selecting the

“Delete Movie” submit button—in
red. Bootstrap also has button-specific classes we could use to
differentiate it.

Initial Page Layout

Create another PHP script and call it removemovie.php. Again, start with a simple boiler-
plate that includes the necessary Bootstrap framework components and call the page title:

“Remove a Movie.” Next, add a couple of nested <div> tags right below our opening <body> tag
to display our movies in a Bootstrap card as shown in Listing 17.2.

Figure 17.2.

Figure 17.3.

Creating a “Remove a Movie Page”

PHP Web Development with MySQL—A Hands On Approach to Application Programming 179

Listing 17.2.

 1. <html>
 2. <head>
 3. <link rel="stylesheet"
 4. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 5. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 6. crossorigin="anonymous">
 7. <title>Remove a Movie</title>
 8. </head>
 9. <body>
10. <div class="card">
11. <div class="card-body">
12. </div>
13. </div>
14. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
15. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
16. crossorigin="anonymous"></script>
17. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
18. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
19. crossorigin="anonymous"></script>
20. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
21. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
22. crossorigin="anonymous"></script>
23. </body>
24. </html>

Within the inner most <div> tag, add the title “Remove a Movie” to our page in an <h1> tag
like so:

<body>
 <div class="card">
 <div class="card-body">
 <h1>Remove a Movie</h1>
 </div>
 </div>

Connect to the Movie Database
Since we need to access the database for the movie we want to remove, we should include
our dbconnection.php script and connect to our Movie database as in Listing 17.3.

PHP Web Development with MySQL—A Hands On Approach to Application Programming180

17. Removing Data Using the Web Application

Listing 17.3.

 1. <body>
 2. <div class="card">
 3. <div class="card-body">
 4. <h1>Remove a Movie</h1>
 5. <?php
 6. require_once('dbconnection.php');
 7.
 8. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 9. or trigger_error(
10. 'Error connecting to MySQL server for' . DB_NAME,
11. E_USER_ERROR
12.);

Multiple Ways to Navigate to “Remove a Movie” Page

As you can see from Figure 17.4, the page
displays the movie details of the movie to
remove, along with two buttons. This gives
the user a choice to remove the movie or not.

When the user selects one of the buttons
(“Delete Movie” or “Don’t Delete”), the
removemovie.php script is called with the name
attribute of the button selected. The movie id
attribute is sent and parsed into the
$_POST[] superglobal array.

There are two other ways a user can navi-
gate to the removemovie.php script. First, by
selecting one of the trashcan links for a movie to remove from the index.php page. Another—
unintended mechanism—would be to type removemovie.php into the URL address bar of the
browser. That is, without the query parameter containing the movie id.

We need to handle all of these possible methods of navigating to the removemovie.php script.
So, first, we handle the expected ways of navigating to the removemovie.php script, then the
unexpected ones.

The best way to deal with these choices is to create an if/elseif/else block of code as in
Listing 17.4.

Figure 17.4.

Creating a “Remove a Movie Page”

PHP Web Development with MySQL—A Hands On Approach to Application Programming 181

Listing 17.4.

 1. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 2. or trigger_error(
 3. 'Error connecting to MySQL server for' . DB_NAME, E_USER_ERROR
 4.);
 5.
 6. if (isset($_POST['delete_movie_submission']) && isset($_POST['id'])):
 7. ...
 8. elseif (isset($_POST['do_not_delete_movie_submission'])):
 9. ...
10. elseif (isset($_GET['id_to_delete'])):
11. ...
12. else: // Unintended page link
13. ...
14. endif;

The following sections will break down each condition based on how we navigated to
removemovie.php.

Navigating from index.php

This is the first intended way we will navi-
gate to the removemovie.php page. Therefore
we will be dealing with the second elseif
block:

elseif (isset($_GET['id_to_delete'])):

We reach this condition when a user selects one of the trashcan icons for the movie they
want to delete. They should be presented with a page like Figure 17.4.

First, I chose to display a deletion confirmation message using Bootstrap’s text-danger class.
See Figure 17.5

 elseif (isset($_GET['id_to_delete'])):
?>
 <h3 class="text-danger">Confirm Deletion of the Following Movie Details:</h3>

<?php

Figure 17.5.

PHP Web Development with MySQL—A Hands On Approach to Application Programming182

17. Removing Data Using the Web Application

We grab the query parameter that holds the ID
of the movie we want to delete from the $_GET[]
superglobal array. With it, we can query the
movieListing table in the Movie database for the row
of fields for the given movie id as in Listing 17.5.

Next, display the movie title in and <h1> tag set and
all the movie details in a striped table (Figure 17.6 and Listing 17.6).

Listing 17.5.

 1. <h3 class="text-danger">Confirm Deletion of the Following Movie Details:</h3>

 2. <?php
 3. $id = $_GET['id_to_delete'];
 4.
 5. $query = "SELECT * FROM movieListing WHERE id = $id";
 6.
 7. $result = mysqli_query($dbc, $query)
 8. or trigger_error(
 9. 'Error querying database movieListing',
10. E_USER_ERROR
11.);
12.
13. if (mysqli_num_rows($result) == 1):
14.
15. $row = mysqli_fetch_assoc($result)
16. ?>

Listing 17.6.

 1. $row = mysqli_fetch_assoc($result)
 2. ?>
 3. <h1><?= $row['title'] ?></h1>
 4. <table class="table table-striped">
 5. <tbody>
 6. <tr>
 7. <th scope="row">Rating</th>
 8. <td><?= $row['rating'] ?></td>
 9. </tr>
10. <tr>
11. <th scope="row">Director</th>
12. <td><?= $row['director'] ?></td>
13. </tr>
14. <tr>
15. <th scope="row">Running Time (minutes)</th>
16. <td><?= $row['running_time_in_minutes'] ?></td>
17. </tr>
18. <tr>

Figure 17.6.

Creating a “Remove a Movie Page”

PHP Web Development with MySQL—A Hands On Approach to Application Programming 183

19. <th scope="row">Genre</th>
20. <td><?= $row['genre'] ?></td>
21. </tr>
22. </tbody>
23. </table>

Finally, display a form (Figure 17.7)—that self references
the removemovie.php page—with two submit buttons: one for
deleting the movie and another for not deleting the movie.

Listing 17.7.

 1. </table>
 2. <form method="POST" action="<?= $_SERVER['PHP_SELF'] ?>">
 3. <div class="form-group row">
 4. <div class="col-sm-2">
 5. <button class="btn btn-danger" type="submit"
 6. name="delete_movie_submission">Delete Movie
 7. </button>
 8. </div>
 9. <div class="col-sm-2">
10. <button class="btn btn-success" type="submit"
11. name="do_not_delete_movie_submission">Don't Delete
12. </button>
13. </div>
14. <input type="hidden" name="id" value="<?= $id ?>">
15. </div>
16. </form>

Notice the name attributes in Listing 17.7 for the two buttons are descriptive:

 <button class="btn btn-danger" type="submit"

 name="delete_movie_submission">Delete Movie</button>
 ...
 <button class="btn btn-success" type="submit"
 name="do_not_delete_movie_submission">Don't Delete</button>

In Bootstrap, add btn btn-danger or btn btn-success to the class attribute of the button
element to make a button red or green.

Figure 17.7.

PHP Web Development with MySQL—A Hands On Approach to Application Programming184

17. Removing Data Using the Web Application

Also, notice I created a hidden <input> element in the form and set it to the id of the movie.
After the form data is POSTed back to removemovie.php when the user presses the “Delete
Movie” submit button, the id is available to our PHP script in the $_POST[] superglobal array
so that our code can delete it from the database.

THE WEB IS STATELESS! When the user selects the “Delete Movie” submit button, the
action is to re-render the removemovie.php script and send new data to the page through the
$_POST[] superglobal array. However, all of the previous variable data from the PHP code
(as a result of the last navigation to removemovie.php from the index.php page) is gone. The
definition of “Stateless” behavior is that all data is communicated in a single HTTP request
and response between the client (browser) and the server. This data is only present for
the current HTTP request/response. Using hidden variables in a form is one way to keep
information between requests (after linking to a different or the same page). In subsequent
chapters on Cookies and Sessions, we explore other techniques we can use to persist data as
a user navigates between the pages in our application.

Clicking the “Delete Movie” Button
Pressing the “Delete Movie” button is the second intended way for user to arrive at the
removemovie.php page. Therefore we are dealing with the if block:

if (isset($_POST['delete_movie_submission']) && isset($_POST['id'])):

When we reach this condition, it was because a user selected the “Delete Movie” submit
button. The browser then sends a POST request to removemovie.php with the form variables
delete_movie_submission and id in the $_POST[] superglobal array.

In this block, we delete the movie with the given id from the movieListing table in the Movie
database. Then, we link back to the main Movies I Like index.php. See Listing 17.8.

Listing 17.8.

 1. if (isset($_POST['delete_movie_submission']) && isset($_POST['id'])):
 2.
 3. $id = $_POST['id'];
 4.
 5. $query = "DELETE FROM movieListing WHERE id = $id";
 6.
 7. $result = mysqli_query($dbc, $query)
 8. or trigger_error('Error querying database movieListing', E_USER_ERROR);
 9.
10. header("Location: index.php");
11. exit;

Creating a “Remove a Movie Page”

PHP Web Development with MySQL—A Hands On Approach to Application Programming 185

Notice that once our code runs, the
removed movie is no longer listed (Figure
17.8).

Pressing the “Don’t Delete” Button

This is the third intended way to navigate to
the removemovie.php page. Therefore we will
be dealing with first elseif block:

elseif (isset($_POST['do_not_delete_movie_submission'])):

If this condition is true, it was because a user selected the “Don’t Delete” submit button.
Doing so, POSTs to removemovie.php with the form variables do_not_delete_movie_submission in
the $_POST[] superglobal array.

In this block, we redirect the user automatically to the main “Movies I Like” index.php page.
Using the header()[2] function, We send a Location: with the destination URL, index.php.

elseif (isset($_POST['do_not_delete_movie_submission'])):

 header("Location: index.php");
 exit;

When the page reloads, notice the movie
was not removed (Figure 17.9).

Soft vs Hard Deletes
Depending on your application, you may
not want to delete a row from the data-
base immediately. What if the user wants
to recover a record? In that case, many programs use a “soft” delete by adding a boolean
column to a table to indicate that something has been “deleted.” When querying for records,
exclude the rows with this field set to true. To recover a record, we need only flip the field to
false.

[2] header(): https://php.net/header

Figure 17.8.

Figure 17.9.

https://php.net/header

PHP Web Development with MySQL—A Hands On Approach to Application Programming186

17. Removing Data Using the Web Application

Unexpected Navigation Method
Since the HTTP request is coming from the client, in theory, unanticipated, unwanted, and
malicious parameters can be in the query string. All other conditions we could navigate to
the removemovie.php page are unintended. Therefore, we are dealing with the else block:

else: // Unintended page link

Since all of the above conditions are where we want the application to function in a specific
way, it is common practice to put the application’s response to unpredictable behavior in an
else condition. In this case, we redirect to the main Movies I Like index.php page:

else: // Unintended page link - No movie to remove, link back to index

 header("Location: index.php");
 exit;

endif;

Complete Code Listing
Listing 17.9 holds the complete code for the removemovie.php page.

Listing 17.9.

 1. <html>
 2. <head>
 3. <title>Remove a Movie</title>
 4. <link rel="stylesheet"
 5. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 6. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 7. crossorigin="anonymous">
 8. </head>
 9. <body>
10. <div class="card">
11. <div class="card-body">
12. <h1>Remove a Movie</h1>
13. <?php
14. require_once('dbconnection.php');
15.
16. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
17. or trigger_error(
18. 'Error connecting to MySQL server for DB_NAME.',
19. E_USER_ERROR
20.);
21.
22. if (isset($_POST['delete_movie_submission']) && isset($_POST['id'])):

Complete Code Listing

PHP Web Development with MySQL—A Hands On Approach to Application Programming 187

23.
24. $id = $_POST['id'];
25.
26. $query = "DELETE FROM movieListing WHERE id = $id";
27.
28. $result = mysqli_query($dbc, $query)
29. or trigger_error('Error querying database movieListing', E_USER_ERROR);
30.
31. header("Location: index.php");
32. exit;
33.
34. elseif (isset($_POST['do_not_delete_movie_submission'])):
35.
36. header("Location: index.php");
37. exit;
38.
39. elseif (isset($_GET['id_to_delete'])):
40. ?>
41. <h3 class="text-danger">Confirm Deletion of the Following
42. Movie Details:</h3>

43. <?php
44. $id = $_GET['id_to_delete'];
45.
46. $query = "SELECT * FROM movieListing WHERE id = $id";
47.
48. $result = mysqli_query($dbc, $query)
49. or trigger_error('Error querying database movieListing', E_USER_ERROR);
50.
51. if (mysqli_num_rows($result) == 1):
52.
53. $row = mysqli_fetch_assoc($result)
54. ?>
55. <h1><?= $row['title'] ?></h1>
56. <table class="table table-striped">
57. <tbody>
58. <tr>
59. <th scope="row">Rating</th>
60. <td><?= $row['rating'] ?></td>
61. </tr>
62. <tr>
63. <th scope="row">Director</th>
64. <td><?= $row['director'] ?></td>
65. </tr>
66. <tr>
67. <th scope="row">Running Time (minutes)</th>
68. <td><?= $row['running_time_in_minutes'] ?></td>
69. </tr>
70. <tr>
71. <th scope="row">Genre</th>
72. <td><?= $row['genre'] ?></td>

PHP Web Development with MySQL—A Hands On Approach to Application Programming188

17. Removing Data Using the Web Application

73. </tr>
74. </tbody>
75. </table>
76. <form method="POST"
77. action="<?= $_SERVER['PHP_SELF'] ?>">
78. <div class="form-group row">
79. <div class="col-sm-2">
80. <button class="btn btn-danger" type="submit"
81. name="delete_movie_submission">
82. Delete Movie
83. </button>
84. </div>
85. <div class="col-sm-2">
86. <button class="btn btn-success"
87. type="submit"
88. name="do_not_delete_movie_submission">
89. Don't Delete
90. </button>
91. </div>
92. <input type="hidden" name="id"
93. value="<?= $id ?>">
94. </div>
95. </form>
96. <?php
97. else:
98. ?>
99. <h3>No Movie Details :-(</h3>
100. <?php
101. endif;
102.
103. else: // Unintended page link - No movie to remove, go back to index
104.
105. header("Location: index.php");
106. exit;
107.
108. endif;
109. ?>
110. </div>
111. </div>
112. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
113. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
114. crossorigin="anonymous"></script>
115. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
116. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
117. crossorigin="anonymous"></script>
118. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
119. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
120. crossorigin="anonymous"></script>
121. </body>
122. </html>

Exercises

PHP Web Development with MySQL—A Hands On Approach to Application Programming 189

Exercises
1. Add a clickable trashcan icon (one per movie) to the movie listing page so users can

delete a single movie.
2. Create the remove a movie page to show the movie details and confirmation of the

deletion.
3. Bonus: Switch the behavior to use a soft delete and mark movies not to display. Update

the listing and detail pages to hide movies marked as “deleted.”

PHP Web Development with MySQL—A Hands On Approach to Application Programming 191

Editing Data Using the
Web Application

“I develop for Linux for a living, I used to develop for DOS. Going from
DOS to Linux is like trading a glider for an F117.”

–Lawrence Foard, entropy@world.std.com

Chapter

18

PHP Web Development with MySQL—A Hands On Approach to Application Programming192

18. Editing Data Using the Web Application

In this chapter, we add the ability to edit movie listing data to our Movie Listing application.

Since we have an application with the ability to add and remove movies, we should prob-
ably add the ability to edit a movie listing as well. From a movie’s “Movie Details” page, we
want to navigate to a page with a form that allows us to modify all the movie details. After
successfully editing the movie data, we want to be taken back to the “Movie Details” page for
that movie to see the changes reflected immediately.

Note that you generally want to limit access to who can edit items in a database. A
follow-on chapter on security shows how to properly restrict access to a web applica-
tion’s ability to edit data through user logins.

Linking Movie Details to the Edit Page
Add a horizontal line and a link to the (yet to be written) editmovie.php script in the
moviedetails.php script just after the closing </table> element:

</table>
<hr/>
<p>If you would like to change any of the details of this movie, feel free to <a
href='editmovie.php?id_to_edit=<?=$row['id']?>'> edit it</p>

The updated “Movie Details” page should
look like Figure 18.1.

When we run the updated moviedetails.php
script, we can see when hovering on “edit it”,
our destination hyperlink is the editmovie.
php script along with the query parameter
of id_to_edit set to the primary key of the
movie we are interested in editing as in
Figure 18.2.

This query parameter is contained in
$row['id'] and will get sent over in the
$_GET[] superglobal array.

Figure 18.1.

Figure 18.2.

Create the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 193

Create the Editing Page

[1] require_once: https://php.net/require_once

We create an editmovie.php script that displays essentially the same form as the “Add a Movie”
addmovie.php script. The difference is that we pre-populate the form inputs with the movie
details from the database. Additionally, we use the same Bootstrap validation code—in the
addmovie.php script—in case the user inadvertently deletes a required field from the form.
When we select “edit it” for the movie we want to update, our browser should take us to a
page that looks like Figure 18.3.

DRY (Do Not Repeat Yourself)
For easier maintenance and reduced duplication of code, you should reuse the same
addmovie.php form markup and code. You can do this with PHP’s require_once[1] statement
in addmovie.php and editmovie.php scripts. We will leave this up to you as an exercise.

Figure 18.3.

https://php.net/require_once

PHP Web Development with MySQL—A Hands On Approach to Application Programming194

18. Editing Data Using the Web Application

First Steps
First, we will display the “Edit a Movie” title in an <h1> tag set within the <body> element:

<body>
 <div class="card">
 <div class="card-body">
 <h1>Edit a Movie</h1>

Next, let’s create a link back to the index.php page if the user does not want to update this
movie and a horizontal line (<hr/> element):

<body>
 <div class="card">
 <div class="card-body">
 <h1>Edit a Movie</h1>
 <nav class="nav">
 Movies I Like
 </nav>
 <hr/>

As in the previous “Remove a Movie” page, we will need to access the database for the movie
we want to edit, so we need to include our dbconnection.php script and connect to our Movie
database as shown in Listing 18.1.

Listing 18.1.

 1. <body>
 2. <div class="card">
 3. <div class="card-body">
 4. <h1>Edit a Movie</h1>
 5. <p>Movies I Like</p>
 6. <hr/>
 7. <?php
 8. require_once('dbconnection.php');
 9.
10. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
11. or trigger_error(
12. 'Error connecting to MySQL server for' . DB_NAME,
13. E_USER_ERROR
14.);

Create the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 195

Anticipating Paths to the Edit Page
There are two expected ways and various
unanticipated ways to navigate to the
editmovie.php script. The first expected way
is for the user to select the “edit it” link on
the “Movie Details” page as in Figure 18.4.

Doing so sends a single query parameter
contained in the id_to_edit element of the $_GET super global variable.

The second expected way is when the user selects “Update Movie.” When the user success-
fully enters the required data in the form fields and submits the form, we will want to update
the data for this movie in the movieListing table of the Movie database. You can find the
submitted form fields in the $_POST super global variable.

All other mechanisms are unanticipated. So this essentially gives us three choices we are
looking for. Therefore, the best way to deal with these three choices is to create an if/elseif/
else block of code structure in Listing 18.2.

Listing 18.2.

 1. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 2. or trigger_error(
 3. 'Error connecting to MySQL server for' . DB_NAME,
 4. E_USER_ERROR
 5.);
 6.
 7. if (isset($_GET['id_to_edit']))
 8. {
 9. // ...
10. }
11. elseif (isset($_POST['edit_movie_submission'], $_POST['movie_title'],
12. $_POST['movie_rating'], $_POST['movie_director'],
13. $_POST['movie_running_time_in_minutes']))
14. {
15. // ...
16. }
17. else // Unintended page link
18. {
19. // ...
20. }

In the elseif block of code above: even though we are validating the field inputs on the
client-side, it is still important to validate the field inputs on the server-side.

Figure 18.4.

PHP Web Development with MySQL—A Hands On Approach to Application Programming196

18. Editing Data Using the Web Application

Direct Navigation
The first intended way we will navigate to the editmovie.php script is when the user selects
the “edit it” link on the moviedetails.php page. The link causes an HTTP GET to be sent to the
editmovie.php script with the query parameter in the $_GET superglobal variable. We deal with
this in the first if block:

if (isset($_GET['id_to_edit']))
{

When we get to this condi-
tion, the primary key of the
movie we want to edit is
referenced by the
id_to_edit query parameter.

Take a look at the form
shown in Figure 18.5.

You will notice that the
fields are pre-populated
with the movie details. To
do this, we need to query
the movieListing table for
the movie details before
displaying the form.

Notice, in Figure 18.6, that
the “Genre” checkboxes are
correctly selected with the
set movie genres.

In order to display the
checkboxes for “Genre”—just as in the addmovie.php script—we need an array to hold the
names of each genre. Just above the if block, but right after the mysqli_connect() function
call, add the $genres array from Listing 18.3.

Figure 18.6.

Figure 18.5.

Create the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 197

Listing 18.3.

 1. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 2. or trigger_error(
 3. 'Error connecting to MySQL server for DB_NAME.', E_USER_ERROR
 4.);
 5.
 6. $genres = [
 7. 'Action', 'Adventure', 'Comedy', 'Documentary', 'Drama',
 8. 'Fantasy', 'Horror', 'Romance', 'Science Fiction'
 9.];
10.
11. if (isset($_GET['id_to_edit']))
12. {
13. // ...
14. }

Next, inside the if block, query the movieListing table for the movie details of the movie we
want to edit using the id_to_edit query parameter by adding the code from Listing 18.4.

Listing 18.4.

 1. if (isset($_GET['id_to_edit']))
 2. {
 3.
 4. $id_to_edit = $_GET['id_to_edit'];
 5.
 6. $query = "SELECT * FROM movieListing WHERE id = $id_to_edit";
 7.
 8. $result = mysqli_query($dbc, $query)
 9. or trigger_error('Error querying database movieListing', E_USER_ERROR);
10. // ...
11. }

If the query is successful, you only get one row back. It’s a good idea to use separate descrip-
tive variables for each field, but it is not necessary. Add the code in Listing 18.5 below the
mysqli_query() function call.

PHP Web Development with MySQL—A Hands On Approach to Application Programming198

18. Editing Data Using the Web Application

Listing 18.5.

 1. $result = mysqli_query($dbc, $query)
 2. or trigger_error('Error querying database movieListing', E_USER_ERROR);
 3.
 4. if (mysqli_num_rows($result) == 1)
 5. {
 6. $row = mysqli_fetch_assoc($result);
 7.
 8. $movie_title = $row['title'];
 9. $movie_rating = $row['rating'];
10. $movie_director = $row['director'];
11. $movie_runtime = $row['running_time_in_minutes'];
12. $movie_genre_text = $row['genre'];
13.
14. $checked_movie_genres = explode(', ', $movie_genre_text);
15. }

Notice that last line of code:

$checked_movie_genres = explode(', ', $movie_genre_text);

The explode()[2] function takes the comma-delimited list of genres stored for this movie and
turns it into an array called $checked_movie_genres. Using it converts this string:

'Action,Adventure,Science Fiction'

into this array:

$checked_movie_genres[0] = 'Action'
$checked_movie_genres[1] = 'Adventure'
$checked_movie_genres[2] = 'Science Fiction'

So we can use it to populate the correct checkboxes for the “Genre”.

The complete code for this if block looks like Listing 18.6.

[2] explode(): https://php.net/explode

https://php.net/explode

Create the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 199

Listing 18.6.

 1. if (isset($_GET['id_to_edit']))
 2. {
 3. $id_to_edit = $_GET['id_to_edit'];
 4.
 5. $query = "SELECT * FROM movieListing WHERE id = $id_to_edit";
 6.
 7. $result = mysqli_query($dbc, $query)
 8. or trigger_error('Error querying database movieListing', E_USER_ERROR);
 9.
10. if (mysqli_num_rows($result) == 1)
11. {
12. $row = mysqli_fetch_assoc($result);
13.
14. $movie_title = $row['title'];
15. $movie_rating = $row['rating'];
16. $movie_director = $row['director'];
17. $movie_runtime = $row['running_time_in_minutes'];
18. $movie_genre_text = $row['genre'];
19.
20. $checked_movie_genres = explode(', ', $movie_genre_text);
21. }
22. }

Consider a Database Relationship for Genres
Notice above that we use explode() to separate a comma-delimited string of genres we store
in the database. The problem with the above solution is that it denormalizes our list of
genres—which incidentally is hard-coded from the addmovie.php script. A better and more
long-term solution would be to create a database table that holds all of our genres and then
create a cross-reference (or JOIN table) representing a many-to-many relationship between
movies and genres. The advantage of this approach makes it easier to maintain/modify
genres because it is contained entirely within the data model. A minor disadvantage is that
it adds some complexity to your SQL queries. I leave it as a refactoring exercise for you to
implement this improvement within the application.

Display the Edit Form
Before we add code for the other two conditions, we create the form to update the movie.
We add this below the else block for the unintended condition. This form should look very
similar to the form for the addmovie.php script, except that the fields are pre-populated with
the data we just queried from the database. Listing 18.7 is the code for the form. Notice
some of the differences between this form and the one in addmovie.php.

PHP Web Development with MySQL—A Hands On Approach to Application Programming200

18. Editing Data Using the Web Application

Listing 18.7.

 1. else // Unintended page link - No movie to edit, link back to index
 2. {
 3. header("Location: index.php");
 4. }
 5. ?>
 6. <form class="needs-validation" novalidate method="POST"
 7. action="<?= $_SERVER['PHP_SELF'] ?>">
 8. <div class="form-group row">
 9. <label for="movie_title" class="col-sm-3 col-form-label-lg">Title</label>
10. <div class="col-sm-8">
11. <input type="text" class="form-control" id="movie_title"
12. name="movie_title" value='<?= $movie_title ?>'
13. placeholder="Title" required>
14. <div class="invalid-feedback">
15. Please provide a valid movie title.
16. </div>
17. </div>
18. </div>
19. <div class="form-group row">
20. <label for="movie_rating" class="col-sm-3 col-form-label-lg">Rating</label>
21. <div class="col-sm-8">
22. <select class="custom-select" id="movie_rating"
23. name="movie_rating" value='<?= $movie_rating ?>'
24. required>
25. <option value="" disabled selected>Rating...</option>
26. <option value="G" <?= $movie_rating == 'G' ? 'selected' : '' ?>>G
27. </option>
28. <option value="PG" <?= $movie_rating == 'PG' ? 'selected' : '' ?>>PG
29. </option>
30. <option value="PG-13" <?= $movie_rating == 'PG-13' ? 'selected' : '' ?>>PG-13
31. </option>
32. <option value="R" <?= $movie_rating == 'R' ? 'selected' : '' ?>>R
33. </option>
34. </select>
35. <div class="invalid-feedback">
36. Please select a movie rating.
37. </div>
38. </div>
39. </div>
40. <div class="form-group row">
41. <label for="movie_director"
42. class="col-sm-3 col-form-label-lg">Director</label>
43. <div class="col-sm-8">
44. <input type="text" class="form-control"
45. id="movie_director" name="movie_director"
46. value="<?= $movie_director ?>"
47. placeholder="Director" required>
48. <div class="invalid-feedback">
49. Please provide a valid movie director.
50. </div>

Create the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 201

51. </div>
52. </div>
53. <div class="form-group row">
54. <label for="movie_running_time_in_minutes"
55. class="col-sm-3 col-form-label-lg">Running Time (min)</label>
56. <div class="col-sm-8">
57. <input type="number" class="form-control"
58. id="movie_running_time_in_minutes"
59. name="movie_running_time_in_minutes"
60. value='<?= $movie_runtime ?>'
61. placeholder="Running time (in minutes)" required>
62. <div class="invalid-feedback">
63. Please provide a valid running time in minutes.
64. </div>
65. </div>
66. </div>
67. <div class="form-group row">
68. <label class="col-sm-3 col-form-label-lg">Genre</label>
69. <div class="col-sm-8">
70. <?php
71. foreach ($genres as $genre) {
72. ?>
73. <div class="form-check form-check-inline col-sm-3">
74. <input class="form-check-input" type="checkbox"
75. id="movie_genre_checkbox_action_<?= $genre ?>"
76. name="movie_genre_checkbox[]"
77. value="<?= $genre ?>"
78. <?= in_array($genre, $checked_movie_genres) ? 'checked' : '' ?>>
79. <label class="form-check-label"
80. for="movie_genre_checkbox_action_<?= $genre ?>"><?= $genre ?></label>
81. </div>
82. <?php
83. }
84. ?>
85. </div>
86. </div>
87. <button class="btn btn-primary" type="submit" name="edit_movie_submission">Update Movie
88. </button>
89. <input type="hidden" name="id_to_update" value="<?= $id_to_edit ?>">
90. </form>

Making Fields Sticky

Looking at the input text field for the movie title as an example:

<input type="text" class="form-control" id="movie_title"
 name="movie_title" value="<?= $movie_title ?>"
 placeholder="Title" required>

PHP Web Development with MySQL—A Hands On Approach to Application Programming202

18. Editing Data Using the Web Application

Notice the value attribute is set to the value of the $movie_title variable. This variable comes
from the title field for this movie’s row in the movieListing database table returned by our
earlier query.

value='<?= $movie_title ?>'

The value attributes for these input fields need to be set for the movie title, director, and
running time:

... name="movie_title" value= "<?= $movie_title ?>" ...

... name="movie_director" value= "<?= $movie_director ?>" ...

... name="movie_running_time_in_minutes" value="<?= $movie_runtime ?>" ...

The value attributes also need to be set for the rating selection and the genre checkboxes.
However, they are a little trickier. First we will deal with rating selection:

<select class="custom-select" id="movie_rating" name="movie_rating"
 value="<?= $movie_rating ?>" required>
 <option value="" disabled selected>Rating...</option>
 <option value="G" <?= $movie_rating=='G' ? 'selected' : '' ?>>G</option>
 <option value="PG" <?= $movie_rating=='PG' ? 'selected':'' ?>>PG</option>
 <option value="PG-13" <?= $movie_rating=='PG-13' ? 'selected':''?>>PG-13</option>
 <option value="R" <?= $movie_rating=='R' ? 'selected':'' ?>>R</option>
</select>

In a select, only one option can be selected by default. Therefore, I used the ternary operator
(?:) to check each option as it was added to the movie_rating select to test if this option
was equal to the rating for this movie. If the option was equal, I set this option to selected.
Otherwise, I set this option to an empty string ('').

Setting the value attributes for the genre checkboxes are also a little tricky and required
the use of the ternary operator. Similar to how we displayed the checkboxes for “Genre” in
addmovie.php, the code and markup in Listing 18.8 creates a checkbox input for each item in
our genres array. Every genre checked by the user gets added to the movie_genre_checkbox
array—note the [] added to the name attribute. Be aware that if the user does not select any
genre, the movie_genre_checkbox name attribute will not exist in the $_POST[] superglobal array.

Create the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 203

Listing 18.8.

 1. <?php
 2. foreach ($genres as $genre) {
 3. ?>
 4. <div class="form-check form-check-inline col-sm-3">
 5. <input class="form-check-input" type="checkbox"
 6. id="movie_genre_checkbox_action_<?= $genre ?>"
 7. name="movie_genre_checkbox[]"
 8. value="<?= $genre ?>" <?=in_array($genre, $checked_movie_genres) ? 'checked' : '' ?>>
 9. <label class="form-check-label"
10. for="movie_genre_checkbox_action_<?= $genre ?>"><?= $genre ?></label>
11. </div>
12. <?php
13. }
14. ?>

Notice I added to the value attribute whether or not the genre was selected or not using the
ternary operator:

... value="<?= $genre ?>" <?= in_array($genre, $checked_movie_genres) ? 'checked' : '' ?> ...

In addmovie.php we merely have:

... value="<?= $genre ?>" ...

However, we want to know if a particular genre is selected or not, and that information
is contained in the $checked_movie_genres array we created above using the explode()func-
tion. Using the function in_array()[3] we can determine if $genre (the current genre we are
processing in the foreach loop in the array $genres) is contained in the array
$checked_movie_genres. in_array() returns true if $genre exists, otherwise it returns false. We
can use the ternary operator to add the checked ('checked') attribute to the option for this
genre if found, or an empty string ('') if not found:

... <?= in_array($genre, $checked_movie_genres) ? 'checked' : '' ?> ...

Using Bootstrap’s Client-side Validation

As in the addmovie.php script, we are using Bootstrap’s client side validation. This requires we
do the following:

1. Set the form’s class attribute to needs-validation and adding the novalidate attribute:
<form class="needs-validation" novalidate ...

[3] in_array(): https://php.net/in_array

https://php.net/in_array

PHP Web Development with MySQL—A Hands On Approach to Application Programming204

18. Editing Data Using the Web Application

2. Marking input elements with a required attribute to ensure the fields we want validated
get validated:

<input type="number" ... required>

3. Adding <div> elements with class attributes set to invalid-feedback containing the vali-
dation text we want the user to see if they forget to fill in the field. Again, we add these
directly under the <input> elements we want validated. Listing 18.9 is the complete
HTML markup for the “Running Time” input field along with the invalid feedback we
want the user to see if they forget to enter a value.

Listing 18.9.

 1. <div class="form-group row">
 2. <label for="movie_running_time_in_minutes"
 3. class="col-sm-3 col-form-label-lg">Running Time (min)</label>
 4. <div class="col-sm-8">
 5. <input type="number" class="form-control"
 6. id="movie_running_time_in_minutes"
 7. name="movie_running_time_in_minutes"
 8. value='<?= $movie_runtime ?>'
 9. placeholder="Running time (in minutes)" required>
10. <div class="invalid-feedback">
11. Please provide a valid running time in minutes.
12. </div>
13. </div>
14. </div>

4. Adding the JavaScript code in Listing 18.10 to <script> tags following the form.

Listing 18.10.
 1. </form>
 2. <script>
 3. // JavaScript for disabling form submissions if there are invalid fields
 4. (function() {
 5. 'use strict';
 6. window.addEventListener('load', function() {
 7. // Fetch all the forms we want to apply custom Bootstrap validation styles to
 8. var forms = document.getElementsByClassName('needs-validation');
 9. // Loop over them and prevent submission
10. var validation = Array.prototype.filter.call(forms, function(form) {
11. form.addEventListener('submit', function(event) {
12. if (form.checkValidity() === false) {
13. event.preventDefault();
14. event.stopPropagation();
15. }
16. form.classList.add('was-validated');
17. }, false);
18. });
19. }, false);
20. })();

21. </script>

Create the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 205

DRY?
This looks like we are repeating code from the addmovie.php script, doesn’t it? In this case,
since we are using boiler-plate Bootstrap validation code, it makes more sense to put the
JavaScript code in an anonymous function directly below the form.

Pressing the Update Button

This is the second intended way we will navigate to the editmovie.php page. Therefore we will
be dealing with the elseif block:

elseif (isset($_POST['edit_movie_submission'], $_POST['movie_title'],
 $_POST['movie_rating'], $_POST['movie_director'],
 $_POST['movie_running_time_in_minutes'], $_POST['id_to_update'])) {

When we get into this condition, it is because a user selected the Update Movie submit
button. Doing so POSTs back to editmovie.php with the form variables edit_movie_submission,
movie_title, movie_rating, movie_director, movie_running_time_in_minutes, and id_to_update in
the $_POST[] superglobal array. Note, because genre is optional we do not check if it is set.

Speaking of id_to_update, notice I created a hidden <input> element in the form and set it to
the ID of the movie and set the name attribute to id_to_update. When the form data is posted
back to editmovie.php, the ID is available in the $_POST[] superglobal array so that it can be
updated in the database:

<input type="hidden" name="id_to_update" value="<?= $id_to_edit ?>">

We need to do this to carry over the ID of the movie that was sent using a query parameter
when editmovie.php was first called. Remember, HTTP requests and responses do not any
state or information.

Please see the aside in the previous chapter titled: THE WEB IS STATELESS!

Upon first entering a condition where either form or query parameters are being passed
in, I create separate variables for each. Again, this is not required and can be just as read-
able if you created descriptive name attributes for your form fields and access them using the
$_POST super global variable. However, I find it easier to type, and the purpose of the variable
stands out, assuming you use sufficiently descriptive names. Add the code in Listing 18.11
immediately under and within the elseif line.

PHP Web Development with MySQL—A Hands On Approach to Application Programming206

18. Editing Data Using the Web Application

Listing 18.11.

 1. elseif (isset($_POST['edit_movie_submission'], $_POST['movie_title'],
 2. $_POST['movie_rating'], $_POST['movie_director'],
 3. $_POST['movie_running_time_in_minutes'], $_POST['id_to_update']))
 4. {
 5.
 6. $movie_title = $_POST['movie_title'];
 7. $movie_rating = $_POST['movie_rating'];
 8. $movie_director = $_POST['movie_director'];
 9. $movie_runtime = $_POST['movie_running_time_in_minutes'];
10. $checked_movie_genres = $_POST['movie_genre_checkbox'];
11. $id_to_update = $_POST['id_to_update'];

We also need to build a comma delimited string containing the movie genre from the
checkbox array. Add the following code next:

$movie_genre_text = "";

if (isset($checked_movie_genres))
{
 $movie_genre_text = implode(", ", $checked_movie_genres);
}

Just like the addmovie.php script, a movie can have multiple genres. To store them all, we
create a comma-delimited list of the chosen genres from the checkbox array. We do this
by calling the implode()[4] function ONLY if the user selected at least one genre. If the user
doesn’t choose any genres, the checkbox array does not exist. Therefore we need to check
that it is set first before calling implode(). If the user does not select a genre, we insert an
empty string into the genre field of the movieListing table.

Now that we have all the updated movie listing data in the form we want, we can update the
movieListing table with an SQL UPDATE query.

A SQL UPDATE query looks like this:

UPDATE <table_name> SET <field_name> = <value_[, ...]> WHERE <condition>

Thus, our query string and call to mysqli_query() should look like Listing 18.12

[4] implode(): https://php.net/implode

https://php.net/implode

Create the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 207

Listing 18.12.

 1. $query = "UPDATE movieListing SET title = '$movie_title', rating = '$movie_rating', "
 2. . "director = '$movie_director', running_time_in_minutes = '$movie_runtime', "
 3. . "genre = '$movie_genre_text' "
 4. . "WHERE id = $id_to_update";
 5.
 6. mysqli_query($dbc, $query)
 7. or trigger_error(
 8. 'Error querying database movieListing: Failed to update movie listing',
 9. E_USER_ERROR
10.);

Finally, we can navigate back to the moviedetails.php using this movie’s ID as a query param-
eter to display the updated movie details with the following lines of code:

$nav_link = 'moviedetails.php?id=' . $id_to_update;

header("Location: $nav_link");
exit;

The complete listing for this elseif block looks like Listing 18.13.

Listing 18.13.

 1. elseif (isset($_POST['edit_movie_submission'], $_POST['movie_title'],
 2. $_POST['movie_rating'], $_POST['movie_director'],
 3. $_POST['movie_running_time_in_minutes'], $_POST['id_to_update']))
 4. {
 5.
 6. $movie_title = $_POST['movie_title'];
 7. $movie_rating = $_POST['movie_rating'];
 8. $movie_director = $_POST['movie_director'];
 9. $movie_runtime = $_POST['movie_running_time_in_minutes'];
10. $checked_movie_genres = $_POST['movie_genre_checkbox'];
11. $id_to_update = $_POST['id_to_update'];
12.
13. $movie_genre_text = "";
14.
15. if (isset($checked_movie_genres))
16. {
17. $movie_genre_text = implode(", ", $checked_movie_genres);
18. }
19.
20. $query = "UPDATE movieListing SET title = '$movie_title', rating = '$movie_rating', "
21. . "director = '$movie_director', running_time_in_minutes = '$movie_runtime', "
22. . "genre = '$movie_genre_text' "
23. . "WHERE id = $id_to_update";
24.

PHP Web Development with MySQL—A Hands On Approach to Application Programming208

18. Editing Data Using the Web Application

25. mysqli_query($dbc, $query)
26. or trigger_error(
27. 'Error querying database movieListing: Failed to update movie listing',
28. E_USER_ERROR
29.);
30.
31. $nav_link = 'moviedetails.php?id=' . $id_to_update;
32.
33. header("Location: $nav_link");
34. exit;
35. }

So, let us say we want to add five minutes
to a movie because IMDB[5] may not have
accounted for the end credits scene. We also
believe this movie fits in the “Drama” and

“Fantasy” genres as well. So, our edits might
look something like Figure 18.7.

The application directs the user to the
“Movie Details” page, where they can imme-
diately see the results (Figure 18.8).

Unanticipated Navigation Methods

As in the last chapter, since the HTTP
request is coming from the client. In theory,
unanticipated or malicious parameters can
be in the query string (or even field param-
eters from the HTTP POST). Therefore, all
other conditions we could navigate to the
editmovie.php page are unintended, and we
will be dealing with the else block:

else // Unintended page link
{

As in the last chapter, since all of the above
conditions are the ones where we want the application to function in a specific way, it is a
best practice to put the application’s response to unpredictable behavior in an else condition.
In this case, we just want to link back to the main “Movies I Like” index.php page:

[5] IMDB: https://imdb.com

Figure 18.7.

Figure 18.8.

https://imdb.com

Complete Code Listing

PHP Web Development with MySQL—A Hands On Approach to Application Programming 209

else // Unintended page link - No movie to edit, redirect back to index
{
 header("Location: index.php");
 exit();
}

Complete Code Listing
Listing 18.14 holds the complete listing for the editmovie.php page.

Listing 18.14.

 1. <html>
 2. <head>
 3. <link rel="stylesheet"
 4. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 5. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 6. crossorigin="anonymous">
 7. <title>Edit a Movie</title>
 8. </head>
 9. <body>
10. <div class="card">
11. <div class="card-body">
12. <h1>Edit a Movie</h1>
13. <nav class="nav">
14. Movies I Like
15. </nav>
16. <hr/>
17. <?php
18. require_once('dbconnection.php');
19.
20. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
21. or trigger_error(
22. 'Error connecting to MySQL server for ' . DB_NAME,
23. E_USER_ERROR
24.);
25.
26. $genres = [
27. 'Action', 'Adventure', 'Comedy', 'Documentary', 'Drama',
28. 'Fantasy', 'Horror', 'Romance', 'Science Fiction'
29.];
30.
31. if (isset($_GET['id_to_edit'])) {
32. $id_to_edit = $_GET['id_to_edit'];
33.
34. $query = "SELECT * FROM movieListing WHERE id = $id_to_edit";
35.
36. $result = mysqli_query($dbc, $query)
37. or trigger_error('Error querying database movieListing', E_USER_ERROR);
38.

PHP Web Development with MySQL—A Hands On Approach to Application Programming210

18. Editing Data Using the Web Application

39. if (mysqli_num_rows($result) == 1) {
40. $row = mysqli_fetch_assoc($result);
41.
42. $movie_title = $row['title'];
43. $movie_rating = $row['rating'];
44. $movie_director = $row['director'];
45. $movie_runtime = $row['running_time_in_minutes'];
46. $movie_genre_text = $row['genre'];
47.
48. $checked_movie_genres = explode(', ', $movie_genre_text);
49. }
50. } elseif (isset($_POST['edit_movie_submission'], $_POST['movie_title'],
51. $_POST['movie_rating'], $_POST['movie_director'],
52. $_POST['movie_running_time_in_minutes'])) {
53.
54. $movie_title = $_POST['movie_title'];
55. $movie_rating = $_POST['movie_rating'];
56. $movie_director = $_POST['movie_director'];
57. $movie_runtime = $_POST['movie_running_time_in_minutes'];
58. $checked_movie_genres = $_POST['movie_genre_checkbox'];
59. $id_to_update = $_POST['id_to_update'];
60.
61. $movie_genre_text = "";
62.
63. if (isset($checked_movie_genres)) {
64. $movie_genre_text = implode(", ", $checked_movie_genres);
65. }
66.
67. $query = "UPDATE movieListing SET title = '$movie_title', rating = '$movie_rating', "
68. . "director = '$movie_director', running_time_in_minutes = '$movie_runtime', "
69. . "genre = '$movie_genre_text' "
70. . "WHERE id = $id_to_update";
71.
72. mysqli_query($dbc, $query)
73. or trigger_error(
74. 'Error querying database movieListing: Failed to update movie listing',
75. E_USER_ERROR
76.);
77.
78. $nav_link = 'moviedetails.php?id=' . $id_to_update;
79.
80. header("Location: $nav_link");
81. exit;
82. } else // Unintended page link - No movie to edit, link back to index
83. {
84. header("Location: index.php");
85. exit;
86. }
87. ?>
88. <form class="needs-validation" novalidate method="POST"
89. action="<?= $_SERVER['PHP_SELF'] ?>">

Complete Code Listing

PHP Web Development with MySQL—A Hands On Approach to Application Programming 211

90. <div class="form-group row">
91. <label for="movie_title"
92. class="col-sm-3 col-form-label-lg">Title</label>
93. <div class="col-sm-8">
94. <input type="text" class="form-control"
95. id="movie_title" name="movie_title"
96. value='<?= $movie_title ?>'
97. placeholder="Title" required>
98. <div class="invalid-feedback">
99. Please provide a valid movie title.
101. </div>
101. </div>
102. </div>
103. <div class="form-group row">
104. <label for="movie_rating"
105. class="col-sm-3 col-form-label-lg">Rating</label>
106. <div class="col-sm-8">
107. <select class="custom-select" id="movie_rating"
108. name="movie_rating"
109. value='<?= $movie_rating ?>' required>
110. <option value="" disabled selected>Rating...
111. </option>
112. <option value="G" <?= $movie_rating == 'G' ? 'selected' : '' ?>>G
113. </option>
114. <option value="PG" <?= $movie_rating == 'PG' ? 'selected' : '' ?>>PG
115. </option>
116. <option value="PG-13" <?= $movie_rating == 'PG-13' ? 'selected' : '' ?>>PG-13
117. </option>
118. <option value="R" <?= $movie_rating == 'R' ? 'selected' : '' ?>>R
119. </option>
120. </select>
121. <div class="invalid-feedback">
122. Please select a movie rating.
123. </div>
124. </div>
125. </div>
126. <div class="form-group row">
127. <label for="movie_director"
128. class="col-sm-3 col-form-label-lg">Director</label>
129. <div class="col-sm-8">
130. <input type="text" class="form-control"
131. id="movie_director" name="movie_director"
132. value='<?= $movie_director ?>'
133. placeholder="Director" required>
134. <div class="invalid-feedback">
135. Please provide a valid movie director.
136. </div>
137. </div>
138. </div>
139. <div class="form-group row">

PHP Web Development with MySQL—A Hands On Approach to Application Programming212

18. Editing Data Using the Web Application

140. <label for="movie_running_time_in_minutes"
141. class="col-sm-3 col-form-label-lg">Running Time (min)</label>
142. <div class="col-sm-8">
143. <input type="number" class="form-control"
144. id="movie_running_time_in_minutes"
145. name="movie_running_time_in_minutes"
146. value='<?= $movie_runtime ?>'
147. placeholder="Running time (in minutes)"
148. required>
149. <div class="invalid-feedback">
150. Please provide a valid running time in minutes.
151. </div>
152. </div>
153. </div>
155. <div class="form-group row">
156. <label class="col-sm-3 col-form-label-lg">Genre</label>
156. <div class="col-sm-8">
157. <?php
158. foreach ($genres as $genre) {
159. ?>
160. <div class="form-check form-check-inline col-sm-3">
161. <input class="form-check-input"
162. type="checkbox"
163. id="movie_genre_checkbox_action_<?= $genre ?>"
164. name="movie_genre_checkbox[]"
165. value="<?= $genre ?>"
166. <?= in_array($genre, $checked_movie_genres) ? 'checked' : '' ?>>
167. <label class="form-check-label"
168. for="movie_genre_checkbox_action_<?= $genre ?>"><?= $genre ?></label>
169. </div>
170. <?php
171. }
172. ?>
173. </div>
174. </div>
175. <button class="btn btn-primary" type="submit"
176. name="edit_movie_submission">Update Movie
177. </button>
178. <input type="hidden" name="id_to_update"
179. value="<?= $id_to_edit ?>">
180. </form>
181. <script>
182. // JavaScript for disabling form submissions if there are invalid fields
183. (function () {
184. 'use strict';
185. window.addEventListener('load', function () {
186. // Fetch all the forms we want to apply custom Bootstrap validation styles to
187. var forms = document.getElementsByClassName('needs-validation');
188. // Loop over them and prevent submission
189. var validation = Array.prototype.filter.call(forms, function (form) {

Exercises

PHP Web Development with MySQL—A Hands On Approach to Application Programming 213

190. form.addEventListener('submit', function (event) {
191. if (form.checkValidity() === false) {
192. event.preventDefault();
193. event.stopPropagation();
194. }
195. form.classList.add('was-validated');
196. }, false);
197. });
198. }, false);
199. })();
200. </script>
201. </div>
202. </div>
203. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
204. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
205. crossorigin="anonymous"></script>
206. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
207. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
208. crossorigin="anonymous"></script>
209. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
210. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
211. crossorigin="anonymous"></script>
212. </body>
213. </html>

Exercises
1. Add an “edit a movie” page and add a button to update a movie to the details page.
2. Bonus: Change the Movie Genre field from a comma-separated text field to a “Genre”

table. See the aside at the end of the section on “Navigating from moviedetails.php to
editmovie.php”

PHP Web Development with MySQL—A Hands On Approach to Application Programming 215

Chapter

19
Working With Files and
Feature Additions to
Existing Code

“One of my most productive days was throwing away 1000 lines of code.”

–Ken Thompson

PHP Web Development with MySQL—A Hands On Approach to Application Programming216

19. Working With Files and Feature Additions to Existing Code

In this chapter, we add the ability to upload and display an image to our Movie Listing appli-
cation.

Let’s say we have our Movie Listing application out in the wild, and one of our users says,
“Hey, I really like the App, but it would be truly awesome if you could add a thumbnail image
for each movie. Can you do that?”

As easy as that one sentence is to say regarding the addition of this feature, it does require
changing quite a few PHP scripts. Furthermore, it can require modifying all the PHP scripts
depending on our implementation. Therefore, it makes sense to keep your users in the loop
and present them with different use cases and screenshots. However, this is beyond the
scope of this book, so I will jump right in with a description of how I think it should look,
work, and what needs to be modified:

1. Add a field to the movieListing database table for holding the file information (more on
this below).

2. Create an images/ folder for holding images for movies.
3. Modify addmovie.php so users can upload an image of a movie and add it to the movie

details entry in the database. Also, display the image on the “Add a Movie” page after
adding the movie. The uploading of an image should be optional as well.

4. Modify index.php to display a thumbnail image of the movie at the beginning of each
movie row.

5. Modify moviedetails.php to display the image on the “Movie Details” page to better
identify the movie.

6. Modify editmovie.php so that a user can upload a different image of a movie (or not)
and modify the movie details entry in the database.

7. Modify removemovie.php to show the image on the “Remove a Movie” page to identify
the movie better.

Add a Field for File Information

PHP Web Development with MySQL—A Hands On Approach to Application Programming 217

Add a Field for File
Information

In theory, we could upload an image file and
store the image in the database. However,
databases were designed for quick access,
and image files can be large. Therefore,
doing so could slow down the retrieval
time when querying the database, especially
when dealing with a large database.

A better solution is storing the image on the
server in an images/ folder. Then, we create
a string field in the movieListing table that
holds the file path location to the uploaded
image.

To add a new field to an existing table, we
need to ALTER the the movieListing table. Let’s
do this using Adminer. Using our browser,
log in to Adminer as movieguru and create
our database and table (Figure 19.1).

Select the Movie database as in Figure 19.2.

Select the movieListing table shown in
Figure 19.3

Figure 19.1.

Figure 19.2.

Figure 19.3.

PHP Web Development with MySQL—A Hands On Approach to Application Programming218

19. Working With Files and Feature Additions to Existing Code

Then select Alter table (Figure 19.4).

Select the + after the genre field to add a new
field at the end of the movieListing table as in
Figure 19.5

Give the image_file field the following prop-
erties as in Figure 19.6:

• In the Column name below genre,
enter image_file.

• Select the type as varchar.
• Enter 100 for the length.

Once you press Save, the table description should look like Figure 19.7.

Figure 19.4.

Figure 19.5. Figure 19.6.

Figure 19.7.

Create a Folder for Uploaded Movie Image Files

PHP Web Development with MySQL—A Hands On Approach to Application Programming 219

Create a Folder for Uploaded Movie Image Files
In your main web folder, where
your index.php script is located
(mine is /MovieListing), create a
new folder called images/ as in
Figure 19.8.

Note, your web server must
have privileges to write files
into this folder. For example,
on a *NIX system, if your
webserver (i.e., Apache) runs
as user www-data, make sure this
folder is writeable by the same user.

$ cd /var/www/public/html/MovieListing
$ sudo chown www-data images
$ sudo chmod u+w images

It is also good to have a generic image you can use for movie listings that do not have an
image. I called mine generic_movie.jpg.

Adding File Upload Capability
We want to modify the addmovie.php script so
a user can (optionally) upload an image of a
movie and add it to the movie details entry
in the database. Then, we can display the
image on the page after the user adds the
new movie. Here is how we want it to work.

When first navigating to our “Add a Movie”
page, our modified form should look like
Figure 19.9

Figure 19.8.

Figure 19.9.

PHP Web Development with MySQL—A Hands On Approach to Application Programming220

19. Working With Files and Feature Additions to Existing Code

Let’s say I want to add the movie “Serenity.”
Figure 19.10 shows the details so far.

Assuming I already downloaded an image,
when I select Choose File as in Figure 19.11,
I should get a file browser window that pops
up, and I can navigate to the image file I
want to upload, select it, then select Open
(Figure 19.12).

The name of the selected file is now
displayed (Figure 19.13) after the “Choose
File” button (instead of “No file chosen”).

Once we press Add Movie (Figure 19.16),
We want to see the added movie details
modified with the image we uploaded on a
page that looks like Figure 19.15.

Figure 19.10.

Figure 19.11.

Figure 19.12.

Figure 19.13.

Figure 19.14.

Figure 19.15.

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 221

Modifying the Form to Allow Uploads
We need to add two main things to our addmovie.php form to enable the uploading of files.
First we need to add the enctype attribute_to the <form> element and set it to
multipart/form-data:

<form enctype="multipart/form-data" ...>

When files are uploaded using a form, the file data is contained in the form data. By setting
the enctype attribute of the <form> element to multipart/form-data, the browser knows to
include the file data in the form data when sent to the webserver.

Secondly, we must add a file input element to the form:

<input type="file" class="form-control-file"
 id="movie_image_file" name="movie_image_file">

Add the file input element within a Bootstrap form-group row right before the submit button
in your form like in Listing 19.1.

Listing 19.1.

 1. </div>
 2. <div class="form-group row">
 3. <label for="movie_image_file"
 4. class="col-sm-3 col-form-label-lg">Movie Image File</label>
 5. <div class="col-sm-8">
 6. <input type="file" class="form-control-file"
 7. id="movie_image_file" name="movie_image_file">
 8. </div>
 9. </div>
10. <button class="btn btn-primary" type="submit"
11. name="add_movie_submission">Add Movie</button>
12. </form>

Adding file upload capability adds a bit of code to our script. Therefore, it would be best to
decouple as much of the file handling capability from the addmovie.php script as possible and
put this capability into its own set of functions. This separation is a good design decision
since we will utilize this functionality in our “Edit a Movie” page as well. Therefore, create a
separate script for holding image file functionality.

PHP Web Development with MySQL—A Hands On Approach to Application Programming222

19. Working With Files and Feature Additions to Existing Code

Create Separate Functions for Handling Image File Uploads

[1] The PHP documentation has a complete explanation of all the error codes that can be found in
$_FILES['movie_image_file']['error'] as a result of uploading a file,
see: https://php.net/features.file-upload.errors

When uploading an image file to the server, there are two things we need to take into
consideration:

1. what type(s) of image files we want to allow,
2. and how big of a file do we want to allow.

For security, we want to ensure users only upload image files (of the image types we
support) so users do not upload any executable files. Also, we want to limit the size so that
we do not run out of storage space and the web server does not crash. Before saving an
uploaded file to our images/ folder, we should validate the file meets these considerations,
and there were no errors in the file upload. The $_FILES super global variable contains all of
the information about an uploaded file.

The $_FILES Superglobal Variable

The ability to upload files is typically done with a form. All the information about and
including the file is contained in the $_FILES super global variable. The $_FILES superglobal
variable is a two-dimensional associative array. The first dimension is set to the name attri-
bute of the file input element, which is movie_image_file in this case. PHP sets the second
dimension to different attributes about the uploaded file.

Here are the following attributes and their values:

Attribute Name Attribute Meaning Attribute Value
$_FILES['movie_image_file']['name'] the name of file serenity_movie.jpg
$_FILES['movie_image_file']['type'] the image type image/jpg
$_FILES['movie_image_file']['size'] the image size in bytes 21480
$_FILES['movie_image_file']['tmp_

name']
the temporary storage
location of the file on the
server

/tmp/phpV9CAHI

$_FILES['movie_image_file']['error'] the error code for the file
upload; 0 is good[1]

0

https://php.net/features.file-upload.errors

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 223

Validating Uploaded Movie Image Files
As mentioned earlier, we want to limit the size and the image type of the uploaded image
file. We want to restrict our images to either JPEGs, PNGs, or GIFs. We also want to make
sure the file is uploaded without error. Since we will often refer to the size limit, it is best to
create a constant for this maximum file size and put it in a separate file that other scripts can
include.

