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PREFACE

The advantage of doing one’s praising for oneself is that one can lay it on so thick
and exactly in the right places.

—Samuel Butler

Database management systems are now an indispensable tool for managing
information, and a course on the principles and practice of database systems
is now an integral part of computer science curricula. This book covers the
fundamentals of modern database management systems, in particular relational
database systems.

We have attempted to present the material in a clear, simple style. A quantita-
tive approach is used throughout with many detailed examples. An extensive
set of exercises (for which solutions are available online to instructors) accom-
panies each chapter and reinforces students’ ability to apply the concepts to
real problems.

The book can be used with the accompanying software and programming as-
signments in two distinct kinds of introductory courses:

1. Applications Emphasis: A course that covers the principles of database
systems, and emphasizes how they are used in developing data-intensive ap-
plications. Two new chapters on application development (one on database-
backed applications, and one on Java and Internet application architec-
tures) have been added to the third edition, and the entire book has been
extensively revised and reorganized to support such a course. A running
case-study and extensive online materials (e.g., code for SQL queries and
Java applications, online databases and solutions) make it easy to teach a
hands-on application-centric course.

2. Systems Emphasis: A course that has a strong systems emphasis and
assumes that students have good programming skills in C and C++. In
this case the accompanying Minibase software can be used as the basis
for projects in which students are asked to implement various parts of a
relational DBMS. Several central modules in the project software (e.g.,
heap files, buffer manager, B+ trees, hash indexes, various join methods)

xxiv
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are described in sufficient detail in the text to enable students to implement
them, given the (C++) class interfaces.

Many instructors will no doubt teach a course that falls between these two
extremes. The restructuring in the third edition offers a very modular orga-
nization that facilitates such hybrid courses. The also book contains enough
material to support advanced courses in a two-course sequence.

Organization of the Third Edition

The book is organized into six main parts plus a collection of advanced topics, as
shown in Figure 0.1. The Foundations chapters introduce database systems, the

(1) Foundations Both
(2) Application Development Applications emphasis
(3) Storage and Indexing Systems emphasis
(4) Query Evaluation Systems emphasis
(5) Transaction Management Systems emphasis
(6) Database Design and Tuning Applications emphasis
(7) Additional Topics Both

Figure 0.1 Organization of Parts in the Third Edition

ER model and the relational model. They explain how databases are created
and used, and cover the basics of database design and querying, including an
in-depth treatment of SQL queries. While an instructor can omit some of this
material at their discretion (e.g., relational calculus, some sections on the ER
model or SQL queries), this material is relevant to every student of database
systems, and we recommend that it be covered in as much detail as possible.

Each of the remaining five main parts has either an application or a systems
emphasis. Each of the three Systems parts has an overview chapter, designed to
provide a self-contained treatment, e.g., Chapter 8 is an overview of storage and
indexing. The overview chapters can be used to provide stand-alone coverage
of the topic, or as the first chapter in a more detailed treatment. Thus, in an
application-oriented course, Chapter 8 might be the only material covered on
file organizations and indexing, whereas in a systems-oriented course it would be
supplemented by a selection from Chapters 9 through 11. The Database Design
and Tuning part contains a discussion of performance tuning and designing for
secure access. These application topics are best covered after giving students
a good grasp of database system architecture, and are therefore placed later in
the chapter sequence.



xxvi Database Management Systems

Suggested Course Outlines

The book can be used in two kinds of introductory database courses, one with
an applications emphasis and one with a systems emphasis.

The introductory applications-oriented course could cover the Foundations chap-
ters, then the Application Development chapters, followed by the overview sys-
tems chapters, and conclude with the Database Design and Tuning material.
Chapter dependencies have been kept to a minimum, enabling instructors to
easily fine tune what material to include. The Foundations material, Part I,
should be covered first, and within Parts III, IV, and V, the overview chapters
should be covered first. The only remaining dependencies between chapters
in Parts I to VI are shown as arrows in Figure 0.2. The chapters in Part I
should be covered in sequence. However, the coverage of algebra and calculus
can be skipped in order to get to SQL queries sooner (although we believe this
material is important and recommend that it should be covered before SQL).

The introductory systems-oriented course would cover the Foundations chap-
ters and a selection of Applications and Systems chapters. An important point
for systems-oriented courses is that the timing of programming projects (e.g.,
using Minibase) makes it desirable to cover some systems topics early. Chap-
ter dependencies have been carefully limited to allow the Systems chapters to
be covered as soon as Chapters 1 and 3 have been covered. The remaining
Foundations chapters and Applications chapters can be covered subsequently.

The book also has ample material to support a multi-course sequence. Obvi-
ously, choosing an applications or systems emphasis in the introductory course
results in dropping certain material from the course; the material in the book
supports a comprehensive two-course sequence that covers both applications
and systems aspects. The Additional Topics range over a broad set of issues,
and can be used as the core material for an advanced course, supplemented
with further readings.

Supplementary Material

This book comes with extensive online supplements:

Online Chapter: To make space for new material such as application
development, information retrieval, and XML, we’ve moved the coverage
of QBE to an online chapter. Students can freely download the chapter
from the book’s web site, and solutions to exercises from this chapter are
included in solutions manual.
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Lecture Slides: Lecture slides are freely available for all chapters in
Postscript, and PDF formats. Course instructors can also obtain these
slides in Microsoft Powerpoint format, and can adapt them to their teach-
ing needs. Instructors also have access to all figures used in the book (in
xfig format), and can use them to modify the slides.
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Solutions to Chapter Exercises: The book has an unusually extensive
set of in-depth exercises. Students can obtain solutions to odd-numbered
chapter exercises and a set of lecture slides for each chapter through the
Web in Postscript and Adobe PDF formats. Course instructors can obtain
solutions to all exercises.

Software: The book comes with two kinds of software. First, we have
Minibase, a small relational DBMS intended for use in systems-oriented
courses. Minibase comes with sample assignments and solutions, as de-
scribed in Appendix 30. Access is restricted to course instructors. Second,
we offer code for all SQL and Java application development exercises in
the book, together with scripts to create sample databases, and scripts for
setting up several commercial DBMSs. Students can only access solution
code for odd-numbered exercises, whereas instructors have access to all
solutions.

Instructor’s Manual: The book comes with an online manual that of-
fers instructors comments on the material in each chapter. It provides a
summary of each chapter and identifies choices for material to emphasize
or omit. The manual also discusses the on-line supporting material for
that chapter and offers numerous suggestions for hands-on exercises and
projects. Finally, it includes samples of examination papers from courses
taught by the authors using the book. It is restricted to course instructors.

For More Information

The home page for this book is at URL:

http://www.cs.wisc.edu/˜ dbbook

It contains a list of the changes between the 2nd and 3rd editions, and a fre-
quently updated link to all known errors in the book and its accompanying

supplements. Instructors should visit this site periodically or register at this
site to be notified of important changes by email.
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1
OVERVIEW OF

DATABASE SYSTEMS

☛ What is a DBMS, in particular, a relational DBMS?

☛ Why should we consider a DBMS to manage data?

☛ How is application data represented in a DBMS?

☛ How is data in a DBMS retrieved and manipulated?

☛ How does a DBMS support concurrent access and protect data during
system failures?

☛ What are the main components of a DBMS?

☛ Who is involved with databases in real life?

➽ Key concepts: database management, data independence, database
design, data model; relational databases and queries; schemas, levels
of abstraction; transactions, concurrency and locking, recovery and
logging; DBMS architecture; database administrator, application pro-
grammer, end user

Has everyone noticed that all the letters of the word database are typed with
the left hand? Now the layout of the QWERTY typewriter keyboard was designed,
among other things, to facilitate the even use of both hands. It follows, therefore,
that writing about databases is not only unnatural, but a lot harder than it appears.

—Anonymous

The amount of information available to us is literally exploding, and the value
of data as an organizational asset is widely recognized. To get the most out of
their large and complex datasets, users require tools that simplify the tasks of

3
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The area of database management systems is a microcosm of computer sci-
ence in general. The issues addressed and the techniques used span a wide
spectrum, including languages, object-orientation and other programming
paradigms, compilation, operating systems, concurrent programming, data
structures, algorithms, theory, parallel and distributed systems, user inter-
faces, expert systems and artificial intelligence, statistical techniques, and
dynamic programming. We cannot go into all these aspects of database
management in one book, but we hope to give the reader a sense of the
excitement in this rich and vibrant discipline.

managing the data and extracting useful information in a timely fashion. Oth-
erwise, data can become a liability, with the cost of acquiring it and managing
it far exceeding the value derived from it.

A database is a collection of data, typically describing the activities of one or
more related organizations. For example, a university database might contain
information about the following:

Entities such as students, faculty, courses, and classrooms.

Relationships between entities, such as students’ enrollment in courses,
faculty teaching courses, and the use of rooms for courses.

A database management system, or DBMS, is software designed to assist
in maintaining and utilizing large collections of data. The need for such systems,
as well as their use, is growing rapidly. The alternative to using a DBMS is
to store the data in files and write application-specific code to manage it. The
use of a DBMS has several important advantages, as we will see in Section 1.4.

1.1 MANAGING DATA

The goal of this book is to present an in-depth introduction to database man-
agement systems, with an emphasis on how to design a database and use a
DBMS effectively. Not surprisingly, many decisions about how to use a DBMS
for a given application depend on what capabilities the DBMS supports effi-
ciently. Therefore, to use a DBMS well, it is necessary to also understand how
a DBMS works.

Many kinds of database management systems are in use, but this book concen-
trates on relational database systems (RDBMSs), which are by far the
dominant type of DBMS today. The following questions are addressed in the
core chapters of this book:



Overview of Database Systems 5

1. Database Design and Application Development: How can a user
describe a real-world enterprise (e.g., a university) in terms of the data
stored in a DBMS? What factors must be considered in deciding how to
organize the stored data? How can we develop applications that rely upon
a DBMS? (Chapters 2, 3, 6, 7, 19, 20, and 21.)

