

Classification of Phenols

Nomenclature of Alcohols

IUPAC name is benzenol But generally named as phenol

Darshan Kumar Assoc. Prof. GC Amb

Nomenclature of Alcohols

Naming Dihydric & trihydric phenols

 \succ

groups

Resonance structure of Phenols

> Phenol has following resonating structures

Due to resonance, the oxygen atom acquires a positive charge. So O-H bond breaks onto oxygen atom easily to lose the H⁺ ion

> So phenols are acidic in character

Methods of preparation of Phenols

> By hydrolysis of diazonium salts

$$\langle O \rangle - N_2^+ Cl^- + H_2O \xrightarrow{H^+, heat} \langle O \rangle - OH + HCl + N_2$$

Benzene diazonium chloride

Darshan Kumar Assoc. Prof. GC Amb

Methods of preparation of Phenols

- **From isopropyl benzene(Cumene)**
- Cumene is prepared from benzene as follows

> Cumene on oxidation with air gives cumene hydroperoxide which upon acidic hydrolysis gives phenol

Methods of preparation of Phenols

From isopropyl benzene(Cumene)

Mechanism of the reaction

Physical properties of Phenols

Phenols have higher boiling point than corresponding hydrocarbons

It is due to intermolecular hydrogen bonding For example

O-Nitrophenol has lower boiling point than m- & p-Nitrophenols .Why?

Solubility

- Phenol is soluble in water due to formation of hydrogen bonding with it but solubility is low because polar character of OH group is masked by large sized phenyl group.
- > O-Nitrophenol has less solubility in water as compared to m- & p- isomers. Why?

Physical properties of Phenols

Intermolecular Hydrogen Bonding

Reactions due to phenolic group

- **Acidic character (However acidic character is very weak)**
- Reacts with alkali metal hydroxides to form phenoxide salts ArOH + NaOH → ArO⁻ Na⁺ + H₂O
- Why Phenols are acidic in character?
- It is due to greater resonance stabilisation of phenoxide ion than phenol. So less resonance stabilised phenol changes into more resonance stabilised phenoxide ion by loss of proton in an aqueous medium.

How phenoxide ion is more resonance stabilized?

- > There are equal number of resonating structures
- In phenol, structures Ic to le involve charge separation & there is a positive charge on the electronegative oxygen atom so their contribution is very less.
- However in phenoxide ion there is a negative charge on the oxygen atom so all structures are equally important so it is more stable

Phenols are more acidic than alcohols. Why?

Alcohols on reaction with base form alkoxide ion which is not resonance stabilised

Electron withdrawing groups increase the acidic strength of phenols

G

+ H₂O ;

Anion is stabilized due to the

dispersal of negative charge

-

 $+ H_2O^{T}$

□ Nature of substituents on the benzene ring

Electron releasing groups decrease the acidic strength of phenols

Position of hydroxyl group relative to substituents

- Electron release or withdrawal may be due to both inductive effect and resonance effect
- Resonance effect is more at O- & p- positions than at m- position
- ✓ More resonating structures when gp is present at o- or p- position. So due to greater resonance stabilization of o- & p- phenate ion, the acid strengthening effect is more when the electron-withdrawing group is present at o- & p- positions rather than at m- position.

of negative charge

When the group is at the ortho position

> Total six resonating structures

When the group is at the para position

When the group is at the meta position

> Total five resonating structures

- **Position of hydroxyl group relative to substituents**
- Inductive effect decreases with distance from the hydroxyl group

O- Fluorophenol is a weaker acid than p-Fluorophenol. Why?
O- Nitrophenol is a weaker acid than p-Nitrophenol. Why?

In both cases, there is intramolecular Hydrogen bonding in the ortho isomer. As H atom of the OH group is taking part in H-bond formation so its tendency to ionize decreases.

- Reactions of aromatic ring: Electrophilic substitution reactions
- OH group is activating and o- & p- directing in nature. Why?
- Consider attack of electrophile on o- , m- , & p- positions one by one

During attack at o- & p- positions, there are four resonating structures of intermediate carbocation where as during attack at m-position there are only three resonating structures. So intermediate carbocation is more stabilised during o- & p- attack.

Halogenation

- Bromination in an aqueous medium
- (OH group is ionised to form phenoxide ion. Negatively charged oxygen activates the benzene ring)
- Reactivity towards halogenation is very high (Even other groups are replaced by halogen atom)

- Reaction stops at mono halogen stage at low temperature and in nonpolar solvents
- ✓ (OH group is not ionised to form phenoxide ion so activation of ring is less)

Nitration

> With dilute nitric acid

With concentrated nitric acid

Sulphonation

- At low temperatures o- isomer is formed and at high temperatures
 p- isomer is the main product
- > (p-Isomer is thermally more stable)

OH

Friedel Craft's alkylation

Carried out in the presence of HF not AlCl₃. Why?

Gattermann Koch Synthesis

.

Mechanism

Step 1 Formation of Electrophile(Formyl cation)

$$: C \stackrel{\frown}{=} 0: \longleftrightarrow : C \stackrel{\frown}{=} 0: \stackrel{Hd}{\longrightarrow} \stackrel{H-c}{=} \stackrel{\circ}{=} \stackrel{Hd}{\longrightarrow} \stackrel{H-c}{=} \stackrel{\circ}{=} \stackrel{\circ}{\to} \stackrel{H-c}{=} \stackrel{\circ}{\circ}:$$

Mechanism

Step 2

> Attack of formyl cation on the para position of phenol and subsequent loss of proton

Gattermann Aldehyde Synthesis

Mechanism

Step 1 Formation of Electrophile(Formaldinium ion)

Gattermann Aldehyde Synthesis

Mechanism

Step 2 Attack of Formaldinium ion on para position of phenol

> Step 3 Hydrolysis of imine to give phenolic aldehyde

Hauben Hoesch Reaction

Mechanism

- Step 1
- Generation of electrophile

Step 2

Attack of electrophile to form ketimine

Mechanism

- Step 3
- > Hydrolysis of imine

Reimer Tiemann Reaction

Mechanism

Step 1 Generation of electrophile

Reimer Tiemann Reaction

- Mechanism
- **Step 2** Attack of electrophile on benzene ring

Step 3 Replacement of chlorine atoms with OH groups followed by loss of water

Reimer Tiemann Reaction can also be done with CCl₄

- ✤ Mechanism
- Step 1
- > Formation of Sodium phenoxide

Reimer Tiemann Reaction can also be done with CCl₄.....

Mechanism

Step 2 Attack of Sodium phenoxide on CCl_4

Step 3 Replacement of chlorine atoms with OH groups followed by loss of water and acidification

Schotten Baumann reaction

- Mechanism
- **Step 1** Formation of sodium phenoxide

- **Schotten Baumann reaction contd.....**
 - Mechanism
 - **Step 2** Attack of phenoxide ion on Benzoyl chloride followed by loss of Sodium chloride

Questions

- What happens when phenol is treated with CHCl₃ and aqueous NaOH solution at 343 K?
- 2. Name the reactive intermediate formed during Reimer Tieman reaction
- 3. How will you convert phenol in to salicylic acid? Name the reaction and give its mechanism?
- 4. C-O bond in phenols is shorter than in ethanol. Explain.
- 5. What is cumene? How can it be converted in to phenol? Give mechanism of the reaction involved.
- 6. Out of ortho and para nitrophenols which has greater boiling point and why?
- 7. What happens when phenol is treated with bromine water?