Create a new PHP script called movielistingfileconstants.php and add the following code:

<?php
// Movie Listing File Constants
define('ML_MAX_FILE_SIZE', 524288);

In the php.ini configuration file, a couple of settings affect file uploads. By default,
these settings should already be enabled:

• post_max_size = (some number)M
• upload_max_filesize = (some number)M
• file_uploads = TRUE

post_max_size controls the total size of your post request while upload_max_filesize controls
the max size of each file uploaded. The sum of file sizes can’t exceed the maximum size of
the post request. The M suffix signifies megabytes.
In the apache2.conf configuration file ensure the following setting is enabled correctly:

• LimitRequestBody sets a limit on how large a post request can be.

So, in order to have working uploads for your PHP scripts, these three numbers have to be
set correctly: LimitRequestBody = post_max_size > upload_max_filesize

Next, create another new PHP script called movieimagefileutil.php. This file is where we put
functions that work with movie image files.

Add the following require_once() statement to movieimagefileutil.php to include
movielistingfileconstants.php:

<?php
require_once 'movielistingfileconstants.php';

PHP Web Development with MySQL—A Hands On Approach to Application Programming224

19. Working With Files and Feature Additions to Existing Code

Now, let’s create a function called validateMovieImageFile():

<?php
require_once 'movielistingfileconstants.php';

function validateMovieImageFile()
{
}

PHP DocBlocks
Although not required, a standard practice is to add PHP DocBlock comments to the begin-
ning of functions. It is a great way to document how a function works, which is helpful for
developers using and maintaining your function. It is also a great way to flesh out the design
of your function and serves as a roadmap when implementing it. Based on the description
above on how we are validating uploaded movie image files, here is what a good Doc Block
for this function should look like:

/**
 * Purpose: Validates an uploaded movie image file
 *
 * Description: Validates an uploaded movie image file is not greater than ML_MAX_FILE_SIZE (1/2 MB),
 * and is either a jpg or png image type, and has no errors. If the image file
 * validates to these constraints, an error message containing an empty string is
 * returned. If there is an error, a string containing constraints the file failed
 * to validate to are returned.
 *
 * @return string Empty if validation is successful, otherwise error string containing
 * constraints the image file failed to validate to.
 */
function validateMovieImageFile()
{
}

There are no parameters in this function. However, if you don’t use type hints, param-
eters are noted using the @param tag, one for each parameter. For more information, see
Docblocks in PHP[2] on their proper usage.

Handling Errors

We know we will return a string containing an error message if there are errors or an empty
string if there are none. Let’s create a variable called error_message initialized to an empty
string at the start of our function. At the end of the function, return it:

[2] Docblocks in PHP: https://docs.phpdoc.org/guides/docblocks.html

https://docs.phpdoc.org/guides/docblocks.html

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 225

function validateMovieImageFile()
{
 $error_message = "";
 // ...
 return $error_message;
}

There are two top-level conditions we need to check before we can do anything with the
uploaded file. We need to check that the $_FILES super global variable exists—it does not
exist if the user chose not to select a file for upload. Also, we need to check there were no
errors uploading the file. We can combine these checks in a single if statement, joining
them with a logical AND (&&). Add the following code after $error_message = "":

$error_message = "";

// Check for $_FILES being set and no errors.
if (isset($_FILES) && $_FILES['movie_image_file']['error'] == UPLOAD_ERR_OK)
{
 // ...
}

There is one other elseif condition that we need to check if the above if condition is false.
We need to check if there was an error uploading the file. Since we do not know whether
the condition failed because the $_FILES super global was not set or because the error was
not equal to UPLOAD_ERR_OK, we need to check if the $_FILES is set before we can check to see
if there was an error uploading the file. We also need to check that the user did upload a file.
Again, we can combine all these into one elseif condition check combining these clauses
using &&. PHP provides several constants to describe file errors. For our purposes, we can
catch all the error conditions by testing that 'error' in our $_FILES array is NOT
UPLOAD_ERR_OK. If we get into this elseif condition, it was because there was an error
uploading the image file. if so, we need to set error_message to an appropriate error message
stating there was an error uploading the file:

elseif (isset($_FILES) && $_FILES['movie_image_file']['error'] != UPLOAD_ERR_NO_FILE
 && $_FILES['movie_image_file']['error'] != UPLOAD_ERR_OK)
{
 $error_message = "Error uploading movie image file.";
}

So, our function looks like Listing 19.2 so far.

PHP Web Development with MySQL—A Hands On Approach to Application Programming226

19. Working With Files and Feature Additions to Existing Code

Listing 19.2.

 1. function validateMovieImageFile()
 2. {
 3. $error_message = "";
 4.
 5.
 6. // Check for $_FILES being set and no errors.
 7. if (isset($_FILES) && $_FILES['movie_image_file']['error'] == UPLOAD_ERR_OK)
 8. {
 9. ...
10. }
11. elseif (isset($_FILES) && $_FILES['movie_image_file']['error'] != UPLOAD_ERR_NO_FILE
12. && $_FILES['movie_image_file']['error'] != UPLOAD_ERR_OK)
13. {
14. $error_message = "Error uploading movie image file.";
15. }
16.
17. return $error_message;
18. }

If neither of the above conditions is true, the user did not upload a file and there is no error.

If we enter the first condition (the if condition), the user uploaded a file, and there were
no errors. Now we can check if the file meets the size constraints. Add the following condi-
tion to see if the file is too large inside and just below the if condition, and if it is, set
error_message to an appropriate error message stating the file exceeds the maximum size as
in Listing 19.3.

Listing 19.3.

 1. // Check for $_FILES being set and no errors.
 2. if (isset($_FILES) && $_FILES['movie_image_file']['error'] == UPLOAD_ERR_OK)
 3. {
 4. // Check for uploaded file < Max file size AND an acceptable image type
 5. if ($_FILES['movie_image_file']['size'] > ML_MAX_FILE_SIZE)
 6. {
 7. $error_message = "The movie file image must be less than " . ML_MAX_FILE_SIZE . " Bytes";
 8. }
 9. //...
10. }

Next, we need to make sure the type of image file uploaded is either a JPEG, PNG, or GIF
type of image. There are five strings that can be set in $_FILES['movie_image_file']['type']
that meet this constraint: image/jpg, image/jpeg, image/pjpeg, image/png, and image/gif. Again,
we can combine these checks into a single condition check by joining the conditional
clauses with &&. If the uploaded image type is not one of these images, we need to add an
appropriate error message string stating the acceptable types of images allowed. Also, the

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 227

error message will be slightly different depending on if the uploaded file also exceeds the
maximum file size or not. Add the code in Listing 19.4, just after the maximum file size
condition code you just added.

Listing 19.4.

 1. // Check for $_FILES being set and no errors.
 2. if (isset($_FILES) && $_FILES['movie_image_file']['error'] == UPLOAD_ERR_OK)
 3. {
 4. // ...
 5. $image_type = $_FILES['movie_image_file']['type'];
 6.
 7. if ($image_type != 'image/jpg' && $image_type != 'image/jpeg' && $image_type != 'image/pjpeg'
 8. && $image_type != 'image/png' && $image_type != 'image/gif')
 9. {
10. if (empty($error_message))
11. {
12. $error_message = "The movie file image must be of type jpg, png, or gif.";
13. }
14. else
15. {
16. $error_message .= ", and be an image of type jpg, png, or gif.";
17. }
18. }
19. }

Our completed validateMovieImageFile() function looks like Listing 19.5.

Listing 19.5.

 1. function validateMovieImageFile()
 2. {
 3. $error_message = "";
 4.
 5. // Check for $_FILES being set and no errors.
 6. if (isset($_FILES) && $_FILES['movie_image_file']['error'] == UPLOAD_ERR_OK)
 7. {
 8. // Check for uploaded file < Max file size AND an acceptable image type
 9. if ($_FILES['movie_image_file']['size'] > ML_MAX_FILE_SIZE)
10. {
11. $error_message = "The movie file image must be less than " . ML_MAX_FILE_SIZE . " Bytes";
12. }
13.
14. $image_type = $_FILES['movie_image_file']['type'];
15.
16. if ($image_type != 'image/jpg' && $image_type != 'image/jpeg' && $image_type != 'image/pjpeg'
17. && $image_type != 'image/png' && $image_type != 'image/gif')
18. {
19. if (empty($error_message))

PHP Web Development with MySQL—A Hands On Approach to Application Programming228

19. Working With Files and Feature Additions to Existing Code

20. {
21. $error_message = "The movie file image must be of type jpg, png, or gif.";
22. }
23. else
24. {
25. $error_message .= ", and be an image of type jpg, png, or gif.";
26. }
27. }
28. }
29. elseif (isset($_FILES) && $_FILES['movie_image_file']['error'] != UPLOAD_ERR_NO_FILE
30. && $_FILES['movie_image_file']['error'] != UPLOAD_ERR_OK)
31. {
32. $error_message = "Error uploading movie image file.";
33. }
34.
35. return $error_message;
36. }

Consider Preventing Uploading of generic_movie.jpg

In the above implementation, nothing is preventing the user from uploading an image
named generic_movie.jpg. It would be a good idea to prevent this by checking the name of
the uploaded file. Otherwise, anyone could overwrite the default image we use for movies.
In general, you should handle file uploads carefully and consider how someone might abuse
them. I leave this as an exercise for you to do.

Consider in_array() to Check Image Types

In the code in Listing 19.5, we have the following if clause for validating legal image types:

if ($image_type != 'image/jpg' && $image_type != 'image/jpeg' && $image_type != 'image/pjpeg'
 && $image_type != 'image/png' && $image_type != 'image/gif')

This kind of code gets messy and is difficult to maintain. A better solution for picking out a
legal image type is to use the built-in PHP function in_array()[3]. To use it, create an array of
the allowed image types, then check to see if the set image type is found in the array:

$allowed_image_types = [
 'image/jpg', 'image/jpeg', 'image/pjpeg', 'image/png', 'image/gif'
];

if (in_array($image_type, $allowed_image_types))
{
 // ...
}

[3] in_array(): https://php.net/in-array

https://php.net/in-array

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 229

Moving Image Files
Assuming the uploaded movie image file validates, we want to move the file from the tempo-
rary location on the webserver to our images/ folder. Once that’s done, we should return the
path location of the file to store with the other movie details in the database. If a user does
not upload a file—or there was an error uploading the file—we return an empty string for
the path location. This empty string serves later as an indicator to show the generic file icon.

Since we will be referring to the images/ folder often, it is best to create a constant for this
upload path and put it in a separate file that can be included by other scripts. Therefore,
add define('ML_UPLOAD_PATH', 'images/'); to movielistingfileconstants.php. We also need a
constant for a default image file in case the user does not upload an image. Here is what the
complete constants file should look like now:

<?php
// Movie Listing File Constants
define('ML_UPLOAD_PATH', 'images/');
define('ML_MAX_FILE_SIZE', 524288);
define('ML_DEFAULT_MOVIE_FILE_NAME', 'generic_movie.jpg');

Always use descriptive names for functions, a good one is: addMovieImageFileReturnPathLo-
cation(). Below the validateMovieImageFile() function, let’s create our new function with a
good descriptive DocBlock as in Listing 19.6.

Listing 19.6.

 1. /**
 2. * Purpose: Moves an uploaded movie image file to the ML_UPLOAD_PATH (images/)
 3. * folder and return the path location.
 4. *
 5. * Description: Moves an uploaded movie image file from the temporary server location
 6. * to the ML_UPLOAD_PATH (images/) folder IF a movie image file was uploaded
 7. * and returns the path location of the uploaded file by appending the file
 8. * name to the ML_UPLOAD_PATH (e.g. images/movie_image.png). IF a movie image
 9. * file was NOT uploaded, an empty string will be returned for the path.
10. *
11. * @return string Path to movie image file IF a file was uploaded AND moved to the
12. * ML_UPLOAD_PATH (images/) folder, otherwise and empty string.
13. */
14. function addMovieImageFileReturnPathLocation()
15. {
16. }

PHP Web Development with MySQL—A Hands On Approach to Application Programming230

19. Working With Files and Feature Additions to Existing Code

Since we know we are going to return a string containing the path location or an empty
string if no file was uploaded or there were errors, create a variable called $movie_file_path
set to an empty string and return it:

function addMovieImageFileReturnPathLocation()
{
 $movie_file_path = "";
 // ...
 return $movie_file_path;
}

Before we move the uploaded file, we need to check that the user actually uploaded a file
and there are no errors. Add the following code after $movie_file_path = "":

$movie_file_path = "";

// Check for $_FILES being set and no errors.
if (isset($_FILES) && $_FILES['movie_image_file']['error'] == UPLOAD_ERR_OK)
{
 // ...
}

If we reach this condition, we can start building the path. Add the following code just below
the if condition:

if (isset($_FILES) && $_FILES['movie_image_file']['error'] == UPLOAD_ERR_OK)
{
 $movie_file_path = ML_UPLOAD_PATH . $_FILES['movie_image_file']['name'];
}

Next, we need to move the file from its temporary location on the webserver to our images/
folder. We do that using the move_uploaded_file()[4] function. This function takes two argu-
ments:

1. the first is the source path location of the file we want to move,
2. and the second is the destination path location of where we want to move the file to

[4] move_uploaded_file(): https://php.net/move_uploaded_file

https://php.net/move_uploaded_file

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 231

Note the file path locations also must include the name of the files. move_uploaded_file()
returns true if successful, otherwise false. We will put the call in an if condition and reset
movie_file_path to an empty string if it fails. Add the following code below the line where we
previously set movie_file_path:

$movie_file_path = ML_UPLOAD_PATH . $_FILES['movie_image_file']['name'];

if (!move_uploaded_file($_FILES['movie_image_file']['tmp_name'], $movie_file_path))
{
 $movie_file_path = "";
}

The above code moves the uploaded movie image file from the temporary location on the
webserver to the images/ folder. Our completed addMovieImageFileReturnPathLocation() func-
tion looks like Listing 19.7.

Listing 19.7.

 1. function addMovieImageFileReturnPathLocation()
 2. {
 3. $movie_file_path = "";
 4.
 5. // Check for $_FILES being set and no errors.
 6. if (isset($_FILES) && $_FILES['movie_image_file']['error'] == UPLOAD_ERR_OK) {
 7. $movie_file_path =
 8. ML_UPLOAD_PATH . $_FILES['movie_image_file']['name'];
 9.
10. if (!move_uploaded_file($_FILES['movie_image_file']['tmp_name'], $movie_file_path)) {
11. $movie_file_path = "";
12. }
13. }
14.
15. return $movie_file_path;
16. }

PHP Web Development with MySQL—A Hands On Approach to Application Programming232

19. Working With Files and Feature Additions to Existing Code

Complete Movie Image File Script
Our completed movieimagefileutil.php script including our validateMovieImageFile() and
addMovieImageFileReturnPathLocation() functions looks like Listing 19.8.

Listing 19.8.

 1. <?php
 2. require_once 'movielistingfileconstants.php';
 3.
 4. /**
 5. * Purpose: Validates an uploaded movie image file
 6. *
 7. * Description: Validates an uploaded movie image file is not greater than
 8. * ML_MAX_FILE_SIZE (1/2 MB), and is either a jpg or png image type, and
 9. * has no errors. If the image file validates to these constraints,
10. * an error message containing an empty string is returned. If
11. * there is an error, a string containing constraints the file failed
12. * to validate to are returned.
13. *
14. * @return string Empty if validation is successful, otherwise error string containing
15. * constraints the image file failed to validate to.
16. */
17. function validateMovieImageFile()
18. {
19. $error_message = "";
20.
21. // Check for $_FILES being set and no errors.
22. if (isset($_FILES) && $_FILES['movie_image_file']['error'] == UPLOAD_ERR_OK)
23. {
24. // Check for uploaded file < Max file size AND an acceptable image type
25. if ($_FILES['movie_image_file']['size'] > ML_MAX_FILE_SIZE)
26. {
27. $error_message = "The movie file image must be less than "
28. . ML_MAX_FILE_SIZE . " Bytes";
29. }
30.
31. $image_type = $_FILES['movie_image_file']['type'];
32.
33. if ($image_type != 'image/jpg' && $image_type != 'image/jpeg'
34. && $image_type != 'image/pjpeg' && $image_type != 'image/png'
35. && $image_type != 'image/gif')
36. {
37. if (empty($error_message))
38. {
39. $error_message = "The movie file image must be of type jpg, png, or gif.";
40. }
41. else
42. {
43. $error_message .= ", and be an image of type jpg, png, or gif.";

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 233

44. }
45. }
46. }
47. elseif (isset($_FILES)
48. && $_FILES['movie_image_file']['error'] != UPLOAD_ERR_NO_FILE
49. && $_FILES['movie_image_file']['error'] != UPLOAD_ERR_OK)
50. {
51. $error_message = "Error uploading movie image file.";
52. }
53.
54. return $error_message;
55. }
56.
57. /**
58. * Purpose: Moves an uploaded movie image file to the
59. * ML_UPLOAD_PATH (images/) folder and return the path location.
60. *
61. * Description: Moves an uploaded movie image file from the temporary
62. * server location to the ML_UPLOAD_PATH (images/) folder
63. * IF a movie image file was uploaded and returns the path
64. * location of the uploaded file by appending the file
65. * name to the ML_UPLOAD_PATH (e.g. images/movie_image.png).
66. * IF a movie image file was NOT uploaded, an empty string
67. * is returned for the path.
68. *
69. * @return string Path to movie image file IF a file was uploaded
70. * AND moved to the ML_UPLOAD_PATH (images/) folder,
71. * otherwise and empty string.
72. */
73. function addMovieImageFileReturnPathLocation()
74. {
75. $movie_file_path = "";
76.
77. // Check for $_FILES being set and no errors.
78. if (isset($_FILES) && $_FILES['movie_image_file']['error'] == UPLOAD_ERR_OK)
79. {
80. $movie_file_path = ML_UPLOAD_PATH . $_FILES['movie_image_file']['name'];
81.
82. if (!move_uploaded_file($_FILES['movie_image_file']['tmp_name'],
83. $movie_file_path))
84. {
85. $movie_file_path = "";
86. }
87. }
88.
89. return $movie_file_path;
90. }

PHP Web Development with MySQL—A Hands On Approach to Application Programming234

19. Working With Files and Feature Additions to Existing Code

Using the File Uploading Functions on addmovie.php
Now that we have our two functions for validating and adding
our uploaded movie image file, we can get back to modifying
addmovie.php to use these functions.

You should have already modified the form element and added
an input file element for uploading a movie image file. If not, see
above for how to do that.

After the user submits the form data by selecting the Add Movie button shown in Figure
19.16, the form data is available within the if block checking to see if the form data is set in
the $_POST superglobal variable:

if (isset($_POST['add_movie_submission'], $_POST['movie_title'],
 $_POST['movie_rating'], $_POST['movie_director'],
 $_POST['movie_running_time_in_minutes']))
{

We want to validate the file inside this if block, move it to the images/ folder, and save the
path to the database.

First, add a require_once for the movieimagefileutil.php script immediately after the
require_once for the dbconnection.php script so we can use the two functions we created:

if (isset($_POST['add_movie_submission'], $_POST['movie_title'],
 $_POST['movie_rating'], $_POST['movie_director'],
 $_POST['movie_running_time_in_minutes']))
{
 require_once('dbconnection.php');
 require_once('movieimagefileutil.php');

We will validate the uploaded movie image file right after checking if checked_movie_genres
is set and before the call to connect to the database. So it might be a good idea to add an
appropriate comment here, something like Listing 19.9.

Figure 19.16.

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 235

Listing 19.9.

 1. if (isset($checked_movie_genres))
 2. {
 3. $movie_genre_text = implode(", ", $checked_movie_genres);
 4. }
 5.
 6. /*
 7. Here is where we will deal with the file by calling validateMovieImageFile().
 8. This function will validate that the movie image file is the right image type
 9. (jpg/png/gif), and not greater than 512KB. This function will return an empty
10. string ('') if the file validates successfully, otherwise, the string will
11. contain error text to be output to the web page before redisplaying the form.
12. */

Next, we make our call to validateMovieImageFile() and set the return value to a new variable
that captures the file error message:

successfully. Otherwise, the string will contain error text to be output to
the web page before redisplaying the form.

*/
$file_error_message = validateMovieImageFile();

If validateMovieImageFile() returns anything but an empty string, there was an error
uploading the file. We want to display this error message and redisplay the form instead of
storing the data in the database, allowing the user to correct the error. The two common
reasons for the error are: the image is too big, or the image is the wrong file type. This also
means we need to make the fields the user already entered sticky, so they do not have to
reenter them into the form (unless they want to change them).

See section: on setting the value of the fields making them sticky in Chapter 18, Editing
Data Using the Web Application to review how to make the input fields sticky.

Create an if condition for file_error_message being empty, and move all the database code,
the table results and the link to add another movie into this new if block. The new if block
should look like Listing 19.10.

PHP Web Development with MySQL—A Hands On Approach to Application Programming236

19. Working With Files and Feature Additions to Existing Code

Listing 19.10.

 1. $file_error_message = validateMovieImageFile();
 2.
 3. if (empty($file_error_message))
 4. {
 5. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 6. or trigger_error(
 7. 'Error connecting to MySQL server for' . DB_NAME,
 8. E_USER_ERROR
 9.);
10.
11. $query = "INSERT INTO movieListing (title, rating, director, "
12. . " running_time_in_minutes, genre) "
13. . "VALUES ('$movie_title', '$movie_rating', '$movie_director',"
14. . "'$movie_runtime', '$movie_genre_text')";
15.
16. mysqli_query($dbc, $query)
17. or trigger_error(
18. 'Error querying database movieListing: Failed to insert movie listing',
19. E_USER_ERROR
20.);
21.
22. $display_add_movie_form = false;
23. ?>
24. <h3 class="text-info">The Following Movie Details were Added:</h3>

25.
26. <h1><?= $movie_title ?></h1>
27. <table class="table table-striped">
28. <tbody>
29. <tr>
30. <th scope="row">Rating</th>
31. <td><?= $movie_rating ?></td>
32. </tr>
33. <tr>
34. <th scope="row">Director</th>
35. <td><?= $movie_director ?></td>
36. </tr>
37. <tr>
38. <th scope="row">Running Time (minutes)</th>
39. <td><?= $movie_runtime ?></td>
40. </tr>
41. <tr>
42. <th scope="row">Genre</th>
43. <td><?= $movie_genre_text ?></td>
44. </tr>
45. </tbody>
46. </table>
47. <hr/>
48. <p>Would you like to <a href="<?= $_SERVER['PHP_SELF'] ?>"> add another movie?</p>
49. <?php
50. }
51. }

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 237

Handling File Upload Errors
To handle errors encountered when a user tries to upload a file, we need to modify the
above code. But, first, let’s add an else condition after the if so we can output the error
message as in Listing 19.11.

Listing 19.11.

 1. if (empty($file_error_message))
 2. {
 3. //...
 4. }
 5. else
 6. {
 7. // echo error message
 8. echo "<h5><p class='text-danger'>" . $file_error_message . "</p></h5>";
 9. }

Note that the form is redisplayed if this else executes because display_add_movie_form will
already be set to true.

Before we get back to modifying the code in the if block, let’s make the form sticky to
handle the error condition in the else block. Near the top of the script, just below the line
initializing $display_add_movie_form = true;, add the following variables Listing 19.12 initial-
ized to empty strings and null.

Listing 19.12.

 1. // Initialization
 2. $display_add_movie_form = true;
 3.
 4. $movie_title = "";
 5. $movie_rating = "";
 6. $movie_director = "";
 7. $movie_runtime = "";
 8. $movie_genre_text = "";
 9. $checked_movie_genres = null;

These values get set after the user submits the form in the if condition in Listing 19.13 that
checks the $_POST form variables are set.

PHP Web Development with MySQL—A Hands On Approach to Application Programming238

19. Working With Files and Feature Additions to Existing Code

Listing 19.13.

 1. if (isset($_POST['add_movie_submission'], $_POST['movie_title'],
 2. $_POST['movie_rating'], $_POST['movie_director'],
 3. $_POST['movie_running_time_in_minutes']))
 4. {
 5. ...
 6. $movie_title = $_POST['movie_title'];
 7. $movie_rating = $_POST['movie_rating'];
 8. $movie_director = $_POST['movie_director'];
 9. $movie_runtime = $_POST['movie_running_time_in_minutes'];
10. $checked_movie_genres = $_POST['movie_genre_checkbox'];
11.
12. $movie_genre_text = "";
13.
14. if (isset($checked_movie_genres))
15. {
16. $movie_genre_text = implode(", ", $checked_movie_genres);
17. }

As mentioned earlier, the two common reasons for the error are: the image is too big, or the
image is the wrong file type. So this gives us three error conditions we can test:

1. The file is the right image type but too big.
2. The file is the wrong image type but less than ML_MAX_FILE_SIZE.
3. The file is the wrong image type AND too big.

Implementing these tests is left as an exercise for you. You’ll want to write one error
message for each of these cases.

We can now make the title, rating, director, running time, and genre sticky back down in
the form. Since this is identical to what we did for the “Edit a Movie” page, I only show the
updated form in Listing 19.14.

Listing 19.14.

 1. <form enctype="multipart/form-data" class="needs-validation"
 2. novalidate method="POST" action="<?= $_SERVER['PHP_SELF'] ?>">
 3. <div class="form-group row">
 4. <label for="movie_title" class="col-sm-3 col-form-label-lg">Title</label>
 5. <div class="col-sm-8">
 6. <input type="text" class="form-control" id="movie_title"
 7. name="movie_title" value='<?= $movie_title ?>'
 8. placeholder="Title" required>
 9. <div class="invalid-feedback">
10. Please provide a valid movie title.
11. </div>

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 239

12. </div>
13. </div>
14. <div class="form-group row">
15. <label for="movie_rating" class="col-sm-3 col-form-label-lg">Rating</label>
16. <div class="col-sm-8">
17. <select class="custom-select" id="movie_rating"
18. name="movie_rating" value='<?= $movie_rating ?>'
19. required>
20. <option value="" disabled selected>Rating...</option>
21. <option value="G" <?= $movie_rating == 'G' ?
22. 'selected' : '' ?>>G
23. </option>
24. <option value="PG" <?= $movie_rating == 'PG' ?
25. 'selected' : '' ?>>PG
26. </option>
27. <option value="PG-13" <?= $movie_rating == 'PG-13' ?
28. 'selected' : '' ?>>PG-13
29. </option>
30. <option value="R" <?= $movie_rating == 'R' ?
31. 'selected' : '' ?>>R
32. </option>
33. </select>
34. <div class="invalid-feedback">
35. Please select a movie rating.
36. </div>
37. </div>
38. </div>
39. <div class="form-group row">
40. <label for="movie_director"
41. class="col-sm-3 col-form-label-lg">Director</label>
42. <div class="col-sm-8">
43. <input type="text" class="form-control"
44. id="movie_director" name="movie_director"
45. value='<?= $movie_director ?>'
46. placeholder="Director" required>
47. <div class="invalid-feedback">
48. Please provide a valid movie director.
49. </div>
50. </div>
51. </div>
52. <div class="form-group row">
53. <label for="movie_running_time_in_minutes"
54. class="col-sm-3 col-form-label-lg">Running Time (min)</label>
55. <div class="col-sm-8">
56. <input type="number" class="form-control"
57. id="movie_running_time_in_minutes"
58. name="movie_running_time_in_minutes"
59. value='<?= $movie_runtime ?>'
60. placeholder="Running time (in minutes)" required>
61. <div class="invalid-feedback">

PHP Web Development with MySQL—A Hands On Approach to Application Programming240

19. Working With Files and Feature Additions to Existing Code

62. Please provide a valid running time in minutes.
63. </div>
64. </div>
65. </div>
66. <div class="form-group row">
67. <label class="col-sm-3 col-form-label-lg">Genre</label>
68. <div class="col-sm-8">
69. <?php
70. foreach ($genres as $genre) {
71. ?>
72. <div class="form-check form-check-inline col-sm-3">
73. <input class="form-check-input" type="checkbox"
74. id="movie_genre_checkbox_action_<?= $genre ?>"
75. name="movie_genre_checkbox[]"
76. value="<?= $genre ?>"<?= in_array($genre, $checked_movie_genres) ?
77. 'checked' : '' ?>>
78. <label class="form-check-label"
79. for="movie_genre_checkbox_action_<?= $genre ?>"><?= $genre ?></label>
80. </div>
81. <?php
82. }
83. ?>
84. </div>
85. </div>
86. <div class="form-group row">
87. <label for="movie_image_file"
88. class="col-sm-3 col-form-label-lg">Movie Image File</label>
89. <div class="col-sm-8">
90. <input type="file" class="form-control-file"
91. id="movie_image_file" name="movie_image_file">
92. </div>
93. </div>
94. <button class="btn btn-primary" type="submit"
95. name="add_movie_submission">Add Movie
96. </button>
97. </form>

Handling Successful Validation

Now, let’s get back to modifying the code in the if block where there are no errors validating
the uploaded file:

if (empty($file_error_message))
{
 // ...
}

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 241

Since we know the uploaded file is valid, we need to call addMovieImageFileReturnPathLocation().
This function adds the uploaded movie image to the images/ folder and returns the path we
need to store in the database. We’ll do this just below where we connect to the database, setting
the path returned to a new variable movie_image_file_path:

 1. if (empty($file_error_message))
 2. {
 3. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 4. or trigger_error(
 5. 'Error connecting to MySQL server for' . DB_NAME, E_USER_ERROR
 6.);
 7.
 8. $movie_image_file_path = addMovieImageFileReturnPathLocation();
 9. }

Remember, the user may not have uploaded a movie image file, so movie_image_file_path
may be an empty string (which is OK).

We need to modify our SQL INSERT query to include the new field image_file we added to the
movieListing table in the Movie database and set it to movie_image_file_path before performing
the query. It should look like Listing 19.15.

Listing 19.15.

 1. $movie_image_file_path = addMovieImageFileReturnPathLocation();
 2.
 3. $query = "INSERT INTO movieListing (title, rating, director, running_time_in_minutes,
 4. genre, image_file) "
 5. . "VALUES ('$movie_title', '$movie_rating', '$movie_director', "
 6. . "'$movie_runtime', '$movie_genre_text', '$movie_image_file_path')";
 7.
 8. mysqli_query($dbc, $query)
 9. or trigger_error(
10. 'Error querying database movieListing: Failed to insert movie listing',
11. E_USER_ERROR
12.);

Next, if the user did not upload a file, we need to set movie_image_file_path to the generic—or
default—image we used earlier. This file is found at the path: images/generic_movie.jpg. Add
the following code after the query:

PHP Web Development with MySQL—A Hands On Approach to Application Programming242

19. Working With Files and Feature Additions to Existing Code

 1. mysqli_query($dbc, $query)
 2. or trigger_error(
 3. 'Error querying database movieListing: Failed to insert movie listing',
 4. E_USER_ERROR
 5.);
 6.
 7. if (empty($movie_image_file_path))
 8. {
 9. $movie_image_file_path = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
10. }

The next line should already be set to not display the form:

if (empty($movie_image_file_path))
{
 $movie_image_file_path = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
}

$display_add_movie_form = false;

Finally, we need to add the movie image file (or the default image) to the table to display the
added movie details.

Since we are using Bootstrap’s Flexbox grid implementation, it is best to encapsulate the
image and table in separate columns and put them both in a single row, all just below the
movie title located in the <h1> element as in Listing 19.16.

Listing 19.16.

 1. <h1><?= $movie_title ?></h1>
 2. <div class="row">
 3. <div class="col-2">
 4. <img src="<?= $movie_image_file_path ?>"
 5. class="img-thumbnail" style="max-height: 200px;" alt="Movie image">
 6. </div>
 7. <div class="col">
 8. <table class="table table-striped">
 9. ...
10. </table>
11. </div>
12. </div>

Notice we set the style attribute to a maximum height of 200 pixels.

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 243

Complete addmovie.php Code Listing

Listing 19.17.
 1. <!DOCTYPE html>
 2. <html>
 3. <head>
 4. <title>Add a Movie</title>
 5. <link rel="stylesheet"
 6. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 7. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 8. crossorigin="anonymous">
 9. </head>
10. <body>
11. <div class="card">
12. <div class="card-body">
13. <h1>Add a Movie</h1>
14. <nav class="nav">
15. Movies I Like
16. </nav>
17. <hr/>
18. <?php
19. // Initialization
20. $display_add_movie_form = true;
21. $movie_title = "";
22. $movie_rating = "";
23. $movie_director = "";
24. $movie_runtime = "";
25. $movie_genre_text = "";
26. $checked_movie_genres = null;
27.
28. $genres = [
29. 'Action', 'Adventure', 'Comedy', 'Documentary', 'Drama',
30. 'Fantasy', 'Horror', 'Romance', 'Science Fiction'
31.];
32.
33. if (isset($_POST['add_movie_submission'], $_POST['movie_title'],
34. $_POST['movie_rating'], $_POST['movie_director'],
35. $_POST['movie_running_time_in_minutes']))
36. {
37. require_once('dbconnection.php');
38. require_once('movieimagefileutil.php');
39.
40. $movie_title = $_POST['movie_title'];
41. $movie_rating = $_POST['movie_rating'];
42. $movie_director = $_POST['movie_director'];
43. $movie_runtime = $_POST['movie_running_time_in_minutes'];
44. $checked_movie_genres = $_POST['movie_genre_checkbox'];
45.
46. $movie_genre_text = "";
47.
48. if (isset($checked_movie_genres))

PHP Web Development with MySQL—A Hands On Approach to Application Programming244

19. Working With Files and Feature Additions to Existing Code

49. {
50. $movie_genre_text = implode(", ", $checked_movie_genres);
51. }
52.
53. /*
54. Here is where we will deal with the file by calling validateMovieImageFile().
55. This function will validate that the movie image file is not greater than 128
56. characters, is the right image type (jpg/png/gif), and not greater than 512KB.
57. This function will return an empty string ('') if the file validates successfully,
58. otherwise, the string will contain error text to be output to the web page before
59. redisplaying the form.
60. */
61.
62. $file_error_message = validateMovieImageFile();
63.
64. if (empty($file_error_message))
65. {
66. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
67. or trigger_error(
68. 'Error connecting to MySQL server for' . DB_NAME,
69. E_USER_ERROR
70.);
71.
72. $movie_image_file_path = addMovieImageFileReturnPathLocation();
73.
74. $query = "INSERT INTO movieListing (title, rating, director,"
75. . "running_time_in_minutes, genre, image_file) "
76. . "VALUES ('$movie_title', '$movie_rating', '$movie_director', "
77. . "'$movie_runtime', '$movie_genre_text', '$movie_image_file_path')";
78.
79. mysqli_query($dbc, $query)
80. or trigger_error(
81. 'Error querying database movieListing: Failed to insert movie listing',
82. E_USER_ERROR
83.);
84.
85. if (empty($movie_image_file_path))
86. {
87. $movie_image_file_path = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
88. }
89.
90. $display_add_movie_form = false;
91. ?>
92. <h3 class="text-info">The Following Movie Details were Added:</h3>

93.
94. <h1><?= $movie_title ?></h1>
95. <div class="row">
96. <div class="col-2">
97. <img src="<?= $movie_image_file_path ?>" class="img-thumbnail"
98. style="max-height: 200px;" alt="Movie image">
99. </div>
100. <div class="col">
101. <table class="table table-striped">

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 245

102. <tbody>
103. <tr>
104. <th scope="row">Rating</th>
105. <td><?= $movie_rating ?></td>
106. </tr>
107. <tr>
108. <th scope="row">Director</th>
109. <td><?= $movie_director ?></td>
110. </tr>
111. <tr>
112. <th scope="row">Running Time (minutes)</th>
113. <td><?= $movie_runtime ?></td>
114. </tr>
115. <tr>
116. <th scope="row">Genre</th>
117. <td><?= $movie_genre_text ?></td>
118. </tr>
119. </tbody>
120. </table>
121. </div>
122. </div>
123. <hr/>
124. <p>Would you like to <a href='<?= $_SERVER['PHP_SELF']; ?>'> add another movie?</p>
125. <?php
126. }
127. else
128. {
129. // echo error message
130. echo "<h5><p class='text-danger'>" . $file_error_message . "</p></h5>";
131. }
132. }
133.
134. if ($display_add_movie_form)
135. {
136. ?>
137. <form enctype="multipart/form-data" class="needs-validation" novalidate
138. method="POST" action="<?= $_SERVER['PHP_SELF'] ?>">
139. <div class="form-group row">
140. <label for="movie_title"
141. class="col-sm-3 col-form-label-lg">Title</label>
142. <div class="col-sm-8">
143. <input type="text" class="form-control" id="movie_title"
144. name="movie_title" value="<?= $movie_title ?>"
145. placeholder="Title" required>
146. <div class="invalid-feedback">
147. Please provide a valid movie title.
148. </div>
149. </div>
150. </div>
151. <div class="form-group row">
152. <label for="movie_rating" class="col-sm-3 col-form-label-lg">Rating</label>
153. <div class="col-sm-8">
154. <select class="custom-select" id="movie_rating"
155. name="movie_rating" value="<?= $movie_rating ?>" required>

PHP Web Development with MySQL—A Hands On Approach to Application Programming246

19. Working With Files and Feature Additions to Existing Code

156. <option value="" disabled selected>Rating...</option>
157. <option value="G" <?= $movie_rating == 'G' ? 'selected' : '' ?>>G</option>
158. <option value="PG" <?= $movie_rating == 'PG' ? 'selected' : '' ?>>PG</option>
159. <option value="PG-13" <?= $movie_rating == 'PG-13' ? 'selected' : '' ?>>PG-13</option>
160. <option value="R" <?= $movie_rating == 'R' ? 'selected' : '' ?>>R</option>
161. </select>
162. <div class="invalid-feedback">
163. Please select a movie rating.
164. </div>
165. </div>
166. </div>
167. <div class="form-group row">
168. <label for="movie_director" class="col-sm-3 col-form-label-lg">Director</label>
169. <div class="col-sm-8">
170. <input type="text" class="form-control" id="movie_director"
171. name="movie_director" value="<?= $movie_director ?>"
172. placeholder="Director" required>
173. <div class="invalid-feedback">
174. Please provide a valid movie director.
175. </div>
176. </div>
177. </div>
178. <div class="form-group row">
179. <label for="movie_running_time_in_minutes"
180. class="col-sm-3 col-form-label-lg">Running Time (min)</label>
181. <div class="col-sm-8">
182. <input type="number" class="form-control"
183. id="movie_running_time_in_minutes"
184. name="movie_running_time_in_minutes"
185. value="<?= $movie_runtime ?>"
186. placeholder="Running time (in minutes)" required>
187. <div class="invalid-feedback">
188. Please provide a valid running time in minutes.
189. </div>
190. </div>
191. </div>
192. <div class="form-group row">
193. <label class="col-sm-3 col-form-label-lg">Genre</label>
194. <div class="col-sm-8">
195. <?php
196. foreach ($genres as $genre)
197. {
198. ?>
199. <div class="form-check form-check-inline col-sm-3">
200. <input class="form-check-input" type="checkbox"
201. id="movie_genre_checkbox_action_<?= $genre ?>"
202. name="movie_genre_checkbox[]"
203. value="<?= $genre ?>"<?= in_array($genre, $checked_movie_genres) ? 'checked' : '' ?>>
204. <label class="form-check-label"
205. for="movie_genre_checkbox_action_<?= $genre ?>"><?= $genre ?></label>
206. </div>
207. <?php
208. }

Adding File Upload Capability

PHP Web Development with MySQL—A Hands On Approach to Application Programming 247

209. ?>
210. </div>
211. </div>
212. <div class="form-group row">
213. <label for="movie_image_file"
214. class="col-sm-3 col-form-label-lg">Movie Image File</label>
215. <div class="col-sm-8">
216. <input type="file" class="form-control-file"
217. id="movie_image_file" name="movie_image_file">
218. </div>
219. </div>
220. <button class="btn btn-primary" type="submit"
221. name="add_movie_submission">Add Movie</button>
222. </form>
223. <script>
224. // JavaScript for disabling form submissions if there are invalid fields
225. (function() {
226. 'use strict';
227. window.addEventListener('load', function() {
228. // Fetch all the forms we want to apply custom Bootstrap validation styles to
229. var forms = document.getElementsByClassName('needs-validation');
230. // Loop over them and prevent submission
231. var validation = Array.prototype.filter.call(forms, function(form) {
232. form.addEventListener('submit', function(event) {
233. if (form.checkValidity() === false) {
234. event.preventDefault();
235. event.stopPropagation();
236. }
237. form.classList.add('was-validated');
238. }, false);
239. });
240. }, false);
241. })();
242. </script>
243. <?php
244. } // Display add movie form
245. ?>
246. </div>
247. </div>
248. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
249. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
250. crossorigin="anonymous"></script>
251. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
252. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
253. crossorigin="anonymous"></script>
254. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
255. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
256. crossorigin="anonymous"></script>
257. </body>
258. </html>

PHP Web Development with MySQL—A Hands On Approach to Application Programming248

19. Working With Files and Feature Additions to Existing Code

Displaying Thumbnail Images of Movies on Main Page
Now that we can add images to our
movies let’s modify the main “Movies
I Like” page (index.php) to display a
thumbnail image of the movie at the
beginning of each movie row or a
default image (generic_movie.jpg) if the
user did not upload an image for the
movie. We want our modified “Movies
I Like” page to look like Figure 19.17.

The modifications are relatively simple
since all we need to do is modify our
query to get the new image_file field
from the movieListing database table and add a column to our HTML table for displaying a
thumbnail image at the beginning of each row of the table.

So let’s get to it. First, add a reference to the movielistingfileconstants.php script by adding
the following require_once() following the reference to dbconnection.php:

require_once('dbconnection.php');
require_once('movielistingfileconstants.php');

Next, modify the SQL query statement (that follows the connection to the database) to
include the image_file field in the movieListing database table:

$dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 or trigger_error(
 'Error connecting to MySQL server for' . DB_NAME,
 E_USER_ERROR
);

$query = "SELECT id, title, image_file FROM movieListing ORDER BY title";

Down where the HTML table is displayed, we need to add a column for our thumbnail
image. First, add an HTML table header field (so there are three columns instead of two) as
in Listing 19.18.

Figure 19.17.

Displaying Thumbnail Images of Movies on Main Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 249

Listing 19.18.

 1. <table class="table table-striped table-hover">
 2. <thead>
 3. <tr>
 4. <th scope="col"><h4>Movie Titles</h4></th>
 5. <th scope="col"></th>
 6. <th scope="col"></th>
 7. </tr>
 8. </thead>
 9. <tbody>

Next, we need to modify the display of each HTML table row so that three columns (instead
of just two) are output, with a thumbnail image for the first column. Also, we need to make
sure that if the user did not upload an image for a movie, the default image
(generic_movie.jpg) is displayed instead. All of this is done in the while loop and looks like
Listing 19.19.

Listing 19.19.

 1. while ($row = mysqli_fetch_assoc($result))
 2. {
 3. $movie_image_file = $row['image_file'];
 4.
 5. if (empty($movie_image_file))
 6. {
 7. $movie_image_file = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
 8. }
 9.
10. echo "<tr><td><img src=" . $movie_image_file . " class='img-thumbnail'" .
11. "style='max-height: 75px;' alt='Movie image'></td>" .
12. "<td class='align-middle'><a class='nav-link' href='moviedetails.php?id=" .
13. $row['id'] . "'>" . $row['title'] ."</td>" .
14. "<td class='align-middle'><a class='nav-link' href='removemovie.php?id_to_delete=" .
15. $row['id'] ."'><i class='fas fa-trash-alt'></i></td></tr>";
16. }

Note that if the image_file field is an empty string, we set the image to display to
images/generic_movie.jpg.

PHP Web Development with MySQL—A Hands On Approach to Application Programming250

19. Working With Files and Feature Additions to Existing Code

Complete Code Listing for index.php

Listing 19.20.

 1. <html>
 2. <head>
 3. <title>Movies I Like</title>
 4. <link rel="stylesheet"
 5. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 6. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 7. crossorigin="anonymous">
 8. <link rel="stylesheet"
 9. href="https://use.fontawesome.com/releases/v5.8.1/css/all.css"
10. integrity="sha384-50oBUHEmvpQ+1lW4y57PTFmhCaXp0ML5d60M1M7uH2+nqUivzIebhndOJK28anvf"
11. crossorigin="anonymous">
12. </head>
13. <body>
14. <div class="card">
15. <div class="card-body">
16. <h1>Movies I Like</h1>
17. <p class='nav-link'>If you have a movie you would like to include, feel free to add one</p>
18. <?php
19. require_once('dbconnection.php');
20. require_once('movielistingfileconstants.php');
21.
22. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
23. or trigger_error(
24. 'Error connecting to MySQL server for' . DB_NAME,
25. E_USER_ERROR
26.);
27.
28. $query = "SELECT id, title, image_file FROM movieListing ORDER BY title";
29.
30. $result = mysqli_query($dbc, $query)
31. or trigger_error(
32. 'Error querying database movieListing',
33. E_USER_ERROR
34.);
35.
36. if (mysqli_num_rows($result) > 0):
37.
38. ?>
39. <table class="table table-striped table-hover">
40. <thead>
41. <tr>
42. <th scope="col"><h4>Movie Titles</h4></th>

Displaying Thumbnail Images of Movies on Main Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 251

43. <th scope="col"></th>
44. <th scope="col"></th>
45. </tr>
46. </thead>
47. <tbody>
48. <?php
49. while($row = mysqli_fetch_assoc($result))
50. {
51. $movie_image_file = $row['image_file'];
52.
53. if (empty($movie_image_file))
54. {
55. $movie_image_file = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
56. }
57.
58. echo "<tr><td><img src=" . $movie_image_file . " class='img-thumbnail'"
59. . "style='max-height: 75px;' alt='Movie image'></td>"
60. . "<td class='align-middle'><a class='nav-link' href='moviedetails.php?id="
61. . $row['id'] . "'>" . $row['title'] ."</td>"
62. . "<td class='align-middle'><a class='nav-link' href='removemovie.php?id_to_delete="
63. . $row['id'] ."'><i class='fas fa-trash-alt'></i></td></tr>";
64. }
65. ?>
66. </tbody>̀
67. </table>
68. <?php
69. else:
70. ?>
71. <h3>No Movies Found :-(</h3>
72. <?php
73. endif;
74. ?>
75. </div>
76. </div>
77. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
78. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
79. crossorigin="anonymous"></script>
80. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
81. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
82. crossorigin="anonymous"></script>
83. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
84. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
85. crossorigin="anonymous"></script>
86. </body>
87. </html>

PHP Web Development with MySQL—A Hands On Approach to Application Programming252

19. Working With Files and Feature Additions to Existing Code

Displaying Movie Image on Details Page
Now we need to modify moviedetails.php so that
the movie’s image is displayed on the “Movie
Details” page to identify the movie better. This
process will be very similar to the modifications
we made to addmovie.php that displays the movie
details after the user selected “Add a Movie” and
look like Figure 19.18.

First, add a reference to the
movielistingfileconstants.php script by adding
the following require_once() following the reference to dbconnection.php inside the condition
if (isset($_GET['id'])):

if (isset($_GET['id'])):

 require_once('dbconnection.php');
 require_once('movielistingfileconstants.php');

Next, just inside the condition if (mysqli_num_rows($result) == 1), right after the line:
$row = mysqli_fetch_assoc($result);, we need to add code that displays the default image if
the image_file field is an empty string. See Listing 19.21.

Listing 19.21.

 1. if (mysqli_num_rows($result) == 1):
 2. $row = mysqli_fetch_assoc($result);
 3.
 4. $movie_image_file = $row['image_file'];
 5.
 6. if (empty($movie_image_file)):
 7. $movie_image_file = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
 8.
 9. endif;

Finally, as we did in addmovie.php, we need to add the movie image file (or the default image)
to the table to display the movie details.

Figure 19.18.

Displaying Movie Image on Details Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 253

Since we are using Bootstrap’s Flexbox grid implementation, it is best to encapsulate the
image and table in separate columns and put them both in a single row, all just below the
movie title located in the <h1> element:

Listing 19.22.

 1. <h1><?= $row['title'] ?></h1>
 2. <div class="row">
 3. <div class="col-2">
 4. <img src="<?= $movie_image_file ?>" class="img-thumbnail"
 5. style="max-height: 200px;" alt="Movie image">
 6. </div>
 7. <div class="col">
 8. <table class="table table-striped">
 9. ...
10. </table>
11. </div>
12. </div>

Again, notice we set the style attribute to a maximum height of 200 pixels.

Complete moviedetails.php Code Listing

Listing 19.23.

 1. <html>
 2. <head>
 3. <link rel="stylesheet"
 4. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 5. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 6. crossorigin="anonymous">
 7. <title>Movie Details</title>
 8. </head>
 9. <body>
10. <div class="card">
11. <div class="card-body">
12. <nav class="nav">
13. Movies I Like
14. </nav>
15. <?php
16. if (isset($_GET['id'])):
17.
18. require_once('dbconnection.php');
19. require_once('movielistingfileconstants.php');
20.
21. $id = $_GET['id'];

PHP Web Development with MySQL—A Hands On Approach to Application Programming254

19. Working With Files and Feature Additions to Existing Code

22.
23. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
24. or trigger_error(
25. 'Error connecting to MySQL server for' . DB_NAME,
26. E_USER_ERROR
27.);
28.
29. $query = "SELECT * FROM movieListing WHERE id = $id";
30.
31. $result = mysqli_query($dbc, $query)
32. or trigger_error(
33. 'Error querying database movieListing',
34. E_USER_ERROR
35.);
36.
37. if (mysqli_num_rows($result) == 1):
38. $row = mysqli_fetch_assoc($result);
39.
40. $movie_image_file = $row['image_file'];
41.
42. if (empty($movie_image_file)):
43. $movie_image_file = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
44. endif;
45. ?>
46. <h1><?= $row['title'] ?></h1>
47. <div class="row">
48. <div class="col-2">
49. <img src="<?= $movie_image_file ?>" class="img-thumbnail"
50. style="max-height: 200px;" alt="Movie image">
51. </div>
52. <div class="col">
53. <table class="table table-striped">
54. <tbody>
55. <tr>
56. <th scope="row">Rating</th>
57. <td><?= $row['rating'] ?></td>
58. </tr>
59. <tr>
60. <th scope="row">Director</th>
61. <td><?= $row['director'] ?></td>
62. </tr>
63. <tr>
64. <th scope="row">Running Time (minutes)</th>
65. <td><?= $row['running_time_in_minutes'] ?></td>
66. </tr>
67. <tr>

Displaying Movie Image on Details Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 255

69. <th scope="row">Genre</th>
70. <td><?= $row['genre'] ?></td>
71. </tr>
72. </tbody>
73. </table>
74. </div>
75. </div>
76. <hr/>
77. <p class='nav-link'>
78. If you would like to change any of the details of
79. this movie, feel free to
80. <a href="editmovie.php?id_to_edit=<?= $row['id'] ?>">edit it
81. </p>
82. <?php
83. else:
84. ?>
85. <h3>No Movie Details :-(</h3>
86. <?php
87. endif;
88. else:
89. ?>
90. <h3>No Movie Details :-(</h3>
91. <?php
92. endif;
93. ?>
94. </div>
95. </div>
96. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
97. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
98. crossorigin="anonymous"></script>
99. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
100. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
101. crossorigin="anonymous"></script>
102. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
103. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
104. crossorigin="anonymous"></script>
105. </body>
106. </html>

PHP Web Development with MySQL—A Hands On Approach to Application Programming256

19. Working With Files and Feature Additions to Existing Code

Add Image File Uploads to the Editing Page

Now, new movies can have a custom file
image. We need to add to the editmovie.
php script the same ability to upload a
movie image and any other details for the
movie. That way, users can update existing
file images with a new one or add a movie
thumbnail to existing entries.

When we navigate to the “Edit a Movie”
page, as a result of selecting the edit it link
on the “Movie Details” page, we should see
Figure 19.19

We want to add an image of the movie to
the right of the form and add a “Choose
File” button towards the bottom of the form
(Figure 19.20).

When choosing an image to update, a file
browser window pops up. Then, users
can navigate to the image file they want
to upload, select it, then press Open as in
Figure 19.21.

The name of the selected file displays after
the “Choose File” button, instead of “No file
chosen”. See Figure 19.22.

Figure 19.19.

Figure 19.20.

Figure 19.21.

Figure 19.22.

Add Image File Uploads to the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 257

Once we select “Update Movie” (Figure 19.23),
we want to see the updated movie details modi-
fied with the image we uploaded on the “Movie
Details” as shown in Figure 19.24.

First, open the editmovie.php script and add a
reference to the movieimagefileutil.php script by
adding the following require_once() just after
the reference to dbconnection.php towards the top
of the script:

require_once('dbconnection.php');
require_once('movieimagefileutil.php');

Displaying Movie Image Details when
Editing

When first browsing to the “Edit a Movie” page (editmovie.php), it was because of an HTTP
GET request/response when navigating from the “Movie Details” page. Therefore, we need
to make the modifications in Listing 19.24 to add the movie image file details in the if
(isset($_GET['id_to_edit'])) block of code:

Listing 19.24.

 1. if (isset($_GET['id_to_edit']))
 2. {
 3. // ...
 4. if (mysqli_num_rows($result) == 1)
 5. {
 6. // ...
 7. $movie_genre_text = $row['genre'];
 8. $movie_image_file = $row['image_file'];
 9.
10. if (empty($movie_image_file))
11. {
12. $movie_image_file_displayed = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
13. }
14. else
15. {
16. $movie_image_file_displayed = $movie_image_file;
17. }
18.
19. $checked_movie_genres = explode(', ', $movie_genre_text);
20. }
21. }

Figure 19.23.

Figure 19.24.

PHP Web Development with MySQL—A Hands On Approach to Application Programming258

19. Working With Files and Feature Additions to Existing Code

Note that if $movie_image_file is empty, we need to set $movie_image_file_displayed to the
default movie file image. $movie_image_file_displayed is used to display the movie image on
the page to the right of the form.

Since we are using Bootstrap’s Flexbox grid implementation, it is best to encapsulate the
form and image in separate columns and put them both in a single row. Make the modifica-
tions in Listing 19.25 to display the form on the left, and the image on the right.

Listing 19.25.

 1. <div class="row">
 2. <div class="col">
 3. <form ...>
 4. // ...
 5. </form>
 6. </div>
 7. <div class="col-3">
 8. <img src="<?= $movie_image_file_displayed ?>" class="img-thumbnail"
 9. style="max-height: 400px;" alt="Movie image">
10. </div>
11. </div>

Notice we set the style attribute to a maximum height of 400 pixels.

Modifying the Form to Allow File Uploading

Just like we did in addmovie.php, there are two things we need to add to our form in
editmovie.php to enable file uploads. First, we need to add the enctype attribute to the <form>
element and set it to multipart/form-data:

<form enctype="multipart/form-data" ...>

Then we need to add a file input element to the form:

<input type="file" class="form-control-file" id="movie_image_file"
 name="movie_image_file">

Add the file input element within a Bootstrap form-group row right before the submit button
in your form as in Listing 19.26.

Add Image File Uploads to the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 259

Listing 19.26.

 1. </div>
 2. <div class="form-group row">
 3. <label for="movie_image_file"
 4. class="col-sm-3 col-form-label-lg">Movie Image File</label>
 5. <div class="col-sm-8">
 6. <input type="file" class="form-control-file" id="movie_image_file"
 7. name="movie_image_file">
 8. </div>
 9. </div>
10. <button class="btn btn-primary" type="submit"
11. name="edit_movie_submission">Update Movie</button>
12. </form>

In regards to $movie_image_file, just like the hidden <input> element for id_to_update, I
created another hidden <input> element in the form and set it to the value of
$movie_image_file and set the name attribute to movie_image_file. When the form data is posted
back to editmovie.php as a result of the user pressing the Update Movie submit button, the
name of the existing file name (prior to updating) will be available in the $_POST[] super-
global array so that it can be removed (if not empty) if the user selected a new file:

<input type="hidden" name="id_to_update" value="<?= $id_to_edit ?>">
<input type="hidden" name="movie_image_file" value="<?= $movie_image_file ?>">

Please see the aside in chapter 17 titled: THE WEB IS STATELESS!

Modifying Edit Code to Store Files
After the user submits the form data by selecting the “Update Movie” button in Figure 19.25,
the form data is available within the elseif block checking to see if the form data is set in the
$_POST super global variable. Notice we added movie_image_file hidden field to the condition.

elseif (isset($_POST['edit_movie_submission'], $_POST['movie_title'],
 $_POST['movie_rating'], $_POST['movie_director'],
 $_POST['movie_running_time_in_minutes'], $_POST['id_to_update'],
 $_POST['movie_image_file']))
{

Inside this elseif block is where we want to validate the file, move it to the images/ folder,
and modify the image_file field in the movieListing table in the database.

