
DATABASE MANAGEMENT
SYSTEMS

SOLUTIONS MANUAL

Raghu Ramakrishnan et al.
University of Wisconsin

Madison, WI, USA

CONTENTS

PREFACE iii

1 INTRODUCTION TO DATABASE SYSTEMS 1

2 THE ENTITY-RELATIONSHIP MODEL 5

3 THE RELATIONAL MODEL 14

4 RELATIONAL ALGEBRA AND CALCULUS 23

5 SQL: QUERIES, PROGRAMMING, TRIGGERS 40

6 QUERY-BY-EXAMPLE (QBE) 56

7 STORING DATA: DISKS AND FILES 65

8 FILE ORGANIZATIONS AND INDEXES 72

9 TREE-STRUCTURED INDEXING 75

10 HASH-BASED INDEXING 87

11 EXTERNAL SORTING 105

12 EVALUATION OF RELATIONAL OPERATORS 109

13 INTRODUCTION TO QUERY OPTIMIZATION 118

14 A TYPICAL QUERY OPTIMIZER 119

i

ii Database Management Systems Solutions Manual

15 SCHEMA REFINEMENT AND NORMAL FORMS 134

16 PHYSICAL DATABASE DESIGN AND TUNING 145

17 SECURITY 158

18 TRANSACTION MANAGEMENT OVERVIEW 163

19 CONCURRENCY CONTROL 168

20 CRASH RECOVERY 180

21 PARALLEL AND DISTRIBUTED DATABASES 190

PREFACE

It is not every question that deserves an answer.

Publius Syrus, 42 B.C.

I hope that most of the questions in this book deserve an answer. The set of questions
is unusually extensive, and is designed to reinforce and deepen students’ understanding
of the concepts covered in each chapter. There is a strong emphasis on quantitative and
problem-solving type exercises. Answers to almost all chapter exercises are included
in this solutions manual for Chapters 1 through 19. Solutions for Chapters 20 through
22 are currently unavailable.

While I wrote some of the solutions myself, most were written originally by students
in the database classes at Wisconsin. I’d like to thank the many students who helped
in developing and checking the solutions to the exercises; this manual would not be
available without their contributions. In alphabetical order: X. Bao, S. Biao, M.
Chakrabarti, C. Chan, W. Chen, N. Cheung, D. Colwell, C. Fritz, V. Ganti, J. Gehrke,
G. Glass, V. Gopalakrishnan, M. Higgins, T. Jasmin, M. Krishnaprasad, Y. Lin, C. Liu,
M. Lusignan, H. Modi, S. Narayanan, D. Randolph, A. Ranganathan, J. Reminga, A.
Therber, M. Thomas, Q. Wang, R. Wang, Z. Wang and J. Yuan. In addition, James
Harrington and Martin Reames at Wisconsin and Nina Tang at Berkeley provided
especially detailed feedback.

Several students contributed to each chapter’s solutions, and answers were subse-
quently checked by me and by other students. This manual has been in use for several
semesters. I hope that it is now mostly accurate, but I’m sure it still contains er-
rors and omissions. If you are a student and you do not understand a particular
solution, contact your instructor; it may be that you are missing something, but it
may also be that the solution is incorrect! If you discover a bug, please send me mail
(raghu@cs.wisc.edu) and I will update the manual promptly.

The latest version of this solutions manual is distributed freely through the Web; go
to the home page mentioned below to obtain a copy.

iii

Database Management Systems Solutions Manual

For More Information

The home page for this book is at URL:

http://www.cs.wisc.edu/dbbook

This page is frequently updated and contains information about the book, past and
current users, and the software. This page also contains a link to all known errors in
the book, the accompanying slides, and the software. Since the solutions manual is
distributed electronically, all known errors are immediately fixed and no list of errors is
maintained. Instructors are advised to visit this site periodically; they can also register
at this site to be notified of important changes by email.

1
INTRODUCTION TO

DATABASE SYSTEMS

Exercise 1.1 Why would you choose a database system instead of simply storing data
in operating system files? When would it make sense not to use a database system?

Answer 1.1 A database is an integrated collection of data, usually so large that it
has to be stored on secondary storage devices such as disks or tapes. This data can
be maintained as a collection of operating system files, or stored in a DBMS (database
management system). The advantages of using a DBMS are:

Data independence and efficient access. Database application programs are in-
dependent of the details of data representation and storage. The conceptual and
external schemas provide independence from physical storage decisions and logical
design decisions respectively. In addition, a DBMS provides efficient storage and
retrieval mechanisms, including support for very large files, index structures and
query optimization.

Reduced application development time. Since the DBMS provides several impor-
tant functions required by applications, such as concurrency control and crash
recovery, high level query facilities, etc., only application-specific code needs to
be written. Even this is facilitated by suites of application development tools
available from vendors for many database management systems.

Data integrity and security. The view mechanism and the authorization facilities
of a DBMS provide a powerful access control mechanism. Further, updates to the
data that violate the semantics of the data can be detected and rejected by the
DBMS if users specify the appropriate integrity constraints.

Data administration. By providing a common umbrella for a large collection of
data that is shared by several users, a DBMS facilitates maintenance and data
administration tasks. A good DBA can effectively shield end-users from the chores
of fine-tuning the data representation, periodic back-ups etc.

1

2 Chapter 1

Concurrent access and crash recovery. A DBMS supports the notion of a trans-
action, which is conceptually a single user’s sequential program. Users can write
transactions as if their programs were running in isolation against the database.
The DBMS executes the actions of transactions in an interleaved fashion to obtain
good performance, but schedules them in such a way as to ensure that conflicting
operations are not permitted to proceed concurrently. Further, the DBMS main-
tains a continuous log of the changes to the data, and if there is a system crash,
it can restore the database to a transaction-consistent state. That is, the actions
of incomplete transactions are undone, so that the database state reflects only the
actions of completed transactions. Thus, if each complete transaction, executing
alone, maintains the consistency criteria, then the database state after recovery
from a crash is consistent.

If these advantages are not important for the application at hand, using a collection of
files may be a better solution because of the increased cost and overhead of purchasing
and maintaining a DBMS.

Exercise 1.2 What is logical data independence and why is it important?

Answer 1.2 Answer omitted.

Exercise 1.3 Explain the difference between logical and physical data independence.

Answer 1.3 Logical data independence means that users are shielded from changes
in the logical structure of the data, while physical data independence insulates users
from changes in the physical storage of the data. We saw an example of logical data
independence in the answer to Exercise 1.2. Consider the Students relation from that
example (and now assume that it is not replaced by the two smaller relations). We
could choose to store Students tuples in a heap file, with a clustered index on the
sname field. Alternatively, we could choose to store it with an index on the gpa field,
or to create indexes on both fields, or to store it as a file sorted by gpa. These storage
alternatives are not visible to users, except in terms of improved performance, since
they simply see a relation as a set of tuples. This is what is meant by physical data
independence.

Exercise 1.4 Explain the difference between external, internal, and conceptual sche-
mas. How are these different schema layers related to the concepts of logical and
physical data independence?

Answer 1.4 Answer omitted.

Exercise 1.5 What are the responsibilities of a DBA? If we assume that the DBA
is never interested in running his or her own queries, does the DBA still need to
understand query optimization? Why?

Introduction to Database Systems 3

Answer 1.5 The DBA is responsible for:

Designing the logical and physical schemas, as well as widely-used portions of the
external schema.

Security and authorization.

Data availability and recovery from failures.

Database tuning: The DBA is responsible for evolving the database, in particular
the conceptual and physical schemas, to ensure adequate performance as user
requirements change.

A DBA needs to understand query optimization even if s/he is not interested in run-
ning his or her own queries because some of these responsibilities (database design
and tuning) are related to query optimization. Unless the DBA understands the per-
formance needs of widely used queries, and how the DBMS will optimize and execute
these queries, good design and tuning decisions cannot be made.

Exercise 1.6 Scrooge McNugget wants to store information (names, addresses, de-
scriptions of embarrassing moments, etc.) about the many ducks on his payroll. Not
surprisingly, the volume of data compels him to buy a database system. To save
money, he wants to buy one with the fewest possible features, and he plans to run it as
a stand-alone application on his PC clone. Of course, Scrooge does not plan to share
his list with anyone. Indicate which of the following DBMS features Scrooge should
pay for; in each case also indicate why Scrooge should (or should not) pay for that
feature in the system he buys.

1. A security facility.

2. Concurrency control.

3. Crash recovery.

4. A view mechanism.

5. A query language.

Answer 1.6 Answer omitted.

Exercise 1.7 Which of the following plays an important role in representing informa-
tion about the real world in a database? Explain briefly.

1. The data definition language.

4 Chapter 1

2. The data manipulation language.

3. The buffer manager.

4. The data model.

Answer 1.7 Let us discuss the choices in turn.

The data definition language is important in representing information because it
is used to describe external and logical schemas.

The data manipulation language is used to access and update data; it is not
important for representing the data. (Of course, the data manipulation language
must be aware of how data is represented, and reflects this in the constructs that
it supports.)

The buffer manager is not very important.

The data model is fundamental to representing information. The data model
determines what data representation mechanisms are supported by the DBMS.
The data definition language is just the specific set of language constructs available
to describe an actual application’s data in terms of the data model.

Exercise 1.8 Describe the structure of a DBMS. If your operating system is upgraded
to support some new functions on OS files (e.g., the ability to force some sequence of
bytes to disk), which layer(s) of the DBMS would you have to rewrite in order to take
advantage of these new functions?

Answer 1.8 Answer omitted.

Exercise 1.9 Answer the following questions:

1. What is a transaction?

2. Why does a DBMS interleave the actions of different transactions, instead of
executing transactions one after the other?

3. What must a user guarantee with respect to a transaction and database consis-
tency? What should a DBMS guarantee with respect to concurrent execution of
several transactions and database consistency?

4. Explain the strict two-phase locking protocol.

5. What is the WAL property, and why is it important?

2
THE ENTITY-RELATIONSHIP MODEL

Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relation-
ship, entity set, relationship set, one-to-many relationship, many-to-many relationship,
participation constraint, overlap constraint, covering constraint, weak entity set, aggre-
gation, and role indicator.

Answer 2.1 No answer provided yet.

Exercise 2.2 A university database contains information about professors (identified
by social security number, or SSN) and courses (identified by courseid). Professors
teach courses; each of the following situations concerns the Teaches relationship set.
For each situation, draw an ER diagram that describes it (assuming that no further
constraints hold).

1. Professors can teach the same course in several semesters, and each offering must
be recorded.

2. Professors can teach the same course in several semesters, and only the most
recent such offering needs to be recorded. (Assume this condition applies in all
subsequent questions.)

3. Every professor must teach some course.

4. Every professor teaches exactly one course (no more, no less).

5. Every professor teaches exactly one course (no more, no less), and every course
must be taught by some professor.

6. Now suppose that certain courses can be taught by a team of professors jointly,
but it is possible that no one professor in a team can teach the course. Model this
situation, introducing additional entity sets and relationship sets if necessary.

Answer 2.2 Answer omitted.

5

6 Chapter 2

Exercise 2.3 Consider the following information about a university database:

Professors have an SSN, a name, an age, a rank, and a research specialty.

Projects have a project number, a sponsor name (e.g., NSF), a starting date, an
ending date, and a budget.

Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S.
or Ph.D.).

Each project is managed by one professor (known as the project’s principal inves-
tigator).

Each project is worked on by one or more professors (known as the project’s
co-investigators).

Professors can manage and/or work on multiple projects.

Each project is worked on by one or more graduate students (known as the
project’s research assistants).

When graduate students work on a project, a professor must supervise their work
on the project. Graduate students can work on multiple projects, in which case
they will have a (potentially different) supervisor for each one.

Departments have a department number, a department name, and a main office.

Departments have a professor (known as the chairman) who runs the department.

Professors work in one or more departments, and for each department that they
work in, a time percentage is associated with their job.

Graduate students have one major department in which they are working on their
degree.

Each graduate student has another, more senior graduate student (known as a
student advisor) who advises him or her on what courses to take.

Design and draw an ER diagram that captures the information about the university.
Use only the basic ER model here, that is, entities, relationships, and attributes. Be
sure to indicate any key and participation constraints.

Answer 2.3 The ER diagram is shown in Figure 2.1.

Exercise 2.4 A company database needs to store information about employees (iden-
tified by ssn, with salary and phone as attributes); departments (identified by dno,
with dname and budget as attributes); and children of employees (with name and age
as attributes). Employees work in departments; each department is managed by an

T
h
e

E
n
tity-R

ela
tio

n
sh

ip
M

od
el

7

work_in

Manages project

pid

sponsor

start_date

end_date

budget

Dept

RunsWork_dept

office

dname

dno

Professor

ssn

age

rank

speciality

Major

Work_proj

AdvisorGraduate

senior

grad

ssn

pc_time

age

ssn

deg_prog

name

Supervises

F
ig

u
r
e

2
.1

E
R

D
ia

g
ra

m
fo

r
E

x
ercise

2
.3

8 Chapter 2

employee; a child must be identified uniquely by name when the parent (who is an
employee; assume that only one parent works for the company) is known. We are not
interested in information about a child once the parent leaves the company.

Draw an ER diagram that captures this information.

Answer 2.4 Answer omitted.

Exercise 2.5 Notown Records has decided to store information about musicians who
perform on its albums (as well as other company data) in a database. The company
has wisely chosen to hire you as a database designer (at your usual consulting fee of
$2,500/day).

Each musician that records at Notown has an SSN, a name, an address, and
a phone number. Poorly paid musicians often share the same address, and no
address has more than one phone.

Each instrument that is used in songs recorded at Notown has a name (e.g., guitar,
synthesizer, flute) and a musical key (e.g., C, B-flat, E-flat).

Each album that is recorded on the Notown label has a title, a copyright date, a
format (e.g., CD or MC), and an album identifier.

Each song recorded at Notown has a title and an author.

Each musician may play several instruments, and a given instrument may be
played by several musicians.

Each album has a number of songs on it, but no song may appear on more than
one album.

Each song is performed by one or more musicians, and a musician may perform a
number of songs.

Each album has exactly one musician who acts as its producer. A musician may
produce several albums, of course.

Design a conceptual schema for Notown and draw an ER diagram for your schema. The
following information describes the situation that the Notown database must model.
Be sure to indicate all key and cardinality constraints and any assumptions that you
make. Identify any constraints that you are unable to capture in the ER diagram and
briefly explain why you could not express them.

Answer 2.5 The ER diagram is shown in Figure 2.2.

The Entity-Relationship Model 9

ss
n

M
us

ic
ia

ns

na
m

e

Al
bu

m

co
py

rig
ht

D
at

e

sp
ee

d
al

bu
m

Id
en

tif
ie

r

dn
am

e

In
st

ru
m

en
t

in
st

rId
ke

y
so

ng
Id

So
ng

s tit
le

su
th

or

Pl
ay

s
Ap

pe
ar

s
Pe

rfo
rm

Pr
od

uc
er

tit
le

ad
dr

es
s

H
om

e

L
iv

es

Pl
ac

e
T

el
ep

ho
ne

ph
on

e_
no

Figure 2.2 ER Diagram for Exercise 2.5

10 Chapter 2

Exercise 2.6 Computer Sciences Department frequent fliers have been complaining
to Dane County Airport officials about the poor organization at the airport. As a
result, the officials have decided that all information related to the airport should be
organized using a DBMS, and you’ve been hired to design the database. Your first task
is to organize the information about all the airplanes that are stationed and maintained
at the airport. The relevant information is as follows:

Every airplane has a registration number, and each airplane is of a specific model.

The airport accommodates a number of airplane models, and each model is iden-
tified by a model number (e.g., DC-10) and has a capacity and a weight.

A number of technicians work at the airport. You need to store the name, SSN,
address, phone number, and salary of each technician.

Each technician is an expert on one or more plane model(s), and his or her exper-
tise may overlap with that of other technicians. This information about technicians
must also be recorded.

Traffic controllers must have an annual medical examination. For each traffic
controller, you must store the date of the most recent exam.

All airport employees (including technicians) belong to a union. You must store
the union membership number of each employee. You can assume that each
employee is uniquely identified by the social security number.

The airport has a number of tests that are used periodically to ensure that air-
planes are still airworthy. Each test has a Federal Aviation Administration (FAA)
test number, a name, and a maximum possible score.

The FAA requires the airport to keep track of each time that a given airplane
is tested by a given technician using a given test. For each testing event, the
information needed is the date, the number of hours the technician spent doing
the test, and the score that the airplane received on the test.

1. Draw an ER diagram for the airport database. Be sure to indicate the various
attributes of each entity and relationship set; also specify the key and participation
constraints for each relationship set. Specify any necessary overlap and covering
constraints as well (in English).

2. The FAA passes a regulation that tests on a plane must be conducted by a tech-
nician who is an expert on that model. How would you express this constraint in
the ER diagram? If you cannot express it, explain briefly.

Answer 2.6 Answer omitted.

The Entity-Relationship Model 11

Exercise 2.7 The Prescriptions-R-X chain of pharmacies has offered to give you a
free lifetime supply of medicines if you design its database. Given the rising cost of
health care, you agree. Here’s the information that you gather:

Patients are identified by an SSN, and their names, addresses, and ages must be
recorded.

Doctors are identified by an SSN. For each doctor, the name, specialty, and years
of experience must be recorded.

Each pharmaceutical company is identified by name and has a phone number.

For each drug, the trade name and formula must be recorded. Each drug is
sold by a given pharmaceutical company, and the trade name identifies a drug
uniquely from among the products of that company. If a pharmaceutical company
is deleted, you need not keep track of its products any longer.

Each pharmacy has a name, address, and phone number.

Every patient has a primary physician. Every doctor has at least one patient.

Each pharmacy sells several drugs and has a price for each. A drug could be sold
at several pharmacies, and the price could vary from one pharmacy to another.

Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs
for several patients, and a patient could obtain prescriptions from several doctors.
Each prescription has a date and a quantity associated with it. You can assume
that if a doctor prescribes the same drug for the same patient more than once,
only the last such prescription needs to be stored.

Pharmaceutical companies have long-term contracts with pharmacies. A phar-
maceutical company can contract with several pharmacies, and a pharmacy can
contract with several pharmaceutical companies. For each contract, you have to
store a start date, an end date, and the text of the contract.

Pharmacies appoint a supervisor for each contract. There must always be a super-
visor for each contract, but the contract supervisor can change over the lifetime
of the contract.

1. Draw an ER diagram that captures the above information. Identify any con-
straints that are not captured by the ER diagram.

2. How would your design change if each drug must be sold at a fixed price by all
pharmacies?

3. How would your design change if the design requirements change as follows: If a
doctor prescribes the same drug for the same patient more than once, several such
prescriptions may have to be stored.

12 Chapter 2

ssn

age

Patient

 address

name

Pri_physician Doctor

name

phy_ssn speciality

exp_years

Prescription
quentity

Sell

address phone_num

Pharmacy

Pharm_co

Make

 Drug

formula

trade_name

 date

phone_numname

price
start_date

end_date

text

Contract

supervisor

name

Figure 2.3 ER Diagram for Exercise 2.8

The Entity-Relationship Model 13

Answer 2.7 1. The ER diagram is shown in Figure 2.3.

2. If the drug is to be sold at a fixed price we can add the price attribute to the Drug
entity set and eliminate the Sell relationship set.

3. The date information can no longer be modeled as an attribute of Prescription.
We have to create a new entity set called Prescription date and make Prescription
a 4-way relationship set that involves this additional entity set.

Exercise 2.8 Although you always wanted to be an artist, you ended up being an
expert on databases because you love to cook data and you somehow confused ‘data
base’ with ‘data baste.’ Your old love is still there, however, so you set up a database
company, ArtBase, that builds a product for art galleries. The core of this product
is a database with a schema that captures all the information that galleries need to
maintain. Galleries keep information about artists, their names (which are unique),
birthplaces, age, and style of art. For each piece of artwork, the artist, the year it was
made, its unique title, its type of art (e.g., painting, lithograph, sculpture, photograph),
and its price must be stored. Pieces of artwork are also classified into groups of various
kinds, for example, portraits, still lifes, works by Picasso, or works of the 19th century;
a given piece may belong to more than one group. Each group is identified by a name
(like those above) that describes the group. Finally, galleries keep information about
customers. For each customer, galleries keep their unique name, address, total amount
of dollars they have spent in the gallery (very important!), and the artists and groups
of art that each customer tends to like.

Draw the ER diagram for the database.

Answer 2.8 Answer omitted.

3
THE RELATIONAL MODEL

Exercise 3.1 Define the following terms: relation schema, relational database schema,
domain, relation instance, relation cardinality, and relation degree.

Answer 3.1 A relation schema can be thought of as the basic information describing
a table or relation. This includes a set of column names, the data types associated
with each column, and the name associated with the entire table. For example, a
relation schema for the relation called Students could be expressed using the following
representation:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

There are five fields or columns, with names and types as shown above.

A relational database schema is a collection of relation schemas, describing one or more
relations.

Domain is synonymous with data type. Attributes can be thought of as columns in a
table. Therefore, an attribute domain refers to the data type associated with a column.

A relation instance is a set of tuples (also known as rows or records) that each conform
to the schema of the relation.

The relation cardinality is the number of tuples in the relation.

The relation degree is the number of fields (or columns) in the relation.

Exercise 3.2 How many distinct tuples are in a relation instance with cardinality 22?

Answer 3.2 Answer omitted.

14

The Relational Model 15

Exercise 3.3 Does the relational model, as seen by an SQL query writer, provide
physical and logical data independence? Explain.

Answer 3.3 The user of SQL has no idea how the data is physically represented in the
machine. He or she relies entirely on the relation abstraction for querying. Physical
data independence is therefore assured. Since a user can define views, logical data
independence can also be achieved by using view definitions to hide changes in the
conceptual schema.

Exercise 3.4 What is the difference between a candidate key and the primary key for
a given relation? What is a superkey?

Answer 3.4 Answer omitted.

53831

53832

53650

53688

53666

50000 3.3

3.4

3.2

3.8

1.8

2.0

19

18

18

19

11

12

madayan@music

guldu@music

smith@math

smith@ee

jones@cs

dave@cs

Madayan

Guldu

Smith

Smith

Jones

Dave

 sid age gpaloginname

TUPLES

(RECORDS, ROWS)

FIELDS (ATTRIBUTES, COLUMNS)

Field names

Figure 3.1 An Instance S1 of the Students Relation

Exercise 3.5 Consider the instance of the Students relation shown in Figure 3.1.

1. Give an example of an attribute (or set of attributes) that you can deduce is not
a candidate key, based on this instance being legal.

2. Is there any example of an attribute (or set of attributes) that you can deduce is
a candidate key, based on this instance being legal?

Answer 3.5 Examples of non-candidate keys include the following: {name}, {age}.
(Note that {gpa} can not be declared a non-candidate key from this evidence alone
(even though common sense tells us that clearly more than one student could have the
same grade point average.)

You cannot determine a key of a relation given only one instance of the relation. The
fact that the instance is “legal” is immaterial. A candidate key, as defined here, is a

16 Chapter 3

key, not something that only might be a key. The instance shown is just one possible
“snapshot” of the relation. At other times, the same relation may have an instance (or
snapshot) that contains a totally different set of tuples, and we cannot make predictions
about those instances based only upon the instance that we are given.

Exercise 3.6 What is a foreign key constraint? Why are such constraints important?
What is referential integrity?

Answer 3.6 Answer omitted.

Exercise 3.7 Consider the relations Students, Faculty, Courses, Rooms, Enrolled,
Teaches, and Meets In that were defined in Section 1.5.2.

1. List all the foreign key constraints among these relations.

2. Give an example of a (plausible) constraint involving one or more of these relations
that is not a primary key or foreign key constraint.

Answer 3.7 There is no reason for a foreign key constraint (FKC) on the Students,
Faculty, Courses, or Rooms relations. These are the most basic relations and must be
free-standing. Special care must be given to entering data into these base relations.

In the Enrolled relation, sid and cid should both have FKCs placed on them. (Real
students must be enrolled in real courses.) Also, since real teachers must teach real
courses, both the fid and the cid fields in the Teaches relation should have FKCs.
Finally, Meets In should place FKCs on both the cid and rno fields.

It would probably be wise to enforce a few other constraints on this DBMS: the length
of sid, cid, and fid could be standardized; checksums could be added to these iden-
tification numbers; limits could be placed on the size of the numbers entered into the
credits, capacity, and salary fields; an enumerated type should be assigned to the grade
field (preventing a student from receiving a grade of G, among other things); etc.

Exercise 3.8 Answer each of the following questions briefly. The questions are based
on the following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct time: integer)
Dept(did: integer, dname: string, budget: real, managerid: integer)

1. Give an example of a foreign key constraint that involves the Dept relation. What
are the options for enforcing this constraint when a user attempts to delete a Dept
tuple?

The Relational Model 17

2. Write the SQL statements required to create the above relations, including appro-
priate versions of all primary and foreign key integrity constraints.

3. Define the Dept relation in SQL so that every department is guaranteed to have
a manager.

4. Write an SQL statement to add ‘John Doe’ as an employee with eid = 101,
age = 32 and salary = 15, 000.

5. Write an SQL statement to give every employee a 10% raise.

6. Write an SQL statement to delete the ‘Toy’ department. Given the referential
integrity constraints you chose for this schema, explain what happens when this
statement is executed.

Answer 3.8 Answer omitted.

sid name login age gpa
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 3.2 Students with age < 18 on Instance S1

Exercise 3.9 Consider the SQL query whose answer is shown in Figure 3.2.

1. Modify this query so that only the login column is included in the answer.

2. If the clause WHERE S.gpa >= 2 is added to the original query, what is the set of
tuples in the answer?

Answer 3.9 The answers are as follows:

1. Only login is included in the answer:

SELECT login
FROM Students S
WHERE S.age < 18

2. The answer tuple for Madayan is omitted.

Exercise 3.10 Explain why the addition of NOT NULL constraints to the SQL defini-
tion of the Manages relation (in Section 3.5.3) would not enforce the constraint that
each department must have a manager. What, if anything, is achieved by requiring
that the ssn field of Manages be non-null?

18 Chapter 3

Answer 3.10 Answer omitted.

Exercise 3.11 Suppose that we have a ternary relationship R between entity sets A,
B, and C such that A has a key constraint and total participation and B has a key
constraint; these are the only constraints. A has attributes a1 and a2, with a1 being
the key; B and C are similar. R has no descriptive attributes. Write SQL statements
that create tables corresponding to this information so as to capture as many of the
constraints as possible. If you cannot capture some constraint, explain why.

Answer 3.11 The following SQL statement creates Table A:

CREATE TABLE A (a1 CHAR(10),
a2 CHAR(10),
PRIMARY KEY (a1))

Tables B and C are similar to A.

CREATE TABLE R (a1 CHAR(10),
b1 CHAR(10) NOT NULL ,
c1 CHAR(10) ,
PRIMARY KEY (a1),
UNIQUE (b1)
FOREIGN KEY (a1) REFERENCES A,
FOREIGN KEY (b1) REFERENCES B)
FOREIGN KEY (c1) REFERENCES C)

We cannot capture the total participation constraint of A in R. This is because we
cannot ensure that every key a1 appears in R without the use of checks.

Exercise 3.12 Consider the scenario from Exercise 2.2 where you designed an ER
diagram for a university database. Write SQL statements to create the corresponding
relations and capture as many of the constraints as possible. If you cannot capture
some constraints, explain why.

Answer 3.12 Answer omitted.

Exercise 3.13 Consider the university database from Exercise 2.3 and the ER dia-
gram that you designed. Write SQL statements to create the corresponding relations
and capture as many of the constraints as possible. If you cannot capture some con-
straints, explain why.

The Relational Model 19

Answer 3.13 Answer omitted.

Exercise 3.14 Consider the scenario from Exercise 2.4 where you designed an ER
diagram for a company database. Write SQL statements to create the corresponding
relations and capture as many of the constraints as possible. If you cannot capture
some constraints, explain why.

Answer 3.14 Answer omitted.

Exercise 3.15 Consider the Notown database from Exercise 2.4. You have decided
to recommend that Notown use a relational database system to store company data.
Show the SQL statements for creating relations corresponding to the entity sets and
relationship sets in your design. Identify any constraints in the ER diagram that you
are unable to capture in the SQL statements and briefly explain why you could not
express them.

Answer 3.15 The following SQL statements create the corresponding relations.

1. CREATE TABLE Musicians (ssn CHAR(10),
name CHAR(30),
PRIMARY KEY (ssn))

2. CREATE TABLE Instruments (instrId CHAR(10),
dname CHAR(30),
key CHAR(5),
PRIMARY KEY (instrId))

3. CREATE TABLE Plays (ssn CHAR(10),
instrId INTEGER,
PRIMARY KEY (ssn, instrId),
FOREIGN KEY (ssn) REFERENCES Musicians,
FOREIGN KEY (instrId) REFERENCES Instruments)

4. CREATE TABLE Songs Appears (songId INTEGER,
author CHAR(30),
title CHAR(30),
albumIdentifier INTEGER NOT NULL,
PRIMARY KEY (songId),
FOREIGN KEY (albumIdentifier)

References Album Producer,

20 Chapter 3

5. CREATE TABLE Telephone Home (phone CHAR(11),
address CHAR(30),
PRIMARY KEY (phone),
FOREIGN KEY (address) REFERENCES Place,

6. CREATE TABLE Lives (ssn CHAR(10),
phone CHAR(11),
address CHAR(30),
PRIMARY KEY (ssn, address),
FOREIGN KEY (phone, address)

References Telephone Home,
FOREIGN KEY (ssn) REFERENCES Musicians)

7. CREATE TABLE Place (address CHAR(30))

8. CREATE TABLE Perform (songId INTEGER,
ssn CHAR(10),
PRIMARY KEY (ssn, songId),
FOREIGN KEY (songId) REFERENCES Songs,
FOREIGN KEY (ssn) REFERENCES Musicians)

9. CREATE TABLE Album Producer (ssn CHAR(10) NOT NULL,
albumIdentifier INTEGER,
copyrightDate DATE,
speed INTEGER,
title CHAR(30),
PRIMARY KEY (albumIdentifier),
FOREIGN KEY (ssn) REFERENCES Musicians)

Exercise 3.16 Translate your ER diagram from Exercise 2.6 into a relational schema,
and show the SQL statements needed to create the relations, using only key and null
constraints. If your translation cannot capture any constraints in the ER diagram,
explain why.

In Exercise 2.6, you also modified the ER diagram to include the constraint that tests
on a plane must be conducted by a technician who is an expert on that model. Can
you modify the SQL statements defining the relations obtained by mapping the ER
diagram to check this constraint?

Answer 3.16 Answer omitted.

The Relational Model 21

Exercise 3.17 Consider the ER diagram that you designed for the Prescriptions-R-X
chain of pharmacies in Exercise 2.7. Define relations corresponding to the entity sets
and relationship sets in your design using SQL.

Answer 3.17 The statements to create tables corresponding to entity sets Doctor,
Pharmacy, and Pharm co are straightforward and omitted. The other required tables
can be created as follows:

1. CREATE TABLE Pri Phy Patient (ssn CHAR(11),
name CHAR(20),
age INTEGER,
address CHAR(20),
phy ssn CHAR(11),
PRIMARY KEY (ssn),
FOREIGN KEY (phy ssn) REFERENCES Doctor)

2. CREATE TABLE Prescription (ssn CHAR(11),
phy ssn CHAR(11),
date CHAR(11),
quantity INTEGER,
trade name CHAR(20),
pharm id CHAR(11),
PRIMARY KEY (ssn, phy ssn),
FOREIGN KEY (ssn) REFERENCES Patient,
FOREIGN KEY (phy ssn) REFERENCES Doctor)
FOREIGN KEY (trade name, pharm id)

References Make Drug)

3. CREATE TABLE Make Drug (trade name CHAR(20),
pharm id CHAR(11),
PRIMARY KEY (trade name, pharm id),
FOREIGN KEY (trade name) REFERENCES Drug,
FOREIGN KEY (pharm id) REFERENCES Pharm co)

4. CREATE TABLE Sell (price INTGER,
name CHAR(10),
trade name CHAR(10),
PRIMARY KEY (name, trade name),
FOREIGN KEY (name) REFERENCES Pharmacy,
FOREIGN KEY (trade name) REFERENCES Drug)

22 Chapter 3

5. CREATE TABLE Contract (name CHAR(20),
pharm id CHAR(11),
start date CHAR(11),
end date CHAR(11),
text CHAR(10000),
supervisor CHAR(20),
PRIMARY KEY (name, pharm id),
FOREIGN KEY (name) REFERENCES Pharmacy,
FOREIGN KEY (pharm id) REFERENCES Pharm co)

Exercise 3.18 Write SQL statements to create the corresponding relations to the
ER diagram you designed for Exercise 2.8. If your translation cannot capture any
constraints in the ER diagram, explain why.

Answer 3.18 Answer omitted.

4
RELATIONAL ALGEBRA AND

CALCULUS

Exercise 4.1 Explain the statement that relational algebra operators can be com-
posed. Why is the ability to compose operators important?

Answer 4.1 Every operator in relational algebra accepts one or more relation in-
stances as arguments and the result is always an relation instance. So the argument
of one operator could be the result of another operator. This is important because,
this makes it easy to write complex queries by simply composing the relational algebra
operators.

Exercise 4.2 Given two relations R1 and R2, where R1 contains N1 tuples, R2 con-
tains N2 tuples, and N2 > N1 > 0, give the minimum and maximum possible sizes
(in tuples) for the result relation produced by each of the following relational algebra
expressions. In each case, state any assumptions about the schemas for R1 and R2
that are needed to make the expression meaningful:

(1) R1∪R2, (2) R1∩R2, (3) R1−R2, (4) R1×R2, (5) σa=5(R1), (6) πa(R1),
and (7) R1/R2

Answer 4.2 Answer omitted.

Exercise 4.3 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The key fields are underlined, and the domain of each field is listed after the field name.
Thus sid is the key for Suppliers, pid is the key for Parts, and sid and pid together
form the key for Catalog. The Catalog relation lists the prices charged for parts by
Suppliers. Write the following queries in relational algebra, tuple relational calculus,
and domain relational calculus:

23

24 Chapter 4

1. Find the names of suppliers who supply some red part.

2. Find the sids of suppliers who supply some red or green part.

3. Find the sids of suppliers who supply some red part or are at 221 Packer Ave.

4. Find the sids of suppliers who supply some red part and some green part.

5. Find the sids of suppliers who supply every part.

6. Find the sids of suppliers who supply every red part.

7. Find the sids of suppliers who supply every red or green part.

8. Find the sids of suppliers who supply every red part or supply every green part.

9. Find pairs of sids such that the supplier with the first sid charges more for some
part than the supplier with the second sid.

10. Find the pids of parts that are supplied by at least two different suppliers.

11. Find the pids of the most expensive parts supplied by suppliers named Yosemite
Sham.

12. Find the pids of parts supplied by every supplier at less than $200. (If any supplier
either does not supply the part or charges more than $200 for it, the part is not
selected.)

Answer 4.3 In the answers below RA refers to Relational Algebra, TRC refers to
Tuple Relational Calculus and DRC refers to Domain Relational Calculus.

1. RA

πsname(πsid((πpidσcolor=′red′Parts) ./ Catalog) ./ Suppliers)

TRC

{T | ∃T 1 ∈ Suppliers(∃X ∈ Parts(X.color =′ red′ ∧ ∃Y ∈ Catalog

(Y.pid = X.pid ∧ Y.sid = T 1.sid)) ∧ T.sname = T 1.sname)}

DRC

{〈Y 〉 | 〈X, Y, Z〉 ∈ Suppliers∧ ∃P, Q, R(〈P, Q, R〉 ∈ Parts

∧R =′ red′ ∧ ∃I, J, K(〈I, J, K〉 ∈ Catalog ∧ J = P ∧ I = X))}

SQL

Relational Algebra and Calculus 25

SELECT S.sname
FROM Suppliers S, Parts P, Catalog C
WHERE P.color=’red’ AND C.pid=P.pid AND C.sid=S.sid

2. RA
πsid(πpid(σcolor=′red′∨color=′green′Parts) ./ catalog)

TRC

{T | ∃T 1 ∈ Catalog(∃X ∈ Parts((X.color = ‘red′ ∨ X.color = ‘green′)

∧X.pid = T 1.pid) ∧ T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C(〈A, B, C〉 ∈ Parts

∧(C =′ red′ ∨ C =′ green′) ∧ A = Y)}

SQL

SELECT C.sid
FROM Catalog C, Parts P
WHERE (P.color = ‘red’ OR P.color = ‘green’)

AND P.pid = C.pid

3. RA

ρ(R1, πsid((πpidσcolor=′red′Parts) ./ Catalog))

ρ(R2, πsidσaddress=′221PackerStreet′Suppliers)

R1 ∪ R2

TRC

{T | ∃T 1 ∈ Catalog(∃X ∈ Parts(X.color = ‘red′ ∧ X.pid = T 1.pid)

∧T.sid = T 1.sid)

∨∃T 2 ∈ Suppliers(T 2.address =′ 221PackerStreet′ ∧ T.sid = T 2.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C(〈A, B, C〉 ∈ Parts

∧C =′ red′ ∧ A = Y)

∨∃P, Q(〈X, P, Q〉 ∈ Suppliers ∧ Q =′ 221PackerStreet′)}

SQL

26 Chapter 4

SELECT S.sid
FROM Suppliers S
WHERE S.address = ‘221 Packer street’

OR S.sid IN (SELECT C.sid
FROM Parts P, Catalog C
WHERE P.color=’red’ AND P.pid = C.pid)

4. RA

ρ(R1, πsid((πpidσcolor=′red′Parts) ./ Catalog))

ρ(R2, πsid((πpidσcolor=′green′Parts) ./ Catalog))

R1 ∩ R2

TRC

{T | ∃T 1 ∈ Catalog(∃X ∈ Parts(X.color = ‘red′ ∧ X.pid = T 1.pid)

∧∃T 2 ∈ Catalog(∃Y ∈ Parts(Y.color =′ green′ ∧ Y.pid = T 2.pid)

∧T 2.sid = T 1.sid) ∧ T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C(〈A, B, C〉 ∈ Parts

∧C =′ red′ ∧ A = Y)

∧∃P, Q, R(〈P, Q, R〉 ∈ Catalog ∧ ∃E, F, G(〈E, F, G〉 ∈ Parts

∧G =′ green′ ∧ E = Q) ∧ P = X)}

SQL

SELECT C.sid
FROM Parts P, Catalog C
WHERE P.color = ‘red’ AND P.pid = C.pid

AND EXISTS (SELECT P2.pid
FROM Parts P2, Catalog C2
WHERE P2.color = ‘green’ AND C2.sid = C.sid

AND P2.pid = C2.pid)

5. RA
(πsid,pidCatalog)/(πpidParts)

TRC

{T | ∃T 1 ∈ Catalog(∀X ∈ Parts(∃T 2 ∈ Catalog

(T 2.pid = X.pid ∧ T 2.sid = T 1.sid)) ∧ T.sid = T 1.sid)}

Relational Algebra and Calculus 27

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∀〈A, B, C〉 ∈ Parts

(∃〈P, Q, R〉 ∈ Catalog(Q = A ∧ P = X))}

SQL

SELECT C.sid
FROM Catalog C
WHERE NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE NOT EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.sid = C.sid

AND C1.pid = P.pid))

6. RA
(πsid,pidCatalog)/(πpidσcolor=′red′Parts)

TRC

{T | ∃T 1 ∈ Catalog(∀X ∈ Parts(X.color 6= ‘red′

∨∃T 2 ∈ Catalog(T 2.pid = X.pid ∧ T 2.sid = T 1.sid))

∧T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∀〈A, B, C〉 ∈ Parts

(C 6= ‘red′ ∨ ∃〈P, Q, R〉 ∈ Catalog(Q = A ∧ P = X))}

SQL

SELECT C.sid
FROM Catalog C
WHERE NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE P.color = ‘red’
AND (NOT EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.sid = C.sid AND

C1.pid = P.pid)))

7. RA
(πsid,pidCatalog)/(πpidσcolor=′red′∨color=′green′Parts)

28 Chapter 4

TRC

{T | ∃T 1 ∈ Catalog(∀X ∈ Parts((X.color 6= ‘red′

∧X.color 6= ‘green′) ∨ ∃T 2 ∈ Catalog

(T 2.pid = X.pid ∧ T 2.sid = T 1.sid)) ∧ T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∀〈A, B, C〉 ∈ Parts

((C 6= ‘red′ ∧ C 6= ‘green′) ∨ ∃〈P, Q, R〉 ∈ Catalog

(Q = A ∧ P = X))}

SQL

SELECT C.sid
FROM Catalog C
WHERE NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE (P.color = ‘red’ OR P.color = ‘green’)
AND (NOT EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.sid = C.sid AND

C1.pid = P.pid)))

8. RA

ρ(R1, ((πsid,pidCatalog)/(πpidσcolor=′red′Parts)))

ρ(R2, ((πsid,pidCatalog)/(πpidσcolor=′green′Parts)))

R1 ∪ R2

TRC

{T | ∃T 1 ∈ Catalog((∀X ∈ Parts

(X.color 6= ‘red′ ∨ ∃Y ∈ Catalog(Y.pid = X.pid ∧ Y.sid = T 1.sid))

∨∀Z ∈ Parts(Z.color 6= ‘green′ ∨ ∃P ∈ Catalog

(P.pid = Z.pid ∧ P.sid = T 1.sid))) ∧ T.sid = T 1.sid)}

DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ (∀〈A, B, C〉 ∈ Parts

(C 6= ‘red′ ∨ ∃〈P, Q, R〉 ∈ Catalog(Q = A ∧ P = X))

∨∀〈U, V, W 〉 ∈ Parts(W 6= ‘green′ ∨ 〈M, N, L〉 ∈ Catalog

(N = U ∧ M = X)))}

Relational Algebra and Calculus 29

SQL

SELECT C.sid
FROM Catalog C
WHERE (NOT EXISTS (SELECT P.pid

FROM Parts P
WHERE P.color = ‘red’ AND
(NOT EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.sid = C.sid AND

C1.pid = P.pid))))
OR (NOT EXISTS (SELECT P1.pid

FROM Parts P1
WHERE P1.color = ‘green’ AND
(NOT EXISTS (SELECT C2.sid

FROM Catalog C2
WHERE C2.sid = C.sid AND

C2.pid = P1.pid))))

9. RA

ρ(R1, Catalog)

ρ(R2, Catalog)

πR1.sid,R2.sid(σR1.pid=R2.pid∧R1.sid 6=R2.sid∧R1.cost>R2.cost(R1 × R2))

TRC

{T | ∃T 1 ∈ Catalog(∃T 2 ∈ Catalog

(T 2.pid = T 1.pid ∧ T 2.sid 6= T 1.sid

∧T 2.cost < T 1.cost ∧ T.sid2 = T 2.sid)

∧T.sid1 = T 1.sid)}

DRC

{〈X, P 〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃P, Q, R

(〈P, Q, R〉 ∈ Catalog ∧ Q = Y ∧ P 6= X ∧ R < Z)}

SQL

SELECT C1.sid, C2.sid
FROM Catalog C1, Catalog C2
WHERE C1.pid = C2.pid AND C1.sid 6= C2.sid

AND C1.cost > C2.cost

30 Chapter 4

10. RA

ρ(R1, Catalog)

ρ(R2, Catalog)

πR1.pidσR1.pid=R2.pid∧R1.sid 6=R2.sid(R1 × R2)

TRC

{T | ∃T 1 ∈ Catalog(∃T 2 ∈ Catalog

(T 2.pid = T 1.pid ∧ T 2.sid 6= T 1.sid)

∧T.pid = T 1.pid)}
DRC

{〈X〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C

(〈A, B, C〉 ∈ Catalog ∧ B = Y ∧ A 6= X)}
SQL

SELECT C.sid
FROM Catalog C
WHERE EXISTS (SELECT C1.sid

FROM Catalog C1
WHERE C1.pid = C.pid AND C1.sid 6= C.sid)

11. RA

ρ(R1, πsidσsname=′Y osemiteSham′Suppliers)

ρ(R2, R1 ./ Catalog)

ρ(R3, R2)

ρ(R4(1 → sid, 2 → pid, 3 → cost), σR3.cost<R2.cost(R3 × R2))

πpid(R2 − πsid,pid,costR4)

TRC

{T | ∃T 1 ∈ Catalog(∃X ∈ Suppliers

(X.sname =′ Y osemiteSham′ ∧ X.sid = T 1.sid) ∧ ¬(∃S ∈ Suppliers

(S.sname =′ Y osemiteSham′ ∧ ∃Z ∈ Catalog

(Z.sid = S.sid ∧ Z.cost > T1.cost))) ∧ T.pid = T 1.pid)

DRC

{〈Y 〉 | 〈X, Y, Z〉 ∈ Catalog ∧ ∃A, B, C

(〈A, B, C〉 ∈ Suppliers ∧ C =′ Y osemiteSham′ ∧ A = X)

∧¬(∃P, Q, R(〈P, Q, R〉 ∈ Suppliers ∧ R =′ Y osemiteSham′

∧∃I, J, K(〈I, J, K〉 ∈ Catalog(I = P ∧ K > Z))))}

Relational Algebra and Calculus 31

SQL

SELECT C.pid
FROM Catalog C, Suppliers S
WHERE S.sname = ‘Yosemite Sham’ AND C.sid = S.sid

AND C.cost ≥ ALL (Select C2.cost
FROM Catalog C2, Suppliers S2
WHERE S2.sname = ‘Yosemite Sham’

AND C2.sid = S2.sid)

Exercise 4.4 Consider the Supplier-Parts-Catalog schema from the previous ques-
tion. State what the following queries compute:

1. πsname(πsid(σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers)

2. πsname(πsid((σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers))

3. (πsname((σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers)) ∩
(πsname((σcolor=′green′Parts) ./ (σcost<100Catalog) ./ Suppliers))

4. (πsid((σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers)) ∩
(πsid((σcolor=′green′Parts) ./ (σcost<100Catalog) ./ Suppliers))

5. πsname((πsid,sname((σcolor=′red′Parts) ./ (σcost<100Catalog) ./ Suppliers)) ∩
(πsid,sname((σcolor=′green′Parts) ./ (σcost<100Catalog) ./ Suppliers)))

Answer 4.4 Answer not available yet.