2. Data Analysis: How can a user answer questions about the enterprise by
posing queries over the data in the DBMS? (Chapters 4 and 5.)1

3. Concurrency and Robustness: How does a DBMS allow many users to
access data concurrently, and how does it protect the data in the event of
system failures? (Chapters 16, 17, and 18.)

4. Efficiency and Scalability: How does a DBMS store large datasets and
answer questions against this data efficiently? (Chapters 8, 9, 10, 11, 12,
13, 14, and 15.)

Later chapters cover important and rapidly evolving topics, such as parallel and
distributed database management, data warehousing and complex queries for
decision support, data mining, databases and information retrieval, XML repos-
itories, object databases, spatial data management, and rule-oriented DBMS
extensions.

In the rest of this chapter, we introduce these issues. In Section 1.2, we be-
gin with a brief history of the field and a discussion of the role of database
management in modern information systems. We then identify the benefits of
storing data in a DBMS instead of a file system in Section 1.3, and discuss
the advantages of using a DBMS to manage data in Section 1.4. In Section
1.5, we consider how information about an enterprise should be organized and
stored in a DBMS. A user probably thinks about this information in high-level
terms that correspond to the entities in the organization and their relation-
ships, whereas the DBMS ultimately stores data in the form of (many, many)
bits. The gap between how users think of their data and how the data is ul-
timately stored is bridged through several levels of abstraction supported by
the DBMS. Intuitively, a user can begin by describing the data in fairly high-
level terms, then refine this description by considering additional storage and
representation details as needed.

In Section 1.6, we consider how users can retrieve data stored in a DBMS and
the need for techniques to efficiently compute answers to questions involving
such data. In Section 1.7, we provide an overview of how a DBMS supports
concurrent access to data by several users and how it protects the data in the
event of system failures.

1An online chapter on Query-by-Example (QBE) is also available.
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We then briefly describe the internal structure of a DBMS in Section 1.8, and
mention various groups of people associated with the development and use of
a DBMS in Section 1.9.

1.2 A HISTORICAL PERSPECTIVE

From the earliest days of computers, storing and manipulating data have been a
major application focus. The first general-purpose DBMS, designed by Charles
Bachman at General Electric in the early 1960s, was called the Integrated Data
Store. It formed the basis for the network data model, which was standardized
by the Conference on Data Systems Languages (CODASYL) and strongly in-
fluenced database systems through the 1960s. Bachman was the first recipient
of ACM’s Turing Award (the computer science equivalent of a Nobel Prize) for
work in the database area; he received the award in 1973.

In the late 1960s, IBM developed the Information Management System (IMS)
DBMS, used even today in many major installations. IMS formed the basis for
an alternative data representation framework called the hierarchical data model.
The SABRE system for making airline reservations was jointly developed by
American Airlines and IBM around the same time, and it allowed several people
to access the same data through a computer network. Interestingly, today the
same SABRE system is used to power popular Web-based travel services such
as Travelocity.

In 1970, Edgar Codd, at IBM’s San Jose Research Laboratory, proposed a new
data representation framework called the relational data model. This proved to
be a watershed in the development of database systems: It sparked the rapid
development of several DBMSs based on the relational model, along with a rich
body of theoretical results that placed the field on a firm foundation. Codd
won the 1981 Turing Award for his seminal work. Database systems matured
as an academic discipline, and the popularity of relational DBMSs changed the
commercial landscape. Their benefits were widely recognized, and the use of
DBMSs for managing corporate data became standard practice.

In the 1980s, the relational model consolidated its position as the dominant
DBMS paradigm, and database systems continued to gain widespread use. The
SQL query language for relational databases, developed as part of IBM’s Sys-
tem R project, is now the standard query language. SQL was standardized
in the late 1980s, and the current standard, SQL:1999, was adopted by the
American National Standards Institute (ANSI) and International Organization
for Standardization (ISO). Arguably, the most widely used form of concurrent
programming is the concurrent execution of database programs (called trans-
actions). Users write programs as if they are to be run by themselves, and



Overview of Database Systems 7

the responsibility for running them concurrently is given to the DBMS. James
Gray won the 1999 Turing award for his contributions to database transaction
management.

In the late 1980s and the 1990s, advances were made in many areas of database
systems. Considerable research was carried out into more powerful query lan-
guages and richer data models, with emphasis placed on supporting complex
analysis of data from all parts of an enterprise. Several vendors (e.g., IBM’s
DB2, Oracle 8, Informix2 UDS) extended their systems with the ability to store
new data types such as images and text, and to ask more complex queries. Spe-
cialized systems have been developed by numerous vendors for creating data
warehouses, consolidating data from several databases, and for carrying out
specialized analysis.

An interesting phenomenon is the emergence of several enterprise resource
planning (ERP) and management resource planning (MRP) packages,
which add a substantial layer of application-oriented features on top of a DBMS.
Widely used packages include systems from Baan, Oracle, PeopleSoft, SAP,
and Siebel. These packages identify a set of common tasks (e.g., inventory
management, human resources planning, financial analysis) encountered by a
large number of organizations and provide a general application layer to carry
out these tasks. The data is stored in a relational DBMS and the application
layer can be customized to different companies, leading to lower overall costs
for the companies, compared to the cost of building the application layer from
scratch.

Most significant, perhaps, DBMSs have entered the Internet Age. While the
first generation of websites stored their data exclusively in operating systems
files, the use of a DBMS to store data accessed through a Web browser is
becoming widespread. Queries are generated through Web-accessible forms
and answers are formatted using a markup language such as HTML to be
easily displayed in a browser. All the database vendors are adding features to
their DBMS aimed at making it more suitable for deployment over the Internet.

Database management continues to gain importance as more and more data is
brought online and made ever more accessible through computer networking.
Today the field is being driven by exciting visions such as multimedia databases,
interactive video, streaming data, digital libraries, a host of scientific projects
such as the human genome mapping effort and NASA’s Earth Observation Sys-
tem project, and the desire of companies to consolidate their decision-making
processes and mine their data repositories for useful information about their
businesses. Commercially, database management systems represent one of the

2Informix was recently acquired by IBM.
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largest and most vigorous market segments. Thus the study of database sys-
tems could prove to be richly rewarding in more ways than one!

1.3 FILE SYSTEMS VERSUS A DBMS

To understand the need for a DBMS, let us consider a motivating scenario: A
company has a large collection (say, 500 GB3) of data on employees, depart-
ments, products, sales, and so on. This data is accessed concurrently by several
employees. Questions about the data must be answered quickly, changes made
to the data by different users must be applied consistently, and access to certain
parts of the data (e.g., salaries) must be restricted.

We can try to manage the data by storing it in operating system files. This
approach has many drawbacks, including the following:

We probably do not have 500 GB of main memory to hold all the data.
We must therefore store data in a storage device such as a disk or tape and
bring relevant parts into main memory for processing as needed.

Even if we have 500 GB of main memory, on computer systems with 32-bit
addressing, we cannot refer directly to more than about 4 GB of data. We
have to program some method of identifying all data items.

We have to write special programs to answer each question a user may want
to ask about the data. These programs are likely to be complex because
of the large volume of data to be searched.

We must protect the data from inconsistent changes made by different users
accessing the data concurrently. If applications must address the details of
such concurrent access, this adds greatly to their complexity.

We must ensure that data is restored to a consistent state if the system
crashes while changes are being made.

Operating systems provide only a password mechanism for security. This is
not sufficiently flexible to enforce security policies in which different users
have permission to access different subsets of the data.

A DBMS is a piece of software designed to make the preceding tasks easier. By
storing data in a DBMS rather than as a collection of operating system files,
we can use the DBMS’s features to manage the data in a robust and efficient
manner. As the volume of data and the number of users grow—hundreds of
gigabytes of data and thousands of users are common in current corporate
databases—DBMS support becomes indispensable.

3A kilobyte (KB) is 1024 bytes, a megabyte (MB) is 1024 KBs, a gigabyte (GB) is 1024 MBs, a
terabyte (TB) is 1024 GBs, and a petabyte (PB) is 1024 terabytes.
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1.4 ADVANTAGES OF A DBMS

Using a DBMS to manage data has many advantages:

Data Independence: Application programs should not, ideally, be ex-
posed to details of data representation and storage. The DBMS provides
an abstract view of the data that hides such details.

Efficient Data Access: A DBMS utilizes a variety of sophisticated tech-
niques to store and retrieve data efficiently. This feature is especially im-
portant if the data is stored on external storage devices.

Data Integrity and Security: If data is always accessed through the
DBMS, the DBMS can enforce integrity constraints. For example, before
inserting salary information for an employee, the DBMS can check that
the department budget is not exceeded. Also, it can enforce access controls
that govern what data is visible to different classes of users.

Data Administration: When several users share the data, centralizing
the administration of data can offer significant improvements. Experienced
professionals who understand the nature of the data being managed, and
how different groups of users use it, can be responsible for organizing the
data representation to minimize redundancy and for fine-tuning the storage
of the data to make retrieval efficient.

Concurrent Access and Crash Recovery: A DBMS schedules concur-
rent accesses to the data in such a manner that users can think of the data
as being accessed by only one user at a time. Further, the DBMS protects
users from the effects of system failures.

Reduced Application Development Time: Clearly, the DBMS sup-
ports important functions that are common to many applications accessing
data in the DBMS. This, in conjunction with the high-level interface to the
data, facilitates quick application development. DBMS applications are
also likely to be more robust than similar stand-alone applications because
many important tasks are handled by the DBMS (and do not have to be
debugged and tested in the application).

Given all these advantages, is there ever a reason not to use a DBMS? Some-
times, yes. A DBMS is a complex piece of software, optimized for certain kinds
of workloads (e.g., answering complex queries or handling many concurrent
requests), and its performance may not be adequate for certain specialized ap-
plications. Examples include applications with tight real-time constraints or
just a few well-defined critical operations for which efficient custom code must
be written. Another reason for not using a DBMS is that an application may
need to manipulate the data in ways not supported by the query language. In
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such a situation, the abstract view of the data presented by the DBMS does
not match the application’s needs and actually gets in the way. As an exam-
ple, relational databases do not support flexible analysis of text data (although
vendors are now extending their products in this direction).