PHP Web Development with MySQL—A Hands On Approach to Application Programming260

19. Working With Files and Feature Additions to Existing Code

First, right after setting $id_to_update from the form data, create a variable named
$movie_image_file and set it to the hidden variable now within the $_POST superglobal:

elseif (isset($_POST['edit_movie_submission'], $_POST['movie_title'],
 $_POST['movie_rating'], $_POST['movie_director'],
 $_POST['movie_running_time_in_minutes'], $_POST['id_to_update'],
 $_POST['movie_image_file']))
{
 // ...
 $id_to_update = $_POST['id_to_update'];
 $movie_image_file = $_POST['movie_image_file'];

We need to test if an image file was previously set for the movie right after checking if
checked_movie_genres is set and before connecting to the database. If not, set the previously
displayed movie to the default image (Listing 19.27).

Listing 19.27.

 1. if (isset($checked_movie_genres))
 2. {
 3. $movie_genre_text = implode(", ", $checked_movie_genres);
 4. }
 5.
 6. if (empty($movie_image_file))
 7. {
 8. $movie_image_file_displayed = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
 9. }
10. else
11. {
12. $movie_image_file_displayed = $movie_image_file;
13. }

Just as with addmovie.php, we will validate the uploaded movie image file right before the call
connecting to the database. It might be a good idea to add an appropriate comment here,
something like I have in Listing 19.28.

Listing 19.28.

 1. else
 2. {
 3. $movie_image_file_displayed = $movie_image_file;
 4. }
 5.
 6. /*
 7. Here is where we will deal with the file by calling validateMovieImageFile().
 8. This function will validate that the movie image file is not greater than 128

Add Image File Uploads to the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 261

 9. characters, is the right image type (jpg/png/gif), and not greater than 512KB.
10. This function will return an empty string ('') if the file validates successfully,
11. otherwise, the string will contain error text to be output to the web page before
12. redisplaying the form.
13. */

Next, we make our call to validateMovieImageFile() and set the return value to a new variable
that captures the file error message:

otherwise, the string will contain error text to be output to the web page before
redisplaying the form.
*/

$file_error_message = validateMovieImageFile();

Just as we did in addmovie.php, if validateMovieImageFile() returns anything but an empty
string, there was an error uploading the file. We want to display this error message and
redisplay the form instead of updating the data in the database, allowing the user to correct
the error. The two common reasons for the error are: the image is too big, or the image is the
wrong file type.

Create an if condition for file_error_message being empty, and move all the database code
into this new if block. The new if block should now look like Listing 19.29.

Listing 19.29.

 1. $file_error_message = validateMovieImageFile();
 2.
 3. if (empty($file_error_message))
 4. {
 5. $query = "UPDATE movieListing SET title = '$movie_title', rating = '$movie_rating', "
 6. . "director = '$movie_director', running_time_in_minutes = '$movie_runtime', "
 7. . "genre = '$movie_genre_text' WHERE id = $id_to_update";
 8.
 9. mysqli_query($dbc, $query)
10. or trigger_error(
11. 'Error querying database movieListing: Failed to update movie listing',
12. E_USER_ERROR
13.);
14.
15. $nav_link = 'moviedetails.php?id=' . $id_to_update;
16.
17. header("Location: $nav_link");
18. exit();
19. }

PHP Web Development with MySQL—A Hands On Approach to Application Programming262

19. Working With Files and Feature Additions to Existing Code

Next, we have to do three more things before updating the database:
1. Move the image file to the images/ folder and get the path location by calling

addMovieImageFileReturnPathLocation().
$movie_image_file_path = addMovieImageFileReturnPathLocation();

2. Remove the old image file from the images/ folder if there was a previously set image by
calling removeMovieImageFile().

// IF new image selected, set it to be updated in the database.
if (!empty($movie_image_file_path))
{
 // IF replacing an image (other than the default), remove it
 if (!empty($movie_image_file))
 {
 removeMovieImageFile($movie_image_file);
 }

 $movie_image_file = $movie_image_file_path;
}

3. Update the query to the database to update the image_file field in the movieListing
database table.

$query = "UPDATE movieListing SET title = '$movie_title', rating = '$movie_rating', "
 . "director = '$movie_director', running_time_in_minutes = '$movie_runtime', "
 . "genre = '$movie_genre_text', image_file = '$movie_image_file' "
 . "WHERE id = $id_to_update";

The complete code block looks like Listing 19.30.

Listing 19.30.

 1. if (empty($file_error_message))
 2. {
 3. $movie_image_file_path = addMovieImageFileReturnPathLocation();
 4.
 5. // IF new image selected, set it to be updated in the database.
 6. if (!empty($movie_image_file_path))
 7. {
 8. // IF replacing an image (other than the default), remove it
 9. if (!empty($movie_image_file))
10. {
11. removeMovieImageFile($movie_image_file);
12. }
13.
14. $movie_image_file = $movie_image_file_path;
15. }

Add Image File Uploads to the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 263

16.
17. $query = "UPDATE movieListing SET title = '$movie_title', rating = '$movie_rating', "
18. . "director = '$movie_director', running_time_in_minutes = '$movie_runtime', "
19. . "genre = '$movie_genre_text', image_file = '$movie_image_file' " .
20. . "WHERE id = $id_to_update";
21.
22. mysqli_query($dbc, $query)
23. or trigger_error(
24. 'Error querying database movieListing: Failed to update movie listing',
25. E_USER_ERROR
26.);
27.
28. $nav_link = 'moviedetails.php?id=' . $id_to_update;
29.
30. header("Location: $nav_link");
31. exit();
32. }

If there is an error validating the uploaded movie image file, you will want to output the
error to the web page and redisplay the form as in Listing 19.31.

Listing 19.31.

 1. $file_error_message = validateMovieImageFile();
 2.
 3. if (empty($file_error_message))
 4. {
 5. // ...
 6. }
 7. else
 8. {
 9. // echo error message
10. echo "<h5><p class='text-danger'>" . $file_error_message . "</p></h5>";
11. }

Complete "Edit a Movie" Code Listing

Listing 19.32.

 1. <!DOCTYPE html>
 2. <html>
 3. <head>
 4. <title>Edit a Movie</title>
 5. <link rel="stylesheet"
 6. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 7. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 8. crossorigin="anonymous">
 9. </head>

PHP Web Development with MySQL—A Hands On Approach to Application Programming264

19. Working With Files and Feature Additions to Existing Code

10. <body>
11. <div class="card">
12. <div class="card-body">
13. <h1>Edit a Movie</h1>
14. <nav class="nav">
15. Movies I Like
16. </nav>
17. <hr/>
18. <?php
19. require_once('dbconnection.php');
20. require_once('movieimagefileutil.php');
21.
22. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
23. or trigger_error(
24. 'Error connecting to MySQL server for ' . DB_NAME,
25. E_USER_ERROR
26.);
27.
28. $genres = [
29. 'Action', 'Adventure', 'Comedy', 'Documentary', 'Drama',
30. 'Fantasy', 'Horror', 'Romance', 'Science Fiction'
31.];
32.
33. if (isset($_GET['id_to_edit'])) {
34. $id_to_edit = $_GET['id_to_edit'];
35.
36. $query = "SELECT * FROM movieListing WHERE id = $id_to_edit";
37.
38. $result = mysqli_query($dbc, $query)
39. or trigger_error(
40. 'Error querying database movieListing',
41. E_USER_ERROR
42.);
43.
44. if (mysqli_num_rows($result) == 1) {
45. $row = mysqli_fetch_assoc($result);
46.
47. $movie_title = $row['title'];
48. $movie_rating = $row['rating'];
49. $movie_director = $row['director'];
50. $movie_runtime = $row['running_time_in_minutes'];
51. $movie_genre_text = $row['genre'];
52. $movie_image_file = $row['image_file'];
53.
54. if (empty($movie_image_file)) {
55. $movie_image_file_displayed = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
56. } else {
57. $movie_image_file_displayed = $movie_image_file;
58. }
59.

Add Image File Uploads to the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 265

60. $checked_movie_genres = explode(', ', $movie_genre_text);
61. }
62. } elseif (isset($_POST['edit_movie_submission'], $_POST['movie_title'],
63. $_POST['movie_rating'], $_POST['movie_director'],
64. $_POST['movie_running_time_in_minutes'], $_POST['id_to_update'],
65. $_POST['movie_image_file'])) {
66. $movie_title = $_POST['movie_title'];
67. $movie_rating = $_POST['movie_rating'];
68. $movie_director = $_POST['movie_director'];
69. $movie_runtime = $_POST['movie_running_time_in_minutes'];
70. $checked_movie_genres = $_POST['movie_genre_checkbox'];
71. $id_to_update = $_POST['id_to_update'];
72. $movie_image_file = $_POST['movie_image_file'];
73.
74. $movie_genre_text = "";
75.
76. if (isset($checked_movie_genres)) {
77. $movie_genre_text = implode(", ", $checked_movie_genres);
78. }
79.
80. if (empty($movie_image_file)) {
81. $movie_image_file_displayed = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
82. } else {
83. $movie_image_file_displayed = $movie_image_file;
84. }
85.
86. /*
87. Here is where we will deal with the file by calling validateMovieImageFile().
88. This function will validate that the movie image file is the right image type
89 (jpg/png/gif), and not greater than 512KB. This function will return an empty
90. string ('') if the file validates successfully, otherwise, the string will contain
91. error text to be output to the web page before redisplaying the form.
92. */
93.
94. $file_error_message = validateMovieImageFile();
95.
96. if (empty($file_error_message)) {
97. $movie_image_file_path = addMovieImageFileReturnPathLocation();
98.
99. // IF new image selected, set it to be updated in the database.
100. if (!empty($movie_image_file_path)) {
101. // IF replacing an image (other than the default), remove it
102 if (!empty($movie_image_file)) {
103. removeMovieImageFile($movie_image_file);
104. }
105.
106. $movie_image_file = $movie_image_file_path;
107. }
108.
109. $query = "UPDATE movieListing SET title = '$movie_title', rating = '$movie_rating', "
110. . "director = '$movie_director', running_time_in_minutes = '$movie_runtime', "

PHP Web Development with MySQL—A Hands On Approach to Application Programming266

19. Working With Files and Feature Additions to Existing Code

111. . "genre = '$movie_genre_text', image_file = '$movie_image_file' "
112. . "WHERE id = $id_to_update";
113.
114. mysqli_query($dbc, $query)
115. or trigger_error(
116. 'Error querying database movieListing: Failed to update movie listing',
117. E_USER_ERROR
118.);
119.
120. $nav_link = 'moviedetails.php?id=' . $id_to_update;
121
122. header("Location: $nav_link");
123. exit();
124. } else {
125. // echo error message
126. echo "<h5><p class='text-danger'>" . $file_error_message . "</p></h5>";
127. }
128.
129. } else // Unintended page link - No movie to edit, link redirect to index
130. {
131. header("Location: index.php");
132. exit();
133. }
134. ?>
135. <div class="row">
136. <div class="col">
137. <form enctype="multipart/form-data"
138. class="needs-validation" novalidate
139. method="POST"
140. action="<?= $_SERVER['PHP_SELF'] ?>">
141. <div class="form-group row">
142. <label for="movie_title"
143. class="col-sm-3 col-form-label-lg">Title</label>
144. <div class="col-sm-9">
145. <input type="text" class="form-control"
146. id="movie_title" name="movie_title"
147. value="<?= $movie_title ?>"
148. placeholder="Title" required>
149. <div class="invalid-feedback">
150. Please provide a valid movie title.
151. </div>
152. </div>
153. </div>
154. <div class="form-group row">
155. <label for="movie_rating"
156. class="col-sm-3 col-form-label-lg">Rating</label>
157. <div class="col-sm-9">
158. <select class="custom-select"
159. id="movie_rating"
160. name="movie_rating"

Add Image File Uploads to the Editing Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 267

161. value='<?= $movie_rating ?>'
162. required>
163. <option value="" disabled selected>
164. Rating...
165. </option>
166. <option value="G" <?= $movie_rating == 'G' ? 'selected' : '' ?>>G
167. </option>
168. <option value="PG" <?= $movie_rating == 'PG' ? 'selected' : '' ?>>PG
169. </option>
170. <option value="PG-13" <?= $movie_rating == 'PG-13' ? 'selected' : '' ?>>PG-13
171. </option>
172. <option value="R" <?= $movie_rating == 'R' ? 'selected' : '' ?>>R
173. </option>
174. </select>
175. <div class="invalid-feedback">
176. Please select a movie rating.
177. </div>
178. </div>
179. </div>
180. <div class="form-group row">
181. <label for="movie_director"
182. class="col-sm-3 col-form-label-lg">Director</label>
183. <div class="col-sm-9">
184. <input type="text" class="form-control" id="movie_director"
185. name="movie_director" value="<?= $movie_director ?>"
186. placeholder="Director" required>
187. <div class="invalid-feedback">
188. Please provide a valid movie director.
189. </div>
190. </div>
191. </div>
192. <div class="form-group row">
193. <label for="movie_running_time_in_minutes"
194. class="col-sm-3 col-form-label-lg">Running Time (min)</label>
195. <div class="col-sm-9">
196. <input type="number" class="form-control"
197. id="movie_running_time_in_minutes"
198. name="movie_running_time_in_minutes"
199. value="'<?= $movie_runtime ?>"
200. placeholder="Running time (in minutes)"
201. required>
202. <div class="invalid-feedback">
203. Please provide a valid running time in minutes.
204. </div>
205. </div>
206. </div>
207. <div class="form-group row">
208. <label class="col-sm-3 col-form-label-lg">Genre</label>
209. <div class="col-sm-9">
210. <?php

PHP Web Development with MySQL—A Hands On Approach to Application Programming268

19. Working With Files and Feature Additions to Existing Code

211. foreach ($genres as $genre) {
212. ?>
213. <div class="form-check form-check-inline col-sm-3">
214. <input class="form-check-input"
215. type="checkbox"
216. id="movie_genre_checkbox_action_<?= $genre ?>"
217. name="movie_genre_checkbox[]"
218. value="<?= $genre ?>"
219. <?= in_array($genre, $checked_movie_genres) ? 'checked' : '' ?>>
220. <label class="form-check-label"
221. for="movie_genre_checkbox_action_<?= $genre ?>"
222. ><?= $genre ?></label>
223. </div>
224. <?php
225. }
226. ?>
227. </div>
228. </div>
229. <div class="form-group row">
230. <label for="movie_image_file"
231. class="col-sm-3 col-form-label-lg">Movie Image File</label>
232. <div class="col-sm-8">
233. <input type="file" class="form-control-file" id="movie_image_file"
234. name="movie_image_file">
235. </div>
236. </div>
237. <button class="btn btn-primary" type="submit"
238. name="edit_movie_submission">Update Movie
239. </button>
240. <input type="hidden" name="id_to_update" value="<?= $id_to_edit ?>">
241. <input type="hidden" name="movie_image_file"
242. value="<?= $movie_image_file ?>">
243. </form>
244. </div>
245. <div class="col-3">
246. <img src="<?= $movie_image_file_displayed ?>" class="img-thumbnail"
247. style="max-height: 400px;" alt="Movie image">
248. </div>
249. </div>
250. <script>
251. // JavaScript for disabling form submissions if there are invalid fields
252. (function () {
253. 'use strict';
254. window.addEventListener('load', function () {
255. // Fetch all the forms we want to apply custom Bootstrap validation styles to
256. var forms = document.getElementsByClassName('needs-validation');
257. // Loop over them and prevent submission
258. var validation = Array.prototype.filter.call(forms, function (form) {
259. form.addEventListener('submit', function (event) {
260. if (form.checkValidity() === false) {

Displaying Image on Deletion Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 269

261. event.preventDefault();
262. event.stopPropagation();
263. }
264. form.classList.add('was-validated');
265. }, false);
266. });
267. }, false);
268. })();
269. </script>
270. </div>
271. </div>
272. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
273. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
274. crossorigin="anonymous"></script>
275. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
276. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
277. crossorigin="anonymous"></script>
278. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
279. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
280. crossorigin="anonymous"></script>
281. </body>
282. </html>

Displaying Image on Deletion Page
Finally, we need to modify removemovie.php so that the movie’s image is displayed on the “Remove
a Movie” page for better identification of the movie. We need to delete the image file from the
database and filesystem on confirmation of
delete. We will add the image to the left side
of the table so that it looks like Figure 19.26.

Open removemovie.php and add a reference to
the movieimagefileutil.php script by adding
the following require_once() following the
reference to dbconnection.php towards the
top of the script:

<?php
 require_once('dbconnection.php');
 require_once('movieimagefileutil.php');

Figure 19.26.

PHP Web Development with MySQL—A Hands On Approach to Application Programming270

19. Working With Files and Feature Additions to Existing Code

Displaying the Image on removemovie.php
When first linking to the “Remove a Movie” page (removemovie.php), it was because of an
HTTP GET request/response when navigating from the index.php script as a result of selecting
the trash can icon. Therefore, we need to make the following modifications to display movie
image file details in the elseif (isset($_GET['id_to_delete'])) block of code:

elseif (isset($_GET['id_to_delete'])):

First, we query the movieListing database table for all the fields for this movie. Then, inside
the if (mysqli_num_rows($result) == 1) condition block, just below fetching the row, create
a variable named $movie_image_file and set it to the image_file field. Finally, change it to the
path of the default movie image file if it is empty as in Listing 19.33.

Listing 19.33.

 1. elseif (isset($_GET['id_to_delete'])):
 2. // ...
 3. if (mysqli_num_rows($result) == 1)
 4. {
 5. $row = mysqli_fetch_assoc($result);
 6.
 7. $movie_image_file = $row['image_file'];
 8.
 9. if (empty($movie_image_file))
10. {
11. $movie_image_file = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
12. }

As we did in addmovie.php and editmovie.php, we need to add the movie image file (or the
default image) to the left of the table to display the movie details.

Since we use Bootstrap’s Flexbox grid implementation, we can encapsulate the image and
table in separate columns and put them both in a single row. All this is just below the movie
tile located in the <h1> element as in Listing 19.34.

Listing 19.34.

 1. <h1><?= $row['title'] ?></h1>
 2. <div class="row">
 3. <div class="col-2">
 4. <img src="<?= $movie_image_file ?>" class="img-thumbnail"
 5. style="max-height: 200px;" alt="Movie image">
 6. </div>
 7. <div class="col">

Displaying Image on Deletion Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 271

 8. <table class="table table-striped">
 9. ...
10. </table>
11. </div>
12. </div>
13. </p>
14. <form ... >

Again, notice we set the style attribute to a maximum height of 200 pixels.

Removing the Movie Image On Delete

After the user submits the form data by selecting the Delete Movie
button (Figure 19.27), the following condition is true. This is because
the user selected the “Delete Movie” submit button, which posts back to
removemovie.php with the form variables delete_movie_submission and id
in the $_POST[] superglobal array.

if (isset($_POST['delete_movie_submission']) && isset($_POST['id'])):

In this block, before we query to delete this movie, we need to query the image_file field
from the movieListing database table and delete the image from the images/ folder—only if
the image_file field is not empty by calling removeMovieImageFile(). Make the code modifica-
tions in Listing 19.35.

Listing 19.35.

 1. if (isset($_POST['delete_movie_submission']) && isset($_POST['id'])):
 2.
 3. $id = $_POST['id'];
 4.
 5. // Query image file from DB
 6. $query = "SELECT image_file FROM movieListing WHERE id = $id";
 7.
 8. $result = mysqli_query($dbc, $query)
 9. or trigger_error(
10. 'Error querying database movieListing', E_USER_ERROR
11.);
12.
13. if (mysqli_num_rows($result) == 1)
14. {
15. $row = mysqli_fetch_assoc($result);
16.
17. $movie_image_file = $row['image_file'];
18.
19. if (!empty($movie_image_file))

Figure 19.27.

PHP Web Development with MySQL—A Hands On Approach to Application Programming272

19. Working With Files and Feature Additions to Existing Code

20. {
21. removeMovieImageFile($movie_image_file);
22. }
23. }
24.
25. $query = "DELETE FROM movieListing WHERE id = $id";
26.
27. $result = mysqli_query($dbc, $query)
28. or trigger_error(
29. 'Error querying database movieListing', E_USER_ERROR
30.);
31.
32. header("Location: index.php");
33. exit;

Complete removemovie.php Listing

Listing 19.36.

 1. <html>
 2. <head>
 3. <title>Remove a Movie</title>
 4. <link rel="stylesheet"
 5. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 6. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 7. crossorigin="anonymous">
 8. <link rel="stylesheet"
 9. href="https://use.fontawesome.com/releases/v5.8.1/css/all.css"
10. integrity="sha384-50oBUHEmvpQ+1lW4y57PTFmhCaXp0ML5d60M1M7uH2+nqUivzIebhndOJK28anvf"
11. crossorigin="anonymous">
12. </head>
13. <body>
14. <div class="card">
15. <div class="card-body">
16. <h1>Remove a Movie</h1>
17. <?php
18. require_once('dbconnection.php');
19. require_once('movieimagefileutil.php');
20.
21. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
22. or trigger_error(
23. 'Error connecting to MySQL server for' . DB_NAME,
24. E_USER_ERROR
25.);
26.
27. if (isset($_POST['delete_movie_submission']) && isset($_POST['id'])):
28.
29. $id = $_POST['id'];
30.

Displaying Image on Deletion Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 273

31. // Query image file from DB
32. $query =
33. "SELECT image_file FROM movieListing WHERE id = $id";
34.
35. $result = mysqli_query($dbc, $query)
36. or trigger_error(
37. 'Error querying database movieListing',
38. E_USER_ERROR
39.);
40.
41. if (mysqli_num_rows($result) == 1) {
42. $row = mysqli_fetch_assoc($result);
43.
44. $movie_image_file = $row['image_file'];
45.
46. if (!empty($movie_image_file)) {
47. removeMovieImageFile($movie_image_file);
48. }
49. }
50.
51. $query = "DELETE FROM movieListing WHERE id = $id";
52.
53. $result = mysqli_query($dbc, $query)
54. or trigger_error(
55. 'Error querying database movieListing',
56. E_USER_ERROR
57.);
58.
59. header("Location: index.php");
60. exit;
61.
62. elseif (isset($_POST['do_not_delete_movie_submission'])):
63.
64. header("Location: index.php");
65. exit;
66.
67. elseif (isset($_GET['id_to_delete'])):
68. ?>
69. <h3 class="text-danger">Confirm Deletion of the Following
70. Movie Details:</h3>

71. <?php
72. $id = $_GET['id_to_delete'];
73.
74. $query = "SELECT * FROM movieListing WHERE id = $id";
75.
76. $result = mysqli_query($dbc, $query)
77. or trigger_error(
78. 'Error querying database movieListing',
79. E_USER_ERROR
80.);
81.

PHP Web Development with MySQL—A Hands On Approach to Application Programming274

19. Working With Files and Feature Additions to Existing Code

82. if (mysqli_num_rows($result) == 1) {
83. $row = mysqli_fetch_assoc($result);
84.
85. $movie_image_file = $row['image_file'];
86.
87. if (empty($movie_image_file)) {
88. $movie_image_file =
89. ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
90. }
91.
92. ?>
93. <h1><?= $row['title'] ?></h1>
94. <div class="row">
95. <div class="col-2">
96. <img src="<?= $movie_image_file ?>"
97. class="img-thumbnail"
98. style="max-height: 200px;"
99. alt="Movie image">
100. </div>
101. <div class="col">
102. <table class="table table-striped">
103. <tbody>
104. <tr>
105. <th scope="row">Rating</th>
106. <td><?= $row['rating'] ?></td>
107. </tr>
108. <tr>
109. <th scope="row">Director</th>
110. <td><?= $row['director'] ?></td>
111. </tr>
112. <tr>
113. <th scope="row">Running Time (minutes)
114. </th>
115. <td><?= $row['running_time_in_minutes'] ?></td>
116. </tr>
117. <tr>
118. <th scope="row">Genre</th>
119. <td><?= $row['genre'] ?></td>
120. </tr>
121. </tbody>
122. </table>
123. </div>
124. </div>
125. <p>
126. <form method="POST"
127. action="<?= $_SERVER['PHP_SELF'] ?>">
128. <div class="form-group row">
129. <div class="col-sm-2">
130. <button class="btn btn-danger" type="submit"
131. name="delete_movie_submission">
132. Delete Movie
133. </button>

Exercises

PHP Web Development with MySQL—A Hands On Approach to Application Programming 275

134. </div>
135. <div class="col-sm-2">
136. <button class="btn btn-success"
137. type="submit"
138. name="do_not_delete_movie_submission">
139. Don't Delete
140. </button>
141. </div>
142. <input type="hidden" name="id"
143. value="<?= $id ?>;">
144. </div>
145. </form>
146. <?php
147. } else {
148. ?>
149. <h3>No Movie Details :-(</h3>
150. <?php
151. }
152.
153. else: // Unintended page link. No movie to remove, redirect to index
154.
155. header("Location: index.php");
156. exit;
157.
158. endif;
159. ?>
160. </div>
161. </div>
162. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
163. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
164. crossorigin="anonymous"></script>
165. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
166. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
167. crossorigin="anonymous"></script>
168. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
169. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
170. crossorigin="anonymous"></script>
171. </body>
172. </html>

PHP Web Development with MySQL—A Hands On Approach to Application Programming276

19. Working With Files and Feature Additions to Existing Code

Exercises
1. Add the capability to upload an image file for a movie by modifying the database and

source files as indicated in this chapter. Make sure users can only upload a valid image
file type.

2. Refactor the code to use in_array() to check if an uploaded file is in the list of allowed
image types.

3. Display the movie image on the details page for the movie.
4. The “Default” image is intentionally unprotected from user manipulation. Update the

upload case so that users can’t overwrite the default image with something else. For
example, don’t allow users to upload a file named generic_movie.jpg.

5. Fix a bug: anyone can replace another movie’s file by using the same filename—if a user
knows it. So after upload and before saving the data, rename the file name to be unique
to the movie it references.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 277

Chapter

20
Basic HTTP
Authentication

“First, solve the problem. Then, write the code.”

–John Johnson

PHP Web Development with MySQL—A Hands On Approach to Application Programming278

20. Basic HTTP Authentication

Currently, our MovieListing application has no protection from someone simply deleting all
of our movies in our database or adding movie entries that we might not approve of.

In this chapter, we implement basic HTTP authentication that adds a level of protection for
features of our application we do not want to expose to everyone.

In a follow-on chapter covering Security, I will discuss authentication and authorization further.
Basic HTTP Authentication is a simple way to control who can use particular web pages.

The question is, what features do we want to require authentication for? Given that our
application allows anyone to access the whole website, we need to add basic authentication
to any feature that modifies or deletes data from the application. This limits who can change
the database to trusted users who know a valid username and password combination.
Therefore we will require authentication to:

• addmovie.php

• removemovie.php

• editmovie.php

Password Protection with HTTP Authentication
Users should be able to add
a movie by clicking on the
link shown in Figure 20.1,
remove a movie (Figure
20.2), or edit movie details
via the link in Figure 20.3.
Before carrying out any
of these operations, we
want to display the autho-
rization dialog shown in
Figure 20.4, or something
similar, to verify their
identity. The exact dialog
you see varies depending
on your browser and oper-
ating system.

Figure 20.1.

Figure 20.2.

Figure 20.3.

How Does HTTP Authentication Work?

PHP Web Development with MySQL—A Hands On Approach to Application Programming 279

This dialog continues to pop up as long as
the user enters the incorrect credentials. A
user can add, edit, or remove movie details
only if they sign in with the correct creden-
tials.

If the user presses Cancel, the message in
Figure 20.5 shows on the page.

[1] header(): https://php.net/header

How Does HTTP
Authentication Work?

HTTP Authentication is sent using HTTP
headers. Every time a user requests a
webpage, headers to verify the user’s identity
are sent from the server to the client before
returning any HTML. You should be aware
that while you can use basic authentication
with HTTP, the username and password are not encrypted and can be intercepted. If you
must use basic authentication, make sure you’re using HTTPS on your live site.

Headers control how and what kind of information passes between the client and the server.
Headers usually (but not always) consist of a name/value pair separated by a colon (:).

NOTE: For more information on HTTP Request and Response Headers, please see
Chapter 1: HTTP Request/Response

In PHP, we use the header()[1] function to create HTTP headers and send them from a script.

Because headers must be sent before any HTML markup, it must be the first thing in your
PHP code. There cannot be any blank lines before the <?php tag. Also, any other file you’ve
included or required before the header() call must not send any output to the browser.

Figure 20.4.

Figure 20.5.

https://php.net/header

PHP Web Development with MySQL—A Hands On Approach to Application Programming280

20. Basic HTTP Authentication

Headers Required for Authentication
As long as the password and username are incorrect or missing, our script sends these two
headers:

header('HTTP/1.1 401 Unauthorized');
header('WWW-Authenticate: Basic realm="Movies I Like"');

Note that the Basic realm is used to identify this authentication. Thus, it is possible to
protect different web pages with separate credentials as long as the Basic realm is set differ-
ently. You can use whatever text you want here, but make sure it’s clear to the user.
That said, once a page has been successfully authenticated, any other web page in the appli-
cation that uses the same Basic realm will be automatically authenticated and not require
re-credentialing.

Credentials in $_SERVER Superglobal

When the user enters their username and
password into the authentication request
dialog, the browser sends the credentials
to your PHP script. They’re parsed and
added to the superglobal variable $_SERVER
(Figure 20.6). Our code then uses these
values to validate the credentials:

• The username is held in
$_SERVER['PHP_AUTH_USER']

• The password is in
$_SERVER['PHP_AUTH_PW']

Create authorizeaccess.php
Since we will only use one Basic realm, it makes sense to create a single PHP script that will
handle our authorization. Therefore, we will create a script called authorizeaccess.php.

Since HTTP authentication is sent over in a Header, we need to make sure we have no blank
lines before sending the authorization headers. So make sure your opening <?php script tag is
at the top of your script and flush to the left margin:

<?php

Figure 20.6.

Create authorizeaccess.php

PHP Web Development with MySQL—A Hands On Approach to Application Programming 281

Next, we create a couple of variables to hold the correct username and password:

<?php
$username = 'movieguru';
$password = 'ilikemovies';

For a professional implementation, usernames and passwords would never be hard-
coded into the source code. A more secure practice is to either use environment
variables or the database. The latter allows you to give every user separate usernames
and passwords. This example is for educational demonstration only.

Every time the authorizeaccess.php script runs, we want to compare $_SERVER['PHP_AUTH_USER']
to $username and $_SERVER['PHP_AUTH_PW'] to $password. As long as either superglobal is not set
or not equal to the expected values, we want to continue to post the authorization dialog.

Add the conditional shown in Listing 20.1 to the new file.

Listing 20.1.

 1. <?php
 2. $username = 'movieguru';
 3. $password = 'ilikemovies';
 4.
 5. // IF Password OR Username are empty
 6. // OR Password OR Username don't match
 7. // send HTTP authentication headers
 8. if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])
 9. || $_SERVER['PHP_AUTH_USER'] !== $username
10. || $_SERVER['PHP_AUTH_PW'] !== $password) {
11.
12.
13.
14. }

Add the following two header() lines of code inside of the if conditional statement:

if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])
 || $_SERVER['PHP_AUTH_USER'] !== $username
 || $_SERVER['PHP_AUTH_PW'] !== $password) {

 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Movies I Like"');

}

PHP Web Development with MySQL—A Hands On Approach to Application Programming282

20. Basic HTTP Authentication

The first time this script is called, neither $_SERVER['PHP_AUTH_USER'] nor
$_SERVER['PHP_AUTH_PW'] is set, so the authorization dialog is shown. If the user enters in the
wrong credentials and then presses Sign In (Figure 20.7), the authorizeaccess.php script is
called again. The code again meets the if statement conditions because the credentials do
not match, and the authorization headers are sent again.

When the user submits the correct credentials, the authorizeaccess.php script is called again.
This time, the previous if statement doesn’t trigger, and the script continues execution.

The last case we need to handle is the user selecting Cancel from the authorization dialog
(Figure 20.8).

We want to display a message to the page that they need to enter a valid username and pass-
word and exit our application. Therefore, add the following code after the two header() lines
of code:

header('HTTP/1.1 401 Unauthorized');
header('WWW-Authenticate: Basic realm="Movies I Like"');

$invalid_response = "<h2>Movies I Like</h2><h4>You must enter a "
 . "valid username and password to access this page.</h4>";
exit($invalid_response);

If the user selects Cancel, their page request does not include any access credentials. Doing so
invokes the exit() function, exits the application, and displays contents of $invalid_response.

Figure 20.7. Figure 20.8.

Adding Authorization to Pages

PHP Web Development with MySQL—A Hands On Approach to Application Programming 283

Complete Code Listing for authorizeaccess.php

Listing 20.2.

 1. <?php
 2. $username = 'movieguru';
 3. $password = 'ilikemovies';
 4.
 5. // IF Password OR Username are empty
 6. // OR Password OR Username don't match
 7. // send HTTP authentication headers
 8. if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])
 9. || $_SERVER['PHP_AUTH_USER'] !== $username
10. || $_SERVER['PHP_AUTH_PW'] !== $password) {
11.
12. header('HTTP/1.1 401 Unauthorized');
13. header('WWW-Authenticate: Basic realm="Movies I Like"');
14. $invalid_response = "<h2>Movies I Like</h2><h4>You must enter a "
15. . "valid username and password to access this page.</h4>";
16. exit($invalid_response);
17. }

Adding Authorization to Pages
Adding our new authorization requirements to the addmovie.php, removemovie.php, and
editmovie.php scripts is straightforward. Simply include the authorizeaccess.php script with a
require_once() call just before the opening <html> element tag:

<?php
require_once('authorizeaccess.php');
?>
<!DOCTYPE html>
<html>
 <head>

On any page that needs authentication, requiring authorizeaccess.php should be the first
thing in the script. That way, authentication must happen before a user tries to do anything
that changes your database.

PHP Web Development with MySQL—A Hands On Approach to Application Programming284

20. Basic HTTP Authentication

Exercises
1. Create an authorizeaccess.php script to handle authentication and add it to the pages

that require an authenticated user.
2. Modify authorizeaccess.php to accept two or more username and password combina-

tions.
3. Modify authorizeaccess.php to accept two or more username and password combina-

tions.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 285

Chapter

21
Persistence

“Measuring programming progress by lines of code is like measuring
aircraft building progress by weight.”

–Bill Gates

PHP Web Development with MySQL—A Hands On Approach to Application Programming286

21. Persistence

Persistence. That’s a big word. What if we need to remember the user’s name and whether
they’re logged in? Back in chapter 18, I mentioned that the web is stateless. To carry over
data from a previous HTTP request, so far, we have needed to save this data in a hidden
variable in the form. This approach is a fragile form of persistence because if we want that
data to stay around for another HTTP GET or POST, we must remember always to include
our hidden variable in future requests. Wouldn’t it be nice to have a better mechanism to
persist our data with less work so we could use it across multiple HTTP GETs or POSTs? In
web development, there are three mechanisms we can use to persist data: cookies, session
variables, and the database. We have already been using the database. This chapter focuses
on cookies and session variables, how they are used, and the best practices for using them.

Cookies
Cookies allow the persistence of small
pieces of string data on the client’s browser,
have a time limit and can be deleted at will.
The components (Figure 21.1) of a cookie
are:

• Name: The unique name of the cookie
• Value: The value stored in the cookie
• Expiration Date: The date and time

when the cookie expires

A cookie lasts as long as its set expiration
date and time. If you don’t set a cookie’s
expiration date and time, it lasts until the user dismisses the browser session. A cookie can
only be read or modified by the site that sets it for security and privacy.

What do we mean by small? Most browsers limit the maximum size of a cookie to
4096 bytes.

Figure 21.1.

Cookies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 287

Using Cookies with PHP

[1] setcookie(): https://php.net/setcookie
[2] $_COOKIE: https://php.net/reserved.variables.cookies

To create a cookie in PHP, use the function setcookie()[1]. To specify the expiration date, we
use the time() function to specify it as a UNIX timestamp.

// Expires when browser session ends
setcookie('user_id', '1');
// Expires 1 hour from now
setcookie('user_name', 'kenmarks', time() + 3600);

In the above code snippet, time() is a function that returns the current time. This value
is the number of seconds since midnight on January 1st, 1970—known as a UNIX
timestamp. Therefore, by adding 3600 (one hour in seconds) to the result of the time()
function, we get one hour from now.

To use the cookie, you use the superglobal $_COOKIE[2] to retrieve its value. One thing to keep
in mind, since it is populated from the user’s request data, you can’t access a value saved by
setcookie() immediately via $_COOKIE. Instead, you must wait for the user to make another
page request.

<p class="login">You are logged in as <?= $_COOKIE['user_name'] ?>.</p>;

To delete a cookie, use setcookie() to set a time in the past. Doing so tells the user’s browser
to remove it.

setcookie('username', 'kenmarks', time() - 3600); // Set the time back one hour from now

Demonstrating the Use of Cookies
Let’s create a simple single-page web appli-
cation that asks a couple of questions and
uses cookies to save the user’s response.
When the page is first displayed, it should
look like Figure 21.2.

After entering your name and pressing the
Submit button, the code saves the entered
name to a cookie. You should see the page
in Figure 21.3.

Figure 21.2.

https://php.net/setcookie
https://php.net/reserved.variables.cookies

PHP Web Development with MySQL—A Hands On Approach to Application Programming288

21. Persistence

After entering your favorite cookie and pressing the Submit button, the user’s favorite
cookie is saved to a cookie. We can then display the cookie values on the web page in a
phrase. The page should look like Figure 21.4.

Create a PHP script called: cookies.php, and let’s use the conditional logic in Listing 21.1 for
progressing from the first form, to the next form, to the last page with the output phrase that
uses the saved cookies.

Listing 21.1.

 1. <body>
 2. <div class="card">
 3. <div class="card-body">
 4. <h1>Using Cookies</h1>
 5. <?php
 6. // User entered name. Save name to Cookie and display form
 7. if (isset($_POST['name_submission']) && isset($_POST['entered_name'])) {
 8. setcookie('name', $_POST['entered_name']);
 9. // ...
10. } // User entered favorite cookie, save favorite cookie and redirect to this page
11. elseif (isset($_POST['cookie_submission']) && isset($_POST['entered_cookie'])) {
12. setcookie('favorite_cookie', $_POST['entered_cookie']);
13.
14. header("Location: {$_SERVER['PHP_SELF']}");
15. exit;
16. } // Output message displaying saved Cookies then delete the Cookies
17. elseif (isset($_COOKIE['name']) && isset($_COOKIE['favorite_cookie'])) {
18. // ...
19. setcookie('name', '', time() - 3600);
20. setcookie('favorite_cookie', '', time() - 3600);
21. } // Initial navigation to this page, display form asking for name
22. else {
23. // ...
24. }
25. ?>
26. </div>
27. </div>
28. ...
29. </body>

Figure 21.3. Figure 21.4.

Cookies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 289

The last else clause is where initial navigation to this page begins, so here is where we want
to display our form for asking for a name with the code in Listing 21.2.

Listing 21.2.

 1. else
 2. {
 3. ?>
 4. <form class="needs-validation" novalidate method="POST"
 5. action="<?= $_SERVER['PHP_SELF'] ?>">
 6. <div class="form-group">
 7. <label for="name"><h4>What is your name?</h4></label>
 8. <input type="test" class="form-control" id="entered_name"
 9. name="entered_name" placeholder="Enter your name" required>
10. </div>
11. <button type="submit" class="btn btn-primary"
12. name="name_submission">Submit</button>
13. </form>
14. <?php
15. }

Since this script contains multiple forms and they will all be POSTing to $_SERVER['PHP_SELF'],
we use different name attributes for the submit button on each of the forms.

Once the user has submitted this form, execution starts up in the if clause where we will set
a cookie for the entered name:

if (isset($_POST['name_submission']) && isset($_POST['entered_name']))
{
 setcookie('name', $_POST['entered_name']);
}

Following the setcookie() function in the if clause, we want to display the following form
that asks the user for their favorite cookie. See Listing 21.3

Listing 21.3.

 1. if (isset($_POST['name_submission']) && isset($_POST['entered_name']))
 2. {
 3. setcookie('name', $_POST['entered_name']);
 4. ?>
 5. <form class="needs-validation" novalidate method="POST"
 6. action="<?= $_SERVER['PHP_SELF'] ?>">
 7. <div class="form-group">
 8. <label for="name"><h4>What is your favorite cookie?</h4></label>

PHP Web Development with MySQL—A Hands On Approach to Application Programming290

21. Persistence

 9. <input type="test" class="form-control" id="entered_cookie"
10. name="entered_cookie" placeholder="Enter a cookie you like to eat"
11. required>
12. </div>
13. <button type="submit" class="btn btn-primary"
14. name="cookie_submission">Submit</button>
15. </form>
16. <?php
17. }

Again, notice we are POSTing to $_SERVER['PHP_SELF'], so we use different name attributes for
the submit button for this form. Doing so lets us track which form the user is submitting.

Once the user has submitted this form, execution starts up in the first elseif clause where
we set a cookie named favorite_cookie for the entered favorite cookie:

elseif (isset($_POST['cookie_submission']) && isset($_POST['entered_cookie']))
{
 setcookie('favorite_cookie', $_POST['entered_cookie']);
 header("Location: {$_SERVER['PHP_SELF']}");
 exit;
}

This code saves the favorite cookie and redirects the browser to $_SERVER['PHP_SELF'].
Remember, until we send our response to the user’s browser, the cookie is not set, and the
value does not exist in the $_COOKIE superglobal. We can differentiate from direct navigation
to this script which displays the first form by checking for the existence of the two cookies.

Next, execution starts in the second elseif clause where we want to output the phrase that
uses the saved cookies:

elseif (isset($_COOKIE['name']) && isset($_COOKIE['favorite_cookie']))
{
 // ...
 setcookie('name', '', time() - 3600);
 setcookie('favorite_cookie', '', time() - 3600);
}

Notice the two calls to setcookie(). These calls set the time back one hour (in seconds),
which tells the browser to delete the cookies.

Cookies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 291

Directly above the calls to setcookie(), we want to output a phrase that includes the entered
name and favorite cookie saved in the cookies. Since we’re outputting user-supplied strings,
we must escape them to prevent cross-site scripting attacks, which we cover later in the
Security chapter.

Listing 21.4.

 1. elseif (isset($_COOKIE['name']) && isset($_COOKIE['favorite_cookie']))
 2. {
 3. ?>
 4. <h4>
 5. Hey <?= htmlspecialchars($_COOKIE['name']) ?>, you like
 6. <?= htmlspecialchars($_COOKIE['favorite_cookie']) ?> cookies. Very nice!
 7. </h4>
 8. <?php
 9. setcookie('name', '', time() - 3600);
10. setcookie('favorite_cookie', '', time() - 3600);
11. }

Complete cookies.php Code Listing

This script uses Bootstrap’s client-side validation for forms and requires special CSS
classes and a JavaScript function. For more information on using Bootstrap’s client-
side validation, please see Chapter 16: Using Bootstrap’s Client-Side Validation

Listing 21.5.

 1. <html>
 2. <head>
 3. <title>Using Cookies</title>
 4. <link rel="stylesheet"
 5. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 6. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
 7. crossorigin="anonymous">
 8. </head>
 9. <body>
10. <div class="card">
11. <div class="card-body">
12. <h1>Using Cookies</h1>
13. <?php
14. // User entered name, save name to Cookie and display form asking for favorite cookie
15. if (isset($_POST['name_submission']) && isset($_POST['entered_name'])) {
16. setcookie('name', $_POST['entered_name']);

PHP Web Development with MySQL—A Hands On Approach to Application Programming292

21. Persistence

17. ?>
18. <form class="needs-validation" novalidate method="POST"
19. action="<?= $_SERVER['PHP_SELF']; ?>">
20. <div class="form-group">
21. <label for="name"><h4>What is your favorite
22. cookie?</h4></label>
23. <input type="test" class="form-control"
24. id="entered_cookie" name="entered_cookie"
25. placeholder="Enter a cookie you like to eat"
26. required>
27. </div>
28. <button type="submit" class="btn btn-primary"
29. name="cookie_submission">Submit
30. </button>
31. </form>
32. <?php
33. } // User entered favorite cookie, save favorite cookie to Cookie and redirect to this page
34. elseif (isset($_POST['cookie_submission']) && isset($_POST['entered_cookie'])) {
35. setcookie('favorite_cookie', $_POST['entered_cookie']);
36.
37. header("Location: {$_SERVER['PHP_SELF']}");
38. exit;
39. } // Output message displaying saved Cookies then delete the Cookies
40. elseif (isset($_COOKIE['name']) && isset($_COOKIE['favorite_cookie'])) {
41. ?>
42. <h4>
43. Hey <?= htmlspecialchars($_COOKIE['name']) ?>, you
44. like <?= htmlspecialchars($_COOKIE['favorite_cookie']) ?>
45. cookies. Very nice!
46. </h4>
47. <?php
48. setcookie('name', '', time() - 3600);
49. setcookie('favorite_cookie', '', time() - 3600);
50. } // Initial navigation to this page, display form asking for name
51. else {
52. ?>
53. <form class="needs-validation" novalidate method="POST"
54. action="<?= $_SERVER['PHP_SELF'] ?>">
55. <div class="form-group">
56. <label for="name"><h4>What is your name?</h4></label>
57. <input type="test" class="form-control"
58. id="entered_name" name="entered_name"
59. placeholder="Enter your name" required>
60. </div>
61. <button type="submit" class="btn btn-primary"
62. name="name_submission">Submit

Session Variables

PHP Web Development with MySQL—A Hands On Approach to Application Programming 293

63. </button>
64. </form>
65. <?php
66. }
67. ?>
68. </div>
69. </div>
70. <script>
71. // JavaScript for disabling form submissions if there are invalid fields
72. (function () {
73. 'use strict';
74. window.addEventListener('load', function () {
75. // Fetch all the forms we want to apply custom Bootstrap validation styles to
76. var forms = document.getElementsByClassName('needs-validation');
77. // Loop over them and prevent submission
78. var validation = Array.prototype.filter.call(forms, function (form) {
79. form.addEventListener('submit', function (event) {
80. if (form.checkValidity() === false) {
81. event.preventDefault();
82. event.stopPropagation();
83. }
84. form.classList.add('was-validated');
85. }, false);
86. });
87. }, false);
88. })();
89. </script>
90. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
91. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
92. crossorigin="anonymous"></script>
93. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
94. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
95. crossorigin="anonymous"></script>
96. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
97. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
98. crossorigin="anonymous"></script>
99. </body>
100. </html>

PHP Web Development with MySQL—A Hands On Approach to Application Programming294

21. Persistence

Session Variables

[3] session_start(): https://php.net/session_start
[4] session_destroy(): https://php.net/session_destroy
[5] $_SESSION superglobal: https://php.net/reserved.variables.session

Session variables also allow the persistence of small pieces of data. However, instead of
storing them on the client’s browser, they are stored on the server, giving them an added
security benefit in preventing users from altering the data. They are also not limited to
storing string data. You can persist arrays, variables, and serializable objects, and the PHP
interpreter automatically converts them between scripts. However, session variables only
last as long as the current web browsing session. In other words, the session ends when the
user closes the browser. When the session ends, the $_SESSION variables are destroyed.

To use session variables, you must indicate when your session starts by using the function
session_start()[3]:

 session_start();

When first calling session_start(), there is no data saved. It only indicates that the PHP
interpreter can start storing and accessing session variables and internally sets a unique
identifier for this session. The web browser and our application use this unique identifier to
associate a session with multiple web pages.

The session identifier is not destroyed until the session is closed. This happens when the web
browser is closed or when you call the session_destroy() function:

 session_destroy();

If you close a session yourself by using the session_destroy()[4] function, it does not delete
the session variables. Instead, it only ends the session.

To create session variables, you use the $_SESSION[] superglobal:

 $_SESSION['user_name'] = 'kenmarks';

You use the session variable by accessing the $_SESSION superglobal[5] using the assigned
index to retrieve it’s value:

<p class="login">You are logged in as <?= $_SESSION['user_name'] ?>.</p>;

https://php.net/session_start
https://php.net/session_destroy
https://php.net/reserved.variables.session

Session Variables

PHP Web Development with MySQL—A Hands On Approach to Application Programming 295

There are a few interesting things about using session variables. First, you must call the
session_start() before creating and accessing session variables. Second, when hyperlinking
from one page to another (or to the same page), you must remember that the web is state-
less. To access any session variables you have created, you must call the session_start()
function again.

The naming of session_start() is unfortunate. When developers first learn how to use
session variables in PHP, they often assume that once they call session_start(), they
do not need to call it again—even though the web is stateless. They wonder why they
do not have access to their session variables in subsequent requests. A more accurate
name for this function might be: session_start_or_resume().

Third, as mentioned above, calling session_destroy() only ends the session but does not
delete the session variables. Until the user closes their browser and PHP’s session garbage
collector deletes expired session data, you can’t depend on any data being deleted. To ensure
session variables are deleted, set the $_SESSION[] superglobal to an empty array right after
you destroy the session:

 session_destroy();
 $_SESSION = []; // Destroy all session variables in the current session

A Session Example

To show how to use sessions, let’s rewrite our favorite cookie application to use session vari-
ables instead of cookies.

Copy cookies.php and name it sessionvariables.php. Change the content in the <title>
element within the <head> element section and the <h1> content within the <body> element
section from Using Cookies to Using Session Variables:

Add a call to start_session() at the top of the script. You should call this function early and
before sending any HTML output to prevent web server warnings.

<?php
 session_start(); // Start or resume the current session so we can access session
variables
?>

<title>Using Session Variables</title>

 <h1>Using Session Variables</h1>

PHP Web Development with MySQL—A Hands On Approach to Application Programming296

21. Persistence

Right above the first if clause, change the comment to reference the $_SESSION variable
instead of $_COOKIE:

<?php
 // User entered name, save name to Session variable and display form asking for favorite cookie
 if (isset($_POST['name_submission']) && isset($_POST['entered_name']))
 {

Once you’ve called session_start, setting a session variable doesn’t require calling a special
function. Next, replace the call to setcookie() with the creation of a session variable.

// User entered name, save name to Session variable and display form asking for favorite cookie
if (isset($_POST['name_submission']) && isset($_POST['entered_name']))
{
 $_SESSION['name'] = $_POST['entered_name'];

Right before the first elseif clause, change the comment to reference session variable instead
of cookie. Within this elseif clause, replace the call to setcookie() with the creation of a
session variable:

// User entered favorite cookie, save favorite cookie to Session variable and route to this page
elseif (isset($_POST['cookie_submission']) && isset($_POST['entered_cookie']))
{
 $_SESSION['favorite_cookie'] = $_POST['entered_cookie'];

Before the final elseif clause, add the following comment to replace the one referencing
cookies:

// Output message displaying saved Session variables
// then end the current session and delete the Session variables
elseif (isset($_SESSION['name']) && isset($_SESSION['favorite_cookie']))
{

And replace the references to $_COOKIE[] within the isset() calls to use $_SESSION[].

Within this elseif clause replace the reference to the $_COOKIE to use the $_SESSION variables
instead for the phrase being output:

 elseif (isset($_SESSION['name']) && isset($_SESSION['favorite_cookie']))
 {
?>
<h4>
 Hey <?= $_SESSION['name'] ?>, you like
 <?= $_SESSION['favorite_cookie'] ?> cookies. Very nice!
</h4>

Session Variables

PHP Web Development with MySQL—A Hands On Approach to Application Programming 297

Finally, to clear the responses, replace the calls to setcookie() that delete the cookies with a call to
session_destroy(). Then, delete the contents of the $_SESSION[] superglobal. See Listing 21.6.

Listing 21.6.

 1. elseif (isset($_SESSION['name']) && isset($_SESSION['favorite_cookie']))
 2. {
 3. ?>
 4. <h4>
 5. Hey <?= $_SESSION['name'] ?>, you like
 6. <?= $_SESSION['favorite_cookie'] ?> cookies. Very nice!
 7. </h4>
 8. <?php
 9. session_destroy(); // End the current session
10. $_SESSION = []; // Destroy all session variables in the current session
11. }

Complete sessionvariables.php Code Listing

Listing 21.7.

 1. <?php
 2. session_start(); // Start or resume the current session so we can access session variables
 3. ?>
 4. <html>
 5. <head>
 6. <title>Using Session Variables</title>
 7. <link rel="stylesheet"
 8. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
 9. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
10. crossorigin="anonymous">
11. </head>
12. <body>
13. <div class="card">
14. <div class="card-body">
15. <h1>Using Session Variables</h1>
16. <?php
17. // User entered name, save name and display form asking for favorite cookie
18. if (isset($_POST['name_submission']) && isset($_POST['entered_name'])) {
19. $_SESSION['name'] = $_POST['entered_name'];
20. ?>
21. <form class="needs-validation" novalidate method="POST"
22. action="<?= $_SERVER['PHP_SELF']; ?>">
23. <div class="form-group">
24. <label for="name"><h4>What is your favorite
25. cookie?</h4></label>
26. <input type="test" class="form-control"
27. id="entered_cookie" name="entered_cookie"

PHP Web Development with MySQL—A Hands On Approach to Application Programming298

21. Persistence

28. placeholder="Enter a cookie you like to eat"
29. required>
30. </div>
31. <button type="submit" class="btn btn-primary"
32. name="cookie_submission">Submit
33. </button>
34. </form>
35. <?php
36. } // User entered favorite cookie, save session variable and redirect to this page
37. elseif (isset($_POST['cookie_submission']) && isset($_POST['entered_cookie'])) {
38. $_SESSION['favorite_cookie'] = $_POST['entered_cookie'];
39.
40. header("Location: {$_SERVER['PHP_SELF']}");
41. exit;
42. }
43. // Output message displaying saved Session variables
44. // then end the current session and delete the Session variables
45. elseif (isset($_SESSION['name']) && isset($_SESSION['favorite_cookie'])) {
46. ?>
47. <h4>
48. Hey <?= $_SESSION['name'] ?>, you like
49. <?= $_SESSION['favorite_cookie'] ?> cookies. Very nice!
50. </h4>
51. <?php
52. session_destroy(); // End the current session
53. $_SESSION =
54. []; // Destroy all session variables in the current session
55. } // Initial navigation to this page, display form asking for name
56. else {
57. ?>
58. <form class="needs-validation" novalidate method="POST"
59. action="<?= $_SERVER['PHP_SELF'] ?>">
60. <div class="form-group">
61. <label for="name"><h4>What is your name?</h4>
62. </label>
63. <input type="test" class="form-control"
64. id="entered_name" name="entered_name"
65. placeholder="Enter your name" required>
66. </div>
67. <button type="submit" class="btn btn-primary"
68. name="name_submission">Submit
69. </button>
70. </form>
71. <?php
72. }
73. ?>
74. </div>
75. </div>
76. <script>
77. // JavaScript for disabling form submissions if there are invalid fields

Cookies and Session Variables

PHP Web Development with MySQL—A Hands On Approach to Application Programming 299

78. (function () {
79. 'use strict';
80. window.addEventListener('load', function () {
81. // Fetch all the forms we want to apply custom Bootstrap validation styles to
82. var forms = document.getElementsByClassName('needs-validation');
83. // Loop over them and prevent submission
84. var validation = Array.prototype.filter.call(forms, function (form) {
85. form.addEventListener('submit', function (event) {
86. if (form.checkValidity() === false) {
87. event.preventDefault();
88. event.stopPropagation();
89. }
90. form.classList.add('was-validated');
91. }, false);
92. });
93. }, false);
94. })();
95. </script>
96. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
97. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
98. crossorigin="anonymous"></script>
99. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
100. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
101. crossorigin="anonymous"></script>
102. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
103. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
104. crossorigin="anonymous"></script>
105. </body>
106. </html>

Cookies and Session Variables
Cookies and session variables can coexist. One reason is that cookies can persist longer than
session variables. However, since cookies live on the browser, they can be a security risk.
One cookie that makes sense to have when using sessions is the session identifier (ID). This
is because a user can have multiple tabs open into an application. When you call
session_start(), the session ID is sent as a cookie to the browser using a generated session
name as the key. You get access to this session name for the current session by calling the
session_name() function. When you are finished using any cookies, and you are ready to
delete them, you also want to delete the session cookie using the session_name() function:

if (isset($_COOKIE[session_name()]))
{
 setcookie(session_name(), '', time() - 3600);
}

PHP Web Development with MySQL—A Hands On Approach to Application Programming300

21. Persistence

The Database
Of course, the database is one of the best tools we have for persisting data for as long as we
want. I do not need to go into how to use the database here since you already know how to
do that. Therefore, remember many of our persistence problems can be solved using the
database.

Best Practices in Solving the Persistence Problem
It is essential to recognize the reason cookies and session variables were created in the first
place. They were designed to solve the persistence problem due to the stateless behavior of
the web. They’re still helpful for saving bits of data between pages for a short amount of time
that we don’t need to save permanently to the database.

The problem with cookies is that they live on the browser and are therefore insecure, or at
least not trustworthy. The next option is session variables. Since these live on the server, they
are more secure. However, they only last as long as the session is active. So for small pieces
of data that you want to retain for the session’s life, session variables make sense.

So how do we solve the problem of wanting to log out of a tax preparation application, and
then when we log in, we want to resume right where we left off? This case is where using the
database is a superior solution. Nothing stops us from having a database table tied to a user
that identifies where they are in the workflow of their tax preparation, for example.

One thing to note is that when you use session variables, you create a cookie on the browser
that stores the session ID. This result is necessary since a user may have multiple tabs open
to the same application, and we need a practical way to tie a user’s browser to a session.

Exercises
1. Create cookies.php to ask a user their favorite cookie and store it in their browser.
2. Add a field to ask a user their favorite flavor of ice cream and store it in a cookie.