Exercise 4.5 Consider the following relations containing airline flight information:

Flights(flno: integer, from: string, to: string,
distance: integer, departs: time, arrives: time)

Aircraft(aid: integer, aname: string, cruisingrange: integer)
Certified(eid: integer, aid: integer)
Employees(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well;
every pilot is certified for some aircraft (otherwise, he or she would not qualify as a
pilot), and only pilots are certified to fly.

Write the following queries in relational algebra, tuple relational calculus, and domain
relational calculus. Note that some of these queries may not be expressible in relational
algebra (and, therefore, also not expressible in tuple and domain relational calculus)!
For such queries, informally explain why they cannot be expressed. (See the exercises
at the end of Chapter 5 for additional queries over the airline schema.)

32 Chapter 4

1. Find the eids of pilots certified for some Boeing aircraft.

2. Find the names of pilots certified for some Boeing aircraft.

3. Find the aids of all aircraft that can be used on non-stop flights from Bonn to
Madras.

4. Identify the flights that can be piloted by every pilot whose salary is more than
$100,000.

5. Find the names of pilots who can operate planes with a range greater than 3,000
miles but are not certified on any Boeing aircraft.

6. Find the eids of employees who make the highest salary.

7. Find the eids of employees who make the second highest salary.

8. Find the eids of employees who are certified for the largest number of aircraft.

9. Find the eids of employees who are certified for exactly three aircraft.

10. Find the total amount paid to employees as salaries.

11. Is there a sequence of flights from Madison to Timbuktu? Each flight in the
sequence is required to depart from the city that is the destination of the previous
flight; the first flight must leave Madison, the last flight must reach Timbuktu,
and there is no restriction on the number of intermediate flights. Your query must
determine whether a sequence of flights from Madison to Timbuktu exists for any
input Flights relation instance.

Answer 4.5 In the answers below RA refers to Relational Algebra, TRC refers to
Tuple Relational Calculus and DRC refers to Domain Relational Calculus.

1. RA

πeid(σaname=‘Boeing′ (Aircraft ./ Certified))

TRC

{C.eid | C ∈ Certified ∧
∃A ∈ Aircraft(A.aid = C.aid ∧ A.aname = ‘Boeing′)}

DRC

{〈Ceid〉 | 〈Ceid, Caid〉 ∈ Certified ∧
∃Aid, AN, AR(〈Aid, AN, AR〉 ∈ Aircraft

∧Aid = Caid ∧ AN = ‘Boeing′)}

Relational Algebra and Calculus 33

SQL

SELECT C.eid
FROM Aircraft A, Certified C
WHERE A.aid = C.aid AND A.aname = ‘Boeing’

2. RA

πename(σaname=‘Boeing′ (Aircraft ./ Certified ./ Employees))

TRC
{E.ename | E ∈ Employees ∧ ∃C ∈ Certified

(∃A ∈ Aircraft(A.aid = C.aid ∧ A.aname = ‘Boeing′ ∧ E.eid = C.eid))}

DRC
{〈EN〉 | 〈Eid, EN, ES〉 ∈ Employess∧
∃Ceid, Caid(〈Ceid, Caid〉 ∈ Certified∧
∃Aid, AN, AR(〈Aid, AN, AR〉 ∈ Aircraft∧
Aid = Caid ∧ AN = ‘Boeing′ ∧ Eid = Ceid)}

SQL

SELECT E.ename
FROM Aircraft A, Certified C, Employees E
WHERE A.aid = C.aid AND A.aname = ‘Boeing’ AND E.eid = C.eid

3. RA
ρ(LAtoNY, σfrom=‘L.A.′∧to=‘N.Y.′(Flights))
πaid(σcruisingrange>distance(Aircraft × LAtoNY))

TRC
{A.aid | A ∈ Aircraft ∧ ∃F ∈ Flights

(F.from = ‘L.A.′ ∧ F.to = ‘N.Y.′ ∧ A.cruisingrange > F.distance)}

DRC
{Aid | 〈Aid, AN, AR〉 ∈ Aircraft∧
(∃FN, FF, FT, FDi, FDe, FA(〈FN, FF, FT, FDi, FDe, FA〉 ∈ Flights∧
FF = ‘L.A.′ ∧ FT = ‘N.Y.′ ∧ FDi < AR))}

SQL

34 Chapter 4

SELECT A.aid
FROM Aircraft A, Flights F
WHERE F.from = ‘L.A.’ AND F.to = ‘N.Y.’ AND

A.cruisingrange > F.distance

4. RA
πflno(σdistance<cruisingrange∧salary>100,000(Flights ./ Aircraft ./

Certified ./ Employees)))

TRC {F.flno | F ∈ Flights ∧ ∃A ∈ Aircraft∃C ∈ Certified

∃E ∈ Employees(A.cruisingrange > F.distance ∧ E.salary > 100, 000∧
A.aid = C.aid ∧ E.eid = C.eid)}

DRC
{FN | 〈FN, FF, FT, FDi, FDe, FA〉 ∈ Flights∧
∃Ceid, Caid(〈Ceid, Caid〉 ∈ Certified∧
∃Aid, AN, AR(〈Aid, AN, AR〉 ∈ Aircraft∧
∃Eid, EN, ES(〈Eid, EN, ES〉 ∈ Employees

(AR > FDi ∧ ES > 100, 000∧ Aid = Caid ∧ Eid = Ceid)}

SQL

SELECT E.ename
FROM Aircraft A, Certified C, Employees E, Flights F
WHERE A.aid = C.aid AND E.eid = C.eid AND

distance < cruisingrange AND salary > 100,000

5. RA ρ(R1, πeid(σcruisingrange>3000(Aircraft ./ Certified)))
πename(Employees ./ (R1 − πeid(σaname=‘Boeing′ (Aircraft ./ Certified))))

TRC
{E.ename | E ∈ Employees ∧ ∃C ∈ Certified(∃A ∈ Aircraft

(A.aid = C.aid ∧ E.eid = C.eid ∧ A.cruisingrange > 3000))∧
¬(∃C2 ∈ Certified(∃A2 ∈ Aircraft(A2.aname = ‘Boeing′ ∧ C2.aid =
A2.aid ∧ C2.eid = E.eid)))}

DRC
{〈EN〉 | 〈Eid, EN, ES〉 ∈ Employess∧
∃Ceid, Caid(〈Ceid, Caid〉 ∈ Certified∧
∃Aid, AN, AR(〈Aid, AN, AR〉 ∈ Aircraft∧
Aid = Caid ∧ Eid = Ceid ∧ AR > 3000))∧

Relational Algebra and Calculus 35

¬(∃Aid2, AN2, AR2(〈Aid2, AN2, AR2〉 ∈ Aircraft∧
∃Ceid2, Caid2(〈Ceid2, Caid2〉 ∈ Certified

∧Aid2 = Caid2 ∧ Eid = Ceid2 ∧ AN2 = ‘Boeing′)))}
SQL

SELECT E.ename
FROM Certified C, Employees E, Aircraft A
WHERE A.aid = C.aid AND E.eid = C.eid AND A.cruisingrange > 3000
AND E.eid NOT IN (SELECT C2.eid
FROM Certified C2, Aircraft A2
WHERE C2.aid = A2.aid AND A2.aname = ‘Boeing’)

6. RA
The approach to take is first find all the employees who do not have the
highest salary. Subtract these from the original list of employees and what
is left is the highest paid employees.
ρ(E1, Employees)
ρ(E2, Employees)
ρ(E3, πE2.eid(E1 ./E1.salary>E2.salary E2)
(πeidE1) − E3

TRC

{E1.eid | E1 ∈ Employees∧¬(∃E2 ∈ Employees(E2.salary > E1.salary))}

DRC
{〈Eid1〉 | 〈Eid1, EN1, ES1〉 ∈ Employess∧
¬(∃Eid2, EN2, ES2(〈Eid2, EN2, ES2〉 ∈ Employess ∧ ES2 > ES1))}

SQL

SELECT E.eid
FROM Employees E
WHERE E.salary = (Select MAX (E2.salary)

FROM Employees E2)

7. RA
The approach taken is similar to the solution for the previous exercise. First
find all the employees who do not have the highest salary. Remove these from
the original list of employees and what is left is the highest paid employees.
Remove the highest paid employees from the original list. What is left is the

36 Chapter 4

second highest paid employees together with the rest of the employees. Then
find the highest paid employees of this new list. This is the list of the second
highest paid employees. ρ(E1, Employees)
ρ(E2, Employees)
ρ(E3, πE2.eid(E1 ./E1.salary>E2.salary E2)
ρ(E4, E2 ./ E3)
ρ(E5, E2 ./ E3)
ρ(E6, πE5.eid(E4 ./E1.salary>E5.salary E5)
(πeidE3) − E6

TRC
{E1.eid | E1 ∈ Employees ∧ ∃E2 ∈ Employees(E2.salary > E1.salary

∧¬(∃E3 ∈ Employees(E3.salary > E2.salary)))}

DRC
{〈Eid1〉 | 〈Eid1, EN1, ES1〉 ∈ Employess∧
∃Eid2, EN2, ES2(〈Eid2, EN2, ES2〉 ∈ Employess(ES2 > ES1)
∧¬(∃Eid3, EN3, ES3(〈Eid3, EN3, ES3〉 ∈ Employess(ES3 > ES2))))}

SQL

SELECT E.eid
FROM Employees E
WHERE E.salary = (SELECT MAX (E2.salary)

FROM Employees E2
WHERE E2.salary 6= (SELECT MAX (E3.salary)

FROM Employees E3))

8. This cannot be expressed in relational algebra (or calculus) because there is no
operator to count, and this query requires the ability to count upto a number that
depends on the data. The query can however be expressed in SQL as follows:

SELECT Temp.eid
FROM (SELECT C.eid AS eid, COUNT (C.aid) AS cnt,

FROM Certified C
GROUP BY C.eid) AS Temp

WHERE Temp.cnt = (SELECT MAX (Temp.cnt)
FROM Temp)

9. RA
The approach behind this query is to first find the employees who are certified
for at least three aircraft (they appear at least three times in the Certified

Relational Algebra and Calculus 37

relation). Then find the employees who are certified for at least four aircraft.
Subtract the second from the first and what is left is the employees who are
certified for exactly three aircraft.

ρ(R1, Certified)
ρ(R2, Certified)
ρ(R3, Certified)
ρ(R4, Certified)
ρ(R5, πeid(σ(R1.eid=R2.eid=R3.eid)∧(R1.aid 6=R2.aid 6=R3.aid)(R1 × R2 × R3)))
ρ(R6, πeid(σ(R1.eid=R2.eid=R3.eid=R4.eid)∧(R1.aid 6=R2.aid 6=R3.aid 6=R4.aid)

(R1 × R2 × R3 × R4)))
R5 − R6

TRC
{C1.eid | C1 ∈ Certified ∧ ∃C2 ∈ Certified(∃C3 ∈ Certified

(C1.eid = C2.eid ∧ C2.eid = C3.eid∧
C1.aid 6= C2.aid ∧ C2.aid 6= C3.aid ∧ C3.aid 6= C1.aid∧
¬(∃C4 ∈ Certified

(C3.eid = C4.eid ∧ C1.aid 6= C4.aid∧
C2.aid 6= C4.aid ∧ C3.aid 6= C4.aid))))}

DRC
{〈CE1〉 | 〈CE1, CA1〉 ∈ Certified∧
∃CE2, CA2(〈CE2, CA2〉 ∈ Certified∧
∃CE3, CA3(〈CE3, CA3〉 ∈ Certified∧
(CE1 = CE2 ∧ CE2 = CE3∧
CA1 6= CA2 ∧ CA2 6= CA3 ∧ CA3 6= CA1∧
¬(∃CE4, CA4(〈CE4, CA4〉 ∈ Certified∧
(CE3 = CE4 ∧ CA1 6= CA4∧
CA2 6= CA4 ∧ CA3 6= CA4))))}

SQL

SELECT C1.eid
FROM Certified C1, Certified C2, Certified C3
WHERE (C1.eid = C2.eid AND C2.eid = C3.eid AND

C1.aid 6= C2.aid AND C2.aid 6= C3.aid AND C3.aid 6= C1.aid)
EXCEPT
SELECT C4.eid
FROM Certified C4, Certified C5, Certified C6, Certified C7,
WHERE (C4.eid = C5.eid AND C5.eid = C6.eid AND C6.eid = C7.eid AND

C4.aid 6= C5.aid AND C4.aid 6= C6.aid AND C4.aid 6= C7.aid AND
C5.aid 6= C6.aid AND C5.aid 6= C7.aid AND C6.aid 6= C7.aid)

38 Chapter 4

This could also be done in SQL using COUNT.

10. This cannot be expressed in relational algebra (or calculus) because there is no
operator to sum values. The query can however be expressed in SQL as follows:

SELECT SUM (E.salaries)
FROM Employees E

11. This cannot be expressed in relational algebra or relational calculus or SQL. The
problem is that there is no restriction on the number of intermediate flights. All
of the query methods could find if there was a flight directly from Madison to
Timbuktu and if there was a sequence of two flights that started in Madison and
ended in Timbuktu. They could even find a sequence of n flights that started in
Madison and ended in Timbuktu as long as there is a static (i.e., data-independent)
upper bound on the number of intermediate flights. (For large n, this would of
course be long and impractical, but at least possible.) In this query, however, the
upper bound is not static but dynamic (based upon the set of tuples in the Flights
relation).

In summary, if we had a static upper bound (say k), we could write an algebra
or SQL query that repeatedly computes (upto k) joins on the Flights relation. If
the upper bound is dynamic, then we cannot write such a query because k is not
known when writing the query.

12. This cannot be expressed in relational algebra (or calculus). If we had the con-
straint that every employee has a unique salary, then the query could be expressed
with much difficulty in relational algebra and calculus. To do this, the 20 highest
paid employees would removed from the list one by one and saved as in questions
6 and 7. Then the saved tuples could be added together with union. In practice,
this is tedious. In SQL however, ORDER BY could be used to list the employees
in sorted order by salary, and the user could see the top 20 rows. (Of course, this
could be done in SQL even without the constraint mentioned above.)

Exercise 4.6 What is relational completeness? If a query language is relationally
complete, can you write any desired query in that language?

Answer 4.6 Answer omitted.

Exercise 4.7 What is an unsafe query? Give an example and explain why it is im-
portant to disallow such queries.

Relational Algebra and Calculus 39

Answer 4.7 An unsafe query is a query in relational calculus that has an infinite
number of results. An example of such a query is:

{S | ¬(S ∈ Sailors)}

The query is for all things that are not sailors which of course is everything else. Clearly
there is an infinite number of answers, and this query is unsafe. It is important to
disallow unsafe queries because we want to be able to get back to users with a list of
all the answers to a query after a finite amount of time.

5
SQL: QUERIES, PROGRAMMING,

TRIGGERS

Exercise 5.1 Consider the following relations:

Student(snum: integer, sname: string, major: string, level: string, age: integer)
Class(name: string, meets at: time, room: string, fid: integer)
Enrolled(snum: integer, cname: string)
Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record
per student-class pair such that the student is enrolled in the class.

Write the following queries in SQL. No duplicates should be printed in any of the
answers.

1. Find the names of all Juniors (Level = JR) who are enrolled in a class taught by
I. Teach.

2. Find the age of the oldest student who is either a History major or is enrolled in
a course taught by I. Teach.

3. Find the names of all classes that either meet in room R128 or have five or more
students enrolled.

4. Find the names of all students who are enrolled in two classes that meet at the
same time.

5. Find the names of faculty members who teach in every room in which some class
is taught.

6. Find the names of faculty members for whom the combined enrollment of the
courses that they teach is less than five.

7. Print the Level and the average age of students for that Level, for each Level.

40

SQL: Queries, Programming, Triggers 41

8. Print the Level and the average age of students for that Level, for all Levels except
JR.

9. Find the names of students who are enrolled in the maximum number of classes.

10. Find the names of students who are not enrolled in any class.

11. For each age value that appears in Students, find the level value that appears most
often. For example, if there are more FR level students aged 18 than SR, JR, or
SO students aged 18, you should print the pair (18, FR).

Answer 5.1 The answers are given below:

1. SELECT DISTINCT S.Sname
FROM Student S, Class C, Enrolled E, Faculty F
WHERE S.snum = E.snum AND E.cname = C.name AND C.fid = F.fid AND

F.fname = ‘I.Teach’ AND S.level = ‘JR’

2. SELECT MAX(S.age)
FROM Student S
WHERE (S.major = ‘History’)

OR S.num IN (SELECT E.snum
FROM Class C, Enrolled E, Faculty F
WHERE E.cname = C.name AND C.fid = F.fid

AND F.fname = ‘I.Teach’)

3. SELECT C.name
FROM Class C
WHERE C.room = ‘R128’

OR C.name IN (SELECT E.cname
FROM Enrolled E
GROUP BY E.cname
HAVING COUNT (*) >= 5)

4. SELECT DISTINCT S.sname
FROM Student S
WHERE S.snum IN (SELECT E1.snum

FROM Enrolled E1, Enrolled E2, Class C1, Class C2
WHERE E1.snum = E2.snum AND E1.cname <> E2.cname
AND E1.cname = C1.name
AND E2.cname = C2.name AND C1.time = C2.time)

5. SELECT DISTINCT F.fname
FROM Faculty F
WHERE NOT EXISTS ((SELECT *

42 Chapter 5

FROM Class C)
EXCEPT
(SELECTC1.room
FROM Class C1
WHERE C1.fid = F.fid))

6. SELECT DISTINCT F.fname
FROM Faculty F
WHERE 5 > (SELECT E.snum

FROM Class C, Enrolled E
WHERE C.name = E.cname
AND C.fid = F.fid)

7. SELECT S.level, AVG(S.age)
FROM Student S
GROUP BY S.level

8. SELECT S.level, AVG(S.age)
FROM Student S
WHERE S.level <> ‘JR’
GROUP BY S.level

9. SELECT DISTINCT S.sname
FROM Student S
WHERE S.snum IN (SELECT E.snum

FROM Enrolled E
GROUP BY E.snum
HAVING COUNT (*) >= ALL (SELECT COUNT (*)

FROM Enrolled E2
GROUP BY E2.snum))

10. SELECT DISTINCT S.sname
FROM Student S
WHERE S.snum NOT IN (SELECT E.snum

FROM Enrolled E)

Exercise 5.2 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers. Write the following
queries in SQL:

SQL: Queries, Programming, Triggers 43

1. Find the pnames of parts for which there is some supplier.

2. Find the snames of suppliers who supply every part.

3. Find the snames of suppliers who supply every red part.

4. Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.

5. Find the sids of suppliers who charge more for some part than the average cost of
that part (averaged over all the suppliers who supply that part).

6. For each part, find the sname of the supplier who charges the most for that part.

7. Find the sids of suppliers who supply only red parts.

8. Find the sids of suppliers who supply a red part and a green part.

9. Find the sids of suppliers who supply a red part or a green part.

Answer 5.2 Answer omitted.

Exercise 5.3 The following relations keep track of airline flight information:

Flights(flno: integer, from: string, to: string, distance: integer,
departs: time, arrives: time, price: integer)

Aircraft(aid: integer, aname: string, cruisingrange: integer)
Certified(eid: integer, aid: integer)
Employees(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well;
every pilot is certified for some aircraft, and only pilots are certified to fly. Write each
of the following queries in SQL. (Additional queries using the same schema are listed
in the exercises for Chapter 4.)

1. Find the names of aircraft such that all pilots certified to operate them earn more
than 80,000.

2. For each pilot who is certified for more than three aircraft, find the eid and the
maximum cruisingrange of the aircraft that he (or she) is certified for.

3. Find the names of pilots whose salary is less than the price of the cheapest route
from Los Angeles to Honolulu.

4. For all aircraft with cruisingrange over 1,000 miles, find the name of the aircraft
and the average salary of all pilots certified for this aircraft.

5. Find the names of pilots certified for some Boeing aircraft.

44 Chapter 5

6. Find the aids of all aircraft that can be used on routes from Los Angeles to
Chicago.

7. Identify the routes that can be piloted by every pilot who makes more than
$100,000.

8. Print the enames of pilots who can operate planes with cruisingrange greater than
3,000 miles, but are not certified on any Boeing aircraft.

9. A customer wants to travel from Madison to New York with no more than two
changes of flight. List the choice of departure times from Madison if the customer
wants to arrive in New York by 6 p.m.

10. Compute the difference between the average salary of a pilot and the average
salary of all employees (including pilots).

11. Print the name and salary of every nonpilot whose salary is more than the average
salary for pilots.

Answer 5.3 The answers are given below:

1. SELECT DISTINCT A.aname
FROM Aircraft A
WHERE A.Aid IN (SELECT C.aid

FROM Certified C, Employees E
WHERE C.eid = E.eid AND
NOT EXISTS (SELECT *

FROM Employees E1
WHERE E1.eid = E.eid AND E1.salary < 80000))

2. SELECT C.eid, MAX (A.cruisingrange)
FROM Certified C, Aircraft A
WHERE C.aid = A.aid
GROUP BY C.eid
HAVING COUNT (*) > 3

3. SELECT DISTINCT E.aname
FROM Employee E
WHERE E.salary < (SELECT MIN (F.price)
FROM Flights F
WHERE F.from = ‘LA’ AND F.to = ‘Honolulu’)

4. Observe that aid is the key for Aircraft, but the question asks for aircraft names;
we deal with this complication by using an intermediate relation Temp:

SQL: Queries, Programming, Triggers 45

SELECT Temp.name, Temp.AvgSalary
FROM (SELECT A.aid, A.aname AS name,

AVG (E.salary) AS AvgSalary
FROM Aircraft A, Certified C, Employes E
WHERE A.aid = C.aid AND

C.eid = E.eid AND A.cruisingrange > 1000
GROUP BY A.aid, A.aname) AS Temp

5. SELECT DISTINCT E.ename
FROM Employees E, Certified C, Aircraft A
WHERE E.eid = C.eid AND

C.aid = A.aid AND
A.aname = ‘Boeing’

6. SELECT A.aid
FROM Aircraft A
WHERE A.cruisingrange > (SELECT MIN (F.distance)

FROM Flights F
WHERE F.from = ‘L.A.’ AND F.to = ‘Chicago’)

7. SELECT DISTINCT F.from, F.to
FROM Flights F
WHERE NOT EXISTS (SELECT *

FROM Employees E
WHERE E.salary > 100000
AND
NOT EXISTS (SELECT *

FROM Aircraft A, Certified C
WHERE A.cruisingrange > F.distance
AND E.eid = C.eid
AND A.eid = C.aid))

8. SELECT DISTINCT E.ename
FROM Employees E, Certified C, Aircraft A
WHERE C.eid = E.eid
AND C.aid = A.aid
AND A.cruisingrange > 3000
AND E.eid NOT IN (SELECT C1.eid
FROM Certified C1, Aircraft A1
WHERE C1.aid = A1.aid
AND A1.aname = ‘Boeing’)

46 Chapter 5

9. SELECT F.departs
FROM Flights F
WHERE F.flno IN ((SELECT F0.flno

FROM Flights F0
WHERE F0.from = ‘Madison’ AND F0.to = ‘NY’ AND

AND F0.arrives < 1800)
UNION
(SELECT F0.flno
FROM Flights F0, Flights F1
WHERE F0.from = ‘Madison’ AND F0.to <> ‘NY’ AND
AND F0.to = F1.from AND F1.to = ‘NY’

F1.departs > F0.arrives AND
F1.arrives < 1800)

UNION
(SELECT F0.flno

FROM Flights F0, Flights F1, Flights F2
WHERE F0.from = ‘Madison’
WHERE F0.to = F1.from
AND F1.to = F2.from
AND F2.to = ‘NY’
AND F0.to <> ‘NY’
AND F1.to <> ‘NY’
AND F1.departs > F0.arrives
AND F2.departs > F1.arrives
AND F2.arrives < 1800))

10. SELECT Temp1.avg - Temp2.avg
FROM (SELECT AVG (E.salary) AS avg

FROM Employees E
WHERE E.eid IN (SELECT DISTINCT C.eid

FROM Certified C)) AS Temp1,
(SELECTAVG (E1.salary) AS avg
FROM Employees E1) AS Temp2

11. SELECT E.ename, E.salary
FROM Employees E
WHERE E.eid NOT IN (SELECT DISTINCT C.eid

FROM Certified C)
AND E.salary > (SELECT AVG (E1.salary)

FROM Employees E1
WHERE E1.eid IN

(SELECT DISTINCT C1.eid
FROM Certified C1))

SQL: Queries, Programming, Triggers 47

Exercise 5.4 Consider the following relational schema. An employee can work in
more than one department; the pct time field of the Works relation shows the percent-
age of time that a given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct time: integer)
Dept(did: integer, budget: real, managerid: integer)

Write the following queries in SQL:

1. Print the names and ages of each employee who works in both the Hardware
department and the Software department.

2. For each department with more than 20 full-time-equivalent employees (i.e., where
the part-time and full-time employees add up to at least that many full-time
employees), print the did together with the number of employees that work in
that department.

3. Print the name of each employee whose salary exceeds the budget of all of the
departments that he or she works in.

4. Find the managerids of managers who manage only departments with budgets
greater than $1,000,000.

5. Find the enames of managers who manage the departments with the largest bud-
get.

6. If a manager manages more than one department, he or she controls the sum of all
the budgets for those departments. Find the managerids of managers who control
more than $5,000,000.

7. Find the managerids of managers who control the largest amount.

Answer 5.4 Answer omitted.

Exercise 5.5 Consider the instance of the Sailors relation shown in Figure 5.1.

1. Write SQL queries to compute the average rating, using AVG; the sum of the
ratings, using SUM; and the number of ratings, using COUNT.

2. If you divide the sum computed above by the count, would the result be the same
as the average? How would your answer change if the above steps were carried
out with respect to the age field instead of rating?

48 Chapter 5

sid sname rating age
18 jones 3 30.0
41 jonah 6 56.0
22 ahab 7 44.0
63 moby null 15.0

Figure 5.1 An Instance of Sailors

3. Consider the following query: Find the names of sailors with a higher rating than
all sailors with age < 21. The following two SQL queries attempt to obtain the
answer to this question. Do they both compute the result? If not, explain why.
Under what conditions would they compute the same result?

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT *

FROM Sailors S2
WHERE S2.age < 21

AND S.rating <= S2.rating)

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.age < 21)

4. Consider the instance of Sailors shown in Figure 5.1. Let us define instance S1 of
Sailors to consist of the first two tuples, instance S2 to be the last two tuples, and
S to be the given instance.

(a) Show the left outer join of S with itself, with the join condition being sid=sid.

(b) Show the right outer join of S with itself, with the join condition being
sid=sid.

(c) Show the full outer join of S with itself, with the join condition being sid=sid.

(d) Show the left outer join of S1 with S2, with the join condition being sid=sid.

(e) Show the right outer join of S1 with S2, with the join condition being sid=sid.

(f) Show the full outer join of S1 with S2, with the join condition being sid=sid.

Answer 5.5 The answers are shown below:

SQL: Queries, Programming, Triggers 49

4. (a)

sid sname rating age sid sname rating age

18 jones 3 30.0 18 jones 3 30.0
41 jonah 6 56.0 41 jonah 6 56.0
22 ahab 7 44.0 22 ahab 7 44.0
63 moby null 15.0 63 moby null 15.0

1. SELECT AVG (S.rating) AS AVERAGE
FROM Sailors S

SELECT SUM (S.rating)
FROM Sailors S

SELECT COUNT (S.rating)
FROM Sailors S

2. The result using SUM and COUNT would be smaller than the result using AV-
ERAGE if there are tuples with rating = NULL. This is because all the aggregate
operators, except for COUNT, ignore NULL values. So the first approach would
compute the average over all tuples while the second approach would compute the
average over all tuples with non-NULL rating values. However, if the aggregation
is done on the age field, the answers using both approaches would be the same
since the age field does not take NULL values.

3. Only the first query is correct. The second query returns the names of sailors with
a higher rating than at least one sailor with age < 21. Note that the answer to
the second query does not necessarily contain the answer to the first query. In
particular, if all the sailors are at least 21 years old, the second query will return an
empty set while the first query will return all the sailors. This is because the NOT
EXISTS predicate in the first query will evaluate to true if its subquery evaluates
to an empty set, while the ANY predicate in the second query will evaluate to
false if its subquery evaluates to an empty set. The two queries give the same
results if and only if one of the following two conditions hold:

The Sailors relation is empty, or

There is at least one sailor with age > 21 in the Sailors relation, and for
every sailor s, either s has a higher rating than all sailors under 21 or s has
a rating no higher than all sailors under 21.

Exercise 5.6 Answer the following questions.

1. Explain the term impedance mismatch in the context of embedding SQL com-
mands in a host language such as C.

50 Chapter 5

(b)

sid sname rating age sid sname rating age

18 jones 3 30.0 18 jones 3 30.0
41 jonah 6 56.0 41 jonah 6 56.0
22 ahab 7 44.0 22 ahab 7 44.0
63 moby null 15.0 63 moby null 15.0

(c)

sid sname rating age sid sname rating age

18 jones 3 30.0 18 jones 3 30.0
41 jonah 6 56.0 41 jonah 6 56.0
22 ahab 7 44.0 22 ahab 7 44.0
63 moby null 15.0 63 moby null 15.0

(d)
sid sname rating age sid sname rating age

18 jones 3 30.0 null null null null
41 jonah 6 56.0 null null null null

(e)
sid sname rating age sid sname rating age

null null null null 22 ahab 7 44.0
null null null null 63 moby null 15.0

(f)

sid sname rating age sid sname rating age

18 jones 3 30.0 null null null null
41 jonah 6 56.0 null null null null
null null null null 22 ahab 7 44.0
null null null null 63 moby null 15.0

SQL: Queries, Programming, Triggers 51

2. How can the value of a host language variable be passed to an embedded SQL
command?

3. Explain the WHENEVER command’s use in error and exception handling.

4. Explain the need for cursors.

5. Give an example of a situation that calls for the use of embedded SQL, that is, in-
teractive use of SQL commands is not enough, and some host language capabilities
are needed.

6. Write a C program with embedded SQL commands to address your example in
the previous answer.

7. Write a C program with embedded SQL commands to find the standard deviation
of sailors’ ages.

8. Extend the previous program to find all sailors whose age is within one standard
deviation of the average age of all sailors.

9. Explain how you would write a C program to compute the transitive closure of
a graph, represented as an SQL relation Edges(from, to), using embedded SQL
commands. (You don’t have to write the program; just explain the main points
to be dealt with.)

10. Explain the following terms with respect to cursors: updatability, sensitivity, and
scrollability.

11. Define a cursor on the Sailors relation that is updatable, scrollable, and returns
answers sorted by age. Which fields of Sailors can such a cursor not update?
Why?

12. Give an example of a situation that calls for dynamic SQL, that is, even embedded
SQL is not sufficient.

Answer 5.6 Answer omitted.

Exercise 5.7 Consider the following relational schema and briefly answer the ques-
tions that follow:

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct time: integer)
Dept(did: integer, budget: real, managerid: integer)

1. Define a table constraint on Emp that will ensure that every employee makes at
least $10,000.

52 Chapter 5

2. Define a table constraint on Dept that will ensure that all managers have age > 30.

3. Define an assertion on Dept that will ensure that all managers have age > 30.
Compare this assertion with the equivalent table constraint. Explain which is
better.

4. Write SQL statements to delete all information about employees whose salaries
exceed that of the manager of one or more departments that they work in. Be
sure to ensure that all the relevant integrity constraints are satisfied after your
updates.

Answer 5.7 The answers are given below:

1. Define a table constraint on Emp that will ensure that every employee makes at
least 10,000

CREATE TABLE Emp (eid INTEGER,
ename CHAR(10),
age INTEGER ,
salary REAL,
PRIMARY KEY (eid),
CHECK (salary >= 10000))

2. Define a table constraint on Dept that will ensure that all managers have age >

30

CREATE TABLE Dept (did INTEGER,
buget REAL,
managerid INTEGER ,
PRIMARY KEY (did),
FOREIGN KEY (managerid) REFERENCES Emp,
CHECK ((SELECT E.age FROM Emp E, Dept D)

WHERE E.eid = D.managerid) > 30)

3. Define an assertion on Dept that will ensure that all managers have age > 30

CREATE TABLE Dept (did INTEGER,
budget REAL,
managerid INTEGER ,
PRIMARY KEY (did))

CREATE ASSERTION managerAge
CHECK ((SELECT E.age

FROM Emp E, Dept D
WHERE E.eid = D.managerid) > 30)

SQL: Queries, Programming, Triggers 53

Since the constraint involves two relations, it is better to define it as an assertion,
independent of any one relation, rather than as a check condition on the Dept
relation. The limitation of the latter approach is that the condition is checked
only when the Dept relation is being updated. However, since age is an attribute
of the Emp relation, it is possible to update the age of a manager which violates the
constraint. So the former approach is better since it checks for potential violation
of the assertion whenever one of the relations is updated.

4. To write such statements, it is necessary to consider the constraints defined over
the tables. We will assume the following:

CREATE TABLE Emp (eid INTEGER,
ename CHAR(10),
age INTEGER,
salary REAL,
PRIMARY KEY (eid))

CREATE TABLE Works (eid INTEGER,
did INTEGER,
pcttime INTEGER,
PRIMARY KEY (eid, did),
FOREIGN KEY (did) REFERENCES Dept,
FOREIGN KEY (eid) REFERENCES Emp,
ON DELETE CASCADE)

CREATE TABLE Dept (did INTEGER,
buget REAL,
managerid INTEGER ,
PRIMARY KEY (did),
FOREIGN KEY (managerid) REFERENCES Emp,
ON DELETE SET NULL)

Now, we can define statements to delete employees who make more than one of
their managers:

DELETE
FROM Emp E

WHERE E.eid IN (SELECT W.eid
FROM Work W, Emp E2, Dept D
WHERE W.did = D.did
AND D.managerid = E2.eid
AND E.salary > E2.salary)

Exercise 5.8 Consider the following relations:

Student(snum: integer, sname: string, major: string,

54 Chapter 5

level: string, age: integer)
Class(name: string, meets at: time, room: string, fid: integer)
Enrolled(snum: integer, cname: string)
Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record
per student-class pair such that the student is enrolled in the class.

1. Write the SQL statements required to create the above relations, including appro-
priate versions of all primary and foreign key integrity constraints.

2. Express each of the following integrity constraints in SQL unless it is implied by
the primary and foreign key constraint; if so, explain how it is implied. If the
constraint cannot be expressed in SQL, say so. For each constraint, state what
operations (inserts, deletes, and updates on specific relations) must be monitored
to enforce the constraint.

(a) Every class has a minimum enrollment of 5 students and a maximum enroll-
ment of 30 students.

(b) At least one class meets in each room.

(c) Every faculty member must teach at least two courses.

(d) Only faculty in the department with deptid=33 teach more than three courses.

(e) Every student must be enrolled in the course called Math101.

(f) The room in which the earliest scheduled class (i.e., the class with the smallest
meets at value) meets should not be the same as the room in which the latest
scheduled class meets.

(g) Two classes cannot meet in the same room at the same time.

(h) The department with the most faculty members must have fewer than twice
the number of faculty members in the department with the fewest faculty
members.

(i) No department can have more than 10 faculty members.

(j) A student cannot add more than two courses at a time (i.e., in a single
update).

(k) The number of CS majors must be more than the number of Math majors.

(l) The number of distinct courses in which CS majors are enrolled is greater
than the number of distinct courses in which Math majors are enrolled.

(m) The total enrollment in courses taught by faculty in the department with
deptid=33 is greater than the number of Math majors.

(n) There must be at least one CS major if there are any students whatsoever.

(o) Faculty members from different departments cannot teach in the same room.

SQL: Queries, Programming, Triggers 55

Answer 5.8 Answer omitted.

Exercise 5.9 Discuss the strengths and weaknesses of the trigger mechanism. Con-
trast triggers with other integrity constraints supported by SQL.

Answer 5.9 Answer not available yet.

Exercise 5.10 Consider the following relational schema. An employee can work in
more than one department; the pct time field of the Works relation shows the percent-
age of time that a given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct time: integer)
Dept(did: integer, budget: real, managerid: integer)

Write SQL-92 integrity constraints (domain, key, foreign key, or CHECK constraints; or
assertions) or SQL:1999 triggers to ensure each of the following requirements, consid-
ered independently.

1. Employees must make a minimum salary of $1,000.

2. Every manager must be also be an employee.

3. The total percentage of all appointments for an employee must be under 100%.

4. A manager must always have a higher salary than any employee that he or she
manages.

5. Whenever an employee is given a raise, the manager’s salary must be increased to
be at least as much.

6. Whenever an employee is given a raise, the manager’s salary must be increased
to be at least as much. Further, whenever an employee is given a raise, the
department’s budget must be increased to be greater than the sum of salaries of
all employees in the department.

Answer 5.10 Answer omitted.

6
QUERY-BY-EXAMPLE (QBE)

Exercise 6.1 Consider the following relational schema. An employee can work in
more than one department.

Emp(eid: integer, ename: string, salary: real)
Works(eid: integer, did: integer)
Dept(did: integer, dname: string, managerid: integer, floornum: integer)

Write the following queries in QBE. Be sure to underline your variables to distinguish
them from your constants.

1. Print the names of all employees who work on the 10th floor and make less than
$50,000.

2. Print the names of all managers who manage three or more departments on the
same floor.

3. Print the names of all managers who manage 10 or more departments on the same
floor.

4. Give every employee who works in the toy department a 10 percent raise.

5. Print the names of the departments that employee Santa works in.

6. Print the names and salaries of employees who work in both the toy department
and the candy department.

7. Print the names of employees who earn a salary that is either less than $10,000
or more than $100,000.

8. Print all of the attributes for employees who work in some department that em-
ployee Santa also works in.

9. Fire Santa.

56

Query-by-Example (QBE) 57

10. Print the names of employees who make more than $20,000 and work in either
the video department or the toy department.

11. Print the names of all employees who work on the floor(s) where Jane Dodecahe-
dron works.

12. Print the name of each employee who earns more than the manager of the depart-
ment that he or she works in.

13. Print the name of each department that has a manager whose last name is Psmith
and who is neither the highest-paid nor the lowest-paid employee in the depart-
ment.