If specialized performance or data manipulation requirements are central to an
application, the application may choose not to use a DBMS, especially if the
added benefits of a DBMS (e.g., flexible querying, security, concurrent access,
and crash recovery) are not required. In most situations calling for large-scale
data management, however, DBMSs have become an indispensable tool.

1.5 DESCRIBING AND STORING DATA IN A DBMS

The user of a DBMS is ultimately concerned with some real-world enterprise,
and the data to be stored describes various aspects of this enterprise. For
example, there are students, faculty, and courses in a university, and the data
in a university database describes these entities and their relationships.

A data model is a collection of high-level data description constructs that hide
many low-level storage details. A DBMS allows a user to define the data to be
stored in terms of a data model. Most database management systems today
are based on the relational data model, which we focus on in this book.

While the data model of the DBMS hides many details, it is nonetheless closer
to how the DBMS stores data than to how a user thinks about the underlying
enterprise. A semantic data model is a more abstract, high-level data model
that makes it easier for a user to come up with a good initial description of
the data in an enterprise. These models contain a wide variety of constructs
that help describe a real application scenario. A DBMS is not intended to
support all these constructs directly; it is typically built around a data model
with just a few basic constructs, such as the relational model. A database
design in terms of a semantic model serves as a useful starting point and is
subsequently translated into a database design in terms of the data model the
DBMS actually supports.

A widely used semantic data model called the entity-relationship (ER) model
allows us to pictorially denote entities and the relationships among them. We
cover the ER model in Chapter 2.
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An Example of Poor Design: The relational schema for Students il-
lustrates a poor design choice; you should never create a field such as age,
whose value is constantly changing. A better choice would be DOB (for
date of birth); age can be computed from this. We continue to use age in
our examples, however, because it makes them easier to read.

1.5.1 The Relational Model

In this section we provide a brief introduction to the relational model. The
central data description construct in this model is a relation, which can be
thought of as a set of records.

A description of data in terms of a data model is called a schema. In the
relational model, the schema for a relation specifies its name, the name of each
field (or attribute or column), and the type of each field. As an example,
student information in a university database may be stored in a relation with
the following schema:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

The preceding schema says that each record in the Students relation has five
fields, with field names and types as indicated. An example instance of the
Students relation appears in Figure 1.1.

sid name login age gpa

53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 1.1 An Instance of the Students Relation

Each row in the Students relation is a record that describes a student. The
description is not complete—for example, the student’s height is not included—
but is presumably adequate for the intended applications in the university
database. Every row follows the schema of the Students relation. The schema
can therefore be regarded as a template for describing a student.

We can make the description of a collection of students more precise by specify-
ing integrity constraints, which are conditions that the records in a relation
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must satisfy. For example, we could specify that every student has a unique
sid value. Observe that we cannot capture this information by simply adding
another field to the Students schema. Thus, the ability to specify uniqueness
of the values in a field increases the accuracy with which we can describe our
data. The expressiveness of the constructs available for specifying integrity
constraints is an important aspect of a data model.

Other Data Models

In addition to the relational data model (which is used in numerous systems,
including IBM’s DB2, Informix, Oracle, Sybase, Microsoft’s Access, FoxBase,
Paradox, Tandem, and Teradata), other important data models include the
hierarchical model (e.g., used in IBM’s IMS DBMS), the network model (e.g.,
used in IDS and IDMS), the object-oriented model (e.g., used in Objectstore
and Versant), and the object-relational model (e.g., used in DBMS products
from IBM, Informix, ObjectStore, Oracle, Versant, and others). While many
databases use the hierarchical and network models and systems based on the
object-oriented and object-relational models are gaining acceptance in the mar-
ketplace, the dominant model today is the relational model.

In this book, we focus on the relational model because of its wide use and im-
portance. Indeed, the object-relational model, which is gaining in popularity, is
an effort to combine the best features of the relational and object-oriented mod-
els, and a good grasp of the relational model is necessary to understand object-
relational concepts. (We discuss the object-oriented and object-relational mod-
els in Chapter 23.)

1.5.2 Levels of Abstraction in a DBMS

The data in a DBMS is described at three levels of abstraction, as illustrated
in Figure 1.2. The database description consists of a schema at each of these
three levels of abstraction: the conceptual, physical, and external.

A data definition language (DDL) is used to define the external and concep-
tual schemas. We discuss the DDL facilities of the most widely used database
language, SQL, in Chapter 3. All DBMS vendors also support SQL commands
to describe aspects of the physical schema, but these commands are not part of
the SQL language standard. Information about the conceptual, external, and
physical schemas is stored in the system catalogs (Section 12.1). We discuss
the three levels of abstraction in the rest of this section.
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Figure 1.2 Levels of Abstraction in a DBMS

Conceptual Schema

The conceptual schema (sometimes called the logical schema) describes the
stored data in terms of the data model of the DBMS. In a relational DBMS,
the conceptual schema describes all relations that are stored in the database.
In our sample university database, these relations contain information about
entities, such as students and faculty, and about relationships, such as students’
enrollment in courses. All student entities can be described using records in
a Students relation, as we saw earlier. In fact, each collection of entities and
each collection of relationships can be described as a relation, leading to the
following conceptual schema:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

Faculty(fid: string, fname: string, sal: real)
Courses(cid: string, cname: string, credits: integer)
Rooms(rno: integer, address: string, capacity: integer)
Enrolled(sid: string, cid: string, grade: string)
Teaches(fid: string, cid: string)
Meets In(cid: string, rno: integer, time: string)

The choice of relations, and the choice of fields for each relation, is not always
obvious, and the process of arriving at a good conceptual schema is called
conceptual database design. We discuss conceptual database design in
Chapters 2 and 19.
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Physical Schema

The physical schema specifies additional storage details. Essentially, the
physical schema summarizes how the relations described in the conceptual
schema are actually stored on secondary storage devices such as disks and
tapes.

We must decide what file organizations to use to store the relations and create
auxiliary data structures, called indexes, to speed up data retrieval operations.
A sample physical schema for the university database follows:

Store all relations as unsorted files of records. (A file in a DBMS is either
a collection of records or a collection of pages, rather than a string of
characters as in an operating system.)

Create indexes on the first column of the Students, Faculty, and Courses
relations, the sal column of Faculty, and the capacity column of Rooms.

Decisions about the physical schema are based on an understanding of how the
data is typically accessed. The process of arriving at a good physical schema
is called physical database design. We discuss physical database design in
Chapter 20.

External Schema

External schemas, which usually are also in terms of the data model of
the DBMS, allow data access to be customized (and authorized) at the level
of individual users or groups of users. Any given database has exactly one
conceptual schema and one physical schema because it has just one set of
stored relations, but it may have several external schemas, each tailored to a
particular group of users. Each external schema consists of a collection of one or
more views and relations from the conceptual schema. A view is conceptually
a relation, but the records in a view are not stored in the DBMS. Rather, they
are computed using a definition for the view, in terms of relations stored in the
DBMS. We discuss views in more detail in Chapters 3 and 25.

The external schema design is guided by end user requirements. For example,
we might want to allow students to find out the names of faculty members
teaching courses as well as course enrollments. This can be done by defining
the following view:

Courseinfo(cid: string, fname: string, enrollment: integer)

A user can treat a view just like a relation and ask questions about the records
in the view. Even though the records in the view are not stored explicitly,
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they are computed as needed. We did not include Courseinfo in the conceptual
schema because we can compute Courseinfo from the relations in the conceptual
schema, and to store it in addition would be redundant. Such redundancy, in
addition to the wasted space, could lead to inconsistencies. For example, a
tuple may be inserted into the Enrolled relation, indicating that a particular
student has enrolled in some course, without incrementing the value in the
enrollment field of the corresponding record of Courseinfo (if the latter also is
part of the conceptual schema and its tuples are stored in the DBMS).

1.5.3 Data Independence

A very important advantage of using a DBMS is that it offers data indepen-
dence. That is, application programs are insulated from changes in the way
the data is structured and stored. Data independence is achieved through use
of the three levels of data abstraction; in particular, the conceptual schema and
the external schema provide distinct benefits in this area.

Relations in the external schema (view relations) are in principle generated
on demand from the relations corresponding to the conceptual schema.4 If
the underlying data is reorganized, that is, the conceptual schema is changed,
the definition of a view relation can be modified so that the same relation is
computed as before. For example, suppose that the Faculty relation in our
university database is replaced by the following two relations:

Faculty public(fid: string, fname: string, office: integer)
Faculty private(fid: string, sal: real)

Intuitively, some confidential information about faculty has been placed in a
separate relation and information about offices has been added. The Courseinfo
view relation can be redefined in terms of Faculty public and Faculty private,
which together contain all the information in Faculty, so that a user who queries
Courseinfo will get the same answers as before.

Thus, users can be shielded from changes in the logical structure of the data, or
changes in the choice of relations to be stored. This property is called logical
data independence.

In turn, the conceptual schema insulates users from changes in physical storage
details. This property is referred to as physical data independence. The
conceptual schema hides details such as how the data is actually laid out on
disk, the file structure, and the choice of indexes. As long as the conceptual

4In practice, they could be precomputed and stored to speed up queries on view relations, but the
computed view relations must be updated whenever the underlying relations are updated.
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schema remains the same, we can change these storage details without altering
applications. (Of course, performance might be affected by such changes.)

1.6 QUERIES IN A DBMS

The ease with which information can be obtained from a database often de-
termines its value to a user. In contrast to older database systems, relational
database systems allow a rich class of questions to be posed easily; this feature
has contributed greatly to their popularity. Consider the sample university
database in Section 1.5.2. Here are some questions a user might ask:

1. What is the name of the student with student ID 123456?

2. What is the average salary of professors who teach course CS564?

3. How many students are enrolled in CS564?

4. What fraction of students in CS564 received a grade better than B?

5. Is any student with a GPA less than 3.0 enrolled in CS564?

Such questions involving the data stored in a DBMS are called queries. A
DBMS provides a specialized language, called the query language, in which
queries can be posed. A very attractive feature of the relational model is
that it supports powerful query languages. Relational calculus is a formal
query language based on mathematical logic, and queries in this language have
an intuitive, precise meaning. Relational algebra is another formal query
language, based on a collection of operators for manipulating relations, which
is equivalent in power to the calculus.