Display their ice cream preference below the form.
3. Create sessionvariables.php to store the favorite cookie for a user.
4. Create a select menu with the four seasons, Spring, Summer, Winter, and Fall. Ask a

user to pick their preferred season, store it as a session var, and display the choice.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 301

Creating Secure Web
Applications

“Complexity kills. It sucks the life out of developers, it makes products diffi-
cult to plan, build and test, it introduces security challenges and it causes
end-user and administrator frustration.”

–Ray Ozzie

Chapter

22

PHP Web Development with MySQL—A Hands On Approach to Application Programming302

22. Creating Secure Web Applications

Since this is a book on web development, I would be remiss if I did not spend time on web
application security. Most people—developer or not—have heard about the horrific data
breaches that occurred over the past ten or so years. The most significant breach to date
was the Equifax data breach reported in September of 2017, where hundreds of millions of
customer credit records were stolen—basically, more than 70% of all adults in the U.S. Ironi-
cally, the Equifax breach was a result of a vulnerability in the Apache webserver having to do
with the Java Struts framework that was not patched. However, there are plenty of vulner-
abilities that can be prevented by developers properly securing their web applications.

Web security is a deep topic, and I can only scratch its surface. At the end of this chapter, I
list some references you can read to dive deeper into the subject. That said, a reference that
every developer must become familiar with is the Open Web Application Security Project[1]
(OWASP) site. The two resources I find most useful on it are the OWASP Top Ten[2] and the
OWASP Cheat Sheet Series[3]. The “OWASP Top Ten” lists the top ten security risks present
in web applications today and has helpful links describing the vulnerability and how to
mitigate the risk effectively. The “OWASP Cheat Sheet Series” has a collection of security
information organized by topic. Each article explains the vulnerability and gives recommen-
dations for how to mitigate the risks.

This chapter discusses the more common vulnerabilities, what they look like, and how to
mitigate them in your application.

[1] Open Web Application Security Project: https://owasp.org
[2] OWASP Top Ten: https://owasp.org/www-project-top-ten/
[3] OWASP Cheat Sheet Series: https://cheatsheetseries.owasp.org

Secure Password Protection for Authenticating
This scenario is a subset of the third top application security risk (ASR) from the “OWASP Top Ten”.

SHA-1 is Not Secure

I taught one of my PHP web development courses from a book that used the example of
securing user passwords with Secure Hash Algorithm 1 SHA-1. Unfortunately, since 2005,
SHA-1 was no longer considered secure for protecting data. SHA-1 hashed passwords, once
obtained by an attacker, can be cracked offline with sufficient processing power. In 2017,
Google successfully cracked the SHA-1 algorithm using a collision attack. The bad thing
about using hashing algorithms like SHA-1 or even SHA-256, which has not been cracked, for
storing passwords is that an attacker can generate the hashes quickly. As a result, hashes are

https://owasp.org
https://owasp.org/www-project-top-ten/
https://cheatsheetseries.owasp.org

Secure Password Protection for Authenticating

PHP Web Development with MySQL—A Hands On Approach to Application Programming 303

generated from dictionaries of
potential passwords and stored
in online databases known as

“Rainbow Tables.”

Let me give you an example.
Let’s say I have an account for a
web application. The password
I use for my login is:
ilikebananas. Let us also
suppose the developer of this
application is using SHA-256 to
hash passwords. If I navigate in
my web browser to the website https://passwordsgenerator.net/sha256-hash-generator/ and
generate a SHA-256 hash of my password as in Figure 22.1, I get the following hash.

06855FBBC5079369B8240F7ED71093ED8203994521A715ED96546FA4B4CE31B7

CrackStation Can Crack Unsalted Passwords

Next, if we navigate to the
website https://crackstation.net
and enter the same hash, I can
successfully crack the password.
See Figure 22.2.

This site maintains a database
of reverse lookups for unsalted
hashes to a dictionary of
possible passwords. Here’s a
quote from CrackStation on
how they create their lookup tables:

Crackstation’s lookup tables were created by extracting every word from the Wikipedia
databases and adding it with every password list we could find. We also applied intel-
ligent word mangling (brute force hybrid) to our wordlists to make them much more
effective. For MD5 and SHA1 hashes, we have a 190GB, 15-billion-entry lookup table,
and for other hashes, we have a 19GB 1.5-billion-entry lookup table.

Figure 22.1.

Figure 22.2.

https://passwordsgenerator.net/sha256-hash-generator/
https://crackstation.net

PHP Web Development with MySQL—A Hands On Approach to Application Programming304

22. Creating Secure Web Applications

This is why everyone tells
you to create strong, random
passwords and use a pass-
word generator tool like
LastPass or 1Password.

Let me try to crack a pass-
word I generated with my
password management tool
1Password:

RbkboCLYoPKisqKFKV2ikXvV

This results in the generated SHA-256 hash of:

7931791FBBDB854240378D6AD728A1D2A1EA5DE763315D71BFAF85DEA819AF5B

When I head over to CrackStation and try to crack this hash, it fails, as shown in Figure 22.3.

What about MD5? Everything in this section applies doubly to another commonly
abused hashing function, md5(). Many older PHP articles on building login systems
use this hashing function. However, it is eminently crackable because it is designed to
generate hashes quickly. Therefore, no one should ever use MD5 for passwords.

Salted Passwords
These rainbow tables only work on hashed values that are unsalted. What is a “salt,” and how
does this apply to password hashes? A salt is a string added to make a password hash output
unique. Randomly generated salts make the hash output unique even if multiple users use
the same password. Every user must have a unique salt for this to work.

Let’s say two users of my web application choose the same password: ilikebananas. To avoid
the problems of this password ending up in a rainbow table, I want to use a password
hashing algorithm that generates a unique hash for each of these users. First, this algorithm
generates a random salt value. Then, when the first user signs up, we get a salt value similar
to the following:

saEEWZTmyiIklQ0U2MLw9e

Figure 22.3.

Secure Password Protection for Authenticating

PHP Web Development with MySQL—A Hands On Approach to Application Programming 305

Next, the password hashing algorithm takes this salt value along with the user’s password
and creates a hash from concatenating these values. So the salt saEEWZTmyiIklQ0U2MLw9e and
the password ilikebananas might get combined into a hash of:

VN.Ccp7weRXV/zln7XevGny2AO7MLMO

The password algorithm will then (typically) return the password hash along with the salt
prepended to the hash:

saEEWZTmyiIklQ0U2MLw9eVN.Ccp7weRXV/zln7XevGny2AO7MLMO

This string is called a salted hash.

So if another user signs up and uses the same password of ilikebananas, they might get a
salted hash of:

jDLyqNAsHEGJk19xGirRqeZNuz7VXwNw.239c4JwY3I/HBfIGukwG

As you can see, even if a user selects the same password, a unique hash is generated when
using salted passwords. Thus, an attacker who knows what one version of ilikebananas looks
like when hashed can’t find other accounts using the same password. This defense is neces-
sary given we live in a world where many users still pick password123 as their password.

When we are ready to authenticate either user, the salt prepended to the hash is used along
with the entered password to verify that the stored hash matches for this user.

[4] password_hash(): https://php.net/password_hash

Using password_hash() and password_verify()

When creating web applications in PHP requiring user authentication, always use functions
that generate and validate salted hashes relying upon strong encryption algorithms. PHP
offers built-in functions to make this process straightforward and less error-prone. You
should not roll your own.

When signing up a new user, we use the password_hash()[4] function to generate a salted hash.
The standard way to use this function is to pass a single string argument containing the
user’s password and the constant PASSWORD_DEFAULT, and a salted hash is returned as a string:

$salted_hashed_password = password_hash($password, PASSWORD_DEFAULT);

We can save this hashed value to the database.

https://php.net/password_hash

PHP Web Development with MySQL—A Hands On Approach to Application Programming306

22. Creating Secure Web Applications

One thing to note is that passwords are truncated to 72 characters if they are over 72 char-
acters in length. Another thing is that the current default length of a hashed password using
password_hash() is 60 characters in length. Therefore, when storing hashed passwords in a
database, make this field a VARCHAR(255) to account for updates to the encryption algorithms
available in these functions.

When authenticating a user logging in with their password, use the password_verify()[5] func-
tion. This function takes two arguments, the first is the user-entered password, and the second
is the hashed password you retrieve from the database. The function returns true if the pass-
word is verified—you’ve successfully authenticated the user. Otherwise, it returns false.

if (password_verify($password, $salted_hashed_password))
{
 echo "You're Legit!";
}

[5] password_verify():
https://php.net/password_verify

Guarding Against SQL Injection
SQL injection is the number one security risk for web applications and is listed as the
number one ASR from the “OWASP Top Ten.” An SQL injection attack inserts data directly
into an SQL query without first sanitizing the input. Therefore, any source of data passed
to a query can be a vector of attack and must be appropriately escaped. However, for this
discussion, I focus on form field data as an attack vector into our web application and how
to prevent it.

What a SQL Injection Attack Looks Like
All the code we have written so far has been
vulnerable to SQL injection. Let’s look at an
example of how bad this can be. Let’s say I
have an ecommerce application with a page
that allows users to browse the inventory of
stuff I’m selling as in Figure 22.4.

As we can see, if a user enters nothing
into the search field, we get all the inven-
tory displayed in an HTML table of three
columns.

Figure 22.4.

https://php.net/password_verify

Guarding Against SQL Injection

PHP Web Development with MySQL—A Hands On Approach to Application Programming 307

We can assume the SQL query to produce this output might be structured like this:

SELECT <some fields> FROM <a table> WHERE <search field> LIKE '%<search term>%';

Since this is a LIKE query, the % are wildcards.
If we search the inventory for anything with
sir in it, we get output in Figure 22.5.

To detect if the application is directly
inserting data from entered form fields into
an SQL query, we can insert a single quote
(') to create a malformed SQL query like in
Figure 22.6.

This output is faulty and indicates our appli-
cation is vulnerable to SQL injection. It’s
even worse because we can manipulate the
application into returning information in
the database. Let me show you how.

Do not perform any of what I am about
to show you on any website unless you
are explicitly contracted and qualified
to perform penetration testing for said
website!

We need to understand that the only part of the query we can control is what is entered in
between the two percent signs (%%). We can imagine that our PHP code that performs the
query might look something like this:

$search_term = isset($_POST['search']) ? $_POST['search'] : '';

$query = "SELECT some_field_1, some_field_2, some_field_3 FROM SomeTable "
 . "WHERE some_field_n LIKE '%$search_term%'";

I can now manipulate the query to return almost anything I want. I can test that by entering
the following into the search field:

';--

Figure 22.5.

Figure 22.6.

PHP Web Development with MySQL—A Hands On Approach to Application Programming308

22. Creating Secure Web Applications

When expanded out, the complete query might look like this:

SELECT some_field_1, some_field_2, some_field_3 FROM SomeTable WHERE some_field_n LIKE '%';-- %';

I’ll try the following entry and get these
results (Figure 22.7).

Since we now know this application is
vulnerable to SQL injection, I want to
figure out which database technology the
application uses. MySQL uses SLEEP() as
a command to wait a specified number of
milliseconds. If this works, I know the data-
base technology is MySQL.

Next, I enter this into the search field:

sir%' AND 0 = SLEEP(2);--

This search therm gives me all the inventory
having “sir” in the name, and for each entry,
it waits two seconds before rendering the
table. Since there are three entries, it should
take six seconds (and it does). I get the
output shown in Figure 22.8.

Then returns something like Figure 22.9.

Figure 22.7.

Figure 22.8. Figure 22.9.

Guarding Against SQL Injection

PHP Web Development with MySQL—A Hands On Approach to Application Programming 309

Now, I know I can manipulate the query
through the search field and that it is a
MySQL database. So, let’s see if we can
display some dummy data at the bottom of
the table. MySQL has a dummy table called
DUAL. Using the UNION command with a sub-
query in SQL, we can add three columns of
fake information to the end of the table.

Let’s enter this into the search field:

sir%' UNION (SELECT 1, 2, 3 FROM dual);--

And we get Figure 22.10.

This is no longer a blind attack as we can
harvest information out of the database.

MySQL has a database called
information_schema containing meta-infor-
mation about all the databases and their
tables. The information_schema.tables table
contains information about all the tables in
the current database. The fields TABLE_NAME
and TABLE_SCHEMA give us the names of each
table and the database containing them.

Let’s enter this into the search field to harvest some information from this database:

sir%' UNION (SELECT TABLE_NAME, TABLE_SCHEMA, 3 FROM information_schema.tables);--

We should get output shown in Figure 22.11
and Figure 22.12. There is a lot of interesting
information here we can mine. However, I
am particularly interested in the Login table
within the SQLInjection database. The
COLUMN_NAME field within the columns table of
the information_schema database will list all

Figure 22.10.

Figure 22.11.

Figure 22.12.

PHP Web Development with MySQL—A Hands On Approach to Application Programming310

22. Creating Secure Web Applications

the fields for any table I am interested in. The fields are contained within the COLUMN_NAME
field.

Let’s enter the following into the search field to find out what fields are in the Login table:

sir%' UNION (SELECT COLUMN_NAME, 2, 3 FROM information_schema.columns WHERE TABLE_NAME = 'Login');--

And we get this (Figure 22.13). UserName, HashedPassword, and Access look very promising!

I now know the database, table, and columns I want to interrogate. Let’s see if I can get some
user names and passwords! Enter this into the search field:

sir%' UNION (SELECT UserName, HashedPassword, Access FROM Login);--

This gets us the information in Figure 22.14. I’m particularly interested in the user that has
admin access, and it looks like the hashes might not be salted (uh oh)! In fact, when I run the
hash through https://crackstation.net, I get Figure 22.15 (next page).

In all seriousness, this is very scary. On average (year over year), 20% to 30% of websites are
vulnerable to SQL injections.

https://edgescan.com puts out a vulnerability report every year that breaks down the
statistics of vulnerabilities that have been found. Here’s a link to their 2020 report[6].

[6] 2020 report: http://phpa.me/edgescan-2020

Figure 22.13.

Figure 22.14.

https://crackstation.net
https://edgescan.com
http://phpa.me/edgescan-2020

Guarding Against SQL Injection

PHP Web Development with MySQL—A Hands On Approach to Application Programming 311

Thankfully, SQL injection attacks are straightforward to mitigate.

[7] mysqli_real_escape_string(): https://php.net/mysqli_real_escape_string

Using mysqli_real_escape_string()

mysqli_real_escape_string()[7] is a bandaid, but it’s better than nothing. The easiest way to
sanitize form field inputs is to use the mysqli_real_escape_string() function. Listing 22.1
shows how you would use it.

Listing 22.1.

 1. <?php
 2. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 3. or trigger_error(
 4. 'Error connecting to MySQL server for' . DB_NAME,
 5. E_USER_ERROR
 6.);
 7.
 8. $search_term = isset($_POST['search']) ? $_POST['search'] : '';
 9.
10. $search_term = mysqli_real_escape_string($dbc, $search_term);
11.
12. $query = "SELECT some_field_1, some_field_2, some_field_3 FROM SomeTable "
13. . "WHERE some_field_n LIKE '%$search_term%'";
14.
15. $result = mysqli_query($dbc, $query)
16. or trigger_error(
17. 'Error querying database Products', E_USER_ERROR
18.);

Figure 22.15.

https://php.net/mysqli_real_escape_string

PHP Web Development with MySQL—A Hands On Approach to Application Programming312

22. Creating Secure Web Applications

The issue with using mysqli_real_escape_string() is that it escapes the form field entry
without the context of the underlying SQL query using it. The reasons why this fails some-
times are pretty technical. However, take a look at http://phpa.me/so-sqli-edgecase for an
edge case that fails sanitation.

[8] mysqli_prepare(): https://php.net/mysqli_prepare
[9] mysqli_stmt_bind_param(): https://php.net/mysqli_stmt_bind_param
[10] mysqli_stmt_bind_param(): https://php.net/mysqli_stmt_bind_param

Prepared Statements

Prepared Statements are a better guard against SQL injection. A more robust method for
mitigating SQL injections is to use prepared statements, also known as parameterized
queries. The problem with mysqli_real_escape_string() is that it doesn’t separate your input
from the query itself, but in effect, it inserts it into the query. However, prepared state-
ments will separate your database inputs from your queries and not allow you to insert SQL
commands (like subqueries). Let’s look at prepared statements and how to use them.

The PHP language, via the mysqli extension, provides two functions to parameterize our
database inputs: mysqli_prepare()[8] and mysqli_stmt_bind_param()[9]. We can use these func-
tions together to parameterize database queries. mysqli_prepare() is used to parameterize the
SQL query into a statement that will be bound to the input parameters using the mysqli_stmt_
bind_param()[10] function.

Listing 22.2 shows how to use these functions.

Listing 22.2.

 1. <?php
 2. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 3. or trigger_error(
 4. 'Error connecting to MySQL server for' . DB_NAME,
 5. E_USER_ERROR
 6.);
 7.
 8. $search_term = isset($_POST['search']) ? $_POST['search'] : '';
 9.
10. $sql = "SELECT some_field_1, some_field_2, some_field_3 "
11. . " FROM SomeTable WHERE some_field_n LIKE ?";
12.
13. $stmt = mysqli_prepare($dbc, $sql);
14.
15. $search_term = '%' . $search_term . '%';
16.
17. mysqli_stmt_bind_param($stmt, 's', $search_term);

http://phpa.me/so-sqli-edgecase
https://php.net/mysqli_prepare
https://php.net/mysqli_stmt_bind_param
https://php.net/mysqli_stmt_bind_param

Guarding Against SQL Injection

PHP Web Development with MySQL—A Hands On Approach to Application Programming 313

The next step is to invoke or execute the prepared SQL statement with mysqli_stmt_
execute()[11] and then get the results of the executed prepared SQL statement using
mysqli_stmt_get_result()[12].

mysqli_stmt_execute($stmt);

$result = mysqli_stmt_get_result($stmt);

Putting it all together with some reasonable conditional logic looks like Listing 22.3. Note, a
? is used as a placeholder for query parameters.

Listing 22.3.

 1. <?php
 2. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 3. or trigger_error(
 4. 'Error connecting to MySQL server for' . DB_NAME,
 5. E_USER_ERROR
 6.);
 7.
 8. $search_term = isset($_POST['search']) ? $_POST['search'] : '';
 9.
10. $sql = 'SELECT some_field_1, some_field_2, some_field_3'
11. . ' FROM SomeTable WHERE some_field_n LIKE ?';
12.
13. if ($stmt = mysqli_prepare($dbc, $sql))
14. {
15. // the % is part of our query parameter not the SQL statement
16. $search_term = '%' . $search_term . '%';
17.
18. mysqli_stmt_bind_param($stmt, 's', $search_term);
19.
20. mysqli_stmt_execute($stmt);
21.
22. $result = mysqli_stmt_get_result($stmt);
23.
24. while ($row = mysqli_fetch_assoc($result))
25. {
26. // ...
27. }
28. }

This code is certainly more to write than mysqli_real_escape_string() and mysqli_query().
However, it is the safest procedural-based code to write for mitigating SQL injection attacks.

[11] mysqli_stmt_execute(): https://php.net/mysqli_stmt_execute
[12] mysqli_stmt_get_result(): https://php.net/mysqli_stmt_get_result

https://php.net/mysqli_stmt_execute
https://php.net/mysqli_stmt_get_result

PHP Web Development with MySQL—A Hands On Approach to Application Programming314

22. Creating Secure Web Applications

Leaking Information to Hackers
Speaking in security lingo, it is essential to know what the attack vectors are for any applica-
tion you write. These are cookies, query parameters, and form fields typically sent via POST
for web applications. Another thing to consider is what information we make available—like
the database schema or file system paths—that hackers can use to penetrate our application.
These happen to be closely related to the attack vectors. Let’s take a look at each of these.

Cookies

Web applications can use cookies to store all kinds of information. However, they reside on
a client’s browser, and as such, they are viewable and vulnerable to modification. I could
spend a lot of time talking about what should and should not be stored in cookies (e.g., you
should never store personal information in cookies). However, the debate is moot; along
with the database, use session variables and only use a single cookie to store the session ID.
Doing so avoids most problems with using cookies. Remember, cookies are only one solu-
tion to the problem of the web being stateless. We have much better tools available to solve
the persistence problem: the database and session variables.

Query Parameters
Query parameters are sent over in the URL of an HTTP GET request, after the ?:

http://example.com?term=elephant&page=3

The user or a potential hacker can see this. Query parameters can be used as a persistence
mechanism (similar to hidden variables in a form). This practice exposes details about the
application and how it runs. Often we only need to send a single query parameter which can
be an ID that maps to a primary key in a database table which can be queried in the script
after processing the GET request.

http://example.com?id=840938

Since query parameters are user-supplied data, they should be parameterized when used in
queries and escaped when displayed in HTML.

Form Fields

Form fields are a gold mine of information for hackers trying to guess field names in a data-
base schema. Unfortunately, this has been a common practice for developers and makes the
process of guessing the database schema much easier in a blind SQL injection attack.

Preventing Cross-Site Scripting Attacks

PHP Web Development with MySQL—A Hands On Approach to Application Programming 315

I live in an area with many insurance companies, and they typically have development
requirements for obfuscating the column names in database tables used in form fields. This
is an excellent practice every developer should follow.

Preventing Cross-Site Scripting Attacks
Cross-Site Scripting (XSS) is listed as the number seven ASR from the “OWASP Top Ten.”
According to OWASP:

XSS flaws occur whenever an application includes untrusted data in a new web page
without proper validation or escaping, or updates an existing web page with user-
supplied data using a browser API that can create HTML or JavaScript. XSS allows
attackers to execute scripts in the victim’s browser which can hijack user sessions,
deface web sites, or redirect the user to malicious sites.

Sounds scary! Well, all this stuff is scary. There are three vectors of XSS attacks targeting
browsers: Reflected XSS, Stored XSS, and DOM XSS:

Here is what the OWASP says about these:

• Reflected XSS: The application or API includes unvalidated and unescaped user input
as part of HTML output. A successful attack can allow the attacker to execute arbitrary
HTML and JavaScript in the victim’s browser. Typically, the user will need to interact with
some malicious link that points to an attacker-controlled page, such as malicious watering
hole websites, advertisements, or similar.

• Stored XSS: The application or API stores unsanitized user input that is viewed at a later
time by another user or an administrator. Stored XSS is often considered high or critical
risk.

• DOM XSS: JavaScript frameworks, single-page applications, and APIs that dynamically
include attacker-controllable data to a page are vulnerable to DOM XSS. Ideally, the
application would not send attacker-controllable data to unsafe JavaScript APIs.

I will deal with the first two since mitigating the third type of attack is done outside of PHP.

PHP Web Development with MySQL—A Hands On Approach to Application Programming316

22. Creating Secure Web Applications

The mechanics of how XSS works are pretty involved due to the number of actors. An excel-
lent reference is Security Principles for PHP Applications by Eric Mann for a more in-depth
discussion. In Chapter 7, Eric explains XSS and how to prevent it. Another great reference is
https://excess-xss.com. The authors have a comprehensive tutorial with diagrams explaining
XSS and mitigation strategies.

XSS involves three actors at its core: the attacker, the victim, and the vulnerable website. To
mitigate the vulnerability, our code must sanitize all inputs to the website of JavaScript and
HTML entities before outputting it.

Reflected XSS

Let’s take the application we wrote above to test an SQL Injection attack and add an output
of our search term to the web page as in Figure 22.16.

Even though we’ve parameterized our
search term input to the database query, let’s
see if this web application is exploitable to
a reflected XSS attack. We’ll know it can
be exploited if we can execute a JavaScript
command or render some additional HTML.

Let’s start by entering <script>alert('XSS
Attack')</script> into the search field as
shown in Figure 22.17. We get the results
shown in Figure 22.18. Uh oh! Unfortu-
nately, this indicates our application is
vulnerable to XSS attacks.

Figure 22.16.

Figure 22.17. Figure 22.18.

https://excess-xss.com

Preventing Cross-Site Scripting Attacks

PHP Web Development with MySQL—A Hands On Approach to Application Programming 317

Let’s do one more test to see if we can render the following HTML form:

<h4>Clickbait Login</h4>
<form action=http://iwantyourcredentials.info method=POST>
 Username:
 <input type='text' name='username'>

 Password:
 <input type='password' name='password'>

 <input type='submit' value='Submit'>
</form>

When we enter the HTML into the search field in Figure 22.19 and press Submit, we get the
results in Figure 22.20.

If I fill this form out and submit
it (Figure 22.21), I’ll be in a
world of hurt! We’re allowing
any attacker on the web to host
a form on our site. In this case,
they can use it to harvest our
users’ credentials.

Let’s take a look at a portion of the vulnerable code:

 $search_term = isset($_POST['search']) ? $_POST['search'] : '';
?>
<h2>Stuff you might be interested in as a result of searching for
<?= $search_term ?>...</h2>

We’re not sanitizing the input from our search field of HTML entities like <, >, ", and other
special symbols. As a result, we allow HTML markup and JavaScript code to execute.

Figure 22.19.

Figure 22.20. Figure 22.21.

PHP Web Development with MySQL—A Hands On Approach to Application Programming318

22. Creating Secure Web Applications

Thankfully, the solution is straightforward and requires using the function filter_var()[13].
Since we expect a string for our search term, this is how we can sanitize our application
from XSS:

 $search_term = isset($_POST['search']) ? $_POST['search'] : '';
 $search_term = filter_var($search_term, FILTER_SANITIZE_STRING);
?>
<h2>Stuff you might be interested in as a result of searching for
<?= $search_term?>...</h2>

Now when we enter <script>alert('XSS Attack')</script> into the search field we no longer
get the alert(), but instead get the output you see in Figure 22.22. And when we enter our
form into the search field, we no longer get
the login form, but instead get what is shown
in Figure 22.23.

Note that if you receive an email address as
an input, you should use
FILTER_SANITIZE_EMAIL as it removes all charac-
ters except those allowed in an email address.
For more information on the list of filters for
sanitization, see https://php.net/filter.filters.
sanitize.

You may see older articles using the functions htmlentites()[14] and htmlspecialchars()
to guard against XSS. While they may work, they don’t protect against directory
traversal attacks. Also, the default parameters don’t protect you from all XSS attacks.

[13] filter_var(): https://php.net/filter_var
[14] htmlentites(): https://php.net/htmlentities

Stored XSS
Regarding stored XSS, you should be super paranoid and make sure you run the
filter_var() function on everything you query out of your database that you plan to display
on a web page. If you’re sending the output in a CSV file, PDF document, or another format,
you may need to escape it differently.

You should couple this approach with validating and sanitizing everything coming into the
web application. This means filtering every input from a form or a query parameter using
filter_var() and then parameterizing all your queries from these inputs as well.

Figure 22.22.

Figure 22.23.

https://php.net/filter.filters.sanitize
https://php.net/filter.filters.sanitize
https://php.net/filter_var
https://php.net/htmlentities

File Uploads

PHP Web Development with MySQL—A Hands On Approach to Application Programming 319

File Uploads

[15] basename(): https://php.net/basename
[16] is_uploaded_file(): https://php.net/is_uploaded_file

Another source of attack is uploaded files. The OWASP has a lot of detailed information
regarding the risks of uploaded files and various mitigation strategies. My recommendation
is always to follow the guidance from the OWASP. Still, here are the minimal things you
must consider to allow for securely uploading files.

For this example, let’s say we are asking a user to upload an image file using this form:

<form method="POST" enctype="multipart/form-data" action="upload.php">
 File: <input type="file" name="picture">
 <input type="submit" value="Submit">
</form>

Validate the Uploaded File

There are a few steps you need to follow to validate an uploaded file. For example, you want
to guard against a directory path traversal attack, only accept uploaded files using POST,
check the file type, and check the file size.

Protect Against a Path Traversal Attack

An attacker can try and acquire passwords from our web server or access a file that wasn’t
meant to be accessed by setting the file’s name as a relative path (e.g. ../../../etc/passwd).

To guard against this attack, use the basename()[15] function to strip off unwanted characters:

$file_name = basename($_FILES['picture']['name']);

Only Accept Uploaded Files Using HTTP POST

As an extension to not being able to manipulate the web application to work on files it
should not, you should verify the file was actually uploaded using HTTP POST with the
is_uploaded_file()[16] function:

if (is_uploaded_file($_FILES['picture']['tmp_name']) === true)
{
 // You're good to go!
}
else
{
 // We've got a problem!
}

https://php.net/basename
https://php.net/is_uploaded_file

PHP Web Development with MySQL—A Hands On Approach to Application Programming320

22. Creating Secure Web Applications

Check the MIME File Type
We also want to prevent attackers from uploading files our application is not inter-
ested in (e.g. executable files). Rather than relying on the file extension contained in
$_FILES['picture']['type'], it is best to use the finfo_open()[17] and finfo_file()[18] functions
that interrogate the actual file for it’s MIME file type:

$file_info = finfo_open(FILEINFO_MIME_TYPE);
$file_mime_type = finfo_file($file_info, $_FILES['picture']['tmp_name']);
finfo_close($file_info);

If you are expecting an image type, in addition to explicitly validating the MIME file type,
you should also use the function getimagesize()[19] as shown in Listing 22.4

Listing 22.4.

 1. if (is_readable($_FILES['picture']['tmp_name']))
 2. {
 3. $file_size = getimagesize($_FILES['picture']['tmp_name']);
 4. if (!empty($file_size) && ($file_size[0] !== 0) && ($file_size[1] !== 0))
 5. {
 6. // You're good to go!
 7. }
 8. else
 9. {
10. // We've got a problem!
11. }
12. }

Check the File Size

It is always a best practice to limit the maximum file size of uploaded files. We typically do
that by setting a hidden input element with the name attribute set to max_file_size inside the
form. However, an attacker can manipulate this value.

The web server also has an INI file directive called upload_max_filesize that limits the
maximum file that a browser can upload to the server.

A file will not be uploaded if it exceeds either the max_file_size or upload_max_filesize
(whichever is smaller). In this case, UPLOAD_ERR_FORM_SIZE will be set for
$_FILES['picture']['error'] To further limit the size (in bytes) of the uploaded file to the
application by checking $_FILES['picture']['size']:

[17] finfo_open(): https://php.net/finfo_open
[18] finfo_file(): https://php.net/finfo_file
[19] getimagesize(): https://php.net/getimagesize

https://php.net/finfo_open
https://php.net/finfo_file
https://php.net/getimagesize

Securing Your Session

PHP Web Development with MySQL—A Hands On Approach to Application Programming 321

if ($_FILES['pictures']['size'] <= 1000000)
{
 // You're good to go!
}
else
{
 // Too big!
}

[20] Let’s Encrypt: https://letsencrypt.org

Securing Your Session
The last attack I’ll cover is session hijacking. An attacker can steal your session if they can
get a hold of your session ID. This frequently happens as a result of an XSS or man-in-the-
middle attack and not using an encrypted connection.

Use HTTP-Only Session Cookies

You can prevent session hijacking by making sure to set the web server’s INI directive
session.cookie_httponly=On. This will refuse access to the session cookie from JavaScript.

Another INI directive to consider is session.use_strict_mode=On. It prevents the session
module from accepting session IDs that were not generated by the session module and can
prevent using an attacker-initialized session ID.

For more information on securing sessions and INI settings, see https://php.net/session.security.ini.

HTTPS Uses Encrypted Communication

Another way to prevent a session from being hijacked is to make your web application avail-
able only using an encrypted connection (i.e., HTTPS). The HTTP protocol is communicated
in cleartext. In contrast, HTTPS encrypts the HTTP using the Transport Layer Security (TLS)
protocol. In the past, browsers used their predecessor, the Secure Socket Layer (SSL). Setting
up a webserver to use the HTTPS protocol involves using TLS/SSL certificates that contain a
private key for the webserver and a public key that client browsers use to connect to the secure
server. The public and private keys handle encryption and decryption.

If your site uses HTTPS, you can further protect your sessions by setting
session.cookie_secure=On. This setting only allows accessing the session ID cookie over HTTPS.

Let’s Encrypt[20] is a nonprofit Certificate Authority that provides TLS certificates free of
charge.

https://letsencrypt.org
https://php.net/session.security.ini

PHP Web Development with MySQL—A Hands On Approach to Application Programming322

22. Creating Secure Web Applications

Final Thoughts
Given this book concerns developing web applications using PHP and MySQL, this chapter
only scratches the surface of what it takes to create a secure web application. When writing
web applications that you will release in the wild (i.e., deployed and accessible on the
internet), it is essential to follow the guidelines laid out in the Open Web Application Secu-
rity Project (OWASP) site at: https://owasp.org. Web site security is an ongoing process. As I
mentioned earlier, another excellent resource is the book Security Principles for PHP Appli-
cations by Eric Mann. When you deploy a web application, make sure it is safe and keep
your users’ information safe.

Exercises
1. Go back to our Movie Database application, rewrite queries to use prepared state-

ments, particularly if they have user-supplied data.
2. In the Movie Application, test some text fields to see if you can inject the following

value: <script>alert('oh no!')</script>. If you get an alert box, change the code to
escape the user’s input before displaying it.

3. In the Favorite Cookies application, test some text fields to see if you can inject the
following value: <script>alert('oh no!')</script>. If you get an alert box, change the
code to escape the user’s input before displaying it.

4. Review the Movie Database application and ensure any user-supplied data about a
movie is properly escaped on output.

https://owasp.org

PHP Web Development with MySQL—A Hands On Approach to Application Programming 323

Adding User Logins

“Haskell is faster than C++, more concise than Perl, more regular than
Python, more flexible than Ruby, more typeful than C#, more robust than
Java, and has absolutely nothing in common with PHP.”

–Autrijus Tang

Chapter

23

PHP Web Development with MySQL—A Hands On Approach to Application Programming324

23. Adding User Logins

Now that we are armed with proper techniques for securing our web applications let’s get
back to our Movie Listing application. We need to make three significant changes to the
application. First, we add individual logins with the ability to sign new users up. Second, we
add a navigation menu to increase the ease of use of the application. And third, we incorpo-
rate a reservation system to allow users to check out movies and return them. We will also
modify the application to only allow administrators to add, edit, and remove movies. Here
is a detailed list of the modifications that we need to make to turn the Movie Listing applica-
tion into a Movie Reservations application:

1. Adding Individual User Logins
1. Create a database table to hold information for users and their access privileges
2. Create signup, login, and logout scripts for individual users
3. Modify the authorizeaccess.php script to only allow users with admin access privileges

to add, edit, and remove movies
2. Add a Navigation Menu to Increase Ease of Use

1. Create and integrate a navigation bar script to be used by multiple pages
3. Adding Reservation Features

1. Create a database table to hold information for movie reservations
2. Add fields to the movieListing database table to keep track of the number of copies

and reserved movies for each movie
3. Modify the add and edit movie scripts to include the number of copies of a movie
4. Modify the Movie listings page to show a link for reserving a movie for logged in

users
5. Modify the Movie listings page to show a link for removing a movie for users logged

in with admin privileges
6. Add a reservation script for users to check out movies
7. Add a script for a shopping cart that allows users to reserve movies in their cart and

remove them from their cart
8. Add a shopping cart icon that allows users to view their cart
9. Add a reserved movies script allowing users to check movies back in

10. Add a reservations icon that allows users to view their reservations
In this chapter, we modify the application to add individual user logins. We add the other
features in the following two chapters.

Create a user Table

PHP Web Development with MySQL—A Hands On Approach to Application Programming 325

Create a user Table

[1] password_hash(): https://php.net/password_hash

To add user logins, we need to create another table in the Movie database to hold user infor-
mation. Let’s create a user table that holds the following fields:

Column Name Type Default
id int(11) Auto Increment
user_name varchar(50)

password_hash varchar(255)

access_privileges varchar(25) [user]
date_created datetime [CURRENT_TIMESTAMP]

The PHP Manual entry for password_hash()[1] recommends allowing for hash lengths
between 60 and 255 characters to allow for the hash to expand over time as the algorithm
is updated.
In a professional application, you would want to capture more demographic information
(contact info, etc.).

Using Adminer, create a new table in the Movie database containing the columns (and associ-
ated data types) listed above. We will have two types of access privileges: user and admin.
When we sign up a new user, we want to set the default access privileges to user. Any user
account you want to have admin privileges must be altered manually in the database table.
We also want a default value of CURRENT_TIMESTAMP set for the date_created field, which also
gets set when we sign up a new user.

https://php.net/password_hash

PHP Web Development with MySQL—A Hands On Approach to Application Programming326

23. Adding User Logins

Create a Signup.php script

[2] CAPTCHA: https://en.wikipedia.org/wiki/CAPTCHA
[3] version, v3: https://www.google.com/recaptcha/intro/v3.html

To allow new users to access our application,
we need to create a signup.php script. Figure
23.1 shows what we want our signup page to
look like.

To make our application more secure, we
might implement a CAPTCHA[2] feature
on our “Sign Up” form to lower the risk of
automated scripts signing up for an account.
CAPTCHAs are annoying for the user, so
a better implementation is like Google’s
reCAPTCHA shown in Figure 23.2.

Google has a new version, v3[3] that mini-
mizes user interaction using analytics to
better determine if a user or an automated script is interacting with the website.

Create a Signup Form

Let’s start by creating a basic Bootstrap page and name it signup.php as in Listing 23.1.

Listing 23.1.

 1. <!DOCTYPE html>
 2. <?php
 3. require_once('pagetitles.php');
 4. $page_title = MR_SIGNUP_PAGE;
 5. ?>
 6. <html>
 7. <head>
 8. <title><?= $page_title ?></title>
 9. <link rel="stylesheet"
10. href="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/css/bootstrap.min.css"
11. integrity="sha384-9aIt2nRpC12Uk9gS9baDl411NQApFmC26EwAOH8WgZl5MYYxFfc+NcPb1dKGj7Sk"
12. crossorigin="anonymous">
13. </head>
14. <body>
15. <script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"
16. integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj"
17. crossorigin="anonymous"></script>

Figure 23.1.

Figure 23.2.

https://en.wikipedia.org/wiki/CAPTCHA
https://www.google.com/recaptcha/intro/v3.html

Create a Signup.php script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 327

18. <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js"
19. integrity="sha384-Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo"
20. crossorigin="anonymous"></script>
21. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/js/bootstrap.min.js"
22. integrity="sha384-OgVRvuATP1z7JjHLkuOU7Xw704+h835Lr+6QL9UvYjZE3Ipu6Tp75j7Bh/kR0JKI"
23. crossorigin="anonymous"></script>
24. </body>
25. </html>

Notice, I added a definition for the page title that is included from a script called pagetitles.php:

<!DOCTYPE html>
<?php
 require_once('pagetitles.php');
 $page_title = MR_SIGNUP_PAGE;
?>

This code helps us later when we add a navigation bar to display links to specific pages based
on access privileges and when we want application functionality available. I’ll cover that in
more detail later.

For now, create a new script called pagetitles.php and add the definition for the sign up page:

<?php
 // Page Titles
 define('MR_SIGNUP_PAGE', 'Movie Reservations - Sign Up');

Now back to our signup.php script. At the beginning of the <body> tag, we’ll add some
descriptive text and form for signing up new users as in Listing 23.2.

Listing 23.2.

 1. <body>
 2. <div class="card">
 3. <div class="card-body">
 4. <h1>Sign up for a Movie Reservations Account</h1>
 5. <hr/>
 6. <form class="needs-validation" novalidate method="POST"
 7. action="<?= $_SERVER['PHP_SELF'] ?>">
 8. <div class="form-group row">
 9. <label for="user_name"
10. class="col-sm-2 col-form-label-lg">User Name</label>
11. <div class="col-sm-4">
12. <input type="text" class="form-control"
13. id="user_name" name="user_name"
14. placeholder="Enter a user name" required>
15. <div class="invalid-feedback">
16. Please provide a valid user name.

PHP Web Development with MySQL—A Hands On Approach to Application Programming328

23. Adding User Logins

18. </div>
19. </div>
20. </div>
21. <div class="form-group row">
22. <label for="password"
23. class="col-sm-2 col-form-label-lg">Password</label>
24. <div class="col-sm-4">
25. <input type="password" class="form-control"
26. id="password" name="password"
27. placeholder="Enter a password" required>
28. <div class="form-group form-check">
29. <input type="checkbox"
30. class="form-check-input"
31. id="show_password_check"
32. onclick="togglePassword()">
33. <label class="form-check-label"
34. for="show_password_check">Show Password</label>
35. </div>
36. <div class="invalid-feedback">
37. Please provide a valid password.
38. </div>
39. </div>
40. </div>
41. <button class="btn btn-primary" type="submit"
42. name="signup_submission">Sign Up
43. </button>
44. </form>
45. </div>
46. </div>
47. // ...
48. </body>

Similar to previous forms we’ve created for
this application, you’ll notice I’ve added
Bootstrap’s validation for the password and
user_name fields. Hence, we get Figure 23.3
when a user doesn’t enter any data into
these form fields.

To enable this behavior, as in previous forms
we’ve created requiring validation, we need
to include the JavaScript function in Listing
23.3 in a <script> element tag set in our
HTML <body> (right before the other <script> tags).

Figure 23.3.

Create a Signup.php script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 329

Listing 23.3.

 1. <body>
 2. <div class="card">
 3. <div class="card-body">
 4. <h1>Sign up for a Movie Reservations Account</h1>
 5. <hr/>
 6. <form ...>
 7. ...
 8. </form>
 9. </div>
10. </div>
11. <script>
12. // JavaScript for disabling form submissions if there are invalid fields
13. (function () {
14. 'use strict';
15. window.addEventListener('load', function () {
16. // Fetch all the forms we want to apply custom Bootstrap validation styles to
17. var forms = document.getElementsByClassName('needs-validation');
18. // Loop over them and prevent submission
19. var validation = Array.prototype.filter.call(forms, function (form) {
20. form.addEventListener('submit', function (event) {
21. if (form.checkValidity() === false) {
22. event.preventDefault();
23. event.stopPropagation();
24. }
25. form.classList.add('was-validated');
26. }, false);
27. });
28. }, false);
29. })();
30. </script>
31. <script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"
32. integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj"
33. crossorigin="anonymous"></script>

Also, notice I added a checkbox to show the password as you type it in as in Figure 23.4.
Figure 23.5 shows it when checked.

Figure 23.4. Figure 23.5.

PHP Web Development with MySQL—A Hands On Approach to Application Programming330

23. Adding User Logins

The checkbox field is set to call a JavaScript function called togglePassword() when the
onclick event occurs:

<input type="checkbox" class="form-check-input"
 id="show_password_check" onclick="togglePassword()">

Add JavaScript function togglePassword() from Listing 23.4 below the form field validation
function we just added before the closing </script> tag.

Listing 23.4.

 1. <script>
 2. // Disable form submissions if there are invalid fields
 3. (function() {
 4. ...
 5. })();
 6. // Toggles between showing and hiding the entered password
 7. function togglePassword() {
 8. var password_entry = document.getElementById("password");
 9. if (password_entry.type === "password") {
10. password_entry.type = "text";
11. } else {
12. password_entry.type = "password";
13. }
14. }
15. </script>

When the user submits the form, we’ll validate the credentials and either create an account
or redirect them to correct their entries. Therefore, we need to add conditional logic to
ensure the form only displays when we want it to.

Right before the form, add the Boolean variable (Listing 23.5) set to display the form, and
move the form within an if() statement that checks this condition.

Listing 23.5.

 1. <h1>Sign up for a Movie Reservations Account</h1>
 2. <hr/>
 3. <?php
 4. $show_sign_up_form = true;
 5.
 6. if ($show_sign_up_form):
 7. ?>
 8. <form ...>
 9. ...
10. </form>
11. <?php
12. endif;
13. ?>

Create a Signup.php script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 331

Create a New User
Let’s add code to create a new user in the Movie database when successfully signing up a
new user. Right after setting $show_sign_up_form to true, add a condition for when the user
submits the form:

<?php
 $show_sign_up_form = true;

 if (isset($_POST['signup_submission']))
 {
 }

Inside this condition, grab the user_name and password fields from the $_POST superglobal, and
add a condition verifying the user entered values for the fields, otherwise output and error
that they need to fill out the form correctly as in Listing 23.6

Listing 23.6.

 1. if (isset($_POST['signup_submission']))
 2. {
 3. // Get user name and password
 4. $user_name = $_POST['user_name'];
 5. $password = $_POST['password'];
 6.
 7. if (!empty($user_name) && !empty($password))
 8. {
 9. }
10. else
11. {
12. // Output error message
13. echo "<h4><p class='text-danger'>You must enter both a "
14. . "user name and password.</p></h4><hr/>";
15. }
16. }

Inside the condition where the $user_name and $password are not empty, we must first query
if the user already exists in the database. However, we need to practice safe database param-
eterization, and as I mentioned in the last chapter on securing our web applications, this is
quite a bit more code to write. This is an excellent opportunity to abstract out the common
calls we would need to make for parameterized queries by creating a helper function.

PHP Web Development with MySQL—A Hands On Approach to Application Programming332

23. Adding User Logins

Create a parameterizedQuery() Function
Let’s take a slight detour and create a function we can use to parameterize all our inputs to
our database queries. This function safeguards our SQL queries by using prepared state-
ments. Create a new script called queryutils.php we can include in our scripts where we will
need to query the database.

First, we need to identify all the PHP functions and their input parameters to parameterize
our queries. They would be:

Function Parameters Return Reference
mysqli_prepare() connection,

string query
statement https://php.net/mysqli.prepare

mysqli_stmt_bind_param() statement, string
data types, vari-
ables (specified
by their types)

true or false https://php.net/mysqli-stmt.bind-param

mysqli_stmt_execute() statement true or false https://php.net/mysqli-stmt.execute
mysqli_stmt_get_result() statement true or false https://php.net/mysqli-stmt.get-result
mysqli_errno() connection error code https://php.net/mysqli.errno

Another thing to consider when creating queries is that we can have a varying number of
query parameters that need to be parameterized. A cool thing about PHP is that we can
create functions that take a variable number of parameters by preceding the last variable in
an argument list with See the online documentation for more information on variable
length parameters[4].

Whenever you create a function, it is a good practice to have a function header that
describes the function, any input parameters, and any return values. It serves as excellent
documentation on how to use your function, primarily if you use DocBlocks[5] to describe
the parameters and return values. Keep in mind that you must update this comment if you
change the parameters to your function or how it works.

Another option afforded by PHP 7 is to use scalar and class type hints to indicate what
kinds of arguments your function expects and what values it returns.

[4] variable length parameters: https://php.net/functions.arguments.php#functions.variable-arg-list
[5] DocBlocks: https://docs.phpdoc.org/3.0/guide/guides/docblocks.html

https://php.net/mysqli.prepare
https://php.net/mysqli-stmt.bind-param
https://php.net/mysqli-stmt.execute
https://php.net/mysqli-stmt.get-result
https://php.net/mysqli.errno
https://php.net/functions.arguments.php#functions.variable-arg-list
https://docs.phpdoc.org/3.0/guide/guides/docblocks.html

Create a Signup.php script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 333

In the script queryutils.php, here is a function header I wrote for this function along with the
function signature:

Listing 23.7.

 1. <?php
 2.
 3. /**
 4. * Purpose: Parameterizes a database query
 5. *
 6. * Description: Parameterizes an SQL query given a database connection, a query string, a data
 7. * types string, and a variable number of parameters to be used in the query. If
 8. * the query is successful, the database results object will be returned (or TRUE
 9. * if no results set and the query was successful), otherwise FALSE will be returned
10. * and the connection will have to be queried for the last error.
11. *
12. * @param $dbc database connection
13. * @param $sql_query SQL statement
14. * @param $data_types string containing one character for each parameter's type
15. * @param $query_parameters a variable list of parameters representing each query parameter
16. *
17. * @return string Database results set, otherwise false if there is a database error, or true if successful.
18. */
19. function parameterizedQuery($dbc, $sql_query, $data_types, ...$query_parameters)
20. {
21. }

$data_types is a string that must contain one character representing the data type for each query
parameter. Consider a query with two parameters where both parameters are integers. The
$data_types parameter must be the string: 'ii'. You would pass two variables into the function
for ...$query_parameters. Here’s our example using these two parameters:

$query = "DELETE FROM reservation WHERE user_id = ? AND movieListing_id = ?";

$result = parameterizedQuery($dbc, $query, 'ii', $user_id, $movie_to_delete);

Another helpful thing about using DocBlock
function headers is that most Integrated
Development Environments (IDEs), like
Visual Studio Code, PhpStorm, etc., display
the info in a tooltip when you call the
function as in Figure 23.6. So let’s fill in the
guts of this function with the code from
Listing 23.8. Figure 23.6.

PHP Web Development with MySQL—A Hands On Approach to Application Programming334

23. Adding User Logins

Listing 23.8.

 1. function parameterizedQuery($dbc, $sql_query, $data_types, ...$query_parameters)
 2. {
 3. $ret_val = false; // Assume failure
 4.
 5. if ($stmt = mysqli_prepare($dbc, $sql_query))
 6. {
 7. if (mysqli_stmt_bind_param($stmt, $data_types, ...$query_parameters)
 8. && mysqli_stmt_execute($stmt))
 9. {
10. $ret_val = mysqli_stmt_get_result($stmt);
11.
12. if (!mysqli_errno($dbc) && !$ret_val)
13. {
14. $ret_val = true;
15. }
16. }
17. }
18. return $ret_val;
19. }

This code is essentially a repeat of what I covered in the last chapter, just a little more efficient.
Notice that the mysqli_stmt_bind_param() function conveniently takes the passed in $data_types
and ...$query_parameters variable parameters. Our new function returns the results of our query
or false if there is an error.

Now let’s get back to using this new function to check if the user trying to sign up already exists
before creating a new user. If you recall, in our signup.php script, we are in the condition where
we know the user has entered in their user name and password.

// Get user name and password
$user_name = $_POST['user_name'];
$password = $_POST['password'];

if (!empty($user_name) && !empty($password))
{
}

Since we are querying the database, we must include our dbconnection.php. We also require our
queryutils.php script to connect to our Movie database as in Listing 23.9.

Create a Signup.php script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 335

Listing 23.9.

 1. if (!empty($user_name) && !empty($password))
 2. {
 3. require_once('dbconnection.php');
 4. require_once('queryutils.php');
 5.
 6. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 7. or trigger_error(
 8. 'Error connecting to MySQL server for' . DB_NAME,
 9. E_USER_ERROR
10.);
11. }

Next (Listing 23.10), create a parameterized SQL string to see if this user already exists and
call our parameterizedQuery() function.

Listing 23.10.

 1. if (!empty($user_name) && !empty($password))
 2. {
 3. // ...
 4.
 5. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 6. or trigger_error(
 7. 'Error connecting to MySQL server for' . DB_NAME,
 8. E_USER_ERROR
 9.);
10.
11. // Check if user already exists
12. $query = "SELECT * FROM user WHERE user_name = ?";
13.
14. $results = parameterizedQuery($dbc, $query, 's', $user_name)
15. or trigger_error(mysqli_error($dbc), E_USER_ERROR);
16. }

If this user does not exist, no rows are returned. We can use this condition to create a new
user account. Otherwise, we let the user know an account with this user name exists in
Listing 23.11.

PHP Web Development with MySQL—A Hands On Approach to Application Programming336

23. Adding User Logins

Listing 23.11.

 1. if (!empty($user_name) && !empty($password))
 2. {
 3. // ...
 4. $results = parameterizedQuery($dbc, $query, 's', $user_name)
 5. or trigger_error(mysqli_error($dbc), E_USER_ERROR);
 6.
 7. // IF user does not exist, create an account for them
 8. if (mysqli_num_rows($results) == 0)
 9. {
10. }
11. else // An account already exists for this user
12. {
13. echo "<h4><p class='text-danger'>An account already exists
14. for this username: ($user_name).
15. Please use a different user name.</p></h4><hr/>";
16. }
17. }

Within the if condition (where we know this user does not exist in the table), we hash the
user’s entered password and insert the new credentials into the user table using a param-
eterized query (Listing 23.12). Then we display a confirmation message that we created the
user’s account, show a link to the login.php script, and skip rendering the signup form.

Listing 23.12.

 1. // IF user does not exist, create an account for them
 2. if (mysqli_num_rows($results) == 0)
 3. {
 4. $salted_hashed_password = password_hash($password, PASSWORD_DEFAULT);
 5.
 6. $query = "INSERT INTO user (`user_name`, `password_hash`)
 7. VALUES (?, '$salted_hashed_password')";
 8. $results = parameterizedQuery($dbc, $query, 's', $user_name)
 9. or trigger_error(mysqli_error($dbc), E_USER_ERROR);
10.
11. // Direct the user to the login page
12. echo "<h4><p class='text-success'>Thank you for signing up $user_name! "
13. . "Your new account has been successfully created.
"
14. . "You're now ready to log in.</p></h4>";
15.
16. $show_sign_up_form = false;
17. }

Create a Signup.php script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 337

Complete Code Listings
Listing 23.13 is the complete listing for the queryutils.php page.

Listing 23.13.

 1. <?php
 2.
 3. /**
 4. * Purpose: Parameterizes a database query
 5. *
 6. * Description: Parameterizes an SQL query given a database connection,
 7. * a query string, a data types string, and a variable number
 8. * of parameters to be used in the query. If the query is
 9. * successful, the database results object will be returned
10. * (or TRUE if no results set and the query was successful),
11. * otherwise FALSE is returned and the connection has to be
12. * queried for the last error.
13. *
14. * @param $dbc database connection
15. * @param $sql_query SQL statement
16. * @param $data_types string containing one character for each parameter type
17. * @param $query_parameters variable list of parameters representing each query parameter
18. * @return string Database results set, false if there is an error, or true if successful.
19. */
20. function parameterizedQuery($dbc, $sql_query, $data_types, ...$query_parameters)
21. {
22. $ret_val = false; // Assume failure
23.
24. if ($stmt = mysqli_prepare($dbc, $sql_query))
25. {
26. if (mysqli_stmt_bind_param($stmt, $data_types, ...$query_parameters)
27. && mysqli_stmt_execute($stmt))
28. {
29. $ret_val = mysqli_stmt_get_result($stmt);
30.
31. if (!mysqli_errno($dbc) && !$ret_val)
32. {
33. $ret_val = true;
34. }
35. }
36. }
37. return $ret_val;
38. }

Listing 23.14 shows the complete listing for the signup.php page.

PHP Web Development with MySQL—A Hands On Approach to Application Programming338

23. Adding User Logins

Listing 23.14.

 1. <!DOCTYPE html>
 2. <?php
 3. require_once('pagetitles.php');
 4. $page_title = MR_SIGNUP_PAGE;
 5. ?>
 6. <html>
 7. <head>
 8. <title><?= $page_title ?></title>
 9. <link rel="stylesheet"
10. href="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/css/bootstrap.min.css"
11. integrity="sha384-9aIt2nRpC12Uk9gS9baDl411NQApFmC26EwAOH8WgZl5MYYxFfc+NcPb1dKGj7Sk"
12. crossorigin="anonymous">
13. </head>
14. <body>
15. <div class="card">
16. <div class="card-body">
17. <h1>Sign up for a Movie Reservations Account</h1>
18. <hr/>
19. <?php
20. $show_sign_up_form = true;
21.
22. if (isset($_POST['signup_submission'])) {
23. // Get user name and password
24. $user_name = $_POST['user_name'];
25. $password = $_POST['password'];
26.
27. if (!empty($user_name) && !empty($password)) {
28. require_once('dbconnection.php');
29.
30. require_once('queryutils.php');
31.
32. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
33. or trigger_error(
34. 'Error connecting to MySQL server for DB_NAME.',
35. E_USER_ERROR
36.);
37.
38. // Check if user already exists
39. $query = "SELECT * FROM user WHERE user_name = ?";
40.
41. $results =
42. parameterizedQuery($dbc, $query, 's', $user_name)
43. or trigger_error(mysqli_error($dbc), E_USER_ERROR);
44.
45. // IF user does not exist, create an account for them
46. if (mysqli_num_rows($results) == 0) {
47. $salted_hashed_password =
48. password_hash($password, PASSWORD_DEFAULT);
49.