Answer 6.1 1. Names of all employees who work on the 10th floor and make less
than 50,000:

Emp eid ename salary

E P. < 50, 000

Works eid did

E D

Dept did dname managerid floor

D 10

2. Names of all managers who manage three or more departments on the same floor:

Emp eid ename salary

M P. N

Dept did dname managerid floor

D1 M F
D2 M F
D3 M F

Conditions

D1 6= D2 AND D1 6= D3 AND D2 6= D3

3. Print the names of all managers who manage ten or more departments on the
same floor:

Emp eid ename salary

M P.G. N

58 Chapter 6

Dept did dname managerid floor

D G. M G. COUNT. D>= 10

4. Give every employee who works in the Toy department a 10% raise:

Emp eid ename salary

E U. S∗1.1

Works eid did

E D

Dept did dname managerid floor

D Toy

5. Print the names of the departments that employee Santa works in:

Emp eid ename salary

E Santa

Works eid did

E D

Dept did dname managerid floor

D P. N

6. Print the names and salaries of employees who work in both the Toy department
and the Candy department:

Emp eid ename salary

UNQ. E P. EN P. ES

Works eid did

E D

Dept did dname managerid floor

D DN1
D DN2

Conditions

DN1=Toy AND DN2=Candy

7. Print the names of employees who earn a salary that is either less than 10,000 or
more than 100,000:

Query-by-Example (QBE) 59

Emp eid ename salary

P. N S S< 10, 000 OR S> 100, 000

8. Print all of the attributes for employees who work in some department that em-
ployee Santa also works in:

Emp eid ename salary

E Santa
P. E1 E¬ E1

Works eid did

E D
E1 D

9. Fire Santa:

Emp eid ename salary

D. E Santa

Works eid did

D. E

10. Print the names of employees who make more than 20,000 and work in either the
Video department or the Toy department:

Emp eid ename salary

E P. EN >20000

Works eid did

E D

Dept did dname managerid floor

D DN
Conditions

DN=Video OR DN=Toy

11. Print the names of all employees who work on the floor(s) where Jane Dodecahe-
dron works:

Emp eid ename salary

E1 Jane Dodecahedron
E2 P. N

60 Chapter 6

Works eid did

E1 D1
E2 D2

Dept did dname managerid floor

D1 F
D2 F

12. Print the name of each employee who earns more than the manager of the depart-
ment that he or she works in:

Emp eid ename salary

M S
E P. N > S

Works eid did

E D

Dept did dname managerid floor

D M

13. Print the name of each department that has a manager whose last name is Psmith
and who is neither the highest-paid nor the lowest-paid employee in the depart-
ment:

Works eid did

E G. D

Emp eid ename salary

E S
M NLIKE ‘%.Psmith’ S2 S2> A AND S2< B

Temp did Min Max

I. D MIN. S MAX. S
D2 A B

Dept did dname managerid floor

D2 P. DN M

Exercise 6.2 Write the following queries in QBE, based on this schema:

Query-by-Example (QBE) 61

Suppliers(sid: integer, sname: string, city: string)
Parts(pid: integer, pname: string, color: string)
Orders(sid: integer, pid: integer, quantity: integer)

1. For each supplier from whom all of the following things have been ordered in
quantities of at least 150, print the name and city of the supplier: a blue gear, a
red crankshaft, and a yellow bumper.

2. Print the names of the purple parts that have been ordered from suppliers located
in Madison, Milwaukee, or Waukesha.

3. Print the names and cities of suppliers who have an order for more than 150 units
of a yellow or purple part.

4. Print the pids of parts that have been ordered from a supplier named American
but have also been ordered from some supplier with a different name in a quantity
that is greater than the American order by at least 100 units.

5. Print the names of the suppliers located in Madison. Could there be any duplicates
in the answer?

6. Print all available information about suppliers that supply green parts.

7. For each order of a red part, print the quantity and the name of the part.

8. Print the names of the parts that come in both blue and green. (Assume that no
two distinct parts can have the same name and color.)

9. Print (in ascending order alphabetically) the names of parts supplied both by a
Madison supplier and by a Berkeley supplier.

10. Print the names of parts supplied by a Madison supplier, but not supplied by any
Berkeley supplier. Could there be any duplicates in the answer?

11. Print the total number of orders.

12. Print the largest quantity per order for each sid such that the minimum quantity
per order for that supplier is greater than 100.

13. Print the average quantity per order of red parts.

14. Can you write this query in QBE? If so, how?
Print the sids of suppliers from whom every part has been ordered.

Answer 6.2 Answer omitted.

Exercise 6.3 Answer the following questions:

62 Chapter 6

1. Describe the various uses for unnamed columns in QBE.

2. Describe the various uses for a conditions box in QBE.

3. What is unusual about the treatment of duplicates in QBE?

4. Is QBE based upon relational algebra, tuple relational calculus, or domain rela-
tional calculus? Explain briefly.

5. Is QBE relationally complete? Explain briefly.

6. What restrictions does QBE place on update commands?

Answer 6.3 1. If we want to display some information in addition to fields retrieved
from a relation, we can do this by creating unnamed fields for display. For example:

Sailors sid sname rating age

P. R A P. R / A

If we want to display fields from more than one table, we can use unnamed
columns. For example:

Sailors sid sname rating age

Id P. P. D

Reserves sid bid date

Id D

2. Conditions boxes are used to do the following:

Express a condition involving two or more columns, e.g., ‘ R / A >0.2’.

Express a condition involving an aggregate operation. This is similiar to the
HAVING clause in SQL. For example:

Suppliers sid sname city

P. S G.P. C
Conditions

COUNT. S>5

Express conditions involving the AND and OR operators. For Example:

Suppliers sid sname city

P. S C
Conditions

C=Madison OR C=Milwaukee OR C=Waukesha

3. The default treatment of duplicates in QBE is unusual. If the query contains a
single row with P., the default is that duplicates are not eliminated. If the query
contains more than one such row, duplicates are eliminated by default. In either
case, you can explicitly specify whether duplicates are to be eliminated (or not)
by putting ALL. (resp. UNQ.) under the relation name. For Example:

Query-by-Example (QBE) 63

Sailors sid sname rating age

UNQ. P. N P. A

On the following query, duplicates are eliminated by default, and the name of each
sailor in this age range is printed once.

Sailors sid sname rating age

P. S < 30
P. S > 20

Putting ALL. in the first column (of one of the rows) results in printing the names
of qualifying sailors as often as there are sailors with this name in the given age
range.

4. Yes, QBE is based upon Doman Relational Calculus. A user writes queries by
creating example tables. QBE uses domain variables, as in the domain relational
calculus (DRC), to create example tables. The domain of a variable is determined
by the column in which it appears, and variable symbols are prefixed with ‘ ’ to
distinguish them from constants. Constants, including strings, appear unquoted,
in contrast to SQL. The fields that should appear in the answer are specified
by using the command ‘P.’, which stands for ‘print’. The fields containing this
command are analoguous to the target-list in the SELECT clause of an SQL query.

5. Yes. QBE cannot accomplish some Queries without the use of aggregate operator,
unless it make use of the update commands to create a temporary relation or
view. Therefore, taking the update commands into account, QBE is relationally
complete, even without the aggregate operators.

To understand the difficulty of expressing division in QBE, consider the following
query: Find sailors who have reserved all boats.

Sailors sid sname rating age

Id

Boats bid bname color

B

Reserves sid bid date

¬ Id B

BadSids sid

I. Id

64 Chapter 6

Given the view BadSids, it is a simple matter to find sailors whose sid’s are not
in this view.

The ideas in this example can be extended to show that QBE is relationally
complete.

6. There are some restrictions on the use of the I., D. and U. commands. First,
we cannot mix these operators in a single example table (or combine them with
P.). Second, we cannot specify I., D. or U. in an example table that contains G..
Third, we cannot insert, update, or modify tuples based upon values in fields of
other tuples (in the same table, or different tables). Thus, the following update is
incorrect:

Sailors sid sname rating age

john U. A1
joe A

7
STORING DATA: DISKS AND FILES

Exercise 7.1 What is the most important difference between a disk and a tape?

Answer 7.1 Tapes are sequential devices that do not support direct access to a desired
page. We must essentially step through all pages in order. Disks support direct access
to a desired page.

Exercise 7.2 Explain the terms seek time, rotational delay, and transfer time.

Answer 7.2 Answer omitted.

Exercise 7.3 Both disks and main memory support direct access to any desired lo-
cation (page). On average, main memory accesses are faster, of course. What is the
other important difference (from the perspective of the time required to access a desired
page)?

Answer 7.3 The time to access a disk page is not constant. It depends on the location
of the data. Accessing to some data might be much faster than to others. It is different
for memory. Access to memory is uniform for most computer systems.

Exercise 7.4 If you have a large file that is frequently scanned sequentially, explain
how you would store the pages in the file on a disk.

Answer 7.4 Answer omitted.

Exercise 7.5 Consider a disk with a sector size of 512 bytes, 2,000 tracks per surface,
50 sectors per track, 5 double-sided platters, average seek time of 10 msec.

1. What is the capacity of a track in bytes? What is the capacity of each surface?
What is the capacity of the disk?

65

66 Chapter 7

2. How many cylinders does the disk have?

3. Give examples of valid block sizes. Is 256 bytes a valid block size? 2,048? 51,200?

4. If the disk platters rotate at 5,400 rpm (revolutions per minute), what is the
maximum rotational delay?

5. Assuming that one track of data can be transferred per revolution, what is the
transfer rate?

Answer 7.5 1.

bytes/track = bytes/sector × sectors/track = 512 × 50 = 25K

bytes/surface = bytes/track × tracks/surface = 25K × 2000 = 50, 000K

bytes/disk = bytes/surface× surfaces/disk = 50, 000K × 10 = 500, 000K

2. The number of cylinders is the same as the number of tracks on each platter,
which is 2000.

3. The block size should be a multiple of the sector size. We can see that 256 is not
a valid block size while 2048 and 51200 are.

4. If the disk platters rotate at 5400rpm, the time required for a rotation, which is
the maximum rotational delay, is

1
5400

× 60 = 0.011seconds

. The average rotational delay is half of the rotation time, 0.006 seconds.

5. The capacity of a track is 25K bytes. Since one track of data can be transferred
per revolution, the data transfer rate is

25K

0.011
= 2, 250Kbytespersec

Exercise 7.6 Consider again the disk specifications from Exercise 7.5 and suppose
that a block size of 1,024 bytes is chosen. Suppose that a file containing 100,000
records of 100 bytes each is to be stored on such a disk and that no record is allowed
to span two blocks.

1. How many records fit onto a block?

2. How many blocks are required to store the entire file? If the file is arranged
sequentially on disk, how many surfaces are needed?

3. How many records of 100 bytes each can be stored using this disk?

Storing Data: Disks and Files 67

4. If pages are stored sequentially on disk, with page 1 on block 1 of track 1, what
is the page stored on block 1 of track 1 on the next disk surface? How would
your answer change if the disk were capable of reading/writing from all heads in
parallel?

5. What is the time required to read a file containing 100,000 records of 100 bytes each
sequentially? Again, how would your answer change if the disk were capable of
reading/writing from all heads in parallel (and the data was arranged optimally)?

6. What is the time required to read a file containing 100,000 records of 100 bytes each
in some random order? Note that in order to read a record, the block containing
the record has to be fetched from disk. Assume that each block request incurs the
average seek time and rotational delay.

Answer 7.6 Answer omitted.

Exercise 7.7 Explain what the buffer manager must do to process a read request for
a page. What happens if the requested page is in the pool but not pinned?

Answer 7.7 When a page is requested the buffer manager does the following:

1. The buffer pool is checked to see if it contains the requested page. If the page is
not in the pool, it is brought in as follows:

(a) A frame is chosen for replacement, using the replacement policy.

(b) If the frame chosen for replacement is dirty, it is flushed (the page it contains
is written out to disk).

(c) The requested page is read into the frame chosen for replacement.

2. The requested page is pinned (the pin count of its frame is incremented) and its
address is returned to the requestor.

Note that if the page is not pinned,it could be removed from buffer pool even if it is
actually needed in main memory.

Exercise 7.8 When does a buffer manager write a page to disk?

Answer 7.8 Answer omitted.

Exercise 7.9 What does it mean to say that a page is pinned in the buffer pool? Who
is responsible for pinning pages? Who is responsible for unpinning pages?

68 Chapter 7

Answer 7.9 1. Pinning a page means the pin count of its frame is incremented.
Pinning a page guarantees higher-level DBMS software that the page will not be
removed from the buffer pool by the buffer manager. That is, another file page
will not be read into the frame containing this page until it is unpinned by this
requestor.

2. It is the buffer manager’s responsibility to pin a page.

3. It is the responsibility of the requestor of that page to tell the buffer manager to
unpin a page.

Exercise 7.10 When a page in the buffer pool is modified, how does the DBMS ensure
that this change is propagated to disk? (Explain the role of the buffer manager as well
as the modifier of the page.)

Answer 7.10 Answer omitted.

Exercise 7.11 What happens if there is a page request when all pages in the buffer
pool are dirty?

Answer 7.11 If there are some unpinned pages, the buffer manager chooses one by
using a replacement policy, flushes this page, and then replaces it with the requested
page.

If there are no unpinned pages, the buffer manager has to wait until an unpinned page
is available (or signal an error condition to the page requestor).

Exercise 7.12 What is sequential flooding of the buffer pool?

Answer 7.12 Answer omitted.

Exercise 7.13 Name an important capability of a DBMS buffer manager that is not
supported by a typical operating system’s buffer manager.

Answer 7.13 1. Pinning a page to prevent it from being replaced.

2. Ability to explicitly force a single page to disk.

Exercise 7.14 Explain the term prefetching. Why is it important?

Answer 7.14 Answer omitted.

Storing Data: Disks and Files 69

Exercise 7.15 Modern disks often have their own main memory caches, typically
about one MB, and use this to do prefetching of pages. The rationale for this technique
is the empirical observation that if a disk page is requested by some (not necessarily
database!) application, 80 percent of the time the next page is requested as well. So
the disk gambles by reading ahead.

1. Give a nontechnical reason that a DBMS may not want to rely on prefetching
controlled by the disk.

2. Explain the impact on the disk’s cache of several queries running concurrently,
each scanning a different file.

3. Can the above problem be addressed by the DBMS buffer manager doing its own
prefetching? Explain.

4. Modern disks support segmented caches, with about four to six segments, each of
which is used to cache pages from a different file. Does this technique help, with
respect to the above problem? Given this technique, does it matter whether the
DBMS buffer manager also does prefetching?

Answer 7.15 1. The pre-fetching done at the disk level varies widely across different
drives and manufacturers, and pre-fetching is sufficiently important to a DBMS
that one would like to be independent of specific hardware support.

2. If there are many queries running concurrently, the request of a page from different
queries can be interleaved. In the worst case, it cause the cache miss on every
page request, even with disk pre-fetching.

3. If we have pre-fetching offered by DBMS buffer manager, the buffer manager can
predict the reference pattern more accurately. In particular, a certain number
of buffer frames can be allocated per active scan for pre-fetching purposes, and
interleaved requests would not compete for the same frames.

Exercise 7.16 Describe two possible record formats. What are the trade-offs between
them?

Answer 7.16 Answer omitted.

Exercise 7.17 Describe two possible page formats. What are the trade-offs between
them?

Answer 7.17 Two possible page formats are: consecutive slots and slot directory

The consecutive slots organization is mostly used for fixed length record formats. It
handles the deletion by using bitmaps or linked lists.

70 Chapter 7

The slot directory organization maintains a directory of slots for each page, with a
¡record offset, record length¿ pair per slot.

The slot directory is an indirect way to get the offset of a entry. Because of this indirec-
tion, deletion is easy. It is accomplished by setting the length field to 0. And records
can easily be moved around on the page without changing their external identifier.

Exercise 7.18 Consider the page format for variable-length records that uses a slot
directory.

1. One approach to managing the slot directory is to use a maximum size (i.e., a
maximum number of slots) and to allocate the directory array when the page is
created. Discuss the pros and cons of this approach with respect to the approach
discussed in the text.

2. Suggest a modification to this page format that would allow us to sort records (ac-
cording to the value in some field) without moving records and without changing
the record ids.

Answer 7.18 Answer omitted.

Exercise 7.19 Consider the two internal organizations for heap files (using lists of
pages and a directory of pages) discussed in the text.

1. Describe them briefly and explain the trade-offs. Which organization would you
choose if records are variable in length?

2. Can you suggest a single page format to implement both internal file organiza-
tions?

Answer 7.19 1. The list of pages in shown in Fig 3.7. The directory of pages is
shown in Fig 3.8.

2. The linked-list approach is a little simpler, but finding a page with sufficient free
space for a new record (especially with variable length records) is harder. We have
to essentially scan the list of pages until we find one with enough space, whereas
the directory organization allows us to find such a page by simply scanning the
directory, which is much smaller than the entire file. The directory organization
is therefore better, especially with variable length records.

3. A page format with previous and next page pointers would help in both cases.
Obviously, such a page format allows us to build the linked list organization; it is
also useful for implementing the directory in the directory organization.

Storing Data: Disks and Files 71

Exercise 7.20 Consider a list-based organization of the pages in a heap file in which
two lists are maintained: a list of all pages in the file and a list of all pages with free
space. In contrast, the list-based organization discussed in the text maintains a list of
full pages and a list of pages with free space.

1. What are the trade-offs, if any? Is one of them clearly superior?

2. For each of these organizations, describe a page format that can be used to im-
plement it.

Answer 7.20 Answer omitted.

Exercise 7.21 Modern disk drives store more sectors on the outer tracks than the
inner tracks. Since the rotation speed is constant, the sequential data transfer rate is
also higher on the outer tracks. The seek time and rotational delay are unchanged.
Considering this information, explain good strategies for placing files with the following
kinds of access patterns:

1. Frequent, random accesses to a small file (e.g., catalog relations).

2. Sequential scans of a large file (e.g., selection from a relation with no index).

3. Random accesses to a large file via an index (e.g., selection from a relation via the
index).

4. Sequential scans of a small file.

Answer 7.21 1. Place the file in the middle tracks. Sequential speed is not an issue
due to the small size of the file, and the seek time is minimized by placing files in
the center.

2. Place the file in the outer tracks. Sequential speed is most important and outer
tracks maximize it.

3. Place the file and index on the inner tracks. The DBMS will alternately access
pages of the index and of the file, and so the two should reside in close proximity
to reduce seek times. By placing the file and the index on the inner tracks we also
save valuable space on the faster (outer) tracks for other files that are accessed
sequentially.

4. Place small files in the inner half of the disk. A scan of a small file is effectively
random I/O because the cost is dominated by the cost of the initial seek to the
beginning of the file.

8
FILE ORGANIZATIONS AND INDEXES

Exercise 8.1 What are the main conclusions that you can draw from the discussion
of the three file organizations?

Answer 8.1 The main conclusion about the three file organizations is that all three
file organizations have their own advantages and disadvantages. No one file organiza-
tion is uniformly superior in all situations. The choice of appropriate structures for a
given data set can have a significant impact upon performance. An unordered file is
best if only full file scans are desired. A hashed file is best if the most common opera-
tion is an equality selection. A sorted file is best (of the three alternatiaves considered
in this chapter) if range selections are desired.

Exercise 8.2 Consider a delete specified using an equality condition. What is the
cost if no record qualifies? What is the cost if the condition is not on a key?

Answer 8.2 Answer omitted.

Exercise 8.3 Which of the three basic file organizations would you choose for a file
where the most frequent operations are as follows?

1. Search for records based on a range of field values.

2. Perform inserts and scans where the order of records does not matter.

3. Search for a record based on a particular field value.

Answer 8.3 1. Using these fields as the search key, we would choose a sorted file
organization.

2. Heap file would be the best fit in this situation.

3. Using this particular field as the searach key, choosing a hashed file would be the
best.

72

File Organizations and Indexes 73

Exercise 8.4 Explain the difference between each of the following:

1. Primary versus secondary indexes.

2. Dense versus sparse indexes.

3. Clustered versus unclustered indexes.

If you were about to create an index on a relation, what considerations would guide
your choice with respect to each pair of properties listed above?

Answer 8.4 Answer omitted.

Exercise 8.5 Consider a relation stored as a randomly ordered file for which the only
index is an unclustered index on a field called sal. If you want to retrieve all records
with sal > 20, is using the index always the best alternative? Explain.

Answer 8.5 No. In this case, the index is unclustered, each qualifying data entries
could contain an rid that points to a distinct data page, leading to as many data page
I/Os as the number of data entries that match the range query. At this time,using
index is worse than file scan.

Exercise 8.6 If an index contains data records as ‘data entries’, is it clustered or
unclustered? Dense or sparse?

Answer 8.6 Answer omitted.

Exercise 8.7 Consider Alternatives (1), (2) and (3) for ‘data entries’ in an index, as
discussed in Section 8.3.1. Are they all suitable for secondary indexes? Explain.

Answer 8.7 Yes.All the three alternatives allow duplicate data entries.

Exercise 8.8 Consider the instance of the Students relation shown in Figure 8.1,
sorted by age: For the purposes of this question, assume that these tuples are stored
in a sorted file in the order shown; the first tuple is in page 1, slot 1; the second tuple
is in page 1, slot 2; and so on. Each page can store up to three data records. You can
use 〈page-id, slot〉 to identify a tuple.

List the data entries in each of the following indexes. If the order of entries is significant,
say so and explain why. If such an index cannot be constructed, say so and explain
why.

1. A dense index on age using Alternative (1).

74 Chapter 8

sid name login age gpa

53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 19 3.2
53650 Smith smith@math 19 3.8

Figure 8.1 An Instance of the Students Relation, Sorted by age

2. A dense index on age using Alternative (2).

3. A dense index on age using Alternative (3).

4. A sparse index on age using Alternative (1).

5. A sparse index on age using Alternative (2).

6. A sparse index on age using Alternative (3).

7. A dense index on gpa using Alternative (1).

8. A dense index on gpa using Alternative (2).

9. A dense index on gpa using Alternative (3).

10. A sparse index on gpa using Alternative (1).

11. A sparse index on gpa using Alternative (2).

12. A sparse index on gpa using Alternative (3).

Answer 8.8 Answer omitted.

9
TREE-STRUCTURED INDEXING

Exercise 9.1 Consider the B+ tree index of order d = 2 shown in Figure 9.1.

1. Show the tree that would result from inserting a data entry with key 9 into this
tree.

2. Show the B+ tree that would result from inserting a data entry with key 3 into
the original tree. How many page reads and page writes will the insertion require?

3. Show the B+ tree that would result from deleting the data entry with key 8 from
the original tree, assuming that the left sibling is checked for possible redistribu-
tion.

4. Show the B+ tree that would result from deleting the data entry with key 8
from the original tree, assuming that the right sibling is checked for possible
redistribution.

5. Show the B+ tree that would result from starting with the original tree, inserting
a data entry with key 46 and then deleting the data entry with key 52.

6. Show the B+ tree that would result from deleting the data entry with key 91 from
the original tree.

Root

32*39* 41*45* 52* 58* 73* 80* 91*99*

8573

50

27*18*10*8*6*5*2*1*

8 18 32 40

Figure 9.1 Tree for Exercise 9.1

75

76 Chapter 9

73 85

Root
50

8 18 32 40

32* 39*18* 27* 41* 45* 52* 58* 73* 80* 91* 99*2*1* 5* 6* 8* 10*9*

Figure 9.2

73 85

2*1* 99*91*80*73*58*52*45*41*39*32*27*18*

32 40

Root
5018

8

10*8*6*5*3*

5

Figure 9.3

7. Show the B+ tree that would result from starting with the original tree, inserting
a data entry with key 59, and then deleting the data entry with key 91.

8. Show the B+ tree that would result from successively deleting the data entries
with keys 32, 39, 41, 45, and 73 from the original tree.

Answer 9.1 1. The data entry with key 9 is inserted on the second leaf page. The
resulting tree is shown in figure 9.2.

2. The data entry with key 3 goes on the first leaf page F . Since F can accommodate
at most four data entries (d = 2), F splits. The lowest data entry of the new leaf
is given up to the ancestor which also splits. The result can be seen in figure 9.3.
The insertion will require 6 page writes, 4 page reads and allocation of 2 new
pages.

3. The data entry with key 8 is deleted, resulting in a leaf page N with less than
two data entries. The left sibling L is checked for redistribution. Since L has
more than two data entries, the remaining keys are redistributed between L and
N , resulting in the tree in figure 9.4.

4. As is part 3, the data entry with key 8 is deleted from the leaf page N . N ’s right
sibling R is checked for redistribution, but R has the minimum number of keys.

Tree-Structured Indexing 77

73 85

Root
50

18 32 40

32* 39*18* 27* 41* 45* 52* 58* 73* 80* 91* 99*2*1* 5* 10*6*

6

Figure 9.4

73 85

Root
50

8

32* 39* 41* 45* 52* 58* 73* 80* 91* 99*27*18*10*6*5*2*1*

32 40

Figure 9.5

Therefore the two siblings merge. The key in the ancestor which distinguished be-
tween the newly merged leaves is deleted. The resulting tree is shown in figure 9.5.

5. The data entry with key 46 can be inserted without any structural changes in
the tree. But the removal of the data entry with key 52 causes its leaf page L to
merge with a sibling (we chose the right sibling). This results in the removal of a
key in the ancestor A of L and thereby lowering the number of keys on A below
the minimum number of keys. Since the left sibling B of A has more than the
minimum number of keys, redistributon between A and B takes place. The final
tree is depicted in figure 9.6.

6. Deleting the data entry with key 91 causes a scenario similar to part 5. The result
can be seen in figure 9.7.

7. The data entry with key 59 can be inserted without any structural changes in the
tree. No sibling of the leaf page with the data entry with key 91 is effected by the
insert. Therefore deleting the data entry with key 91 changes the tree a way very
similar to part 6. The result is depicted in figure 9.8.

8. The successive deletion of the data entries with keys 32, 39, 41, 45 and 73 results
in the tree in figure 9.9.

78 Chapter 9

Root

8

91* 99*6*5*2*1* 80*73*58*46*45*41*39*32*27*18*10*8*

18 32

40

8550

Figure 9.6

Root

8

6*5*2*1* 45*41*39*32*27*18*10*8*

18 32

40

50

99*80*73*58*52*

73

Figure 9.7

Root

8

6*5*2*1* 45*41*39*32*27*18*10*8*

18 32

40

50

99*80*73*58*52*

73

59*

Figure 9.8

Tree-Structured Indexing 79

6*5*2*1* 27*18*10*8* 52* 58* 80* 99*91*

Root
8 18 50 73

Figure 9.9

10 20 30 80

35 42 50 65 90 98

A B C

30* 31*

36* 38*

42* 43*

51* 52* 56* 60*

68* 69* 70* 79*

81* 82*

94* 95* 96* 97*

98* 99* 105*

L1

L2

L3

L4

L5

L6

L7

L8

I1

I2 I3

100*

Figure 9.10 Tree for Exercise 9.2

Exercise 9.2 Consider the B+ tree index shown in Figure 9.10, which uses Alternative
(1) for data entries. Each intermediate node can hold up to five pointers and four key
values. Each leaf can hold up to four records, and leaf nodes are doubly linked as
usual, although these links are not shown in the figure.

Answer the following questions.

1. Name all the tree nodes that must be fetched to answer the following query: “Get
all records with search key greater than 38.”

2. Insert a record with search key 109 into the tree.

3. Delete the record with search key 81 from the (original) tree.

4. Name a search key value such that inserting it into the (original) tree would cause
an increase in the height of the tree.

80 Chapter 9

5. Note that subtrees A, B, and C are not fully specified. Nonetheless, what can you
infer about the contents and the shape of these trees?

6. How would your answers to the above questions change if this were an ISAM
index?

7. Suppose that this is an ISAM index. What is the minimum number of insertions
needed to create a chain of three overflow pages?

Answer 9.2 Answer omitted.

Exercise 9.3 Answer the following questions.

1. What is the minimum space utilization for a B+ tree index?

2. What is the minimum space utilization for an ISAM index?

3. If your database system supported both a static and a dynamic tree index (say,
ISAM and B+ trees), would you ever consider using the static index in preference
to the dynamic index?

Answer 9.3 1. By the definition of a B+ tree, each index page, except for the root,
has at least d and at most 2d key entries. Therefore—with the exception of the
root—the minimum space utilization guaranteed by a B+ tree index is 50 percent.

2. The minimum space utilization by an ISAM index depends on the design of the
index and the data distribution over the lifetime of ISAM index. But since an
ISAM index is static, empty spaces in index pages are never filled (in contrast to
a B+ tree index, which is a dynamic index). Therefore the space utilization of
ISAM index pages is usually close to 100 percent. However, there is no guarantee
for data pages’ utilization.

3. A static index without overflow pages is faster than a dynamic index on inserts
and deletes, since index pages are only read and never written. If the set of keys
that will be inserted into the tree is known in advance, then it is possible to build
at the beginning a static index which reserves enough space for all possible future
inserts. Also if the system goes periodically off line, static indices can be rebuilt
and scaled to the current occupancy of the index.

Exercise 9.4 Suppose that a page can contain at most four data values and that all
data values are integers. Using only B+ trees of order 2, give examples of each of the
following:

1. A B+ tree whose height changes from 2 to 3 when the value 25 is inserted. Show
your structure before and after the insertion.

Tree-Structured Indexing 81

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Figure 9.11 Tree for Exercise 9.5

2. A B+ tree in which the deletion of the value 25 leads to a redistribution. Show
your structure before and after the deletion.

3. A B+ tree in which the deletion of the value 25 causes a merge of two nodes, but
without altering the height of the tree.

4. An ISAM structure with four buckets, none of which has an overflow page. Fur-
ther, every bucket has space for exactly one more entry. Show your structure
before and after inserting two additional values, chosen so that an overflow page
is created.

Answer 9.4 Answer omitted.

Exercise 9.5 Consider the B+ tree shown in Figure 9.11.

1. Identify a list of five data entries such that:

(a) Inserting the entries in the order shown and then deleting them in the op-
posite order (e.g., insert a, insert b, delete b, delete a) results in the original
tree.

(b) Inserting the entries in the order shown and then deleting them in the op-
posite order (e.g., insert a, insert b, delete b, delete a) results in a different
tree.

2. What is the minimum number of insertions of data entries with distinct keys that
will cause the height of the (original) tree to change from its current value (of 1)
to 3?

3. Would the minimum number of insertions that will cause the original tree to
increase to height 3 change if you were allowed to insert duplicates (multiple data
entries with the same key), assuming that overflow pages are not used for handling
duplicates?

82 Chapter 9

Answer 9.5 1. (a) One example is the set of four data entries with keys 13,15,18
and 25.

(b) An insertion of the data entry with key 30 and its removal results in a different
tree.

2. Let us call the current tree depicted in Figure 9.11 T . T has 16 data entries.
The smallest tree S of height 3 which is created exclusively through inserts has
(1∗2∗3∗3)∗2+1 = 37 data entries in its leaf pages. S has 18 leaf pages with two
data entries each and one leaf page with three data entries. T has already four
leaf pages which have more than two data entries; they can be filled and made
to split, but after each spilt, one of the two pages will still has three data entries
remaining. Therefore the smallest tree of height 3 which can possibly be created
from T only through inserts has (1 ∗ 2 ∗ 3 ∗ 3) ∗ 2 + 4 = 40 data entries. Therefore
the minimum number of entries that will cause the height of T to change to 3 is
40 − 16=24.

3. The argument in part 2 does not assume anything about the data entries to be
inserted; it is valid if duplicates can be inserted as well. Therefore the solution
does not change.

Exercise 9.6 Answer Exercise 9.5 assuming that the tree is an ISAM tree! (Some of
the examples asked for may not exist—if so, explain briefly.)

Answer 9.6 Answer omitted.

Exercise 9.7 Suppose that you have a sorted file, and you want to construct a dense
primary B+ tree index on this file.

1. One way to accomplish this task is to scan the file, record by record, inserting
each one using the B+ tree insertion procedure. What performance and storage
utilization problems are there with this approach?

2. Explain how the bulk-loading algorithm described in the text improves upon the
above scheme.

Answer 9.7 1. This approach is likely to be quite expensive, since each entry re-
quires us to start from the root and go down to the appropriate leaf page. Even
though the index level pages are likely to stay in the buffer pool between succes-
sive requests, the overhead is still considerable. According to insertion algorithm,
each time the node is splitted,the data entries will be redistributed evenly to both
nodes. It leads to a fixed occupancy rate 50%

2. The bulk loading algorithm has good performance and space utilization comparing
with insertion approach. First of all, When a node is full and needed to split,we

Tree-Structured Indexing 83

can just leave all the entries on the old node or filled up some desired fraction
of that node, say 80%. It will lead to high space utilization. Also, we note that
splits only occur on the right-most path from the root to the leaf level.These are
just a few pages, we can keep them in buffer pool.The performance is better than
insertion approach.

Exercise 9.8 Assume that you have just built a dense B+ tree index using Alternative
(2) on a heap file containing 20,000 records. The key field for this B+ tree index is a
40-byte string, and it is a candidate key. Pointers (i.e., record ids and page ids) are
(at most) 10-byte values. The size of one disk page is 1,000 bytes. The index was built
in a bottom-up fashion using the bulk-loading algorithm, and the nodes at each level
were filled up as much as possible.

1. How many levels does the resulting tree have?

2. For each level of the tree, how many nodes are at that level?

3. How many levels would the resulting tree have if key compression is used and it
reduces the average size of each key in an entry to 10 bytes?

4. How many levels would the resulting tree have without key compression, but with
all pages 70 percent full?

Answer 9.8 Answer omitted.

Exercise 9.9 The algorithms for insertion and deletion into a B+ tree are presented
as recursive algorithms. In the code for insert, for instance, there is a call made at the
parent of a node N to insert into (the subtree rooted at) node N, and when this call
returns, the current node is the parent of N. Thus, we do not maintain any ‘parent
pointers’ in nodes of B+ tree. Such pointers are not part of the B+ tree structure for
a good reason, as this exercise will demonstrate. An alternative approach that uses
parent pointers—again, remember that such pointers are not part of the standard B+
tree structure!—in each node appears to be simpler:

Search to the appropriate leaf using the search algorithm; then insert the
entry and split if necessary, with splits propagated to parents if necessary
(using the parent pointers to find the parents).

Consider this (unsatisfactory) alternative approach:

1. Suppose that an internal node N is split into nodes N and N2. What can you say
about the parent pointers in the children of the original node N?

84 Chapter 9

2. Suggest two ways of dealing with the inconsistent parent pointers in the children
of node N.

3. For each of the above suggestions, identify a potential (major) disadvantage.

4. What conclusions can you draw from this exercise?

Answer 9.9 1. The parent pointers in either d or d+1 of the children of the original
node N are not any more valid: they still point to N , but they should point to
N2.

2. One solution is to adjust all parent pointers in the children of the original node
N which became children of N2. Another solution is to leave the pointers during
the insert operation and to adjust them later.

3. The first solution requires at least d+1 additional page reads (and sometime later,
page writes) on an insert, which would result in a remarkable slowdown. In the
second solution mentioned above, a child M , which has a parent pointer to be
adjusted, is updated if an operation is performed which actually reads M into
memory (maybe on a down path from the root to a leaf page). But this solution
modifies M and therefore requires sometime later a write of M , which might not
have been necessary if there were no parent pointers.

4. In conclusion, to add parent pointers to the B+ tree data structure is not a good
modification. Parent pointers cause unnecessary page updates and so lead to a
decrease in performance.

Exercise 9.10 Consider the instance of the Students relation shown in Figure 9.12.
Show a B+ tree of order 2 in each of these cases, assuming that duplicates are handled
using overflow pages. Clearly indicate what the data entries are (i.e., do not use the
‘k∗’ convention).

1. A dense B+ tree index on age using Alternative (1) for data entries.

2. A sparse B+ tree index on age using Alternative (1) for data entries.

3. A dense B+ tree index on gpa using Alternative (2) for data entries. For the
purposes of this question, assume that these tuples are stored in a sorted file in
the order shown in the figure: the first tuple is in page 1, slot 1; the second tuple
is in page 1, slot 2; and so on. Each page can store up to three data records. You
can use 〈page-id, slot〉 to identify a tuple.

Answer 9.10 Answer omitted.

Exercise 9.11 Suppose that duplicates are handled using the approach without over-
flow pages discussed in Section 9.7. Describe an algorithm to search for the left-most
occurrence of a data entry with search key value K.

Tree-Structured Indexing 85

sid name login age gpa

53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 3.8
53666 Jones jones@cs 18 3.4
53901 Jones jones@toy 18 3.4
53902 Jones jones@physics 18 3.4
53903 Jones jones@english 18 3.4
53904 Jones jones@genetics 18 3.4
53905 Jones jones@astro 18 3.4
53906 Jones jones@chem 18 3.4
53902 Jones jones@sanitation 18 3.8
53688 Smith smith@ee 19 3.2
53650 Smith smith@math 19 3.8
54001 Smith smith@ee 19 3.5
54005 Smith smith@cs 19 3.8
54009 Smith smith@astro 19 2.2

Figure 9.12 An Instance of the Students Relation

Answer 9.11 The key to understanding this problem is to observe that when a leaf
splits due to inserted duplicates, then of the two resulting leaves, it may happen that
the left leaf contains other search key values less than the duplicated search key value.
Furthermore, it could happen that least element on the right leaf could be the dupli-
cated value. (This scenario could arise, for example, when the majority of data entries
on the original leaf were for search keys of the duplicated value.) The parent index
node (assuming the tree is of at least height 2) will have an entry for the duplicated
value with a pointer to the rightmost leaf.

If this leaf continues to be filled with entries having the same duplicated key value, it
could split again causing another entry with the same key value to be inserted in the
parent node. Thus, the same key value could appear many times in the index nodes
as well. While searching for entries with a given key value, the search should proceed
by using the left-most of the entries on an index page such that the key value is less
than or equal to the given key value. Moreover, on reaching the leaf level, it is possible
that there are entries with the given key value (call it k) on the page to the left of the
current leaf page, unless some entry with a smaller key value is present on this leaf
page. Thus, we must scan to the left using the neighbor pointers at the leaf level until
we find an entry with a key value less than k (or come to the beginning of the leaf
pages). Then, we must scan forward along the leaf level until we find an entry with a
key value greater than k.

86 Chapter 9

Exercise 9.12 Answer Exercise 9.10 assuming that duplicates are handled without
using overflow pages, using the alternative approach suggested in Section 9.7.

Answer 9.12 Answer omitted.

10
HASH-BASED INDEXING

Exercise 10.1 Consider the Extendible Hashing index shown in Figure 10.1. Answer
the following questions about this index:

1. What can you say about the last entry that was inserted into the index?

2. What can you say about the last entry that was inserted into the index if you
know that there have been no deletions from this index so far?

3. Suppose you are told that there have been no deletions from this index so far.
What can you say about the last entry whose insertion into the index caused a
split?

2

2

2

1 5 21

10

15 7

16

4 12 20

000

001

010

011

100

101

110

111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

64

51

36

Figure 10.1 Figure for Exercise 10.1

87

88 Chapter 10

4. Show the index after inserting an entry with hash value 68.

5. Show the original index after inserting entries with hash values 17 and 69.

6. Show the original index after deleting the entry with hash value 21. (Assume that
the full deletion algorithm is used.)

7. Show the original index after deleting the entry with hash value 10. Is a merge
triggered by this deletion? If not, explain why. (Assume that the full deletion
algorithm is used.)

Answer 10.1 1. It could be any one of the data entries in the index. We can always
find a sequence of insertions and deletions with a particular key value, among the
key values shown in the index as the last insertion. For example, consider the
data entry 16 and the following sequence:
1 5 21 10 15 7 51 4 12 36 64 8 24 56 16 56D 24D 8D

The last insertion is the data entry 16 and it also causes a split. But the sequence
of deletions following this insertion cause a merge leading to the index structure
shown in Fig 10.1.

2. The last insertion could not have caused a split because the total number of data
entries in the buckets A and A2 is 6. If the last entry caused a split the total
would have been 5.

3. The last insertion which caused a split cannot be in bucket C. Buckets B and C or
C and D could have made a possible bucket-split image combination but the total
number of data entries in these combinations is 4 and the absence of deletions
demands a sum of atleast 5 data entries for such combinations. Buckets B and D
can form a possible bucket-split image combination because they have a total of
6 data entries between themselves. So do A and A2. But for the B and D to be
split images the starting global depth should have been 1. If the starting global
depth is 2, then the last insertion causing a split would be in A or A2.

4. See Fig 10.2.

5. See Fig 10.3.

6. See Fig 10.4.

7. The deletion of the data entry 10 which is the only data entry in bucket C doesn’t
trigger a merge because bucket C is a primary page and it is left as a place holder.
Right now, directory element 010 and its split image 110 already point to the same
bucket C. We can’t do a further merge.

See Fig 10.5.

Exercise 10.2 Consider the Linear Hashing index shown in Figure 10.6. Assume that
we split whenever an overflow page is created. Answer the following questions about
this index:

Hash-Based Indexing 89

4

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

64 16

3

2

1 5 21

2

10

2

4

4

15 7 51

12

4 20 36 68

DIRECTORY

BUCKET A

BUCKET

BUCKET

BUCKET

BUCKET

BUCKET

B

C

D

A2

A3

Figure 10.2

90 Chapter 10

64 16

3

1

2

10

2

15 7 51

4

BUCKET A

BUCKET

BUCKET

BUCKET

BUCKET

BUCKET

B

C

D

A2

000

001

010

011

100

101

110

111

17

3

3

3

5 21 69

3

B2

362012

DIRECTORY

Figure 10.3

Hash-Based Indexing 91

64 16

3

1

2

10

2

15 7 51

4

BUCKET A

BUCKET

BUCKET

BUCKET

BUCKET

B

C

D

A2

000

001

010

011

100

101

110

111

3

3

362012

DIRECTORY

5

2

Figure 10.4

64 16

3

1

2

2

15 7 51

4

BUCKET A

BUCKET

BUCKET

BUCKET

BUCKET

B

C

D

A2

000

001

010

011

100

101

110

111

3

3

362012

DIRECTORY

5

2

21

Figure 10.5

92 Chapter 10

h(0)h(1)

00

01

10

11

000

001

010

011

00100

Next=1

PRIMARY

PAGES
OVERFLOW

PAGES

Level=0

32 8 24

9 25 17

10 301814

31 35 7 11

3644

41

Figure 10.6 Figure for Exercise 10.2

1. What can you say about the last entry that was inserted into the index?

2. What can you say about the last entry that was inserted into the index if you
know that there have been no deletions from this index so far?