A DBMS takes great care to evaluate queries as efficiently as possible. We
discuss query optimization and evaluation in Chapters 12, 14, and 15. Of
course, the efficiency of query evaluation is determined to a large extent by
how the data is stored physically. Indexes can be used to speed up many
queries—in fact, a good choice of indexes for the underlying relations can speed
up each query in the preceding list. We discuss data storage and indexing in
Chapters 8, 9, 10, and 11.

A DBMS enables users to create, modify, and query data through a data
manipulation language (DML). Thus, the query language is only one part
of the DML, which also provides constructs to insert, delete, and modify data.
We will discuss the DML features of SQL in Chapter 5. The DML and DDL
are collectively referred to as the data sublanguage when embedded within
a host language (e.g., C or COBOL).
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1.7 TRANSACTION MANAGEMENT

Consider a database that holds information about airline reservations. At any
given instant, it is possible (and likely) that several travel agents are look-
ing up information about available seats on various flights and making new
seat reservations. When several users access (and possibly modify) a database
concurrently, the DBMS must order their requests carefully to avoid conflicts.
For example, when one travel agent looks up Flight 100 on some given day
and finds an empty seat, another travel agent may simultaneously be making
a reservation for that seat, thereby making the information seen by the first
agent obsolete.

Another example of concurrent use is a bank’s database. While one user’s
application program is computing the total deposits, another application may
transfer money from an account that the first application has just ‘seen’ to an
account that has not yet been seen, thereby causing the total to appear larger
than it should be. Clearly, such anomalies should not be allowed to occur.
However, disallowing concurrent access can degrade performance.

Further, the DBMS must protect users from the effects of system failures by
ensuring that all data (and the status of active applications) is restored to a
consistent state when the system is restarted after a crash. For example, if a
travel agent asks for a reservation to be made, and the DBMS responds saying
that the reservation has been made, the reservation should not be lost if the
system crashes. On the other hand, if the DBMS has not yet responded to
the request, but is making the necessary changes to the data when the crash
occurs, the partial changes should be undone when the system comes back up.

A transaction is any one execution of a user program in a DBMS. (Executing
the same program several times will generate several transactions.) This is the
basic unit of change as seen by the DBMS: Partial transactions are not allowed,
and the effect of a group of transactions is equivalent to some serial execution
of all transactions. We briefly outline how these properties are guaranteed,
deferring a detailed discussion to later chapters.

1.7.1 Concurrent Execution of Transactions

An important task of a DBMS is to schedule concurrent accesses to data so
that each user can safely ignore the fact that others are accessing the data
concurrently. The importance of this task cannot be underestimated because
a database is typically shared by a large number of users, who submit their
requests to the DBMS independently and simply cannot be expected to deal
with arbitrary changes being made concurrently by other users. A DBMS
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allows users to think of their programs as if they were executing in isolation,
one after the other in some order chosen by the DBMS. For example, if a
program that deposits cash into an account is submitted to the DBMS at the
same time as another program that debits money from the same account, either
of these programs could be run first by the DBMS, but their steps will not be
interleaved in such a way that they interfere with each other.

A locking protocol is a set of rules to be followed by each transaction (and en-
forced by the DBMS) to ensure that, even though actions of several transactions
might be interleaved, the net effect is identical to executing all transactions in
some serial order. A lock is a mechanism used to control access to database
objects. Two kinds of locks are commonly supported by a DBMS: shared
locks on an object can be held by two different transactions at the same time,
but an exclusive lock on an object ensures that no other transactions hold
any lock on this object.

Suppose that the following locking protocol is followed: Every transaction be-
gins by obtaining a shared lock on each data object that it needs to read and an

exclusive lock on each data object that it needs to modify, then releases all its

locks after completing all actions. Consider two transactions T1 and T2 such
that T1 wants to modify a data object and T2 wants to read the same object.
Intuitively, if T1’s request for an exclusive lock on the object is granted first,
T2 cannot proceed until T1 releases this lock, because T2’s request for a shared
lock will not be granted by the DBMS until then. Thus, all of T1’s actions will
be completed before any of T2’s actions are initiated. We consider locking in
more detail in Chapters 16 and 17.

1.7.2 Incomplete Transactions and System Crashes

Transactions can be interrupted before running to completion for a variety of
reasons, e.g., a system crash. A DBMS must ensure that the changes made by
such incomplete transactions are removed from the database. For example, if
the DBMS is in the middle of transferring money from account A to account
B and has debited the first account but not yet credited the second when the
crash occurs, the money debited from account A must be restored when the
system comes back up after the crash.

To do so, the DBMS maintains a log of all writes to the database. A crucial
property of the log is that each write action must be recorded in the log (on disk)
before the corresponding change is reflected in the database itself—otherwise, if
the system crashes just after making the change in the database but before the
change is recorded in the log, the DBMS would be unable to detect and undo
this change. This property is called Write-Ahead Log, or WAL. To ensure
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this property, the DBMS must be able to selectively force a page in memory to
disk.

The log is also used to ensure that the changes made by a successfully com-
pleted transaction are not lost due to a system crash, as explained in Chapter
18. Bringing the database to a consistent state after a system crash can be
a slow process, since the DBMS must ensure that the effects of all transac-
tions that completed prior to the crash are restored, and that the effects of
incomplete transactions are undone. The time required to recover from a crash
can be reduced by periodically forcing some information to disk; this periodic
operation is called a checkpoint.

1.7.3 Points to Note

In summary, there are three points to remember with respect to DBMS support
for concurrency control and recovery:

1. Every object that is read or written by a transaction is first locked in shared
or exclusive mode, respectively. Placing a lock on an object restricts its
availability to other transactions and thereby affects performance.

2. For efficient log maintenance, the DBMS must be able to selectively force
a collection of pages in main memory to disk. Operating system support
for this operation is not always satisfactory.

3. Periodic checkpointing can reduce the time needed to recover from a crash.
Of course, this must be balanced against the fact that checkpointing too
often slows down normal execution.

1.8 STRUCTURE OF A DBMS

Figure 1.3 shows the structure (with some simplification) of a typical DBMS
based on the relational data model.

The DBMS accepts SQL commands generated from a variety of user interfaces,
produces query evaluation plans, executes these plans against the database, and
returns the answers. (This is a simplification: SQL commands can be embedded
in host-language application programs, e.g., Java or COBOL programs. We
ignore these issues to concentrate on the core DBMS functionality.)

When a user issues a query, the parsed query is presented to a query opti-
mizer, which uses information about how the data is stored to produce an
efficient execution plan for evaluating the query. An execution plan is a
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blueprint for evaluating a query, usually represented as a tree of relational op-
erators (with annotations that contain additional detailed information about
which access methods to use, etc.). We discuss query optimization in Chapters
12 and 15. Relational operators serve as the building blocks for evaluating
queries posed against the data. The implementation of these operators is dis-
cussed in Chapters 12 and 14.

The code that implements relational operators sits on top of the file and access
methods layer. This layer supports the concept of a file, which, in a DBMS, is a
collection of pages or a collection of records. Heap files, or files of unordered
pages, as well as indexes are supported. In addition to keeping track of the
pages in a file, this layer organizes the information within a page. File and
page level storage issues are considered in Chapter 9. File organizations and
indexes are considered in Chapter 8.

The files and access methods layer code sits on top of the buffer manager,
which brings pages in from disk to main memory as needed in response to read
requests. Buffer management is discussed in Chapter 9.
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The lowest layer of the DBMS software deals with management of space on
disk, where the data is stored. Higher layers allocate, deallocate, read, and
write pages through (routines provided by) this layer, called the disk space
manager. This layer is discussed in Chapter 9.

The DBMS supports concurrency and crash recovery by carefully scheduling
user requests and maintaining a log of all changes to the database. DBMS com-
ponents associated with concurrency control and recovery include the trans-
action manager, which ensures that transactions request and release locks
according to a suitable locking protocol and schedules the execution transac-
tions; the lock manager, which keeps track of requests for locks and grants
locks on database objects when they become available; and the recovery man-
ager, which is responsible for maintaining a log and restoring the system to a
consistent state after a crash. The disk space manager, buffer manager, and
file and access method layers must interact with these components. We discuss
concurrency control and recovery in detail in Chapter 16.

1.9 PEOPLE WHO WORK WITH DATABASES

Quite a variety of people are associated with the creation and use of databases.
Obviously, there are database implementors, who build DBMS software,
and end users who wish to store and use data in a DBMS. Database imple-
mentors work for vendors such as IBM or Oracle. End users come from a diverse
and increasing number of fields. As data grows in complexity and volume, and
is increasingly recognized as a major asset, the importance of maintaining it
professionally in a DBMS is being widely accepted. Many end users simply use
applications written by database application programmers (see below) and so
require little technical knowledge about DBMS software. Of course, sophisti-
cated users who make more extensive use of a DBMS, such as writing their own
queries, require a deeper understanding of its features.

In addition to end users and implementors, two other classes of people are
associated with a DBMS: application programmers and database administrators.

Database application programmers develop packages that facilitate data
access for end users, who are usually not computer professionals, using the
host or data languages and software tools that DBMS vendors provide. (Such
tools include report writers, spreadsheets, statistical packages, and the like.)
Application programs should ideally access data through the external schema.
It is possible to write applications that access data at a lower level, but such
applications would compromise data independence.
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A personal database is typically maintained by the individual who owns it and
uses it. However, corporate or enterprise-wide databases are typically impor-
tant enough and complex enough that the task of designing and maintaining the
database is entrusted to a professional, called the database administrator
(DBA). The DBA is responsible for many critical tasks:

Design of the Conceptual and Physical Schemas: The DBA is re-
sponsible for interacting with the users of the system to understand what
data is to be stored in the DBMS and how it is likely to be used. Based on
this knowledge, the DBA must design the conceptual schema (decide what
relations to store) and the physical schema (decide how to store them).
The DBA may also design widely used portions of the external schema, al-
though users probably augment this schema by creating additional views.