Create a Signup.php script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 339

50. $query = "INSERT INTO user (̀ user_namè , ̀ password_hash̀)
51. VALUES (?, '$salted_hashed_password')";
52. $results = parameterizedQuery($dbc, $query, 's', $user_name)
53. or trigger_error(mysqli_error($dbc), E_USER_ERROR);
54.
55. // Direct the user to the login page
56. echo "<h4><p class='text-success'>Thank you for signing up $user_name! "
57. . "Your new account has been successfully created.
"
58. . "You're now ready to log in.</p></h4>";
59.
60. $show_sign_up_form = false;
61. } else // An account already exists for this user
62. {
63. echo "<h4><p class='text-danger'>An account already exists for this username:
64. ($user_name). Please use
65. a different user name.</p></h4><hr/>";
66.
67. }
68. } else {
69. // Output error message
70. echo "<h4><p class='text-danger'>You must enter both a user name
71. and password.</p></h4><hr/>";
72. }
73. }
74. if ($show_sign_up_form):
75. ?>
76. <form class="needs-validation" novalidate method="POST"
77. action="<?= $_SERVER['PHP_SELF'] ?>">
78. <div class="form-group row">
79. <label for="user_name"
80. class="col-sm-2 col-form-label-lg">User Name</label>
81. <div class="col-sm-4">
82. <input type="text" class="form-control" id="user_name"
83. name="user_name" placeholder="Enter a user name" required>
84. <div class="invalid-feedback">Please provide a valid user name.</div>
85. </div>
86. </div>
87. <div class="form-group row">
88. <label for="password"
89. class="col-sm-2 col-form-label-lg">Password</label>
90. <div class="col-sm-4">
91. <input type="password" class="form-control"
92. id="password" name="password" placeholder="Enter a password" required>
93. <div class="form-group form-check">
94. <input type="checkbox" class="form-check-input" id="show_password_check"
95. onclick="togglePassword()">
96. <label class="form-check-label"
97. for="show_password_check">Show Password</label>
98. </div>
99. <div class="invalid-feedback">Please provide a valid password.</div>

PHP Web Development with MySQL—A Hands On Approach to Application Programming340

23. Adding User Logins

100. </div>
101. </div>
102. <button class="btn btn-primary" type="submit" name="signup_submission">Sign Up
103. </button>
104. </form>
105. <?php
106. endif;
107. ?>
108. </div>
109. </div>
110. <script>
111. // JavaScript for disabling form submissions if there are invalid fields
112. (function () {
113. 'use strict';
114. window.addEventListener('load', function () {
115. // Fetch all the forms we want to apply custom Bootstrap validation styles to
116. var forms = document.getElementsByClassName('needs-validation');
117. // Loop over them and prevent submission
118. var validation = Array.prototype.filter.call(forms, function (form) {
119. form.addEventListener('submit', function (event) {
120. if (form.checkValidity() === false) {
121. event.preventDefault();
122. event.stopPropagation();
132. }
124. form.classList.add('was-validated');
125. }, false);
126. });
127. }, false);
128. })();
129.
130. function togglePassword() {
131. var password_entry = document.getElementById("password");
132. if (password_entry.type === "password") {
133. password_entry.type = "text";
134. } else {
135. password_entry.type = "password";
136. }
137. }
138. </script>
139. <script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"
140. integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj"
141. crossorigin="anonymous"></script>
142. <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js"
143. integrity="sha384-Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo"
144. crossorigin="anonymous"></script>
145. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/js/bootstrap.min.js"
146. integrity="sha384-OgVRvuATP1z7JjHLkuOU7Xw704+h835Lr+6QL9UvYjZE3Ipu6Tp75j7Bh/kR0JKI"
147. crossorigin="anonymous"></script>
148. </body>
149. </html>

Create a login.php Script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 341

Create a login.php Script
Now that we have a Sign Up page, we need
to create a login.php script to allow users to
log in to our application. Here is what we
want our login page to look like Figure 23.7

When creating a professional application
with user signup and login capabilities, it
is a good idea to include a “Forgot my Password” link in your application. Otherwise,
your admins won’t like you very much. I leave that as an exercise for you.

Create a Login Form

Again, let’s start by creating a basic Bootstrap page and name it login.php (Listing 23.15)

Listing 23.15.

 1. <?php
 2. session_start();
 3. require_once('pagetitles.php');
 4. $page_title = MR_LOGIN_PAGE;
 5. ?>
 6. <!DOCTYPE html>
 7. <html>
 8. <head>
 9. <title><?= $page_title ?></title>
10. <link rel="stylesheet"
11. href="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/css/bootstrap.min.css"
12. integrity="sha384-9aIt2nRpC12Uk9gS9baDl411NQApFmC26EwAOH8WgZl5MYYxFfc+NcPb1dKGj7Sk"
13. crossorigin="anonymous">
14. </head>
15. <body>
16. <script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"
17. integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj"
18. crossorigin="anonymous"></script>
19. <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js"
20. integrity="sha384-Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo"
21. crossorigin="anonymous"></script>
22. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/js/bootstrap.min.js"
23. integrity="sha384-OgVRvuATP1z7JjHLkuOU7Xw704+h835Lr+6QL9UvYjZE3Ipu6Tp75j7Bh/kR0JKI"
24. crossorigin="anonymous"></script>
25. </body>
26. </html>

Figure 23.7.

PHP Web Development with MySQL—A Hands On Approach to Application Programming342

23. Adding User Logins

Notice, I call the session_start()[6] function since we will be creating session variables for
a user after a successful login. Also notice I added a definition for the page title that is
included from the script called pagetitles.php:

<!DOCTYPE html>
<?php
 session_start();
 require_once('pagetitles.php');
 $page_title = MR_LOGIN_PAGE;
?>

Add the definition for the Login page to pagetitles.php:

<?php
 // Page Titles
 define('MR_SIGNUP_PAGE', 'Movie Reservations - Sign Up');
 define('MR_LOGIN_PAGE', 'Movie Reservations - Login');

Now back to our login.php script. At the beginning of the <body> tag, we’ll add some descrip-
tive text and our form for logging in users as in Listing 23.16.

Listing 23.16.

 1. <body>
 2. <div class="card">
 3. <div class="card-body">
 4. <h1>Login to Movie Reservations Account</h1>
 5. <hr/>
 6. <form class="needs-validation" novalidate method="POST"
 7. action="<?= $_SERVER['PHP_SELF'] ?>">
 8. <div class="form-group row">
 9. <label for="user_name" class="col-sm-2 col-form-label-lg">User
10. Name</label>
11. <div class="col-sm-4">
12. <input type="text" class="form-control" id="user_name"
13. name="user_name" placeholder="Enter a user name" required>
14. <div class="invalid-feedback">
15. Please provide a valid user name.
16. </div>
17. </div>
18. </div>
19. <div class="form-group row">
20. <label for="password" class="col-sm-2 col-form-label-lg">Password</label>
21. <div class="col-sm-4">
22. <input type="password" class="form-control" id="password"
23. name="password" placeholder="Enter a password" required>
24. <div class="invalid-feedback">
25. Please provide a valid password.

[6] session_start(): https://php.net/session_start

https://php.net/session_start

Create a login.php Script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 343

26. </div>
27. </div>
28. </div>
29. <button class="btn btn-primary" type="submit"
30. name="login_submission">Log In
31. </button>
32. </form>
33. </div>
34. </div>
35. </body>

Like the Signup form, we will add Bootstrap’s
validation for the password and user_name fields,
so we see Figure 23.8 when a user doesn’t enter
any data into these form fields.

Just like the Signup form we need to include the
JavaScript function (Listing 23.17) in a <script>
element tag set in our HTML <body> (right
before the other <script> tags):

Listing 23.17.

 1. <body>
 2. <div class="card">
 3. <div class="card-body">
 4. <h1>Login to Movie Reservations Account</h1>
 5. <hr/>
 6. <form ...>
 7. ...
 8. </form>
 9. </div>
10. </div>
11. <script>
12. // JavaScript for disabling form submissions if there are invalid fields
13. (function () {
14. 'use strict';
15. window.addEventListener('load', function () {
16. // Fetch all the forms we want to apply custom Bootstrap validation styles to
17. var forms = document.getElementsByClassName('needs-validation');
18. // Loop over them and prevent submission
19. var validation = Array.prototype.filter.call(forms, function (form) {
20. form.addEventListener('submit', function (event) {
21. if (form.checkValidity() === false) {
22. event.preventDefault();
23. event.stopPropagation();
24. }
25. form.classList.add('was-validated');
26. }, false);

Figure 23.8.

PHP Web Development with MySQL—A Hands On Approach to Application Programming344

23. Adding User Logins

27. });
28. }, false);
29. })();
30. </script>
31. <script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"
32. integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj"
33. crossorigin="anonymous"></script>

When the user submits the form, we validate the credentials and either log them in or redi-
rect them to correct their entries. To be successfully logged in, the user has to exist in the
user table of the Movie database, and their password has to be correct. Once we’ve validated
the user’s credentials in the database, we note they are authenticated by setting a session
variable for the user’s user_id and user_name. After setting the session variables, we will
redirect the user to the index.php page. If the user navigates to the login.php script, we display
that they have logged in rather than showing the form.

Therefore, add the following conditional logic so that the form only displays when the
user_id session variable is empty. Then, move the form within the if condition. Also, add an
elseif condition that displays the user is logged in if the user_name session variable is set as in
Listing 23.18.

Listing 23.18.

 1. <h1>Login to Movie Reservations Account</h1>
 2. <hr/>
 3. <?php
 4. if (empty($_SESSION['user_id'])):
 5. ?>
 6. <form>
 7. <!- ... -->
 8. </form>
 9. <?php
10. elseif (isset($_SESSION['user_name'])):
11. echo "<h4><p class='text-success'>You are logged in as:
12. {$_SESSION['user_name']}.</p></h4>";
13. endif;
14. ?>

Create a login.php Script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 345

Log the User In
Let’s add code to log the user in upon successful validation of their credentials.

Right before the if (empty($_SESSION['user_id'])):, add a condition that checks for the
user_id session variable being empty and the user submitted the form (Listing 23.19).

Listing 23.19.

 1. <h1>Login to Movie Reservations Account</h1>
 2. <hr/>
 3. <?php
 4. if (empty($_SESSION['user_id']) && isset($_POST['login_submission']))
 5. {
 6. }
 7.
 8. if (empty($_SESSION['user_id'])):
 9. ?>
10. <form ...>

Inside this condition (Listing 23.20), grab the user_name and password fields from the $_POST
superglobal, and add a condition verifying the user entered values for the fields, otherwise
output an error that they need to fill out the form correctly:

Listing 23.20.

 1. if (empty($_SESSION['user_id']) && isset($_POST['login_submission']))
 2. {
 3. // Get user name and password
 4. $user_name = $_POST['user_name'];
 5. $password = $_POST['password'];
 6.
 7. if (!empty($user_name) && !empty($password))
 8. {
 9. }
10. else
11. {
12. // Output error message
13. echo "<h4><p class='text-danger'>You must enter both a user name
14. and password.</p></h4><hr/>";
15. }
16. }

PHP Web Development with MySQL—A Hands On Approach to Application Programming346

23. Adding User Logins

Inside the if() condition that verifies the user_name and password were set, we can query the
Movie database for our user. We need to include our dbconnection.php and now our
queryutils.php scripts and connect to our Movie database as in Listing 23.21.

Listing 23.21.

 1. if (!empty($user_name) && !empty($password))
 2. {
 3. require_once('dbconnection.php');
 4. require_once('queryutils.php');
 5.
 6. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 7. or trigger_error(
 8. 'Error connecting to MySQL server for' . DB_NAME,
 9. E_USER_ERROR
10.);
11. }

Next, create a SQL string for this user’s id, user_name, password_hash, and access_privileges to
see if this user exists and call the parameterizedQuery() function as shown in Listing 23.22.

Listing 23.22.

 1. if (!empty($user_name) && !empty($password))
 2. {
 3. //...
 4.
 5. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 6. or trigger_error(
 7. 'Error connecting to MySQL server for' . DB_NAME, E_USER_ERROR
 9.);
10.
11. // Check if user already exists
12. $query = "SELECT id, user_name, password_hash, access_privileges
13. FROM user WHERE user_name = ?";
14.
15. $results = parameterizedQuery($dbc, $query, 's', $user_name)
16. or trigger_error(mysqli_error($dbc), E_USER_ERROR);
17. }

If the user exists, we get a single row from the query, and we can validate the password
hashes matches. Otherwise, we need to output a message that this user does not exist. Add
the code in Listing 23.23. We should either get one or no rows back from the query. If we get
more than one row back, this means we have more than one user with the same user name—
which is horribly wrong!

Create a login.php Script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 347

Listing 23.23.

 1. if (!empty($user_name) && !empty($password))
 2. {
 3. // ...
 4.
 5. $results = parameterizedQuery($dbc, $query, 's', $user_name)
 6. or trigger_error(mysqli_error($dbc), E_USER_ERROR);
 7.
 8. // IF user was found, validate password
 9. if (mysqli_num_rows($results) == 1)
10. {
11. }
12. else if(mysqli_num_rows($results) == 0) // User does not exist
13. {
14. echo "<h4><p class='text-danger'>An account does not exist for this username:"
15. . " ($user_name). "
16. . "Please use a different user name.</p></h4><hr/>";
17. }
18. else
19. {
20. echo "<h4><p class='text-danger'>Something went terribly wrong!</p></h4><hr/>";
21. }
22. }

To reduce the information you might leak to a potential attacker, a better practice is
indicating that the login credentials are not valid without saying explicitly that the
user name or passwords are invalid. Otherwise, someone could build a list of valid
and invalid usernames and then target the valid ones to try to crack the password.
This is another good exercise to follow up on.

Within the if condition where we found the user’s credentials, we need to verify the
supplied password matches the stored password hash. If verified, we can set user_id,
user_name, and user_access_privileges session variables for the user. Then, we redirect them
to the home page. If the password hash verification fails, we need to output a message
that an incorrect password was entered and have the user try again. Add the code from
Listing 23.24.

PHP Web Development with MySQL—A Hands On Approach to Application Programming348

23. Adding User Logins

Listing 23.24.

 1. // IF user was found, validate password
 2. if (mysqli_num_rows($results) == 1)
 3. {
 4. $row = mysqli_fetch_array($results);
 5.
 6. if (password_verify($password, $row['password_hash']))
 7. {
 8. $_SESSION['user_id'] = $row['id'];
 9. $_SESSION['user_name'] = $row['user_name'];
10. $_SESSION['user_access_privileges'] = $row['access_privileges'];
11.
12. // Redirect to the home page
13. $home_url = dirname($_SERVER['PHP_SELF']);
14. header('Location: ' . $home_url);
15. exit;
16. }
17. else
18. {
19. echo "<h4><p class='text-danger'>An incorrect user name or password was entered.</p></h4><hr/>";
20. }
21. }
22. else if (mysqli_num_rows($results) == 0) // User does not exist
23. {
24. ...
25. }

Complete Code Listing

Listing 23.25 has the complete listing for the login.php page.

Listing 23.25.

 1. <?php
 2. session_start();
 3. require_once('pagetitles.php');
 4. $page_title = MR_LOGIN_PAGE;
 5. ?>
 6. <!DOCTYPE html>
 7. <html>
 8. <head>
 9. <title><?= $page_title ?></title>
10. <link rel="stylesheet"
11. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
12. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
13. crossorigin="anonymous">
14. </head>
15. <body>

Create a login.php Script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 349

16. <div class="card">
17. <div class="card-body">
18. <h1>Login to Movie Reservations Account</h1>
19. <hr/>
20. <?php
21. if (empty($_SESSION['user_id']) && isset($_POST['login_submission'])) {
22. // Get user name and password
23. $user_name = $_POST['user_name'];
24. $password = $_POST['password'];
25.
26. if (!empty($user_name) && !empty($password)) {
27. require_once('dbconnection.php');
28.
29. require_once('queryutils.php');
30.
31. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
32. or trigger_error(
33. 'Error connecting to MySQL server for' . DB_NAME,
34. E_USER_ERROR
35.);
36.
37. // Check if user already exists
38. $query = "SELECT id, user_name, password_hash, access_privileges
39. FROM user WHERE user_name = ?";
40.
41. $results = parameterizedQuery($dbc, $query, 's', $user_name)
42. or trigger_error(mysqli_error($dbc), E_USER_ERROR);
43.
44. // IF user was found, validate password
45. if (mysqli_num_rows($results) == 1) {
46. $row = mysqli_fetch_array($results);
47.
48. if (password_verify($password, $row['password_hash'])) {
49. $_SESSION['user_id'] = $row['id'];
50. $_SESSION['user_name'] = $row['user_name'];
51. $_SESSION['user_access_privileges'] = $row['access_privileges'];
52.
53. // Redirect to the home page
54. $home_url = dirname($_SERVER['PHP_SELF']);
55. header('Location: ' . $home_url);
56. } else {
57. echo "<h4><p class='text-danger'>An incorrect user name
58. or password was entered.</p></h4><hr/>";
59. }
60. } else if (mysqli_num_rows($results) == 0) // User does not exist
61. {
62. echo "<h4><p class='text-danger'>An account does not exist for this username:"
63. . " ($user_name). "
64. . "Please use a different user name.</p></h4><hr/>";
65. } else {

PHP Web Development with MySQL—A Hands On Approach to Application Programming350

23. Adding User Logins

66. echo "<h4><p class='text-danger'>Something went terribly
67. wrong!</p></h4><hr/>";
68. }
69. } else {
70. // Output error message
71. echo "<h4><p class='text-danger'>You must enter both a user name
72. and password.</p></h4><hr/>";
73. }
74. }
75. if (empty($_SESSION['user_id'])):
76. ?>
77. <form class="needs-validation" novalidate method="POST"
78. action="<?= $_SERVER['PHP_SELF'] ?>">
79. <div class="form-group row">
80. <label for="user_name" class="col-sm-2 col-form-label-lg">User Name</label>
81. <div class="col-sm-4">
82. <input type="text" class="form-control" id="user_name"
83. name="user_name" placeholder="Enter a user name" required>
84. <div class="invalid-feedback">
85. Please provide a valid user name.
86. </div>
87. </div>
88. </div>
89. <div class="form-group row">
92. <label for="password" class="col-sm-2 col-form-label-lg">Password</label>
93. <div class="col-sm-4">
94. <input type="password" class="form-control"
95. id="password" name="password" placeholder="Enter a password" required>
96. <div class="invalid-feedback">Please provide a valid password.</div>
97. </div>
98. </div>
99. <button class="btn btn-primary" type="submit" name="login_submission">Log In</button>
100. </form>
101. <?php
102. elseif (isset($_SESSION['user_name'])):
103. echo "<h4><p class='text-success'>You are logged in as:
104. {$_SESSION['user_name']}.</p></h4>";
105. endif;
106. ?>
107. </div>
108. </div>
109. <script>
110. // JavaScript for disabling form submissions if there are invalid fields
111. (function () {
112. 'use strict';
113. window.addEventListener('load', function () {
114. // Fetch all the forms we want to apply custom Bootstrap validation styles to
115. var forms = document.getElementsByClassName('needs-validation');
116. // Loop over them and prevent submission
117. var validation = Array.prototype.filter.call(forms, function (form) {

Create a logout.php Script

PHP Web Development with MySQL—A Hands On Approach to Application Programming 351

118. form.addEventListener('submit', function (event) {
119. if (form.checkValidity() === false) {
120. event.preventDefault();
121. event.stopPropagation();
122. }
123. form.classList.add('was-validated');
124. }, false);
125. });
126. }, false);
127. })();
128. </script>
129. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
130. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
131. crossorigin="anonymous"></script>
132. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
133. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
134. crossorigin="anonymous"></script>
135. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
136. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
137. crossorigin="anonymous"></script>
128. </body>
139. </html>

Create a logout.php Script
To allow users to log out of our application, we need to create a logout.php script. It’s a
straightforward script. All it does is delete all the session variables and redirect the user to
the homepage after logging out. Create a new PHP script called logout.php and enter code in
Listing 23.26.

Listing 23.26.

 1. <?php
 2. session_start();
 3.
 4. // If the user is logged in, delete session variables and redirect to the home page
 5. if (isset($_SESSION['user_id']))
 6. {
 7. $_SESSION = array();
 8. session_destroy();
 9. }
10.
11. // Redirect to the home page
12. $home_url = dirname($_SERVER['PHP_SELF']);
13. header('Location: ' . $home_url);
14. exit;

PHP Web Development with MySQL—A Hands On Approach to Application Programming352

23. Adding User Logins

This application will have a shopping cart feature for users to add movies to a cart
they can then reserve. It would be a good idea to add a check before logging out if a
user still has movies in their cart to redirect them to their shopping cart or delete the
movies out of their cart.

Allow Users with Administrative Access
We also need to modify the authorizeaccess.php
script to allow users with administrative access
and redirect users without it to an unauthorizedac-
cess.php page. If someone without administrative
privileges tries to access the scripts that add,
modify, or remove a movie, they should see a page that looks like Figure 23.9.

In reality, you should route a user who is not logged in to the login page and show an
unauthorized page for someone who is logged in but lacks privileges. Again, this is an
exercise for you to do on your own.

Recall that our authorizeaccess.php script (Listing 23.27) is currently using HTTP authentication.

Listing 23.27.

 1. <?php
 2. // User name and password for basic HTTP authentication
 3. // NOTE: For a professional implementation, usernames
 4. // and passwords would never be hard-coded into
 5. // the source code. Best practice is to either
 6. // use an environment variable, or the database.
 7. // This example is for educational demonstration
 8. // only.
 9. $username = 'movieguru';
10. $password = 'ilikemovies';
11.
12. // IF Password OR Username are empty OR Password OR Username don't match
13. // send HTTP authentication headers
14. if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])
15. || $_SERVER['PHP_AUTH_USER'] !== $username
16. || $_SERVER['PHP_AUTH_PW'] !== $password):
17.
18. header('HTTP/1.1 401 Unauthorized');
19. header('WWW-Authenticate: Basic realm="Movies I Like"');
20. $invalid_response = "<h2>Movies I Like</h2><h4>You must enter a "
21. . "valid username and password to access this page.</h4>";
22. exit($invalid_response);
23. endif;

Figure 23.9.

Allow Users with Administrative Access

PHP Web Development with MySQL—A Hands On Approach to Application Programming 353

Since we are now authenticating users through the login.php script, we only need to look at
the session variables user_id and user_access_privileges to determine if a user is logged in,
and if so, what access privileges they have.

We are going to rewrite the entire authorizeaccess.php script and start from scratch. Start by
deleting everything in authorizeaccess.php and making a call to the session_start() function:

<?php
 session_start();

Next, we want to take care of the case where a visitor is not authenticated. When not logged
in, the session variables user_id or user_access_privileges are not set. Add the following code
(Listing 23.28), which redirects the user to unauthorizedaccess.php if they are not logged in.

Listing 23.28.

 1. <?php
 2. session_start();
 3.
 4. // Not logged in, redirect to unauthorizedaccess.php script
 5. if (!isset($_SESSION['user_id']) || !isset($_SESSION['user_access_privileges']))
 6. {
 7. header("Location: unauthorizedaccess.php");
 8. exit();
 9. }

If we make it past this conditional, then we know the user is logged in. Now, we need a
condition to check if they have admin rights. Add the code in Listing 23.29 which redirects
the user to unauthorizedaccess.php if they don’t have admin privileges.

Listing 23.29.

 1. <?php
 2. // ...
 3.
 4. // IF NOT admininstrative access redirect to unauthorizedaccess.php script
 5. if ($_SESSION['user_access_privileges'] != 'admin')
 6. {
 7. header("Location: unauthorizedaccess.php");
 8. exit();
 9. }

PHP Web Development with MySQL—A Hands On Approach to Application Programming354

23. Adding User Logins

Complete Code Listing
Listing 23.30 is the complete listing for the authorizeaccess.php page:

Listing 23.30.

 1. <?php
 2. session_start();
 3.
 4. // Not logged in, redirect to unauthorizedaccess.php script
 5. if (!isset($_SESSION['user_id']) || !isset($_SESSION['user_access_privileges']))
 6. {
 7. header("Location: unauthorizedaccess.php");`
 8. exit();
 9. }
10.
11. // IF NOT admininstrative access redirect to unauthorizedaccess.php script
12. if ($_SESSION['user_access_privileges'] != 'admin')
13. {
14. header("Location: unauthorizedaccess.php");
15. exit();
16. }

Create an unauthorizedaccess.php Script

Now we need to create the unauthorizedaccess.php script we route unauthorized users to.
Start by creating a basic Bootstrap page and name it unauthorizedaccess.php, see Listing 23.31.

Listing 23.31.

 1. <!DOCTYPE html>
 2. <?php
 3. require_once('pagetitles.php');
 4. $page_title = MR_UNAUTHORIZED_ACCESS_PAGE;
 5. ?>
 6. <html>
 7. <head>
 8. <title><?= $page_title ?></title>
 9. <link rel="stylesheet"
10. href="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/css/bootstrap.min.css"
11. integrity="sha384-9aIt2nRpC12Uk9gS9baDl411NQApFmC26EwAOH8WgZl5MYYxFfc+NcPb1dKGj7Sk"
12. crossorigin="anonymous">
13. </head>
14. <body>
15. <script src="https://code.jquery.com/jquery-3.5.1.slim.min.js"
16. integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj"
17. crossorigin="anonymous"></script>

Allow Users with Administrative Access

PHP Web Development with MySQL—A Hands On Approach to Application Programming 355

18. <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js"
19. integrity="sha384-Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo"
20. crossorigin="anonymous"></script>
21. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.5.0/js/bootstrap.min.js"
22. integrity="sha384-OgVRvuATP1z7JjHLkuOU7Xw704+h835Lr+6QL9UvYjZE3Ipu6Tp75j7Bh/kR0JKI"
23. crossorigin="anonymous"></script>
24. </body>
25. </html>

Notice I added a definition for the page title that is included from the script called pagetitles.php:

<!DOCTYPE html>
<?php
 require_once('pagetitles.php');
 $page_title = MR_UNAUTHORIZED_ACCESS_PAGE;
?>

Add the definition for the Login page to pagetitles.php:

<?php
 // Page Titles
 define('MR_SIGNUP_PAGE', 'Movie Reservations - Sign Up');
 define('MR_LOGIN_PAGE', 'Movie Reservations - Login');
 define('MR_UNAUTHORIZED_ACCESS_PAGE', 'Movie Reservations - Unauthorized Access');

Now back to our unauthorizedaccess.php script. At the beginning of the <body> tag in
Listing 23.32, we’ll add some descriptive text telling visitors they are unauthorized to access
this page:

Listing 23.32.

 1. <body>
 2. <div class="card">
 3. <div class="card-body">
 4. <h3>You do not have access to this page.</h3>
 5. </div>
 6. </div>
 7. </body>

PHP Web Development with MySQL—A Hands On Approach to Application Programming356

23. Adding User Logins

Complete Code Listing
Finally, Listing 23.33 is the complete listing for the unauthorizedaccess.php page.

Listing 23.33.

 1. <!DOCTYPE html>
 2. <?php
 3. require_once('pagetitles.php');
 4. $page_title = MR_UNAUTHORIZED_ACCESS_PAGE;
 5. ?>
 6. <html>
 7. <head>
 8. <title><?= $page_title ?></title>
 9. <link rel="stylesheet"
10. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
11. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
12. crossorigin="anonymous">
13. <link rel="stylesheet"
14. href="https://use.fontawesome.com/releases/v5.8.1/css/all.css"
15. integrity="sha384-50oBUHEmvpQ+1lW4y57PTFmhCaXp0ML5d60M1M7uH2+nqUivzIebhndOJK28anvf"
16. crossorigin="anonymous">
17. </head>
18. <body>
19. <div class="card">
20. <div class="card-body">
21. <h3>You do not have access to this page.</h3>
22. </div>
23. </div>
24. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
25. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
26. crossorigin="anonymous"></script>
27. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
28. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
29. crossorigin="anonymous"></script>
30. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
31. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
32. crossorigin="anonymous"></script>
33. </body>
34. </html>

Exercises
1. In the Movie Database application, add Individual User Logins.

1. Create a user with admin access privileges and confirm they can edit, add, or delete
movies.

2. Confirm regular logged-in users can not edit, add, or delete movies.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 357

Chapter

24
Adding a Navigation Menu

“Program testing can be a very effective way to show the presence of bugs,
but is hopelessly inadequate for showing their absence.”

–Edsger W. Dijkstra

PHP Web Development with MySQL—A Hands On Approach to Application Programming358

24. Adding a Navigation Menu

This chapter adds a navigation bar (other-
wise known as a “navbar”) to the top of
our Movie Reservations application. A
navbar makes it much more user-friendly
to navigate around the application. With
a few exceptions, we want our navbar to
display on all the pages in our application.
Additionally, we want our navbar to be
context-sensitive. That is, it should indicate
or hint what page we are on and display
links we have access to based on our privileges. When we first navigate to the Home page,
without being logged in, this is what we want our navbar to look like Figure 24.1.

Create Navbar Logic
Since almost every page in our application will be displaying a navbar, we will create a script
to be included by these pages. Create a script called navmenu.php and add this PHP code at
the very top that checks the $page_title variable of the page that included this script:

<?php
 $page_title = isset($page_title) ? $page_title : "";
?>

It is crucial that the opening PHP tag <?php is the first thing in your file (no spaces
preceding) as this code runs before HTML headers are sent.

Remember we set the variable $page_title to one of the definitions created in pagetitles.php
in the scripts that include navmenu.php (e.g. index.php, login.php, etc.).

Since we are using session variables in our application and navmenu.php will be included
by most every script, let’s add the following code after the $page_title check that starts or
resumes our session:

<?php
 $page_title = isset($page_title) ? $page_title : "";

 if (session_status() == PHP_SESSION_NONE)
 {
 session_start();
 }
?>

Figure 24.1.

Create Navbar Logic

PHP Web Development with MySQL—A Hands On Approach to Application Programming 359

Notice, we call session_start() only after checking to see that none already exists. You could
certainly make the call with error suppression (e.g. @session_start()), however, I usually
frown on that sort of behavior.

The navbar is part of the HTML <body>, so we assume the Bootstrap style sheet was
already included in the <head> section of the including script.

Add the code in Listing 24.1 after the closing PHP tag (?>), and I will explain it in the
following paragraphs.

Listing 24.1.

 1. <?php
 2. $page_title = isset($page_title) ? $page_title : "";
 3.
 4. // ...
 5. session_start();
 6. }
 7. ?>
 8. <nav class="navbar sticky-top navbar-expand-md navbar-dark"
 9. style="background-color: #569f32;">
10. <a class="navbar-brand" href=<?= dirname($_SERVER['PHP_SELF']) ?>>
11. <img src="resources/movie_rental_icon.png" width="30" height="30"
12. class="d-inline-block align-top" alt="">
13. <?= MR_HOME_PAGE ?>
14.
15. <button class="navbar-toggler" type="button" data-toggle="collapse"
16. data-target="#navbarNavAltMarkup" aria-controls="navbarNavAltMarkup"
17. aria-expanded="false" aria-label="Toggle navigation">
18.
19. </button>
20. <div class="collapse navbar-collapse" id="navbarNavAltMarkup">
21. <div class="navbar-nav">
22. <a class="nav-item nav-link<?= $page_title == MR_HOME_PAGE ? ' active' : '' ?>"
23. href=<?= dirname($_SERVER['PHP_SELF']) ?>>Home
24. </div>
25. </div>
26. </nav>

PHP Web Development with MySQL—A Hands On Approach to Application Programming360

24. Adding a Navigation Menu

The <nav> element has these Bootstrap class attributes set for the following purpose:

Class Property Purpose
.navbar Specifies this is a navbar
.sticky-top Sticks to the top as the page scrolls
.navbar-expand-md For responsive collapsing
.navbar-dark For white text on dark color backgrounds

Also, notice I set the style attribute to a background-color. If you omit this, you will have
white text on a black background for the menu.

Next is a standard <a href> link with the class attribute set to navbar-brand with the href set
to the home folder location, along with an image icon referencing MR_HOME_PAGE, which must
be defined in pagetitles.php. Create a folder under the Movie Listing folder called resources
to store your image icons. I called this one movie_rental_icon.png.

The movie projector icon is free to use with Creative Commons attribution, which I found here[1].

Before we forget, let’s define MR_HOME_PAGE. Open pagetitles.php and add the following MR_
HOME_PAGE definition right before the MR_SIGNUP_PAGE definition:

<?php
 // Page Titles
 define('MR_HOME_PAGE', 'Movie Reservations');
 define('MR_SIGNUP_PAGE', 'Movie Reservations - Sign Up');
 define('MR_LOGIN_PAGE', 'Movie Reservations - Login');
 define('MR_UNAUTHORIZED_ACCESS_PAGE', 'Movie Reservations - Unauthorized Access');

Getting back to navmenu.php, we then have a <button> element with a class attribute set to
navbar-toggler for the button to collapse for responsive design. This class collapses the navi-
gation menu on mobile devices under a hamburger icon as in Figure 24.2

[1] here: https://iconfinder.com/icons/753134/festival_film_icon

Figure 24.2.

https://iconfinder.com/icons/753134/festival_film_icon

Create Navbar Logic

PHP Web Development with MySQL—A Hands On Approach to Application Programming 361

Then we have a <div> tag with a class set to collapse navbar-collapse to group and hide/
collapse menu items. In this <div>, we put navbar-nav item links to our home, login, and
signup pages. In fact, we already have a navigation link to our Home page here. Let’s take a
closer look at it in Listing 24.2.

Listing 24.2.

 1. <nav ...>
 2. <!-- ... -->
 3. <div class="collapse navbar-collapse" id="navbarNavAltMarkup">
 4. <div class="navbar-nav">
 5. <a class="nav-item nav-link<?= $page_title == MR_HOME_PAGE ? ' active' : '' ?>"
 6. href=<?= dirname($_SERVER['PHP_SELF']) ?>>Home
 7. </div>
 8. </div>
 9. </nav>

To create a navigation item, you need to create a child <div> tag container with the class
attribute set to navbar-nav. Next, you create a child <a href> link with the class set to nav-item
nav-link. However, you will notice I added some PHP code with a ternary operator before
the href attribute. This link is for the home page. However, we want the navigation link for
the current page we are on to be highlighted (e.g., active):

 "nav-item nav-link<?= $page_title == MR_HOME_PAGE ? ' active' : '' ?>"

If the home page is being displayed (i.e. index.php) the class attribute will be set as:

class="nav-item nav-link active"

Otherwise, it is set as:

class="nav-item nav-link"

We use this mechanism for all pages that include navmenu.php and have a link to its page.

For more details, see the documentation on how Bootstrap’s Navbar[2] works.

[2] Bootstrap’s Navbar: https://getbootstrap.com/docs/4.0/components/navbar/

https://getbootstrap.com/docs/4.0/components/navbar/

PHP Web Development with MySQL—A Hands On Approach to Application Programming362

24. Adding a Navigation Menu

Add the Navigation Bar
Now that we have our navmenu.php script, let’s make some modifications to index.php and
include the navmenu.php script. Open the index.php script and add the following PHP code to
the very top of the script, before the <!DOCTYPE html> element:

<?php
 require_once('pagetitles.php');
 $page_title = MR_HOME_PAGE;
?>
<!DOCTYPE html>
<html>

This properly sets our $page_title variable for use in navmenu.php which we include from
pagetitles.php and changes our page title from “Movies I Like” to “Movie Reservations”.
Next, in the <head> element, modify the <title> element with this code:

<html>
 <head>
 <link >
 <title><?= $page_title ?></title>
 </head>
 <body>

This changes our <title> element from Movies I Like to Movie Reservations. Next, right below
the <body> element, include the navmenu.php script:

<body>
<?php
 require_once('navmenu.php');
?>
 <div class="card">
 <div class="card-body">

Next, inside the <div class="card-body"> element, modify the <h1> element to reference the
$page_title instead of Movies I Like:

<div class="card">
 <div class="card-body">
 <h1><?= $page_title ?></h1>

Add Navigation Bar to Details Page

PHP Web Development with MySQL—A Hands On Approach to Application Programming 363

Later, when we add more of the reservation system features, we will remove the link to
add a movie (since it will be in the navigation menu). We also hide the trash can icon
unless a user is logged in with admin privileges.

Add Navigation Bar to Details Page
When users select a movie, they are taken to
the “Movie Details” page for that movie. The
user either needs to press the back button in
the browser or select the Movies I Like link
to get back to the home page. It would be
better to include the navbar and remove the
extra link for a consistent user experience
throughout the application. We want our

“Movie Details” page to look like Figure 24.3.

Notice that the “Home” menu item is
not active because we are on the “Movie
Details” page instead of the home page.
Open pagetitles.php and add the following
MR_DETAILS_PAGE definition right after the
MR_HOME_PAGE definition:

<?php
 // Page Titles
 define('MR_HOME_PAGE', 'Movie Reservations');
 define('MR_DETAILS_PAGE', 'Movie Reservations - Details');
 define('MR_SIGNUP_PAGE', 'Movie Reservations - Sign Up');
 define('MR_LOGIN_PAGE', 'Movie Reservations - Login');
 define('MR_UNAUTHORIZED_ACCESS_PAGE', 'Movie Reservations - Unauthorized Access');

Open the moviedetails.php script and add the following PHP code to the very top of the
script, before the <!DOCTYPE html> element:

<?php
 require_once('pagetitles.php');
 $page_title = MR_DETAILS_PAGE;
?>
<!DOCTYPE html>
<html>

Figure 24.3.

PHP Web Development with MySQL—A Hands On Approach to Application Programming364

24. Adding a Navigation Menu

This code properly sets our $page_title variable for use in navmenu.php, which we include
from pagetitles.php.

Next, in the <head> element, modify the <title> element with this code:

<html>
 <head>
 <link ...>
 <title><?= $page_title ?></title>
 ...
 </head>
 <body>

Next, right below the <body> element, include the navmenu.php script:

<body>
<?php
 require_once('navmenu.php');
?>
 <div class="card">
 <div class="card-body">

Next, inside the <div class="card-body"> element, remove the <nav class="nav"> link to the
index.php page and replace it with <h1>Movie Details</h1> and a horizontal line (<hr/>) as in
Listing 24.3.

Listing 24.3.

 1. Unchanged Lines
 2. <div class="card">
 3. <div class="card-body">
 4. - Removed Lines
 5. - <nav class="nav">
 6. - Movies I Like
 7. - </nav>
 8. + Added Lines
 9. + <h1>Movie Details</h1>
10. + <hr/>

When we start to add more of the reservation system features, we will hide the link to
edit a movie unless a user is logged in with admin privileges.

Add Login Link to Navigation Bar

PHP Web Development with MySQL—A Hands On Approach to Application Programming 365

Add Login Link to Navigation Bar

We need to add a nav link item to the login.php page and have login.php include
navmenu.php. When we are on the home page and not logged in, we want our nav menu to
look like Figure 24.4.

Notice that the Login link is not active, indicating we are not on the login.php page. When
we navigate to the Login page, we want our nav menu to look like Figure 24.5

Notice now that the Login link is active, indicating we are on the login.php page.

Open up the login.php script and include the navmenu.php script right after the <body> element:

<body>
<?php
 require_once('navmenu.php');
?>
 <div class="card">
 <div class="card-body">

Now open the navmenu.php script. We will add a child <a href> link with the class set to
nav-item nav-link for our Login page right below the link to the Home page. Add the code in
Listing 24.4, and I will explain it below.

Figure 24.4. Figure 24.5.

PHP Web Development with MySQL—A Hands On Approach to Application Programming366

24. Adding a Navigation Menu

Listing 24.4.

 1. <nav ...>
 2. <!-- ... -->
 3. <div class="collapse navbar-collapse" id="navbarNavAltMarkup">
 4. <div class="navbar-nav">
 5. <a class="nav-item nav-link<?= $page_title == MR_HOME_PAGE ? ' active' : '' ?>"
 6. href="<?= dirname($_SERVER['PHP_SELF']) ?>">Home
 7. <?php if (!isset($_SESSION['user_name'])): ?>
 8. <a class="nav-item nav-link<?= $page_title == MR_LOGIN_PAGE ? ' active' : '' ?>"
 9. href="login.php">Login
10. <?php endif; ?>
11. </div>
12. </div>
13. </nav>

Let’s break this down on its own:

<?php if (!isset($_SESSION['user_name'])): ?>
 <a class="nav-item nav-link<?= $page_title == MR_LOGIN_PAGE ? ' active' : '' ?>" href="login.php">Login
<?php endif; ?>

We have two conditions here. The outer condition checks to see if the user is not logged in.
If you recall from login.php three session variables get set when a user gets logged in:

$_SESSION['user_id'] = $row['id'];
$_SESSION['user_name'] = $row['user_name'];
$_SESSION['user_access_privileges'] = $row['access_privileges'];

If the user is already logged in, there is no need to show a link to the “Login” page.
Assuming the user is not logged in, we display a link to the “Login” page and then evaluate
the ternary condition. It—similar to the link for the home page—evaluates whether the user
is currently on the “Login” page or not.

Add Logout Link to Navigation Bar

PHP Web Development with MySQL—A Hands On Approach to Application Programming 367

Add Logout Link to Navigation Bar
Let’s add a nav link item for users to log out.
Also, let’s display the user name when a user
is logged in to the navigation menu. When
we are on the homepage and logged in, we
want our nav menu to look like Figure 24.6.

Open up the navmenu.php script. Add a child
<a href> link with the class set to
nav-item nav-link for our “Logout” page
right below the link to the “Login” page.
Add the code in Listing 24.5 on lines 9–10,
and I will explain it below.

Listing 24.5.

 1. <nav ...>
 2. ...
 3. <div class="collapse navbar-collapse" id="navbarNavAltMarkup">
 4. <div class="navbar-nav">
 5. Home
 6. <?php if (!isset($_SESSION['user_name'])): ?>
 7. Login
 8. <?php else: ?>
 9. <a class='nav-item nav-link'
10. href='logout.php'>Logout (<?= $_SESSION['user_name'] ?>)
11. <?php endif; ?>
12. </div>
13. </div>
14. </nav>

Again, let’s look at this on its own:

<?php else: ?>
 <a class='nav-item nav-link'
 href='logout.php'>Logout (<?=$_SESSION['user_name'] ?>)
<?php endif; ?>

We’ll add an else clause after the if check (line 8 previous listing) to handle logged-in users.
We display a link to the logout.php script and display the user’s name (held in
$_SESSION['user_name']).

Figure 24.6.

PHP Web Development with MySQL—A Hands On Approach to Application Programming368

24. Adding a Navigation Menu

Add Sign Up Link to Navigation Bar

Next, we need to add a nav link item to the signup.php page and have signup.php include
navmenu.php. When we are on the homepage and not logged in, we want our nav menu to
look like Figure 24.7.

Notice that the “Sign Up” link is not active (indicating we are not on the signup.php page).
When we navigate to the “Sign Up” page, we want our nav menu to look like Figure 24.8.

Now, notice that the “Sign Up” link is active (indicating we are on the signup.php page). Open
up the signup.php script and include the navmenu.php script right after the <body> element:

<body>
<?php
 require_once('navmenu.php');
?>
 <div class="card">
 <div class="card-body">

Now open the navmenu.php script. We will add a child <a href> link with the class set to
nav-item nav-link for our Sign Up page right below the link to the Login page. Add line 9–10.
Since we already have a condition for users not logged in, we can add the signup link in
Listing 24.6.

Listing 24.6.
 1. <nav ...>
 2. <!-- ... -->
 3. <div class="collapse navbar-collapse" id="navbarNavAltMarkup">
 4. <div class="navbar-nav">
 5. Home
 6. <?php if (!isset($_SESSION['user_name'])): ?>
 7. <a class="nav-item nav-link<?= $page_title == MR_LOGIN_PAGE ? ' active' : '' ?>"
 8. href="login.php">Login
 9. <a class="nav-item nav-link<?= $page_title == MR_SIGNUP_PAGE ? ' active' : '' ?>"
10. href="signup.php">Sign Up
11. <?php else: ?>
12. <a class="nav-item nav-link"
13. href="logout.php">Logout (<?=$_SESSION['user_name'] ?>)
14. <?php endif; ?>
15. </div>
16. </div>
17. </nav>

Figure 24.7. Figure 24.8.

Add Navigation Bar to addmovie.php

PHP Web Development with MySQL—A Hands On Approach to Application Programming 369

Add Navigation Bar to addmovie.php

Now we need to add a nav link
item to the addmovie.php page
and have addmovie.php include
navmenu.php. We only want to
display a link to the “Add a
Movie” page when logged in
as a user with admin privi-
leges. We want our nav menu
to look like Figure 24.9 when
we are on the home page and
have admin privileges. And
when we are on the “Add a
Movie” page, we want our
menu to look like Figure 24.10.

You will need to create a user with access_privileges set to admin to test this. The easiest way
to do this is to create a user and change the access_privileges field of the user table in the
Movie database from user to admin (see Figure 24.11).

Open pagetitles.php and add the following MR_ADD_MOVIE_PAGE definition right after the
MR_UNAUTHORIZED_ACCESS_PAGE definition.

<?php
 // Page Titles
 // ...
 define('MR_UNAUTHORIZED_ACCESS_PAGE', 'Movie Reservations - Unauthorized Access');
 define('MR_ADD_MOVIE_PAGE', 'Movie Reservations - Add Movie');

Open the addmovie.php script and include the pagetitles.php script and set $page_title to
MR_ADD_MOVIE_PAGE, right after the include for the authorizizeaccess.php script:

Figure 24.9. Figure 24.10.

Figure 24.11.

PHP Web Development with MySQL—A Hands On Approach to Application Programming370

24. Adding a Navigation Menu

<?php
 require_once('authorizeaccess.php');
 require_once('pagetitles.php');
 $page_title = MR_ADD_MOVIE_PAGE;
?>
<!DOCTYPE html>
<html>

This code properly sets our $page_title variable for use in navmenu.php which we include from
pagetitles.php. Next, in the <head> element, modify the <title> element to remove “Add a
Movie” and replace it with the $page_title (Listing 24.7).

Listing 24.7.

 1. Unchanged Lines
 2. <html>
 3. <head>
 4. <link ...>
 5. - Removed Line
 6. - <title>Add a Movie</title>
 7. + Added Line
 8. + <title><?= $page_title ?></title>
 9. Unchanged Lines
10. </head>
11. <body>

Next, right below the <body> element, include the navmenu.php script:

<body>
<?php
 require_once('navmenu.php');
?>
 <div class="card">
 <div class="card-body">

Since we’re including the navbar, let’s remove the link right below <h1>Add a Movie</h1> that
takes us back to the home page. See Listing 24.8,

Listing 24.8.

 1. Unchanged Lines
 2. <div class="card">
 3. <div class="card-body">
 4. <h1>Add a Movie</h1>
 5. - Removed Lines
 6. - <nav class="nav">
 7. - Movies I Like
 8. - </nav>
 9. Unchanged Lines
10. <hr/>

Add Navigation Bar to addmovie.php

PHP Web Development with MySQL—A Hands On Approach to Application Programming 371

Open up the navmenu.php script. Add a child <a href> link with the class set to
nav-item nav-link for our “Add a Movie” page right below the link to the home page. Add the
code in Listing 24.9.

Listing 24.9.

 1. <nav ...>
 2. <!-- ... -->
 3. <div class="collapse navbar-collapse" id="navbarNavAltMarkup">
 4. <div class="navbar-nav">
 5. Home
 6. <?php if (isset($_SESSION['user_access_privileges'])
 7. && $_SESSION['user_access_privileges'] == 'admin'): ?>
 8. <a class=" nav-item
 9. nav-link<?= $page_title == MR_ADD_MOVIE_PAGE ? ' active' : '' ?>"
10. href="addmovie.php">Add a Movie
11. <?php endif; ?>
12. <?php if (!isset($_SESSION['user_name'])): ?>
13. <a ...>Login
14. <a ...>Sign Up
15. <?php else: ?>
16. Logout
17. (<?= $_SESSION['user_name'] ?>)
18. <?php endif; ?>
19. <!-- ... -->
20. </div>
21. </div>
22. </nav>

Again, let’s look at this on its own:

<?php if (isset($_SESSION['user_access_privileges'])
 && $_SESSION['user_access_privileges'] == 'admin'): ?>
 <a class="nav-item nav-link<?= $page_title == MR_ADD_MOVIE_PAGE ? ' active' : '' ?>"
 href="addmovie.php">Add a Movie
<?php endif; ?>

As in a previous example, we have two conditions here. The first (outer condition) checks to
see if the user has admin privileges.

Incidently, this condition also checks to see if the user is logged in, as
$_SESSION['user_access_privileges'] is only set when the user logs in.

PHP Web Development with MySQL—A Hands On Approach to Application Programming372

24. Adding a Navigation Menu

If the user is not logged in OR the user is logged in but doesn’t have admin privileges, the
link to the “Add a Movie” page will not be displayed. Assuming the user is logged in AND
has admin privileges, we show a link to the “Add a Movie” page and then evaluate the
ternary condition, which evaluates whether or not the “Add a Movie” page is active.

Add Navigation Bar to Unauthorizedaccess.php
Since it is plausible for someone to navigate to a page they do not have access to, let’s add the
navbar to the unauthorizedaccess.php script. Our page will look like Figure 24.12.

Open up the unauthorizedaccess.php script and include the navmenu.php script right after the
<body> element:

<body>
<?php
 require_once('navmenu.php');
?>
 <div class="card">
 <div class="card-body">

Add Navigation Bar to editmovie.php
Let’s add the navbar to the editmovie.php
script. We want our menu to look like
Figure 24.13.

You will need to log in as a user with
access_privileges set to admin to test this.

Open pagetitles.php and add the following
MR_EDIT_MOVIE_PAGE definition right after the
MR_ADD_MOVIE_PAGE definition:

<?php
 // Page Titles
 // ...
 define('MR_ADD_MOVIE_PAGE', 'Movie Reservations - Add Movie');
 define('MR_EDIT_MOVIE_PAGE', 'Movie Reservations - Edit Movie');

Figure 24.12.

Figure 24.13.

Add Navigation Bar to editmovie.php

PHP Web Development with MySQL—A Hands On Approach to Application Programming 373

Open the editmovie.php script and include the pagetitles.php script and set $page_title to
MR_EDIT_MOVIE_PAGE, right after the include for the authorizizeaccess.php script:

<?php
 require_once('authorizeaccess.php');
 require_once('pagetitles.php');
 $page_title = MR_EDIT_MOVIE_PAGE;
?>
<!DOCTYPE html>
<html>

Doing so properly sets our $page_title variable for use in navmenu.php, which we include
from pagetitles.php. Next, in the <head> element, modify the <title> element to remove
Edit a Movie and replace it with the $page_title as in Listing 24.10.

Listing 24.10.

 1. Unchanged Lines
 2. <html>
 3. <head>
 4. <link ...>
 5. - Removed Line
 6. - <title>Edit a Movie</title>
 7. + Added Line
 8. + <title><?= $page_title ?></title>
 9. Unchanged Lines
10. </head>
11. <body>
12. ...

Next, right below the <body> element, include the navmenu.php script:

<body>
<?php
 require_once('navmenu.php');
?>
 <div class="card">
 <div class="card-body">

Since we include the navbar, let’s remove the link right below <h1>Edit a Movie</h1> that
takes us back to the home page. See Listing 24.11.

PHP Web Development with MySQL—A Hands On Approach to Application Programming374

24. Adding a Navigation Menu

Listing 24.11.

 1. Unchanged Lines
 2. <div class="card">
 3. <div class="card-body">
 4. <h1>Edit a Movie</h1>
 5. - Removed Lines
 6. - <nav class="nav">
 7. - Movies I Like
 8. - </nav>
 9. Unchanged Lines
10. <hr/>

Only Show the Edit Link to Administrators

Let’s go back to the moviedetails.php script and add a condition that only allows a user with
administrative privileges to see the link to the editmovie.php script. Add the code at lines 4-7
and 13 in Listing 24.12 below the table starting after the right after the second closing </div>
tag.

Listing 24.12.

 1. </table>
 2. </div>
 3. </div>
 4. <?php
 5. if (isset($_SESSION['user_access_privileges'])
 6. && $_SESSION['user_access_privileges'] == 'admin'):
 7. ?>
 8. <hr/>
 9. <p class='nav-link'>If you would like to change any of the details
10. of this movie feel free to
11. <a href='editmovie.php?id_to_edit=<?= $row['id'] ?>'> edit it</p>
12. <?php
13. endif;
14. else:
15. ?>
16. <h3>No Movie Details :-(</h3>
17. <?php
18. endif;
19. else:
20. ?>
21. <h3>No Movie Details :-(</h3>
22. <?php
23. endif;
24. ?>
25. </div>
26. </div>
27. <script ...></script>

Add Navigation Bar to removemovie.php

PHP Web Development with MySQL—A Hands On Approach to Application Programming 375

Add Navigation Bar to removemovie.php
Finally, we’ll add the navbar to the
removemovie.php script. We want our menu to
look like Figure 24.14.

You need to be logged in as a user with
access_privileges set to admin to test this.

Open pagetitles.php and add the following
MR_REMOVE_MOVIE_PAGE definition right after
the MR_EDIT_MOVIE_PAGE definition:

<?php
 // Page Titles
 // ...
 define('MR_EDIT_MOVIE_PAGE', 'Movie Reservations - Edit Movie');
 define('MR_REMOVE_MOVIE_PAGE', 'Movie Reservations - Remove Movie');

Open the removemovie.php script and include the pagetitles.php script and set $page_title to
MR_REMOVE_MOVIE_PAGE, right after the include for the authorizizeaccess.php script:

<?php
 require_once('authorizeaccess.php');
 require_once('pagetitles.php');
 $page_title = MR_REMOVE_MOVIE_PAGE;
?>
<!DOCTYPE html>
<html>

This properly sets our $page_title variable for use in navmenu.php which we include from
pagetitles.php. Next, in the <head> element, modify the <title> element to remove the text

“Remove a Movie” and replace it with the $page_title (see Listing 24.13).

Figure 24.14.

PHP Web Development with MySQL—A Hands On Approach to Application Programming376

24. Adding a Navigation Menu

Listing 24.13.

 1. Unchanged Lines
 2. ...
 3. <html>
 4. <head>
 5. <link ...>
 6. - Removed Line
 7. - <title>Remove a Movie</title>
 8. + Added Line
 9. + <title><?= $page_title ?></title>
10. Unchanged Lines
11. </head>
12. <body>
13. ...

Next, right below the <body> element, include the navmenu.php script:

<body>
<?php
 require_once('navmenu.php');
?>
 <div class="card">
 <div class="card-body">

Complete Code Listings
Listing 24.14 is the complete listing for the pagetitles.php page.

Listing 24.14.

 1. <?php
 2. // Page Titles
 3. define('MR_HOME_PAGE', 'Movie Reservations');
 4. define('MR_DETAILS_PAGE', 'Movie Reservations - Details');
 5. define('MR_SIGNUP_PAGE', 'Movie Reservations - Sign Up');
 6. define('MR_LOGIN_PAGE', 'Movie Reservations - Login');
 7. define('MR_UNAUTHORIZED_ACCESS_PAGE', 'Movie Reservations - Unauthorized Access');
 8. define('MR_ADD_MOVIE_PAGE', 'Movie Reservations - Add Movie');
 9. define('MR_EDIT_MOVIE_PAGE', 'Movie Reservations - Edit Movie');
10. define('MR_REMOVE_MOVIE_PAGE', 'Movie Reservations - Remove Movie');

Listing 24.15 is the complete listing for the navmenu.php page.

Complete Code Listings

PHP Web Development with MySQL—A Hands On Approach to Application Programming 377

Listing 24.15.

 1. <?php

 2. $page_title = isset($page_title) ? $page_title : "";

 3.

 4. if (session_status() == PHP_SESSION_NONE) {

 5. session_start();

 6. }

 7. ?>

 8. <nav class="navbar sticky-top navbar-expand-md navbar-dark"

 9. style="background-color: #569f32;">

10. <a class="navbar-brand" href="<?= dirname($_SERVER['PHP_SELF']) ?>">

11. <img src="resources/movie_rental_icon.png" width="30" height="30"

12. class="d-inline-block align-top" alt="">

13. <?= MR_HOME_PAGE ?>

14.

15. <button class="navbar-toggler" type="button" data-toggle="collapse"

16. data-target="#navbarNavAltMarkup" aria-controls="navbarNavAltMarkup"

17. aria-expanded="false" aria-label="Toggle navigation">

18.

19. </button>

20. <div class="collapse navbar-collapse" id="navbarNavAltMarkup">

21. <div class="navbar-nav">

22. <a class="nav-item nav-link<?= $page_title == MR_HOME_PAGE ? ' active' : '' ?>"

23. href="<?= dirname($_SERVER['PHP_SELF']) ?>">Home

24. <?php if (isset($_SESSION['user_access_privileges'])

25. && $_SESSION['user_access_privileges'] == 'admin'): ?>

26. <a class="nav-item nav-link<?= $page_title == MR_ADD_MOVIE_PAGE ? ' active' : '' ?>"

27. href="addmovie.php">Add a Movie

28. <?php endif; ?>

29. <?php if (!isset($_SESSION['user_name'])): ?>

30. <a class="nav-item nav-link<?= $page_title == MR_LOGIN_PAGE ? ' active' : '' ?>"

31. href="login.php">Login

32. <a class="nav-item nav-link<?= $page_title == MR_SIGNUP_PAGE ? ' active' : '' ?>"

33. href="signup.php">Sign Up

34. <?php else: ?>

35. <a class="nav-item nav-link"

36. href="logout.php">Logout (<?= $_SESSION['user_name'] ?>)

37. <?php endif; ?>

38. </div>

39. </div>

40. </nav>

PHP Web Development with MySQL—A Hands On Approach to Application Programming378

24. Adding a Navigation Menu

Exercises
1. Create navmenu.php script to hold Navbar logic and add it to the required pages.

1. Display the logged-in user’s name in the navbar, next to the Login link.
2. Add the “Add Movie” link that only admin users can use.

1. Confirm admin users can see the link.
2. Confirm regular site users do not see the link.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 379

Adding Reservation
Features

“For all the folks getting excited about my quotes. Here is another - Yes, I
am a terrible coder, but I am probably still better than you :)”

-Rasmus Lerdorf

Chapter

25

PHP Web Development with MySQL—A Hands On Approach to Application Programming380

25. Adding Reservation Features

Finally, we are ready to add the movie reservation features to our Movie Reservations appli-
cation. This chapter will focus on adding reservation features to the Movie Reservations
application so that users can reserve and return movies. Again, here is the list of modifica-
tions we need to make to finally turn the Movie Listing application into a Movie Reservations
application:

1. Adding Reservation Features
1. Create a database table to hold information for movie reservations
2. Add fields to the movieListing database table to keep track of the number of copies

and reserved movies for each movie
3. Modify the add, edit, remove, and movie details movie scripts to include the

number of copies of a movie
4. Modify the Movie listings page to show a link for reserving a movie for logged in

users
5. Modify the Movie listings page to show a link for removing a movie for users logged

in with admin privileges
6. Add a reservation script for users to check out movies
7. Add a script for a shopping cart that allows users to reserve movies in their cart and

remove them from their cart
8. Add a shopping cart icon that allows users to view their cart
9. Add a reserved movies script allowing users to check movies back in

10. Add a reservations icon that allows users to view their reservations

Add Number of Copies and Number Reserved
To turn our movie listing application into a movie reservation application, we need to know
how many copies of a movie title we have and how many of those copies are reserved. We
will modify the database and add movie checkout features.