3. Suppose you know that there have been no deletions from this index so far. What
can you say about the last entry whose insertion into the index caused a split?

4. Show the index after inserting an entry with hash value 4.

5. Show the original index after inserting an entry with hash value 15.

6. Show the original index after deleting the entries with hash values 36 and 44.
(Assume that the full deletion algorithm is used.)

7. Find a list of entries whose insertion into the original index would lead to a bucket
with two overflow pages. Use as few entries as possible to accomplish this. What
is the maximum number of entries that can be inserted into this bucket before a
split occurs that reduces the length of this overflow chain?

Answer 10.2 Answer omitted.

Exercise 10.3 Answer the following questions about Extendible Hashing:

1. Explain why local depth and global depth are needed.

Hash-Based Indexing 93

2. After an insertion that causes the directory size to double, how many buckets have
exactly one directory entry pointing to them? If an entry is then deleted from
one of these buckets, what happens to the directory size? Explain your answers
briefly.

3. Does Extendible Hashing guarantee at most one disk access to retrieve a record
with a given key value?

4. If the hash function distributes data entries over the space of bucket numbers in a
very skewed (non-uniform) way, what can you say about the size of the directory?
What can you say about the space utilization in data pages (i.e., non-directory
pages)?

5. Does doubling the directory require us to examine all buckets with local depth
equal to global depth?

6. Why is handling duplicate key values in Extendible Hashing harder than in ISAM?

Answer 10.3 1. Extendible hashing tries to allow the increase and decrease the size
of the directory. Once the directory size changes the hash function applied to the
search key value should also change. So there should be some information in the
index as to which hash function is to be applied. This information is provided by
the global depth.

An increase in the directory size doesn’t cause the creation of new buckets for each
new directory entry. All the new directory entries except one share buckets with
the old directory entries. So whenever a bucket which is being shared by two or
more directory entries is to be split the directory size need not be doubled. So for
each bucket we need to know whether it is being shared by two or more directory
entries quickly. This information is provided by the local depth of the bucket. The
same information can be got by a scan of the directory which is obviously costlier.

2. Exactly two directory entries have only one directory entry pointing to them after
a doubling of the directory size.

Whether a merge occurs on this deletion depends on the deletion algorithm. If
we try to merge two buckets only when a bucket becomes empty, then it is not
necessary that the directory size decrease after the deletion that was considered
in the question.
But if we try to merge two buckets whenever it is possible to do so then the
directory size decreases after the deletion.

3. No such guarantee is provided by extendible hashing.
If the directory is not already in memory it needs to be fetched from the disk which
may require more than one disk access depending upon the size of the directory.
Then the required bucket has to be brought into the memory. Also, if alternatives
2 and 3 are followed for storing the data entries in the index then another disk
access is possibly required for fetching the actual data record.

94 Chapter 10

4. Consider the index in Fig 10.1. Let us consider a list of data entries with search
key values of the form 2i where i > k. By an appropriate choice of k, we can get
all these elements mapped into the Bucket A. Well, we see, there are 2k elements
in the directory. But they just point to k+3 different buckets. Also, we note there
are k buckets (data pages), however, just one bucket is used. So the utilization of
data pages = 1/k

5. No. We just need to examine just one bucket.

6. Extendible hashing is not supposed to have overflow pages. Even if it is allowed
to have overflow pages, whenever we create an overflow page we also split the
bucket resulting in one empty bucket. Also we try to redistribute the elements
in the bucket that we split when all of them are duplicates. It costs more to
handle insertions in Extendible hashing than in ISAM. The number of accesses for
retrieving a record increases because of the overflow chains in both.

Exercise 10.4 Answer the following questions about Linear Hashing.

1. How does Linear Hashing provide an average-case search cost of only slightly more
than one disk I/O, given that overflow buckets are part of its data structure?

2. Does Linear Hashing guarantee at most one disk access to retrieve a record with
a given key value?

3. If a Linear Hashing index using Alternative (1) for data entries contains N records,
with P records per page and an average storage utilization of 80 percent, what is
the worst-case cost for an equality search? Under what conditions would this cost
be the actual search cost?

4. If the hash function distributes data entries over the space of bucket numbers in
a very skewed (non-uniform) way, what can you say about the space utilization in
data pages?

Answer 10.4 Answer omitted.

Exercise 10.5 Give an example of when you would use each element (A or B) for
each of the following ‘A versus B’ pairs:

1. A hashed index using Alternative (1) versus heap file organization.

2. Extendible Hashing versus Linear Hashing.

3. Static Hashing versus Linear Hashing.

4. Static Hashing versus ISAM.

5. Linear Hashing versus B+ trees.

Hash-Based Indexing 95

Answer 10.5 1. Example 1: Consider a situation in which most of the queries are
equality queries based on the search key field. It pays to build a hashed index on
this field in which case we can get the required record in one or two disk accesses.
A heap file organisation may require a full scan of the file to access a particular
record.
Example 2: A file on which only sequential scans are done may fare better if
it is organised as a heap file. A hashed index built on it may require more disk
accesses because the occupancy of the pages may not be 100%.

2. Example 1: A set of data entries with search keys which lead to a skewed distri-
bution of hash key values. In this case, extendible hashing causes splits of buckets
at the necessary bucket whereas linear hashing goes about splitting buckets in a
round-robin fashion which is useless. Here extendible hashing has a better oc-
cupancy and shorter overflow chains than linear hashing. So equality search is
cheaper for extendible hashing.

Example 2: A very large file which requires a directory spanning several pages.
In this case extendible hashing requires d + 1 disk accesses for equality selections
where d is the number of directory pages. Linear hashing is cheaper.

3. Example 1: Consider a situation in which the number of records in the file is
constant. Let all the search key values be of the form 2n + k for various values of
n and a few values of k. The traditional hash functions used in linear hashing like
taking the last d bits of the search key lead to a skewed distribution of the hash
key values. This leads to long overflow chains. A static hashing index can use the
hash function defined as

h(2n + k) = n

A family of hash functions can’t be built based on this hash function as k takes
only a few values.
Example 2: Consider a situation in which the number of records in the file varies
a lot and the hash key values have a uniform distribution. Here linear hashing is
clearly better than static hashing which might lead to long overflow chains thus
considerably increasing the cost of equality search.

4. Example 1: A situation in which the number of records in the file is constant
and only equality selections are performed. Static hashing requires one or two disk
accesses to get to the data entry. ISAM may require more than one depending on
the height of the ISAM tree.

Example 2: Consider a situation in which the search key values of data entries
can be used to build a clustered index and most of the queries are range queries
on this field. Then ISAM definitely wins over static hashing.

5. Example 1: Again a situation in which only equality selections are performed
on the index. Then linear hashing is better than B+ tree. Example 2: An index
which is clustered and most of the queries are range searches.

96 Chapter 10

Exercise 10.6 Give examples of the following:

1. A Linear Hashing index and an Extendible Hashing index with the same data
entries, such that the Linear Hashing index has more pages.

2. A Linear Hashing index and an Extendible Hashing index with the same data
entries, such that the Extendible Hashing index has more pages.

Answer 10.6 Answer omitted.

Exercise 10.7 Consider a relation R(a, b, c, d) containing 1,000,000 records, where
each page of the relation holds 10 records. R is organized as a heap file with dense
secondary indexes, and the records in R are randomly ordered. Assume that attribute
a is a candidate key for R, with values lying in the range 0 to 999,999. For each of the
following queries, name the approach that would most likely require the fewest I/Os
for processing the query. The approaches to consider follow:

Scanning through the whole heap file for R.

Using a B+ tree index on attribute R.a.

Using a hash index on attribute R.a.

The queries are:

1. Find all R tuples.

2. Find all R tuples such that a < 50.

3. Find all R tuples such that a = 50.

4. Find all R tuples such that a > 50 and a < 100.

Answer 10.7 Let h be the height of the B+ tree (usually 2 or 3) and M be the
number of data entries per page (M > 10). Let us assume that after accessing the
data entry it takes one more disk access to get the actual record. Let c be the occupancy
factor in hash indexing.

Consider the table shown below:

Heap File B+ Tree Hash Index
105 h + 106

M + 106 106

cM + 106

105 h + 50
M + 50 100

105 h + 1 2
105 h + 50

M + 49 98

Hash-Based Indexing 97

44

9 25 5

10

31 7

PRIMARY
PAGES

Level=0, N=4

00

01

10

11

000

001

010

011

Next=0

h h 01

64

315

Figure 10.7 Figure for Exercise 10.9

1. Seeing the first row of the table, heap file organisation is the best.

2. From the second row, with typical values for h and M the B+ Tree is the best.

3. From the third row, hash indexing is the best.

4. From the fourth row, again we get that B+ Tree is the best.

Exercise 10.8 How would your answers to Exercise 10.7 change if attribute a is not
a candidate key for R? How would they change if we assume that records in R are
sorted on a?

Answer 10.8 Answer omitted.

Exercise 10.9 Consider the snapshot of the Linear Hashing index shown in Figure
10.7. Assume that a bucket split occurs whenever an overflow page is created.

1. What is the maximum number of data entries that can be inserted (given the
best possible distribution of keys) before you have to split a bucket? Explain very
briefly.

2. Show the file after inserting a single record whose insertion causes a bucket split.

3. (a) What is the minimum number of record insertions that will cause a split of
all four buckets? Explain very briefly.

(b) What is the value of Next after making these insertions?

(c) What can you say about the number of pages in the fourth bucket shown
after this series of record insertions?

98 Chapter 10

10

00

01

10

11

000

001

010

011

Level = 1

hh 01

, N = 4

64

9 25 5

Next = 1

31 15 7 3 63

00100 44

Figure 10.8

Answer 10.9 1. The maximum number of entries that can be inserted without caus-
ing a split is 6 because there is space for a total of 6 records in all the pages. A
split is caused whenever an entry is inserted into a full page.

2. See Fig 10.8

3. (a) Consider the list of insertions 63, 41, 73, 137 followed by 4 more entries which
go into the same bucket, say 18, 34, 66, 130 which go into the 3rd bucket.
The insertion of 63 causes the first bucket to be split. Insertion of 41, 63
causes the second bucket split leaving a full second bucket. Inserting 73 into
it causes 3rd bucket-split. At this point atleast 4 more entries are required
to split the 4th bucket. A minimum of 8 entries are required to cause the 4
splits.

(b) Since all four buckets would have been split, that particular round comes to
an end and the next round begins. So Next = 0 again.

Hash-Based Indexing 99

(c) There can be either one data page or two data pages in the fourth bucket
after these insertions. If the 4 more elements inserted into the 2nd bucket
after 3rd bucket-spliting, then 4th bucket has 1 data page.
If the new 4 more elements inserted into the 4th bucket after 4th bucket-
spliting and all of them have 011 as its last three bits, then 4th bucket has
2 data pages. Otherwise, if not all have 011 as its last three bits,then 4th

bucket has 1 data page.

Exercise 10.10 Consider the data entries in the Linear Hashing index for Exercise
10.9.

1. Show an Extendible Hashing index with the same data entries.

2. Answer the questions in Exercise 10.9 with respect to this index.

Answer 10.10 Answer omitted.

Exercise 10.11 In answering the following questions, assume that the full deletion
algorithm is used. Assume that merging is done when a bucket becomes empty.

1. Give an example of an Extendible Hashing index in which deleting an entry reduces
the global depth.

2. Give an example of a Linear Hashing index in which deleting an entry causes Next
to be decremented but leaves Level unchanged. Show the file before and after the
entry is deleted.

3. Give an example of a Linear Hashing index in which deleting an entry causes Level
to be decremented. Show the file before and after the entry is deleted.

4. Give an example of an Extendible Hashing index and a list of entries e1, e2, e3

such that inserting the entries in order leads to three splits and deleting them
in the reverse order yields the original index. If such an example does not exist,
explain.

5. Give an example of a Linear Hashing index and a list of entries e1, e2, e3 such
that inserting the entries in order leads to three splits and deleting them in the
reverse order yields the original index. If such an example does not exist, explain.

Answer 10.11 The answers are as follows.

1. See Fig 10.9

2. See Fig 10.10

100 Chapter 10

2

10

2

64

2

44

59 25

3 11

A

B

C

D27 19 1927

Delete 63

2

2

2

10

000

001

010

011

100

101

110

111

3

3

DIRECTORY

2

64

2

3

44

59 25

3 11

63

A

B

C

D

D2

00

01

10

11

Figure 10.9

3. See Fig 10.11

4. Let us take the transition shown in Fig 10.12. Here we insert the data entries
4, 5 and 7. Each one of these insertions causes a split with the initial split also
causing a directory split. But none of these insertions redistribute the already
existing data entries into the new buckets. So when we delete these data entries
in the reverse order (actually the order doesn’t matter) and follow the full deletion
algorithm we get back the original index.

5. This example is shown in Fig 10.13. Here the idea is similar to that used in
the previous answer except that the bucket being split is the one into which the
insertion being made. So bucket 2 has to be split and not bucket 3. Also the order
of deletions should be exactly reversed because in the deletion algorithm Next is
decremented only if the last bucket becomes empty.

Hash-Based Indexing 101

10

00

01

10

11

000

001

010

011

hh 01

64

9 25 5

Next = 1

31 15 7 3 63

00100 44

Level = 1 , N = 4

Delete 44

10

00

01

10

11

000

001

010

011

hh 01

64

9 25 5

31 15 7 3 63

Level = 1 , N = 4

Next = 0

Figure 10.10

102 Chapter 10

Level = 2 , N = 4

10

64

9 25 5

h1

00

01

10

h0

0

0

1

Level = 1 , N = 2

Delete 31

19

h2

000

001

010

011

10

64

9 25 5

31

Next = 0

h1

00

01

10

11

19

4 8 16 4 8 16

Next = 1

Figure 10.11

Hash-Based Indexing 103

3

3

3

2

00

01

10

11

22

2

10

64

2

9 25

3

A

B

C

D

2

10

000

001

010

011

100

101

110

111

3

DIRECTORY

64

3

9 25

8 1632

41 73

11 19 35

Insert 4 , 5, 7.

32 8 16

41 73

3519 311

4

5

7

3

3

Figure 10.12

104 Chapter 10

10

64

9 25

A

B

C

D

10

64

9 25

8 1632

41 73

11 19

32 8 16

41 73

1911

4

5

h
0

h
1

00

01

10

11

000

001

010

011

Next = 0

h
0

h
1

00

01

10

11

00

01

10

000

001

010

011

100

101

110

18 34 66

663418

6

Insert 4, 5, 6

Next = 3

Figure 10.13

11
EXTERNAL SORTING

Exercise 11.1 Suppose that you have a file with 10,000 pages and that you have three
buffer pages. Answer the following questions for each of these scenarios, assuming that
our most general external sorting algorithm is used:

(a) A file with 10,000 pages and three available buffer pages.

(b) A file with 20,000 pages and five available buffer pages.

(c) A file with 2,000,000 pages and 17 available buffer pages.

1. How many runs will you produce in the first pass?

2. How many passes will it take to sort the file completely?

3. What is the total I/O cost of sorting the file?

4. How many buffer pages do you need to sort the file completely in just two passes?

Answer 11.1 1. In the first pass (Pass 0), dN/Be runs of B pages each are pro-
duced, where N is the number of file pages and B is the number of available buffer
pages:
(a) d10000/3e = 3334 sorted runs.
(b) d20000/5e = 4000 sorted runs.
(c) d2000000/17e = 117648 sorted runs.

2. The number of passes required to sort the file completely, including the initial
sorting pass, is dlogB−1N1e + 1, where N1 = dN/Be is the number of runs
produced by Pass 0:
(a) dlog3334 / log2e + 1 = 13 passes.
(b) dlog4000 / log4e + 1 = 7 passes.
(c) dlog117648 / log16e + 1 = 6 passes.

105

106 Chapter 11

3. Since each page is read and written once per pass, the total number of page I/Os
for sorting the file is 2 ∗ N ∗ (#passes):
(a) 2*10000*13 = 260000.
(b) 2*20000*7 = 280000.
(c) 2*2000000*6 = 24000000.

4. In Pass 0, dN/Be runs are produced. In Pass 1, we must be able to merge this
many runs; i.e., B − 1 ≥ dN/Be. This implies that B must at least be large
enough to satisfy B ∗ (B − 1) ≥ N ; this can be used to guess at B, and the guess
must be validated by checking the first inequality. Thus:
(a) With 10000 pages in the file, B = 101 satisfies both inequalities, B = 100 does
not, so we need 101 buffer pages.
(b) With 20000 pages in the file, B = 142 satisfies both inequalities, B = 141 does
not, so we need 142 buffer pages.
(c) With 2000000 pages in the file, B = 1415 satisfies both inequalities, B = 1414
does not, so we need 1415 buffer pages.

Exercise 11.2 Answer Exercise 11.1 assuming that a two-way external sort is used.

Answer 11.2 Answer omitted.

Exercise 11.3 Suppose that you just finished inserting several records into a heap file,
and now you want to sort those records. Assume that the DBMS uses external sort
and makes efficient use of the available buffer space when it sorts a file. Here is some
potentially useful information about the newly loaded file and the DBMS software that
is available to operate on it:

The number of records in the file is 4,500. The sort key for the file is four
bytes long. You can assume that rids are eight bytes long and page ids are
four bytes long. Each record is a total of 48 bytes long. The page size is 512
bytes. Each page has 12 bytes of control information on it. Four buffer pages
are available.

1. How many sorted subfiles will there be after the initial pass of the sort, and how
long will each subfile be?

2. How many passes (including the initial pass considered above) will be required to
sort this file?

3. What will be the total I/O cost for sorting this file?

4. What is the largest file, in terms of the number of records, that you can sort with
just four buffer pages in two passes? How would your answer change if you had
257 buffer pages?

External Sorting 107

5. Suppose that you have a B+ tree index with the search key being the same as the
desired sort key. Find the cost of using the index to retrieve the records in sorted
order for each of the following cases:

The index uses Alternative (1) for data entries.

The index uses Alternative (2) and is not clustered. (You can compute the
worst-case cost in this case.)

How would the costs of using the index change if the file is the largest that
you can sort in two passes of external sort with 257 buffer pages? Give your
answer for both clustered and unclustered indexes.

Answer 11.3 1. Assuming that the general external merge-sort algorithm is used,
and that the available space for storing records in each page is 512 − 12 = 500
bytes, each page can store up to 10 records of 48 bytes each. So 450 pages are
needed in order to store all 4500 records, assuming that a record is not allowed to
span more than one page.

Given that 4 buffer pages are available, there will be d450/4e = 113 sorted runs
(sub-files) of 4 pages each, except the last run, which is only 2 pages long.

2. The total number of passes will be equal to log3113 + 1 = 6 passes.

3. The total I/O cost for sorting this file is 2 ∗ 450 ∗ 6 = 5400 I/Os.

4. As we saw in the previous exercise, in Pass 0, dN/Be runs are produced. In Pass
1, we must be able to merge this many runs; i.e., B − 1 ≥ dN/Be. When B is
given to be 4, we get N = 12. The maximum number of records on 12 pages is
12 ∗ 10 = 120. When B = 257, we get N = 65792, and the number of records is
65792 ∗ 10 = 657920.

5. (a) If the index uses Alternative (1) for data entries, and it is clustered, the
cost will be equal to the cost of traversing the tree from the root to the left-
most leaf plus the cost of retrieving the pages in the sequence set. Assuming
67% occupancy, the number of leaf pages in the tree (the sequence set) is
450/0.67 = 600.

(b) If the index uses Alternative (2), and is not clustered, in the worst case, first
we scan B+ tree’s leaf pages, also each data entry will require fetching a data
page. The number of data entries is equal to the number of data records,
which is 4500. Since there is one data entry per record, each data entry
requires 12 bytes, and each page holds 512 bytes, the number of B+ tree leaf
pages is about (4500 ∗ 12)/(512 ∗ 0.67)), assuming 67% occupancy, which is
about 150. Thus, about 4650 I/Os are required in a worst-case scenario.

(c) The B+ tree in this case has 65792/0.67 = 98197 leaf pages if Alternative
(1) is used, assuming 67% occupancy. This is the number of I/Os required
(plus the relatively minor cost of going from the root to the left-most leaf).

108 Chapter 11

If Alternative (2) is used, and the index is not clustered, the number of I/Os
is approximately equal to the number of data entries in the worst case, that
is 657920,plus the number of B+ tree leaf pages 2224. Thus, number of I/Os
is 660144.

Exercise 11.4 Consider a disk with an average seek time of 10ms, average rotational
delay of 5ms, and a transfer time of 1ms for a 4K page. Assume that the cost of
reading/writing a page is the sum of these values (i.e., 16ms) unless a sequence of
pages is read/written. In this case the cost is the average seek time plus the average
rotational delay (to find the first page in the sequence) plus 1ms per page (to transfer
data). You are given 320 buffer pages and asked to sort a file with 10,000,000 pages.

1. Why is it a bad idea to use the 320 pages to support virtual memory, that is, to
‘new’ 10,000,000*4K bytes of memory, and to use an in-memory sorting algorithm
such as Quicksort?

2. Assume that you begin by creating sorted runs of 320 pages each in the first pass.
Evaluate the cost of the following approaches for the subsequent merging passes:

(a) Do 319-way merges.

(b) Create 256 ‘input’ buffers of 1 page each, create an ‘output’ buffer of 64
pages, and do 256-way merges.

(c) Create 16 ‘input’ buffers of 16 pages each, create an ‘output’ buffer of 64
pages, and do 16-way merges.

(d) Create eight ‘input’ buffers of 32 pages each, create an ‘output’ buffer of 64
pages, and do eight-way merges.

(e) Create four ‘input’ buffers of 64 pages each, create an ‘output’ buffer of 64
pages, and do four-way merges.

Answer 11.4 Answer omitted.

Exercise 11.5 Consider the refinement to the external sort algorithm that produces
runs of length 2B on average, where B is the number of buffer pages. This refinement
was described in Section 11.2.1 under the assumption that all records are the same
size. Explain why this assumption is required and extend the idea to cover the case of
variable length records.

Answer 11.5 Answer not available.

12
EVALUATION OF RELATIONAL

OPERATORS

Exercise 12.1 Briefly answer the following questions:

1. Consider the three basic techniques, iteration, indexing, and partitioning, and the
relational algebra operators selection, projection, and join. For each technique–
operator pair, describe an algorithm based on the technique for evaluating the
operator.

2. Define the term most selective access path for a query.

3. Describe conjunctive normal form, and explain why it is important in the context
of relational query evaluation.

4. When does a general selection condition match an index? What is a primary term
in a selection condition with respect to a given index?

5. How does hybrid hash join improve upon the basic hash join algorithm?

6. Discuss the pros and cons of hash join, sort-merge join, and block nested loops
join.

7. If the join condition is not equality, can you use sort-merge join? Can you use
hash join? Can you use index nested loops join? Can you use block nested loops
join?

8. Describe how to evaluate a grouping query with aggregation operator MAX using a
sorting-based approach.

9. Suppose that you are building a DBMS and want to add a new aggregate operator
called SECOND LARGEST, which is a variation of the MAX operator. Describe how
you would implement it.

10. Give an example of how buffer replacement policies can affect the performance of
a join algorithm.

109

110 Chapter 12

Answer 12.1 Answer not available.

Exercise 12.2 Consider a relation R(a,b,c,d,e) containing 5,000,000 records, where
each data page of the relation holds 10 records. R is organized as a sorted file with
dense secondary indexes. Assume that R.a is a candidate key for R, with values lying
in the range 0 to 4,999,999, and that R is stored in R.a order. For each of the following
relational algebra queries, state which of the following three approaches is most likely
to be the cheapest:

Access the sorted file for R directly.

Use a (clustered) B+ tree index on attribute R.a.

Use a linear hashed index on attribute R.a.

1. σa<50,000(R)

2. σa=50,000(R)

3. σa>50,000∧a<50,010(R)

4. σa6=50,000(R)

Answer 12.2 Answer omitted.

Exercise 12.3 Consider processing the following SQL projection query:

SELECT DISTINCT E.title, E.ename FROM Executives E

You are given the following information:

Executives has attributes ename, title, dname, and address; all are string
fields of the same length.
The ename attribute is a candidate key.
The relation contains 10,000 pages.
There are 10 buffer pages.

Consider the optimized version of the sorting-based projection algorithm: The ini-
tial sorting pass reads the input relation and creates sorted runs of tuples containing
only attributes ename and title. Subsequent merging passes eliminate duplicates while
merging the initial runs to obtain a single sorted result (as opposed to doing a separate
pass to eliminate duplicates from a sorted result containing duplicates).

Evaluation of Relational Operators 111

1. How many sorted runs are produced in the first pass? What is the average length
of these runs? (Assume that memory is utilized well and that any available op-
timization to increase run size is used.) What is the I/O cost of this sorting
pass?

2. How many additional merge passes will be required to compute the final result of
the projection query? What is the I/O cost of these additional passes?

3. (a) Suppose that a clustered B+ tree index on title is available. Is this index
likely to offer a cheaper alternative to sorting? Would your answer change if
the index were unclustered? Would your answer change if the index were a
hash index?

(b) Suppose that a clustered B+ tree index on ename is available. Is this index
likely to offer a cheaper alternative to sorting? Would your answer change if
the index were unclustered? Would your answer change if the index were a
hash index?

(c) Suppose that a clustered B+ tree index on 〈ename, title〉 is available. Is
this index likely to offer a cheaper alternative to sorting? Would your answer
change if the index were unclustered? Would your answer change if the index
were a hash index?

4. Suppose that the query is as follows:

SELECT E.title, E.ename FROM Executives E

That is, you are not required to do duplicate elimination. How would your answers
to the previous questions change?

Answer 12.3 1. The first pass will produce 250 sorted runs of 20 pages each, costing
15000 I/Os.

2. Using the ten buffer pages provided, on average we can write 2*10 internally sorted
pages per pass, instead of 10. Then, three more passes are required to merge the
5000/20 runs, costing 2*3*5000 = 30000 I/Os.

3. (a) Using a clustered B+ tree index on title would reduce the cost to single
scan, or 12,500 I/Os. An unclustered index could potentially cost more than
2500+100,000 (2500 from scanning the B+ tree, and 10000 * tuples per page,
which I just assumed to be 10). Thus, an unclustered index would not be
cheaper. Whether or not to use a hash index would depend on whether the
index is clustered. If so, the hash index would probably be cheaper.

(b) Using the clustered B+ tree on ename would be cheaper than sorting, in
that the cost of using the B+ tree would be 12,500 I/Os. Since ename is
a candidate key, no duplicate checking need be done for < title, ename >

pairs. An unclustered index would require 2500 (scan of index) + 10000 *
tuples per page I/Os and thus probably be more expensive than sorting.

112 Chapter 12

(c) Using a clustered B+ tree index on < ename, title > would also be more
cost-effective than sorting. An unclustered B+ tree over the same attributes
would allow an index-only scan, and would thus be just as economical as the
clustered index. This method (both by clustered and unclustered) would
cost around 5000 I/O’s.

4. Knowing that duplicate elimination is not required, we can simply scan the relation
and discard unwanted fields for each tuple. This is the best strategy except in the
case that an index (clustered or unclustered) on < ename, title > is available; in
this case, we can do an index-only scan. (Note that even with DISTINCT specified,
no duplicates are actually present int he answer because ename is a candidate key.
However, a typical optimizer is not likely to recognize this and omit the duplicate
elimination step.)

Exercise 12.4 Consider the join R./R.a=S.bS, given the following information about
the relations to be joined. The cost metric is the number of page I/Os unless otherwise
noted, and the cost of writing out the result should be uniformly ignored.

Relation R contains 10,000 tuples and has 10 tuples per page.
Relation S contains 2,000 tuples and also has 10 tuples per page.
Attribute b of relation S is the primary key for S.
Both relations are stored as simple heap files.
Neither relation has any indexes built on it.
52 buffer pages are available.

1. What is the cost of joining R and S using a page-oriented simple nested loops
join? What is the minimum number of buffer pages required for this cost to
remain unchanged?

2. What is the cost of joining R and S using a block nested loops join? What is the
minimum number of buffer pages required for this cost to remain unchanged?

3. What is the cost of joining R and S using a sort-merge join? What is the minimum
number of buffer pages required for this cost to remain unchanged?

4. What is the cost of joining R and S using a hash join? What is the minimum
number of buffer pages required for this cost to remain unchanged?

5. What would be the lowest possible I/O cost for joining R and S using any join
algorithm, and how much buffer space would be needed to achieve this cost?
Explain briefly.

6. How many tuples will the join of R and S produce, at most, and how many pages
would be required to store the result of the join back on disk?

Evaluation of Relational Operators 113

7. Would your answers to any of the previous questions in this exercise change if you
are told that R.a is a foreign key that refers to S.b?

Answer 12.4 Answer omitted.

Exercise 12.5 Consider the join of R and S described in Exercise 12.1.

1. With 52 buffer pages, if unclustered B+ indexes existed on R.a and S.b, would
either provide a cheaper alternative for performing the join (using an index nested
loops join) than a block nested loops join? Explain.

(a) Would your answer change if only five buffer pages were available?

(b) Would your answer change if S contained only 10 tuples instead of 2,000
tuples?

2. With 52 buffer pages, if clustered B+ indexes existed on R.a and S.b, would either
provide a cheaper alternative for performing the join (using the index nested loops
algorithm) than a block nested loops join? Explain.

(a) Would your answer change if only five buffer pages were available?

(b) Would your answer change if S contained only 10 tuples instead of 2,000
tuples?

3. If only 15 buffers were available, what would be the cost of a sort-merge join?
What would be the cost of a hash join?

4. If the size of S were increased to also be 10,000 tuples, but only 15 buffer pages
were available, what would be the cost of a sort-merge join? What would be the
cost of a hash join?

5. If the size of S were increased to also be 10,000 tuples, and 52 buffer pages were
available, what would be the cost of sort-merge join? What would be the cost of
hash join?

Answer 12.5 Assume that it takes 3 I/Os to access a leaf in R, and 2 I/Os to access a
leaf in S. And since S.b is a primary key, we will assume that every tuple in S matches
5 tuples in R.

1. The Index Nested Loops join involves probing an index on the inner relation for
each tuple in the outer relation. The cost of the probe is the cost of accessing
a leaf page plus the cost of retrieving any matching data records. The cost of
retrieving data records could be as high as one I/O per record for an unclustered
index.

114 Chapter 12

With R as the outer relation, the cost of the Index Nested Loops join will be the
cost of reading R plus the cost of 10,000 probes on S.

TotalCost = 1, 000 + 10, 000 ∗ (2 + 1) = 31, 000

With S as the outer relation, the cost of the Index Nested Loops join will be the
cost of reading S plus the cost of 2000 probes on R.

TotalCost = 200 + 2, 000 ∗ (3 + 5) = 16, 200

Neither of these solutions is cheaper than Block Nested Loops join which required
4,200 I/Os.

(a) With 5 buffer pages, the cost of the Index Nested Loops joins remains the
same, but the cost of the Block Nested Loops join will increase. The new
cost of the Block Nested Loops join is

TotalCost = N + M ∗ d N

B − 2
e = 67, 200

And now the cheapest solution is the Index Nested Loops join with S as the
outer relation.

(b) If S contains 10 tuples then we’ll need to change some of our initial assump-
tions. Now all of the S tuples fit on a single page, and it will only require a
single I/O to access the (single) leaf in the index. Also, each tuple in S will
match 1,000 tuples in R.
Block Nested Loops:

TotalCost = N + M ∗ d N

B − 2
e = 1, 001

Index Nested Loops with R as the outer relation:

TotalCost = 1, 000 + 10, 000 ∗ (1 + 1) = 21, 000

Index Nested Loops with S as the outer relation:

TotalCost = 1 + 10 ∗ (3 + 1, 000) = 10, 031

Block Nested Loops is still the best solution.

2. With a clustered index the cost of accessing data records becomes one I/O for
every 10 data records.

With R as the outer relation, the cost of the Index Nested Loops join will be the
cost of reading R plus the cost of 10,000 probes on S.

TotalCost = 1, 000 + 10, 000 ∗ (2 + 1) = 31, 000

Evaluation of Relational Operators 115

With S as the outer relation, the cost of the Index Nested Loops join will be the
cost of reading S plus the cost of 2000 probes on R.

TotalCost = 200 + 2, 000 ∗ (3 + 1) = 8, 200

Neither of these solutions is cheaper than Block Nested Loops join which required
4,200 I/Os.

(a) With 5 buffer pages, the cost of the Index Nested Loops joins remains the
same, but the cost of the Block Nested Loops join will increase. The new
cost of the Block Nested Loops join is

TotalCost = N + M ∗ d N

B − 2
e = 67, 200

And now the cheapest solution is the Index Nested Loops join with S as the
outer relation.

(b) If S contains 10 tuples then we’ll need to change some of our initial assump-
tions. Now all of the S tuples fit on a single page, and it will only require a
single I/O to access the (single) leaf in the index. Also, each tuple in S will
match 1,000 tuples in R.
Block Nested Loops:

TotalCost = N + M ∗ d N

B − 2
e = 1, 001

Index Nested Loops with R as the outer relation:

TotalCost = 1, 000 + 10, 000 ∗ (1 + 1) = 21, 000

Index Nested Loops with S as the outer relation:

TotalCost = 1 + 10 ∗ (3 + 100) = 1, 031

Block Nested Loops is still the best solution.

3. SORT-MERGE: With 15 buffer pages we can sort R in three passes and S in
two passes. The cost of sorting R is 2 ∗ 3 ∗ M = 6, 000, the cost of sorting S is
2 ∗ 2 ∗ N = 800, and the cost of the merging phase is M + N = 1, 200.

TotalCost = 6, 000 + 800 + 1, 200 = 8, 000

HASH JOIN: With 15 buffer pages the first scan of S (the smaller relation) splits
it into 14 buckets, each containing about 15 pages. To store one of these buckets
(and its hash table) in memory will require f ∗ 15 pages, which is more than we
have available. We must apply the Hash Join technique again to all partitions of
R and S that were created by the first partitioning phase. Then we can fit an
entire partition of S in memory. The total cost will be the cost of two partioning
phases plus the cost of one matching phase.

TotalCost = 2 ∗ (2 ∗ (M + N)) + (M + N) = 6, 000

116 Chapter 12

4. SORT-MERGE: With 15 buffer pages we can sort R in three passes and S in
three passes. The cost of sorting R is 2 ∗ 3 ∗ M = 6, 000, the cost of sorting S is
2 ∗ 3 ∗ N = 6, 000, and the cost of the merging phase is M + N = 2, 000.

TotalCost = 6, 000 + 6, 000 + 2, 000 = 14, 000

HASH JOIN: Now both relations are the same size, so we can treat either one
as the smaller relation. With 15 buffer pages the first scan of S splits it into 14
buckets, each containing about 72 pages, so again we have to deal with partition
overflow. We must apply the Hash Join technique again to all partitions of R
and S that were created by the first partitioning phase. Then we can fit an entire
partition of S in memory. The total cost will be the cost of two partioning phases
plus the cost of one matching phase.

TotalCost = 2 ∗ (2 ∗ (M + N)) + (M + N) = 10, 000

5. SORT-MERGE: With 52 buffer pages we have B >
√

M so we can use the ”merge-
on-the-fly” refinement which costs 3 ∗ (M + N).

TotalCost = 3 ∗ (1, 000 + 1, 000) = 6, 000

HASH JOIN: Now both relations are the same size, so we can treat either one
as the smaller relation. With 52 buffer pages the first scan of S splits it into 51
buckets, each containing about 20 pages. This time we do not have to deal with
partition overflow. The total cost will be the cost of one partioning phase plus the
cost of one matching phase.

TotalCost = (2 ∗ (M + N)) + (M + N) = 6, 000

Exercise 12.6 Answer each of the questions—if some question is inapplicable, explain
why—in Exercise 12.1 again, but using the following information about R and S:

Relation R contains 200,000 tuples and has 20 tuples per page.
Relation S contains 4,000,000 tuples and also has 20 tuples per page.
Attribute a of relation R is the primary key for R.
Each tuple of R joins with exactly 20 tuples of S.
1,002 buffer pages are available.

Answer 12.6 Answer omitted.

Exercise 12.7 We described variations of the join operation called outer joins in Sec-
tion 5.6.4. One approach to implementing an outer join operation is to first evaluate

Evaluation of Relational Operators 117

the corresponding (inner) join and then add additional tuples padded with null values
to the result in accordance with the semantics of the given outer join operator. How-
ever, this requires us to compare the result of the inner join with the input relations
to determine the additional tuples to be added. The cost of this comparison can be
avoided by modifying the join algorithm to add these extra tuples to the result while in-
put tuples are processed during the join. Consider the following join algorithms: block
nested loops join, index nested loops join, sort-merge join, and hash join. Describe
how you would modify each of these algorithms to compute the following operations
on the Sailors and Reserves tables discussed in this chapter:

1. Sailors NATURAL LEFT OUTER JOIN Reserves

2. Sailors NATURAL RIGHT OUTER JOIN Reserves

3. Sailors NATURAL FULL OUTER JOIN Reserves

Answer 12.7 Answer not available.

13
INTRODUCTION TO QUERY

OPTIMIZATION

Exercise 13.1 Briefly answer the following questions.

1. What is the goal of query optimization? Why is it important?

2. Describe the advantages of pipelining.

3. Give an example in which pipelining cannot be used.

4. Describe the iterator interface and explain its advantages.

5. What role do statistics gathered from the database play in query optimization?

6. What information is stored in the system catalogs?

7. What are the benefits of making the system catalogs be relations?

8. What were the important design decisions made in the System R optimizer?
Answer 13.1 1. Answer not available.

2. Pipelining allows us to avoid creating and reading temporary relations; the I/O
savings can be substantial.

3. The iterator interface for an operator includes the functions open, get next, and
close; it hides the details of how the operator is implemented, and allows us to
view all operator nodes in a query plan uniformly.

4. The query optimizer uses statistics to improve the chances of selecting an optimum
query plan. The statistics are used to calculate reduction factors which determine
the results the optimizer may expect given different indexes and inputs.

5. Answer not available.

6. Answer not available.

7. Answer not available.

8. Answer not available.

118

14
A TYPICAL QUERY OPTIMIZER

Exercise 14.1 Briefly answer the following questions.

1. In the context of query optimization, what is an SQL query block?

2. Define the term reduction factor.

3. Describe a situation in which projection should precede selection in processing a
project-select query, and describe a situation where the opposite processing order
is better. (Assume that duplicate elimination for projection is done via sorting.)

4. If there are dense, unclustered (secondary) B+ tree indexes on both R.a and S.b,
the join R ./a=bS could be processed by doing a sort-merge type of join—without
doing any sorting—by using these indexes.

(a) Would this be a good idea if R and S each have only one tuple per page, or
would it be better to ignore the indexes and sort R and S? Explain.

(b) What if R and S each have many tuples per page? Again, explain.

5. Why does the System R optimizer consider only left-deep join trees? Give an
example of a plan that would not be considered because of this restriction.

6. Explain the role of interesting orders in the System R optimizer.

Answer 14.1 1. An SQL query block is essentially an SQL query without nesting,
and serves as a unit of optimization. Queries with nesting can be broken up into
a collection of query blocks whose evaluation must be coordinated at runtime.

2. Answer not available.

3. If the selection is to be done on the inner relation of a simple nested loop, and
the projection will reduce the number of pages occupied significantly, then the
projection should be done first.

The opposite is true in the case of an index-only join. The projections should be
done on the fly after the join.

119

120 Chapter 14

4. (a) Using the indexes is a good idea when R and S each have only one tuple per
page. Each data page is read exactly once and the cost of scanning the B+
tree is likely to be very small.

(b) Doing an actual data sort on appropriate keys may be a good idea when R
and S have many tuples per page. Given that the indexes are unclustered,
without sorting there is potential for many reads of a single page. After
sorting, there will only be one read per matching page. The choice may be
determined by number of potential matches and number of tuples per page.

5. The System-R optimizer considers only left-deep joins because they allow fully
pipelined plans. As an example, non-linear plan would not be considered.

6. The System R optimizer implements a multiple pass algorithm. In each pass,
it must consider adding a join to those retained in previous passes. Each level
retains the cheapest plan for each interesting order for result tuples. An ordering
of tuples is interesting if it is sorted on some combination of fields.

Exercise 14.2 Consider a relation with this schema:

Employees(eid: integer, ename: string, sal: integer, title: string, age: integer)

Suppose that the following indexes, all using Alternative (2) for data entries, exist: a
hash index on eid, a B+ tree index on sal, a hash index on age, and a clustered B+
tree index on 〈age, sal〉. Each Employees record is 100 bytes long, and you can assume
that each index data entry is 20 bytes long. The Employees relation contains 10,000
pages.

1. Consider each of the following selection conditions and, assuming that the reduc-
tion factor (RF) for each term that matches an index is 0.1, compute the cost of
the most selective access path for retrieving all Employees tuples that satisfy the
condition:

(a) sal > 100

(b) age = 25

(c) age > 20

(d) eid = 1, 000

(e) sal > 200 ∧ age > 30

(f) sal > 200 ∧ age = 20

(g) sal > 200 ∧ title =′CFO′

(h) sal > 200 ∧ age > 30 ∧ title =′CFO′

A Typical Query Optimizer 121

2. Suppose that for each of the preceding selection conditions, you want to retrieve
the average salary of qualifying tuples. For each selection condition, describe the
least expensive evaluation method and state its cost.

3. Suppose that for each of the preceding selection conditions, you want to compute
the average salary for each age group. For each selection condition, describe the
least expensive evaluation method and state its cost.

4. Suppose that for each of the preceding selection conditions, you want to compute
the average age for each sal level (i.e., group by sal). For each selection condition,
describe the least expensive evaluation method and state its cost.

5. For each of the following selection conditions, describe the best evaluation method:

(a) sal > 200 ∨ age = 20

(b) sal > 200 ∨ title =′CFO′

(c) title =′CFO′ ∧ ename =′Joe′

Answer 14.2 Answer omitted.