Security and Authorization: The DBA is responsible for ensuring that
unauthorized data access is not permitted. In general, not everyone should
be able to access all the data. In a relational DBMS, users can be granted
permission to access only certain views and relations. For example, al-
though you might allow students to find out course enrollments and who
teaches a given course, you would not want students to see faculty salaries
or each other’s grade information. The DBA can enforce this policy by
giving students permission to read only the Courseinfo view.

Data Availability and Recovery from Failures: The DBA must take
steps to ensure that if the system fails, users can continue to access as much
of the uncorrupted data as possible. The DBA must also work to restore
the data to a consistent state. The DBMS provides software support for
these functions, but the DBA is responsible for implementing procedures
to back up the data periodically and maintain logs of system activity (to
facilitate recovery from a crash).

Database Tuning: Users’ needs are likely to evolve with time. The DBA
is responsible for modifying the database, in particular the conceptual and
physical schemas, to ensure adequate performance as requirements change.

1.10 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What are the main benefits of using a DBMS to manage data in applica-
tions involving extensive data access? (Sections 1.1, 1.4)

When would you store data in a DBMS instead of in operating system files
and vice-versa? (Section 1.3)



Overview of Database Systems 23

What is a data model? What is the relational data model? What is data
independence and how does a DBMS support it? (Section 1.5)

Explain the advantages of using a query language instead of custom pro-
grams to process data. (Section 1.6)

What is a transaction? What guarantees does a DBMS offer with respect
to transactions? (Section 1.7)

What are locks in a DBMS, and why are they used? What is write-ahead
logging, and why is it used? What is checkpointing and why is it used?
(Section 1.7)

Identify the main components in a DBMS and briefly explain what they
do. (Section 1.8)

Explain the different roles of database administrators, application program-
mers, and end users of a database. Who needs to know the most about
database systems? (Section 1.9)

EXERCISES

Exercise 1.1 Why would you choose a database system instead of simply storing data in
operating system files? When would it make sense not to use a database system?

Exercise 1.2 What is logical data independence and why is it important?

Exercise 1.3 Explain the difference between logical and physical data independence.

Exercise 1.4 Explain the difference between external, internal, and conceptual schemas.
How are these different schema layers related to the concepts of logical and physical data
independence?

Exercise 1.5 What are the responsibilities of a DBA? If we assume that the DBA is never
interested in running his or her own queries, does the DBA still need to understand query
optimization? Why?

Exercise 1.6 Scrooge McNugget wants to store information (names, addresses, descriptions
of embarrassing moments, etc.) about the many ducks on his payroll. Not surprisingly, the
volume of data compels him to buy a database system. To save money, he wants to buy one
with the fewest possible features, and he plans to run it as a stand-alone application on his
PC clone. Of course, Scrooge does not plan to share his list with anyone. Indicate which of
the following DBMS features Scrooge should pay for; in each case, also indicate why Scrooge
should (or should not) pay for that feature in the system he buys.

1. A security facility.

2. Concurrency control.

3. Crash recovery.

4. A view mechanism.
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5. A query language.

Exercise 1.7 Which of the following plays an important role in representing information
about the real world in a database? Explain briefly.

1. The data definition language.

2. The data manipulation language.

3. The buffer manager.

4. The data model.

Exercise 1.8 Describe the structure of a DBMS. If your operating system is upgraded to
support some new functions on OS files (e.g., the ability to force some sequence of bytes to
disk), which layer(s) of the DBMS would you have to rewrite to take advantage of these new
functions?

Exercise 1.9 Answer the following questions:

1. What is a transaction?

2. Why does a DBMS interleave the actions of different transactions instead of executing
transactions one after the other?

3. What must a user guarantee with respect to a transaction and database consistency?
What should a DBMS guarantee with respect to concurrent execution of several trans-
actions and database consistency?

4. Explain the strict two-phase locking protocol.

5. What is the WAL property, and why is it important?

PROJECT-BASED EXERCISES

Exercise 1.10 Use a Web browser to look at the HTML documentation for Minibase. Try
to get a feel for the overall architecture.
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INTRODUCTION TO

DATABASE DESIGN

☛ What are the steps in designing a database?

☛ Why is the ER model used to create an initial design?

☛ What are the main concepts in the ER model?

☛ What are guidelines for using the ER model effectively?

☛ How does database design fit within the overall design framework for
complex software within large enterprises?

☛ What is UML and how is it related to the ER model?

➽ Key concepts: database design, conceptual, logical, and physical
design; entity-relationship (ER) model, entity set, relationship set,
attribute, instance, key; integrity constraints, one-to-many and many-
to-many relationships, participation constraints; weak entities, class
hierarchies, aggregation; UML, class diagrams, database diagrams,
component diagrams.

The great successful men of the world have used their imaginations. They
think ahead and create their mental picture, and then go to work materializing that
picture in all its details, filling in here, adding a little there, altering this bit and
that bit, but steadily building, steadily building.

—Robert Collier

The entity-relationship (ER) data model allows us to describe the data involved
in a real-world enterprise in terms of objects and their relationships and is
widely used to develop an initial database design. It provides useful concepts
that allow us to move from an informal description of what users want from
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their database to a more detailed, precise description that can be implemented
in a DBMS. In this chapter, we introduce the ER model and discuss how its
features allow us to model a wide range of data faithfully.

We begin with an overview of database design in Section 2.1 in order to motivate
our discussion of the ER model. Within the larger context of the overall design
process, the ER model is used in a phase called conceptual database design.
We then introduce the ER model in Sections 2.2, 2.3, and 2.4. In Section 2.5,
we discuss database design issues involving the ER model. We briefly discuss
conceptual database design for large enterprises in Section 2.6. In Section 2.7,
we present an overview of UML, a design and modeling approach that is more
general in its scope than the ER model.

In Section 2.8, we introduce a case study that is used as a running example
throughout the book. The case study is an end-to-end database design for an
Internet shop. We illustrate the first two steps in database design (requirements
analysis and conceptual design) in Section 2.8. In later chapters, we extend this
case study to cover the remaining steps in the design process.

We note that many variations of ER diagrams are in use and no widely accepted
standards prevail. The presentation in this chapter is representative of the
family of ER models and includes a selection of the most popular features.

2.1 DATABASE DESIGN AND ER DIAGRAMS

We begin our discussion of database design by observing that this is typically
just one part, although a central part in data-intensive applications, of a larger
software system design. Our primary focus is the design of the database, how-
ever, and we will not discuss other aspects of software design in any detail. We
revisit this point in Section 2.7.

The database design process can be divided into six steps. The ER model is
most relevant to the first three steps.

1. Requirements Analysis: The very first step in designing a database
application is to understand what data is to be stored in the database,
what applications must be built on top of it, and what operations are
most frequent and subject to performance requirements. In other words,
we must find out what the users want from the database. This is usually
an informal process that involves discussions with user groups, a study
of the current operating environment and how it is expected to change,
analysis of any available documentation on existing applications that are
expected to be replaced or complemented by the database, and so on.
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Database Design Tools: Design tools are available from RDBMS ven-
dors as well as third-party vendors. For example, see the following link for
details on design and analysis tools from Sybase:
http://www.sybase.com/products/application tools

The following provides details on Oracle’s tools:
http://www.oracle.com/tools

Several methodologies have been proposed for organizing and presenting
the information gathered in this step, and some automated tools have been
developed to support this process.

2. Conceptual Database Design: The information gathered in the require-
ments analysis step is used to develop a high-level description of the data
to be stored in the database, along with the constraints known to hold over
this data. This step is often carried out using the ER model and is dis-
cussed in the rest of this chapter. The ER model is one of several high-level,
or semantic, data models used in database design. The goal is to create
a simple description of the data that closely matches how users and devel-
opers think of the data (and the people and processes to be represented in
the data). This facilitates discussion among all the people involved in the
design process, even those who have no technical background. At the same
time, the initial design must be sufficiently precise to enable a straightfor-
ward translation into a data model supported by a commercial database
system (which, in practice, means the relational model).

3. Logical Database Design: We must choose a DBMS to implement
our database design, and convert the conceptual database design into a
database schema in the data model of the chosen DBMS. We will consider
only relational DBMSs, and therefore, the task in the logical design step
is to convert an ER schema into a relational database schema. We dis-
cuss this step in detail in Chapter 3; the result is a conceptual schema,
sometimes called the logical schema, in the relational data model.

2.1.1 Beyond ER Design

The ER diagram is just an approximate description of the data, constructed
through a subjective evaluation of the information collected during require-
ments analysis. A more careful analysis can often refine the logical schema
obtained at the end of Step 3. Once we have a good logical schema, we must
consider performance criteria and design the physical schema. Finally, we must
address security issues and ensure that users are able to access the data they
need, but not data that we wish to hide from them. The remaining three steps
of database design are briefly described next:
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4. Schema Refinement: The fourth step in database design is to analyze
the collection of relations in our relational database schema to identify po-
tential problems, and to refine it. In contrast to the requirements analysis
and conceptual design steps, which are essentially subjective, schema re-
finement can be guided by some elegant and powerful theory. We discuss
the theory of normalizing relations—restructuring them to ensure some
desirable properties—in Chapter 19.

5. Physical Database Design: In this step, we consider typical expected
workloads that our database must support and further refine the database
design to ensure that it meets desired performance criteria. This step may
simply involve building indexes on some tables and clustering some tables,
or it may involve a substantial redesign of parts of the database schema
obtained from the earlier design steps. We discuss physical design and
database tuning in Chapter 20.

6. Application and Security Design: Any software project that involves
a DBMS must consider aspects of the application that go beyond the
database itself. Design methodologies like UML (Section 2.7) try to ad-
dress the complete software design and development cycle. Briefly, we must
identify the entities (e.g., users, user groups, departments) and processes
involved in the application. We must describe the role of each entity in ev-
ery process that is reflected in some application task, as part of a complete
workflow for that task. For each role, we must identify the parts of the
database that must be accessible and the parts of the database that must
not be accessible, and we must take steps to ensure that these access rules
are enforced. A DBMS provides several mechanisms to assist in this step,
and we discuss this in Chapter 21.