Add Number of Copies and Reserved Database Fields

Let’s add two fields to our movieListing table in the Movie database. One for the number of
copies, and another for the number reserved. We’ll use Adminer to alter our table as in
Figure 25.1.

Add Number of Copies and Number Reserved

PHP Web Development with MySQL—A Hands On Approach to Application Programming 381

Select the + after the image_file
field to add two new fields to
the end of the movieListing
table.

For the number_of_copies field:
• In the Column name

below image_file, enter
number_of_copies

• Select the “Type” as int
• Enter 11 for the “Length”
• Check the box and enter 1

for “Default value”

And for the number_reserved field:
• In the Column name below number_of_copies, enter

number_reserved

• Select the “Type” as int
• Enter 11 for the “Length”
• Check the box and enter 0 for “Default value”

Once you press Save, the table description should look
like Figure 25.2. Now all the movies in our movieListing
table have number_of_copies set to 1, and
number_of_reserved set to 0 as shown in Figure 25.3.

Figure 25.1.

Figure 25.2.

Figure 25.3.

PHP Web Development with MySQL—A Hands On Approach to Application Programming382

25. Adding Reservation Features

Tracking Copies for Movies Added
We need to add a form field to the “Add a
Movie” page to set the number of copies of
the movie we want to add. See Figure 25.4.

Open the addmovie.php script and add a <div
class="form-group row"> for “Number of
Copies” with the name attribute set to
movie_copies_number just below the “Movie
Image File" form field” as in Listing 25.1.

Listing 25.1.

 1. Unchanged Lines
 2. ...
 3. <div class="form-group row">
 4. <label for="movie_image_file"
 5. class="col-sm-3 col-form-label-lg">Movie Image File</label>
 6. <div class="col-sm-8">
 7. <input type="file" class="form-control-file" id="movie_image_file"
 8. name="movie_image_file">
 9. </div>
10. </div>
11. + Added Lines
12. + <div class="form-group row">
13. + <label for="movie_copies_number="
14. class="col-sm-3 col-form-label-lg">Number of Copies</label>
15. + <div class="col-sm-8">
16. + <input type="number" class="form-control" id="movie_copies_number"
17. name="movie_copies_number" min="0" max="10" value="1">
18. + </div>
19. + </div>
20. Unchanged Lines
21. </div>
22. <button class="btn btn-primary" type="submit"
23. name="add_movie_submission">Add Movie</button>
24. </form>
25. <script>

Figure 25.4.

Add Number of Copies and Number Reserved

PHP Web Development with MySQL—A Hands On Approach to Application Programming 383

Now let’s head back up to the // Initialization comment and add a line below it of code
that defaults $number_of_copies to 1 as shown in Listing 25.2.

Listing 25.2.

 1. Unchanged Lines
 2. ...
 3. <div class="card">
 4. <div class="card-body">
 5. <h1>Add a Movie</h1>
 6. <hr/>
 7. <?php
 8. // Initialization
 9. $display_add_movie_form = true;
10. $movie_title = "";
11. $movie_rating = "";
12. $movie_director = "";
13. $movie_runtime = "";
14. $movie_genre_text = "";
15. $checked_movie_genres = null;
16. + Added Line
17. + $number_of_copies = 1;
18. Unchanged Lines
19.
20. $genres = [...];

Next, in the if (isset($_POST[...],...))condition that checks if the form was submitted, add
a check that $_POST['movie_copies_number'] is set (Listing 25.3).

Listing 25.3.

 1. Unchanged Lines
 2. ...
 3. $genres = [...];
 4.
 5. if (isset($_POST['add_movie_submission'], $_POST['movie_title'],
 6. $_POST['movie_rating'], $_POST['movie_director'],
 7. $_POST['movie_running_time_in_minutes']
 8. + Added Line
 9. + , $_POST['movie_copies_number']
10. Unchanged Lines
11.))
12. {
13. require_once('dbconnection.php');
14. ...

PHP Web Development with MySQL—A Hands On Approach to Application Programming384

25. Adding Reservation Features

Within this if() condition, just below setting $checked_movie_generes, add a line of code to set
$number_of_copies to $_POST['movie_copies_number'] and cast it to an (int). Casting it ensures
we are working with a valid number and not a random user-supplied string like "100 movies".

Listing 25.4.

 1. Unchanged Lines
 2. if (isset($_POST[...],...))
 3. {
 4. ...
 5. $movie_runtime = $_POST['movie_running_time_in_minutes'];
 6. $checked_movie_genres = $_POST['movie_genre_checkbox'];
 7. + Added Line
 8. + $number_of_copies = (int) $_POST['movie_copies_number'];
 9. Unchanged Lines
10.
11. $movie_genre_text = "";

We need to modify all of our queries to the database to be parameterized queries, so we
need to include the queryutils.php script. A little further down the code, within the condi-
tion for checking there is no file error message (if (empty($file_error_message))), add the
following line of code right after the opening curly brace ({):

Listing 25.5.

 1. Unchanged Lines
 2. ...
 3. if (empty($file_error_message))
 4. {
 5. + Added Line
 6. + require_once('queryutils.php');
 7. +
 8. Unchanged Lines
 9. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
10. or trigger_error(
11. 'Error connecting to MySQL server for' . DB_NAME, E_USER_ERROR
12.);

Add Number of Copies and Number Reserved

PHP Web Development with MySQL—A Hands On Approach to Application Programming 385

We need to modify the SQL insert into the
movieListing table to use the number_of_copies
field. We also need to change it to a param-
eterized query like in Listing 25.6. Finally,
we need to add a row to our table that shows
the value of the “number of copies” field
after adding a movie as in Figure 25.5

Listing 25.6.

 1. Unchanged Lines
 2. ...
 3. if (empty($file_error_message))
 4. {
 5. ...
 6. $movie_image_file_path = addMovieImageFileReturnPathLocation();
 7.
 8. - Removed Lines
 9. - $query = "INSERT INTO movieListing (title, rating, director, running_time_in_minutes, "
10. - . "genre, image_file) VALUES ('$movie_title', '$movie_rating', '$movie_director', "
11. - . "'$movie_runtime', '$movie_genre_text', '$movie_image_file_path')";
12. -
13. - mysqli_query($dbc, $query)
14. - or trigger_error('Error querying database movieListing: Failed to insert movie listing',
15. - E_USER_ERROR);
16. + Added Lines
17. + $query = "INSERT INTO movieListing (title, rating, director, running_time_in_minutes, "
18. + . "genre, image_file, number_of_copies) VALUES (?, ?, ?, ?, ?, ?, ?)";
19. +
20. + $results = parameterizedQuery($dbc, $query, 'ssssssi', $movie_title, $movie_rating,
21. + $movie_director, $movie_runtime, $movie_genre_text, $movie_image_file_path,
22. + $number_of_copies);
23. +
24. + if (mysqli_errno($dbc))
25. + {
26. + trigger_error('Error querying database movieListing', E_USER_ERROR);
27. + }
28. Unchanged Lines
29.
30. if (empty($movie_image_file_path))
31. {
32. $movie_image_file_path = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
33. }

Figure 25.5.

PHP Web Development with MySQL—A Hands On Approach to Application Programming386

25. Adding Reservation Features

Add an HTML table row at the end of the table showing the number of copies of the movie
we added as in Listing 25.7

Listing 25.7.

 1. Unchanged Lines
 2. ...
 3. <table class="table table-striped">
 4. <tbody>
 5. ...
 6. <tr>
 7. <th scope="row">Running Time (minutes)</th>
 8. <td><?= $movie_runtime ?></td>
 9. </tr>
10. <tr>
11. <th scope="row">Genre</th>
12. <td><?= $movie_genre_text ?></td>
13. </tr>
14. + Added Lines
15. + <tr>
16. + <th scope="row">Number of Copies</th>
17. + <td><?= $number_of_copies ?></td>
18. + </tr>
19. Unchanged Lines
20. </tbody>
21. </table>

You need to be logged in as a user with admin privileges to test this.

Add Number of Copies to Editing Page

Let’s add a form field to the “Edit a Movie”
page to set the number of copies of the
movie we’re editing. See Figure 25.6.

Open the editmovie.php script and add a
<div class="form-group row"> for “Number of
Copies” with the name attribute set to
movie_copies_number just below the “Movie
Image File” form field as shown in
Listing 25.8.

Figure 25.6.

Add Number of Copies and Number Reserved

PHP Web Development with MySQL—A Hands On Approach to Application Programming 387

Listing 25.8.

 1. Unchanged Lines
 2. ...
 3. <div class="form-group row">
 4. <label for="movie_image_file"
 5. class="col-sm-3 col-form-label-lg">Movie Image File</label>
 6. <div class="col-sm-8">
 7. <input type="file" class="form-control-file" id="movie_image_file"
 8. name="movie_image_file">
 9. </div>
10. </div>
11. + Added Lines
12. + <div class="form-group row">
13. + <label for="movie_copies_number="
14. + class="col-sm-3 col-form-label-lg">Number of Copies</label>
15. + <div class="col-sm-8">
16. + <input type="number" class="form-control" id="movie_copies_number"
17. + name="movie_copies_number" min="0" max="10" value="1">
18. + </div>
19. + </div>
20. Unchanged Lines
21. </div>
22. <button class="btn btn-primary" type="submit"
23. name="add_movie_submission">Add Movie</button>
24. </form>
25. <script>
26. ...

We need to modify all of our queries to the database to be parameterized and include the
queryutils.php script. Head back up to the where we include dbconnection.php and
movieimagefileutil.php and add an include for queryutils.php:

<?php
 require_once('dbconnection.php');
 require_once('movieimagefileutil.php');
 require_once('queryutils.php');

Now head down to the construction of the first query where we are selecting all of the
movieListing fields located within the if (isset($_GET[id_to_edit'])) condition:

if (isset($_GET['id_to_edit']))
{
 // ...
 $query = "SELECT * FROM movieListing WHERE id = $id_to_edit";
 // ...
}

PHP Web Development with MySQL—A Hands On Approach to Application Programming388

25. Adding Reservation Features

Make the modifications shown in Listing 25.9.

Listing 25.9.

 1. Unchanged Lines
 2. if (isset($_GET['id_to_edit']))
 3. {
 4. $id_to_edit = $_GET['id_to_edit'];
 5. - Removed Lines
 6. - $query = "SELECT * FROM movieListing WHERE id = $id_to_edit";
 7. -
 8. - $result = mysqli_query($dbc, $query)
 9. - or trigger_error('Error querying database movieListing', E_USER_ERROR);
10. + Added Lines
11. + $query = "SELECT * FROM movieListing WHERE id = ?";
12. +
13. + $result = parameterizedQuery($dbc, $query, 'i', $id_to_edit)
14. Unchanged Lines
15. if (mysqli_num_rows($result) == 1)
16. {

Within the if (mysqli_num_rows($result) == 1) condition, just below setting $movie_image_file,
add a line of code to set $number_of_copies to $row['number_of_copies']. Doing so shows the
stored value of number_of_copies on the editing form (Listing 25.10).

Listing 25.10.

 1. Unchanged Lines
 2. if (mysqli_num_rows($result) == 1)
 3. {
 4. $row = mysqli_fetch_assoc($result);
 5.
 6. $movie_title = $row['title'];
 7. ...
 8. $movie_image_file = $row['image_file'];
 9. + Added Line
10. + $number_of_copies = $row['number_of_copies'];
11. Unchanged Lines
12.
13. if (empty($movie_image_file))
14. {

Add Number of Copies and Number Reserved

PHP Web Development with MySQL—A Hands On Approach to Application Programming 389

Next, in the elseif (isset($_POST[...],...)) condition shown in Listing 25.11 that checks if
the form was submitted, add a check for $_POST['movie_copies_number'].

Listing 25.11.

 1. Unchanged Lines
 2. ...
 3. elseif (isset($_POST['add_movie_submission'], $_POST['movie_title'],
 4. $_POST['movie_rating'], $_POST['movie_director'],
 5. $_POST['movie_running_time_in_minutes']
 6. + Added Line
 7. + , $_POST['movie_copies_number']
 8. Unchanged Lines
 9.))
10. {
11. $movie_title = $_POST['movie_title'];

Within this elseif() condition, just below setting $movie_image_file (Listing 25.12), add a
line of code to set $number_of_copies to $_POST['movie_copies_number'] and cast it to an (int).
Now, $number_of_copies holds the updated value submitted by the user.

Listing 25.12.

 1. Unchanged Lines
 2. elseif (isset($_POST[...],...))
 3. {
 4. $movie_title = $_POST['movie_title'];
 5. ...
 6. $movie_image_file = $_POST['movie_image_file'];
 7. + Added Line
 8. + $number_of_copies = (int)$_POST['movie_copies_number'];
 9. Unchanged Lines
10.
11. $movie_genre_text = "";

Finally, within if (empty($file_error_message)), just below the condition to check if a new
image file was selected, make the following modifications (Listing 25.13) to parameterize
the UPDATE to the movieListing table.

PHP Web Development with MySQL—A Hands On Approach to Application Programming390

25. Adding Reservation Features

Listing 25.13.

 1. Unchanged Lines
 2. if (empty($file_error_message))
 3. {
 4. $movie_image_file_path = addMovieImageFileReturnPathLocation();
 5.
 6. // IF new image selected, set it to be updated in the database.
 7. if (!empty($movie_image_file_path))
 8. {
 9. ...
10.
11. $movie_image_file = $movie_image_file_path;
12. }
13.
14. - Removed Lines
15. - $query = "UPDATE movieListing SET title = '$movie_title', rating = '$movie_rating', "
16. - . "director = '$movie_director', running_time_in_minutes = '$movie_runtime', "
17. - . "genre = '$movie_genre_text', image_file = '$movie_image_file' "
18. - . "WHERE id = $id_to_update";
19. -
20. - mysqli_query($dbc, $query)
21. - or trigger_error(
22. - 'Error querying database movieListing: Failed to update movie listing',
23. - E_USER_ERROR
24. -);
25. + Added Lines
26. + $query = "UPDATE movieListing SET title = ?, rating = ?, director = ?,
27. + running_time_in_minutes = ?, genre = ?, image_file = ?,
28. + number_of_copies = ?
29. + WHERE id = $id_to_update";
30. + parameterizedQuery($dbc, $query, 'ssssssii', $movie_title, $movie_rating,
31. + $movie_director, $movie_runtime, $movie_genre_text,
32. + $movie_image_file, $number_of_copies, $id_to_update);
33. +
34. + if(mysqli_errno($dbc))
35. + {
36. + trigger_error(
37. + 'Error querying database movieListing: Failed to update movie listing',
38. + E_USER_ERROR
39. +);
40. + }
41. Unchanged Lines
42.
43. $nav_link = 'moviedetails.php?id=' . $id_to_update;

Add Number of Copies and Number Reserved

PHP Web Development with MySQL—A Hands On Approach to Application Programming 391

Add Number of Copies to Removing Movies
Let’s add a row to the “Remove a Movie”
page that shows the number of copies as
shown in Figure 25.7.

Open the removemovie.php script. We need
to modify all of our queries to the database
to be parameterized queries, so we need to
include the queryutils.php script. Right below
the include for movieimagefileutil.php add a
require_once('queryutils.php'); as shown in
Listing 25.14.

Listing 25.14.

 1. Unchanged Lines
 2. ...
 3. require_once('dbconnection.php');
 4. require_once('movieimagefileutil.php');
 5. + Added Line
 6. + require_once('queryutils.php');
 7. Unchanged Lines
 8.
 9. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
10. or trigger_error(
11. 'Error connecting to MySQL server for' . DB_NAME,
12. E_USER_ERROR
13.);

Next, we parameterize the query for the image file located within the if (isset($_
POST['delete_movie_submission'])...): condition (Listing 25.15).

Listing 25.15.

 1. Unchanged Lines
 2. ...
 3. if (isset($_POST['delete_movie_submission']) && isset($_POST['id'])):
 4.
 5. $id = $_POST['id'];
 6.
 7. // Query image file from DB
 8. - Removed Lines
 9. - $query = "SELECT image_file FROM movieListing WHERE id = $id";
10. -
11. - $result = mysqli_query($dbc, $query)

Figure 25.7.

PHP Web Development with MySQL—A Hands On Approach to Application Programming392

25. Adding Reservation Features

12. + Added Lines
13. + $query = "SELECT image_file FROM movieListing WHERE id = ?";
14. +
15. + $result = parameterizedQuery($dbc, $query, 'i', $id)
16. Unchanged Lines
17. or trigger_error('Error querying database movieListing', E_USER_ERROR);
18.
19. if (mysqli_num_rows($result) == 1)
20. {
21. //...
22. }

Now, let’s parameterize the deletion of the movie from the database as in Listing 25.16.

Listing 25.16.

 1. Unchanged Lines
 2. ...
 3. if (mysqli_num_rows($result) == 1)
 4. {
 5. ...
 6. }
 7. - Removed Lines
 8. - $query = "DELETE FROM movieListing WHERE id = $id";
 9. -
10. - $result = mysqli_query($dbc, $query)
11. + Added Lines
12. + $query = "DELETE FROM movieListing WHERE id = ?";
13. +
14. + $result = parameterizedQuery($dbc, $query, 'i', $id)
15. Unchanged Lines
16. or trigger_error('Error querying database movieListing', E_USER_ERROR);
17.
18. header("Location: " . dirname($_SERVER['PHP_SELF']));
19.
20. elseif (isset($_POST['do_not_delete_movie_submission'])):

Down in the elseif (isset($_GET['id_to_delete'])): condition, make the modifications
shown in Listing 25.17 to parameterize the query for the movie.

Add Number of Copies and Number Reserved

PHP Web Development with MySQL—A Hands On Approach to Application Programming 393

Listing 25.17.

 1. Unchanged Lines
 2. elseif (isset($_GET['id_to_delete'])):
 3. ?>
 4. <h3 class="text-danger">Confirm Deletion of the Following Movie:</h3>

 5. <?php
 6. $id = $_GET['id_to_delete'];
 7.
 8. - Removed Lines
 9. - $query = "SELECT * FROM movieListing WHERE id = $id";
10. -
11. - $result = mysqli_query($dbc, $query)
12. + Added Lines
13. + $query = "SELECT * FROM movieListing WHERE id = ?";
14. +
15. + $result = parameterizedQuery($dbc, $query, 'i', $id)
16. Unchanged Lines
17. or trigger_error('Error querying database movieListing', E_USER_ERROR);
18.
19. if (mysqli_num_rows($result) == 1)
20. {
21. ...

Finally, add an HTML table row for the number of copies with the table data set to
$row['number_of_copies'] just below the row for “Genre”. See Listing 25.18.

Listing 25.18.

 1. Unchanged Lines
 2. <table class="table table-striped">
 3. <tbody>
 4. <tr>
 5. <th scope="row">Rating</th>
 6. <td><?= $row['rating'] ?></td>
 7. </tr>
 8. ...
 9. <tr>
10. <th scope="row">Genre</th>
11. <td><?= $row['genre'] ?></td>
12. </tr>
13. + Added Lines
14. + <tr>
15. + <th scope="row">Number of Copies</th>
16. + <td><?= $row['number_of_copies'] ?></td>
17. + </tr>
18. Unchanged Lines
19. </tbody>
20. </table>

PHP Web Development with MySQL—A Hands On Approach to Application Programming394

25. Adding Reservation Features

Add Number_of_copies and Number Available to Movie Details
We’ll add a row to the “Movie Details” page
that shows the number available and the
number in inventory. See Figure 25.8.

You will need to be logged in with admin
privileges to see the number in inventory.

Open the moviedetails.php script. We need
to modify the query for this movie to the
database to be parameterized, so we need to
include the queryutils.php script. Within the
if (isset($_GET['id'])) condition, right below
the include for movielistingfileconstants.php
add a require_once('queryutils.php'); from
Listing 25.19.

Listing 25.19.

 1. Unchanged Lines
 2. ...
 3. if (isset($_GET['id'])):
 4.
 5. require_once('dbconnection.php');
 6. require_once('movielistingfileconstants.php');
 7. + Added Line
 8. + require_once('queryutils.php');
 9. Unchanged Lines
10.
11. $id = $_GET['id'];
12.
13. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
14. or trigger_error(
15. 'Error connecting to MySQL server for' . DB_NAME,
16. E_USER_ERROR
17.);

Next, parameterize the query for the movie details (Listing 25.20).

Figure 25.8.

Add Number of Copies and Number Reserved

PHP Web Development with MySQL—A Hands On Approach to Application Programming 395

Listing 25.20.

 1. Unchanged Lines
 2. ...
 3. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 4. or trigger_error(
 5. 'Error connecting to MySQL server for' . DB_NAME,
 6. E_USER_ERROR
 7.);
 8.
 9. - Removed Lines
10. - $query = "SELECT * FROM movieListing WHERE id = $id";
11. -
12. - $result = mysqli_query($dbc, $query)
13. + Added Lines
14. + $query = "SELECT * FROM movieListing WHERE id = ?";
15. +
16. + $result = parameterizedQuery($dbc, $query, 'i', $id)
17. Unchanged Lines
18. or trigger_error('Error querying database movieListing', E_USER_ERROR);
19.
20. if (mysqli_num_rows($result) == 1)
21. {
22. ...
23. }

Then, add a table row for number available with the table data set to $row['number_of_copies']
- $row['number_reserved'] just below the row for “Genre” as in Listing 25.21.

Listing 25.21.

 1. Unchanged Lines
 2. ...
 3. <table class="table table-striped">
 4. <tbody>
 5. <tr>
 6. <th scope="row">Rating</th>
 7. <td><?= $row['rating'] ?></td>
 8. </tr>
 9. ...
10. <tr>
11. <th scope="row">Genre</th>
12. <td><?= $row['genre'] ?></td>
13. </tr>
14. + Added Lines
15. + <tr>
16. + <th scope="row">Number of Copies</th>
17. + <td><?= $row['number_of_copies'] - $row['number_reserved'] ?></td>
18. + </tr>
19. Unchanged Lines
20. </tbody>
21. </table>

PHP Web Development with MySQL—A Hands On Approach to Application Programming396

25. Adding Reservation Features

Finally, just below the new table row for the number of copies, add a row for the number in
inventory that displays if the user has administrative privileges. See Listing 25.22.

Listing 25.22.

 1. Unchanged Lines
 2. <table class="table table-striped">
 3. <tbody>
 4. <tr>
 5. <th scope="row">Rating</th>
 6. <td><?= $row['rating'] ?></td>
 7. </tr>
 8. ...
 9. <tr>
10. <th scope="row">Genre</th>
11. <td><?= $row['genre'] ?></td>
12. </tr>
13. <tr>
14. <th scope="row">Number of Copies</th>
15. <td><?= $row['number_of_copies'] - $row['number_reserved'] ?></td>
16. </tr>
17. + Added Lines
18. + <?php
19. + if (isset($_SESSION['user_access_privileges'])
20. + && $_SESSION['user_access_privileges'] == 'admin'):
21. + ?>
22. + <tr>
23. + <th scope="row">Number in Inventory</th>
24. + <td><?= $row['number_of_copies'] ?></td>
25. + </tr>
26. + <?php
27. + endif;
28. + ?>
29. Unchanged Lines
30. </tbody>
31. </table>

Persisting Movie Reservations for Users

PHP Web Development with MySQL—A Hands On Approach to Application Programming 397

Persisting Movie Reservations for Users

[1] many-to-many: https://phpa.me/sql-many-to-many

Now that we can track the number of movies available and reserved, we have to add a table
to the Movie database that tracks all movies reserved by a user. Therefore, we need a table
that represents a many-to-many[1] relationship between users and movies, otherwise known
as a “join” table.

A join table involves common fields, typically the ID fields, from two or more tables. These
fields are set as foreign keys to the selected rows in the table they represent. In this case,
we want to relate the user table to the movieListing table, and we want this relationship to
represent a reservation. Foreign keys are
usually named using the table field name
concatenated with the table’s primary key
name. Therefore, if we create a table named
reservation with the usual primary key set to
id, it has the following foreign keys:

In Adminer (Figure 25.9) create a table called reservation in the Movie database with the
following attributes:

Column Name Type Length Auto Increment
id int 11 Yes
user_id int 11 No
movieListing_id int 11 No

Figure 25.9.

Field Name Purpose
id Primary Key
user_id Foreign Key
movieListing_id Foreign Key

https://phpa.me/sql-many-to-many

PHP Web Development with MySQL—A Hands On Approach to Application Programming398

25. Adding Reservation Features

Checking Movies Reserved by Users
We’re going to need to know if a user has a movie reserved and the number of movies a user
has reserved. Since we make these queries often, it makes sense to create functions in the
queryutils.php script.

Create IsMovieReservedByUser() Function

Let’s create a function called isMovieReservedByUser(). It needs two parameters: $movie_id and
$user_id. Open the queryutils.php script and add the header and function shown in Listing
25.23. This function queries the reservation table of the Movie database for a row containing
the given movieListing_id and the given user_id. If a row is found in the database, the func-
tion returns true otherwise false.

Listing 25.23.
 1. /**
 2. * Purpose: Determines if a movie is currently reserved by a user
 3. *
 4. * Description: Given a movie id and a user id, queries to see if this user has
 5. * this movie reserved. If so, true is returned, otherwise false.
 5. * @param $movie_id
 7. * @param $user_id
 8. * @return bool True if this movie is reserved by this user, otherwise false.
 9. */
10. function isMovieReservedByUser($movie_id, $user_id)
11. {
12. require_once('dbconnection.php');
13.
14. $ret_val = false; // Assume failure
15.
16. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
17. or trigger_error(
18. 'Error connecting to MySQL server for' . DB_NAME,
19. E_USER_ERROR
20.);
21.
22. $query = "SELECT id FROM reservation
23. WHERE movieListing_id = ? AND user_id = ?";
24.
25. $result = parameterizedQuery($dbc, $query, 'ii', $movie_id, $user_id)
26. or trigger_error('Error querying database movieListing',
27. E_USER_ERROR);
28.
29. if (mysqli_num_rows($result) == 1)
30. {
31. $ret_val = true;
31. }
32.
33. return $ret_val;
34. }

Checking Movies Reserved by Users

PHP Web Development with MySQL—A Hands On Approach to Application Programming 399

Create NumberOfMoviesReservedByUser() Function
Let’s create a function called numberOfMoviesReservedByUser(). It requires one parameter:
$user_id. Add the header and function in Listing 25.24. This function queries the
reservation table of the Movie database for all the rows containing the given user_id. In line
20, we use MySQL’s COUNT() function to total the number of matching rows. This number
returned indicates the number of movies this user has reserved.

Listing 25.24.

 1. /**
 2. * Purpose: Determines the number of movies reserved by a user
 3. *
 4. * Description: Given a user id, a query is made for the number of movies
 5. * reserved by this user. This number is returned.
 6. *
 7. * @param $user_id
 8. * @return int The number of movies reserved by this user.
 9. */
10. function numberOfMoviesReservedByUser($user_id)
11. {
12. require_once('dbconnection.php');
13.
14. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
15. or trigger_error(
16. 'Error connecting to MySQL server for' . DB_NAME,
17. E_USER_ERROR
18.);
19.
20. $query = "SELECT COUNT(id) FROM reservation WHERE user_id = ?";
21.
22. $result = parameterizedQuery($dbc, $query, 'i', $user_id)
23. or trigger_error('Error querying database movieListing',
24. E_USER_ERROR);
25.
26. $retval = 0;
27.
28. if (mysqli_num_rows($result) == 1)
29. {
30. $row = mysqli_fetch_row($result);
31. $retval = $row['total'];
32. }
33.
34. return $retval;
35. }

PHP Web Development with MySQL—A Hands On Approach to Application Programming400

25. Adding Reservation Features

Modify Homepage Based On Access Privileges
We need to modify the homepage to show various information based on who is logged in.
There are three different contexts for viewing information on the homepage:

1. When no one is logged in.
2. When a user is logged in with “admin” privileges.
3. When a user is logged in with “user” privileges.

When no one is logged in, we only want to
display the movies as in Figure 25.10. When
a user with admin privileges is logged in,
we want the trashcan icon to be displayed
for removing a movie (See Figure 25.11).
Finally, when logged in with user privileges,
the shopping cart icon can be displayed for
adding the movie to a cart. The cart only
shows if copies are available to reserve and
the user has not already reserved it as in
Figure 25.12.

The shopping cart icon is the Font Awesome fa-shopping-cart icon which is free to use.
The shopping cart link takes the user to a new page we create for reserving that movie.

Figure 25.10.

Figure 25.11. Figure 25.12.

Modify Homepage Based On Access Privileges

PHP Web Development with MySQL—A Hands On Approach to Application Programming 401

Remove “Add a Movie” from Home Page
We already have the functionality to add a new movie from the navbar when a user with
administrative privileges is logged in. Open the index.php script and let’s remove the link to
add a new movie from the homepage, just below the <h1><?= $page_title ?></h1> line. Open
the index.php script and make the modifications in Listing 25.25.

Listing 25.25.

 1. Unchanged Lines
 2. <body>
 3. <?php
 4. require_once('navmenu.php');
 5. ?>
 6. <div class="card">
 7. <div class="card-body">
 8. <h1><?= $page_title ?></h1>
 9. - Removed Line
10. - <p class='nav-link'>If you have a movie you would like to include,
11. - feel free to add one</p>
12. Unchanged Lines
13. <?php
14. require_once('dbconnection.php');

Modify Movie Listing Query

Since we only want to show a link to reserve a movie if the movie is reservable, we need to
modify the movie listing query to include the number_of_copies and number_reserved fields.
Right below connection to the database, make the modifications from Listing 25.26.

Listing 25.26.

 1. Unchanged Lines
 2. ...
 3. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 4. or trigger_error(
 5. 'Error connecting to MySQL server for' . DB_NAME,
 6. E_USER_ERROR
 7.);
 8.
 9. - Removed Line
10. - $query = "SELECT id, title, image_file FROM movieListing ORDER BY title";
11. + Added Line
12. + $query = "SELECT id, title, image_file, number_of_copies, number_reserved
13. + FROM movieListing ORDER BY title";
14. Unchanged Lines
15. $result = mysqli_query($dbc, $query)
16. or trigger_error('Error querying database movieListing', E_USER_ERROR);

PHP Web Development with MySQL—A Hands On Approach to Application Programming402

25. Adding Reservation Features

Show Icons Based On User Logged In
Currently, we always show the trashcan icon for each movie row as in Listing 25.27.

Listing 25.27.

 1. <table class="table table-striped table-hover">
 2. <thead>
 3. <tr>
 4. <th scope="col"><h4>Movie Titles</h4></th>
 5. <th scope="col"></th>
 6. <th scope="col"></th>
 7. </tr>
 8. </thead>
 9. <tbody>
10. <?php
11. while ($row = mysqli_fetch_assoc($result))
12. {
13. // ...
14.
15. echo "<tr><td><img src=''" . $movie_image_file . "' class='img-thumbnail'"
16. . "style='max-height: 75px;' alt='Movie image'></td>"
17. . "<td class='align-middle'><a class='nav-link' href='moviedetails.php?id="
18. . $row['id'] . "'>" . $row['title'] ."</td>"
19. . "<td class='align-middle'><a class='nav-link' href='removemovie.php?id_to_delete="
20. . $row['id'] ."'><i class='fas fa-trash-alt'></i></td></tr>";
21. }
22. ?>
23. </tbody>
24. </table>

We need to modify the logic based on who’s logged in (if anyone). If someone with user
privileges is logged in, we want to display a shopping cart link for this movie if it can be
reserved. If someone with admin privileges is logged in, we want to show a trashcan link for
removing the movie. If no one is logged in, we won’t display any link. Listing 25.28 outlines
what the logic should look like.

Modify Homepage Based On Access Privileges

PHP Web Development with MySQL—A Hands On Approach to Application Programming 403

Listing 25.28.

 1. while($row = mysqli_fetch_assoc($result))
 2. {
 3. // ...
 4. $movie_title_row = ... // Movie row info of first two columns (image and title)
 5.
 6. IF user is logged in
 7.
 8. IF logged in user has admin privileges
 9.
10. $movie_title_row .= ... // Add trashcan link to remove movie for third coloum
11.
12. ELSE IF logged in user has user priviliges AND this movie can be reserved AND this user
13. doesn't already have this movie reserved
14.
15. movie_title_row .= ... // Add shopping cart link to reserve movie for third column
16.
17. ELSE user is not logged in
18.
19. $movie_title_row .= ... // Add empty info for third column
20.
21. ENDIF
22.
23. echo $movie_title_row
24. }

This example uses pseudo-code to focus on the logic.

Make the code modifications in Listing 25.29 to implement this logic.

Listing 25.29.

 1. Unchanged Lines
 2. while($row = mysqli_fetch_assoc($result))
 3. {
 4. $movie_image_file = $row['image_file'];
 5.
 6. if (empty($movie_image_file))
 7. {
 8. $movie_image_file = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
 9. }
10.

PHP Web Development with MySQL—A Hands On Approach to Application Programming404

25. Adding Reservation Features

11. - Removed Lines
12. - echo "<tr><td><img src=" . $movie_image_file . " class='img-thumbnail'"
13. - . "style='max-height: 75px;' alt='Movie image'></td>"
14. - . "<td class='align-middle'><a class='nav-link' href='moviedetails.php?id="
15. - . $row['id'] . "'>" . $row['title'] ."</td>"
16. - . "<td class='align-middle'><a class='nav-link' href='removemovie.php?id_to_delete="
17. - . $row['id'] ."'><i class='fas fa-trash-alt'></i></td></tr>";
18. + Added Lines
19. + $movie_title_row = "<tr><td><img src=" . $movie_image_file . " class='img-thumbnail'"
20. + . "style='max-height: 75px;' alt='Movie image'></td>"
21. + . "<td class='align-middle'><a class='nav-link' href='moviedetails.php?id="
22. + . $row['id'] . "'>" . $row['title'] ."</td>"
23. +
24. + if (isset($_SESSION['user_access_privileges']))
25. + {
26. + if ($_SESSION['user_access_privileges'] == 'admin')
27. + {
28. + $movie_title_row .= "<td class='align-middle'><a class='nav-link' '
29. + . 'href='removemovie.php?id_to_delete="
30. + . $row['id'] ."'><i class='fas fa-trash-alt'></i></td></tr>";
31. + }
32. + else if ($_SESSION['user_access_privileges'] == 'user'
33. + && ($row['number_of_copies'] > $row['number_reserved'])
34. + && !isMovieReservedByUser($row['id'], $_SESSION['user_id']))
35. + {
36. + $movie_title_row .= "<td class='align-middle'><a class='nav-link' "
37. + . "href='reservemovie.php?id_to_reserve="
38. + . $row['id'] ."'><i class='fas fa-shopping-cart'></i></td></tr>";
39. + }
40. + else // We shouldn't ever get here, but it's a good practice
41. + {
42. + $movie_title_row .= "<td class='align-middle'></td>";
43. + }
44. + }
45. + else
46. + {
47. + $movie_title_row .= "<td class='align-middle'></td>";
48. + }
49. +
50. + $movie_title_row .= "</tr>";
51. +
52. + echo $movie_title_row;
53. Unchanged Lines
54. }

Refactoring to Remove Duplicate Inclusions

PHP Web Development with MySQL—A Hands On Approach to Application Programming 405

Note that in the elseif() condition:

else if ($_SESSION['user_access_privileges'] == 'user'
 && ($row['number_of_copies'] > $row['number_reserved'])
 && !isMovieReservedByUser($row['id'], $_SESSION['user_id']))

We have three conditions to satisfy before displaying the shopping cart link to reserve a movie:
• Does the logged-in user have user privileges?
• Are the number of copies for this movie currently more than the number currently

reserved?
• And, has the user already reserved this movie (which we check with our

isMovieReservedByUser() function)?
Also, note that the link refers to the script reservemovie.php we will create below.

Since we are calling the function isMovieReservedByUser(), which resides in the queryutils.php
script, let’s add an include for it right below our dbconnection.php and
movielistingfileconstants.php includes. Refer to Listing 25.30.

<div class="card">
 <div class="card-body">
 <h1><?= $page_title ?></h1>
 <?php
 require_once('dbconnection.php');
 require_once('movielistingfileconstants.php');
 require_once('queryutils.php');

Refactoring to Remove Duplicate Inclusions
Did you notice? Every script in our application that includes queryytils.php also includes
navmenu.php. This script is a good place to remove duplicate inclusions and have
navmenu.php include queryutils.php. Removing duplicate code improves maintainability. It
would be tedious and error-prone to update all occurrences of the code in the future. Search
for all require_once('queryutils.php'); statements in the application and remove them. There
should be an inclusion in these files:

• addmovie.php

• editmovie.php

• index.php

• login.php

• moviedetails.php

• removemovie.php

• signup.php

PHP Web Development with MySQL—A Hands On Approach to Application Programming406

25. Adding Reservation Features

Open the navmenu.php script and include queryutils.php right below the first condition that
calls session_start() if it has not already been started (Listing 25.30).

Listing 25.30.

 1. Unchanged Lines
 2. <?php
 3. $page_title = isset($page_title) ? $page_title : "";
 4.
 5. if (session_status() == PHP_SESSION_NONE)
 6. {
 7. session_start();
 8. }
 9.
10. + Added Line
11. + require_once('queryutils.php');
12. Unchanged Lines
13.
14. ?>
15. <nav ...>

Also, notice that we have multiple inclusions of the Font Awesome style sheet in multiple
scripts that already include navmenu.php. In addition to navmenu.php, there should be an inclu-
sion in these files:

• login.php

• removemovie.php

• reservemovie.php

• unauthorizedaccess.php

Look for this line:

<link rel="stylesheet" href="https://use.fontawesome.com/...">

Remove it from all of the above scripts and add this link right before the opening <nav...>
link as in Listing 25.31.

Script for Reserving Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 407

Listing 25.31.

 1. Unchanged Lines
 2. <?php
 3. $page_title = isset($page_title) ? $page_title : "";
 4.
 5. if (session_status() == PHP_SESSION_NONE)
 6. {
 7. session_start();
 8. }
 9.
10. require_once('queryutils.php');
11. ?>
12. + Added Lines
13. + <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.8.1/css/all.css"
14. + integrity="sha384-50oBUHEmvpQ+1lW4y57PTFmhCaXp0ML5d60M1M7uH2+nqUivzIebhndOJK28anvf"
15. + crossorigin="anonymous">
16. Unchanged Lines
17. <nav ...>
18. ...

Script for Reserving Movies
Browsing and reserving movies should be
similar to shopping for items in an online
store. When a user finds an item, in our case
a movie they like, they should be able to add
it to a shopping cart by clicking on the shop-
ping cart icon for a movie they’re interested
in. See Figure 25.13.

We want them to see a page like Figure 25.14
allowing them to add it to their cart.

First open pagetitles.php and add the
following MR_RESERVE_MOVIE_PAGE definition
right after the MR_REMOVE_MOVIE_PAGE defini-
tion:

Figure 25.13.

Figure 25.14.

PHP Web Development with MySQL—A Hands On Approach to Application Programming408

25. Adding Reservation Features

 Unchanged Lines
 <?php
 // Page Titles
 define('MR_HOME_PAGE', 'Movie Reservations');
 ...
 define('MR_REMOVE_MOVIE_PAGE', 'Movie Reservations - Remove Movie');
+ Added Line
+ define('MR_RESERVE_MOVIE_PAGE', 'Movie Reservations - Reserve Movie');

The reservation page is a standard Bootstrap page showing the movie details with a button
for adding the movie to a shopping cart. There are two ways to get to this script. The first is
through an HTTP GET from the homepage that includes the movie ID as a query param-
eter. The second is through an HTTP POST that includes the movie ID as a hidden form
parameter when someone adds the movie to their cart on the same page.

Create a new script called reservemovie.php and add the code in Listing 25.32.

Listing 25.32.

 1. <!DOCTYPE html>
 2. <?php
 3. require_once('pagetitles.php');
 4. $page_title = MR_RESERVE_MOVIE_PAGE;
 5. ?>
 6. <html>
 7. <head>
 8. <title><?= $page_title ?></title>
 9. <link rel="stylesheet"
10. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
11. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
12. crossorigin="anonymous">
13. </head>
14. <body>
15. <?php
16. require_once('navmenu.php');
17. ?>
18. <div class="card">
19. <div class="card-body">
20. <h1>Reserve Movie</h1>
21. <?php
22. require_once('dbconnection.php');
23. require_once('movieimagefileutil.php');
24.
25. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
26. or trigger_error(
27. 'Error connecting to MySQL server for' . DB_NAME,
28. E_USER_ERROR
29.);

Script for Reserving Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 409

30.
31. if (isset($_POST['add_to_cart']) && isset($_POST['id'])):
32.
33. // ...
34.
35. elseif (isset($_GET['id_to_reserve'])):
36. // ...
37. else: // Unintended page link - No movie to reserve, redirect to index
38.
39. header("Location: " . dirname($_SERVER['PHP_SELF']));
40. exit();
41.
42. endif;
43. ?>
44. </div>
45. </div>
46. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
47. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
48. crossorigin="anonymous"></script>
49. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
50. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
51. crossorigin="anonymous"></script>
52. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
53. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
54. crossorigin="anonymous"></script>
55. </body>
56. </html>

This code is a boilerplate script that should look familiar to you. Lines 3, 4, and 8 set and
display the page title. Line 16 includes and displays the navbar. Line 20 displays “Reserve
Movie” in an <h1> element set. Lines 22–29 include dbconnection.php, movieimagefileutil.php,
and connect to the Movie database.

Line 31 (if (isset($_POST['add_to_cart']) && isset($_POST['id'])):) is the condition to
check whether the user pressed the “Add to Cart” button. The name attribute for this button is
named add_to_cart. We add code within this condition that adds this movie to the user’s cart
to be reserved.

Line 35 (elseif (isset($_GET['id_to_reserve'])):) is the condition where the user navigated
from the homepage by selecting the shopping cart icon for this movie. This condition is
where we display the movie details and the “Add to Cart” form button. Remember, use GET
for read-only operations.

PHP Web Development with MySQL—A Hands On Approach to Application Programming410

25. Adding Reservation Features

Line 37 (else: // Unintended page link - No movie to reserve, redirect to index) is a ‘catch-
all’ condition that covers someone typing in the name of the script in the URL field of their
browser. If this occurs, line 39 redirects the user back to the homepage.

The rest of the code is the standard Bootstrap boilerplate script inclusions.

Show Details and Form for Adding to Cart

When the user first navigates to this page as a result of selecting the shopping cart icon for
this movie, code will execute in this condition:

elseif (isset($_GET['id_to_reserve'])):
 // ...

Here we display the movie details and a form button for adding the movie to our cart. The
code for the movie details will be identical to the code in removemovie.php, except we don't
have to list the number of copies, and we only have one button.

Add the code in Listing 25.33 to the elseif (isset($_GET['id_to_reserve'])): condition:

Listing 25.33.

 1. elseif (isset($_GET['id_to_reserve'])):
 2. ?>
 3. <h3 class="text-success">Confirm Reservation of the Following Movie:</h3>

 4. <?php
 5. $id = $_GET['id_to_reserve'];
 6.
 7. $query = "SELECT * FROM movieListing WHERE id = ?";
 8.
 9. $result = parameterizedQuery($dbc, $query, 'i', $id);
10.
11. if(mysqli_errno($dbc))
12. {
13. trigger_error('Error querying database movieListing', E_USER_ERROR);
14. }
15.
16. if (mysqli_num_rows($result) == 1)
17. {
18. $row = mysqli_fetch_assoc($result);
19.
20. $movie_image_file = $row['image_file'];
21.

Script for Reserving Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 411

22. if (empty($movie_image_file))
23. {
24. $movie_image_file = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
25. }
26. ?>
27. <h1><?= $row['title'] ?></h1>
28. <div class="row">
29. <div class="col-2">
30. <img src="<?= $movie_image_file ?>" class="img-thumbnail"
31. style="max-height: 200px;" alt="Movie image">
32. </div>
33. <div class="col">
34. <table class="table table-striped">
35. <tbody>
36. <tr>
37. <th scope="row">Rating</th>
38. <td><?= $row['rating'] ?></td>
39. </tr>
40. <tr>
41. <th scope="row">Director</th>
42. <td><?= $row['director']? ></td>
43. </tr>
44. <tr>
45. <th scope="row">Running Time (minutes)</th>
46. <td><?= $row['running_time_in_minutes'] ?></td>
47. </tr>
48. <tr>
49. <th scope="row">Genre</th>
50. <td><?= $row['genre'] ?></td>
51. </tr>
52. </tbody>
53. </table>
54. </div>
55. </div>
56. <p>
57. <form method="POST" action="<?= $_SERVER['PHP_SELF'] ?>">
58. <button class="btn btn-success" type="submit" name="add_to_cart">Add to Cart</button>
59. <input type="hidden" name="id" value="<?= $id ?>">
60. </form>
61. <?php
62. }
63. else
64. {
65. ?>
66. <h3>No Movie Details :-(</h3>
67. <?php
68. }
69.
70. else: // Unintended page link - No movie to reserve, redirect back to index

PHP Web Development with MySQL—A Hands On Approach to Application Programming412

25. Adding Reservation Features

This code should be familiar to you by now. We use our parameterized query function to
look up and display the movie details based on the movie ID parameter we receive or show
an error message if no match is found.

Since we see some duplication of code in multiple pages, it would be an excellent exer-
cise to refactor this out soon by modularizing. I leave that to you as an exercise.

Adding a Movie to the Cart
Once the user clicks the “Add to Cart” button (Figure 25.15), the
HTML POST routes back to the same page since the form’s action
attribute is set to <?= $_SERVER['PHP_SELF'] ?>. Since the form’s input
element’s name attribute is set to add_to_cart, the code will execute in
this condition:

if (isset($_POST['add_to_cart']) && isset($_POST['id'])):

Here is where we:
1. check to see if the movie is still reservable
2. reserve the movie if it is still reservable
3. update number_reserved in the movieListing table (if reserved).
4. Add the movie to the user’s shopping cart.
5. Redirect back to the Home page.

Add the code in Listing 25.34 to the if (isset($_POST['add_to_cart']) &&
isset($_POST['id'])): condition, and I will walk through it below.

Listing 25.34.

 1. <?php
 2. if (isset($_POST['add_to_cart']) && isset($_POST['id'])):
 3.
 4. $movie_id = $_POST['id'];
 5.
 6. // Query if movie is still reservable
 7. $query = "SELECT id FROM movieListing
 8. WHERE id = ? AND number_of_copies - number_reserved > 0";
 9. $result = parameterizedQuery($dbc, $query, 'i', $movie_id);
10.

Figure 25.15.

Script for Reserving Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 413

11. if(mysqli_errno($dbc))
12. {
13. trigger_error('Error querying database movieListing', E_USER_ERROR);
14. }
15.
16. // Reserve movie if it's reservable, update the number of reserved copies
17. // in movieListing for reserved movies, and add it to the cart
18. if (mysqli_num_rows($result) == 1 && isset($_SESSION['user_id']))
19. {
20. $user_id = $_SESSION['user_id'];
21. $query = "INSERT INTO reservation (user_id, movieListing_id) VALUES (?, ?)";
22. $result = parameterizedQuery($dbc, $query, 'ii', $user_id, $movie_id);
23.
24. if (mysqli_errno($dbc))
25. {
26. trigger_error('Error querying database movieListing.reservation', E_USER_ERROR);
27. }
28.
29. $query = "UPDATE movieListing SET number_reserved = number_reserved + 1 WHERE id = ?";
30. $result = parameterizedQuery($dbc, $query, 'i', $movie_id);
31.
32. if (mysqli_errno($dbc))
33. {
34. trigger_error('Error querying database movieListing.reservation', E_USER_ERROR);
35. }
36.
37. if (isset($_SESSION['cart']))
38. {
39. array_push($_SESSION['cart'], $movie_id);
40. }
41. else
42. {
43. $_SESSION['cart'] = [$movie_id];
44. }
45. }
46.
47. header("Location: " . dirname($_SERVER['PHP_SELF']));
48. exit;
49.
50. elseif (isset($_GET['id_to_reserve'])):

Lines 7–9 queries the database for the id in the movieListing database and returns a row if
there are enough reservable copies (number_of_copies - number_reserved).

PHP Web Development with MySQL—A Hands On Approach to Application Programming414

25. Adding Reservation Features

Line 18 checks the condition that we have a row for this query, indicating it is reservable. To
do so, we should get information about the movie from the database and have a logged-in
user.

if (mysqli_num_rows($result) == 1 && isset($_SESSION['user_id']))

Lines 20–44 execute if the movie is reservable.

Lines 21–27 insert the reservation into the reservation storing the movie and user ID.

Lines 29–35 update the number of reserved movies by 1 for the movie.

Lines 37–44 check for the existence of a shopping cart. This cart is an array held in the
session variable: $_SESSION['cart']. If the cart exists, the movie ID is added or pushed onto
the end of the array. Otherwise, we create the cart with the movie ID as the first element.

Line 47 routes to the home page and executes regardless if the movie is added to the cart or
not.

Race Conditions
Since this movie reservation application is multi-user, and multiple users can be competing
for a limited number of movies simultaneously, this presents a problem known as a

“Race Condition”. The best and most straightforward way to explain this is to think of it
like multiple people are using an airline reservation system taking the same flight from
Madison, Wisconsin, to Richmond, Virginia. Let’s say ten people are trying to reserve this
flight at the same time, and two people are about to pick seat 15A because we all know
sitting closer to the front and having a window seat is the best! An airline seat, like a copy
of a movie in our reservation system, is a resource. Any application that doles out limited
resources needs to account for this situation. In the case of being the unlucky person who
picked seat 15A second, you should be presented with a message that says, “We’re sorry, that
seat is no longer available.” Then, you need to pick another seat. In the case of our movie
reservation application, I did not add any code that would put up a modal dialog indi-
cating the movie is no longer available because someone else had reserved it. But I should
have! Again, I leave this as an exercise for you to do, which you should, especially if you
were to deploy an application where you would need to handle race conditions.

Script for Reserving Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 415

Complete Code Listing
Listing 25.35 is the complete listing for the reservemovie.php page:

Listing 25.35.

 1. <!DOCTYPE html>
 2. <?php
 3. require_once('pagetitles.php');
 4. $page_title = MR_RESERVE_MOVIE_PAGE;
 5. ?>
 6. <html>
 7. <head>
 8. <title><?= $page_title ?></title>
 9. <link rel="stylesheet"
10. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
11. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
12. crossorigin="anonymous">
13. </head>
14. <body>
15. <?php
16. require_once('navmenu.php');
17. ?>
18. <div class="card">
19. <div class="card-body">
20. <h1>Reserve Movie</h1>
21. <?php
22. require_once('dbconnection.php');
23. require_once('movieimagefileutil.php');
24.
25. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
26. or trigger_error(
27. 'Error connecting to MySQL server for' . DB_NAME,
28. E_USER_ERROR
29.);
30.
31. if (isset($_POST['add_to_cart']) && isset($_POST['id'])):
32.
33. $movie_id = $_POST['id'];
34.
35. // Query if movie is still reservable
36. $query = "SELECT id FROM movieListing
37. WHERE id = ? AND number_of_copies - number_reserved > 0";
38.
39. $result = parameterizedQuery($dbc, $query, 'i', $movie_id);
40.
41. if (mysqli_errno($dbc))
42. {
43. trigger_error('Error querying database movieListing', E_USER_ERROR);
44. }

PHP Web Development with MySQL—A Hands On Approach to Application Programming416

25. Adding Reservation Features

45.
46. // Reserve movie if it's reservable, update the number of reserved copies
47. // in movieListing for reserved movies, and add it to the cart
48. if (mysqli_num_rows($result) == 1 && isset($_SESSION['user_id']))
49. {
50. $user_id = $_SESSION['user_id'];
51.
52. $query = "INSERT INTO reservation (user_id, movieListing_id) VALUES (?, ?)";
53. $result = parameterizedQuery($dbc, $query, 'ii', $user_id, $movie_id);
54.
55. if (mysqli_errno($dbc))
56. {
57. trigger_error('Error querying database movieListing.reservation', E_USER_ERROR);
58. }
59.
60. $query = "UPDATE movieListing SET number_reserved = number_reserved + 1 WHERE id = ?";
61. $result = parameterizedQuery($dbc, $query, 'i', $movie_id);
62.
63. if (mysqli_errno($dbc))
64. {
65. trigger_error('Error querying database movieListing.reservation', E_USER_ERROR);
66. }
67.
68. if (isset($_SESSION['cart']))
69. {
70. array_push($_SESSION['cart'], $movie_id);
71. }
72. else
73. {
74. $_SESSION['cart'] = [$movie_id];
75. }
76. }
77.
78. header("Location: " . dirname($_SERVER['PHP_SELF']));
79. exit;
80.
81. elseif (isset($_GET['id_to_reserve'])):
82. ?>
83. <h3 class="text-success">Confirm Reservation of the Following Movie:</h3>

84. <?php
85. $id = $_GET['id_to_reserve'];
86.
87. $query = "SELECT * FROM movieListing WHERE id = ?";
88. $result = parameterizedQuery($dbc, $query, 'i', $id);
89.
90. if (mysqli_errno($dbc))
91. {
92. trigger_error('Error querying database movieListing', E_USER_ERROR);
93. }
94.

Script for Reserving Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 417

95. if (mysqli_num_rows($result) == 1)
96. {
97. $row = mysqli_fetch_assoc($result);
98.
99. $movie_image_file = $row['image_file'];
100.
101. if (empty($movie_image_file))
102. {
103. $movie_image_file = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
104. }
105. ?>
106. <h1><?= $row['title'] ?></h1>
107. <div class="row">
108. <div class="col-2">
109. <img src="<?= $movie_image_file ?>" class="img-thumbnail"
110. style="max-height: 200px;" alt="Movie image">
111. </div>
112. <div class="col">
113. <table class="table table-striped">
114. <tbody>
115. <tr>
116. <th scope="row">Rating</th>
117. <td><?= $row['rating'] ?></td>
118. </tr>
119. <tr>
120. <th scope="row">Director</th>
121. <td><?= $row['director'] ?></td>
122. </tr>
123. <tr>
124. <th scope="row">Running Time (minutes)</th>
125. <td><?= $row['running_time_in_minutes'] ?></td>
126. </tr>
127. <tr>
128. <th scope="row">Genre</th>
129. <td><?= $row['genre'] ?></td>
130. </tr>
131. </tbody>
132. </table>
133. </div>
134. </div>
135. <p>
136. <form method="POST" action="<?=$_SERVER['PHP_SELF'];?>">
137. <button class="btn btn-success" type="submit" name="add_to_cart">Add to Cart</button>
138. <input type="hidden" name="id" value="<?= $id ?>">
139. </form>
140. <?php
141. }
143. else
144. {
144. ?>

PHP Web Development with MySQL—A Hands On Approach to Application Programming418

25. Adding Reservation Features

145. <h3>No Movie Details :-(</h3>
146. <?php
147. }
148.
149. else: // Unintended page link - No movie to reseve, redirect back to index
150.
151. header("Location: " . dirname($_SERVER['PHP_SELF']));
152. exit();
153. endif;
154. ?>
155. </div>
156. </div>
157. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
158. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
159. crossorigin="anonymous"></script>
160. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
161. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
162. crossorigin="anonymous"></script>
163. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
164. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
165. crossorigin="anonymous"></script>
166. </body>
167. </html>

Adding Cart to Navigation Menu
Now that we can reserve movies and put them into a shopping cart, let’s add a shopping cart
icon in the upper right-hand corner of the navigation menu (Figure 25.16). We can also add
a numerical representation of how many items are in the cart when a user adds a movie to
their cart, as shown in Figure 25.17.

When the user selects this shopping cart icon, the application navigates to a shoppingcart.php
script we create in the following section. But first, let’s add the code to navmenu.php for our
shopping cart.

We want the shopping cart icon to show if a user with user privileges is logged in and to
indicate the number of items next to the icon if there is more than one item in the cart. We
also want this icon to be a right-side menu item in the navbar to separate it from the other
navigation links.

Figure 25.16. Figure 25.17.

Adding Cart to Navigation Menu

PHP Web Development with MySQL—A Hands On Approach to Application Programming 419

First open pagetitles.php and add the following MR_SHOPPING_CART_MOVIE_PAGE definition right
after the MR_RESERVE_MOVIE_PAGE definition:

 Unchanged Lines
 <?php
 // Page Titles
 define('MR_HOME_PAGE', 'Movie Reservations');
 ...
 define('MR_RESERVE_MOVIE_PAGE', 'Reserve Movie - Remove Movie');
+ Added Line
+ define('MR_SHOPPING_CART_MOVIE_PAGE', 'Movie Reservations - Shopping Cart');

Next, open up the navmenu.php script. Before closing the </nav> element, add the code in
Listing 25.36, and I’ll explain it below.

Listing 25.36.