Exercise 14.3 For each of the following SQL queries, for each relation involved, list
the attributes that must be examined in order to compute the answer. All queries refer
to the following relations:

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))
Dept(did: integer, dname: char(20), floor: integer, budget: real)

1. SELECT * FROM Emp

2. SELECT * FROM Emp, Dept

3. SELECT * FROM Emp E, Dept D WHERE E.did = D.did

4. SELECT E.eid, D.dname FROM Emp E, Dept D WHERE E.did = D.did

5. SELECT COUNT(*) FROM Emp E, Dept D WHERE E.did = D.did

6. SELECT MAX(E.sal) FROM Emp E, Dept D WHERE E.did = D.did

7. SELECT MAX(E.sal) FROM Emp E, Dept D WHERE E.did = D.did AND D.floor = 5

8. SELECT E.did, COUNT(*) FROM Emp E, Dept D WHERE E.did = D.did GROUP BY
D.did

9. SELECT D.floor, AVG(D.budget) FROM Dept D GROUP BY D.floor HAVING COUNT(*)
> 2

10. SELECT D.floor, AVG(D.budget) FROM Dept D GROUP BY D.floor ORDER BY D.floor

122 Chapter 14

Answer 14.3 1. E.eid, E.did, E.sal, E.hobby

2. E.eid, E.did, E.sal, E.hobby, D.did, D.dname, D.floor, D.budget

3. E.eid, E.did, E.sal, E.hobby, D.did, D.dname, D.floor, D.budget

4. E.eid, D.dname, E.did, D.did

5. E.did, D.did

6. E.sal, E.did, D.did

7. E.sal, E.did, D.did, D.floor

8. E.did, D.did

9. D.floor, D.budget

10. D.floor, D.budget

Exercise 14.4 You are given the following information:

Executives has attributes ename, title, dname, and address; all are string
fields of the same length.
The ename attribute is a candidate key.
The relation contains 10,000 pages.
There are 10 buffer pages.

1. Consider the following query:

SELECT E.title, E.ename FROM Executives E WHERE E.title=‘CFO’

Assume that only 10 percent of Executives tuples meet the selection condition.

(a) Suppose that a clustered B+ tree index on title is (the only index) available.
What is the cost of the best plan? (In this and subsequent questions, be sure
to describe the plan that you have in mind.)

(b) Suppose that an unclustered B+ tree index on title is (the only index) avail-
able. What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on ename is (the only index) available.
What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on address is (the only index) avail-
able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on 〈ename, title〉 is (the only index)
available. What is the cost of the best plan?

A Typical Query Optimizer 123

2. Suppose that the query is as follows:

SELECT E.ename FROM Executives E WHERE E.title=‘CFO’ AND E.dname=‘Toy’

Assume that only 10 percent of Executives tuples meet the condition E.title =′

CFO′, only 10 percent meet E.dname =′Toy′, and that only 5 percent meet both
conditions.

(a) Suppose that a clustered B+ tree index on title is (the only index) available.
What is the cost of the best plan?

(b) Suppose that a clustered B+ tree index on dname is (the only index) avail-
able. What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on 〈title, dname〉 is (the only index)
available. What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on 〈title, ename〉 is (the only index)
available. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on 〈dname, title, ename〉 is (the only
index) available. What is the cost of the best plan?

(f) Suppose that a clustered B+ tree index on 〈ename, title, dname〉 is (the only
index) available. What is the cost of the best plan?

3. Suppose that the query is as follows:

SELECT E.title, COUNT(*) FROM Executives E GROUP BY E.title

(a) Suppose that a clustered B+ tree index on title is (the only index) available.
What is the cost of the best plan?

(b) Suppose that an unclustered B+ tree index on title is (the only index) avail-
able. What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on ename is (the only index) available.
What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on 〈ename, title〉 is (the only index)
available. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on 〈title, ename〉 is (the only index)
available. What is the cost of the best plan?

4. Suppose that the query is as follows:

SELECT E.title, COUNT(*) FROM Executives E
WHERE E.dname > ‘W%’ GROUP BY E.title

Assume that only 10 percent of Executives tuples meet the selection condition.

(a) Suppose that a clustered B+ tree index on title is (the only index) available.
What is the cost of the best plan? If an additional index (on any search key
that you want) is available, would it help to produce a better plan?

124 Chapter 14

(b) Suppose that an unclustered B+ tree index on title is (the only index) avail-
able. What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on dname is (the only index) avail-
able. What is the cost of the best plan? If an additional index (on any search
key that you want) is available, would it help to produce a better plan?

(d) Suppose that a clustered B+ tree index on 〈dname, title〉 is (the only index)
available. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on 〈title, dname〉 is (the only index)
available. What is the cost of the best plan?

Answer 14.4 Answer omitted.

Exercise 14.5 Consider the query πA,B,C,D(R ./A=CS). Suppose that the projec-
tion routine is based on sorting and is smart enough to eliminate all but the desired
attributes during the initial pass of the sort, and also to toss out duplicate tuples on-
the-fly while sorting, thus eliminating two potential extra passes. Finally, assume that
you know the following:

R is 10 pages long, and R tuples are 300 bytes long.
S is 100 pages long, and S tuples are 500 bytes long.
C is a key for S, and A is a key for R.
The page size is 1,024 bytes.
Each S tuple joins with exactly one R tuple.
The combined size of attributes A, B, C, and D is 450 bytes.
A and B are in R and have a combined size of 200 bytes; C and D are in S.

1. What is the cost of writing out the final result? (As usual, you should ignore this
cost in answering subsequent questions.)

2. Suppose that three buffer pages are available, and the only join method that is
implemented is simple (page-oriented) nested loops.

(a) Compute the cost of doing the projection followed by the join.

(b) Compute the cost of doing the join followed by the projection.

(c) Compute the cost of doing the join first and then the projection on-the-fly.

(d) Would your answers change if 11 buffer pages were available?

3. Suppose that there are three buffer pages available, and the only join method that
is implemented is block nested loops.

(a) Compute the cost of doing the projection followed by the join.

(b) Compute the cost of doing the join followed by the projection.

A Typical Query Optimizer 125

(c) Compute the cost of doing the join first and then the projection on-the-fly.

(d) Would your answers change if 11 buffer pages were available?

Answer 14.5 1. Note that both the R, S relations have 200 tuples. We are given
that each R tuple joins with exactly one S tuple, and vice-versa, therefore the join
has 200 tuples. The combined size of each resulting tuple is 450 bytes, so that
there are only 2 tuples per page, for a join resulting in 100 pages.

2. (a) Cost of projection followed by join: The projection is sort-based, so we must
sort relation S, which contains attributes C and D. Relation S has 100 pages,
and we have 3 buffer pages, so the sort cost is 200*ceiling(log2(100)) = 200*7
= 1400.
Assume that 1/10 of the tuples are removed as duplicates, so that there are
180 remaining tuples of S, each of size 250 bytes (combined size of attributes
C, D). Therefore, 4 tuples fit on a page, so the resulting size of the inner
relation is 45 pages.
The cost using SNL is (10 + 10*45) = 460 I/Os, for a total cost of 1860.

(b) Cost of join followed by projection:
SNL join is (10 + 10*100) = 1010 I/Os, and results in 200 tuples, each of
size 550 bytes. Thus, only one result tuple fits on a page, and we have 200
pages.
The projection is a sort using 3 buffer pages, and in the first pass unwanted
attributes are eliminated on-the-fly to produce tuples of size 450 bytes, i.e.,
2 tuples per page. Thus, 200 pages are scanned and 100 pages written
in the first pass in 33 runs of 3 pages each and 1 run of a page. These
runs are merged pairwise in 6 additional passes for a total projection cost
of 200+100+2*6*100=1500 I/Os. This includes the cost of writing out the
result of 100 pages; removing this cost and adding the cost of the join step,
we obtain a total cost of 2410 I/Os.

(c) Cost of join and projection on the fly:
This means that the projection cost is 0, so the only cost is the join, which
we know from above is 1010 I/Os.

(d) If we had 11 buffer pages, then the projection sort could be done log10 instead
of log2.

3. (a) Using Block Nested Loops with 3 buffer pages, cost of projection, then join:
The costs are the same as (a)(i) above since BNL with 3 pages is just SNL
(page oriented) and the projection sorts are the same as well.

(b) Cost of join and then projection: Same as 2b.

(c) Cost of join and projection on the fly Same as 2c

(d) Now that we have 11 buffer pages, both BNL and projections are affected.

126 Chapter 14

Part (a) : log10(100)*200 + (10 + ceiling(10/9)*45) = 500
Part (b): (10 + ceiling(10/9)*100)+(ceiling(log10(200))*400) = 210
+ 1200 = 1410
Part (c): 10 + ceiling(10/9)*100 = 210

Exercise 14.6 Briefly answer the following questions.

1. Explain the role of relational algebra equivalences in the System R optimizer.

2. Consider a relational algebra expression of the form σc(πl(R × S)). Suppose
that the equivalent expression with selections and projections pushed as much
as possible, taking into account only relational algebra equivalences, is in one of
the following forms. In each case give an illustrative example of the selection
conditions and the projection lists (c, l, c1, l1, etc.).

(a) Equivalent maximally pushed form: πl1(σc1(R) × S).

(b) Equivalent maximally pushed form: πl1(σc1(R) × σc2(S)).

(c) Equivalent maximally pushed form: σc(πl1(πl2(R) × S)).

(d) Equivalent maximally pushed form: σc1(πl1(σc2(πl2(R)) × S)).

(e) Equivalent maximally pushed form: σc1(πl1(πl2(σc2(R)) × S)).

(f) Equivalent maximally pushed form: πl(σc1(πl1(πl2(σc2(R)) × S))).

Answer 14.6 Answer omitted.

Exercise 14.7 Consider the following relational schema and SQL query. The schema
captures information about employees, departments, and company finances (organized
on a per department basis).

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))
Dept(did: integer, dname: char(20), floor: integer, phone: char(10))
Finance(did: integer, budget: real, sales: real, expenses: real)

Consider the following query:

SELECT D.dname, F.budget
FROM Emp E, Dept D, Finance F
WHERE E.did=D.did AND D.did=F.did AND D.floor=1

AND E.sal ≥ 59000 AND E.hobby = ‘yodeling’

1. Identify a relational algebra tree (or a relational algebra expression if you prefer)
that reflects the order of operations that a decent query optimizer would choose.

A Typical Query Optimizer 127

2. List the join orders (i.e., orders in which pairs of relations can be joined together to
compute the query result) that a relational query optimizer will consider. (Assume
that the optimizer follows the heuristic of never considering plans that require the
computation of cross-products.) Briefly explain how you arrived at your list.

3. Suppose that the following additional information is available: Unclustered B+
tree indexes exist on Emp.did, Emp.sal, Dept.floor, Dept.did, and Finance.did.
The system’s statistics indicate that employee salaries range from 10,000 to 60,000,
employees enjoy 200 different hobbies, and the company owns two floors in the
building. There are a total of 50,000 employees and 5,000 departments (each with
corresponding financial information) in the database. The DBMS used by the
company has just one join method available, namely, index nested loops.

(a) For each of the query’s base relations (Emp, Dept and Finance) estimate the
number of tuples that would be initially selected from that relation if all of
the non-join predicates on that relation were applied to it before any join
processing begins.

(b) Given your answer to the preceding question, which of the join orders that
are considered by the optimizer has the least estimated cost?

Answer 14.7 The answers are as follows.

1.

πD.dname,F.budget((πE.did(σE.sal>=59000,E.hobby=”yodelling”(E))

./ πD.did,D.dname(σD.floor=1(D))) ./ πF.budget,F.did(F))

2. 2) There are 2 join orders considered, assuming that the optimizer only consider
left-deep joins and ignores cross-products: (D,E,F) and (D,F,E)

3. (a) Emp: card = 50,000, E.sal¿=59,000, E.hobby = ”yodelling”
resulting card = 50000 * 1/50 * 1/200 = 5
Dept: card = 5000, D.floor = 1
resulting card = 5000 * 1/2 = 2500
Finance: card = 5000, there are no non-join predicates
resulting card = 5000

(b) Consider the following join methods on the following left-deep tree: (E ./

D) ./ F).
The tuples from E will be pipelined, no temporary relations are created.
First, retrieve the tuples from E with salary ¿= 59,000 using the B-tree
index on salary; we estimate 1000 such tuples will be found, with a cost of
1 tree traversal + the cost of retrieving the 1000 tuples (since the index is

128 Chapter 14

unclustered) = 3+1000 = 1003. Note, we ignore the cost of scanning the
leaves.
Of these 1000 retrieved tuples, on the fly select only those that have hobby
= ”yodelling”, we estimate there will be 5 such tuples.
Pipeline these 5 tuples one at a time to D, and using the B-tree index on
D.did and the fact the D.did is a key, we can find the matching tuples for
the join by searching the Btree and retrieving at most 1 matching tuple, for
a total cost of 5(3 + 1) = 20. The resulting cardinality of this join is at most
5.
Pipeline the estimated 3 tuples of these 5 that have D.floor=1 1 up to F, and
use the Btree index on F.did and the fact that F.did is a key to retrieve at
most 1 F tuple for each of the 3 pipelined tuples. This costs at most 3(3+1)
= 12.
Ignoring the cost of writing out the final result, we get a total cost of
1003+20+12 = 1035.

Exercise 14.8 Consider the following relational schema and SQL query:

Suppliers(sid: integer, sname: char(20), city: char(20))
Supply(sid: integer, pid: integer)
Parts(pid: integer, pname: char(20), price: real)

SELECT S.sname, P.pname
FROM Suppliers S, Parts P, Supply Y
WHERE S.sid = Y.sid AND Y.pid = P.pid AND

S.city = ‘Madison’ AND P.price ≤ 1,000

1. What information about these relations will the query optimizer need to select a
good query execution plan for the given query?

2. How many different join orders, assuming that cross-products are disallowed, will
a System R style query optimizer consider when deciding how to process the given
query? List each of these join orders.

3. What indexes might be of help in processing this query? Explain briefly.

4. How does adding DISTINCT to the SELECT clause affect the plans produced?

5. How does adding ORDER BY sname to the query affect the plans produced?

6. How does adding GROUP BY sname to the query affect the plans produced?

Answer 14.8 Answer omitted.

A Typical Query Optimizer 129

Exercise 14.9 Consider the following scenario:

Emp(eid: integer, sal: integer, age: real, did: integer)
Dept(did: integer, projid: integer, budget: real, status: char(10))
Proj(projid: integer, code: integer, report: varchar)

Assume that each Emp record is 20 bytes long, each Dept record is 40 bytes long,
and each Proj record is 2,000 bytes long on average. There are 20,000 tuples in Emp,
5,000 tuples in Dept (note that did is not a key), and 1,000 tuples in Proj. Each
department, identified by did, has 10 projects on average. The file system supports
4,000 byte pages, and 12 buffer pages are available. The following questions are all
based on this information. You can assume uniform distribution of values. State any
additional assumptions. The cost metric to use is the number of page I/Os. Ignore the
cost of writing out the final result.

1. Consider the following two queries: “Find all employees with age = 30” and
“Find all projects with code = 20.” Assume that the number of qualifying tuples
is the same in each case. If you are building indexes on the selected attributes to
speed up these queries, for which query is a clustered index (in comparison to an
unclustered index) more important?

2. Consider the following query: “Find all employees with age > 30.” Assume that
there is an unclustered index on age. Let the number of qualifying tuples be N .
For what values of N is a sequential scan cheaper than using the index?

3. Consider the following query:

SELECT *
FROM Emp E, Dept D
WHERE E.did=D.did

(a) Suppose that there is a clustered hash index on did on Emp. List all the
plans that are considered and identify the plan with the least estimated cost.

(b) Assume that both relations are sorted on the join column. List all the plans
that are considered and show the plan with the least estimated cost.

(c) Suppose that there is a clustered B+ tree index on did on Emp and that
Dept is sorted on did. List all the plans that are considered and identify the
plan with the least estimated cost.

4. Consider the following query:

SELECT D.did, COUNT(*)
FROM Dept D, Proj P
WHERE D.projid=P.projid
GROUP BY D.did

130 Chapter 14

(a) Suppose that no indexes are available. Show the plan with the least estimated
cost.

(b) If there is a hash index on P.projid what is the plan with least estimated
cost?

(c) If there is a hash index on D.projid what is the plan with least estimated
cost?

(d) If there is a hash index on D.projid and P.projid what is the plan with least
estimated cost?

(e) Suppose that there is a clustered B+ tree index on D.did and a hash index
on P.projid. Show the plan with the least estimated cost.

(f) Suppose that there is a clustered B+ tree index on D.did, a hash index
on D.projid, and a hash index on P.projid. Show the plan with the least
estimated cost.

(g) Suppose that there is a clustered B+ tree index on 〈D.did, D.projid〉 and a
hash index on P.projid. Show the plan with the least estimated cost.

(h) Suppose that there is a clustered B+ tree index on 〈D.projid, D.did〉 and a
hash index on P.projid. Show the plan with the least estimated cost.

5. Consider the following query:

SELECT D.did, COUNT(*)
FROM Dept D, Proj P
WHERE D.projid=P.projid AND D.budget>99000
GROUP BY D.did

Assume that department budgets are uniformly distributed in the range 0 to
100,000.

(a) Show the plan with least estimated cost if no indexes are available.

(b) If there is a hash index on P.projid show the plan with least estimated cost.

(c) If there is a hash index on D.budget show the plan with least estimated cost.

(d) If there is a hash index on D.projid and D.budget show the plan with least
estimated cost.

(e) Suppose that there is a clustered B+ tree index on 〈D.did,D.budget〉 and a
hash index on P.projid. Show the plan with the least estimated cost.

(f) Suppose that there is a clustered B+ tree index on D.did, a hash index
on D.budget, and a hash index on P.projid. Show the plan with the least
estimated cost.

(g) Suppose that there is a clustered B+ tree index on 〈D.did, D.budget, D.projid〉
and a hash index on P.projid. Show the plan with the least estimated cost.

A Typical Query Optimizer 131

(h) Suppose that there is a clustered B+ tree index on 〈D.did, D.projid, D.budget〉
and a hash index on P.projid. Show the plan with the least estimated cost.

6. Consider the following query:

SELECT E.eid, D.did, P.projid
FROM Emp E, Dept D, Proj P
WHERE E.sal=50,000 AND D.budget>20,000

E.did=D.did AND D.projid=P.projid

Assume that employee salaries are uniformly distributed in the range 10,009 to
110,008 and that project budgets are uniformly distributed in the range 10,000 to
30,000. There is a clustered index on sal for Emp, a clustered index on did for
Dept, and a clustered index on projid for Proj.

(a) List all the one-relation, two-relation, and three-relation subplans considered
in optimizing this query.

(b) Show the plan with the least estimated cost for this query.

(c) If the index on Proj were unclustered, would the cost of the preceding plan
change substantially? What if the index on Emp or on Dept were unclus-
tered?

Answer 14.9 The reader should calculate actual costs of all alternative plans; in the
answers below, we just outline the best plans without detailed cost calculations to
prove that these are indeed the best plans.

1. The question specifies that the number, rather than the fraction, of qualifying
tuples is identical for the two queries. Since Emp tuples are small, many will fit
on a single page; conversely, few (just 2) of the large Proj tuples will fit on a page.

Since we wish to minimize the number of page I/Os, it will be an advantage if the
Emp tuples are clustered with respect to the age index (all matching tuples will be
retrieved in a few page I/Os). Clustering is not as important for the Proj tuples
since almost every matching tuple will require a page I/O, even with clustering.

2. The Emp relation occupies 100 pages. For an unclustered index retrieving N

tuples requires N page I/Os. If more than 100 tuples match, the cost of fetching
Emp tuples by following pointers in the index data entries exceeds the cost of
sequential scan. Using the index also involves about 2 I/Os to get to the right leaf
page, and the cost of fetching leaf pages that contain qualifying data entries; this
makes scan better than the index with fewer than 100 matches.)

3. (a) One plan is to use (simple or blocked) NL join with E as the outer. Another
plan is SM or Hash join. A third plan is to use D as the outer and to use INL;
given the clustered hash index on E, this plan will likely be the cheapest.

132 Chapter 14

(b) The same plans are considered as before, but now, SM join is the best strategy
because both relations are sorted on the join column (and all tuples of Emp

are likely to join with some tuple of Dept, and must therefore be fetched at
least once, even if INL is used).

(c) The same plans are considered as before. As in the previous case, SM join
is the best: the clustered B+ tree index on Emp can be used to efficiently
retrieve Emp tuples in sorted order.

4. (a) BNL with Proj as the outer, followed by sorting on did to implement the
aggregation. All attributes except did can be eliminated during the join but
duplicates should not be eliminated!

(b) Sort Dept on did first (all other attributes except projid can be projected
out), then scan while probing Proj and counting tuples in each did group
on-the-fly.

(c) INL with Dept as inner, followed by sorting on did to implement the aggre-
gation. Again, all attributes except did can be eliminated during the join
but duplicates should not be eliminated!

(d) As in the previous case, INL with Dept as inner, followed by sorting on
did to implement the aggregation. Again, all attributes except did can be
eliminated during the join but duplicates should not be eliminated!

(e) Scan Dept in did order using the clustered B+ tree index while probing Proj

and counting tuples in each did group on-the-fly.

(f) Same as above.

(g) Scan the clustered B+ tree index using an index-only scan while probing
Proj and counting tuples in each did group on-the-fly.

(h) Sort the data entries in the clustered B+ tree index on Dept, then scan while
probing Proj and counting tuples in each did group on-the-fly.

5. (a) BNL with Proj as the outer with the selection applied on-the-fly, followed
by sorting on did to implement the aggregation. All attributes except did

can be eliminated during the join but duplicates should not be eliminated!

(b) Sort Dept on did first (while applying the selection and projecting out all
other attributes except projid in the initial scan), then scan while probing
Proj and counting tuples in each did group on-the-fly.

(c) Select Dept tuples using the index on budget, join using INL with Proj as
inner, projecting out all attributes except did. Then sort to implement the
aggregation.

(d) Same as the case with no index; this index does not help.

(e) Retrieve Dept tuples that satisfy the condition on budget in did order by
using the clustered B+ tree index while probing Proj and counting tuples in
each did group on-the-fly.

A Typical Query Optimizer 133

(f) Since the condition on budget is very selective, even though the index on
budget is unclustered we retrieve Dept tuples using this index, project out
the did and projid fields and sort them by did. Then we scan while probing
Proj and counting tuple sin each did gorup on-the-fly.

(g) Use an index-only scan on the B+ tree and apply the condition on budget,
while probing Proj and counting tuples in each did group on-the-fly. Notice
that this plan is applicable even if the B+ tree index is not clustered. (Within
each did group, can optimize search for data entries in the index that satisfy
the budget condition, but this is a minor gain.)

(h) Use an index-only scan on the B+ tree and apply the condition on budget,
while probing Proj and counting tuples in each did group on-the-fly.

6. (a) 1-relation subplans: Clustered index on E.sal; Scan Dept; and Scan Proj.
2-relation subplans: (i) Clustered index on E.sal, probe Dept using the index
on did, apply predicate on D.budget and join. (ii) Scan Dept, apply predi-
cate on D.budget and probe Proj. (iii) Scan Proj, probe Dept and apply
predicate on D.budget and join.
3-relation subplans: Join Emp and Dept and probe Proj; Join Dept and
Proj and probe Emp.

(b) The least cost plan is to use the index on E.sal to eliminate most tuples, probe
Dept using the index on D.did, apply the predicate on D.budget, probe and
join on Proj.projid.

(c) Unclustering the index on Proj would increase the number of I/Os but not
substantially since the total number of matching Proj tuples to be retrieved
is small.

15
SCHEMA REFINEMENT AND

NORMAL FORMS

Exercise 15.1 Briefly answer the following questions.

1. Define the term functional dependency.

2. Give a set of FDs for the relation schema R(A,B,C,D) with primary key AB under
which R is in 1NF but not in 2NF.

3. Give a set of FDs for the relation schema R(A,B,C,D) with primary key AB under
which R is in 2NF but not in 3NF.

4. Consider the relation schema R(A,B,C), which has the FD B → C. If A is a can-
didate key for R, is it possible for R to be in BCNF? If so, under what conditions?
If not, explain why not.

5. Suppose that we have a relation schema R(A,B,C) representing a relationship
between two entity sets with keys A and B, respectively, and suppose that R
has (among others) the FDs A → B and B → A. Explain what such a pair of
dependencies means (i.e., what they imply about the relationship that the relation
models).

Answer 15.1

1. Let R be a relational schema and let X and Y be two subsets of the set of all
attributes of R. We say Y is functionally dependent on X, written X → Y, if the
Y-values are determined by the X-values. More precisely, for any two tuples r1

and r2 in (any instance of) R

πX(r1) = πX(r2) ⇒ πY (r1) = πY (r2)

2. Consider the FD: A → C. More generally any (non-trivial) FD: X → α, with α

not equal to A or B, and X = A or X = B will violate 2NF.

134

Schema Refinement and Normal Forms 135

3. Consider the FD: D → C. More generally any (non-trivial) FD: X → α, with α

not equal to A or B, and X not a proper subset of { A, B } X does not contain
AB, will violate 3NF but not 2NF.

4. The only way R could be in BCNF is if B includes a key, i.e. B is a key for R.

5. It means that the relationship is one to one. That is, each A entity corresponds
to at most one B entity and vice-versa. (In addition, we have the dependency
AB → C, from the semantics of a relationship set.)

Exercise 15.2 Consider a relation R with five attributes ABCDE. You are given the
following dependencies: A → B, BC → E, and ED → A.

1. List all keys for R.

2. Is R in 3NF?

3. Is R in BCNF?

Answer 15.2 Answer omitted.

Exercise 15.3 Consider the following collection of relations and dependencies. As-
sume that each relation is obtained through decomposition from a relation with at-
tributes ABCDEFGHI and that all the known dependencies over relation ABCDEFGHI
are listed for each question. (The questions are independent of each other, obviously,
since the given dependencies over ABCDEFGHI are different.) For each (sub) relation:
(a) State the strongest normal form that the relation is in. (b) If it is not in BCNF,
decompose it into a collection of BCNF relations.

1. R1(A,C,B,D,E), A → B, C → D

2. R2(A,B,F), AC → E, B → F

3. R3(A,D), D → G, G → H

4. R4(D,C,H,G), A → I, I → A

5. R5(A,I,C,E)

Answer 15.3

1. Not in 3NF. BCNF decomposition: AB, CD, ACE.

2. Not in 3NF. BCNF decomposition: AB, BF

3. BCNF.

136 Chapter 15

4. BCNF.

5. BCNF.

Exercise 15.4 Suppose that we have the following three tuples in a legal instance of
a relation schema S with three attributes ABC (listed in order): (1,2,3), (4,2,3), and
(5,3,3).

1. Which of the following dependencies can you infer does not hold over schema S?

(a) A → B (b) BC → A (c) B → C

2. Can you identify any dependencies that hold over S?

Answer 15.4 Answer omitted.

Exercise 15.5 Suppose you are given a relation R with four attributes, ABCD. For
each of the following sets of FDs, assuming those are the only dependencies that hold
for R, do the following: (a) Identify the candidate key(s) for R. (b) Identify the best
normal form that R satisfies (1NF, 2NF, 3NF, or BCNF). (c) If R is not in BCNF,
decompose it into a set of BCNF relations that preserve the dependencies.

1. C → D, C → A, B → C

2. B → C, D → A

3. ABC → D, D → A

4. A → B, BC → D, A → C

5. AB → C, AB → D, C → A, D → B

Answer 15.5

1. (a) Candidate keys: B

(b) R is in 2NF but not 3NF.

(c) C → D and C → A both cause violations of BCNF. One way to obtain a
(lossless) join preserving decomposition is to decompose R into AC, BC, and
CD.

2. (a) Candidate keys: BD

(b) R is in 1NF but not 2NF.

(c) Both B → C and D → A cause BCNF violations. The decomposition: AD,
BC, BD (obtained by first decomposing to AD, BCD) is BCNF and lossless
and join-preserving.

Schema Refinement and Normal Forms 137

3. (a) Candidate keys: ABC, BCD

(b) R is in 3NF but not BCNF.

(c) ABCD is not in BCNF since D → A and D is not a key. However if we split
up R as AD, BCD we cannot preserve the dependency ABC → D. So there
is no BCNF decomposition.

4. (a) Candidate keys: A

(b) R is in 2NF but not 3NF (because of the FD: BC → D).

(c) BC → D violates BCNF since BC does not contain a key. So we split up R
as in: BCD, ABC.

5. (a) Candidate keys: AB, BC, CD, AD

(b) R is in 3NF but not BCNF (because of the FD: C → A).

(c) C → A and D → B both cause violations. So decompose into: AC, BCD but
this does not preserve AB → C and AB → D, and BCD is still not BCNF
because D → B. So we need to decompose further into: AC, BD, CD. Now
add ABC and ABD to get the final decomposition: AC, BD, CD, ABC, ABD
which is BCNF, lossless and join-preserving.

Exercise 15.6 Consider the attribute set R = ABCDEGH and the FD set F = {AB →
C, AC → B, AD → E, B → D, BC → A, E → G}.

1. For each of the following attribute sets, do the following: (i) Compute the set of
dependencies that hold over the set and write down a minimal cover. (ii) Name
the strongest normal form that is not violated by the relation containing these
attributes. (iii) Decompose it into a collection of BCNF relations if it is not in
BCNF.

(a) ABC (b) ABCD (c) ABCEG (d) DCEGH (e) ACEH

2. Which of the following decompositions of R = ABCDEG, with the same set of
dependencies F , is (a) dependency-preserving? (b) lossless-join?

(a) {AB, BC, ABDE, EG }
(b) {ABC, ACDE, ADG }

Answer 15.6 Answer omitted.

Exercise 15.7 Let R be decomposed into R1, R2, . . ., Rn. Let F be a set of FDs on
R.

1. Define what it means for F to be preserved in the set of decomposed relations.

138 Chapter 15

2. Describe a polynomial-time algorithm to test dependency-preservation.

3. Projecting the FDs stated over a set of attributes X onto a subset of attributes
Y requires that we consider the closure of the FDs. Give an example where
considering the closure is important in testing dependency-preservation; that is,
considering just the given FDs gives incorrect results.

Answer 15.7

1. Let Fi denote the projection of F on Ri. F is preserved if the closure of the (union
of) the Fi’s equals F (note that F is always a superset of this closure.)

2. We shall describe an algorithm for testing dependency preservation which is poly-
nomial in the cardinality of F. For each dependency X →Y ∈ F check if it is in F
as follows: start with the set S (of attributes in) X. For each relation Ri, compute
the closure of S ∩Ri relative to F and project this closure to the attributes of Ri.
If this results in additional attributes, add them to S. Do this repeatedly until S

there is no change to S.

3. There is an example in the text.

Exercise 15.8 Consider a relation R that has three attributes ABC. It is decomposed
into relations R1 with attributes AB and R2 with attributes BC.

1. State the definition of a lossless-join decomposition with respect to this example.
Answer this question concisely by writing a relational algebra equation involving
R, R1, and R2.

2. Suppose that B →→ C. Is the decomposition of R into R1 and R2 lossless-join?
Reconcile your answer with the observation that neither of the FDs R1∩R2 → R1

nor R1∩R2 → R2 hold, in light of the simple test offering a necessary and sufficient
condition for lossless-join decomposition into two relations in Section 15.6.1.

3. If you are given the following instances of R1 and R2, what can you say about the
instance of R from which these were obtained? Answer this question by listing
tuples that are definitely in R and listing tuples that are possibly in R.

Instance of R1 = {(5,1), (6,1)}
Instance of R2 = {(1,8), (1,9)}

Can you say that attribute B definitely is or is not a key for R?

Answer 15.8 Answer omitted.

Exercise 15.9 Suppose you are given a relation R(A,B,C,D). For each of the following
sets of FDs, assuming they are the only dependencies that hold for R, do the follow-
ing: (a) Identify the candidate key(s) for R. (b) State whether or not the proposed
decomposition of R into smaller relations is a good decomposition, and briefly explain
why or why not.

Schema Refinement and Normal Forms 139

1. B → C, D → A; decompose into BC and AD.

2. AB → C, C → A, C → D; decompose into ACD and BC.

3. A → BC, C → AD; decompose into ABC and AD.

4. A → B, B → C, C → D; decompose into AB and ACD.

5. A → B, B → C, C → D; decompose into AB, AD and CD.

Answer 15.9

1. Candidate key(s): BD. The decomposition into BC and AD is unsatisfactory
because it is lossy (the join of BC and AD is the cartesian product which could
be much bigger than ABCD)

2. Candidate key(s): AB, BC. The decomposition into ACD and BC is lossless since
ACD ∩ BC (which is C) →ACD. The projection of the FD’s on ACD include C
→D, C →A (so C is a key for ACD) and the projection of FD on BC produces
no nontrivial dependencies. In particular this is a BCNF decomposition (check
that R is not!). However, it is not dependency preserving since the dependency
AB →C is not preserved. So to enforce preservation of this dependency (if we do
not want to use a join) we need to add ABC which introduces redundancy. So
implicitly there is some redundancy across relations (although none inside ACD
and BC).

3. Candidate key(s): A, C Since A and C are both candidate keys for R, it is already
in BCNF. So from a normalization standpoint it makes no sense to decompose R
further.

4. Candidate key(s): A The projection of the dependencies on AB are: A →B and
those on ACD are: A →C and C →D (rest follow from these). The scheme ACD
is not even in 3NF, since C is not a superkey, and D is not part of a key. This is
a lossless-join decomposition (since A is a key), but not dependency preserving,
since B →C is not preserved.

5. Candidate key(s): A (just as before) This is a lossless BCNF decomposition (easy
to check!) This is, however, not dependency preserving (B consider →C). So it
is not free of (implied) redundancy. This is not the best decomposition (the
decomposition AB, BC, CD is better.)

Exercise 15.10 Suppose that we have the following four tuples in a relation S with
three attributes ABC: (1,2,3), (4,2,3), (5,3,3), (5,3,4). Which of the following functional
(→) and multivalued (→→) dependencies can you infer does not hold over relation S?

1. A → B

140 Chapter 15

2. A →→ B

3. BC → A

4. BC →→ A

5. B → C

6. B →→ C

Answer 15.10 Answer omitted.

Exercise 15.11 Consider a relation R with five attributes ABCDE.

1. For each of the following instances of R, state whether (a) it violates the FD BC
→ D, and (b) it violates the MVD BC →→ D:

(a) { } (i.e., empty relation)

(b) {(a,2,3,4,5), (2,a,3,5,5)}
(c) {(a,2,3,4,5), (2,a,3,5,5), (a,2,3,4,6)}
(d) {(a,2,3,4,5), (2,a,3,4,5), (a,2,3,6,5)}
(e) {(a,2,3,4,5), (2,a,3,7,5), (a,2,3,4,6)}
(f) {(a,2,3,4,5), (2,a,3,4,5), (a,2,3,6,5), (a,2,3,6,6)}
(g) {(a,2,3,4,5), (a,2,3,6,5), (a,2,3,6,6), (a,2,3,4,6)}

2. If each instance for R listed above is legal, what can you say about the FD A →
B?

Answer 15.11

1. Note: The answer sometimes depends on the value of a. Unless otherwise men-
tioned, the answer applies to all values of a.

(a) { } (i.e., empty relation):
does not violate either dependency.

(b) {(a,2,3,4,5), (2,a,3,5,5)}:
BC →D is violated if and only if a = 2.
BC →→D is not violated (for any value of a)

(c) {(a,2,3,4,5), (2,a,3,5,5), (a,2,3,4,6)}:
BC →D is violated if a = 2 (otherwise not).
If a = 2 then BC →→D is violated (consider the tuples (2,a,3,5,5) and
(a,2,3,4,6); if a equals 2 must also have (2,a,3,5,6))

Schema Refinement and Normal Forms 141

(d) {(a,2,3,4,5), (2,a,3,4,5), (a,2,3,6,5)}:
BC →D is violated (consider the first and the third tuples ((a,2,3,4,5) and
(a,2,3,6,5)).
BC →→D is not violated.

(e) {(a,2,3,4,5), (2,a,3,7,5), (a,2,3,4,6)}:
If a = 2 then BC →D is violated (otherwise it is not).
If a = 2 then BC →→D is violated (otherwise it is not). To prove this look
at the last two tuples; there must also be a tuple (2,a,3,7,6) for BC →→to
hold.

(f) {(a,2,3,4,5), (2,a,3,4,5), (a,2,3,6,5), (a,2,3,6,6)}:
BC →D does not hold. (Consider the first and the third tuple).
BC →→C is violated. Consider the 1st and the 4th tuple. For this depen-
dency to hold there should be a tuple (a,2,3,4,6).

(g) {(a,2,3,4,5), (a,2,3,6,5), (a,2,3,6,6), (a,2,3,4,6)}:
BC →D does not hold. (Consider the first and the third tuple).
BC →→C is not violated.

2. We cannot say anything about the functional dependency A →B.

Exercise 15.12 JDs are motivated by the fact that sometimes a relation that cannot
be decomposed into two smaller relations in a lossless-join manner can be so decom-
posed into three or more relations. An example is a relation with attributes supplier,
part, and project, denoted SPJ, with no FDs or MVDs. The JD ./ {SP, PJ, JS}
holds.

From the JD, the set of relation schemes SP, PJ, and JS is a lossless-join decomposition
of SPJ. Construct an instance of SPJ to illustrate that no two of these schemes suffice.

Answer 15.12 Answer omitted.

Exercise 15.13 Consider a relation R with attributes ABCDE. Let the following FDs
be given: A → BC, BC → E, and E → DA. Similarly, let S be a relation with attributes
ABCDE and let the following FDs be given: A → BC, B → E, and E → DA. (Only
the second dependency differs from those that hold over R.) You do not know whether
or which other (join) dependencies hold.

1. Is R in BCNF?

2. Is R in 4NF?

3. Is R in 5NF?

4. Is S in BCNF?

142 Chapter 15

5. Is S in 4NF?

6. Is S in 5NF?

Answer 15.13

1. The schema R has keys A, E and BC. It follows that R is indeed in BCNF.

2. By Exercise 23, Part 1 it follows that R is also in 4NF (since the relation scheme
has a single-attribute key).

3. R is in 5NF because the schema does not have any JD (besides those that are
implied by the FD’s of the schema; but these cannot violate the 5NF condition).
Note that this alternative argument may be used in some of the other parts of
this problem as well.

4. The schema S has keys A, B and E. It follows that S is indeed in BCNF.

5. By exercise 23 (part 1) it follows that S is also in 4NF (since the relation scheme
has a single-attribute key).

6. By exercise 23 (part 2) it follows that S is also in 5NF (since each key is a
single-attribute key.)

Exercise 15.14 Let us say that an FD X → Y is simple if Y is a single attribute.

1. Replace the FD AB → CD by the smallest equivalent collection of simple FDs.

2. Prove that every FD X → Y in a set of FDs F can be replaced by a set of simple
FDs such that F+ is equal to the closure of the new set of FDs.

Answer 15.14 Answer omitted.

Exercise 15.15 Prove that Armstrong’s Axioms are sound and complete for FD in-
ference. That is, show that repeated application of these axioms on a set F of FDs
produces exactly the dependencies in F+.

Answer 15.15 Proof omitted.

Exercise 15.16 Describe a linear-time (in the size of the set of FDs, where the size
of each FD is the number of attributes involved) algorithm for finding the attribute
closure of a set of attributes with respect to a set of FDs.

Answer 15.16 Answer omitted.

Schema Refinement and Normal Forms 143

Exercise 15.17 Consider a scheme R with FDs F that is decomposed into schemes
with attributes X and Y. Show that this is dependency-preserving if F ⊆ (FX ∪FY)+.

Answer 15.17 We need to show that F+ = (FX ∪ FY)+. Both containments are

based on two observations:

1. If A ⊆ B are two sets of FD’s then A+ ⊆ B+ and

2. A++ = A+.

The includsion (FX∪FY)+ ⊆ F+ follows from observing that, by definition, FX ⊆ F+

and FY ⊆ F+ so that FX ∪ FY ⊆ F+ (now apply observations 1 and 2).

The other containment, F+ ⊆ (FX∪FY)+ follows from the hypothesis, F ⊆ (FX∪FY)+

and observations 1 and 2.

Exercise 15.18 Let R be a relation schema with a set F of FDs. Prove that the
decomposition of R into R1 and R2 is lossless-join if and only if F+ contains R1 ∩
R2 → R1 or R1 ∩ R2 → R2.

Answer 15.18 Answer omitted.

Exercise 15.19 Prove that the optimization of the algorithm for lossless-join, dependency-
preserving decomposition into 3NF relations (Section 15.7.2) is correct.

Answer 15.19

Exercise 15.20 Prove that the 3NF synthesis algorithm produces a lossless-join de-
composition of the relation containing all the original attributes.

Answer 15.20 Answer omitted.

Exercise 15.21 Prove that an MVD X →→ Y over a relation R can be expressed as
the join dependency ./ {XY, X(R − Y)}.

Answer 15.21 Write Z = R − Y . Thus, R = Y XZ. X →→ Y says that if

(y1, x, z1), (y2, x, z2) ∈ R then (y1, x, z2), (y2, x, z1) also ∈ R. But this is precisely the
same as saying R = ./ { XY, X(R − Y) }.

Exercise 15.22 Prove that if R has only one key, it is in BCNF if and only if it is in
3NF.

144 Chapter 15

Answer 15.22 Answer omitted.

Exercise 15.23 Prove that if R is in 3NF and every key is simple, then R is in BCNF.

Answer 15.23 Answer omitted.

Exercise 15.24 Prove these statements:

1. If a relation scheme is in BCNF and at least one of its keys consists of a single
attribute, it is also in 4NF.

2. If a relation scheme is in 3NF and each key has a single attribute, it is also in
5NF.

Answer 15.24 Answer omitted.

Exercise 15.25 Give an algorithm for testing whether a relation scheme is in BCNF.
The algorithm should be polynomial in the size of the set of given FDs. (The size is
the sum over all FDs of the number of attributes that appear in the FD.) Is there a
polynomial algorithm for testing whether a relation scheme is in 3NF?

Answer 15.25 Fix some instance of the schema r, and take two tuples λ and µ with

λ[X] = µ[X]

Let U denote the set of all the attributes of the schema and let

z1 = λ[Z] and z2 = µ[Z].