In the implementation phase, we must code each task in an application lan-
guage (e.g., Java), using the DBMS to access data. We discuss application
development in Chapters 6 and 7.

In general, our division of the design process into steps should be seen as a
classification of the kinds of steps involved in design. Realistically, although
we might begin with the six step process outlined here, a complete database
design will probably require a subsequent tuning phase in which all six kinds
of design steps are interleaved and repeated until the design is satisfactory.

2.2 ENTITIES, ATTRIBUTES, AND ENTITY SETS

An entity is an object in the real world that is distinguishable from other
objects. Examples include the following: the Green Dragonzord toy, the toy
department, the manager of the toy department, the home address of the man-
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ager of the toy department. It is often useful to identify a collection of similar
entities. Such a collection is called an entity set. Note that entity sets need
not be disjoint; the collection of toy department employees and the collection
of appliance department employees may both contain employee John Doe (who
happens to work in both departments). We could also define an entity set called
Employees that contains both the toy and appliance department employee sets.

An entity is described using a set of attributes. All entities in a given entity
set have the same attributes; this is what we mean by similar. (This statement
is an oversimplification, as we will see when we discuss inheritance hierarchies
in Section 2.4.4, but it suffices for now and highlights the main idea.) Our
choice of attributes reflects the level of detail at which we wish to represent
information about entities. For example, the Employees entity set could use
name, social security number (ssn), and parking lot (lot) as attributes. In this
case we will store the name, social security number, and lot number for each
employee. However, we will not store, say, an employee’s address (or gender or
age).

For each attribute associated with an entity set, we must identify a domain of
possible values. For example, the domain associated with the attribute name
of Employees might be the set of 20-character strings.1 As another example, if
the company rates employees on a scale of 1 to 10 and stores ratings in a field
called rating, the associated domain consists of integers 1 through 10. Further,
for each entity set, we choose a key. A key is a minimal set of attributes whose
values uniquely identify an entity in the set. There could be more than one
candidate key; if so, we designate one of them as the primary key. For now we
assume that each entity set contains at least one set of attributes that uniquely
identifies an entity in the entity set; that is, the set of attributes contains a key.
We revisit this point in Section 2.4.3.

The Employees entity set with attributes ssn, name, and lot is shown in Figure
2.1. An entity set is represented by a rectangle, and an attribute is represented
by an oval. Each attribute in the primary key is underlined. The domain
information could be listed along with the attribute name, but we omit this to
keep the figures compact. The key is ssn.

2.3 RELATIONSHIPS AND RELATIONSHIP SETS

A relationship is an association among two or more entities. For example, we
may have the relationship that Attishoo works in the pharmacy department.

1To avoid confusion, we assume that attribute names do not repeat across entity sets. This is not

a real limitation because we can always use the entity set name to resolve ambiguities if the same

attribute name is used in more than one entity set.
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name

lotssn

Employees

Figure 2.1 The Employees Entity Set

As with entities, we may wish to collect a set of similar relationships into a
relationship set. A relationship set can be thought of as a set of n-tuples:

{(e1, . . . , en) | e1 ∈ E1, . . . , en ∈ En}

Each n-tuple denotes a relationship involving n entities e1 through en, where
entity ei is in entity set Ei. In Figure 2.2 we show the relationship set Works In,
in which each relationship indicates a department in which an employee works.
Note that several relationship sets might involve the same entity sets. For
example, we could also have a Manages relationship set involving Employees
and Departments.

dname

budget

since

name

Works_In

lot

Departments

didssn

Employees

Figure 2.2 The Works In Relationship Set

A relationship can also have descriptive attributes. Descriptive attributes
are used to record information about the relationship, rather than about any
one of the participating entities; for example, we may wish to record that At-
tishoo works in the pharmacy department as of January 1991. This information
is captured in Figure 2.2 by adding an attribute, since, to Works In. A relation-
ship must be uniquely identified by the participating entities, without reference
to the descriptive attributes. In the Works In relationship set, for example, each
Works In relationship must be uniquely identified by the combination of em-
ployee ssn and department did. Thus, for a given employee-department pair,
we cannot have more than one associated since value.

An instance of a relationship set is a set of relationships. Intuitively, an
instance can be thought of as a ‘snapshot’ of the relationship set at some instant
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in time. An instance of the Works In relationship set is shown in Figure 2.3.
Each Employees entity is denoted by its ssn, and each Departments entity
is denoted by its did, for simplicity. The since value is shown beside each
relationship. (The ‘many-to-many’ and ‘total participation’ comments in the
figure are discussed later, when we discuss integrity constraints.)

131−24−3650

231−31−5368

223−32−6316

123−22−3666

1/1/91

3/3/93

2/2/92

3/1/92

3/1/92

51

56

60

EMPLOYEES WORKS_IN DEPARTMENTS

Many to ManyTotal participation Total participation

Figure 2.3 An Instance of the Works In Relationship Set

As another example of an ER diagram, suppose that each department has offices
in several locations and we want to record the locations at which each employee
works. This relationship is ternary because we must record an association
between an employee, a department, and a location. The ER diagram for this
variant of Works In, which we call Works In2, is shown in Figure 2.4.

dname

budget

since

Locations

Works_In2

capacity

Employees

name

lot

address

Departments

didssn

Figure 2.4 A Ternary Relationship Set

The entity sets that participate in a relationship set need not be distinct; some-
times a relationship might involve two entities in the same entity set. For ex-
ample, consider the Reports To relationship set shown in Figure 2.5. Since
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employees report to other employees, every relationship in Reports To is of
the form (emp1, emp2), where both emp1 and emp2 are entities in Employees.
However, they play different roles: emp1 reports to the managing employee
emp2, which is reflected in the role indicators supervisor and subordinate in
Figure 2.5. If an entity set plays more than one role, the role indicator concate-
nated with an attribute name from the entity set gives us a unique name for
each attribute in the relationship set. For example, the Reports To relation-
ship set has attributes corresponding to the ssn of the supervisor and the ssn
of the subordinate, and the names of these attributes are supervisor ssn and
subordinate ssn.

name

Employees

subordinate

ssn lot

supervisor

Reports_To

Figure 2.5 The Reports To Relationship Set

2.4 ADDITIONAL FEATURES OF THE ERMODEL

We now look at some of the constructs in the ER model that allow us to describe
some subtle properties of the data. The expressiveness of the ER model is a
big reason for its widespread use.

2.4.1 Key Constraints

Consider the Works In relationship shown in Figure 2.2. An employee can
work in several departments, and a department can have several employees, as
illustrated in the Works In instance shown in Figure 2.3. Employee 231-31-5368
has worked in Department 51 since 3/3/93 and in Department 56 since 2/2/92.
Department 51 has two employees.

Now consider another relationship set called Manages between the Employ-
ees and Departments entity sets such that each department has at most one
manager, although a single employee is allowed to manage more than one de-
partment. The restriction that each department has at most one manager is
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an example of a key constraint, and it implies that each Departments entity
appears in at most one Manages relationship in any allowable instance of Man-
ages. This restriction is indicated in the ER diagram of Figure 2.6 by using an
arrow from Departments to Manages. Intuitively, the arrow states that given
a Departments entity, we can uniquely determine the Manages relationship in
which it appears.

name dname

budget

since

Employees Departments

ssn lot

Manages

did

Figure 2.6 Key Constraint on Manages

An instance of the Manages relationship set is shown in Figure 2.7. While this
is also a potential instance for the Works In relationship set, the instance of
Works In shown in Figure 2.3 violates the key constraint on Manages.

131−24−3650

231−31−5368

223−32−6316

123−22−3666

51

56

60

EMPLOYEES MANAGES DEPARTMENTS

3/3/93

2/2/92

3/1/92

Partial participation One to Many Total participation

Figure 2.7 An Instance of the Manages Relationship Set

A relationship set like Manages is sometimes said to be one-to-many, to
indicate that one employee can be associated with many departments (in the
capacity of a manager), whereas each department can be associated with at
most one employee as its manager. In contrast, the Works In relationship set, in
which an employee is allowed to work in several departments and a department
is allowed to have several employees, is said to be many-to-many.



34 Chapter 2

If we add the restriction that each employee can manage at most one depart-
ment to the Manages relationship set, which would be indicated by adding
an arrow from Employees to Manages in Figure 2.6, we have a one-to-one
relationship set.

Key Constraints for Ternary Relationships

We can extend this convention—and the underlying key constraint concept—to
relationship sets involving three or more entity sets: If an entity set E has a
key constraint in a relationship set R, each entity in an instance of E appears
in at most one relationship in (a corresponding instance of) R. To indicate a
key constraint on entity set E in relationship set R, we draw an arrow from E
to R.

In Figure 2.8, we show a ternary relationship with key constraints. Each em-
ployee works in at most one department and at a single location. An instance
of the Works In3 relationship set is shown in Figure 2.9. Note that each depart-
ment can be associated with several employees and locations and each location
can be associated with several departments and employees; however, each em-
ployee is associated with a single department and location.

dname

budgetdid

since

name

ssn lot

Locations

Departments

capacity

Works_In3

address

Employees

Figure 2.8 A Ternary Relationship Set with Key Constraints

2.4.2 Participation Constraints

The key constraint on Manages tells us that a department has at most one
manager. A natural question to ask is whether every department has a man-
ager. Let us say that every department is required to have a manager. This
requirement is an example of a participation constraint; the participation of
the entity set Departments in the relationship set Manages is said to be total.
A participation that is not total is said to be partial. As an example, the
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WORKS_IN3
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Figure 2.9 An Instance of Works In3

participation of the entity set Employees in Manages is partial, since not every
employee gets to manage a department.

Revisiting the Works In relationship set, it is natural to expect that each em-
ployee works in at least one department and that each department has at least
one employee. This means that the participation of both Employees and De-
partments in Works In is total. The ER diagram in Figure 2.10 shows both
the Manages and Works In relationship sets and all the given constraints. If
the participation of an entity set in a relationship set is total, the two are con-
nected by a thick line; independently, the presence of an arrow indicates a key
constraint. The instances of Works In and Manages shown in Figures 2.3 and
2.7 satisfy all the constraints in Figure 2.10.