 1. </div>
 2. </div>
 3. <?php if (isset($_SESSION['user_access_privileges'])
 4. && $_SESSION['user_access_privileges'] == 'user'): ?>
 5. <div class="collapse navbar-collapse" id="navbarNavAltMarkup">
 6. <div class="nav navbar-nav ml-auto">
 7. <a class="nav-item nav-link<?= $page_title == MR_SHOPPING_CART_MOVIE_PAGE ? ' active' : '' ?>"
 8. href='shoppingcart.php'><i class='fas fa-shopping-cart'></i>
 9.
10. <?= isset($_SESSION['cart']) ? count($_SESSION['cart']) : '' ?>
11.
12.
13. </div>
14. </div>
15. <?php endif; ?>
16. </nav>

Line 3 is the condition for checking if a user is logged in and has user access privileges.

Line 5 creates a new navbar group to the right of the existing navbar.

Line 6 sets up any nav items in this group to be right-justified.

PHP Web Development with MySQL—A Hands On Approach to Application Programming420

25. Adding Reservation Features

Lines 7–12 show the shopping cart icon with a link to shoppingcart.php. Also, notice the
ternary operation that adds a badge with the number of items in the cart if $_SESSION['cart']
exists. It is set to a span to the right of the shopping cart icon.

Add a Script for a Shopping Cart
Now that we can put movies into a shopping cart, we need to create a web page that allows
us to manage our cart. We need to be able to remove items from our cart and reserve all the
movies in our cart.

Let’s say we have added the outlined movies to our cart as seen on the homepage shown in
Figure 25.18.

When we select the shopping cart icon in the upper right of the navbar as in Figure 25.19, a
user should go to a shoppingcart.php page that looks like Figure 25.20.

Figure 25.18.

Figure 25.19.

Figure 25.20.

Add a Script for a Shopping Cart

PHP Web Development with MySQL—A Hands On Approach to Application Programming 421

Notice each movie can be deleted from the
cart, so let’s say we want to delete a movie as
in Figure 25.21. That movie is removed from
the cart and the reservation table. We’re left
with these movies (Figure 25.22) that we
can reserve by pressing the “Reserve Movies”
button.

Again, notice that the number of
movies in our cart updates.

When the user selects the “Reserve Movies”
button, the user’s cart is emptied. Then, the
application displays the home page (Figure
25.23). You can see that the shopping cart is
empty, and a new icon is displayed repre-
senting a movie projector (Figure 25.24).
We will add this later when we update the
navigation bar, and it will link to a page that
will allow us to return movies that we’ve
reserved.

There is a design flaw related to the
fact that movies are reserved as soon
as you add them into the cart. At
the end of this chapter, I explain the
flaws of this application and potential
design solutions to consider.

Figure 25.21.

Figure 25.22.

Figure 25.23.

Figure 25.24.

PHP Web Development with MySQL—A Hands On Approach to Application Programming422

25. Adding Reservation Features

Create Shopping Cart Page
First open pagetitles.php and add the following MR_SHOPPING_CART_MOVIE_PAGE definition right
after the MR_RESERVE_MOVIE_PAGE definition:

 Unchanged Lines
 <?php
 // Page Titles
 define('MR_HOME_PAGE', 'Movie Reservations');
 ...
 define('MR_RESERVE_MOVIE_PAGE', 'Movie Reservations - Reserve Movie');
+ Added Line
+ define('MR_SHOPPING_CART_MOVIE_PAGE', 'Movie Reservations - Shopping Cart');

The shopping cart page is a standard Bootstrap page. Create a new script called shoppingcart.
php and add the code in Listing 25.37.

Listing 25.37.

 1. <!DOCTYPE html>
 2. <?php
 3. require_once('pagetitles.php');
 4. $page_title = MR_SHOPPING_CART_MOVIE_PAGE;
 5. ?>
 6. <html>
 7. <head>
 8. <title><?= $page_title ?></title>
 9. <link rel="stylesheet"
10. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
11. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
12. crossorigin="anonymous">
13. </head>
14. <body>
15. <?php
16. require_once('navmenu.php');
17. ?>
18. <div class="card">
19. <div class="card-body">
20. <h1>Shopping Cart</h1>
21. <?php
22. require_once('dbconnection.php');
23. require_once('movielistingfileconstants.php');
24.
25. // Only display this page if the user is logged in
26. if (!isset($_SESSION['user_id'])) :
27.
28. header("Location: " . dirname($_SERVER['PHP_SELF']));
29. exit;

Add a Script for a Shopping Cart

PHP Web Development with MySQL—A Hands On Approach to Application Programming 423

30.
31. elseif (isset($_POST_['id_to_delete'])):
32.
33. // ...
34.
35. elseif (isset($_POST['reserve_movies'])):
36.
37. // ...
38.
39. elseif (isset($_SESSION['cart']) && count($_SESSION['cart']) > 0):
40.
41. // ...
42.
43. else:
44. ?>
45. <hr/>
46. <h3>No Movies in your cart :-(</h3>
47. <?php
48. endif;
49. ?>
50. </div>
51. </div>
52. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
53. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
54. crossorigin="anonymous"></script>
55. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
56. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
57. crossorigin="anonymous"></script>
58. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
59. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
60. crossorigin="anonymous"></script>
61. </body>
62. </html>

Again, this is a boilerplate script that should look familiar to you. Lines 3, 4, and 8 set and
display the page title. Line 16 includes and displays the navbar. Line 20 displays “Shopping
Cart” in an <h1> element set. Lines 22-23 include dbconnection.php,
movielistingfileconstants.php.

Line 26 (if (!isset($_SESSION['user_id'])):) is the condition to check whether the user is
not logged in. If the user is not logged in, line 26 redirects them to the home page.

Line 31 (elseif (isset($_POST['id_to_delete'])):) is the condition where the user selected a
movie in the shopping cart to delete. This condition is where we remove the selected movie
from the shopping cart and reservation table.

PHP Web Development with MySQL—A Hands On Approach to Application Programming424

25. Adding Reservation Features

Line 35 (elseif (isset($_POST['reserve_movies'])):) is the condition to check if the user
reserved the movies in their cart. This condition is where we delete the shopping cart and
redirect the user back to the home page.

Line 39 (elseif (isset($_SESSION['cart']) && count($_SESSION['cart']) > 0):) is the condition
to check that the user’s shopping cart has movies in it. This condition is where we display a
list of the movies in the user’s cart with the ability to delete each movie. Displayed will also
be a form with a button for reserving the movies in the cart.

Line 43 (else:) is a ‘catch-all’ condition indicating there are no movies in the user’s cart, so
line 43 will display there are no movies in the cart.

The rest of the code is the standard Bootstrap boilerplate script inclusions.

Add Form for Reserving Movies

Let’s add the following code for the shopping cart and the form for reserving the movies
into the condition (elseif (isset($_SESSION['cart']) && count($_SESSION['cart']) > 0):). I
will explain the code in Listing 25.38 below.

Listing 25.38.

 1. elseif (isset($_SESSION['cart']) && count($_SESSION['cart']) > 0):
 2.
 3. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 4. or trigger_error(
 5. 'Error connecting to MySQL server for' . DB_NAME,
 6. E_USER_ERROR
 7.);
 8.
 9. $user_id = $_SESSION['user_id'];
10.
11. $query = "SELECT movieListing.id, movieListing.title, movieListing.image_file
12. FROM movieListing
13. INNER JOIN reservation ON movieListing.id = reservation.movieListing_id
14. WHERE reservation.user_id = ?";
15.
16. $result = parameterizedQuery($dbc, $query, 'i', $user_id);
17.
18. if(mysqli_errno($dbc))
19. {
20. trigger_error('Error querying database movieListing', E_USER_ERROR);
21. }
22.
23. if (mysqli_num_rows($result) > 0):
24. ?>

Add a Script for a Shopping Cart

PHP Web Development with MySQL—A Hands On Approach to Application Programming 425

25. <table class="table table-striped table-hover">
26. <thead>
27. <tr>
28. <th scope="col"><h4>Movies to Reserve</h4></th>
29. <th scope="col"></th>
30. <th scope="col"></th>
31. </tr>
32. </thead>
33. <tbody>
34. <?php
35.
36. while ($row = mysqli_fetch_assoc($result))
37. {
38. // Only display what's in the shopping cart
39. if (array_search($row['id'], $_SESSION['cart']) !== false)
40. {
41. $movie_image_file = $row['image_file'];
42.
43. if (empty($movie_image_file))
44. {
45. $movie_image_file = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
46. }
47.
48. $movie_title_row = "<tr><td><img src=" . $movie_image_file . " class='img-thumbnail'"
49. . "style='max-height: 75px;' alt='Movie image'></td>"
50. . "<td class='align-middle'><a class='nav-link' href='moviedetails.php?id="
51. . $row['id'] . "'>" . $row['title'] ."</td>";
52.
53. $movie_title_row .= "<td class='align-middle'><form method='POST' action="
54. . $_SERVER['PHP_SELF'] . "><button class='btn btn-danger' type='submit' "
55. . "name='id_to_delete' value='" . $row['id'] . "'>"
56. . "<i class='far fa-trash-alt'></i></button></form></td>";
57.
58. $movie_title_row .= "</tr>";
59.
60. echo $movie_title_row;
61. }
62. }
63. ?>
64. </tbody>
65. </table>
66. <form method="POST" action="<?= $_SERVER['PHP_SELF'] ?>">
67. <button class="btn btn-success" type="submit" name="reserve_movies">Reserve Movies</button>
68. </form>
69. <?php
70. else:
71. ?>
72. <h3>No Movies in your cart :-(</h3>
73. <?php
74. endif;
75. else:

PHP Web Development with MySQL—A Hands On Approach to Application Programming426

25. Adding Reservation Features

After connecting to the movieListing database in line 3, we create an INNER JOIN query of the
movieListing and reservation tables on lines 11–14 that returns the id, title, and image_file
for each movie the user has reserved.

Assuming the query returns at least one movie (line 23), lines 25–65 display a table
containing all the movies in the user’s cart. Because the query returns all the movies from
the reservation table, we need to keep only the ones in the cart. This distinction is important
because the user might already have movies on reserve, which we display elsewhere.

Let’s take a closer look at lines 36–62. Line 36 iterates through each reservation for the user.
However, line 39 (if (array_search($row['id'], $_SESSION['cart']) !== false)) only allows
the display of reservation rows that are also contained in the user’s shopping cart, which are
handled by lines 41–60.

On lines 48–51, we display the image and the title of the movie that links back to the
moviedetails.php script with the movie ID as a query parameter:

$movie_title_row = "<tr><td><img src=" . $movie_image_file . " class='img-thumbnail'"
 . "style='max-height: 75px;' alt='Movie image'></td>"
 . "<td class='align-middle'><a class='nav-link' href='moviedetails.php?id="
 . $row['id'] . "'>" . $row['title'] ."</td>";

Notice on line 53 that the delete button in a form added to $movie_title_row links back to
this page with a value of id_to_delete set to the movie ID:

$movie_title_row .= "<td class='align-middle'><form method='POST' action="
 . $_SERVER['PHP_SELF'] . "><button class='btn btn-danger' type='submit' "
 . "name='id_to_delete' value='" . $row['id'] . "'>"
 . "<i class='far fa-trash-alt'></i></button></form></td>";

Also, note that I’m using the Font Awesome icon for the trash can
with a red background as in Figure 25.25.

Lines 66–68 display a form with a “Reserve Movies” button with the
name attribute set to reserve_movies.

Line 70 is the condition where the query returned no reservations,
so line 72 displays that there are no movies in the cart.

Figure 25.25.

Add a Script for a Shopping Cart

PHP Web Development with MySQL—A Hands On Approach to Application Programming 427

Removing a Movie from Cart
If a user changes their mind and doesn’t want a movie, we need to remove it from their
shopping cart and the reservation table. Add the code in Listing 25.39 into the condition
(elseif (isset($_POST['id_to_delete'])):). I explain the code afterward.

Listing 25.39.

 1. elseif (isset($_POST['id_to_delete'])):
 2.
 3. $movie_to_delete = $_POST['id_to_delete'];
 4.
 5. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 6. or trigger_error(
 7. 'Error connecting to MySQL server for' . DB_NAME,
 8. E_USER_ERROR
 9.);
10.
11. $user_id = $_SESSION['user_id'];
12.
13. $query = "DELETE FROM reservation
14. WHERE user_id = ? AND movieListing_id = ?";
15. $result = parameterizedQuery($dbc, $query, 'ii', $user_id, $movie_to_delete);
16.
17. if (mysqli_errno($dbc))
18. {
19. trigger_error('Error querying database movieListing', E_USER_ERROR);
20. }
21.
22. $query = "UPDATE movieListing SET number_reserved = number_reserved - 1
23. WHERE id = ?";
24. $result = parameterizedQuery($dbc, $query, 'i', $movie_to_delete);
25.
26. if (mysqli_errno($dbc))
27. {
28. trigger_error('Error querying database movieListing', E_USER_ERROR);
29. }
30.
31. if (($key = array_search($movie_to_delete, $_SESSION['cart'])) !== false)
32. {
33. unset($_SESSION['cart'][$key]);
34. }
35.
36. header("Location: " . $_SERVER['PHP_SELF']);
37. exit;
38.
39. elseif (isset($_POST['reserve_movies'])):

PHP Web Development with MySQL—A Hands On Approach to Application Programming428

25. Adding Reservation Features

After connecting to the movieListing database in line 5, we create a query to delete the reser-
vation for this movie in lines 13-14 and perform the query in line 15.

In line 22, we create a query to decrement the number of reserved movies for this title and
perform the query in line 24.

In line 31, we search for the key associated with the movie ID we want to delete, and in line
33, remove it from the user’s cart.

Finally, line 36 redirects the browser to this shopping cart page. When that page loads, the
updated shopping cart contents are refreshed in the table.

Add Code for Reserving Movies in Cart

When the user reserves the movies in their cart, execution resumes in the
(elseif (isset($_POST['reserve_movies'])):) condition. Because we’ve already added their
movies to the reservation table, here we delete the shopping cart session variable, in effect
emptying it, and redirect the user back to the home page.

Add the code from Listing 25.40 to this condition.

Listing 25.40.

 1. elseif (isset($_POST['reserve_movies'])):
 2.
 3. // Delete the shopping cart (it's already in the reservation table),
 4. // and route back to the Home page
 5. unset($_SESSION['cart']);
 6.
 7. header("Location: " . dirname($_SERVER['PHP_SELF']));
 8. exit;
 9.
10. elseif (isset($_SESSION['cart']) && count($_SESSION['cart']) > 0):

Add a Script for a Shopping Cart

PHP Web Development with MySQL—A Hands On Approach to Application Programming 429

Complete Code Listing
Listing 25.41 is the complete listing for the shoppingcart.php page.

Listing 25.41.

 1. <!DOCTYPE html>
 2. <?php
 3. require_once('pagetitles.php');
 4. $page_title = MR_SHOPPING_CART_MOVIE_PAGE;
 5. ?>
 6. <html>
 7. <head>
 8. <title><?= $page_title ?></title>
 9. <link rel="stylesheet"
10. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
11. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
12. crossorigin="anonymous">
13. </head>
14. <body>
15. <?php
16. require_once('navmenu.php');
17. ?>
18. <div class="card">
19. <div class="card-body">
20. <h1>Shopping Cart</h1>
21. <?php
22. require_once('dbconnection.php');
23. require_once('movielistingfileconstants.php');
24.
25. // Only display this page if the user is logged in
26. if (!isset($_SESSION['user_id'])):
27.
28. header("Location: " . dirname($_SERVER['PHP_SELF']));
29. exit;
30. elseif (isset($_POST['id_to_delete'])):
31.
32. $movie_to_delete = $_POST['id_to_delete'];
33.
34. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
35. or trigger_error(
36. 'Error connecting to MySQL server for' . DB_NAME,
37. E_USER_ERROR
38.);
39.
40. $user_id = $_SESSION['user_id'];
41.
42. $query = "DELETE FROM reservation WHERE user_id = ? AND movieListing_id = ?";
43. $result = parameterizedQuery($dbc, $query, 'ii', $user_id, $movie_to_delete);
44.

PHP Web Development with MySQL—A Hands On Approach to Application Programming430

25. Adding Reservation Features

45. if (mysqli_errno($dbc))
46. {
47. trigger_error('Error querying database movieListing', E_USER_ERROR);
48. }
49.
50. $query = "UPDATE movieListing SET number_reserved = number_reserved - 1 WHERE id = ?";
51. $result = parameterizedQuery($dbc, $query, 'i', $movie_to_delete);
52.
53. if (mysqli_errno($dbc))
54. {
55. trigger_error('Error querying database movieListing', E_USER_ERROR);
56. }
57.
58. if (($key = array_search($movie_to_delete, $_SESSION['cart'])) !== false)
59. {
60. unset($_SESSION['cart'][$key]);
61. }
62.
63. header("Location: " . $_SERVER['PHP_SELF']);
64. exit;
65.
66. elseif (isset($_POST['reserve_movies'])):
67.
68. // Delete the shopping cart (it's already in the reservation table),
69. // and route back to the Home page
70. unset($_SESSION['cart']);
71.
72. header("Location: " . dirname($_SERVER['PHP_SELF']));
73. exit;
74.
75. elseif (isset($_SESSION['cart']) && count($_SESSION['cart']) > 0):
76.
77. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
78. or trigger_error(
79. 'Error connecting to MySQL server for' . DB_NAME,
80. E_USER_ERROR
81.);
82.
83. $user_id = $_SESSION['user_id'];
84.
85. $query = "SELECT movieListing.id, movieListing.title, movieListing.image_file
86. FROM movieListing
87. INNER JOIN reservation ON movieListing.id = reservation.movieListing_id
88. WHERE reservation.user_id = ?";
89. $result = parameterizedQuery($dbc, $query, 'i', $user_id);
90.
91. if (mysqli_errno($dbc))
92. {
93. trigger_error('Error querying database movieListing', E_USER_ERROR);
94. }

Add a Script for a Shopping Cart

PHP Web Development with MySQL—A Hands On Approach to Application Programming 431

95.
96. if (mysqli_num_rows($result) > 0):
97. ?>
98. <table class="table table-striped table-hover">
99. <thead>
100. <tr>
101. <th scope="col"><h4>Movies to Reserve</h4></th>
102. <th scope="col"></th>
103. <th scope="col"></th>
104. </tr>
105. </thead>
106. <tbody>
107. <?php
108.
109. while ($row = mysqli_fetch_assoc($result))
110. {
111. // Only display what's in the shopping cart
112. if (array_search($row['id'], $_SESSION['cart']) !== false)
113. {
114. $movie_image_file = $row['image_file'];
115.
116. if (empty($movie_image_file))
117. {
118. $movie_image_file = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
119. }
120.
121. $movie_title_row = "<tr><td><img src=" . $movie_image_file . " class='img-thumbnail'"
122. . "style='max-height: 75px;' alt='Movie image'></td>"
123. . "<td class='align-middle'><a class='nav-link' href='moviedetails.php?id="
124. . $row['id'] . "'>" . $row['title'] ."</td>";
125.
126. $movie_title_row .= "<td class='align-middle'><form method='POST' action="
127. . $_SERVER['PHP_SELF'] . "><button class='btn btn-danger' type='submit' "
128. . "name='id_to_delete' value='" . $row['id'] . "'>"
129. . "<i class='far fa-trash-alt'></i></button></form></td>";
130.
131. $movie_title_row .= "</tr>";
132.
133. echo $movie_title_row;
134. }
135. }
136. ?>
137. </tbody>
138. </table>
139. <form method="POST" action="<?= $_SERVER['PHP_SELF'] ?>">
140. <button class="btn btn-success" type="submit" name="reserve_movies">Reserve Movies</button>
141. </form>
142. <?php
143. else:
144. ?>

PHP Web Development with MySQL—A Hands On Approach to Application Programming432

25. Adding Reservation Features

145. <h3>No Movies in your cart :-(</h3>
146. <?php
147. endif;
148. else:
149. ?>
150. <hr/>
151. <h3>No Movies in your cart :-(</h3>
152. <?php
153. endif;
154. ?>
155. </div>
156. </div>
157. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
158. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
159. crossorigin="anonymous"></script>
160. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
161. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
162. crossorigin="anonymous"></script>
163. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
164. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
165. crossorigin="anonymous"></script>
166. </body>
167. </html>

Navigating to Reserved Movies
We need to allow users to return reserved movies. Therefore we
create another script and a projector icon link in the navbar to
navigate to that page as shown in Figure 25.26.

However, we only want to show this link if the user has movie
reservations that are not already in their cart (i.e., movies they’ve
already reserved). To do this, we need to create a function in
queryutils.php that returns the number of reserved movies not in the user’s cart. Open
queryutils.php and let’s create a function called numberOfMoviesReservedNotInCart(). It requires
no parameters. Add the header and function shown in Listing 25.42.

Figure 25.26.

Navigating to Reserved Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 433

Listing 25.42.

 1. <?php
 2. /**
 3. * Purpose: Finds the number of movies reserved by current user not in cart
 4. *
 5. * Description: Based on the $_SESSION['user_id'] and the $_SESSION['cart']
 6. * movie ids, query for the movies reserved by the user and compare
 7. * to the movies in the cart. The number of movies reserved not in
 8. * the cart are returned. NOTE, if $_SESSION['user_id'] is not set,
 9. * 0 is returned and if $_SESSION['cart'] is not set, the number
10. * of reservations for the user is returned (asumming
11. * $_SESSION['user_id'] is set).
12. *
13. * @return int The number of movies reserved by the user not in the cart,
14. * or 0 if $_SESSION['user_id'] is not set.
15. */
16. function numberOfMoviesReservedNotInCart()
17. {
18. $number_of_movies_reserved = 0;
19. $number_of_movies_reserved_in_cart = 0;
20.
21. if (session_status() == PHP_SESSION_NONE)
22. {
23. session_start();
24. }
25.
26. if (!isset($_SESSION['user_id']))
27. {
28. return 0;
29. }
30.
31. require_once('dbconnection.php');
32.
33. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
34. or trigger_error(
35. 'Error connecting to MySQL server for' . DB_NAME,
36. E_USER_ERROR
37.);
38.
39. $user_id = $_SESSION['user_id'];
40.
41. $query = "SELECT movieListing_id FROM reservation WHERE user_id = ?";
42. $result = parameterizedQuery($dbc, $query, 'i', $user_id)
43. or trigger_error('Error querying database movieListing',
44. E_USER_ERROR);
45.

PHP Web Development with MySQL—A Hands On Approach to Application Programming434

25. Adding Reservation Features

46. $number_of_movies_reserved = mysqli_num_rows($result);
47.
48. if (!isset($_SESSION['cart']))
49. {
50. return $number_of_movies_reserved;
51. }
52.
53. $movies_in_cart = $_SESSION['cart'];
54.
55. while ($row = mysqli_fetch_assoc($result))
56. {
57. // Accumulate count of reserved movies in cart
58. if (array_search($row['movieListing_id'], $movies_in_cart) !== false)
59. {
60. $number_of_movies_reserved_in_cart++;
61. }
62. }
63.
64. return $number_of_movies_reserved - $number_of_movies_reserved_in_cart;
65. }

This function queries the reservation table of the Movie database for all the rows containing
the given user_id. In line 46, we get the total number of matching rows. Lines 55–62 accu-
mulate the number of movies in the user’s cart that do not match any of the movies the user
currently has in the reservation table. This number is returned.

Now open pagetitles.php and add the following MR_RESERVED_MOVIES_PAGE definition right after
the MR_SHOPPING_CART_MOVIE_PAGE definition:

 Unchanged Lines
 <?php
 // Page Titles
 define('MR_HOME_PAGE', 'Movie Reservations');
 ...
 define('MR_SHOPPING_CART_MOVIE_PAGE', 'Movie Reservations - Shopping Cart');
+ Added Line
+ define('MR_RESERVED_MOVIES_PAGE', 'Movie Reservations - Reserved Movies');

Next, open up the navmenu.php script. Right before the <a class="nav-item nav-link<?=
$page_title == MR_SHOPPING_CART_MOVIE_PAGE ... element, and after the <div class="nav
navbar-nav ml-auto">, add the code in Listing 25.43.

Showing and Returning Reserved Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 435

Listing 25.43.

 1. Unchanged Lines
 2. <div class="collapse navbar-collapse" id="navbarNavAltMarkup">
 3. <div class="nav navbar-nav ml-auto">
 4. + Added Line
 5. + <?php if (numberOfMoviesReservedNotInCart() > 0): ?>
 6. + <a class="nav-item nav-link<?= $page_title == MR_RESERVED_MOVIES_PAGE ? ' active' : '' ?>"
 7. + href='reservedmovies.php'><i class="fas fa-video"></i>
 8. + <?php endif; ?>
 9. Unchanged Lines
10. <a class="nav-item nav-link<?= $page_title == MR_SHOPPING_CART_MOVIE_PAGE ? ' active' : '' ?>"
11. href='shoppingcart.php'><i class='fas fa-shopping-cart'></i>
12. <?= isset($_SESSION['cart']) ? count($_SESSION['cart']) : '' ?>
13. </div>
14. </div>

The first condition (<?php if (numberOfMoviesReservedNotInCart() > 0): ?>), only allows the
code inside this condition to execute if there are reservations the user made that are not
currently in their cart.

The (<a class="nav-item nav-link<?= $page_title == MR_RESERVED_MOVIES_PAGE ...), is the
standard ternary operation that shows the projector icon link either active or not depending
on whether the reservedmovies.php script is being displayed or not.

The projector icon is the Font Awesome “fa-video” icon which is free to use.

Showing and Returning Reserved Movies
When the user clicks on the projector icon,
their browser takes them to a
reservedmovies.php page (we create here). We
want this page to show a listing of the movies,
a link to the movie details, a button for each
movie to return it, and a form button to
return all the movies. See Figure 25.27.

This way, movies can either be returned one
at a time using the individual movie’s return
button as in Figure 25.28 or all of them can

Figure 25.27.

PHP Web Development with MySQL—A Hands On Approach to Application Programming436

25. Adding Reservation Features

be returned by pressing the Return Movies
button on the form as shown in Figure 25.29

Create Boilerplate Reserved Movies
Page and Logic

The reserved movies page is a standard Bootstrap page. Create a new script called
reservedmovies.php and the code shown in Listing 25.44.

Listing 25.44.

 1. <!DOCTYPE html>
 2. <?php
 3. require_once('pagetitles.php');
 4. $page_title = MR_RESERVED_MOVIES_PAGE;
 5. ?>
 6. <html>
 7. <head>
 8. <title><?= $page_title ?></title>
 9. <link rel="stylesheet"
10. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
11. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
12. crossorigin="anonymous">
13. </head>
14. <body>
15. <?php
16. require_once('navmenu.php');
17. ?>
18. <div class="card">
19. <div class="card-body">
20. <h1>Reserved Movies</h1>
21. <?php
22. require_once('dbconnection.php');
23. require_once('movielistingfileconstants.php');
24.
25. // Only display this page if the user is logged in
26. if (!isset($_SESSION['user_id'])) :
27.
28. header("Location: " . dirname($_SERVER['PHP_SELF']));
29. exit;
30.
31. elseif (isset($_POST['id_to_check_in'])):
32.
33. // ...
34.

Figure 25.28. Figure 25.29.

Showing and Returning Reserved Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 437

35. elseif (isset($_POST['check_in_movies'])):
36.
37. // ...
38.
39. else:
40.
41. // ...
42.
43. endif;
44. ?>
45. </div>
46. </div>
47. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
48. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
49. crossorigin="anonymous"></script>
50. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
51. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
52. crossorigin="anonymous"></script>
53. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
54. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
55. crossorigin="anonymous"></script>
56. </body>
57. </html>

Again, this is a boilerplate script that should look familiar to you. Lines 3, 4, and 8 set and
display the page title. Line 16 includes and displays the navbar. Line 20 displays “Reserved
Movies” in an <h1> element set. Lines 22-23 include dbconnection.php,
movielistingfileconstants.php, queryutils.php.

Line 26 (if (!isset($_SESSION['user_id'])):) is the condition to check whether the user is
not logged in. If the user is not logged in, line 28 redirects the user back to the home page.

Line 31 (elseif (isset($_POST['id_to_check_in'])):) is the condition where the user selected
a movie in the reserved movie list to return. This condition is where we remove the selected
movie from the reservation table and update the number of copies reserved for this movie.

Line 35 (elseif (isset($_POST['check_in_movies'])):) is the condition to check if the user
selected the Return Movies to return all the movies they have reserved. This condition is
where we update the number of copies for all movies being returned and remove all the
user’s movie reservations from the reservation table, then redirect them back to the home
page.

PHP Web Development with MySQL—A Hands On Approach to Application Programming438

25. Adding Reservation Features

Line 39 (else:) is a ‘catch-all’ condition. This condition displays a list of the movies the user
has reserved along with a button for returning each movie. We also show a form with a
button for returning all the reserved movies.

The rest of the code is the standard Bootstrap boilerplate script inclusions.

Listing Reserved Movies

Let’s add the code in Listing 25.45 for listing all the movies the user has reserved and the
form for returning the movies into the catch-all condition (else:). I will explain the code
below:

Listing 25.45.

 1. else:
 2.
 3. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 4. or trigger_error(
 5. 'Error connecting to MySQL server for' . DB_NAME,
 6. E_USER_ERROR
 7.);
 8.
 9. $user_id = $_SESSION['user_id'];
10.
11. $query = "SELECT movieListing.id, movieListing.title, movieListing.image_file
12. FROM movieListing
13. INNER JOIN reservation ON movieListing.id = reservation.movieListing_id
14. WHERE reservation.user_id = ?";
15.
16. $result = parameterizedQuery($dbc, $query, 'i', $user_id)
17. or trigger_error(
18. 'Error querying database tables movieListing and reservation',
19. E_USER_ERROR);
20.
21. if (mysqli_num_rows($result) > 0):
22. ?>
23. <table class="table table-striped table-hover">
24. <thead>
25. <tr>
26. <th scope="col"><h4>Movies You Have Reserved</h4></th>
27. <th scope="col"></th>
28. <th scope="col"></th>
29. </tr>
30. </thead>
31. <tbody>

Showing and Returning Reserved Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 439

32. <?php
33. while ($row = mysqli_fetch_assoc($result))
34. {
35. // Only display what's NOT in the shopping cart
36. if (empty($_SESSION['cart'])
37. || array_search($row['id'], $_SESSION['cart']) === false)
38. {
39. $movie_image_file = $row['image_file'];
40.
41. if (empty($movie_image_file))
42. {
43. $movie_image_file = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
44. }
45.
46. $movie_title_row = "<tr><td><img src=" . $movie_image_file
47. . " class='img-thumbnail' style='max-height: 75px;'"
48. . " alt='Movie image'></td>"
49. . "<td class='align-middle'><a class='nav-link' "
50. . " href='moviedetails.php?id="
51. . $row['id'] . "'>" . $row['title'] ."</td>";
52.
53. $movie_title_row .= "<td class='align-middle'><form method='POST' "
54. . "action=" . $_SERVER['PHP_SELF'] . ">"
55. . "<button class='btn btn-success' type='submit' "
56. . "name='id_to_check_in' value='" . $row['id'] . "'>"
57. . "<i class='fas fa-check-circle'></i></button></form></td>";
58.
59. $movie_title_row .= "</tr>";
60.
61. echo $movie_title_row;
62. }
63. }
64. ?>
65. </tbody>
66. </table>
67. <form method="POST" action="<?= $_SERVER['PHP_SELF'] ?>">
68. <button class="btn btn-success" type="submit"
69. name="check_in_movies">Return Movies</button>
70. </form>
71. <?php
72. else:
73. ?>
74. <h3>No Movies Reserved :-(</h3>
75. <?php
76. endif;
77. endif;

PHP Web Development with MySQL—A Hands On Approach to Application Programming440

25. Adding Reservation Features

After connecting to the movieListing database in line 3, identical to what we did with the
shopping cart, we create an INNER JOIN query of the movieListing and reservation tables on
lines 11–14 that returns all the movies the user has reserved containing the id, title, and
image_file for each movie.

Assuming the query returns at least one movie (line 21), lines 23–66 display a table
containing all the movies the user has reserved (which does not include what the user
currently has in their cart).

Let’s take a closer look at lines 33–63. Line 33 iterates through each reservation for the user.
However, lines 36–37 only allow the display of reservation rows that are not in the user’s
shopping cart, handled by lines 39–61.

On line 46, we display the image and the title of the movie that links back to the
moviedetails.php script with the movie ID as a query parameter:

$movie_title_row = "<tr><td><img src=" . $movie_image_file
 . " class='img-thumbnail' style='max-height: 75px;'"
 . " alt='Movie image'></td>"
 . "<td class='align-middle'><a class='nav-link' "
 . " href='moviedetails.php?id="
 . $row['id'] . "'>" . $row['title'] ."</td>";

Notice on line 53 the checked circle button in a form added to $movie_title_row that links
back to this page with a value of id_to_check set to the movie ID:

$movie_title_row .= "<td class='align-middle'><form method='POST' "
 . "action=" . $_SERVER['PHP_SELF'] . ">"
 . "<button class='btn btn-success' type='submit' "
 . "name='id_to_check_in' value='" . $row['id'] . "'>"
 . "<i class='fas fa-check-circle'></i></button></form></td>";

Note that I’m using the Font Awesome icon for the checked circle
with a green background. See Figure 25.30.

Lines 67–70 display a form with a “Return Movies” button with the
name attribute set to check_in_movies.

Line 72 is the condition where no reservations were returned from
the query, so line 74 displays there are no movies reserved.

Figure 25.30.

Showing and Returning Reserved Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 441

Add Code for Returning a Movie and Removing from reservation Table
When the user selects a movie to return, we need to remove the movie from the reservation table.
Add the code in Listing 25.46 into the condition (elseif (isset($_POST['id_to_check_in'])):).

Listing 25.46.

 1. elseif (isset($_POST['id_to_check_in'])):
 2.
 3. $movie_to_check_in = $_GET['id_to_check_in'];
 4.
 5. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 6. or trigger_error(
 7. 'Error connecting to MySQL server for' . DB_NAME,
 8. E_USER_ERROR
 9.);
10.
11. $user_id = $_SESSION['user_id'];
12.
13. $query = "DELETE FROM reservation WHERE user_id = ? AND movieListing_id = ?";
14.
15. parameterizedQuery($dbc, $query, 'ii', $user_id, $movie_to_check_in);
16.
17. if (mysqli_errno($dbc))
18. {
19. trigger_error('Error querying database movieListing', E_USER_ERROR);
20. }
21.
22. $query = "UPDATE movieListing SET number_reserved = number_reserved - 1
23. WHERE id = ?";
24.
25. parameterizedQuery($dbc, $query, 'i', $movie_to_check_in);
26.
27. if (mysqli_errno($dbc))
28. {
29. trigger_error('Error querying database movieListing', E_USER_ERROR);
30. }
31.
32. header("Location: " . $_SERVER['PHP_SELF']);
33. exit;
34.
35. elseif (isset($_POST['check_in_movies'])):

After connecting to the movieListing database in line 5, we create a query to delete the reser-
vation for this movie in line 13 and perform the query in line 15.

PHP Web Development with MySQL—A Hands On Approach to Application Programming442

25. Adding Reservation Features

In lines 22-23, we create a query to decrement the number of reserved movies for this title
and perform the query in line 25.

Finally, line 32 redirects to this shopping cart page, so the updated shopping cart contents
are displayed in the table.

Add Code for Returning All Movies

When the user returns the movies, execution will resume in the
(elseif (isset($_POST['check_in_movies'])):) condition. This clause is where we update the
number of copies reserved for each movie, remove all the movies the user has reserved from
the reservation table, and redirect the user to the home page.

Add the code in Listing 25.47 to this condition.

Listing 25.47.

 1. elseif (isset($_POST['check_in_movies'])):
 2.
 3. // Remove all reservations and update number of reserved copies
 4. // in movieListing for returned movies
 5. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
 6. or trigger_error(
 7. 'Error connecting to MySQL server for' . DB_NAME,
 8. E_USER_ERROR
 9.);
10.
11. $user_id = $_SESSION['user_id'];
12.
13. $query = "SELECT movieListing_id FROM reservation WHERE user_id = ?";
14.
15. $result = parameterizedQuery($dbc, $query, 'i', $user_id)
16. or trigger_error('Error querying database table reservation', E_USER_ERROR);
17.
18. // Decrement number of reserved in movieListing
19. while ($row = mysqli_fetch_assoc($result))
20. {
21. $movie_to_check_in = $row['movieListing_id'];
22.
23. $query = "UPDATE movieListing
24. SET number_reserved = number_reserved - 1 WHERE id = ?";
25.
26. parameterizedQuery($dbc, $query, 'i', $movie_to_check_in);
27.

Showing and Returning Reserved Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 443

28. if (mysqli_errno($dbc))
29. {
30. trigger_error('Error querying database table movieListing', E_USER_ERROR);
31. }
32. }
33.
34. // Delete all reservations for this user
35. $query = "DELETE FROM reservation WHERE user_id = ?";
36.
37. parameterizedQuery($dbc, $query, 'i', $user_id);
38.
39. if (mysqli_errno($dbc))
40. {
41. trigger_error('Error querying database table reservation', E_USER_ERROR);
42. }
43.
44. header("Location: " . dirname($_SERVER['PHP_SELF']));
45. exit;
46.
47. else:

After connecting to the movieListing database in line 5, we create a query for all reservations
for this user in line 13 and perform the query in line 15.

Lines 19–32 iterates through IDs from the reservation and decrements the number of copies
reserved by 1 for each movie.

Line 35 is the query for deleting all the reservations for this user and is executed in line 37.

Finally, line 44 redirects the user to the home page.

PHP Web Development with MySQL—A Hands On Approach to Application Programming444

25. Adding Reservation Features

Complete Code Listing
Listing 25.48 is the complete listing for the reservedmovies.php page.

Listing 25.48.

 1. <!DOCTYPE html>
 2. <?php
 3. require_once('pagetitles.php');
 4. $page_title = MR_RESERVED_MOVIES_PAGE;
 5. ?>
 6. <html>
 7. <head>
 8. <title><?= $page_title ?></title>
 9. <link rel="stylesheet"
10. href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css"
11. integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS"
12. crossorigin="anonymous">
13. </head>
14. <body>
15. <?php
16. require_once('navmenu.php');
17. ?>
18. <div class="card">
19. <div class="card-body">
20. <h1>Reserved Movies</h1>
21. <?php
22. require_once('dbconnection.php');
23. require_once('movielistingfileconstants.php');
24. require_once('queryutils.php');
25.
26. // Only display this page if the user is logged in
27. if (!isset($_SESSION['user_id'])) :
28.
29. header("Location: " . dirname($_SERVER['PHP_SELF']));
30. exit;
31.
32. elseif (isset($_POST['id_to_check_in'])):
33.
34. $movie_to_check_in = $_POST['id_to_check_in'];
35.
36. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
37. or trigger_error(
38. 'Error connecting to MySQL server for' . DB_NAME, E_USER_ERROR
39.);
40.
41. $user_id = $_SESSION['user_id'];

Showing and Returning Reserved Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 445

42.
43. $query = "DELETE FROM reservation WHERE user_id = ? AND movieListing_id = ?";
44.
45. parameterizedQuery($dbc, $query, 'ii', $user_id, $movie_to_check_in);
46.
47. if (mysqli_errno($dbc))
48. {
49. trigger_error('Error querying database movieListing', E_USER_ERROR);
50. }
51.
52. $query = "UPDATE movieListing SET number_reserved = number_reserved - 1 WHERE id = ?";
53.
54. parameterizedQuery($dbc, $query, 'i', $movie_to_check_in);
55.
56. if (mysqli_errno($dbc))
57. {
58. trigger_error('Error querying database movieListing', E_USER_ERROR);
59. }
60.
61. header("Location: " . $_SERVER['PHP_SELF']);
62. exit;
63.
64. elseif (isset($_POST['check_in_movies'])):
65.
66. // Remove all reservations and update number of reserved copies
67. // in movieListing for returned movies
68. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
69. or trigger_error(
70. 'Error connecting to MySQL server for' . DB_NAME, E_USER_ERROR
71.);
72.
73. $user_id = $_SESSION['user_id'];
74.
75. $query = "SELECT movieListing_id FROM reservation WHERE user_id = ?";
76.
77. $result = parameterizedQuery($dbc, $query, 'i', $user_id)
78. or trigger_error('Error querying database table reservation', E_USER_ERROR);
79.
80. // Decrement number of reserved in movieListing
81. while ($row = mysqli_fetch_assoc($result))
82. {
83. $movie_to_check_in = $row['movieListing_id'];
84.
85. $query = "UPDATE movieListing SET number_reserved = number_reserved - 1 WHERE id = ?";
86.
87. parameterizedQuery($dbc, $query, 'i', $movie_to_check_in);
88.

PHP Web Development with MySQL—A Hands On Approach to Application Programming446

25. Adding Reservation Features

89. if (mysqli_errno($dbc))
90. {
91. trigger_error('Error querying database table movieListing', E_USER_ERROR);
92. }
93. }
94.
95. // Delete all reservations for this user
96. $query = "DELETE FROM reservation WHERE user_id = ?";
97.
98. parameterizedQuery($dbc, $query, 'i', $user_id);
99.
100. if (mysqli_errno($dbc))
101. {
102. trigger_error('Error querying database table reservation', E_USER_ERROR);
103. }
104.
105. header("Location: " . dirname($_SERVER['PHP_SELF']));
106. exit;
107.
108. else:
109.
110. $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME)
111. or trigger_error(
112. 'Error connecting to MySQL server for' . DB_NAME,
113. E_USER_ERROR
114.);
115.
116. $user_id = $_SESSION['user_id'];
117.
118. $query = "SELECT movieListing.id, movieListing.title, movieListing.image_file
119. FROM movieListing
120. INNER JOIN reservation ON movieListing.id = reservation.movieListing_id
121. WHERE reservation.user_id = ?";
122.
123. $result = parameterizedQuery($dbc, $query, 'i', $user_id)
124. or trigger_error(
125. 'Error querying database tables movieListing and reservation', _USER_ERROR);
126.
127. if (mysqli_num_rows($result) > 0):
128. ?>
129. <table class="table table-striped table-hover">
130. <thead>
131. <tr>
132. <th scope="col"><h4>Movies You Have Reserved</h4></th>
133. <th scope="col"></th>
134. <th scope="col"></th>
135. </tr>

Showing and Returning Reserved Movies

PHP Web Development with MySQL—A Hands On Approach to Application Programming 447

136. </thead>
137. <tbody>
138. <?php
139. while($row = mysqli_fetch_assoc($result))
140. {
141. // Only display what's NOT in the shopping cart
142. if (empty($_SESSION['cart'])
143. || array_search($row['id'], $_SESSION['cart']) === false)
144. {
145. $movie_image_file = $row['image_file'];
146.
147. if (empty($movie_image_file))
148. {
149. $movie_image_file = ML_UPLOAD_PATH . ML_DEFAULT_MOVIE_FILE_NAME;
150. }
151.
152. $movie_title_row = "<tr><td><img src=" . $movie_image_file
153. . " class='img-thumbnail' style='max-height: 75px;'"
154. . " alt='Movie image'></td>"
155. . "<td class='align-middle'><a class='nav-link' "
156. . " href='moviedetails.php?id="
157. . $row['id'] . "'>" . $row['title'] ."</td>";
158.
159. $movie_title_row .= "<td class='align-middle'><form method='POST' "
160. . "action=" . $_SERVER['PHP_SELF'] . ">"
161. . "<button class='btn btn-success' type='submit' "
162. . "name='id_to_check_in' value='" . $row['id'] . "'>"
163. . "<i class='fas fa-check-circle'></i></button></form></td>";
164.
165. $movie_title_row .= "</tr>";
166.
167. echo $movie_title_row;
168. }
169. }
170. ?>
171. </tbody>
172. </table>
173. <form method="POST" action="<?= $_SERVER['PHP_SELF'] ?>">
174. <button class="btn btn-success" type="submit"
175. name="check_in_movies">Return Movies</button>
176. </form>
177. <?php
178. else:
179. ?>
180. <h3>No Movies Reserved :-(</h3>
181. <?php
182. endif;

PHP Web Development with MySQL—A Hands On Approach to Application Programming448

25. Adding Reservation Features

183. endif;
184. ?>
185. </div>
186. </div>
187. <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
188. integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
189. crossorigin="anonymous"></script>
190. <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js"
191. integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut"
192. crossorigin="anonymous"></script>
193. <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js"
194. integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k"
195. crossorigin="anonymous"></script>
196. </body>
197. </html>

Features to Add
This code by no means is a complete and polished application. While working code is essen-
tial, there are always ways to improve it or adapt it to new uses. Several features could and
should be added to improve the user experience and add robustness to the application. I’ve
listed a few here below.

Add Pagination of Movie Titles

As the movie reservation library grows, it would be good to add pagination to the applica-
tion instead of listing all the movies in the database. Pagination would improve response
time and reduce the amount of vertical scrolling needed to display the results on each page.

Add a Search and Filter Movies Feature

Along with pagination, adding a search feature to limit results would add to the user experi-
ence. This feature can be a title search or maybe a director search. Along with this, adding
the ability to filter movies of various ratings would be helpful too.

Add Details to Movie Records

We can track more information about each movie than we do now. We can add fields for a
release date, producer, actors, and more. You could even link to reviews or sites about the
movie.

Flaws in This Application

PHP Web Development with MySQL—A Hands On Approach to Application Programming 449

Track Date of Reservation
Currently, the database does not track when a user checked out a movie or provide a due
date for returning them. Adding these would allow administrators to ensure someone
doesn’t keep a movie copy out indefinitely.

Add Reservation Management Features for Administrator

Many of the features that we developed for the Movie Reservation app focused on the user.
To streamline site administration, it would be nice to have the following administrative
features:

1. A table showing reserved movies
• Clicking on a movie brings up a page listing each user that has each movie checked

out
• Clicking on a user links to the page listing only the movies that the user has reserved

2. A table listing users that have one or more movies reserved
• Clicking on a user brings up a page listing the movies they have checked out

3. Ability to manage lost movies

Flaws in This Application
There is quite a bit of duplicate code in some of these pages, especially the boilerplate Boot-
strap links. You should move this duplicate code into its own header page to be included by
all other scripts that need it.

There a several design issues with this application as well.

One problem is if a user has movies in their cart and they log out, the movies are reserved
without the user actively reserving them. Putting a movie in the shopping cart actually
reserves the movie in the reservation table. A better design for managing movies in a cart
would have a database table that maintains movies that are currently in all users’ shopping
carts at any one time (i.e., multiple users are logged in adding movies to their carts). Then,
we only create the reservation once they decided to reserve the movies in their cart. This
change adds complexity but is a more robust solution by keeping shopping cart items out
of the reservation table. Another potential solution is to remove all the reservations when
users log out before reserving the movies in their shopping cart. It would also be a good
idea to pop up a modal dialog letting the user know of the situation and allow them to either
reserve the movies or continue to log out. The shopping table maintaining users’ shopping

PHP Web Development with MySQL—A Hands On Approach to Application Programming450

25. Adding Reservation Features

carts is a better idea because it will enable users to keep things in their cart between logins.
However, now we would have to manage the problem of a user keeping a movie in their cart,
preventing other users from reserving it.

These are fun design and usability problems to consider with many different, acceptable
solutions and trade-offs.

Exercises
1. Add the reservation features, including a database table, changes to the add/edit pages,

and allow users to reserve movies that have copies available for check out.
2. Add admin-only features for showing who’s reserved movies.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 451

Chapter

26
Introduction to Object-
Oriented Programming in PHP

“In the one and only true way. The object-oriented version of ‘Spaghetti
code’ is, of course, ‘Lasagna code’. (Too many layers).”

–Roberto Waltman.

PHP Web Development with MySQL—A Hands On Approach to Application Programming452

26. Introduction to Object-Oriented Programming in PHP

Object-Oriented Programming (OOP) is a programming paradigm that allows for a more
modular way to develop programs. Many modern programming languages have OOP
features, and PHP is no exception. There are many conceptual components to OOP. At
its most basic level, it allows for combining what a program knows (its data) and what a
program does (its functionality) into modular components. This approach is different from
basic procedural-based programming, where you have many functions separated from
the data that they typically work on. This chapter gives a brief overview of object-oriented
programming using PHP.

Since this book covers web development using PHP, I cover the more common uses of OOP
supported by the language. If you want to learn more about the principles and design prac-
tices of OOP, I would recommend David Kung’s book: Object-Oriented Software Engineering:
An Agile Unified Methodology[1] published by McGraw-Hill Education.

I briefly cover the following topics:
• Classes
• Properties
• Encapsulation using access modifiers
• Accessor Methods (Getters/Setters)
• The $this variable
• General Purpose Methods
• Instantiating and using a class
• Validating input to a Setter Method
• Inheritance
• Overriding Methods
• Constructors
• PHP Database Objects (PDO)

[1] Object-Oriented Software Engineering: An Agile Unified Methodology: http://phpa.me/mhws-oop-engineering

Classes
Classes organize code into modular components. It is typical to put a single class into its
own file. In PHP, you define a class using the class keyword:

<?php
 class Radio
 {

 }

http://phpa.me/mhws-oop-engineering

Properties

PHP Web Development with MySQL—A Hands On Approach to Application Programming 453

In this example, we would probably want to name this file Radio.php.

Class names follow the same rules as variable names. However, unlike variable names, class
names are not case-sensitive. In practice, the coding standard for naming classes is to start
the first word with an upper-case letter and to start every word in the class name with an
upper-case letter (i.e., CustomerAccount). This convention is known as “StudlyCaps.”

One thing to keep in mind about classes is that they are like blueprints or recipes for PHP
objects. We explore this later when discussing the difference between an instance of a class—
known as an object—and the class definition itself.

Properties
Of course, we need to add data to our classes. In some programming languages, these are
called instance or class member variables. In PHP, we call them “properties.”

Using our Radio example, here are a few properties:

<?php
 class Radio
 {
 private $powered; // true or false
 private $volume; // 0 - 10
 private $channel; // 535kHz - 1700kHz, 87.5MHz - 108MHz
 }

On Class Design
As I mentioned previously, at the most basic level, a class should define what a program
knows (its data) and what a program does (its functionality). Ideally, in object design, you
want to think of your class as a single thing. In this case, we are modeling the concept of
a radio in software. Before writing any code, think about how one would interact with
our radio. Since this is a simple example, we need our radio to know (i.e., hold data for)
whether it is on or off, its volume, and what channel or frequency it is set to. Likewise, we
also need functionality to turn on and off the radio, set its volume, and change its channel
or frequency. The properties and methods your class needs should be informed by your
software requirements. We will fill this in when we talk about methods.

PHP Web Development with MySQL—A Hands On Approach to Application Programming454

26. Introduction to Object-Oriented Programming in PHP

Encapsulation Using Access Modifiers

[2] “visibility”: https://www.php.net/language.oop5.visibility

So, what’s the meaning of putting private before our properties?

The keyword private is what’s known as an access modifier. PHP calls this “visibility”[2] and
uses it to restrict access to properties and methods. There are three levels of access to prop-
erties and methods: private, protected, and public.

• private means only the code within the class can access a property or call a method.
• protected means only the code within this class or subclasses of it can gain access to the

property or method.
• public means everyone can gain access to the property or method.

In object-oriented programming, it is a best practice to restrict access to your properties
by making them private. Then, add public methods that grant read or write access to these
properties. This is the principle of encapsulation and is one of the main pillars of OOP.

Accessor Methods
To add functionality to our class, we create a method. A method is a fancy OOP term we use
that means the same thing as a function, except that we are embedding our methods inside
our class. The OOP idea behind methods is that they manipulate or get the data in our class.

If we want to manipulate the data in our Radio class, we need methods to set the data like
channel or volume. Likewise, if we’re going to retrieve data from our class, we need methods
that get this data. We typically call these accessor methods getters and setters.

The convention used for creating getters and setters is to put either the word get or set in
front of our property and capitalize the first letter of each word in the property (e.g., “camel
case” style. We usually make the getters public, and we often make the setters public (see
below).

Mutability and immutability in class design
Although this is a more advanced topic, you should think about how code interacts with
objects created from your classes during the object’s life. You have the freedom to design
a class that allows users of these objects to manipulate data within the object throughout
the life of the object or only upon the creation of the object. This concept is known as

https://www.php.net/language.oop5.visibility

Accessor Methods

PHP Web Development with MySQL—A Hands On Approach to Application Programming 455

the “mutability” of your object. If you create ANY setters in your class with public access,
your object is known to be mutable (i.e., changeable). Conversely, if you create ALL the
setters in your class with private—or possibly protected—access, your object is known to
be immutable (i.e., unchangeable). You might be asking, how do you even set the proper-
ties of an object if it is immutable? Immutable objects must have their properties set upon
construction. Further on, I’ll show you how to create a constructor. Immutable objects tend
to be preferred because they’ve been shown to be less error-prone.

So, to create getters for our Radio class we need the following methods:
• getPowered()

• getVolume()

• getChannel()

Listing 26.1 shows what they should look like.

Listing 26.1.

 1. <?php
 2. class Radio
 3. {
 4. private $powered; // true or false
 5. private $volume; // 0 - 10
 6. private $channel; // 535kHz - 1700kHz, 87.5MHz - 108MHz
 7.
 8. // Getters
 9. public function getPowered()
10. {
11. return $this->powered;
12. }
13.
14. public function getVolume()
15. {
16. return $this->volume;
17. }
18.
19. public function getChannel()
20. {
21. return $this->channel;
22. }
23. }

PHP Web Development with MySQL—A Hands On Approach to Application Programming456

26. Introduction to Object-Oriented Programming in PHP

Note the getters have public access so users of our class can retrieve the state of the proper-
ties. Now let’s take a look at the setters (Listing 26.2). Note the setters have public access,
which means objects created from this class will be mutable.

Listing 26.2.

 1. <?php
 2. class Radio
 3. {
 4. private $powered; // true or false
 5. private $volume; // 0 - 10
 6. private $channel; // 535kHz - 1700kHz, 87.5MHz - 108MHz
 7.
 8. // ...
 9.
10. // Setters
11. public function setPowered($powered)
12. {
13. $this->powered = $powered;
14. }
15.
16. public function setVolume($volume)
17. {
18. $this->volume = $volume;
19. }
20.
21. public function setChannel($channel)
22. {
23. $this->channel = $channel;
24. }
25. }

The $this Variable
In the above getters and setters, we made a reference to the $this variable:

return $this->volume;
// ...
$this->volume = $volume;

The $this variable is a built-in variable available to all classes. It refers to the current object
of the class, or this specific instance of this class. To use a class, it has to be “instantiated.”
The $this variable refers to just this particular instance of the class. -> is the object operator
and allows you to reference the properties or methods of a class by value. PHP requires
using $this-> to access these properties or methods, unlike other languages like Java.

The $this Variable

PHP Web Development with MySQL—A Hands On Approach to Application Programming 457

Why Don’t Other Languages Require the $this Keyword?
Welp, that’s a good question, and it’s something PHP gets right. Other programming
languages such as Java, C#, and C++ also use the this keyword to refer to class instance
variables. However, it is not required to use this in these other languages. It is meant as a
convenience to leave it out. I feel it is a mistake not to require the use of the this keyword.
Consider the example written in Java from Listing 26.3.

Listing 26.3.

 1. class Radio
 2. {
 3. private int _volume; // 0 - 10
 4. ...
 5. public void setVolume(int volume)
 6. {
 7. _volume = volume;
 8. }
 9. ...
10. }

Without requiring the use of the this keyword, we have to make up a scheme for how we
differentiate instance variables from our local variables. Prefixing instance variable names
with an underscore (_) is one of the typical ways I’ve seen this done.

The problem with leaving out the this keyword is two-fold. First, we require a future devel-
oper maintaining this code to know the style of creating instance variables is to precede
them with an underscore. Second, it’s hard at first glance to understand that the variables
with underscores are instance variables. All developers have to remember not to name local
variables starting with an underscore. Contrast the previous example with the same Java
code rewritten to use the this keyword in Listing 26.4.

Listing 26.4.

 1. class Radio
 2. {
 3. private int volume; // 0 - 10
 4. // ...
 5. public void setVolume(int volume)
 6. {
 7. this.volume = volume;
 8. }
 9. // ...
10. }

PHP Web Development with MySQL—A Hands On Approach to Application Programming458

26. Introduction to Object-Oriented Programming in PHP

The above example is unambiguous and leaves no doubt as to the intent of the code. It does not
rely on unenforceable naming schemes for instance variables, all to get around not having to use
the this keyword. You should always use the this keyword when directly referencing an instance
variable in any programming language. Thank goodness PHP makes this a requirement!

General Purpose Methods
In addition to getters and setters, your class can include utility methods to perform various
tasks. For example, many radios have a scan button to look for the next channel with a
strong signal. These methods don’t have to change your object state (i.e., modify proper-
ties) but they may calculate or perform some operation based on your properties as in
Listing 26.5.

Listing 26.5.

 1. class Radio
 2. {
 3. public function scanChannels()
 4. {
 5. // find the next channel with a strong signal
 6. }
 7.
 8. public function getCurrentSong()
 9. {
10. // reads live metadata from current channel about current song
11. // being played and returns song title, etc...
12. }
13. }

Instantiating and Using a Class
Instantiating classes as objects and creating multiple instances of that class demonstrates
another powerful concept of OOP. In the same way, you can have multiple variables that are
strings, integers, etc., a class is another more complex data type that you can use in this way.