We need to show that z1 = z2.

The MVD X →→Z implies the existence of a tuple ν such that

ν[X] = λ[X] = µ[X], ν[Z] = λ[Z] = z1 and ν[U − XZ] = µ[U − XZ] = z2.

Since, Y and Z are disjoint, we have

Y = (Y ∩ X) ∪ (Y ∩ (U − XZ)).

Also, ν and µ agree on X as well as on U − XZ. Thus, we conclude: ν[Y] = µ[Y].
From the FD Y →Z we can then conclude that ν[Z] = µ[Z], or z1 = z2.

Exercise 15.26 Give an algorithm for testing whether a relation scheme is in BCNF.
The algorithm should be polynomial in the size of the set of given FDs. (The ‘size’ is
the sum over all FDs of the number of attributes that appear in the FD.) Is there a
polynomial algorithm for testing whether a relation scheme is in 3NF?

Answer 15.26 Answer omitted.

16
PHYSICAL DATABASE DESIGN AND

TUNING

Exercise 16.1 Consider the following relations:

Emp(eid: integer, ename: varchar, sal: integer, age: integer, did: integer)
Dept(did: integer, budget: integer, floor: integer, mgr eid: integer)

Salaries range from $10,000 to $100,000, ages vary from 20 to 80, each department has
about five employees on average, there are 10 floors, and budgets vary from $10,000
to $1,000,000. You can assume uniform distributions of values.

For each of the following queries, which of the listed index choices would you choose to
speed up the query? If your database system does not consider index-only plans (i.e.,
data records are always retrieved even if enough information is available in the index
entry), how would your answer change? Explain briefly.

1. Query: Print ename, age, and sal for all employees.

(a) Clustered, dense hash index on 〈ename, age, sal〉 fields of Emp.

(b) Unclustered hash index on 〈ename, age, sal〉 fields of Emp.

(c) Clustered, sparse B+ tree index on 〈ename, age, sal〉 fields of Emp.

(d) Unclustered hash index on 〈eid, did〉 fields of Emp.

(e) No index.

2. Query: Find the dids of departments that are on the 10th floor and that have a
budget of less than $15,000.

(a) Clustered, dense hash index on the floor field of Dept.

(b) Unclustered hash index on the floor field of Dept.

(c) Clustered, dense B+ tree index on 〈floor, budget〉 fields of Dept.

(d) Clustered, sparse B+ tree index on the budget field of Dept.

145

146 Chapter 16

(e) No index.

3. Query: Find the names of employees who manage some department and have a
salary greater than $12,000.

(a) Clustered, sparse B+ tree index on the sal field of Emp.

(b) Clustered hash index on the did field of Dept.

(c) Unclustered hash index on the did field of Dept.

(d) Unclustered hash index on the did field of Emp.

(e) Clustered B+ tree index on sal field of Emp and clustered hash index on the
did field of Dept.

4. Query: Print the average salary for each department.

(a) Clustered, sparse B+ tree index on the did field of Emp.

(b) Clustered, dense B+ tree index on the did field of Emp.

(c) Clustered, dense B+ tree index on 〈did, sal〉 fields of Emp.

(d) Unclustered hash index on 〈did, sal〉 fields of Emp.

(e) Clustered, dense B+ tree index on the did field of Dept.

Answer 16.1 1. We should create an unclustered hash index on 〈ename, age, sal〉
fields of Emp (b) since then we could do an index only scan. If our system does
not include index only plans then we shouldn’t create an index for this query (e).
Since this query requires us to access all the Emp records, an index won’t help us
any, and so should we access the records using a filescan.

2. We should create a clustered dense B+ tree index (c) on 〈floor, budget〉 fields of
Dept, since the records would be ordered on these fields then. So when executing
this query, the first record with floor = 10 must be retrieved, and then the other
records with floor = 10 can be read in order. Note that this plan, which is the
best for this query, is not an index-only plan.

3. We should create a hash index on the eid field of Emp (d) since then we can do
a filescan on Dept and hash each manager id into Emp and check to see if the
salary is greater than 12,000 dollars. None of the indexes offered lend themselves
to index-only scans, so it doesn’t matter if they are allowed or not.

4. For this query we should create a dense clustered B+ tree (c) index on 〈did, sal〉
fields of the Emp relation, so we can do an index only scan. (An unclustered
index would be sufficient, but is not included in the list of index choices for this
question.) If index-only scans are not allowed, we should then create a clustered
sparse B+ tree index on the did field of Emp (a). This index will be just as
efficient as an index on 〈did, sal〉 since both will involve accessing the data records
in did order. However, since we now have only one attribute in the search key, it
will be updated less often.

Physical Database Design and Tuning 147

Exercise 16.2 Consider the following relation:

Emp(eid: integer, sal: integer, age: real, did: integer)

There is a clustered index on eid and an unclustered index on age.

1. Which factors would you consider in deciding whether to make an index on a
relation a clustered index? Would you always create at least one clustered index
on every relation?

2. How would you use the indexes to enforce the constraint that eid is a key?

3. Give an example of an update that is definitely speeded up because of the available
indexes. (English description is sufficient.)

4. Give an example of an update that is definitely slowed down because of the indexes.
(English description is sufficient.)

5. Can you give an example of an update that is neither speeded up nor slowed down
by the indexes?

Answer 16.2 Answer omitted.

Exercise 16.3 Consider the following BCNF schema for a portion of a simple cor-
porate database (type information is not relevant to this question and is omitted):

Emp (eid, ename, addr, sal, age, yrs, deptid)
Dept (did, dname, floor, budget)

Suppose you know that the following queries are the six most common queries in the
workload for this corporation and that all six are roughly equivalent in frequency and
importance:

List the id, name, and address of employees in a user-specified age range.

List the id, name, and address of employees who work in the department with a
user-specified department name.

List the id and address of employees with a user-specified employee name.

List the overall average salary for employees.

List the average salary for employees of each age; that is, for each age in the
database, list the age and the corresponding average salary.

List all the department information, ordered by department floor numbers.

148 Chapter 16

1. Given this information, and assuming that these queries are more important than
any updates, design a physical schema for the corporate database that will give
good performance for the expected workload. In particular, decide which at-
tributes will be indexed and whether each index will be a clustered index or an
unclustered index. Assume that B+ tree indexes are the only index type supported
by the DBMS and that both single- and multiple-attribute keys are permitted.
Specify your physical design by identifying the attributes that you recommend
indexing on via clustered or unclustered B+ trees.

2. Redesign the physical schema assuming that the set of important queries is changed
to be the following:

List the id and address of employees with a user-specified employee name.

List the overall maximum salary for employees.

List the average salary for employees by department; that is, for each deptid

value, list the deptid value and the average salary of employees in that de-
partment.

List the sum of the budgets of all departments by floor; that is, for each floor,
list the floor and the sum.

Answer 16.3 1. If we create a dense unclustered B+ tree index on 〈age, sal〉
of the Emp relation we will be able to do an index-only scan to answer the
5th query. A hash index would not serve our purpose here, since the data
entries will not be ordered by age! If index only scans are not allowed create
a clustered B+ tree index on just the age field of Emp.

We should create an unclustered B+Tree index on deptid of the Emp relation
and another unclustered index on 〈dname, did〉 in the Dept relation. Then,
we can do an index only search on Dept and then get the Emp records with
the proper deptid’s for the second query.

We should create an unclustered index on ename of the Emp relation for the
third query.

We want a clustered sparse B+ tree index on floor of the Dept index so we
can get the department on each floor in floor order for the sixth query.

Finally, a dense unclustered index on sal will allow us to average the salaries
of all employees using an index only-scan. However, the dense unclustered
B+ tree index on 〈age, sal〉 that we created to support Query (5) can also be
used to compute the average salary of all employees, and is almost as good
for this query as an index on just sal. So we should not create a separate
index on just sal.
If index-only scans are not allowed. no index is useful in finding the average
salary of all employees; we would simply use a file scan.

Physical Database Design and Tuning 149

2. We should create an unclustered B+Tree index on ename for the Emp rela-
tion so we can efficiently find employees with a particular name for the first
query. This is not an index-only plan.

An unclustered B+ tree index on sal for the Emp relation will help find the
maximum salary for the second query. (This is better than a hash index
because the aggregate operation involved is MAX—we can simply go down to
the rightmost leaf page in the B+ tree index.) This is not an index-only plan.

We should create a dense unclustered B+ tree index on 〈deptid, sal〉 of the
Emp relation so we can do an index-only scan on all of a department’s em-
ployees. If index only plans are not supported, a sparse, clustered B+ tree
index on deptid would be best. It would allow us to retrieve tuples by deptid.

We should create a dense, unclustered index on 〈floor, budget〉 for Dept.
This would allow us to sum budgets by floor using an index only plan. If
index-only plans are not supported, we should create a sparse clustered B+
tree index on floor for the Dept relation, so we can find the departments on
each floor in order by floor.

Exercise 16.4 Consider the following BCNF relational schema for a portion of a
university database (type information is not relevant to this question and is omitted):

Prof(ssno, pname, office, age, sex, specialty, dept did)
Dept(did, dname, budget, num majors, chair ssno)

Suppose you know that the following queries are the five most common queries in the
workload for this university and that all five are roughly equivalent in frequency and
importance:

List the names, ages, and offices of professors of a user-specified sex (male or
female) who have a user-specified research specialty (e.g., recursive query process-
ing). Assume that the university has a diverse set of faculty members, making it
very uncommon for more than a few professors to have the same research specialty.

List all the department information for departments with professors in a user-
specified age range.

List the department id, department name, and chairperson name for departments
with a user-specified number of majors.

List the lowest budget for a department in the university.

List all the information about professors who are department chairpersons.

150 Chapter 16

These queries occur much more frequently than updates, so you should build whatever
indexes you need to speed up these queries. However, you should not build any un-
necessary indexes, as updates will occur (and would be slowed down by unnecessary
indexes). Given this information, design a physical schema for the university database
that will give good performance for the expected workload. In particular, decide which
attributes should be indexed and whether each index should be a clustered index or
an unclustered index. Assume that both B+ trees and hashed indexes are supported
by the DBMS and that both single- and multiple-attribute index search keys are per-
mitted.

1. Specify your physical design by identifying the attributes that you recommend
indexing on, indicating whether each index should be clustered or unclustered
and whether it should be a B+ tree or a hashed index.

2. Redesign the physical schema assuming that the set of important queries is changed
to be the following:

List the number of different specialties covered by professors in each depart-
ment, by department.

Find the department with the fewest majors.

Find the youngest professor who is a department chairperson.

Answer 16.4 Answer omitted.

Exercise 16.5 Consider the following BCNF relational schema for a portion of a
company database (type information is not relevant to this question and is omitted):

Project(pno, proj name, proj base dept, proj mgr, topic, budget)
Manager(mid, mgr name, mgr dept, salary, age, sex)

Note that each project is based in some department, each manager is employed in
some department, and the manager of a project need not be employed in the same
department (in which the project is based). Suppose you know that the following
queries are the five most common queries in the workload for this university and that
all five are roughly equivalent in frequency and importance:

List the names, ages, and salaries of managers of a user-specified sex (male or
female) working in a given department. You can assume that while there are
many departments, each department contains very few project managers.

List the names of all projects with managers whose ages are in a user-specified
range (e.g., younger than 30).

List the names of all departments such that a manager in this department manages
a project based in this department.

Physical Database Design and Tuning 151

List the name of the project with the lowest budget.

List the names of all managers in the same department as a given project.

These queries occur much more frequently than updates, so you should build whatever
indexes you need to speed up these queries. However, you should not build any un-
necessary indexes, as updates will occur (and would be slowed down by unnecessary
indexes). Given this information, design a physical schema for the company database
that will give good performance for the expected workload. In particular, decide which
attributes should be indexed and whether each index should be a clustered index or
an unclustered index. Assume that both B+ trees and hashed indexes are supported
by the DBMS, and that both single- and multiple-attribute index keys are permitted.

1. Specify your physical design by identifying the attributes that you recommend
indexing on, indicating whether each index should be clustered or unclustered
and whether it should be a B+ tree or a hashed index.

2. Redesign the physical schema assuming that the set of important queries is changed
to be the following:

Find the total of the budgets for projects managed by each manager; that
is, list proj mgr and the total of the budgets of projects managed by that
manager, for all values of proj mgr.

Find the total of the budgets for projects managed by each manager but only
for managers who are in a user-specified age range.

Find the number of male managers.

Find the average age of managers.

Answer 16.5 1. For the first query, we should create a dense unclustered hash
index on mgr dept for the Manager relation. We omit sex from the key in
this index since it is not very selective; however, including it is probably not
very expensive since this field is unlikely to be updated.

We should create a unclustered B+ tree index on 〈age, mgr dept, mid〉 for the
Manager relation, and an unclustered hash index on 〈proj base dept, proj mgr〉
for the Project relation. We can do an index only scan to find managers whose
age is in the specified range, and then hash into the Project relation to get the
project names. If index only scans are not supported, the index on manager
should be a clustered index on age.

For the third query we don’t need a new index. We can scan all managers
and use the hash index on 〈proj base dept, proj mgr〉 on the Project relation
to check if mgr dept = proj base dept.

We can create an unclustered btree index on budget in the Project relation
and then go down the tree to find the lowest budget for the fourth query.

152 Chapter 16

For the fifth query, we should create dense unclustered hash index on pno

for the Project relation. We can can get the proj base dept of the project
by using this index, and then use the hash index on mgr dept to get the
managers in this department. Note that an index on 〈pno, proj base dept for
Project would allow us to do an index only scan on Project. However, since
there is exactly one base department for each project (pno is the key) this is
not likely to be significantly faster. (It does save us one I/O per project.)

2. For the first query, we should create an unclustered B+Tree index on 〈proj mgr, budget〉
for the Project relation. An index only scan can then be used to solve the
query. If index only scans are not supported, a clustered index on proj mgr

would be best.

If we create a sparse clustered B+ tree index on 〈age, mid〉 for Manager, we
can do an index only scan on this index to find the ids of managers in the
given range. Then, we can use an index only scan of the B+Tree index on
〈proj mgr, budget〉 to compute the total of the budgets of the projects that
each of these managers manages. If index only scans are not supported, the
index on Manager should be a clustered B+ tree index on age.

An unclustered hash index on sex will divide the managers by sex and allow
us to count the number that are male using an index only scan. If index only
scans are not allowed, then no index will help us for the third query.

We should create an unclustered hash index on age for the fourth query. All
we need to do is average the ages using an index-only scan. If index-only
plans are not allowed no index will help us.

Exercise 16.6 The Globetrotters Club is organized into chapters. The president of
a chapter can never serve as the president of any other chapter, and each chapter
gives its president some salary. Chapters keep moving to new locations, and a new
president is elected when (and only when) a chapter moves. The above data is stored
in a relation G(C,S,L,P), where the attributes are chapters (C), salaries (S), locations
(L), and presidents (P). Queries of the following form are frequently asked, and you
must be able to answer them without computing a join: “Who was the president of
chapter X when it was in location Y?”

1. List the FDs that are given to hold over G.

2. What are the candidate keys for relation G?

3. What normal form is the schema G in?

4. Design a good database schema for the club. (Remember that your design must
satisfy the query requirement stated above!)

5. What normal form is your good schema in? Give an example of a query that is
likely to run slower on this schema than on the relation G.

Physical Database Design and Tuning 153

6. Is there a lossless-join, dependency-preserving decomposition of G into BCNF?

7. Is there ever a good reason to accept something less than 3NF when designing a
schema for a relational database? Use this example, if necessary adding further
constraints, to illustrate your answer.

Answer 16.6 Answer omitted.

Exercise 16.7 Consider the following BCNF relation, which lists the ids, types (e.g.,
nuts or bolts), and costs of various parts, along with the number that are available or
in stock:

Parts (pid, pname, cost, num avail)

You are told that the following two queries are extremely important:

Find the total number available by part type, for all types. (That is, the sum of
the num avail value of all nuts, the sum of the num avail value of all bolts, etc.)

List the pids of parts with the highest cost.

1. Describe the physical design that you would choose for this relation. That is, what
kind of a file structure would you choose for the set of Parts records, and what
indexes would you create?

2. Suppose that your customers subsequently complain that performance is still not
satisfactory (given the indexes and file organization that you chose for the Parts
relation in response to the previous question). Since you cannot afford to buy
new hardware or software, you have to consider a schema redesign. Explain how
you would try to obtain better performance by describing the schema for the
relation(s) that you would use and your choice of file organizations and indexes
on these relations.

3. How would your answers to the above two questions change, if at all, if your
system did not support indexes with multiple-attribute search keys?

Answer 16.7 1. A heap file structure could be used for the relation Parts. A dense
unclustered B+Tree index on (pname, num avail) and a dense unclustered B+
Tree index on (cost, pid) can be created to efficiently answers the queries.

2. The problem could be that the optimizer may not be considering the index only
plans that could be obtained using the previously described schema. So we can
instead create clustered indexes on (pid, cost) and (pname,num avail) . To do
this we have to vertically partition the relation into two relations viz. Parts1(
pid,cost) and Parts2(pid,pname,num avail). (If the indexes themselves have not
been implemented properly, then we can instead go in for sorted file organisations
for these two split relations)

154 Chapter 16

3. If the multi attribute keys are not allowed then we can have a clustered B+ Tree
indexes on cost and on pname on the two relations.

Exercise 16.8 Consider the following BCNF relations, which describe employees and
departments that they work in:

Emp (eid, sal, did)
Dept (did, location, budget)

You are told that the following queries are extremely important:

Find the location where a user-specified employee works.

Check whether the budget of a department is greater than the salary of each
employee in that department.

1. Describe the physical design that you would choose for this relation. That is, what
kind of a file structure would you choose for these relations, and what indexes
would you create?

2. Suppose that your customers subsequently complain that performance is still not
satisfactory (given the indexes and file organization that you chose for the rela-
tions in response to the previous question). Since you cannot afford to buy new
hardware or software, you have to consider a schema redesign. Explain how you
would try to obtain better performance by describing the schema for the rela-
tion(s) that you would use and your choice of file organizations and indexes on
these relations.

3. Suppose that your database system has very inefficient implementations of index
structures. What kind of a design would you try in this case?

Answer 16.8 Answer omitted.

Exercise 16.9 Consider the following BCNF relations, which describe departments
in a company and employees:

Dept(did, dname, location, managerid)
Emp(eid, sal)

You are told that the following queries are extremely important:

List the names and ids of managers for each department in a user-specified loca-
tion, in alphabetical order by department name.

Physical Database Design and Tuning 155

Find the average salary of employees who manage departments in a user-specified
location. You can assume that no one manages more than one department.

1. Describe the file structures and indexes that you would choose.

2. You subsequently realize that updates to these relations are frequent. Because
indexes incur a high overhead, can you think of a way to improve performance on
these queries without using indexes?

Answer 16.9 1. We can go in for heap file organisation for the 2 relations and have
the following indexes. A clustered index on (location, dname) (P.S. We cannot
list the names of the persons as there is no name attribute present) would be
useful. We can also have a hash index on eid on the Emp relation to speed up the
second query.

2. Yes, we can go in for a horizontal decompostion of the Dept relation based on the
location. We can also go in for sorted file organisations, the relations Dept sorted
on dname and Emp on eid .

Exercise 16.10 For each of the following queries, identify one possible reason why an
optimizer might not find a good plan. Rewrite the query so that a good plan is likely
to be found. Any available indexes or known constraints are listed before each query;
assume that the relation schemas are consistent with the attributes referred to in the
query.

1. An index is available on the age attribute.

SELECT E.dno
FROM Employee E
WHERE E.age=20 OR E.age=10

2. A B+ tree index is available on the age attribute.

SELECT E.dno
FROM Employee E
WHERE E.age<20 AND E.age>10

3. An index is available on the age attribute.

SELECT E.dno
FROM Employee E
WHERE 2*E.age<20

4. No indexes are available.

156 Chapter 16

SELECT DISTINCT *
FROM Employee E

5. No indexes are available.

SELECT AVG (E.sal)
FROM Employee E
GROUP BY E.dno
HAVING E.dno=22

6. sid in Reserves is a foreign key that refers to Sailors.

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Answer 16.10 Answer omitted.

Exercise 16.11 Consider the following two ways of computing the names of employees
who earn more than $100,000 and whose age is equal to their manager’s age. First, a
nested query:

SELECT E1.ename
FROM Emp E1
WHERE E1.sal > 100 AND E1.age = (SELECT E2.age

FROM Emp E2, Dept D2
WHERE E1.dname = D2.dname

AND D2.mgr = E2.ename)

Second, a query that uses a view definition:

SELECT E1.ename
FROM Emp E1, MgrAge A
WHERE E1.dname = A.dname AND E1.sal > 100 AND E1.age = A.age

CREATE VIEW MgrAge (dname, age)
AS SELECT D.dname, E.age

FROM Emp E, Dept D
WHERE D.mgr = E.ename

1. Describe a situation in which the first query is likely to outperform the second
query.

Physical Database Design and Tuning 157

2. Describe a situation in which the second query is likely to outperform the first
query.

3. Can you construct an equivalent query that is likely to beat both these queries
when every employee who earns more than $100,000 is either 35 or 40 years old?
Explain briefly.

Answer 16.11 1. Consider the case when there are very few or no employees having
salary more than 100K. Then in the first query the nested part would not be
computed (due to short circuit evaluation) whereas in the second query the join
of Emp and MgrAge would be computed irrespective of the number of Employees
with sal > 100K.

2. In the case when there are a large number of employees with sal > 100K and
the Dept relation is large, in the first query the join of Dept and Emp would
be computed for each tuple in Emp that satisfies the condition E1.sal > 100K,
whereas in the latter the join is computed only once.

3. In this case the selectivity of age may be very high. So if we have a BTree index
on say (age,sal), then the following query may perform better.

SELECT E1.ename
FROM Emp E1
WHERE E1.age=35 AND E1.sal > 100 AND E1.age =

(SELECT E2.age
FROM Emp E2, Dept D2
WHERE E1.dname = D2.dname AND D2.mgr = E2.ename)
UNION
SELECT E1.ename
FROM Emp E1
WHERE E1.age = 40 AND E1.sal > 100 AND E1.age =

(SELECT E2.age
FROM Emp E2, Dept D2
WHERE E1.dname = D2.dname AND D2.mgr = E2.ename)

17
SECURITY

Exercise 17.1 Briefly answer the following questions based on this schema:

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pct time: integer)
Dept(did: integer, budget: real, managerid: integer)

1. Suppose you have a view SeniorEmp defined as follows:

CREATE VIEW SeniorEmp (sname, sage, salary)
AS SELECT E.ename, E.age, E.salary

FROM Emp E
WHERE E.age > 50

Explain what the system will do to process the following query:

SELECT S.sname
FROM SeniorEmp S
WHERE S.salary > 100,000

2. Give an example of a view on Emp that could be automatically updated by up-
dating Emp.

3. Give an example of a view on Emp that would be impossible to update (auto-
matically) and explain why your example presents the update problem that it
does.

4. Consider the following view definition:

CREATE VIEW DInfo (did, manager, numemps, totsals)
AS SELECT D.did, D.managerid, COUNT (*), SUM (E.salary)

FROM Emp E, Works W, Dept D
WHERE E.eid = W.eid AND W.did = D.did
GROUP BY D.did, D.managerid

158

Security 159

(a) Give an example of a view update on DInfo that could (in principle) be
implemented automatically by updating one or more of the relations Emp,
Works, and Dept. Does SQL-92 allow such a view update?

(b) Give an example of a view update on DInfo that cannot (even in principle)
be implemented automatically by updating one or more of the relations Emp,
Works, and Dept. Explain why.

(c) How could the view DInfo help in enforcing security?

Answer 17.1 The answers are given below:

1. The system will do the following:

SELECT S.name
FROM (SELECT E.ename AS name, E.age, E.salary

FROM Emp E
WHERE E.age > 50) AS S

WHERE S.salary > 100000

2. The following view on Emp can be updated automatically by updating Emp:

CREATE VIEW SeniorEmp (eid, name, age, salary)
AS SELECT E.eid, E.ename, E.age, E.salary

FROM Emp E
WHERE E.age > 50

3. The following view cannot be updated automatically because it is not clear which
employee records will be affected by a given update:

CREATE VIEW AvgSalaryByAge (age, avgSalary)
AS SELECT E.eid, AVG (E.salary)

FROM Emp E
GROUP BY E.age

4. (a) If DInfo.manager is updated, it could, in principle, be implemented automat-
ically by updating the Dept relation to reflect a change in the manager of
department DInfo.did. However, since SQL/92 does not allow an update on
a view definition based on more than one base relation, this view update is
not allowed.

(b) If DInfo.totsals is updated, this change cannot be implemented automatically
at all because it is not clear which of the employees’ salary fields need to be
changed.

160 Chapter 17

(c) Views are an important component of the security mechanisms provided by
a relational DBMS. By defining views on the base relations, we can present
needed information to a user while hiding other information that perhaps the
user should not be given a ccess to.
As an example the chairman of a company might want his secretary to be
able to look at the total salaries given to a department under him, but not
at the individual salaries of the employees working in those departments.
This view definition would be useful in that case and provides a layer of
security that prevents the secretary from viewing or changing the salaries of
the employees.

Exercise 17.2 You are the DBA for the VeryFine Toy Company, and you create
a relation called Employees with fields ename, dept, and salary. For authorization
reasons, you also define views EmployeeNames (with ename as the only attribute) and
DeptInfo with fields dept and avgsalary. The latter lists the average salary for each
department.

1. Show the view definition statements for EmployeeNames and DeptInfo.

2. What privileges should be granted to a user who needs to know only average
department salaries for the Toy and CS departments?

3. You want to authorize your secretary to fire people (you’ll probably tell him whom
to fire, but you want to be able to delegate this task), to check on who is an
employee, and to check on average department salaries. What privileges should
you grant?

4. Continuing with the preceding scenario, you don’t want your secretary to be able
to look at the salaries of individuals. Does your answer to the previous question
ensure this? Be specific: Can your secretary possibly find out salaries of some
individuals (depending on the actual set of tuples), or can your secretary always
find out the salary of any individual that he wants to?

5. You want to give your secretary the authority to allow other people to read the
EmployeeNames view. Show the appropriate command.

6. Your secretary defines two new views using the EmployeeNames view. The first is
called AtoRNames and simply selects names that begin with a letter in the range
A to R. The second is called HowManyNames and counts the number of names.
You are so pleased with this achievement that you decide to give your secretary
the right to insert tuples into the EmployeeNames view. Show the appropriate
command, and describe what privileges your secretary has after this command is
executed.

7. Your secretary allows Todd to read the EmployeeNames relation and later quits.
You then revoke the secretary’s privileges. What happens to Todd’s privileges?

Security 161

8. Give an example of a view update on the above schema that cannot be imple-
mented through updates to Employees.

9. You decide to go on an extended vacation, and to make sure that emergencies
can be handled, you want to authorize your boss Joe to read and modify the
Employees relation and the EmployeeNames relation (and Joe must be able to
delegate authority, of course, since he’s too far up the management hierarchy to
actually do any work). Show the appropriate SQL statements. Can Joe read the
DeptInfo view?

10. After returning from your (wonderful) vacation, you see a note from Joe, indicating
that he authorized his secretary Mike to read the Employees relation. You want
to revoke Mike’s SELECT privilege on Employees, but you don’t want to revoke
the rights that you gave to Joe, even temporarily. Can you do this in SQL?

11. Later you realize that Joe has been quite busy. He has defined a view called All-
Names using the view EmployeeNames, defined another relation called StaffNames
that he has access to (but that you can’t access), and given his secretary Mike
the right to read from the AllNames view. Mike has passed this right on to his
friend Susan. You decide that even at the cost of annoying Joe by revoking some
of his privileges, you simply have to take away Mike and Susan’s rights to see
your data. What REVOKE statement would you execute? What rights does Joe
have on Employees after this statement is executed? What views are dropped as
a consequence?

Answer 17.2 Answer omitted.

Exercise 17.3 Briefly answer the following questions.

1. Explain the intuition behind the two rules in the Bell-LaPadula model for manda-
tory access control.

2. Give an example of how covert channels can be used to defeat the Bell-LaPadula
model.

3. Give an example of polyinstantiation.

4. Describe a scenario in which mandatory access controls prevent a breach of security
that cannot be prevented through discretionary controls.

5. Describe a scenario in which discretionary access controls are required to enforce
a security policy that cannot be enforced using only mandatory controls.

6. If a DBMS already supports discretionary and mandatory access controls, is there
a need for encryption?

7. Explain the need for each of the following limits in a statistical database system:

162 Chapter 17

(a) A maximum on the number of queries a user can pose.

(b) A minimum on the number of tuples involved in answering a query.

(c) A maximum on the intersection of two queries (i.e., on the number of tuples
that both queries examine).

8. Explain the use of an audit trail, with special reference to a statistical database
system.

9. What is the role of the DBA with respect to security?

10. What is public-key encryption? How does it differ from the encryption approach
taken in the Data Encryption Standard (DES), and in what ways is it better than
DES?

11. What are one-way functions, and what role do they play in public-key encryption?

12. Explain how a company offering services on the Internet could use public-key en-
cryption to make its order-entry process secure. Describe how you would use DES
encryption for the same purpose, and contrast the public-key and DES approaches.

Answer 17.3 Answers not available.

18
TRANSACTION MANAGEMENT

OVERVIEW

Exercise 18.1 Give brief answers to the following questions:

1. What is a transaction? In what ways is it different from an ordinary program (in
a language such as C)?

2. Define these terms: atomicity, consistency, isolation, durability, schedule, blind
write, dirty read, unrepeatable read, serializable schedule, recoverable schedule,
avoids-cascading-aborts schedule.

3. Describe Strict 2PL.
Answer 18.1 1. A transaction is an execution of a user program, and is seen by

the DBMS as a series, or list, of actions. The actions that can be executed by a
transaction include reads and writes of database objects.

2. Blind write: a transaction writes to an object without ever reading the object.

A transaction reads a database object that has been modified by another not-yet-
committed transaction. Such a read is called a dirty read.

Suppose a transaction T2 changes the value of an object A that has been read by
a transaction T1, while T1 is still in progress. If now T1 tries to read the value
of A again, it will get a different result, even though it has not modified A in the
meantime. Such a read is called an unrepeatable read.

A serializable schedule over a set S of transactions is a schedule whose effect
on any consistent database instance is identical to that of some complete serial
schedule over the set of committed transactions in S.

A schedule is conflict serializable if it is conflict equivalent to some serial sched-
ule. (Two schedules are said to be conflict equivalent if they involve the same
set of actions of the same transactions, and they order every pair of conflicting
actions of two committed transactions in the same way.)

163

164 Chapter 18

A recoverable schedule is one in which transactions commit only after all trans-
actions whose changes they read commit.

If transactons only read the changes of committed transactions, the schedule is not
only recoverable, aborting a transaction can be accomplished without cascading
the abort to other transactions. Such a schedule is said to be avoid cascading
aborts schedule.

A schedule is view serializable if it is view equivalent to some serial schedule.
Two schedules S1 and S2 over the same set of transactions are view equivalent if:

If T i reads the initial value of object A in S1, it must also read the initial
value of A in S2.

If T i reads a value of A written by T j in S1, it must also read the value of
A written by T j in S2.

For each data object A, the transaction (if any) that performs the final write
on A in S1 must also perform the final write on A in S2.

3. 2PL: a way DBMS to ensure only serializable schedules are allowed. The rules
are:

Each transaction must get an S-lock on an object before reading it;

Each transaction must get an X-lock on an object before writing it;

Once a transaction releases a lock, it can not acquire any new locks.

Strict 2PL: besides all the rules mentioned above, there is one additional rule to
ensure only ’safe’ interleavings of transactions are allowed, which is:

All locks held by a transaction are released when the transaction is completed.

Conservative 2PL is a variant of 2PL. Under this protocol, a transaction obtains
all the locks that it will ever need when it begins, or blocks waiting for all these
locks to become availabe. This scheme ensures that there will not be any deadlocks
by removing one of the 4 necessary conditions for deadlock – hold while waiting.

4. Phantom problem is the situation that a transaction retrieves a collection of
objects twice and sees different results, even though it does not modify any of
these objects itself and it follows the strict 2PL protocol.

Phantom problem is a specific problem to dynamic database, so it can not occur
in a database where the set of database objects is fixed and only the values of
objects can be changed.

5. This is due to the multiprogramming and time-sharing nature of modern operating
system. If the lock and unlock are not atomic operations, two or more transactions
can hold conflicting locks on the same object! For example, when one transaction

Transaction Management Overview 165

requests an exclusive lock, the lock manager checks and finds that no other trans-
action holds a lock on the object, therefore grants the request; If this thread is
descheduled before it has a chance to mark the lock as taken , another transaction
could start to run. This second transaction might have done the same thing and
have been granted a conflicting lock. To prevent this, the entire sequence of lock
and unlock must be atomic operations.

6. When timestamps are used for deadlock prevention, if a transaction is aborted
and re-started, it is given the same timestamp that it had originally;

On the other hand when timestamps are used for concurrency control, if a trans-
action is aborted and restarted, it is given a new, larger timestamp.

7. To understand and justify Thomas’ Write Rule fully, we need to give the complete
context when it arises.

To implement timestamp-based concurrency control scheme, the following regula-
tions are made when transaction T wants to write object O:

(a) If TS(T) < RTS(O), the write action conflicts with the most recent
read action of O, and T is therefore aborted and restarted.

(b) If TS(T) < WTS(O), a naive approach would be to abort T as well
because its write action conflicts with the most recent write of O,
and is out of timestamp order. But it turns out that we can safely
ignore such previous write and process with this new write; this is
called Thomas’ Write Rule.

(c) Otherwise, T writes O and WTS(O) is set to TS(T).

The justification is as follows: had TS(T) < RTS(O), T would have been aborted
and we would not have bothered to check the WTS(O). So to decide whether to
abort T based on WTS(O), we can assume that TS(T) >= RTS(O). If TS(T) >=
RTS(O) and TS(T) < WTS(O), then RTS(O) < WTS(O), which means the
previous write occurred immediately before this planned-new-write of O and was
never read by anyone, therefore the previous write can be safely ignored.

Exercise 18.2 Consider the following actions taken by transaction T 1 on database
objects X and Y :

R(X), W(X), R(Y), W(Y)

1. Give an example of another transaction T 2 that, if run concurrently to transaction
T without some form of concurrency control, could interfere with T 1.

2. Explain how the use of Strict 2PL would prevent interference between the two
transactions.

166 Chapter 18

3. Strict 2PL is used in many database systems. Give two reasons for its popularity.

Answer 18.2 Answer omitted.

Exercise 18.3 Consider a database with objects X and Y and assume that there are
two transactions T 1 and T 2. Transaction T 1 reads objects X and Y and then writes
object X . Transaction T 2 reads objects X and Y and then writes objects X and Y .

1. Give an example schedule with actions of transactions T 1 and T 2 on objects X

and Y that results in a write-read conflict.

2. Give an example schedule with actions of transactions T 1 and T 2 on objects X

and Y that results in a read-write conflict.

3. Give an example schedule with actions of transactions T 1 and T 2 on objects X

and Y that results in a write-write conflict.

4. For each of the three schedules, show that Strict 2PL disallows the schedule.

Answer 18.3 Answer not available yet.

Exercise 18.4 Consider the following (incomplete) schedule S:

T1:R(X), T1:R(Y), T1:W(X), T2:R(Y), T3:W(Y), T1:W(X), T2:R(Y)

1. Can you determine the serializability graph for this schedule? Assuming that all
three transactions eventually commit, show the serializability graph.

2. For each of the following, modify S to create a complete schedule that satisfies the
stated condition. If a modification is not possible, explain briefly. If it is possible,
use the smallest possible number of actions (read, write, commit, or abort). You
are free to add new actions anywhere in the schedule S, including in the middle.

(a) Resulting schedule avoids cascading aborts but is not recoverable.

(b) Resulting schedule is recoverable.

(c) Resulting schedule is conflict-serializable.

Answer 18.4 Answer omitted.

Exercise 18.5 Suppose that a DBMS recognizes increment, which increments an in-
teger-valued object by 1, and decrement as actions, in addition to reads and writes.
A transaction that increments an object need not know the value of the object; incre-
ment and decrement are versions of blind writes. In addition to shared and exclusive
locks, two special locks are supported: An object must be locked in I mode before
incrementing it and locked in D mode before decrementing it. An I lock is compatible
with another I or D lock on the same object, but not with S and X locks.

Transaction Management Overview 167

1. Illustrate how the use of I and D locks can increase concurrency. (Show a schedule
allowed by Strict 2PL that only uses S and X locks. Explain how the use of I

and D locks can allow more actions to be interleaved, while continuing to follow
Strict 2PL.)

2. Informally explain how Strict 2PL guarantees serializability even in the presence
of I and D locks. (Identify which pairs of actions conflict, in the sense that their
relative order can affect the result, and show that the use of S, X , I, and D locks
according to Strict 2PL orders all conflicting pairs of actions to be the same as
the order in some serial schedule.)

Answer 18.5 1. Take the following two transactions as example:

T1: Increment A, Decrement B, Read C;
T2: Increment B, Decrement A, Read C

If using only strict 2PL, all actions are versions of blind writes, they have to
obtain X-lock on objects. Following strict 2PL, T1 gets X-Lock on A, if T2 now
gets X-Lock on B, there will be deadlock. Even if T1 is fast enough to have
grabbed X-Lock on B first, T2 will now be blocked till T1 finishes. This has little
concurrency. If I and D locks are used, since I and D are compatible, T1 obtains
I-Lock on A, D-Lock on B; T2 can still obtain I-Lock on B, D-Lock on A; both
transactions can be interleaved to allow maximum concurrency.

2. The pairs of actions which conflicts are:

RW, WW, WR, IR, IW, DR, DW

We know that strict 2PL orders the first 3 conflicts pairs of actions to be the same
as the order in some serial schedule. We can also show that even in the presence
of I and D locks, strict 2PL also order the latter 4 pairs of actions to be the same
as the order in some serial schedule. The easiest way to think that I(or D) lock
under these circumstances as an exclusive lock, since I(D) lock is not compatible
with S and X locks anyway.

19
CONCURRENCY CONTROL

Exercise 19.1 1. Define these terms: conflict-serializable schedule, view-serializable
schedule, strict schedule.

2. Describe each of the following locking protocols: 2PL, Conservative 2PL.

3. Why must lock and unlock be atomic operations?

4. What is the phantom problem? Can it occur in a database where the set of
database objects is fixed and only the values of objects can be changed?

5. Identify one difference in the timestamps assigned to restarted transactions when
timestamps are used for deadlock prevention versus when timestamps are used for
concurrency control.

6. State and justify the Thomas Write Rule.

Answer 19.1 1. A transaction is an execution of a user program, and is seen by
the DBMS as a series, or list, of actions. The actions that can be executed by a
transaction include reads and writes of database objects.

2. Blind write: a transaction writes to an object without ever reading the object.

A transaction reads a database object that has been modified by another not-yet-
committed transaction. Such a read is called a dirty read.

Suppose a transaction T2 changes the value of an object A that has been read by
a transaction T1, while T1 is still in progress. If now T1 tries to read the value
of A again, it will get a different result, even though it has not modified A in the
meantime. Such a read is called an unrepeatable read.

A serializable schedule over a set S of transactions is a schedule whose effect
on any consistent database instance is identical to that of some complete serial
schedule over the set of committed transactions in S.

168

Concurrency Control 169

A schedule is conflict serializable if it is conflict equivalent to some serial sched-
ule. (Two schedules are said to be conflict equivalent if they involve the same
set of actions of the same transactions, and they order every pair of conflicting
actions of two committed transactions in the same way.)

A recoverable schedule is one in which transactions commit only after all trans-
actions whose changes they read commit.

If transactons only read the changes of committed transactions, the schedule is not
only recoverable, aborting a transaction can be accomplished without cascading
the abort to other transactions. Such a schedule is said to be avoid cascading
aborts schedule.

A schedule is view serializable if it is view equivalent to some serial schedule.
Two schedules S1 and S2 over the same set of transactions are view equivalent if:

If T i reads the initial value of object A in S1, it must also read the initial
value of A in S2.

If T i reads a value of A written by T j in S1, it must also read the value of
A written by T j in S2.

For each data object A, the transaction (if any) that performs the final write
on A in S1 must also perform the final write on A in S2.

3. 2PL: a way DBMS to ensure only serializable schedules are allowed. The rules
are:

Each transaction must get an S-lock on an object before reading it;

Each transaction must get an X-lock on an object before writing it;

Once a transaction releases a lock, it can not acquire any new locks.

Strict 2PL: besides all the rules mentioned above, there is one additional rule to
ensure only ’safe’ interleavings of transactions are allowed, which is:

All locks held by a transaction are released when the transaction is completed.

Conservative 2PL is a variant of 2PL. Under this protocol, a transaction obtains
all the locks that it will ever need when it begins, or blocks waiting for all these
locks to become availabe. This scheme ensures that there will not be any deadlocks
by removing one of the 4 necessary conditions for deadlock – hold while waiting.

4. Phantom problem is the situation that a transaction retrieves a collection of
objects twice and sees different results, even though it does not modify any of
these objects itself and it follows the strict 2PL protocol.

Phantom problem is a specific problem to dynamic database, so it can not occur
in a database where the set of database objects is fixed and only the values of
objects can be changed.

170 Chapter 19

5. This is due to the multiprogramming and time-sharing nature of modern operating
system. If the lock and unlock are not atomic operations, two or more transactions
can hold conflicting locks on the same object! For example, when one transaction
requests an exclusive lock, the lock manager checks and finds that no other trans-
action holds a lock on the object, therefore grants the request; If this thread is
descheduled before it has a chance to mark the lock as taken , another transaction
could start to run. This second transaction might have done the same thing and
have been granted a conflicting lock. To prevent this, the entire sequence of lock
and unlock must be atomic operations.

6. When timestamps are used for deadlock prevention, if a transaction is aborted
and re-started, it is given the same timestamp that it had originally;

On the other hand when timestamps are used for concurrency control, if a trans-
action is aborted and restarted, it is given a new, larger timestamp.

7. To understand and justify Thomas’ Write Rule fully, we need to give the complete
context when it arises.

To implement timestamp-based concurrency control scheme, the following regula-
tions are made when transaction T wants to write object O:

(a) If TS(T) < RTS(O), the write action conflicts with the most recent
read action of O, and T is therefore aborted and restarted.