2.4.3 Weak Entities

Thus far, we have assumed that the attributes associated with an entity set
include a key. This assumption does not always hold. For example, suppose
that employees can purchase insurance policies to cover their dependents. We
wish to record information about policies, including who is covered by each
policy, but this information is really our only interest in the dependents of an
employee. If an employee quits, any policy owned by the employee is terminated
and we want to delete all the relevant policy and dependent information from
the database.
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name dname

ManagesManages

Works_In

lot did budget

DepartmentsEmployees

ssn

since

since

Figure 2.10 Manages and Works In

We might choose to identify a dependent by name alone in this situation, since
it is reasonable to expect that the dependents of a given employee have different
names. Thus the attributes of the Dependents entity set might be pname and
age. The attribute pname does not identify a dependent uniquely. Recall
that the key for Employees is ssn; thus we might have two employees called
Smethurst and each might have a son called Joe.

Dependents is an example of a weak entity set. A weak entity can be iden-
tified uniquely only by considering some of its attributes in conjunction with
the primary key of another entity, which is called the identifying owner.

The following restrictions must hold:

The owner entity set and the weak entity set must participate in a one-
to-many relationship set (one owner entity is associated with one or more
weak entities, but each weak entity has a single owner). This relationship
set is called the identifying relationship set of the weak entity set.

The weak entity set must have total participation in the identifying rela-
tionship set.

For example, a Dependents entity can be identified uniquely only if we take the
key of the owning Employees entity and the pname of the Dependents entity.
The set of attributes of a weak entity set that uniquely identify a weak entity
for a given owner entity is called a partial key of the weak entity set. In our
example, pname is a partial key for Dependents.
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The Dependents weak entity set and its relationship to Employees is shown in
Figure 2.11. The total participation of Dependents in Policy is indicated by
linking them with a dark line. The arrow from Dependents to Policy indicates
that each Dependents entity appears in at most one (indeed, exactly one, be-
cause of the participation constraint) Policy relationship. To underscore the
fact that Dependents is a weak entity and Policy is its identifying relationship,
we draw both with dark lines. To indicate that pname is a partial key for
Dependents, we underline it using a broken line. This means that there may
well be two dependents with the same pname value.

name

agepname

Employees

ssn
cost

lot

DependentsPolicy

Figure 2.11 A Weak Entity Set

2.4.4 Class Hierarchies

Sometimes it is natural to classify the entities in an entity set into subclasses.
For example, we might want to talk about an Hourly Emps entity set and a
Contract Emps entity set to distinguish the basis on which they are paid. We
might have attributes hours worked and hourly wage defined for Hourly Emps
and an attribute contractid defined for Contract Emps.

We want the semantics that every entity in one of these sets is also an Em-
ployees entity and, as such, must have all the attributes of Employees defined.
Therefore, the attributes defined for an Hourly Emps entity are the attributes
for Employees plus Hourly Emps. We say that the attributes for the entity set
Employees are inherited by the entity set Hourly Emps and that Hourly Emps
ISA (read is a) Employees. In addition—and in contrast to class hierarchies
in programming languages such as C++—there is a constraint on queries over
instances of these entity sets: A query that asks for all Employees entities
must consider all Hourly Emps and Contract Emps entities as well. Figure
2.12 illustrates the class hierarchy.

The entity set Employees may also be classified using a different criterion. For
example, we might identify a subset of employees as Senior Emps. We can
modify Figure 2.12 to reflect this change by adding a second ISA node as a
child of Employees and making Senior Emps a child of this node. Each of these
entity sets might be classified further, creating a multilevel ISA hierarchy.
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Figure 2.12 Class Hierarchy

A class hierarchy can be viewed in one of two ways:

Employees is specialized into subclasses. Specialization is the process
of identifying subsets of an entity set (the superclass) that share some
distinguishing characteristic. Typically, the superclass is defined first, the
subclasses are defined next, and subclass-specific attributes and relation-
ship sets are then added.

Hourly Emps and Contract Emps are generalized by Employees. As an-
other example, two entity sets Motorboats and Cars may be generalized
into an entity set Motor Vehicles. Generalization consists of identifying
some common characteristics of a collection of entity sets and creating a
new entity set that contains entities possessing these common character-
istics. Typically, the subclasses are defined first, the superclass is defined
next, and any relationship sets that involve the superclass are then defined.

We can specify two kinds of constraints with respect to ISA hierarchies, namely,
overlap and covering constraints. Overlap constraints determine whether
two subclasses are allowed to contain the same entity. For example, can At-
tishoo be both an Hourly Emps entity and a Contract Emps entity? Intuitively,
no. Can he be both a Contract Emps entity and a Senior Emps entity? Intu-
itively, yes. We denote this by writing ‘Contract Emps OVERLAPS Senior Emps.’
In the absence of such a statement, we assume by default that entity sets are
constrained to have no overlap.

Covering constraints determine whether the entities in the subclasses collec-
tively include all entities in the superclass. For example, does every Employees
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entity have to belong to one of its subclasses? Intuitively, no. Does every
Motor Vehicles entity have to be either a Motorboats entity or a Cars entity?
Intuitively, yes; a characteristic property of generalization hierarchies is that
every instance of a superclass is an instance of a subclass. We denote this by
writing ‘Motorboats AND Cars COVER Motor Vehicles.’ In the absence of such a
statement, we assume by default that there is no covering constraint; we can
have motor vehicles that are not motorboats or cars.

There are two basic reasons for identifying subclasses (by specialization or
generalization):

1. We might want to add descriptive attributes that make sense only for the
entities in a subclass. For example, hourly wages does not make sense for a
Contract Emps entity, whose pay is determined by an individual contract.

2. We might want to identify the set of entities that participate in some rela-
tionship. For example, we might wish to define the Manages relationship
so that the participating entity sets are Senior Emps and Departments,
to ensure that only senior employees can be managers. As another exam-
ple, Motorboats and Cars may have different descriptive attributes (say,
tonnage and number of doors), but as Motor Vehicles entities, they must
be licensed. The licensing information can be captured by a Licensed To
relationship between Motor Vehicles and an entity set called Owners.

2.4.5 Aggregation

As defined thus far, a relationship set is an association between entity sets.
Sometimes, we have to model a relationship between a collection of entities
and relationships. Suppose that we have an entity set called Projects and that
each Projects entity is sponsored by one or more departments. The Spon-
sors relationship set captures this information. A department that sponsors a
project might assign employees to monitor the sponsorship. Intuitively, Moni-
tors should be a relationship set that associates a Sponsors relationship (rather
than a Projects or Departments entity) with an Employees entity. However,
we have defined relationships to associate two or more entities.

To define a relationship set such as Monitors, we introduce a new feature of
the ER model, called aggregation. Aggregation allows us to indicate that
a relationship set (identified through a dashed box) participates in another
relationship set. This is illustrated in Figure 2.13, with a dashed box around
Sponsors (and its participating entity sets) used to denote aggregation. This
effectively allows us to treat Sponsors as an entity set for purposes of defining
the Monitors relationship set.
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Figure 2.13 Aggregation

When should we use aggregation? Intuitively, we use it when we need to ex-
press a relationship among relationships. But can we not express relationships
involving other relationships without using aggregation? In our example, why
not make Sponsors a ternary relationship? The answer is that there are really
two distinct relationships, Sponsors and Monitors, each possibly with attributes
of its own. For instance, the Monitors relationship has an attribute until that
records the date until when the employee is appointed as the sponsorship mon-
itor. Compare this attribute with the attribute since of Sponsors, which is the
date when the sponsorship took effect. The use of aggregation versus a ternary
relationship may also be guided by certain integrity constraints, as explained
in Section 2.5.4.

2.5 CONCEPTUAL DESIGNWITH THE ER MODEL

Developing an ER diagram presents several choices, including the following:

Should a concept be modeled as an entity or an attribute?

Should a concept be modeled as an entity or a relationship?

What are the relationship sets and their participating entity sets? Should
we use binary or ternary relationships?

Should we use aggregation?
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We now discuss the issues involved in making these choices.

2.5.1 Entity versus Attribute

While identifying the attributes of an entity set, it is sometimes not clear
whether a property should be modeled as an attribute or as an entity set (and
related to the first entity set using a relationship set). For example, consider
adding address information to the Employees entity set. One option is to use
an attribute address. This option is appropriate if we need to record only
one address per employee, and it suffices to think of an address as a string. An
alternative is to create an entity set called Addresses and to record associations
between employees and addresses using a relationship (say, Has Address). This
more complex alternative is necessary in two situations:

We have to record more than one address for an employee.

We want to capture the structure of an address in our ER diagram. For
example, we might break down an address into city, state, country, and
Zip code, in addition to a string for street information. By representing an
address as an entity with these attributes, we can support queries such as
“Find all employees with an address in Madison, WI.”

For another example of when to model a concept as an entity set rather than
an attribute, consider the relationship set (called Works In4) shown in Figure
2.14.

dname

budget

name

ssn

from to

Works_In4Employees

didlot

Departments

Figure 2.14 The Works In4 Relationship Set

It differs from the Works In relationship set of Figure 2.2 only in that it has
attributes from and to, instead of since. Intuitively, it records the interval
during which an employee works for a department. Now suppose that it is
possible for an employee to work in a given department over more than one
period.

This possibility is ruled out by the ER diagram’s semantics, because a rela-
tionship is uniquely identified by the participating entities (recall from Section
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2.3). The problem is that we want to record several values for the descriptive
attributes for each instance of the Works In2 relationship. (This situation is
analogous to wanting to record several addresses for each employee.) We can
address this problem by introducing an entity set called, say, Duration, with
attributes from and to, as shown in Figure 2.15.
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ssn did

Figure 2.15 The Works In4 Relationship Set

In some versions of the ER model, attributes are allowed to take on sets as
values. Given this feature, we could make Duration an attribute of Works In,
rather than an entity set; associated with each Works In relationship, we would
have a set of intervals. This approach is perhaps more intuitive than model-
ing Duration as an entity set. Nonetheless, when such set-valued attributes
are translated into the relational model, which does not support set-valued
attributes, the resulting relational schema is very similar to what we get by
regarding Duration as an entity set.