To use our class, we first need to include it in a PHP script:

require_once('Radio.php');

To instantiate or create a new instance of our class we have to use the new keyword:

require_once('Radio.php');

$car_radio = new Radio();

Instantiating and Using a Class

PHP Web Development with MySQL—A Hands On Approach to Application Programming 459

$car_radio is now referencing a new instance which is an object of the Radio class. Note the
() following the class name Radio is the default constructor (more on this to follow). As I
mentioned earlier, we can create multiple instances from our single Radio class:

require_once('Radio.php');

$car_radio = new Radio();
$boat_radio = new Radio();

It is best to think of a class as a recipe for making something like cookies and a class’s object
to fulfill that recipe (i.e., a batch of chocolate chip cookies—yum!) Next, we can use our
object:

$car_radio->setVolume(4);

echo 'My car radio\'s volume is set to: ' . $car_radio->getVolume() . '.';

Notice again that we use the object operator (->) to reference the setVolume() method. We
can reference any property or method that has public visibility. OOP is a deep topic. Check
out what the PHP Manual has to say regarding classes and objects[3].

[3] classes and objects: https://php.net/language.oop5

Complete Listing for Radio.php` (v1)

Listing 26.6.

 1. <?php
 2. class Radio
 3. {
 4. private $powered; // true or false
 5. private $volume; // 0 - 10
 6. private $channel; // 535kHz - 1700kHz, 87.5MHz - 108MHz
 7.
 8. // Getters
 9. public function getPowered()
10. {
11. return $this->powered;
12. }
13.
14. public function getVolume()
15. {
16. return $this->volume;
17. }

https://php.net/language.oop5

PHP Web Development with MySQL—A Hands On Approach to Application Programming460

26. Introduction to Object-Oriented Programming in PHP

18.
19. public function getChannel()
20. {
21. return $this->channel;
22. }
23.
24. // Setters
25. public function setPowered($powered)
26. {
27. $this->powered = $powered;
28. }
29.
30. public function setVolume($volume)
31. {
32. $this->volume = $volume;
33. }
34.
35. public function setChannel($channel)
36. {
37. $this->channel = $channel;
38. }
39. }

Complete Listing for UseRadio.php (v1)

Listing 26.7.

 1. <?php
 2. require_once('Radio.php');
 3.
 4. $car_radio = new Radio();
 5. $boat_radio = new Radio();
 6.
 7. $car_radio->setPowered(true);
 8. $car_radio->setVolume(4);
 9. $car_radio->setChannel(88.6);
10.
11. $boat_radio->setPowered(true);
12. $boat_radio->setVolume(7);
13. $boat_radio->setChannel(1640);
14.
15. echo 'My car radio is ';
16.
17. if ($car_radio->getPowered())
18. {
19. echo 'turned on';
20. }

Validating Input to a Setter Method

PHP Web Development with MySQL—A Hands On Approach to Application Programming 461

21. else
22. {
23. echo 'turned off';
24. }
25.
26. echo ' with the volume set to ' . $car_radio->getVolume() . ', ';
27. echo ' and the channel set to ' . $car_radio->getChannel() . '.

';
28. echo 'My boat radio is ';
29.
30. if ($boat_radio->getPowered())
31. {
32. echo 'turned on';
33. }
34. else
35. {
36. echo 'turned off';
37. }
38.
39. echo ' with the volume set to ' . $boat_radio->getVolume() . ', ';
40. echo ' and the channel set to ' . $boat_radio->getChannel() . '.';

[4] class constants: https://php.net/language.oop5.constants
[5] scope resolution operator: https://php.net/language.oop5.paamayim-nekudotayim

Validating Input to a Setter Method
Frequently, we need to constrain the input to our methods. For example, in our Radio class,
volume settings will have an upper and lower limit. Many entertainment centers have a
volume setting between 0 and 10. Let’s add some class constants[4] for these to our Radio class:

<?php
 class Radio
 {
 const MIN_VOLUME = 0;
 const MAX_VOLUME = 10;

 // ...
 }

In our setVolume() method, we get access to these class constants by using self::. self repre-
sents the class’s self, and the :: is called the scope resolution operator[5]. It is needed when
referencing constants inside the class. You also use the :: when referencing external vari-
ables, but you use the name of the class instead. For example, we can update setVolume() to
ensure a user can’t set it outside of the allowable range as in Listing 26.8.

https://php.net/language.oop5.constants
https://php.net/language.oop5.paamayim-nekudotayim

PHP Web Development with MySQL—A Hands On Approach to Application Programming462

26. Introduction to Object-Oriented Programming in PHP

Listing 26.8.

 1. <?php
 2. class Radio
 3. {
 4. const MIN_VOLUME = 0;
 5. const MAX_VOLUME = 10;
 6. // ...
 7.
 8. public function setVolume($volume)
 9. {
10. if ($volume < self::MIN_VOLUME)
11. {
12. $volume = self::MIN_VOLUME;
13. }
14. else if ($volume > self::MAX_VOLUME)
15. {
16. $volume = self::MAX_VOLUME;
17. }
18.
19. $this->volume = $volume;
20. }
21.
22. // ...
23. }

Complete Listing for Radio.php (v2)

Listing 26.9 the complete listing for our Radio class which enforces frequency limits when
they are set.

Listing 26.9.

 1. <?php
 2. class Radio
 3. {
 4. const MIN_VOLUME = 0;
 5. const MAX_VOLUME = 10;
 6.
 7. const MIN_AM_FREQ = 535;
 8. const MAX_AM_FREQ = 1700;
 9.
10. const MIN_FM_FREQ = 87.5;
11. const MAX_FM_FREQ = 108;
12.
13. private $powered; // true or false
14. private $volume; // 0 - 10
15. private $channel; // 535kHz - 1700kHz, 87.5MHz - 108MHz
16.
17. // Getters

Validating Input to a Setter Method

PHP Web Development with MySQL—A Hands On Approach to Application Programming 463

18. public function getPowered()
19. {
20. return $this->powered;
21. }
22.
23. public function getVolume()
24. {
25. return $this->volume;
26. }
27.
28. public function getChannel()
29. {
30. return $this->channel;
31. }
32.
33. // Setters
34. public function setPowered($powered)
35. {
36. $this->powered = $powered;
37. }
38.
39. public function setVolume($volume)
40. {
41. if ($volume < self::MIN_VOLUME)
42. {
43. $volume = self::MIN_VOLUME;
44. }
45. else if ($volume > self::MAX_VOLUME)
46. {
47. $volume = self::MAX_VOLUME;
48. }
49.
50. $this->volume = $volume;
51. }
52.
53. public function setChannel($channel)
54. {
55. if ($channel < self::MIN_FM_FREQ)
56. {
57. $channel = self::MIN_FM_FREQ;
58. }
59. else if ($channel > self::MAX_FM_FREQ && $channel < self::MIN_AM_FREQ
60. && $channel < (self::MIN_AM_FREQ - self::MAX_FM_FREQ))
61. {
62. $channel = self::MAX_FM_FREQ;
63. }
64. else if ($channel > self::MAX_FM_FREQ && $channel < self::MIN_AM_FREQ
65. && $channel >= (self::MIN_AM_FREQ - self::MAX_FM_FREQ))
66. {
67. $channel = self::MIN_AM_FREQ;
68. }
69. else if ($channel > self::MAX_AM_FREQ)
70. {
71. $channel = self::MAX_AM_FREQ;
72. }

PHP Web Development with MySQL—A Hands On Approach to Application Programming464

26. Introduction to Object-Oriented Programming in PHP

73.
74. $this->channel = $channel;
75. }
76. }

Complete Listing for UseRadio.php (v2)

Listing 26.10.

 1. <?php
 2. require_once('Radio.php');
 3.
 4. $car_radio = new Radio();
 5. $boat_radio = new Radio();
 6.
 7. $car_radio->setPowered(true);
 8. $car_radio->setVolume(4);
 9. $car_radio->setChannel(88.6);
10.
11. $boat_radio->setPowered(true);
12. $boat_radio->setVolume(11);
13. $boat_radio->setChannel(430);
14.
15. echo 'My car radio is ';
16.
17. if ($car_radio->getPowered())
18. {
19. echo 'turned on';
20. }
21. else
22. {
23. echo 'turned off';
24. }
25.
26. echo ' with the volume set to ' . $car_radio->getVolume() . ', ';
27. echo ' and the channel set to ' . $car_radio->getChannel() . '.

';
28. echo 'My boat radio is ';
29.
30. if ($boat_radio->getPowered())
31. {
32. echo 'turned on';
33. }
34. else
35. {
36. echo 'turned off';
37. }
38.
39. echo ' with the volume set to ' . $boat_radio->getVolume() . ', ';
40. echo ' and the channel set to ' . $boat_radio->getChannel() . '.';

Inheritance

PHP Web Development with MySQL—A Hands On Approach to Application Programming 465

Figure 26.1 Here’s the output from running
version 2:

[6] “inheritance”: https://php.net/language.oop5.inheritance

Inheritance
In OOP, “inheritance”[6] extends the behavior of one class (called the base or parent class)
and reuses it as the basis of another class (called the sub or child class). Doing so allows
for efficient reuse of code from a base class and is considered another central pillar of OOP.
Another way to take advantage of inheritance is to design your base classes with the thought
of more generalization and the sub-classes with more specificity.

This is best illustrated through an example. Let’s say we want to represent the idea of a pet.
Our Pet class might look like Listing 26.11.

Listing 26.11.

 1. <?php
 2. class Pet
 3. {
 4. protected $name;
 5.
 6. // Getters / Setters
 7. public function getName()
 8. {
 9. return $this->name;
10. }
11.
12. public function setName($name)
13. {
14. $this->name = $name;
15. }
16.
17. // Do some exercise!
18. public function exercise()
19. {
20. echo 'Exercising my pet ' . $this->name . '.
';
21. }
22. }

Use protected (not private) to make parent properties available to your sub-classes.

Figure 26.1.

https://php.net/language.oop5.inheritance

PHP Web Development with MySQL—A Hands On Approach to Application Programming466

26. Introduction to Object-Oriented Programming in PHP

The Pet class will serve as our base class. If we want to create a more specific class with all the
knowledge and methodology of a Pet, we need to create a sub-class. We do that by defining
our subclass and extending the base-class using the keyword extends:

<?php
 require_once('Pet.php');
 class Dog extends Pet
 {
 ...
 }

Since we are extending the Pet class, don’t forget to include it before declaring our sub-class.
Now let’s add more specific functionality (Listing 26.12) to our sub-class.

Listing 26.12.

 1. <?php
 2. require_once('Pet.php');
 3. class Dog extends Pet
 4. {
 5. public function bark()
 6. {
 7. echo $this->name . ' is barking.
';
 8. }
 9. }

In Listing 26.13, let’s create another sub-class.

Listing 26.13.

 1. <?php
 2. require_once('Pet.php');
 3. class Cat extends Pet
 4. {
 5. public function meow()
 6. {
 7. echo 'My cat ' . $this->name . ' is meowing.
';
 8. }
 9. }

Inheritance

PHP Web Development with MySQL—A Hands On Approach to Application Programming 467

Listing 26.14 shows how we can use these classes. You can see
the output in Figure 26.2.

Listing 26.14.

 1. <?php
 2. require_once('Pet.php');
 3. require_once('Dog.php');
 4. require_once('Cat.php');
 5.
 6. // Create a pet, dog, and cat
 7. $my_pet = new Pet();
 8. $my_dog = new Dog();
 9. $my_cat = new Cat();
10.
11. // Set Pet's name and exercise
12. $my_pet->setName("Gerald");
13. $my_pet->exercise();
14.
15. echo '**********
';
16.
17. // Set Dog's name, exercise, and bark
18. $my_dog->setName('Sparky');
19. $my_dog->exercise();
20. $my_dog->bark();
21.
22. echo '**********
';
23.
24. // Set Cat's name, exercise, and meow
25. $my_cat->setName('Boo');
26. $my_cat->exercise();
27. $my_cat->meow();

You’ll notice that I include a reference to the Pet class even though Dog and Cat also
include the Pet class. It is a best practice, as long as I am instantiating an object of a
base class to include the base class, even though an instantiated sub-class inherits the
base class as well. The reason is, I would minimize any breaking changes if the inheri-
tance structure were to be redesigned. Remember to use require_once so you don’t get a
fatal error when including a class that already exists.

Figure 26.2.

PHP Web Development with MySQL—A Hands On Approach to Application Programming468

26. Introduction to Object-Oriented Programming in PHP

Overriding Methods
With inheritance, I can create more specific data and methods based on the details in my
sub-class. However, I don’t like that my dog and cat are portrayed as exercising the same way.
It would be handy to customize or “override” the different ways my dog and cat exercise.

Another central pillar of OOP is the ability to override the behavior of methods based on
the specificity of the subclass. In fact, with the ability to override methods, we don’t have to
keep track of which specific method to use. We can rely on each subclass taking care of its
unique details for how something is done. It is done automatically for us based on the sub-
class type. This behavior is called “polymorphism” (meaning many forms), another main
pillar of OOP.

We override the behavior of a base class’s method by redefining it in the sub-class. The rule
is: the method in the subclass must have the exact same signature as the method in the base
class.

Listing 26.15 is our Dog class with the exercise() method overridden:

Listing 26.15.

 1. <?php
 2. require_once('Pet.php');
 3.
 4. class Dog extends Pet
 5. {
 6. public function bark()
 7. {
 8. echo $this->name . ' is barking.
';
 9. }
10.
11. // Do some dog exercise!
12. public function exercise()
13. {
14. echo 'Walking my dog ' . $this->name . '.
';
15. }
16. }

Our Cat class is in Listing 26.16 with the exercise() method overridden:

Constructors

PHP Web Development with MySQL—A Hands On Approach to Application Programming 469

Listing 26.16.

 1. <?php
 2. require_once('Pet.php');
 3. class Cat extends Pet
 4. {
 5. public function meow()
 6. {
 7. echo 'My cat ' . $this->name . ' is meowing.
';
 8. }
 9.
10. // Do some cat exercise!
11. public function exercise()
12. {
13. echo 'My cat ' . $this->name . ' is chasing mice!
';
14. }
15. }

A powerful feature of OOP is we don’t have to make any
changes to code that uses the Pet, Dog, and Cat class since we
call the methods the same way. Just rerun it and notice the
change in the output in Figure 26.3.

[7] “Magic Methods”: https://php.net/language.oop5.magic

Constructors
Constructors are used in object-oriented languages to initialize an object from a class as part
of instantiation. So far, when we’ve instantiated an object, we have done so using an empty
set of parenthesis following the name of the class using the new keyword:

$myDog = new Dog();

This method of initialization is using the default constructor. If you do not define a
constructor, PHP will try to initialize your object’s properties.

A constructor is a function that runs during the initialization of your object. You want to
define a constructor if you have some specific initialization you want to perform in your class.

We define a constructor using the PHP Magic Method __construct(). PHP has a number of
“Magic Methods”[7] which are functions starting with a double-underscore (__). I will only
talk about __construct() and __destruct() in this chapter.

Figure 26.3.

https://php.net/language.oop5.magic

PHP Web Development with MySQL—A Hands On Approach to Application Programming470

26. Introduction to Object-Oriented Programming in PHP

Let’s take a look at an example where we create a constructor. Let’s say we have a simple
Student class where we want to store an id, name, and email, but we want our objects to be
immutable (i.e., we want the data set for the life of the object, but not be modifiable). We’ll
start out defining the class and the properties:

<?php
 class Student
 {
 private $id;
 private $name;
 private $email;
 }

Next, we need to define our constructor that takes $id, $name, and $email as parameters. We
do that using the __construct() magic method in Listing 26.17.

Listing 26.17.

 1. <?php
 2. class Student
 3. {
 4. private $id;
 5. private $name;
 6. private $email;
 7.
 8. // Constructor
 9. public function __construct($id, $name, $email)
10. {
11. $this->id = $id;
12. $this->name = $name;
13. $this->email = $email;
14. }
15. }

Finally, we’ll create getters*() (Listing 26.18) so users of our class can retrieve the values of
the properties.

Listing 26.18.

 1. <?php
 2. class Student
 3. {
 4. private $id;
 5. private $name;
 6. private $email;
 7.
 8. // Constructor

Constructors

PHP Web Development with MySQL—A Hands On Approach to Application Programming 471

 9. public function __construct($id, $name, $email)
10. {
11. $this->id = $id;
12. $this->name = $name;
13. $this->email = $email;
14. }
15.
16. // Getters
17. public function getId()
18. {
19. return $this->id;
20. }
21.
22. public function getName()
23. {
24. return $this->name;
25. }
26.
27. public function getEmail()
28. {
29. return $this->email;
30. }
31. }

Listing 26.19 is a script that uses our class. Note that
three arguments are passed to the constructor upon
instantiation of the object. This produces the following
output (Figure 26.4).

Listing 26.19.

 1. <?php
 2. require_once('Student.php');
 3.
 4. $jane = new Student(7, 'Jane Doe', 'jane@example.com');
 5. ?>
 6. <table>
 7. <tr>
 8. <th>Name:</th>
 9. <td><?= $jane->getName() ?></td>
10. </tr>
11. <tr>
12. <th>ID:</th>
13. <td><?= $jane->getId() ?></td>
14. </tr>
15. <tr>
16. <th>Email:</th>
17. <td><?= $jane->getEmail() ?></td>
18. </tr>
19. </table>

Figure 26.4.

PHP Web Development with MySQL—A Hands On Approach to Application Programming472

26. Introduction to Object-Oriented Programming in PHP

About Constructors

[8] constructors and destructors: https://php.net/manual/en/language.oop5.decon

When working with constructors and destructors[8] in PHP, something to keep in mind is
that they may function differently in other OOP languages. Take a look at this quote from
the PHP manual regarding constructors to make sure you know how to design your classes
to take advantage of construction in the way you intend:

Parent constructors are not called implicitly if the child class defines a constructor. To run
a parent constructor, you must call parent::__construct() within the child constructor. If
the child does not define a constructor, then it may be inherited from the parent class and
called just like a standard class method (if it was not declared as private)."

Constructor Property Promotion in PHP 8

Although this book assumes PHP 7.x, as of the time of publishing for this book, PHP
version 8 is out and offers several new features and enhancements. I’d like to introduce just
one of them to you called constructor property promotion.

Constructor property promotion allows you to combine class properties, constructor
definition, and variable assignments all in the __construct() parameter list. In a standard
definition of class instance properties, construction, and assignment, you would use code
like Listing 26.20.

Listing 26.20.

 1. <?php
 2.
 3. class Student
 4. {
 5. private $id;
 6. private $name;
 7. private $email;
 8.
 9. // Constructor
10. public function __construct(
11. $id,
12. $name,
13. $email
14.) {
15. $this->id = $id;
16. $this->name = $name;
17. $this->email = $email;
18. }
19. }

https://php.net/manual/en/language.oop5.decon

Creating Parameterized Queries Using OOP

PHP Web Development with MySQL—A Hands On Approach to Application Programming 473

We saw this above. In constructor property promotion, we can rewrite the same code as in
Listing 26.21 with fewer boilerplate lines of code.

Listing 26.21.

 1. <?php
 2. class Student
 3. {
 4. // Constructor
 5. public function __construct(
 6. private $id,
 7. private $name,
 8. private $email)
 9. {
10. }
11. // ...
12. }

As long as there is an access modifier (private, protected, or public) preceding the variable in
the constructor’s parameter list, PHP will create the properties under the hood, and assign
the values passed into the parameter list. You can still directly access the properties in the
class using the this keyword.

Details are buried in the PHP manual section on constructors[9]. For in-depth information,
you can refer to the Request for Comments (RFC) for constructor property promotion[10]
that was approved for PHP 8 on the PHP manual Wiki if you’d like to know more.

[9] constructors: https://php.net/language.oop5.decon.constructor.promotion
[10] constructor property promotion: https://wiki.php.net/rfc/constructor_promotion
[11] PHP Data Objects: https://php.net/book.pdo

Creating Parameterized Queries Using OOP
Back in Chapter 23: Prepared Statements, I showed you how to create more secure
parameterized database queries by using the procedural functions mysqli_prepare(), mysqli_
stmt_bind_param(), mysqli_stmt_execute(), and mysqli_stmt_get_result(). However, there is an
object-oriented way to parameterize your database queries with less code using PHP Data
Objects[11] (PDO). I’ll demonstrate how to use PDO by creating a simple database table and
a class that manages our data in and out of the table to implement the PDO functionality.

https://php.net/language.oop5.decon.constructor.promotion
https://wiki.php.net/rfc/constructor_promotion
https://php.net/book.pdo

PHP Web Development with MySQL—A Hands On Approach to Application Programming474

26. Introduction to Object-Oriented Programming in PHP

PDO is the library of choice for interacting with databases, primarily because it works with
many different database technologies. This library gives us a familiar API no matter where
we store our data.

First, we need to create a database and a
simple table we can work on. I’ll make a
simple database called Student and a table
called student used to hold a student’s first
name, last name, and email address for this
demonstration as shown in Figure 26.5

A common way to use PDO is to create
a class known as a CRUD wrapper that
manages all queries to a database table.
CRUD stands for Create, Read, Update, and
Delete, which are the common operations
we perform on database tables. It is a good
practice to name our classes using a “Studly
Caps” interpolation of our database table
and concatenate the word “Manager” onto
the end of our class. In this case, we should
name our class StudentManager since our
table is called student.

Using PDO to Create New Database Entries

Listing 26.22 is the class along with a create() method to insert rows into our student table.

Listing 26.22.

 1. <?php
 2.
 3. class StudentManager
 4. {
 5. // Database connection constants
 6. private const DB_TECHNOLOGY = "mysql";
 7. private const DB_HOST = "localhost";
 8. private const DB_NAME = "Student";
 9. private const DB_USER = "testuser";
10. private const DB_PASSWORD = "testuser";
11.

Figure 26.5.

Creating Parameterized Queries Using OOP

PHP Web Development with MySQL—A Hands On Approach to Application Programming 475

12. // Results in DSN = "mysql:host=localhost;dbname=Student"
13. private const DSN = self::DB_TECHNOLOGY
14. . ':host=' . self::DB_HOST
15. . ';dbname=' . self::DB_NAME;
16.
17. public function create($first_name, $last_name, $email)
18. {
19. $db = new PDO(self::DSN, self::DB_USER, self::DB_PASSWORD);
20.
21. // Insert a new record
22. $sql = "INSERT INTO student(`first_name`, `last_name`, `email`)
23. VALUES (:first_name, :last_name, :email)";
24.
25. $db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
26.
27. try
28. {
29. $query = $db->prepare($sql);
30. $query->bindParam(":first_name", $first_name, PDO::PARAM_STR);
31. $query->bindParam(":last_name", $last_name, PDO::PARAM_STR);
32. $query->bindParam(":email", $email, PDO::PARAM_STR);
33. $query->execute();
34. } catch (Exception $ex)
35. {
36. echo $ex->getMessage() . "
";
37. }
38.
39. // Returns the primary key of this INSERT
40. return $db->lastInsertId();
41. }
42. }

The constructor for instantiating a new PDO object takes three parameters: a data source
name, user name, and password, and when created, connects to the database. When
connecting to a MySQL database, the data source name must look like this:

"mysql:host=localhost;dbname=Student"

The constants in lines 6–10 set the data source name, user name, and password input param-
eters to the PDO constructor.

Lines 17 is our create() method that takes the first and last name and the email address,
which correspond to the three fields we want to insert into the student table.

To use PDO, we instantiate a new object on line 19, which creates the connection to our
database.

PHP Web Development with MySQL—A Hands On Approach to Application Programming476

26. Introduction to Object-Oriented Programming in PHP

We create our SQL statement on line 22 to insert the data into the student table. Notice that
instead of using ? and relying on the order of them, we can create named parameters using
an arbitrary name preceded by a colon (:):

$sql = "INSERT INTO student(`first_name`, `last_name`, `email`)
 VALUES (:first_name, :last_name, :email)";

Here we use :first_name, :last_name, and :email as our named parameters that we will bind
the incoming parameters of $first_name, $last_name, and $email to.

Line 25 allows us to enable error reporting and exception handling by setting a couple of
PDO class constant attributes. Doing so allows us to use Exceptions to handle database
errors without the complexity of too much conditional logic.

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

I haven’t covered exception handling, but a simple explanation is that it allows us to
try executing some code that might cause some exceptional behavior (like not being
able to query a database table successfully). If an exception occurs, we can catch it in
an orderly fashion that hopefully allows our application to recover gracefully. If every-
thing runs correctly in the try block, the catch block does not execute.

The OOP way of preparing and binding our parameters is handled in these lines of the try
block:

$query = $db->prepare($sql);
$query->bindParam(":first_name", $first_name, PDO::PARAM_STR);
$query->bindParam(":last_name", $last_name, PDO::PARAM_STR);
$query->bindParam(":email", $email, PDO::PARAM_STR);

First, we call the prepare() method of the PDO object passing in the SQL statement as an
argument that returns a PDOStatement object we assign to a variable we’ll call $query. This is
the object we bind our parameters to. Notice the third parameter to the bindParam() method
is a PDO class constant specifying the data type. Although this argument is optional, you
should explicitly include it so that PDO escapes your data type correctly.

Then we execute the query with this call:

$query->execute();

Creating Parameterized Queries Using OOP

PHP Web Development with MySQL—A Hands On Approach to Application Programming 477

If the SQL statement is malformed, an exception is thrown. Then, the error is echoed on line
36 with a call to the getMessage() method of the exception object passed into the catch block:

catch(Exception $ex)
{
 echo $ex->getMessage() . "
";
}

If everything works as planned, we can return the primary key of the newly inserted row
into the student table to the caller by calling the PDO object’s lastInsertId() method:

return $db->lastInsertId(); // Returns the primary key of this INSERT

Listing 26.23 is an example of using this method by creating several entries using a pre-
populated array of associative arrays.

Listing 26.23.

 1. <?php
 2. require_once('StudentManager.php');
 3.
 4. // Manage some Simpsons
 5. $simpsons_manager = new StudentManager();
 6.
 7. $simpsons = [];
 8.
 9. $simpsons[] = [
10. 'first_name' => 'Bart',
11. 'last_name' => 'Simpson',
12. 'email' => 'kowabungadude@simpsons.com'
13.];
14.
15. $simpsons[] = [
16. 'first_name' => 'Lisa',
17. 'last_name' => 'Simpson',
18. 'email' => 'lisa@simpsons.com'
19.];
20.
21. $simpsons[] = [
22. 'first_name' => 'Marge',
23. 'last_name' => 'Simpson',
24. 'email' => 'marge@simpsons.com'
25.];
26.
27. $simpsons[] = [
28. 'first_name' => 'Homer',
29. 'last_name' => 'Simpson',
30. 'email' => 'ilovedonuts@simpsons.com'
31.];
32.

PHP Web Development with MySQL—A Hands On Approach to Application Programming478

26. Introduction to Object-Oriented Programming in PHP

33. // Insert each Simpson into the students table
34. foreach ($simpsons as $simpson)
35. {
36. echo "Creating a new entry for: "
37. . $simpson['first_name'] . " " . $simpson['last_name']
38. . " with email of: " . $simpson['email'] . "
";
39.
40. $id = $simpsons_manager->create(
41. $simpson['first_name'], $simpson['last_name'], $simpson['email']
42.);
43.
44. echo $simpson['first_name'] . "'s id is: $id

";
45. }

This code produces the output in
Figure 26.6. Figure 26.7 shows the entry in
the student table.

Reading Database Entries with PDO
When reading entries from a database table, we either want to read a single row or multiple
rows. I’ll demonstrate reading all rows and a single row using two different methods. First,
let’s create a readAll() method that returns all the rows in the student table. Listing 26.24 is
the readAll() method:

Listing 26.24.

 1. public function readAll()
 2. {
 3. $db = new PDO(self::DSN, self::DB_USER, self::DB_PASSWORD);
 4.
 5. // Read all records
 6. $sql = "SELECT * FROM student";
 7.
 8. try
 9. {
10. $query = $db->prepare($sql);
11. $query->execute();

Figure 26.6. Figure 26.7.

Creating Parameterized Queries Using OOP

PHP Web Development with MySQL—A Hands On Approach to Application Programming 479

12.
13. // Gets a numeric array of the query results with each element
14. // set to a Student object containing the row's fields
15. $results = $query->fetchAll(PDO::FETCH_CLASS, "Student");
16. }
17. catch(Exception $ex)
18. {
19. echo "{$ex->getMessage()}
";
20. }
21.
22. return $results;
23. }

There is no parameterization needed since we are not passing in any parameters to the
readAll() method. This method is self-explanatory with the exception of line 15:

$results = $query->fetchAll(PDO::FETCH_CLASS, "Student");

The fetchAll() method has many options for how it can return results from a query, but my
favorite option is the ability to return a row set with each row represented within an object.
Notice the second parameter takes a string that you should set to the class name. This class
name is used to instantiate an object for each row returned from the query. The one catch is
that the class must have properties defined that exactly match the field names of the table.

Therefore, we also need to create a Student class that contains properties with all the fields in
the student table and include them in our StudentManager class file. Listing 26.25 is the Student
class.

Listing 26.25.

 1. <?php
 2.
 3. class Student
 4. {
 5. private $id;
 6. private $first_name;
 7. private $last_name;
 8. private $email;
 9.
10. // Getters/Setters
11. public function getId()
12. {
13. return $this->id;
14. }
15.

PHP Web Development with MySQL—A Hands On Approach to Application Programming480

26. Introduction to Object-Oriented Programming in PHP

16. public function getFirstName()
17. {
18. return $this->first_name;
19. }
20.
21. public function getLastName()
22. {
23. return $this->last_name;
24. }
25.
26. public function getEmail()
27. {
28. return $this->email;
29. }
30. }

Notice lines 5–8 contain properties with the exact names of
the fields in the student table. This is a convenient feature
within PHP and speeds up creating CRUD wrappers around
database tables we can easily use in our applications.

The rest of the Student class contains the get methods for
accessing all the properties. If we wanted, we could create
set*() methods to update the database table when called. I’ll
leave that as an exercise for you.

Listing 26.26 is an example of how we can use our readAll()
method, which produces the output shown in Figure 26.8.
Now let’s create a readById() method that takes the id of the
row we want to read from the student table as a parameter.

Listing 26.26.

 1. <?php
 2.
 3. require_once('StudentManager.php');
 4.
 5. // Manage some Simpsons
 6. $simpsons_manager = new StudentManager();
 7.
 8. $the_simpsons = $simpsons_manager->readAll();
 9.
10. foreach ($the_simpsons as $simpson)
11. {
12. echo "First name: " . $simpson->getFirstName() . "
";
13. echo "Last name: " . $simpson->getLastName() . "
";
14. echo "Email: " . $simpson->getEmail() . "
";
15. echo "
";
16. }

Figure 26.8.

Creating Parameterized Queries Using OOP

PHP Web Development with MySQL—A Hands On Approach to Application Programming 481

Let’s look at Listing 26.27 for reading a single row based on the ID.

Listing 26.27.

 1. public function readById($id)
 2. {
 3. $db = new PDO(self::DSN, self::DB_USER, self::DB_PASSWORD);
 4.
 5. // Read the record given by the id
 6. $sql = "SELECT * FROM student WHERE id=:id";
 7.
 8. try
 9. {
10. $query = $db->prepare($sql);
11. $query->bindParam(":id", $id, PDO::PARAM_INT);
12. $query->execute();
13.
14. // Fetch result into instance of a Student object
15. $result = $query->fetchObject("Student");
16. }
17. catch(Exception $ex)
18. {
19. echo "{$ex->getMessage()}
";
20. }
21.
22. return $result;
23. }

Everything in this method should be straight forward except for line 15:

$result = $query->fetchObject("Student");

Another way to specify our class is Student::class—without quotes. PHP uses the ::class
constant to reference the fully-qualified name of a class which includes its namespace.
$result = $query->fetchObject(Student::class);

In our readAll() method, we used the fetchAll() method which returned an array of Student
objects. We could have done the same thing on line 15, but we would return a single object
inside an array with one element. It’s more convenient to return a single object since we
know we’re only looking for a single row. Therefore, we need to use the fetchObject()
method, which takes a string with the name of the class we want to use that contains proper-
ties with all the fields in the student table, which in our case is Student.

If an ID that does not exist in the student table is passed in, readById() returns false.

PHP Web Development with MySQL—A Hands On Approach to Application Programming482

26. Introduction to Object-Oriented Programming in PHP

Listing 26.28 is an example of how we can use our readById()
method. It produces this output in Figure 26.9.

Listing 26.28.

 1. require_once('StudentManager.php');
 2.
 3. // Manage some Simpsons
 4. $simpsons_manager = new StudentManager();
 5.
 6. $a_simpson = $simpsons_manager->readById(3);
 7.
 8. if ($a_simpson)
 9. {
10. echo "First name: " . $a_simpson->getFirstName() . "
";
11. echo "Last name: " . $a_simpson->getLastName() . "
";
12. echo "Email: " . $a_simpson->getEmail() . "
";
13. echo "
";
14. }

Updating Database Entries Using PDO

Now we’ll create a method called update() that updates a row in the student table. See
Listing 26.29.

Listing 26.29.

 1. public function update($id, $first_name, $last_name, $email)
 2. {
 3. $db = new PDO(self::DSN, self::DB_USER, self::DB_PASSWORD);
 4.
 5. // UPDATE a record with a given first name, last name, and email for a given id
 6. $sql = "UPDATE student SET `first_name`=:first_name, `last_name`=:last_name, "
 7. . "`email`=:email WHERE id=:id";
 8.
 9. $db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
10.
11. try
12. {
13. $query = $db->prepare($sql);
14. $query->bindParam(":id", $id, PDO::PARAM_INT);
15. $query->bindParam(":first_name", $first_name, PDO::PARAM_STR);
16. $query->bindParam(":last_name", $last_name, PDO::PARAM_STR);
17. $query->bindParam(":email", $email, PDO::PARAM_STR);
18. $query->execute();
19. $rows_affected = $query->rowCount();
20. }

Figure 26.9.

Creating Parameterized Queries Using OOP

PHP Web Development with MySQL—A Hands On Approach to Application Programming 483

21. catch(Exception $ex)
22. {
23. echo $ex->getMessage() . "
";
24. }
25.
26. return $rows_affected; // Returns the number or rows affected by the UPDATE
27. }

We obviously need to parameterize every incoming parameter which we do on lines 6,7, and
14–17. The only other line that needs explanation is line 19:

$rows_affected = $query->rowCount();

Since we are only updating a single row in the student
table, rowCount() returns 1 if the row was successfully
updated. If the ID is not found, 0 is returned. We return
this value to the caller of update() so they know if the
update was successful or not.

Listing 26.30 is an example of how we can use our
update() method. Running it results in the output shown
in Figure 26.10.

Listing 26.30.

 1. require_once('StudentManager.php');
 2.
 3. // Manage some Simpsons
 4. $simpsons_manager = new StudentManager();
 5.
 6. $update_homer_to_maggie = $simpsons_manager->readById(4);
 7.
 8. if ($update_homer_to_maggie)
 9. {
10. echo "First name: " . $update_homer_to_maggie->getFirstName() . "
";
11. echo "Last name: " . $update_homer_to_maggie->getLastName() . "
";
12. echo "Email: " . $update_homer_to_maggie->getEmail() . "
";
13. echo "
";
14. }
15.
16. if ($simpsons_manager->update(4,"Maggie", "Simpson", "maggie@simpsons.com") == 1)
17. {
18. $update_homer_to_maggie = $simpsons_manager->readById(4);
19.

Figure 26.10.

PHP Web Development with MySQL—A Hands On Approach to Application Programming484

26. Introduction to Object-Oriented Programming in PHP

20. if ($update_homer_to_maggie)
21. {
22. echo "First name: " . $update_homer_to_maggie->getFirstName() . "
";
23. echo "Last name: " . $update_homer_to_maggie->getLastName() . "
";
24. echo "Email: " . $update_homer_to_maggie->getEmail() . "
";
25. echo "
";
26. }
27. }

Deleting Database Entries with PDO

Finally, let’s look at what a delete() method should look like. See Listing 26.31.

Listing 26.31.

 1. public function delete($id)
 2. {
 3. $db = new PDO(self::DSN, self::DB_USER, self::DB_PASSWORD);
 4.
 5. // Delete a record
 6. $sql = "DELETE FROM student WHERE id=:id";
 7.
 8. $db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 9.
10. try
11. {
12. $query = $db->prepare($sql);
13. $query->bindParam(":id", $id, PDO::PARAM_INT);
14. $query->execute();
15. $rows_affected = $query->rowCount();
16. }
17. catch(Exception $ex)
18. {
19. echo $ex->getMessage() . "
";
20. }
21.
22. return $rows_affected; // Returns the number of rows affected by the DELETE
23. }

Since we need to pass in the id as a parameter to delete(), we need to parameterize it as
indicated on lines 6 and 13. As we did in the update() method, we will return the number of
rows affected by the DELETE.

Exercises

PHP Web Development with MySQL—A Hands On Approach to Application Programming 485

You can see an example of how we can use our delete()
method in Listing 26.32. Calling this method generates
the output in Figure 26.11.

Listing 26.32.

 1. require_once('StudentManager.php');
 2.
 3. // Manage some Simpsons
 4. $simpsons_manager = new StudentManager();
 5.
 6. $bart = $simpsons_manager->readById(1);
 7.
 8. if ($bart)
 9. {
10. echo "Deleting " . $bart->getFirstName() . " " . $bart->getLastName() . "
";
11.
12. if ($simpsons_manager->delete($bart->getId()) == 1)
13. {
14. echo "Successfully deleted " . $bart->getFirstName() . " "
15. . $bart->getLastName() . "
";
16. }

17. }

Exercises
1. Rewrite Bad Libs using Object-Oriented Programming

1. Create a class called BadLibs and save it in a PHP script called MadLibs.php.
2. Create properties for holding a noun, verb, adjective, adverb, and story
3. Create getters and setters for ALL your properties
4. Create a method for inserting the new properties into your mad libs database table
5. Create a method for querying the stories that returns a result set sorted newest to

oldest.
6. Create a method that takes the results set (from the query) as an argument and

returns the results in a formatted HTML table
7. You may use your existing Bad Libs database or create a new one.

Figure 26.11.

PHP Web Development with MySQL—A Hands On Approach to Application Programming486

26. Introduction to Object-Oriented Programming in PHP

2. Use PDO to create a ToDo List application
1. Create a database called ToDo.
2. Create a table called todo with the following fields for id, description. Make the id

the primary key, and the description should be a varchar[100].
3. Use PDO to create a CRUD class for the todo table
4. Create a ToDo list application with a form that allows a user to create, read all, read

by id, update, and delete ToDo list items
5. When the user reads all of the ToDo items, display the results in a table that

includes the id.
6. When the user updates a ToDo list item, return 1 indicating one row was affected

and the update was successful, or 0 if it was unsuccessful.
7. When the user deletes a ToDo list item, return 1 indicating a single row was affected

and the update was successful, or 0 if it was unsuccessful.

PHP Web Development with MySQL—A Hands On Approach to Application Programming 487

A–C

Index
A
access
 credentials, 282
 modifiers, 452, 454, 473
 privileges, 324–25, 327, 353,
400–401, 403
adminer, 12–14, 98, 112, 136–37,
139, 155, 217, 325, 380, 397
algorithm, 304, 325
 password hashing, 304–5
algorithms, encryption, 306
apache, 9–10, 12, 219, 223, 302
 apt install, 9
 restart, 12
API, 30, 315, 474
 external, 88
 unsafe JavaScript, 315
application security risk (ASR),
302, 306, 315
array, 27–30, 43–52, 54, 69–70,
75, 77–78, 92, 119–20, 150–51,
161, 198, 203, 228, 348–49,
413–14, 425–27, 430–31, 481
 associative, 27–28, 45, 53–54,
77, 91, 94, 119, 477
 empty, 27, 44, 295
 functions, 46–47, 49, 51
 indexed, 44
 multidimensional, 52–53
 numeric, 44–45, 479
 short syntax, 28, 44–46
 superglobal, 161, 178, 180, 182,
184–85, 192, 202, 205, 271

attack, 306, 315–16, 319
 collision, 302
 directory path traversal, 319
 man-in-the-middle, 321
authentication, 277–80, 282–84,
352
 basic, 278–79
 headers, 281, 283, 352

B
Bash, 98–101, 106
Bootstrap, 141–42, 149, 160, 164,
178, 183
 card, 159, 178
 Client-Side Validation, 164, 203,
291, 328, 343

C
callables, 30, 69
Canonical, 6
CAPTCHAs, 326
characters
 special, 19, 24
 string escape, 35
class
 base, 465–68
 constants, 461, 481
 definitions, 29, 453
 design, 453–54
 instantiating, 458
 name, 24
 naming, 453
CLI (command-line interface),
13, 98, 106

code
 conditional, 127, 160
 legacy, 109
 procedural-based, 313
 vulnerable, 317
concatenate, 34, 36, 305, 474
condition, 55–64, 74, 184–86,
205–6, 208, 225–26, 230–31, 237,
330–31, 334–36, 344–47, 366,
371, 383–84, 387–89, 409–10,
423–24, 426–28, 437–38, 440–42
 catch-all, 410, 424, 438
 elseif, 225, 344
 ternary, 366, 372
conditional logic, 56, 59, 93, 288,
313, 330, 476
conditional statements, 59–62,
281
 compound, 62–64
constants, 25, 31, 85–86, 142, 223,
225, 229, 461, 475
 global, 85
 referencing, 461
constructors, 452, 455, 469–73,
475
 child, 472
 default, 459, 469
cookies, 184, 286–92, 295–300,
314, 459
 referencing, 296
 saved, 288, 290, 292
 values, 288
CrackStation, 303–4

PHP Web Development with MySQL—A Hands On Approach to Application Programming488

D–J

D
data
 persisting, 300
 untrusted, 315
 user-supplied, 314–15, 322
database, 13–14, 77–78, 98,
101–2, 105–6, 108–14, 129–31,
134–37, 143–44, 166–68, 174,
192–94, 216–17, 234–35, 259–62,
300, 305–7, 309–10, 390–92,
474–75
 code, 235, 261
 connection, 109–10, 333, 337
 error querying, 77, 111, 119–20,
127, 129
 errors, 333, 476
 northwind, 99–100, 102
 queries, 118, 146, 316, 332–33,
337, 473
 table, 199, 300, 314–15, 324–25,
380, 449–50, 474, 476, 478, 480
 user account, 13
data type, 25, 27, 57, 102, 333, 476
 Boolean, 26, 68
 complex, 458
 compound, 27
 floating-point, 26
 integers, 26, 68
 special, 30
 string, 27, 68–69, 332, 337
date, 3, 18–19, 286, 302, 325, 449
debugging, 6, 61, 85, 89
destructors, 472
directory
 current, 90
 downloads, 13

 traversal attacks, 318
Docblocks, 224, 332

E
email, 19, 318, 470–72, 475–78,
480, 482
email address, 318, 474–75
error
 codes, 222, 332
 connection, 114
 fatal, 467
 last, 333, 337
 message, 109, 114, 124, 224–27,
232, 235, 237–38, 261, 412
 output, 113
error conditions, 225, 237–38
error handlers, custom, 109
exception, 358, 452, 475–77, 479,
482, 484
 handling, 476

F
file
 executable, 222, 320
 field, 218, 248–49, 252, 259, 262,
270–71, 381
 php.ini, 4, 11
 uploading, 319–20
 uploads, 146, 222–23, 228, 258,
319
form
 login, 318, 341
 simple, 90
 submitted, 93
function, 30–31, 81–88, 108–10,
165, 203–4, 223–25, 229–32,
234–35, 247, 268, 293–95, 299,

305–6, 311–12, 329–30, 332–35,
340, 342–43, 350–51, 398–99
 anonymous, 205
 call, 29
 header, 332–33
 scoping operators, 86
 signature, 86, 333

G
getters, 454–56, 458–59, 462, 465,
470–71, 485
 accessor methods, 454

H
hash, 302–6, 310, 325, 336,
338–39, 346, 348–49
 salted, 305
 unique, 304–5

I
IDEs (integrated development
environment), 112, 333
immutability, 454
inheritance, 452, 465, 467–68
integers, 25–26, 28, 41, 44, 68–70,
333, 458
integrated development environ-
ment. See IDEs

J
Java, 25, 323, 456–57
JavaScript, 165, 173, 204, 212,
293, 298, 315–16, 321, 340, 343,
350
 code, 164, 205, 317
 function, 291, 330, 343

PHP Web Development with MySQL—A Hands On Approach to Application Programming 489

L–R

L
LastPass, 304
login
 individual, 324
 page, 336, 339, 341–42, 352,
355, 365–68
 script, 336, 341–45, 347, 349,
353, 365
loop, 73–79, 86, 119–20, 212, 216,
247, 249, 293, 299, 340, 343, 350
 foreach, 75, 78–79, 203
 sentinel, 74, 76–77

M
md5, 303–4
modulus, 39–42
 operator, 41
MySQL
 database, 76–77, 97–120, 309,
475
 documentation, 99
 northwind.sql, 101
 server, 98, 109, 111, 119–20,
151, 180–81, 194–95, 311–13,
335, 346, 394–95, 398–99,
429–30, 441–42, 444–46
 server and client, 10
MySQL CLI, 14, 98–107, 112,
118, 135

N
Northwind SQL file, 77, 99–102

O
Object-Oriented Programming.
See OOP
objects, 27, 29, 38–39, 69, 71,
453–56, 458–59, 467, 469–71,
476, 479
 database results, 333, 337
 immutable, 455
OOP (Object-Oriented Program-
ming), 29, 82, 451–86
Open Web Application Security
Project[1]. See OWASP
operator, 28, 34, 37–42, 45, 57
 arithmetic, 39–41
 assignment, 38
 comparison, 56–57
 logical, 61–63
 precedence, 39–40, 62
 rocket, 45
 scope resolution, 461
 scoping, 86–87
 ternary, 60, 202–3, 361
OWASP (Open Web Application
Security Project[1]), 302, 315,
319, 322
OWASP, Cheat Sheet Series, 302
OWASP, Top ten, 302, 306, 315

P
paamayim-nekudotayim, 461
parameters, 68, 82–84, 86–87,
110, 224, 332–34, 337, 398–99,
470, 475–76, 479–80, 484
 default, 318
 hidden form, 408
 incoming, 476, 483
 malicious, 186, 208
 named, 476

password
 fields, 331, 345
 hash, 303
 hashes, 304
 salted, 304–5
 securing user, 302
 valid, 328, 339, 342, 350
PDO (PHP Data Objects), 108,
452, 473–76, 478–79, 481–82, 484
PHP Data Objects. See PDO
phpinfo, 4, 20
php.ini
 configuration, 223
 directives, 4
POST
 form variables, 237
 request, 164, 184, 223
precedence, 39, 62
properties, 25, 46, 452–56,
458–59, 470, 473, 479–81, 485
 class instance, 472
 object’s, 469
 parent, 465

Q
query parameters, 145–47,
150–51, 176–78, 180, 182, 192,
196, 205, 207, 313–14, 318,
332–33, 337
 sending, 146
query string, 110, 115, 118–19,
143, 186, 206, 208, 332–33, 337

R
readability, 62, 82, 91
 high, 85

PHP Web Development with MySQL—A Hands On Approach to Application Programming490

S–X

S
security, 4, 12, 115, 158, 176,
192, 222, 278, 286, 291
 risks, 299, 302, 306
 web site, 322
security risks, top application,
302
session, 294–300, 321, 341–42,
344–45, 348–51, 353–54,
358–59, 366–68, 371, 374,
377, 396, 404–7, 413–14, 416,
419–20, 422–31, 433–39,
441–42, 444–47
 browser, 286–87
 cookies, 299, 321
 current, 295–99
 ID, 299–300, 314, 321
 securing, 321
 variables, 286, 293–300, 314,
344, 351, 358, 366, 414
session variables
 accessing, 294–95
 creating, 342
 saved, 296, 298
SQL (Standard Query
Language), 98–99, 110, 118, 241,
309, 385
SQL
 commands, 98, 102, 106–7,
312
 injection, 115, 306–13, 473
 query, 199, 306–7, 312,
332–33, 337
 UPDATE query, 206
Standard Query Language. See
SQL
superglobal, 93–94, 150, 281,

287, 294–95, 297
 COOKIE, 290
 POST, 92, 260, 331, 345
 SESSION, 294
superuser, 7–10, 13, 15

T
ternary operation, 60, 420
type, floating point, 26, 68–69

U
Ubuntu, 6, 8, 10–11, 16
 LTS release, 99
Unix, 6–7, 101
UNIX, timestamp, 287
url, 2, 93, 146, 150–51, 314,
348–49, 351
 current web page, 93
 destination, 185
user logins, 134, 158, 176, 192,
325
 individual, 324, 356

V
validation, 124–25, 128, 164–66,
173, 203–4, 293, 299, 328–29,
340, 343, 350
 adding, 131
 client-side, 164
 errors, 160, 165
variables, 24–25, 27, 29–31, 34,
38–39, 60–61, 66, 69, 71, 74–75,
83–86, 202, 205, 332–33, 456–57
 boolean, 125, 165, 330
 cookies and session, 286, 299
 creating, 25
 global, 85

 local, 83, 91–92, 457
 names, 19, 24–25, 28, 44–45,
75, 453
 scope, 85–86
 superglobal, 145, 150, 195–96,
205, 222, 225, 259, 280

W
web server, 2–4, 6, 94, 219,
221–22, 229–31, 319–21

X
XSS, 315–16, 318, 321
 attacks, 315–16, 318

PHP Web Development with MySQL—A Hands On Approach to Application Programming 491

php[architect] Books
The php[architect] series of books cover topics relevant to modern PHP programming. We
offer our books in both print and digital formats. Print copy price includes free shipping to
the US. Books sold digitally are available to you DRM-free in PDF, ePub, or Mobi formats
for viewing on any device that supports these.

To view the complete selection of books and order a copy of your own, please visit:
http://phparch.com/books/.

• Beyond Laravel
By Michael Akopov
ISBN: 978-19401119

• PHP Development with Windows
Subsystem for Linux (WSL)
By Joe Ferguson
ISBN: 978-1940111902

• WordPress Development in Depth
By Peter MacIntyre, Savio Resende
ISBN: 978-1940111834

• The Grumpy Programmer’s Guide
to Testing PHP Applications (print
edition)
By Chris Hartjes
ISBN: 978-1940111797

• The Fizz Buzz Fix:
Secrets to Thinking Like an
Experienced Software Developer
By Edward Barnard
ISBN: 978-1940111759

• The Dev Lead Trenches: Lessons for
Managing Developers
By Chris Tankersley
ISBN: 978-1940111711

• Web Scraping with PHP, 2nd Edition
By Matthew Turland
ISBN: 978-1940111674

• Security Principles for PHP
Applications
By Eric Mann
ISBN: 978-1940111612

• Docker for Developers, 2nd Edition
By Chris Tankersley
ISBN: 978-1940111568 (Print edition)

• What's Next? Professional
Development Advice
Edited by Oscar Merida
ISBN: 978-1940111513

http://phparch.com/books/

PHP Web Development with MySQL—A Hands On Approach to Application Programming492

26. Index

• Functional Programing in PHP,
2nd Edition
By: Simon Holywell
ISBN: 978-1940111469

• Web Security 2016
Edited by Oscar Merida
ISBN: 978-1940111414

• Integrating Web Services
with OAuth and PHP
By Matthew Frost
ISBN: 978-1940111261

• Zend Framework 1 to 2
Migration Guide
By Bart McLeod
ISBN: 978-1940111216

• XML Parsing with PHP
By John M. Stokes
ISBN: 978-1940111162

• Zend PHP 5 Certification
Study Guide, Third Edition
By Davey Shafik with Ben Ramsey
ISBN: 978-1940111100

• Mastering the SPL Library
By Joshua Thijssen
ISBN: 978-1940111001

PHP Web Development with MySQL—A Hands On Approach to Application Programming 493

Feedback and Updates
Please let us know what you thought of this book! What did you enjoy? What was confusing
or could have been improved? Did you find errata? Any feedback and thoughts you have
regarding this book will help us improve a future edition.

Contact the Author

Ken Marks is on twitter, @FlibertiGiblets, and can be reached via email at
KennethEMarks@gmail.com. He's open to feedback about the material and hearing how
this book has helped you learn web development.

From the Publisher

To keep in touch and be notified about future editions to this book, visit
http://phparch.com and sign up for our (low-volume) mailing list.

You can also follow us on twitter, @phparch, as well as on facebook at
https://facebook.com/phparch/

http://twitter.com/FlibertiGiblets
mailto:KennethEMarks%40gmail.com?subject=
http://phparch.com
https://twitter.com/phparch
https://facebook.com/phparch/

	Introduction
	The Life and Times of a PHP Script
	Static Vs. Dynamic Websites
	The Browser and the Server
	The Server and PHP

	Writing Your First PHP Script
	Setting Up a Development Environment
	Hello World!
	Exercises

	Why Variables Matter
	Variables in PHP
	Types of Variables
	Constants
	Exercises

	Basic String Interpretation
	Concatenation
	Interpolation
	Escaping
	Heredoc
	Exercises

	Operators, Expressions, and Basic Arithmetic
	Operators and Expressions
	Math Functions

	Arrays
	Simple Arrays in PHP
	Associative Arrays
	Adding Values
	Explicit Versus Short Array Syntax
	Useful Array Functions
	Multidimensional Arrays
	Exercises

	Truth, Comparisons, Conditions, and Compound Conditions
	Comparison Operators
	Conditional Logic
	Compound Conditional Logic Using Logical Operators
	Exercises

	Verifying Variables and Type Checking
	Verifying Variables
	Verifying and Checking Variable Types
	Exercises

	Looping
	Counting Loops
	Sentinel Loops
	Exiting and Continuing a Loop
	Exercises

	Functions
	Simple Function
	Function Parameters/Arguments
	Returning Values from a Function
	Further Advice On Writing Good Functions
	Exercises

	Working with HTML Forms
	A Simple Form
	Processing Our Form and Outputting Back to the Web Page
	Cleaning It Up Using a Self Referencing Page
	Exercise: Badlibs, Part 1

	Inserting Data Into a MySQL Database
	Using the MySQL CLI
	Create a PHP Application to Insert Data
	 Exercises

	Returning Data from a MySQL Database
	Returning Database Rows in a PHP Application
	Exercise: Badlibs, Part 2

	Validating Form Data and Creating Sticky Fields
	Modifying FullName Behavior Based On Validation
	Adding Field Validation
	Making the First and Last Name Fields Sticky
	Testing Our Script with Sticky Fields
	Exercise: Contact Form

	Displaying a List of Item Details
	Designing the Database
	Creating the Database
	Adding Movie Data
	Creating the Main Movie Listing Page
	Creating the Movie Details Page
	Exercises

	Adding Data Using the Web Application
	Creating a Page to Add Movies
	Complete Code Listing
	Link to the “Add a Movie” Page from the Listing Page
	Exercises

	Removing Data Using the Web Application
	Adding Deletion Links to Movie Listings
	Creating a “Remove a Movie Page”
	Complete Code Listing
	Exercises

	Editing Data Using the Web Application
	Linking Movie Details to the Edit Page
	Create the Editing Page
	Complete Code Listing
	Exercises

	Working With Files and Feature Additions to Existing Code
	Add a Field for File Information
	Create a Folder for Uploaded Movie Image Files
	Adding File Upload Capability
	Displaying Thumbnail Images of Movies on Main Page
	Displaying Movie Image on Details Page
	Add Image File Uploads to the Editing Page
	Displaying Image on Deletion Page
	Exercises

	Basic HTTP Authentication
	Password Protection with HTTP Authentication
	How Does HTTP Authentication Work?
	Create authorizeaccess.php
	Adding Authorization to Pages
	Exercises

	Persistence
	Cookies
	Session Variables
	Cookies and Session Variables
	The Database
	Best Practices in Solving the Persistence Problem
	Exercises

	Creating Secure Web Applications
	Secure Password Protection for Authenticating
	Guarding Against SQL Injection
	Leaking Information to Hackers
	Preventing Cross-Site Scripting Attacks
	File Uploads
	Securing Your Session
	Final Thoughts
	Exercises

	Adding User Logins
	Create a user Table
	Create a Signup.php script
	Create a login.php Script
	Create a logout.php Script
	Allow Users with Administrative Access
	Exercises

	Adding a Navigation Menu
	Create Navbar Logic
	Add the Navigation Bar
	Add Navigation Bar to Details Page
	Add Login Link to Navigation Bar
	Add Logout Link to Navigation Bar
	Add Sign Up Link to Navigation Bar
	Add Navigation Bar to addmovie.php
	Add Navigation Bar to Unauthorizedaccess.php
	Add Navigation Bar to editmovie.php
	Add Navigation Bar to removemovie.php
	Complete Code Listings
	Exercises

	Adding Reservation Features
	Add Number of Copies and Number Reserved
	Persisting Movie Reservations for Users
	Checking Movies Reserved by Users
	Modify Homepage Based On Access Privileges
	Refactoring to Remove Duplicate Inclusions
	Script for Reserving Movies
	Adding Cart to Navigation Menu
	Add a Script for a Shopping Cart
	Navigating to Reserved Movies
	Showing and Returning Reserved Movies
	Features to Add
	Flaws in This Application
	Exercises

	Introduction to Object-Oriented Programming in PHP
	Classes
	Properties
	Encapsulation Using Access Modifiers
	Accessor Methods
	The $this Variable
	General Purpose Methods
	Instantiating and Using a Class
	Validating Input to a Setter Method
	Inheritance
	Overriding Methods
	Constructors
	Creating Parameterized Queries Using OOP
	Exercises