(b) If TS(T) < WTS(O), a naive approach would be to abort T as well
because its write action conflicts with the most recent write of O,
and is out of timestamp order. But it turns out that we can safely
ignore such previous write and process with this new write; this is
called Thomas’ Write Rule.

(c) Otherwise, T writes O and WTS(O) is set to TS(T).

The justification is as follows: had TS(T) < RTS(O), T would have been aborted
and we would not have bothered to check the WTS(O). So to decide whether to
abort T based on WTS(O), we can assume that TS(T) >= RTS(O). If TS(T) >=
RTS(O) and TS(T) < WTS(O), then RTS(O) < WTS(O), which means the
previous write occurred immediately before this planned-new-write of O and was
never read by anyone, therefore the previous write can be safely ignored.

Exercise 19.2 Consider the following classes of schedules: serializable, conflict-seria-
lizable, view-serializable, recoverable, avoids-cascading-aborts, and strict. For each of
the following schedules, state which of the above classes it belongs to. If you cannot
decide whether a schedule belongs in a certain class based on the listed actions, explain
briefly.

Concurrency Control 171

The actions are listed in the order they are scheduled, and prefixed with the transaction
name. If a commit or abort is not shown, the schedule is incomplete; assume that
abort/commit must follow all the listed actions.

1. T1:R(X), T2:R(X), T1:W(X), T2:W(X)

2. T1:W(X), T2:R(Y), T1:R(Y), T2:R(X)

3. T1:R(X), T2:R(Y), T3:W(X), T2:R(X), T1:R(Y)

4. T1:R(X), T1:R(Y), T1:W(X), T2:R(Y), T3:W(Y), T1:W(X), T2:R(Y)

5. T1:R(X), T2:W(X), T1:W(X), T2:Abort, T1:Commit

6. T1:R(X), T2:W(X), T1:W(X), T2:Commit, T1:Commit

7. T1:W(X), T2:R(X), T1:W(X), T2:Abort, T1:Commit

8. T1:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Commit

9. T1:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Abort

10. T2: R(X), T3:W(X), T3:Commit, T1:W(Y), T1:Commit, T2:R(Y),
T2:W(Z), T2:Commit

11. T1:R(X), T2:W(X), T2:Commit, T1:W(X), T1:Commit, T3:R(X), T3:Commit

12. T1:R(X), T2:W(X), T1:W(X), T3:R(X), T1:Commit, T2:Commit, T3:Commit

Answer 19.2 Answer omitted.

Exercise 19.3 Consider the following concurrency control protocols: 2PL, Strict 2PL,
Conservative 2PL, Optimistic, Timestamp without the Thomas Write Rule, Times-
tamp with the Thomas Write Rule, and Multiversion. For each of the schedules in
Exercise 19.2, state which of these protocols allows it, that is, allows the actions to
occur in exactly the order shown.

For the timestamp-based protocols, assume that the timestamp for transaction Ti is i

and that a version of the protocol that ensures recoverability is used. Further, if the
Thomas Write Rule is used, show the equivalent serial schedule.

Answer 19.3 See the table 19.1.

Note the following abbreviations.
S-2PL: Strict 2PL; C-2PL: Conservative 2PL; Opt cc: Optimistic; TS W/O THR:
Timestamp without Thomas Write Rule; TS With THR: Timestamp without Thomas
Write Rule.

172 Chapter 19

2PL S-2PL C-2PL Opt CC TS w/o TWR TS w/ TWR Multiv.
1 N N N N N N N
2 Y N N Y Y Y Y
3 N N N Y N N Y
4 N N N Y N N Y
5 N N N Y N Y Y
6 N N N N N Y Y
7 N N N Y N N N
8 N N N N N N N
9 N N N Y N N N
10 N N N N Y Y Y
11 N N N N N Y N
12 N N N N N Y Y

Table 19.1

Thomas Write Rule is used in the following schedules, and the equivalent serial sched-
ules are shown below:
5. T1:R(X), T1:W(X), T2:Abort, T1:Commit
6. T1:R(X), T1:W(X), T2:Commit, T1:Commit
11. T1:R(X), T2:Commit, T1:W(X), T2:Commit, T3:R(X), T3:Commit

Exercise 19.4 Consider the following sequences of actions, listed in the order they
are submitted to the DBMS:

Sequence S1: T1:R(X), T2:W(X), T2:W(Y), T3:W(Y), T1:W(Y),
T1:Commit, T2:Commit, T3:Commit

Sequence S2: T1:R(X), T2:W(Y), T2:W(X), T3:W(Y), T1:W(Y),
T1:Commit, T2:Commit, T3:Commit

For each sequence and for each of the following concurrency control mechanisms, de-
scribe how the concurrency control mechanism handles the sequence.

Assume that the timestamp of transaction Ti is i. For lock-based concurrency control
mechanisms, add lock and unlock requests to the above sequence of actions as per the
locking protocol. The DBMS processes actions in the order shown. If a transaction
is blocked, assume that all of its actions are queued until it is resumed; the DBMS
continues with the next action (according to the listed sequence) of an unblocked
transaction.

Concurrency Control 173

Serializab. Conflict-serializab. Recoverab. Avoid cascading abort
1 No No No No
2 No No Yes Yes
3 Yes Yes Yes Yes
4 Yes Yes Yes Yes

Table 19.2

1. Strict 2PL with timestamps used for deadlock prevention.

2. Strict 2PL with deadlock detection. (Show the waits-for graph if a deadlock cycle
develops.)

3. Conservative (and strict, i.e., with locks held until end-of-transaction) 2PL.

4. Optimistic concurrency control.

5. Timestamp concurrency control with buffering of reads and writes (to ensure re-
coverability) and the Thomas Write Rule.

6. Multiversion concurrency control.

Answer 19.4 Answer omitted.

Exercise 19.5 For each of the following locking protocols, assuming that every trans-
action follows that locking protocol, state which of these desirable properties are en-
sured: serializability, conflict-serializability, recoverability, avoid cascading aborts.

1. Always obtain an exclusive lock before writing; hold exclusive locks until end-of-
transaction. No shared locks are ever obtained.

2. In addition to (1), obtain a shared lock before reading; shared locks can be released
at any time.

3. As in (2), and in addition, locking is two-phase.

4. As in (2), and in addition, all locks held until end-of-transaction.

Answer 19.5 See the table 19.2.

Exercise 19.6 The Venn diagram (from [76]) in Figure 19.1 shows the inclusions
between several classes of schedules. Give one example schedule for each of the regions
S1 through S12 in the diagram.

174 Chapter 19

S5

S11 S12

All Schedules

View Serializable

Conflict Serializable

Recoverable

Avoid Cascading Abort

Strict

SerialS10

S8 S9

S6

S3S2

S7

S4

S1

Figure 19.1 Venn Diagram for Classes of Schedules

Answer 19.6 Answer omitted.

Exercise 19.7 Briefly answer the following questions:

1. Draw a Venn diagram that shows the inclusions between the classes of schedules
permitted by the following concurrency control protocols: 2PL, Strict 2PL, Con-
servative 2PL, Optimistic, Timestamp without the Thomas Write Rule, Times-
tamp with the Thomas Write Rule, and Multiversion.

2. Give one example schedule for each region in the diagram.

3. Extend the Venn diagram to include the class of serializable and conflict-seriali-
zable schedules.

Answer 19.7 1. See figure 19.2.

2. (a) Here we define the following schedule first:

i. C1: T0:R(O),T0:Commit.
ii. C2: T1:Begin,T2:Begin,T1:W(A),T1:Commit,T2:R(A),T2:Commit.
iii. C3: T4:Begin,T3:Begin,T3:W(B),T3:Commit,T4:W(B),T4:Abort.
iv. C4: T4:Begin,T3:Begin,T3:W(B),T3:Commit,T4:R(B),T4:Abort.
v. C5: T3:Begin,T4:Begin,T4:R(B),T4:Commit,T3:W(B),T3:Commit.
vi. C6: T5:Begin,T6:Begin,T6:R(D),T5:R(C),T5:Commit,

T6:W(C),T6:Commit.
vii. C7: T5:Begin,T6:Begin,T6:R(D),T5:R(C),T6:W(C),

T5:Commit,T6:Commit.
viii. C8: T5:Begin,T6:Begin,T5:R(C),T6:W(C),T5:R(D),

T5:Commit,T6:Commit.

Concurrency Control 175

Conservative 2PL

Strict 2PL

2PL

Timestamp W/O TWR

Timestamp With TWR

Multiversion

Optimistic

S4

S5 S6 S7 S8

S9 S10 S11 S12

S13 S14 S15 S16

S17 S18 S19 S20

S21 S22 S23 S24

S25 S26

S29 S30 S31 S32

S27 S28

S1 S2 S3

Figure 19.2

Then we have the following schedule for each region in the diagram.(Please
note, S1: C2,C5,C8 means that S1 is the combination of schedule C2,C5,C8.)

i. S1: C2,C5,C8
ii. S2: C2,C4,C8
iii. S3: C2,C3,C8
iv. S4: C2,C8
v. S5: C2,C5,C7
vi. S6: C2,C4,C7
vii. S7: C2,C3,C7
viii. S8: C2,C7
ix. S9: C2,C5,C6
x. S10: C2,C4,C6
xi. S11: C2,C3,C6
xii. S12: C2,C6
xiii. S13: C2,C5
xiv. S14: C2,C4
xv. S15: C2,C3
xvi. S16: C2,C1

And for the rest of 16 schedules, just remove the C2 from the corresponding
schedule.(eg, S17: C5,C8, which is made by removing C2 from S1.)

3. See figure 19.3.

176 Chapter 19

Serializable

Conservative 2PL

Strict 2PL

2PL

Timestamp W/O TWR

Timestamp With TWR

Optimistic

Multiversion

Conflict-serializable

Figure 19.3

Exercise 19.8 Answer each of the following questions briefly. The questions are based
on the following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real, did: integer)
Dept(did: integer, dname: string, floor: integer)

and on the following update command:

replace (salary = 1.1 * EMP.salary) where EMP.ename = ‘Santa’

1. Give an example of a query that would conflict with this command (in a concur-
rency control sense) if both were run at the same time. Explain what could go
wrong, and how locking tuples would solve the problem.

2. Give an example of a query or a command that would conflict with this command,
such that the conflict could not be resolved by just locking individual tuples or
pages, but requires index locking.

3. Explain what index locking is and how it resolves the preceding conflict.

Answer 19.8 Answer omitted.

Exercise 19.9 SQL-92 supports four isolation-levels and two access-modes, for a total
of eight combinations of isolation-level and access-mode. Each combination implicitly
defines a class of transactions; the following questions refer to these eight classes.

Concurrency Control 177

1. For each of the eight classes, describe a locking protocol that allows only transac-
tions in this class. Does the locking protocol for a given class make any assump-
tions about the locking protocols used for other classes? Explain briefly.

2. Consider a schedule generated by the execution of several SQL transactions. Is it
guaranteed to be conflict-serializable? to be serializable? to be recoverable?

3. Consider a schedule generated by the execution of several SQL transactions, each
of which has READ ONLY access-mode. Is it guaranteed to be conflict-serializable?
to be serializable? to be recoverable?

4. Consider a schedule generated by the execution of several SQL transactions,
each of which has SERIALIZABLE isolation-level. Is it guaranteed to be conflict-
serializable? to be serializable? to be recoverable?

5. Can you think of a timestamp-based concurrency control scheme that can support
the eight classes of SQL transactions?

Answer 19.9 1. For the class SERIALIZABLE, REPEATABLE READ and READ
COMMITTED, they rely on the assumption that other classes obtain exclusive
locks before writing objects and hold exclusive locks until the end of the transac-
tion.

(a) SERIALIZABLE+RO: Strict 2PL including locks on set of objects that it
requires to be unchanged. No exclusive locks are granted.

(b) SERIALIZABLE+RW: Strict 2PL including locks on set of objects that it
requires to be unchanged.

(c) REPEATABLE READ+RO: Strict 2PL, only locks individual objects, not
sets of objects. No exclusive locks are granted.

(d) REPEATABLE READ+RW: Strict 2PL, only locks individual objects, not
sets of objects.

(e) READ COMMITTED+RO: Obtains shared locks before reading objects, but
these locks are released immediately.

(f) READ COMMITTED+RW: Obtains exclusive locks before writing objects,
and hold these locks until the end. Obtains shared locks before reading
objects, but these locks are released immediately.

(g) READ UNCOMMITTED+RO: Do not obtain shared locks before reading
objects.

(h) READ UNCOMMITTED+RW: Obtains exclusive locks before writing ob-
jects, and hold these locks until the end. Does not obtain shared locks before
reading objects.

2. Suppose we do not have any requirements for the access-mode and isolation-level
of the transaction, then they are not guarenteed to be conflict-serializable, serial-
izable, and recoverable.

178 Chapter 19

3. For the schedule generated by the execution of several SQL transactions, each
of which has READ ONLY access-mode. It is guaranteed to be conflict-serializable,
serializable, and recoverable.

4. For the schedule generated by the execution of several SQL transactions, each of
which has SERIALIZABLE isolation-level. It is guaranteed to be conflict-serializable,
serializable, and recoverable.

5. To be finished.

Exercise 19.10 Consider the tree shown in Figure 19.5. Describe the steps involved
in executing each of the following operations according to the tree-index concurrency
control algorithm discussed in Section 19.3.2, in terms of the order in which nodes are
locked, unlocked, read and written. Be specific about the kind of lock obtained and
answer each part independently of the others, always starting with the tree shown in
Figure 19.5.

1. Search for data entry 40*.

2. Search for all data entries k∗ with k ≤ 40.

3. Insert data entry 62*.

4. Insert data entry 40*.

5. Insert data entries 62* and 75*.

Answer 19.10 Answer omitted.

Exercise 19.11 Consider a database that is organized in terms of the following hi-
erarachy of objects: The database itself is an object (D), and it contains two files
(F1 and F2), each of which contains 1000 pages (P1 . . . P1000 and P1001 . . . P2000,
respectively). Each page contains 100 records, and records are identified as p : i, where
p is the page identifier and i is the slot of the record on that page.

Multiple-granularity locking is used, with S, X , IS, IX and SIX locks, and database-
level, file-level, page-level and record-level locking. For each of the following operations,
indicate the sequence of lock requests that must be generated by a transaction that
wants to carry out (just) these operations:

1. Read record P1200 : 5.

2. Read records P1200 : 98 through P1205 : 2.

3. Read all (records on all) pages in file F1.

Concurrency Control 179

4. Read pages P500 through P520.

5. Read pages P10 through P980.

6. Read all pages in F1 and modify about 10 pages, which can be identified only
after reading F1.

7. Delete record P1200 : 98. (This is a blind write.)

8. Delete the first record from each page. (Again, these are blind writes.)

9. Delete all records.

Answer 19.11 1. IS on D; IS on F2; IS on P1200; S on P1200:5.

2. IS on D; IS on F2; IS on P1200, S on P1201 through P1204, IS on P1205; S on
P1200:98/99/100, S on P1205:1/2.

3. IS on D; S on F1

4. IS on D; IS on F1; S on P500 through P520.

5. IS on D; S on F1.

6. IS and IX on D; SIX on F1.

7. IX on D; IX on F2; X on P1200.
(Locking the whole page is not neccessary, but it would some reorganization or
compaction.)

8. IX on D; X on F1 and F2.
(There are many ways to do this, there is a tradeoff between overhead and con-
currency.)

9. IX on D; X on F1 and F2.

20
CRASH RECOVERY

Exercise 20.1 Briefly answer the following questions:

1. How does the recovery manager ensure atomicity of transactions? How does it
ensure durability?

2. What is the difference between stable storage and disk?

3. What is the difference between a system crash and a media failure?

4. Explain the WAL protocol.

5. Describe the steal and no-force policies.

Answer 20.1 1. The Recovery Manager ensures atomicity of transactions by un-
doing the actions of transactions that do not commit. It ensures durability by
making sure that all actions of committed transactions survive system crashes
and media failures.

2. Stable storage is guaranteed (with very high probability) to survive crashes and
media failures. A disk might get corrupted or fail but the stable storage is still
expected to retain whatever is stored in it. One of the ways of achieving stable
storage is to store the information in a set of disks rather than in a single disk
with some information duplicated so that the information is available even if one
or two of the disks fail.

3. A system crash happens when the system stops functioning in a normal way
or stops altogether. The Recovery Manager and other parts of the DBMS stop
functioning (e.g. a core dump caused by a bus error) as opposed to media failure.

In a media failure, the system is up and running but a particular entity of the
system is not functioning. In this case, the Recovery Manager is still functioning
and can start recovering from the failure while the system is still running (e.g., a
disk is corrupted).

180

Crash Recovery 181

4. WAL Protocol: Whenever a change is made to a database object, the change is
first recorded in the log and the log is written to stable storage before the change
is written to disk.

5. If a steal policy is in effect, the changes made to an object in the buffer pool by a
transaction can be written to disk before the transaction commits. This might be
because some other transaction might ”steal” the buffer page presently occupied
by an uncommitted transaction.

A no-force policy is in effect if, when a transaction commits, we need not ensure
that all the changes it has made to objects in the buffer pool are immediately
forced to disk.

Exercise 20.2 Briefly answer the following questions:

1. What are the properties required of LSNs?

2. What are the fields in an update log record? Explain the use of each field.

3. What are redoable log records?

4. What are the differences between update log records and CLRs?

Answer 20.2 Answer omitted.

Exercise 20.3 Briefly answer the following questions:

1. What are the roles of the Analysis, Redo and Undo phases in ARIES?

2. Consider the execution shown in Figure 20.1.

(a) What is done during Analysis? (Be precise about the points at which Analysis
begins and ends and describe the contents of any tables constructed in this
phase.)

(b) What is done during Redo? (Be precise about the points at which Redo
begins and ends.)

(c) What is done during Undo? (Be precise about the points at which Undo
begins and ends.)

Answer 20.3 1. The Analysis phase starts with the most recent begin checkpoint
record and proceeds forward in the log until the last log record. It determines

(a) The point in log at which to start the Redo pass

(b) The Dirty pages in the buffer pool at the time of the crash.

182 Chapter 20

10

20

30

40

50

60

00

end_checkpoint

begin_checkpoint

LOG LSN

update: T1 writes P5

update: T2 writes P3

update: T3 writes P3

CRASH, RESTART

T2 end

T2 commit

T1 abort70

Figure 20.1 Execution with a Crash

(c) Transactions that were active at the time of the crash which need to be
undone.

The Redo phase follows Analysis and redoes all changes to any page that might
have been dirty at the time of the crash. The Undo phase follows Redo and undoes
the changes of all transactions that were active at the time fo the crash.

2. (a) For this example, we will assume that the Dirty Page Table and Transaction
Table were empty before the start of the log. Analysis determines that the last
begin checkpoint was at LSN 00 and starts at the corresponding end checkpoint
(LSN 10).

We will denote Transaction Table records as (transID, lastLSN) and Dirty Page
Table records as (pageID, recLSN) sets.

Then Analysis phase runs till LSN 70 and does the following:

LSN 20 Adds (T1, 20) to TT and (P5, 20) to DPT
LSN 30 Adds (T2, 30) to TT and (P3, 30) to DPT
LSN 40 Changes status of T2 to ”C” from ”U”
LSN 50 Deletes entry for T2 from Transaction Table
LSN 60 Adds (T3, 60) to TT. Does not change P3 entry in DPT
LSN 70 Changes (T1, 20) to (T1, 70)

The final Transaction Table has two entries: (T1, 70), and (T3, 60). The final
Dirty Page Table has two entries: (P5, 20), and (P3, 30).

(b) Redo Phase: Redo starts at LSN 20 (smallest recLSN in DPT).

Crash Recovery 183

10

20

30

40

50

60

LSN LOG

00

update: T1 writes P1

update: T3 writes P3

70

update: T1 writes P2

update: T2 writes P3

update: T2 writes P5

update: T2 writes P5

T2 abort

T3 commit

Figure 20.2 Aborting a Transaction

LSN 20 Changes to P5 are re-done.
LSN 30 P3 is retrieved and its pageLSN is checked. If the page had been

written to disk before the crash (i.e. if pageLSN >= 30), nothing
is re-done otherwise the changes are re-done.

LSN 40,50 No action
LSN 60 Changes to P3 are redone
LSN 70 No action

(c) Undo Phase: Undo starts at LSN 70 (highest lastLSN in TT). The Loser Set
consists of LSNs 70 and 60. LSN 70: Adds LSN 20 to the Loser Set. Loser Set
= (60, 20). LSN 60: Undoes the change on P3 and adds a CLR indicating this
Undo. Loser Set = (20). LSN 20: Undoes the change on P5 and adds a CLR
indicating this Undo.

Exercise 20.4 Consider the execution shown in Figure 20.2.

1. Extend the figure to show prevLSN and undonextLSN values.

2. Describe the actions taken to rollback transaction T 2.

3. Show the log after T 2 is rolled back, including all prevLSN and undonextLSN
values in log records.

Answer 20.4 Answer omitted.

Exercise 20.5 Consider the execution shown in Figure 20.3. In addition, the system

184 Chapter 20

10

20

30

40

50

60

LSN LOG

00

70

CRASH, RESTART

T3 abort

update: T1 writes P5

T2 end

update: T3 writes P2

T2 commit

update: T3 writes P3

update: T2 writes P2

update: T1 writes P1

begin_checkpoint

end_checkpoint

80

90

Figure 20.3 Execution with Multiple Crashes

crashes during recovery after writing two log records to stable storage and again after
writing another two log records.

1. What is the value of the LSN stored in the master log record?

2. What is done during Analysis?

3. What is done during Redo?

4. What is done during Undo?

5. Show the log when recovery is complete, including all non-null prevLSN and un-
donextLSN values in log records.

Answer 20.5 1. LSN 00 is stored in the master log record as it is the LSN of the
begin checkpoint record.

2. During analysis the following happens:

Crash Recovery 185

LSN 20 Add (T1,20) to TT and (P1,20) to DPT
LSN 30 Add (T2,30) to TT and (P2,30) to DPT
LSN 40 Add (T3,40) to TT and (P3,40) to DPT
LSN 50 Change status of T2 to C
LSN 60 Change (T3,40) to (T3,60)
LSN 70 Remove T2 from TT
LSN 80 Change (T1,20) to (T1,70) and add (P5,70) to DPT
LSN 90 No action

At the end of analysis, the transaction table contains the following entries: (T1,80),
and (T3,60). The Dirty Page Table has the following entries: (P1,20), (P2,30),
(P3,40), and (P5,80).

3. Redo starts from LSN20 (minimum recLSN in DPT).

LSN 20 Check whether P1 has pageLSN more than 10 or not. Since it is a
committed transaction, we probably need not redo this update.

LSN 30 Redo the change in P2
LSN 40 Redo the change in P3
LSN 50 No action
LSN 60 Redo the changes on P2
LSN 70 No action
LSN 80 Redo the changes on P5
LSN 90 No action

4. ToUndo consists of (80, 60).

LSN 80 Undo the changes in P5. Append a CLR: Undo T1 LSN 80, set
undonextLSN = 20. Add 20 to ToUndo.

ToUndo consists of (60, 20).
LSN 60 Undo the changes on P2. Append a CLR: Undo T3 LSN 60, set

undonextLSN = 40. Add 40 to ToUndo.

ToUndo consists of (40, 20).
LSN 40 Undo the changes on P3. Append a CLR: Undo T3 LSN 40, T3

end

ToUndo consists of (20).
LSN 20 Undo the changes on P1. Append a CLR: Undo T1 LSN 20, T1

end

186 Chapter 20

5. The log looks like the following after recovery:

LSN 00 begin checkpoint
LSN 10 end checkpoint
LSN 20 update: T1 writes P1
LSN 30 update: T2 writes P2
LSN 40 update: T3 writes P3
LSN 50 T2 commit prevLSN = 30
LSN 60 update: T3 writes P2 prevLSN = 40
LSN 70 T2 end prevLSN = 50
LSN 80 update: T1 writes P5 prevLSN = 20
LSN 90 T3 abort prevLSN = 60
LSN 100 CLR: Undo T1 LSN 80 undonextLSN= 20
LSN 110 CLR: Undo T3 LSN 60 undonextLSN= 40

LSN 120,125 CLR: Undo T3 LSN 40 T3 end.
LSN 130,135 CLR: Undo T1 LSN 20 T1 end.

Exercise 20.6 Briefly answer the following questions:

1. How is checkpointing done in ARIES?

2. Checkpointing can also be done as follows: Quiesce the system so that only check-
pointing activity can be in progress, write out copies of all dirty pages, and include
the dirty page table and transaction table in the checkpoint record. What are the
pros and cons of this approach versus the checkpointing approach of ARIES?

3. What happens if a second begin checkpoint record is encountered during the Anal-
ysis phase?

4. Can a second end checkpoint record be encountered during the Analysis phase?

5. Why is the use of CLRs important for the use of undo actions that are not the
physical inverse of the original update?

6. Give an example that illustrates how the paradigm of repeating history and the
use of CLRs allow ARIES to support locks of finer granularity than a page.

Answer 20.6 Answer omitted.

Exercise 20.7 Briefly answer the following questions:

1. If the system fails repeatedly during recovery, what is the maximum number of
log records that can be written (as a function of the number of update and other
log records written before the crash) before restart completes successfully?

Crash Recovery 187

2. What is the oldest log record that we need to retain?

3. If a bounded amount of stable storage is used for the log, how can we ensure
that there is always enough stable storage to hold all log records written during
restart?

Answer 20.7 1. Let us take the case where each log record is an update record of
an uncommitted transaction and each record belongs to a different transaction.
So there are n records of n different transactions, each of which has to be undone.
So, we have to add a CLR record of the undone action and a end transaction
record after each CLR. Thus, we can write a maximum of 2n log records before
restart completes.

2. The oldest begin checkpoint referenced in any fuzzy dump or master log record.

3. Ensure that there is enough to hold twice as many records as the current number
of log records. If necessary, do a fuzzy dump to free up some log records whenever
the number of log records goes above one third of the available space.

Exercise 20.8 Consider the three conditions under which a redo is unnecessary (Sec-
tion 20.2.2).

1. Why is it cheaper to test the first two conditions?

2. Describe an execution that illustrates the use of the first condition.

3. Describe an execution that illustrates the use of the second condition.

Answer 20.8 Answer omitted.

Exercise 20.9 The description in Section 20.2.1 of the Analysis phase made the sim-
plifying assumption that no log records appeared between the begin checkpoint and
end checkpoint records for the most recent complete checkpoint. The following ques-
tions explore how such records should be handled.

1. Explain why log records could be written between the begin checkpoint and end checkpoint
records.

2. Describe how the Analysis phase could be modified to handle such records.

3. Consider the execution shown in Figure 20.4. Show the contents of the end checkpoint
record.

4. Illustrate your modified Analysis phase on the execution shown in Figure 20.4.

188 Chapter 20

10

20

30

40

LSN LOG

00 begin_checkpoint

update: T1 writes P1

update: T2 writes P2

50

60

70

80

T1 commit

CRASH, RESTART

T3 commit

end_checkpoint

update: T3 writes P3

T2 abort

T1 end

Figure 20.4 Log Records between Checkpoint Records

Answer 20.9 1. In ARIES, first a begin checkpoint record is written and then, after
some time, an end checkpoint record. While the end checkpoint record is being
constructed, the DBMS continues executing transactions and writing other log
records. So, we could have log records between the begin checkpoint and the
end checkpoint records. The only guarantee we have is that the transaction table
and the dirty page table are accurate as of the time of the begin checkpoint record.

2. The Analysis phase begins by examining the most recent begin checkpoint log
record and then searches for the next end checkpoint record. Then the Dirty Page
Table and the Transaction Table are initialized to the copies of those structures
in the end checkpoint. Our new Analysis phase remains the same till here. In
the old algorithm, Analysis then scans the log in the forward direction until it
reaches the end of the log. In the modified algorithm, Analysis goes back to the
begin checkpoint and then scans the log in the forward direction.

3. The end checkpoint record contains the transaction table and the dirty page table
as of the time of the begin checkpoint (LSN 00 in this case). Since we are assuming
these tables to be empty before LSN 00, the end checkpoint record will indicate
an empty transaction table and an empty dirty page table.

4. Instead of starting from LSN 80, Analysis goes back to LSN 10 and executes as
follows:

Crash Recovery 189

LSN 10 Add (T1,10) to TT and (P1, 10) to DPT
LSN 20 Change status of T1 from U to C.
LSN 30 Add (T2,30) to TT and (P2, 30) to DPT
LSN 40 Remove (T1,10) from TT
LSN 50 No action
LSN 60 Add (T3,60) to TT and (P3, 60) to DPT
LSN 70 No action
LSN 80 Change status of T3 from U to C.

Exercise 20.10 Answer the following questions briefly:

1. Explain how media recovery is handled in ARIES.

2. What are the pros and cons of using fuzzy dumps for media recovery?

3. What are the similarities and differences between checkpoints and fuzzy dumps?

4. Contrast ARIES with other WAL-based recovery schemes.

5. Contrast ARIES with shadow-page-based recovery.

Answer 20.10 Answer omitted.

21
PARALLEL AND DISTRIBUTED

DATABASES

Exercise 21.1 Give brief answers to the following questions:

1. What are the similarities and differences between parallel and distributed database man-

agement systems?

2. Would you expect to see a parallel database built using a wide-area network? Would

you expect to see a distributed database built using a wide-area network? Explain.

3. Define the terms scale-up and speed-up.

4. Why is a shared-nothing architecture attractive for parallel database systems?

5. The idea of building specialized hardware to run parallel database applications received

considerable attention but has fallen out of favor. Comment on this trend.

6. What are the advantages of a distributed database management system over a centralized

DBMS?

7. Briefly describe and compare the Client-Server and Collaborating Servers architectures.

8. In the Collaborating Servers architecture, when a transaction is submitted to the DBMS,

briefly describe how its activities at various sites are coordinated. In particular, describe

the role of transaction managers at the different sites, the concept of subtransactions,

and the concept of distributed transaction atomicity.

Answer 21.1 1. Parallel and distributed database management systems are similar in

form, yet differ in function. The form of both types of DBMS must include direct access

to both multiple storage devices and multiple processors. Note the stringency of the

direct access provision. Not only does the physical architecture need to include multiple

storage units and processors, but the operating system must allow the the parallel or

distributed DBMS to store or process data using a particular disk or processor. An

operating system that internally manages multiplicity and presents a single disk, single

processor platform could not support a parallel or distributed DBMS.

Both types of DBMS directly manipulate multiple storage devices and both have the

capacity to perform operations in a non-sequential fashion, but each does so for a different

functional purpose. A DBMS is made parallel primarily to improve performance by

allowing non-interdependent operations to execute simultaneously. The data locations

are chosen to optimize input/output requests from the processors. A DBMS is made

190

Parallel and Distributed Databases 191

distributed primarily to store the data in a particular location which then determines

the choice of processor. Multiple locations serve as a safety net should one site fail, and

provide quicker access to local data for geographically large organizations.

2. No, it would be unlikely to find a parallel database system built using a wide-area

network. Any performance gains from executing operations simultaneously would surely

be lost by excessive transportation costs.

Yes, a distributed database is likely to be built using a wide-area network. Multiple

copies of the data may be stored at geographically distant locations to optimize local

data requests and enhance availability in the event one site fails.

3. Speed-up is defined as the proportional decrease in processing time due to an increase in

number of disks or processors, with the amount of data held constant. In other words,

for a fixed amount of data, speed-up measures how much the speed increases due to

additional processors or disks.

Scale-up is defined as the proportional increase in data processing ability due to an

increase in the number of disks or processors, with the processing time held constant.

In other words, in a fixed amount of time, scale-up measures the data capacity increase

due to additional processors or disks.

4. The shared-nothing architecture is attractive because it allows for linear scale-up and

speed-up for an arbitrary number of processors. In contrast, the shared-memory archi-

tecture can only provide these performance gains for a fixed number of processors. After

a certain point, memory contention degrades performance and the gains from the shared

memory approach are significantly less than those from shared-nothing alternative.

5. The production of specialized hardware requires a large capital investment which in turn

requires a large market for success. While the market for database products is huge,

the sub-segment of customers willing to pay a premium for parallel performance gains

is smaller. Moreover, this sub-segment already has access to high-performance at a

lower cost with stock hardware. Recall that using standard CPUs and interconnects in

a shared nothing architecture allows for linear speed-up and scale-up. Since specialized

hardware cannot provide better performance per cost, nor can it keep pace with the

rapid development of stock hardware, there is a subsequent lack of development interest.

6. A distributed database system is superior to its centralized counterpart for several rea-

sons. First, data may be replicated at multiple locations which provides increased reli-

ability in the event that one site fails. Second, if the organization served by the DBMS

is geographically diverse and access patterns are localized, storing the data locally will

greatly reduce transportation costs thus improving performance. Finally, distributing

data in a large organization allows for greater local autonomy so that issues of only local

concern may be handled locally. A centralized database would need to coordinate too

many details, e.g. ensuring no conflicts everytime someone chooses a name for a database

object.

7. The client-server architecture draws a sharp distinction between the user and the data

storage. The client side contains a front end for the purpose of generating queries

to be sent to the server, which processes the query and responds with the data. A

collaborating-servers architecture differs in that there is a collection of servers capable

of processing queries. In addition, if data is needed from multiple servers, each unit is

capable of decomposing a large query into smaller queries, and sending them to the ap-

192 Chapter 21

propriate location. Thus in the collaborating-server architecture, servers not only store

data and process queries, but they may also act as users of other servers.

8. A transaction submitted to a collaborating-server architecture is first evaluated to de-

termine where the data is located and what optimized sub-queries will retrieve it most

efficiently. The primary server, the recipient of the initial query, then begins a transac-

tion and starts acquiring the necessary locks. The primary transaction manager acquires

local locks in the normal fashion and issues subtransaction requests to the remote servers.

The remote servers set about acquiring the necessary locks for the locally optimized plan

and communicate back to the primary transaction manager.

Once the primary transaction manager hears positive results from every remote trans-

action manager: the recovery data is stored in a safe place, the transaction commits,

and executes it its entirety. If at least one remote transaction manager replies with an

abort message or fails to respond at all, the primary transaction manager aborts the

entire transaction. Distributed transaction atomicity is then guaranteed in that either

the entire transaction executes everywhere or none of it executes anywhere.

Exercise 21.2 Give brief answers to the following questions:

1. Define the terms fragmentation and replication, in terms of where data is stored.

2. What is the difference between synchronous and asynchronous replication?

3. Define the term distributed data independence. Specifically, what does this mean with

respect to querying and with respect to updating data in the presence of data fragmen-

tation and replication?

4. Consider the voting and read-one write-all techniques for implementing synchronous

replication. What are their respective pros and cons?

5. Give an overview of how asynchronous replication can be implemented. In particular,

explain the terms capture and apply.

6. What is the difference between log-based and procedural approaches to implementing

capture?

7. Why is giving database objects unique names more complicated in a distributed DBMS?

8. Describe a catalog organization that permits any replica (of an entire relation or a frag-

ment) to be given a unique name and that provides the naming infrastructure required

for ensuring distributed data independence.

9. If information from remote catalogs is cached at other sites, what happens if the cached

information becomes outdated? How can this condition be detected and resolved?

Answer 21.2 Answer omitted.

Exercise 21.3 Consider a parallel DBMS in which each relation is stored by horizontally

partitioning its tuples across all disks.

Employees(eid: integer, did: integer, sal: real)

Departments(did: integer, mgrid: integer, budget: integer)

Parallel and Distributed Databases 193

The mgrid field of Departments is the eid of the manager. Each relation contains 20-byte

tuples, and the sal and budget fields both contain uniformly distributed values in the range

0 to 1,000,000. The Employees relation contains 100,000 pages, the Departments relation

contains 5,000 pages, and each processor has 100 buffer pages of 4,000 bytes each. The cost of

one page I/O is td, and the cost of shipping one page is ts; tuples are shipped in units of one

page by waiting for a page to be filled before sending a message from processor i to processor

j. There are no indexes, and all joins that are local to a processor are carried out using

a sort-merge join. Assume that the relations are initially partitioned using a round-robin

algorithm and that there are 10 processors.

For each of the following queries, describe the evaluation plan briefly and give its cost in terms

of td and ts. You should compute the total cost across all sites as well as the ‘elapsed time’

cost (i.e., if several operations are carried out concurrently, the time taken is the maximum

over these operations).

1. Find the highest paid employee.

2. Find the highest paid employee in the department with did 55.

3. Find the highest paid employee over all departments with budget less than 100,000.

4. Find the highest paid employee over all departments with budget less than 300,000.

5. Find the average salary over all departments with budget less than 300,000.

6. Find the salaries of all managers.

7. Find the salaries of all managers who manage a department with a budget less than

300,000 and earn more than 100,000.

8. Print the eids of all employees, ordered by increasing salaries. Each processor is connected

to a separate printer, and the answer can appear as several sorted lists, each printed by

a different processor, as long as we can obtain a fully sorted list by concatenating the

printed lists (in some order).

Answer 21.3 The round-robin partitioning implies that every tuple has a equal probability

of residing at each processor. Moreover, since the sal field of Employees and budget field of

Departments are uniformly distributed on 0 to 1,000,000, each processor must also have a

uniform distribution on this range. Also note that processing a partial page incurs the same

cost as processing an entire page and the cost of writing out the result is uniformly ignored.

Finally, recall that elapsed time is the maximum time taken for any one processor to complete

its task.

1. Find the highest paid employee.

Plan: Conduct a complete linear scan of the Employees relation at each processor re-

taining only the tuple with the highest value in sal field. All processors except one then

send their result to a chosen processor which selects the tuple with the highest value of

sal.

Total Cost = (# CPUs) ∗ (Emp pg /CPU) ∗ (I/O cost)

+ (# CPUs − 1) ∗ (send cost)

194 Chapter 21

= (10 ∗ 10, 000 ∗ td) + (9 ∗ ts)

= 100, 000 ∗ td + 9 ∗ ts

Elapsed T ime = 10, 000 ∗ td + ts

2. Find the highest paid employee in the department with did 55.

Plan: Conduct a complete linear scan of the Employees relation at each processor re-

taining only the tuple with the highest value in sal field and a did field equal to 55. All

processors except one then send their result to a chosen processor which selects the tuple

with the highest value of sal.

Total Cost: The answer is the same as for part 1 above. Even if no qualifying tuples

are found at a given processor, a page should still be sent from nine processors to a

chosen tenth. The page will either contain a real tuple or if a processor fails to find any

tuple with did equal to 55, a generated tuple with sal equal to -1 will suffice. Note that

the chosen processor must also account for the case where no tuple qualifies, simply by

ignoring any tuple with sal equal to -1 in its final selection.

Elapsed Time: The elapsed time is also the same as for part 1 above.

3. Find the highest paid employee over all departments with budget less than 100,000.

Plan: First, conduct a complete linear scan of the Departments relation at each processor

retaining only the did fields from tuples with budget less than 100,000. Recall that

Departments is uniformly distributed on the budget field from 0 to 1,000,000, thus each

processor will retain only 10% of its 500 Departments pages. Since the did field is 1/3

of a Departments tuple, the scan will result in approximately 16.7 pages which rounds

up to 17.

Second, each processor sends its 17 pages of retained did field tuples to every other pro-

cessor which subsequently stores them. 10 processors send 17 pages to 9 other processors

for a total of 1,530 sends. After sending, each processor has 170 (partially filled) pages

of Departments tuples.

Third, each processor joins the did field tuples with the Employees relation retaining

only the joined tuple with the highest value in the sal field. Let M = 170 represent the

number of Departments pages and N = 10, 000 represent the number of Employees pages

at each processor. Since the number of buffer pages, 100 ≥ √
N , the refined Sort-Merge

may be used for a join cost of 30,510 at each processor.

Fourth, all processors except one then send their result to a chosen processor which

selects the tuple with the highest value of sal.

Total Cost = scan Dept for tuples with budget < 100, 000

+ sending did field tuples from 10 processors to 9 others

+ storing did field tuples at each processor

+ joining with Emp and selecting max(sal) tuple

+ sending local results to the chosen processor

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

Parallel and Distributed Databases 195

10 ∗ 500 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 did pgs) ∗ ts

10 ∗ 9 ∗ 17 ∗ ts

1, 530 ∗ ts

+ (# CPU storing) ∗ (170 did pgs) ∗ (I/O cost)

10 ∗ 170 ∗ td

1, 700 ∗ td

+ (# CPU joining) ∗ (join cost)

10 ∗ (3 ∗ (170 + 10, 000) ∗ td)

10 ∗ 30, 510 ∗ td

305, 100 ∗ td

+ (# CPUs − 1) ∗ (send cost)

9 ∗ ts

= 5, 000 ∗ td + 1, 530 ∗ ts + 1, 700 ∗ td + 305, 100 ∗ td + 9 ∗ ts

= 311, 800 ∗ td + 1, 539 ∗ ts

Elapsed T ime = 500 ∗ td + 153 ∗ ts + 170 ∗ td + 30, 510 ∗ td + ts

= 31, 180 ∗ td + 154 ∗ ts

4. Find the highest paid employee over all departments with budget less than 300,000.

Plan: The evaluation of this query is identical to that in part 3 except that the probability

of a Departments tuple’s budget field being selected in step one is multiplied by three.

There are then 50 pages retained by each processor and sent to every other processor for

joins and maximum selection.

Total Cost = scan Dept for tuples with budget < 300, 000

+ sending did field tuples from 10 processors to 9 others

+ storing did field tuples at each processor

+ joining with Emp and selecting max(sal) tuple

+ sending local results to the chosen processor

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

10 ∗ 500 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (50 did pgs) ∗ ts

10 ∗ 9 ∗ 50 ∗ ts

4, 500 ∗ ts

+ (# CPU storing) ∗ (500 did pgs) ∗ (I/O cost)

10 ∗ 500 ∗ td

196 Chapter 21

5, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

10 ∗ (3 ∗ (500 + 10, 000) ∗ td)

10 ∗ 31, 500 ∗ td

315, 000 ∗ td

+ (# CPUs − 1) ∗ (send cost)

9 ∗ ts

= 5, 000 ∗ td + 4, 500 ∗ ts + 5, 000 ∗ td + 315, 000 ∗ td + 9 ∗ ts

= 325, 000 ∗ td + 4, 509 ∗ ts

Elapsed T ime = 500 ∗ td + 450 ∗ ts + 500 ∗ td + 31, 500 ∗ td + ts

= 32, 500 ∗ td + 451 ∗ ts

5. Find the average salary over all departments with budget less than 300,000.

Plan: The first two steps in evaluating this query are identical to part 4. Steps three

and four differ in that the desired result is an average instead of a maximum.

First, each processor conducts a complete linear scan of the Departments relation re-

taining only the did field from tuples with a budget field less than 300,000. Second, each

processor sends its result pages to every other processor. Third, each processor joins

the did field tuples with the Employees relation and retains a running sum and count

of the sal field. Fourth, each processor except one sends its sum and count to a chosen

processor which divides the total sum by the total count to obtain the average. The cost

is identical to part 4 above.

6. Find the salaries of all managers.

Plan: First, conduct a complete linear scan of the Departments relation at each processor

retaining only the mgrid field for all tuples. Since the mgrid field is 1/3 of each tuple,

there will be 167 (rounded up) resulting pages. Second, each processor sends its result

pages to every other processor which subsequently stores them. Third, each processor

joins the mgrid field tuples with Employees thus obtaining the salaries of all managers.

Total Cost = scan Dept for mgrid fields

+ sending mgrid field tuples from 10 processors to 9 others

+ storing mgrid field tuples at each processor

+ joining with Emp

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

10 ∗ 500 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (167 mgrid pgs) ∗ ts

10 ∗ 9 ∗ 167 ∗ ts

15, 030 ∗ ts

+ (# CPU storing) ∗ (1, 670 mgrid pgs) ∗ (I/O cost)

Parallel and Distributed Databases 197

10 ∗ 1, 670 ∗ td

16, 700 ∗ td

+ (# CPU joining) ∗ (join cost)

10 ∗ (3 ∗ (1, 670 + 10, 000) ∗ td)

10 ∗ 35, 010 ∗ td

350, 100 ∗ td

= 5, 000 ∗ td + 15, 030 ∗ ts + 16, 700 ∗ td + 350, 100 ∗ td

= 386, 830 ∗ td + 15, 030 ∗ ts

Elapsed T ime = 500 ∗ td + 1, 503 ∗ ts + 1, 670 ∗ td + 35, 010 ∗ td

= 38, 683 ∗ td + 1, 503 ∗ ts

7. Find the salaries of all managers who manage a department with a budget less than

300,000 and earn more than 100,000.

Plan: The evaluation of this query is similar to that of part 6. The additional selection

condition on the budget field is applied in step one and serves to reduce the number of

pages sent and joined in steps two and three. The additional selection condition on the

sal field is applied during the join in step three and has no effect on the final cost.

First, conduct a complete linear scan of the Departments relation at each processor

retaining only the mgrid field for all tuples. Since the mgrid field is 1/3 of each tuple

and there are 150 qualifying Departments pages at each processor, there will be 50

resulting pages. Second, each processor sends its result pages to every other processor

which subsequently stores them. Third, each processor joins the mgrid field tuples with

Employees thus obtaining the salaries of all managers.

Total Cost = scan Dept for mgrid fields

+ sending mgrid field tuples from 10 processors to 9 others

+ storing mgrid field tuples at each processor

+ joining with Emp

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

10 ∗ 500 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (50 mgrid pgs) ∗ ts

10 ∗ 9 ∗ 50 ∗ ts

4, 500 ∗ ts

+ (# CPU storing) ∗ (500 mgrid pgs) ∗ (I/O cost)

10 ∗ 500 ∗ td

5, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

10 ∗ (3 ∗ (500 + 10, 000) ∗ td)

198 Chapter 21

10 ∗ 31, 500 ∗ td

315, 000 ∗ td

= 5, 000 ∗ td + 4, 500 ∗ ts + 5, 000 ∗ td + 315, 000 ∗ td

= 325, 000 ∗ ts + 4, 500 ∗ ts

Elapsed T ime = 500 ∗ td + 450 ∗ ts + 500 ∗ td + 31, 500 ∗ td

= 32, 500 ∗ td + 450 ∗ ts

8. Print the eids of all employees, ordered by increasing salaries. Each processor is connected

to a separate printer, and it is acceptable to have the answer in the form of several sorted

lists, each printed by a different processor, as long as we can obtain a fully sorted list by

concatenating the printed lists (in some order).

Plan: At each processor, sort the Employees relation by the sal field and print the result.

Note that the refined Sort-Merge join may be applied without the on-the-fly merge to

sort at a cost of 3 ∗ M ∗ td.

Total Cost = (# CPU sorting) ∗ (sort cost)

= 10 ∗ (3 ∗ 10, 000 ∗ td)

= 300, 000 ∗ td

Elapsed T ime = 30, 000 ∗ td

Exercise 21.4 Consider the same scenario as in Exercise 21.3, except that the relations are

originally partitioned using range partitioning on the sal and budget fields.

Answer 21.4 Answer omitted.

Exercise 21.5 Repeat Exercises 21.3 and 21.4 with the number of processors equal to (i) 1

and (ii) 100.

Answer 21.5 Repeat of Exercise 21.3

Recall that the round-robin distribution algorithm implies that the tuples are uniformly dis-

tributed across processors. Moreover, since the Employees and Departments relations sal

and budget fields are uniformly distributed on 0 to 1,000,000, each processor must also have

a uniform distribution on this range. Since elapsed time figures are redundant for the one

processor case they are omitted. Also, assume for simplicity that the single processor has

enough buffer pages for the Sort-Merge join algorithm, i.e., 317. Finally, for the 100 processor

case, the plans are nearly identical to Exercise 20.3 and thus are also omitted.

(i) Assuming there is only 1 processor

(ii) Assuming there are 100 processors

Parallel and Distributed Databases 199

1. Find the highest paid employee

(i) Plan: Conduct a complete linear scan of all Employees tuples retaining only the one

with the highest sal value.

Cost = (# Emp pgs) ∗ (I/O cost) = 100, 000 ∗ td

(ii)

Total Cost = (# CPUs) ∗ (Emp pgs/CPU) ∗ (I/O cost)

+ (# CPUs − 1) ∗ (send cost)

= (100 ∗ 1, 000 ∗ td) + (99 ∗ ts)

= 100, 000 ∗ td + 99 ∗ ts

Elapsed T ime = 1, 000 ∗ td + ts

2. Find the highest paid employee in the department with did 55.

(i) Plan: Conduct a complete linear scan of all Employees tuples retaining only the one

with the highest sal value and did field equal to 55.

Cost = (# Emp pgs) ∗ (I/O cost)

= 100, 000 ∗ td

(ii) Total and elapsed costs are identical to part 1 above.

3. Find the highest paid employee over all departments with budget less than 100,000.

(i) Plan: join the Employees and Departments relations retaining only the one with the

highest salary and budget less than 100,000.

Cost = 3 ∗ (# Dept pgs + # Emp pgs) ∗ (I/O cost)

= 3 ∗ (100, 000 + 5, 000) ∗ td

= 315, 000 ∗ td

(ii)

Total Cost = scan Dept for tuples with budget < 100, 000

+ sending did pgs from 100 processors to 99 others

+ storing did pgs at each processor

+ joining with Emp and selecting max(sal) tuple

+ sending local results to the chosen processor

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

100 ∗ 50 ∗ td

5, 000 ∗ td

200 Chapter 21

+ (# CPU sending) ∗ (# CPU receiving) ∗ (2 did pgs) ∗ ts

100 ∗ 99 ∗ 2 ∗ ts

19, 800 ∗ ts

+ (# CPU storing) ∗ (200 did pgs) ∗ (I/O cost)

100 ∗ 200 ∗ td

20, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

100 ∗ (3 ∗ (200 + 1, 000) ∗ td)

100 ∗ 3, 600 ∗ td

360, 000 ∗ td

+ (# CPUs − 1) ∗ (send cost)

99 ∗ ts

= 5, 000 ∗ td + 19, 800 ∗ ts + 20, 000 ∗ td + 360, 000 ∗ td + 99 ∗ ts

= 385, 000 ∗ td + 19, 899 ∗ ts

Elapsed T ime = 50 ∗ td + 198 ∗ ts + 200 ∗ td + 3, 600 ∗ td + ts

= 3, 850 ∗ td + 199 ∗ ts

4. Find the highest paid employee over all departments with a budget less than 300,000.

(i) Plan: join the Employees and Departments relations retaining only the one with the

highest salary and budget less than 300,000.

Cost = 3 ∗ (# Dept pgs + # Emp pgs) ∗ (I/O cost)

= 3 ∗ (100, 000 + 5, 000) ∗ td

= 315, 000 ∗ td

(ii)

Total Cost = scan Dept for tuples with budget < 300, 000

+ sending did field pgs from 100 processors to 99 others

+ storing did field pgs at each processor

+ joining with Emp and selecting max(sal) tuple

+ sending local results to the chosen processor

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

100 ∗ 50 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (5 did pgs) ∗ ts

100 ∗ 99 ∗ 5 ∗ ts

49, 500 ∗ ts

+ (# CPU storing) ∗ (500 did pgs) ∗ (I/O cost)

Parallel and Distributed Databases 201

100 ∗ 500 ∗ td

50, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

100 ∗ (3 ∗ (500 + 1, 000) ∗ td)

10 ∗ 4, 500 ∗ td

450, 000 ∗ td

+ (# CPUs − 1) ∗ (send cost)

99 ∗ ts

= 5, 000 ∗ td + 49, 500 ∗ ts + 50, 000 ∗ td + 450, 000 ∗ td + 99 ∗ ts

= 495, 000 ∗ td + 49, 599 ∗ ts

Elapsed T ime = 50 ∗ td + 495 ∗ ts + 500 ∗ td + 4, 500 ∗ td + ts

= 4, 950 ∗ td + 496 ∗ ts

5. Find the average salary over all departments with budget less than 300,000.

(i) Plan: join the Employees and Departments relations retaining a running sum and

count of the sal field for join tuples with a budget field less than 300,000. Divide the sum

by the count to obtain the average.

Cost = 3 ∗ (# Dept pgs + # Emp pgs) ∗ (I/O cost)

= 3 ∗ (100, 000 + 5, 000) ∗ td

= 315, 000 ∗ td

(ii) The cost is identical to part 4 above.

6. Find the salaries of all managers.

(i) Plan: join the Employees and Departments relations at each processor retaining only

those join tuples with eid equal to mgrid.

Cost = 3 ∗ (# Dept pgs + # Emp pgs) ∗ (I/O cost)

= 3 ∗ (100, 000 + 5, 000) ∗ td

= 315, 000 ∗ td

(ii)

Total Cost = scan Dept for mgrid fields

+ sending mgrid pgs from 100 processors to 99 others

+ storing mgrid pgs at each processor

+ joining with Emp

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

100 ∗ 50 ∗ td

202 Chapter 21

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 mgrid pgs) ∗ ts

100 ∗ 99 ∗ 17 ∗ ts

168, 300 ∗ ts

+ (# CPU storing) ∗ (170 mgrid pgs) ∗ (I/O cost)

100 ∗ 170 ∗ td

17, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

100 ∗ (3 ∗ (1, 700 + 1, 000)td)

100 ∗ 8, 100 ∗ td

810, 000 ∗ td

= 5, 000 ∗ td + 168, 300 ∗ ts + 17, 000 ∗ td + 810, 000 ∗ td

= 832, 000 ∗ td + 168, 300 ∗ ts

Elapsed T ime = 50 ∗ td + 1, 683 ∗ ts + 170 ∗ td + 8, 100 ∗ td

= 8, 320 ∗ td + 1, 683 ∗ ts

7. Find the salaries of all managers who manage a department with a budget less than

300,000 and earn more than 100,000.

(i) Plan: join the Employees and Department relations retaining only those joined tuples

with budget < 300,000 and sal > 100,000.

Cost = 3 ∗ (# Dept pages + # Emp pages) ∗ (I/O cost)

= 3 ∗ (100, 000 + 5, 000) ∗ td

= 315, 000 ∗ td

(ii)

Total Cost = scan Dept for mgrid fields

+ sending mgrid pgs from 100 processors to 99 others

+ storing mgrid pgs at each processor

+ joining with Emp

= (# CPU scanning) ∗ (Dept pgs/CPU) ∗ (I/O cost)

100 ∗ 50 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (5 mgrid pgs) ∗ ts

100 ∗ 99 ∗ 5 ∗ ts

49, 500 ∗ ts

+ (# CPU storing) ∗ (500 mgrid pgs) ∗ (I/O cost)

100 ∗ 500 ∗ td

Parallel and Distributed Databases 203

50, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

100 ∗ (3 ∗ (500 + 1, 000)td)

100 ∗ 4, 500 ∗ td

450, 000 ∗ td

= 5, 000 ∗ td + 49, 500 ∗ ts + 50, 000 ∗ td + 450, 000 ∗ td

= 505, 000 ∗ ts + 49, 500 ∗ ts

Elapsed T ime = 50 ∗ td + 495 ∗ ts + 500 ∗ td + 4, 500 ∗ td

= 5, 050 ∗ td + 495 ∗ ts

8. Print the eids of all employees, ordered by increasing salaries.

(i) Plan: sort the Employees relation using salary as a key and print the result.

Cost = (100, 000) ∗ (sortcost)

= 300, 000 ∗ td

(ii)

Total Cost = (# CPU sorting) ∗ (sort cost)

= 100 ∗ (3 ∗ 1, 000 ∗ td)

= 300, 000 ∗ td

Elapsed T ime = 3, 000 ∗ td

Repeat of Exercise 21.4:

Recall that in Exercise 21.3 the range partitioning places tuples with either a sal or budget

field between 0 and 10,000 at processor 1, between 10,001 and 20,000 at the processor 2, etc.

The uniform distribution of values in sal and budget implies that there are equal numbers of

tuples at each processor. Assuming 100 processors, there are 1,000 Employee tuples and 50

department tuples at each processor. Assuming there is only one processor implies partitioning

is meaningless, thus the answers for part (i) are identical to those from part(i) directly above

and are omitted.

The answers below assume that there are 100 processors.

1. Find the highest paid employee.

Plan: The tuple with the highest sal value is located at processor 100. Conduct a

complete linear scan of the Employees relation there retaining the tuple with the highest

value in the sal field.

204 Chapter 21

Total Cost = (# of Emp pgs at CPU 100) ∗ (I/O cost)

= 1, 000 ∗ td

Elapsed T ime = 1, 000 ∗ td

2. Find the highest paid employee in the department with did 55.

Plan: Since there is no guarantee that such a tuple might exist at any given processor,

conduct a complete linear scan of all Employees tuples at each processor retaining the

one with the highest sal value and did 55. Each processor except one should then send

their result to a chosen processor which selects the tuple with the highest value in the

sal field.

Total Cost = (# CPU scanning) ∗ (# of Emp pgs/CPU) ∗ (I/O cost)

+ (#CPUs − 1) ∗ (sendcost)

= 100 ∗ 1, 000 ∗ td

+ 99 ∗ ts

= 100, 000 ∗ td + 99 ∗ ts

Elapsed T ime = 1, 000 ∗ td + ts

3. Find the highest paid employee over all departments with budget less than 100,000.

Plan: Department tuples with a budget field less than 100,000 must be located at pro-

cessors 1 through 10. The highest paid employees are located at the higher numbered

processors, however; as in the 2. above, there is no guarantee that any processor has

an Employees tuple with a particular did field value. So, processors 1 through 10 must

conduct a complete linear scan of Departments retaining only the did field. The results

are then sent to all processors which store and join them with the Employees relation

retaining only the join tuple with the highest sal value. Finally, each processor except

one sends the result to a chosen processor which selects the Employees tuple with the

highest sal value.

Total Cost = scan Dept for did fields at first ten CPUs

+ sending did pgs from 10 CPUs to 99 CPUs

+ storing did pgs at each processor

+ joining did with Emp

+ sending local results to chosen processor

= (# CPUs w/budget < 100, 000) ∗ (# Dept pgs) ∗ (I/Ocost)

(10 CPUs) ∗ (50 pgs/CPU) ∗ td

10 ∗ 50 ∗ td

500 ∗ td

Parallel and Distributed Databases 205

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 did pgs) ∗ ts

10 ∗ 99 ∗ 17 ∗ ts

10 ∗ 1, 683 ∗ ts

16, 830 ∗ ts

+ (# CPU storing) ∗ (170 did pgs) ∗ (I/O cost)

100 ∗ 170 ∗ td

17, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

100 ∗ (3 ∗ (170 ∗ 1, 000) ∗ td)

351, 000 ∗ td

+ (# CPUs − 1) ∗ (send cost)

99 ∗ ts

= 500 ∗ td + 16, 830 ∗ ts + 17, 000 ∗ td + 351, 000 ∗ td + 99 ∗ ts

= 368, 500 ∗ td + 16, 929 ∗ ts

Elapsed T ime = 50 ∗ td + 1, 683 ∗ ts + 170 ∗ td + 3, 510 ∗ td + ts

= 3, 730 ∗ td + 1, 684 ∗ ts

4. Find the highest paid employee over all departments with a budget less than 300,000.

Plan: The plan is identical to that for part 3 above except that now the first 30 processors

must create relations of did fields and send them to all other processors.

Total Cost = scan Dept for did fields at first thirty CPUs

+ sending did field pgs from 30 CPUs to 99 CPUs

+ storing did field pgs at each processor

+ joining did field tuples with Emp tuples

+ sending local results to chosen processor

= (# CPUs w/budget < 300, 000) ∗ (# Dept pgs) ∗ (I/O cost)

(30 CPUs) ∗ (50 pgs/CPU) ∗ td

30 ∗ 50 ∗ td

1, 500 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 did pgs) ∗ ts

30 ∗ 99 ∗ 17 ∗ ts

30 ∗ 1, 683 ∗ ts

50, 490 ∗ ts

+ (# CPU storing) ∗ (51 did field pgs) ∗ (I/O cost)

100 ∗ 51 ∗ td

5, 100 ∗ td

+ (# CPU joining) ∗ (join cost)

206 Chapter 21

100 ∗ (3 ∗ (170 ∗ 1, 000) ∗ td)

351, 000 ∗ td

+ (# CPUs − 1) ∗ (send cost)

99 ∗ ts

= 1, 500 ∗ td + 50, 490 ∗ ts + 5, 100 ∗ td + 351, 000 ∗ td + 99 ∗ ts

= 357, 600 ∗ td + 50, 589 ∗ ts

Elapsed T ime = 50 ∗ td + 1, 683 ∗ ts + 51 ∗ td + 3, 510 ∗ td + ts

= 3, 611 ∗ td + 1, 684 ∗ ts

5. Find the average salary over all departments with budget less than 300,000.

Plan: This query is similar to part 4 above. The difference is that instead of selecting

the highest salary during the join and reporting to a chosen processor, each processor

retains a running sum of the sal field and count of joined tuples. The chosen processor

then computes the total sum and divides by the total count to obtain the average. Note

that the costs are identical to part 4.

6. Find the salaries of all managers.

Plan: Employees tuples with an eid field equal to a mgrid field of a Departments relation

may be stored anywhere. Each processor should conduct a complete linear scan of its

Departments tuples retaining only the mgrid field. Then, each processor sends the result

to all others who subsequently store the mgrid relation. Next, each processor joins the

mgrid relation with Employees retaining only the sal field of joined tuples.

Total Cost = scan Dept for mgrid fields at all CPUs

+ sending mgrid field tuples from 100 CPUs to 99 CPUs

+ storing mgrid field tuples at each processor

+ joining mgrid field tuples with Emp tuples

+ sending local results to chosen processor

= (# CPUs scanning) ∗ (# Dept pgs) ∗ (I/O cost)

100 ∗ 50 ∗ td

5, 000 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 did pgs) ∗ ts

100 ∗ 99 ∗ 17 ∗ ts

100 ∗ 1, 683 ∗ ts

168, 300 ∗ ts

+ (# CPU storing) ∗ (1, 700 did field pgs) ∗ (I/O cost)

100 ∗ 1, 700 ∗ td

170, 000 ∗ td

+ (# CPU joining) ∗ (join cost)

100 ∗ (3 ∗ (1, 700 ∗ 1, 000) ∗ td)

Parallel and Distributed Databases 207

810, 000 ∗ td

+ (# CPUs − 1) ∗ (send cost)

99 ∗ ts

= 5, 000 ∗ td + 168, 300 ∗ ts + 170, 000 ∗ td + 810, 000 ∗ td + 99 ∗ ts

= 985, 000 ∗ td + 168, 399 ∗ ts

Elapsed T ime = 50 ∗ td + 1, 683 ∗ ts + 1, 700 ∗ td + 8, 100 ∗ td + ts

= 9, 850 ∗ td + 1, 684 ∗ ts

7. Find the salaries of all managers who manage a department with a budget less than

300,000 and earn more than 100,000.

Plan: Department tuples with a budget less than 300,000 are located at processors

1 through 30. Employees tuples with a sal fields greater than 100,000 are located at

processors 11 through 100. Conduct a complete linear scan of all Department tuples

retaining only the mgrid field of tuples with a budget field less than 300,000. Send the

new mgrid relation to processors 11 through 100. Next, processors 11 through 100 join

the new mgrid relation with Employees to obtain the desired result. Finally, the answer

is forwarded (costlessly) to the chosen output device.

Total Cost = scan Dept for mgrid fields at first thirty CPUs

+ sending mgrid field tuples from 10 CPUs to 90 CPUs

+ sending mgrid field tuples from 20 CPUs to 89 CPUs

+ storing mgrid field tuples at 90 CPUs

+ joining mgrid field tuples with Emp tuples in 90 CPUs

= (# CPUs scanning) ∗ (# Dept pgs/CPU) ∗ (I/O cost)

30 ∗ 50 ∗ td

1, 500 ∗ td

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 mgrid pgs) ∗ ts

10 ∗ 90 ∗ 17 ∗ ts

10 ∗ 1, 530 ∗ ts

15, 300 ∗ ts

+ (# CPU sending) ∗ (# CPU receiving) ∗ (17 mgrid pgs) ∗ ts

20 ∗ 89 ∗ 17 ∗ ts

20 ∗ 1, 513 ∗ ts

30, 260 ∗ ts

+ (# CPU storing) ∗ (51 mgrid field pgs) ∗ (I/O cost)

90 ∗ 51 ∗ td

4, 590 ∗ td

+ (# CPU joining) ∗ (join cost)

90 ∗ (3 ∗ (510 + 1, 000) ∗ td)

208 Chapter 21

90 ∗ 4, 530 ∗ td

407, 700 ∗ td

= 1, 500 ∗ td + 15, 300 ∗ ts + 30, 260 ∗ ts + 4, 590 ∗ td + 407, 700 ∗ td

= 413, 790 ∗ td + 45, 560 ∗ ts

Elapsed T ime = 50 ∗ td + 1, 530 ∗ ts + 1, 513 ∗ ts + 51 ∗ td + 4, 530 ∗ td

= 4, 631 ∗ td + 3, 043 ∗ ts

8. Print the eids of all employees, ordered by increasing salaries.

Plan: Sort the Employees relation at each processor and print it out.

Total Cost = (# CPUsorting) ∗ (sort cost)

= 100 ∗ (3 ∗ 1, 000 ∗ td)

= 300, 000 ∗ td

Elapsed T ime = 1, 000 pgs ∗ (sort cost)

Exercise 21.6 Consider the Employees and Departments relations described in Exercise

21.3. They are now stored in a distributed DBMS with all of Employees stored at Naples

and all of Departments stored at Berlin. There are no indexes on these relations. The cost of

various operations is as described in Exercise 21.3. Consider the query:

SELECT *

FROM Employees E, Departments D

WHERE E.eid = D.mgrid

The query is posed at Delhi, and you are told that only 1 percent of employees are managers.

Find the cost of answering this query using each of the following plans:

1. Compute the query at Naples by shipping Departments to Naples; then ship the result

to Delhi.

2. Compute the query at Berlin by shipping Employees to Berlin; then ship the result to

Delhi.

3. Compute the query at Delhi by shipping both relations to Delhi.

4. Compute the query at Naples using Bloomjoin; then ship the result to Delhi.

5. Compute the query at Berlin using Bloomjoin; then ship the result to Delhi.

6. Compute the query at Naples using Semijoin; then ship the result to Delhi.

7. Compute the query at Berlin using Semijoin; then ship the result to Delhi.

Answer 21.6 Answer omitted.

Parallel and Distributed Databases 209

Exercise 21.7 Consider your answers in Exercise 21.6. Which plan minimizes shipping

costs? Is it necessarily the cheapest plan? Which do you expect to be the cheapest?

Answer 21.7 Answer not available.

Exercise 21.8 Consider the Employees and Departments relations described in Exercise

21.3. They are now stored in a distributed DBMS with 10 sites. The Departments tuples are

horizontally partitioned across the 10 sites by did, with the same number of tuples assigned

to each site and with no particular order to how tuples are assigned to sites. The Employees

tuples are similarly partitioned, by sal ranges, with sal ≤ 100, 000 assigned to the first site,

100, 000 < sal ≤ 200, 000 assigned to the second site, and so on. In addition, the partition

sal ≤ 100, 000 is frequently accessed and infrequently updated, and it is therefore replicated

at every site. No other Employees partition is replicated.

1. Describe the best plan (unless a plan is specified) and give its cost:

(a) Compute the natural join of Employees and Departments using the strategy of

shipping all fragments of the smaller relation to every site containing tuples of the

larger relation.

(b) Find the highest paid employee.

(c) Find the highest paid employee with salary less than 100, 000.

(d) Find the highest paid employee with salary greater than 400, 000 and less than

500, 000.

(e) Find the highest paid employee with salary greater than 450, 000 and less than

550, 000.

(f) Find the highest paid manager for those departments stored at the query site.

(g) Find the highest paid manager.

2. Assuming the same data distribution, describe the sites visited and the locks obtained

for the following update transactions, assuming that synchronous replication is used for

the replication of Employees tuples with sal ≤ 100, 000:

(a) Give employees with salary less than 100, 000 a 10 percent raise, with a maximum

salary of 100, 000 (i.e., the raise cannot increase the salary to more than 100, 000).

(b) Give all employees a 10 percent raise. The conditions of the original partitioning

of Employees must still be satisfied after the update.

3. Assuming the same data distribution, describe the sites visited and the locks obtained

for the following update transactions, assuming that asynchronous replication is used for

the replication of Employees tuples with sal ≤ 100, 000.

(a) For all employees with salary less than 100, 000 give them a 10 percent raise, with

a maximum salary of 100, 000.

(b) Give all employees a 10 percent raise. After the update is completed, the conditions

of the original partitioning of Employees must still be satisfied.

Answer 21.8 Answer omitted.

210 Chapter 21

Exercise 21.9 Consider the Employees and Departments relations from Exercise 21.3. You

are a DBA dealing with a distributed DBMS, and you need to decide how to distribute these

two relations across two sites, Manila and Nairobi. Your DBMS supports only unclustered

B+ tree indexes. You have a choice between synchronous and asynchronous replication. For

each of the following scenarios, describe how you would distribute them and what indexes you

would build at each site. If you feel that you have insufficient information to make a decision,

explain briefly.

1. Half the departments are located in Manila, and the other half are in Nairobi. Depart-

ment information, including that for employees in the department, is changed only at the

site where the department is located, but such changes are quite frequent. (Although the

location of a department is not included in the Departments schema, this information

can be obtained from another table.)

2. Half the departments are located in Manila, and the other half are in Nairobi. Depart-

ment information, including that for employees in the department, is changed only at

the site where the department is located, but such changes are infrequent. Finding the

average salary for each department is a frequently asked query.

3. Half the departments are located in Manila, and the other half are in Nairobi. Employees

tuples are frequently changed (only) at the site where the corresponding department is lo-

cated, but the Departments relation is almost never changed. Finding a given employee’s

manager is a frequently asked query.

4. Half the employees work in Manila, and the other half work in Nairobi. Employees tuples

are frequently changed (only) at the site where they work.

Answer 21.9 1. Given that department information is frequently changed only at the site

where it is located, horizontal fragmentation based on department location (recall that

location is available in another table) will increase performance. Without knowing more

about access patterns to employee data, it is impossible to say precisely what should

be done with the Employees relation and what indexes would be useful. However, it

is likely that given its size, a similar geographically based horizontal fragmentation of

Employees along with an index on its did field would be useful in coordinating updates

to the Departments.

2. Given that department information is infrequently changed only at the site where it

is located, replication of Departments at both Manila and Nairobi will have a positive

effect. There is insufficient information given to clearly decide on asynchronous vs.

synchronous replication. On the one hand, infrequent updates to Departments suggests

that the accuracy gains from synchronous replication may outweigh the efficiency loss.

Yet on the other hand, the most frequent query is for a departmental salary average, i.e.,

not for a exact number. Hence the low utility of precision suggests that semi-frequent

asynchronous replication may be superior.

Depending on the access patterns of the departmental average salary queries, Employees

may or may not be replicated at both sites. The sheer size of Employees suggests that

replication could be very costly. Avoiding it by horizontal fragmentation on the did field

may prove optimal overall. Even if other accesses were slower, the gains in terms of

faster departmental average salary queries might tip the balance. For either replication

strategy, indexes on the did field in both Employees and Departments would greatly

enhance the speed of average salary by department queries.

Parallel and Distributed Databases 211

3. Given that Employees tuples are frequently changed at the home site, horizontal frag-

mentation is very appealing. Since the results of the queries are for a single employee’s

manager, i.e., small result relations, there is little incentive for any replication strategy

for Employees. Given that Departments almost never changes and is used for exact

answer queries, synchronous replication is the best alternative. The slight loss in effi-

ciency is easily won back in the ability to find an employees’ manager immediately. The

overhead of indexes on each of the key fields,eid and did, is also easily justified.

4. Given that half of the employees work in Manila, the other half work in Nairobi, and

Employees’ tuples are frequently changed only where they work; the obvious strategy is to

horizontally fragment Employees based on worker’s location (assuming this information

is available in another table). Indexes on Employees’ did field for each locations fragment

would also speed the frequent accesses necessary for updating the tuples.

Exercise 21.10 Suppose that the Employees relation is stored in Madison and the tuples

with sal ≤ 100, 000 are replicated at New York. Consider the following three options for lock

management: all locks managed at a single site, say, Milwaukee; primary copy with Madison

being the primary for Employees; and fully distributed. For each of the lock management

options, explain what locks are set (and at which site) for the following queries. Also state

which site the page is read from.

1. A query submitted at Austin wants to read a page containing Employees tuples with

sal ≤ 50, 000.

2. A query submitted at Madison wants to read a page containing Employees tuples with

sal ≤ 50, 000.

3. A query submitted at New York wants to read a page containing Employees tuples with

sal ≤ 50, 000.

Answer 21.10 Answer omitted.

Exercise 21.11 Briefly answer the following questions:

1. Compare the relative merits of centralized and hierarchical deadlock detection in a dis-

tributed DBMS.

2. What is a phantom deadlock? Give an example.

3. Give an example of a distributed DBMS with three sites such that no two local waits-for

graphs reveal a deadlock, yet there is a global deadlock.

4. Consider the following modification to a local waits-for graph: Add a new node Text, and

for every transaction Ti that is waiting for a lock at another site, add the edge Ti → Text.

Also add an edge Text → Ti if a transaction executing at another site is waiting for Ti

to release a lock at this site.

(a) If there is a cycle in the modified local waits-for graph that does not involve Text,

what can you conclude? If every cycle involves Text, what can you conclude?

212 Chapter 21

(b) Suppose that every site is assigned a unique integer site-id. Whenever the local

waits-for graph suggests that there might be a global deadlock, send the local waits-

for graph to the site with the next higher site-id. At that site, combine the received

graph with the local waits-for graph. If this combined graph does not indicate a

deadlock, ship it on to the next site, and so on, until either a deadlock is detected

or we are back at the site that originated this round of deadlock detection. Is this

scheme guaranteed to find a global deadlock if one exists?

Answer 21.11 1. A centralized deadlock detection scheme is better for a distributed

DBMS with uniform access patterns across sites since dead-locks occurring between

any two sites are immediately identified. However, this benefit comes at the expense of

frequent communications between the central location and every other site.

It is often the case that access patterns are more localized, perhaps by geographic area.

Since deadlocks are more likely to occur among sites with frequent communication, the

hierarchical scheme will be more efficient in that it checks for deadlocks where they are

most likely to occur. In other words, the hierarchical scheme expends deadlock detection

efforts in correlation to their probability of occurrence, thus resulting in greater efficiency.

2. A phantom deadlock is defined as a falsely identified deadlock resulting from the time

delay in sending local waits-for information to a central or parent site. A cycle appearing

in the central or parent’s global waits-for graph may in actuality have disappeared by

the time the graph nodes are received and constructed. The phantom may result in some

transactions being killed unnecessarily.

For example, imagine that transaction T1 at site A is waiting for T2 at site B which is

in turn waiting for T1. Then the local waits-for graphs are sent to the central detection

site. Meanwhile, transaction T2 aborts for an unrelated reason and T1 no longer waits.

Unfortunately for T1, the central site has identified a cycle in the global waits and chooses

to kill T1!

3. Imagine three transactions T1, T2, and T3 at sites A, B, and C respectively. Suppose

that T1 waits for T2 which in turn waits for T3. Comparing any two graphs in this

waits-for-triangle will not reveal the global deadlock.

4. (a) A cycle in the modified waits for graph not involving Text clearly indicates that the

deadlock is internal to the site with the graph. If every cycle involves Text, then there

may be a multiple-site or potentially global deadlock.

(b) The scheme is guaranteed to find a global deadlock provided that the deadlock exists

prior to when the first waits-for graph is sent. If this condition is met, then the global

deadlock will be uncovered before any node receives a graph containing its own nodes

back.

Exercise 21.12 Timestamp-based concurrency control schemes can be used in a distributed

DBMS, but we must be able to generate globally unique, monotonically increasing timestamps

without a bias in favor of any one site. One approach is to assign timestamps at a single site.

Another is to use the local clock time and to append the site-id. A third scheme is to use a

counter at each site. Compare these three approaches.

Answer 21.12 Answer omitted.

Parallel and Distributed Databases 213

Exercise 21.13 Consider the multiple-granularity locking protocol described in Chapter 18.

In a distributed DBMS the site containing the root object in the hierarchy can become a

bottleneck. You hire a database consultant who tells you to modify your protocol to allow

only intention locks on the root, and to implicitly grant all possible intention locks to every

transaction.

1. Explain why this modification works correctly, in that transactions continue to be able

to set locks on desired parts of the hierarchy.

2. Explain how it reduces the demand upon the root.

3. Why isn’t this idea included as part of the standard multiple-granularity locking protocol

for a centralized DBMS?

Answer 21.13 1. The consultant’s suggestion of allowing only intention locks on the root

works correctly because it does not prevent any transaction from obtaining a shared or

exclusive lock on any sub-structure contained within the root. Recall that to obtain a

shared lock, a transaction must first have an intention shared lock and to get an exclusive

lock it must first have an intention exclusive lock. The only limitation resulting from the

modification is that transactions wishing to modify the entire structure contained within

the root must wait to obtain the necessary locks on every child of the root node.

2. The demand upon the root is reduced for two reasons. First, no transaction may greedily

occupy the entire structure and must choose the relevant substructure. Second, the

implicit granting of all possible intention locks to every transaction requesting access to

any structure contained within the root reduces the load on the Lock Manager and the

size of the waiting or fairness queue. Transactions need not wait in line for the intention

locks. For these reasons, the bottleneck problem will be minimized.

3. This idea is not included as part of the Multiple-Granularity locking protocol for a

centralized DBMS, or in general for a distributed DBMS, because it is a custom solution

to a specific problem. The standard protocol could not predict which if any root or

sub-root structures may become bottlenecks and so as is typical of standards, it opts for

the general solution to the given problem.

Exercise 21.14 Briefly answer the following questions:

1. Explain the need for a commit protocol in a distributed DBMS.

2. Describe 2PC. Be sure to explain the need for force-writes.

3. Why are ack messages required in 2PC?

4. What are the differences between 2PC and 2PC with Presumed Abort?

5. Give an example execution sequence such that 2PC and 2PC with Presumed Abort

generate an identical sequence of actions.

6. Give an example execution sequence such that 2PC and 2PC with Presumed Abort

generate different sequences of actions.

7. What is the intuition behind 3PC? What are its pros and cons relative to 2PC?

8. Suppose that a site does not get any response from another site for a long time. Can the

first site tell whether the connecting link has failed or the other site has failed? How is

such a failure handled?

214 Chapter 21

9. Suppose that the coordinator includes a list of all subordinates in the prepare message.

If the coordinator fails after sending out either an abort or commit message, can you

suggest a way for active sites to terminate this transaction without waiting for the

coordinator to recover? Assume that some but not all of the abort/commit messages

from the coordinator are lost.

10. Suppose that 2PC with Presumed Abort is used as the commit protocol. Explain how

the system recovers from failure and deals with a particular transaction T in each of the

following cases:

(a) A subordinate site for T fails before receiving a prepare message.

(b) A subordinate site for T fails after receiving a prepare message but before making

a decision.

(c) A subordinate site for T fails after receiving a prepare message and force-writing

an abort log record but before responding to the prepare message.

(d) A subordinate site for T fails after receiving a prepare message and force-writing a

prepare log record but before responding to the prepare message.

(e) A subordinate site for T fails after receiving a prepare message, force-writing an

abort log record, and sending a no vote.

(f) The coordinator site for T fails before sending a prepare message.

(g) The coordinator site for T fails after sending a prepare message but before collecting

all votes.

(h) The coordinator site for T fails after writing an abort log record but before sending

any further messages to its subordinates.

(i) The coordinator site for T fails after writing a commit log record but before sending

any further messages to its subordinates.

(j) The coordinator site for T fails after writing an end log record. Is it possible for the

recovery process to receive an inquiry about the status of T from a subordinate?

Answer 21.14 Answer omitted.

Exercise 21.15 Consider a heterogeneous distributed DBMS.

1. Define the terms multidatabase system and gateway.

2. Describe how queries that span multiple sites are executed in a multidatabase system.

Explain the role of the gateway with respect to catalog interfaces, query optimization,

and query execution.

3. Describe how transactions that update data at multiple sites are executed in a multi-

database system. Explain the role of the gateway with respect to lock management,

distributed deadlock detection, Two-Phase Commit, and recovery.

4. Schemas at different sites in a multidatabase system are probably designed independently.

This situation can lead to semantic heterogeneity; that is, units of measure may differ

across sites (e.g., inches versus centimeters), relations containing essentially the same

kind of information (e.g., employee salaries and ages) may have slightly different schemas,

and so on. What impact does this heterogeneity have on the end user? In particular,

comment on the concept of distributed data independence in such a system.

Parallel and Distributed Databases 215

Answer 21.15 1. A multi-database system (a.k.a. heterogeneous distributed database sys-

tem) is defined as a distributed DBMS where sites operate under different DBMS pack-

ages or software. A gateway is defined as a communication protocol or standard used by

two different DBMS packages to transmit information.

2. Queries in a multi-database system originate in system designated as the primary DBMS

for the given query. Catalog interfaces provide the primary system with the information

necessary to optimize and sub-divide the query to the sub-sites where relevant data is

located. The primary system sends an optimized SQL query written in a variant of

SQL that complies with the gateway protocol. After messages are sent back and forth

to ensure compliance with locking and commit protocols, the sub-sites re-optimize their

queries based on their (presumably more current) catalog information. The sub-sites then

process the query and return the resulting tuples to the primary site which assembles

them and presents them to the user.

3. Transactions that update data at multiple sites in a heterogeneous distributed DBMS

must adhere to agreed upon locking and commit protocols just as in any DBMS with

concurrency control and recovery. In any distributed system, a series of messages are

associated with updates between sites to guarantee safe atomic transactions. In a hetero-

geneous system, communication between the different types of DBMS at different sites

occurs through the gateway. The gateway provides communication channels for lock re-

quests and responses, waits-for graphs messages, transmission of recovery logs, and the

prepare, yes, no, commit, ack, and abort messages associated with two-phase commit.

Given the diversity, frequency, and accuracy requirements of these essential communi-

cations it comes as no surprise that efficient gateways have not yet been successfully

implemented on a wide scale.

4. The existence of semantic heterogeneity may have a profoundly confusing and/or adverse

effect upon the end user. Imagine trying to understand how the average summer tem-

perature in the Sahara desert is only 50 when the measurement is mistakenly assumed

to be Fahrenheit. Or even worse, imagine investing your life savings in an security from

the London stock exchange because it seems so cheap (if it were really priced in US

dollars!). Beyond trivial unit conversions, there may even be different data structures

and relational schema at each of the distributed sites.

In these situations, the goal of distributed data independence, the idea that the user need

not know where or how the data is stored, is obviously compromised. A sophisticated

DBA could hopefully avoid the misunderstandings above by implicitly converting data

to the correct local units. More generally, the DBA could create different global views to

mask the underlying inconsistencies between sites. However, a large widely distributed

DBMS will cross cultural boundaries and whether for humor or for sorrow, will necessarily

instigate some semantic confusion.

	CONTENTS
	1 INTRODUCTION TO DATABASE SYSTEMS
	2
THE ENTITY-RELATIONSHIP MODEL
	3
THE RELATIONAL MODEL
	4
RELATIONAL ALGEBRA AND
CALCULUS
	5
SQL: QUERIES, PROGRAMMING,
TRIGGERS
	6
QUERY-BY-EXAMPLE (QBE)
	7
STORING DATA: DISKS AND FILES
	8
FILE ORGANIZATIONS AND INDEXES
	9
TREE-STRUCTURED INDEXING
	10
HASH-BASED INDEXING
	11
EXTERNAL SORTING
	12
EVALUATION OF RELATIONAL
OPERATORS
	13
INTRODUCTION TO QUERY
OPTIMIZATION
	14
A TYPICAL QUERY OPTIMIZER
	15
SCHEMA REFINEMENT AND
NORMAL FORMS
	16
PHYSICAL DATABASE DESIGN AND
TUNING
	17
SECURITY
	18
TRANSACTION MANAGEMENT
OVERVIEW
	19
CONCURRENCY CONTROL
	20
CRASH RECOVERY
	21
PARALLEL AND DISTRIBUTED
DATABASES