2.5.2 Entity versus Relationship

Consider the relationship set called Manages in Figure 2.6. Suppose that each
department manager is given a discretionary budget (dbudget), as shown in
Figure 2.16, in which we have also renamed the relationship set to Manages2.

name dname

budgetdid

Employees Departments

ssn lot

dbudgetsince

Manages2

Figure 2.16 Entity versus Relationship
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Given a department, we know the manager, as well as the manager’s starting
date and budget for that department. This approach is natural if we assume
that a manager receives a separate discretionary budget for each department
that he or she manages.

But what if the discretionary budget is a sum that covers all departments
managed by that employee? In this case, each Manages2 relationship that
involves a given employee will have the same value in the dbudget field, leading
to redundant storage of the same information. Another problem with this
design is that it is misleading; it suggests that the budget is associated with
the relationship, when it is actually associated with the manager.

We can address these problems by introducing a new entity set called Managers
(which can be placed below Employees in an ISA hierarchy, to show that every
manager is also an employee). The attributes since and dbudget now describe
a manager entity, as intended. As a variation, while every manager has a
budget, each manager may have a different starting date (as manager) for each
department. In this case dbudget is an attribute of Managers, but since is an
attribute of the relationship set between managers and departments.

The imprecise nature of ER modeling can thus make it difficult to recognize
underlying entities, and we might associate attributes with relationships rather
than the appropriate entities. In general, such mistakes lead to redundant
storage of the same information and can cause many problems. We discuss
redundancy and its attendant problems in Chapter 19, and present a technique
called normalization to eliminate redundancies from tables.

2.5.3 Binary versus Ternary Relationships

Consider the ER diagram shown in Figure 2.17. It models a situation in which
an employee can own several policies, each policy can be owned by several
employees, and each dependent can be covered by several policies.

Suppose that we have the following additional requirements:

A policy cannot be owned jointly by two or more employees.

Every policy must be owned by some employee.

Dependents is a weak entity set, and each dependent entity is uniquely
identified by taking pname in conjunction with the policyid of a policy
entity (which, intuitively, covers the given dependent).

The first requirement suggests that we impose a key constraint on Policies with
respect to Covers, but this constraint has the unintended side effect that a
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Figure 2.17 Policies as an Entity Set

policy can cover only one dependent. The second requirement suggests that we
impose a total participation constraint on Policies. This solution is acceptable
if each policy covers at least one dependent. The third requirement forces us
to introduce an identifying relationship that is binary (in our version of ER
diagrams, although there are versions in which this is not the case).

Even ignoring the third requirement, the best way to model this situation is to
use two binary relationships, as shown in Figure 2.18.
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Figure 2.18 Policy Revisited



Introduction to Database Design 45

This example really has two relationships involving Policies, and our attempt
to use a single ternary relationship (Figure 2.17) is inappropriate. There are
situations, however, where a relationship inherently associates more than two
entities. We have seen such an example in Figures 2.4 and 2.15.

As a typical example of a ternary relationship, consider entity sets Parts, Sup-
pliers, and Departments, and a relationship set Contracts (with descriptive
attribute qty) that involves all of them. A contract specifies that a supplier will
supply (some quantity of) a part to a department. This relationship cannot
be adequately captured by a collection of binary relationships (without the use
of aggregation). With binary relationships, we can denote that a supplier ‘can
supply’ certain parts, that a department ‘needs’ some parts, or that a depart-
ment ‘deals with’ a certain supplier. No combination of these relationships
expresses the meaning of a contract adequately, for at least two reasons:

The facts that supplier S can supply part P, that department D needs part
P, and that D will buy from S do not necessarily imply that department D
indeed buys part P from supplier S!

We cannot represent the qty attribute of a contract cleanly.

2.5.4 Aggregation versus Ternary Relationships

As we noted in Section 2.4.5, the choice between using aggregation or a ternary
relationship is mainly determined by the existence of a relationship that relates
a relationship set to an entity set (or second relationship set). The choice may
also be guided by certain integrity constraints that we want to express. For
example, consider the ER diagram shown in Figure 2.13. According to this dia-
gram, a project can be sponsored by any number of departments, a department
can sponsor one or more projects, and each sponsorship is monitored by one
or more employees. If we don’t need to record the until attribute of Monitors,
then we might reasonably use a ternary relationship, say, Sponsors2, as shown
in Figure 2.19.

Consider the constraint that each sponsorship (of a project by a department)
be monitored by at most one employee. We cannot express this constraint
in terms of the Sponsors2 relationship set. On the other hand, we can easily
express the constraint by drawing an arrow from the aggregated relationship
Sponsors to the relationship Monitors in Figure 2.13. Thus, the presence of
such a constraint serves as another reason for using aggregation rather than a
ternary relationship set.
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2.6 CONCEPTUAL DESIGN FOR LARGE ENTERPRISES

We have thus far concentrated on the constructs available in the ER model
for describing various application concepts and relationships. The process of
conceptual design consists of more than just describing small fragments of the
application in terms of ER diagrams. For a large enterprise, the design may re-
quire the efforts of more than one designer and span data and application code
used by a number of user groups. Using a high-level, semantic data model,
such as ER diagrams, for conceptual design in such an environment offers the
additional advantage that the high-level design can be diagrammatically rep-
resented and easily understood by the many people who must provide input to
the design process.

An important aspect of the design process is the methodology used to structure
the development of the overall design and ensure that the design takes into
account all user requirements and is consistent. The usual approach is that the
requirements of various user groups are considered, any conflicting requirements
are somehow resolved, and a single set of global requirements is generated at
the end of the requirements analysis phase. Generating a single set of global
requirements is a difficult task, but it allows the conceptual design phase to
proceed with the development of a logical schema that spans all the data and
applications throughout the enterprise.

An alternative approach is to develop separate conceptual schemas for different
user groups and then integrate these conceptual schemas. To integrate multi-
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ple conceptual schemas, we must establish correspondences between entities,
relationships, and attributes, and we must resolve numerous kinds of conflicts
(e.g., naming conflicts, domain mismatches, differences in measurement units).
This task is difficult in its own right. In some situations, schema integration
cannot be avoided; for example, when one organization merges with another,
existing databases may have to be integrated. Schema integration is also in-
creasing in importance as users demand access to heterogeneous data sources,
often maintained by different organizations.

2.7 THE UNIFIED MODELING LANGUAGE

There are many approaches to end-to-end software system design, covering all
the steps from identifying the business requirements to the final specifications
for a complete application, including workflow, user interfaces, and many as-
pects of software systems that go well beyond databases and the data stored in
them. In this section, we briefly discuss an approach that is becoming popular,
called the unified modeling language (UML) approach.

UML, like the ER model, has the attractive feature that its constructs can be
drawn as diagrams. It encompasses a broader spectrum of the software design
process than the ER model:

Business Modeling: In this phase, the goal is to describe the business
processes involved in the software application being developed.

System Modeling: The understanding of business processes is used to
identify the requirements for the software application. One part of the
requirements is the database requirements.

Conceptual Database Modeling: This step corresponds to the creation
of the ER design for the database. For this purpose, UML provides many
constructs that parallel the ER constructs.

Physical Database Modeling: UML also provides pictorial represen-
tations for physical database design choices, such as the creation of table
spaces and indexes. (We discuss physical database design in later chapters,
but not the corresponding UML constructs.)

Hardware System Modeling: UML diagrams can be used to describe
the hardware configuration used for the application.

There are many kinds of diagrams in UML. Use case diagrams describe the
actions performed by the system in response to user requests, and the people
involved in these actions. These diagrams specify the external functionality
that the system is expected to support.
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Activity diagrams show the flow of actions in a business process. Statechart
diagrams describe dynamic interactions between system objects. These dia-
grams, used in business and system modeling, describe how the external func-
tionality is to be implemented, consistent with the business rules and processes
of the enterprise.

Class diagrams are similar to ER diagrams, although they are more general
in that they are intended to model application entities (intuitively, important
program components) and their logical relationships in addition to data entities
and their relationships.

Both entity sets and relationship sets can be represented as classes in UML,
together with key constraints, weak entities, and class hierarchies. The term
relationship is used slightly differently in UML, and UML’s relationships are
binary. This sometimes leads to confusion over whether relationship sets in
an ER diagram involving three or more entity sets can be directly represented
in UML. The confusion disappears once we understand that all relationship
sets (in the ER sense) are represented as classes in UML; the binary UML
‘relationships’ are essentially just the links shown in ER diagrams between
entity sets and relationship sets.

Relationship sets with key constraints are usually omitted from UML diagrams,
and the relationship is indicated by directly linking the entity sets involved.
For example, consider Figure 2.6. A UML representation of this ER diagram
would have a class for Employees, a class for Departments, and the relationship
Manages is shown by linking these two classes. The link can be labeled with
a name and cardinality information to show that a department can have only
one manager.

As we will see in Chapter 3, ER diagrams are translated into the relational
model by mapping each entity set into a table and each relationship set into
a table. Further, as we will see in Section 3.5.3, the table corresponding to a
one-to-many relationship set is typically omitted by including some additional
information about the relationship in the table for one of the entity sets in-
volved. Thus, UML class diagrams correspond closely to the tables created by
mapping an ER diagram.

Indeed, every class in a UML class diagram is mapped into a table in the cor-
responding UML database diagram. UML’s database diagrams show how
classes are represented in the database and contain additional details about
the structure of the database such as integrity constraints and indexes. Links
(UML’s ‘relationships’) between UML classes lead to various integrity con-
straints between the corresponding tables. Many details specific to the re-
lational model (e.g., views, foreign keys, null-allowed fields) and that reflect
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physical design choices (e.g., indexed fields) can be modeled in UML database
diagrams.

UML’s component diagrams describe storage aspects of the database, such
as tablespaces and database partitions), as well as interfaces to applications
that access the database. Finally, deployment diagrams show the hardware
aspects of the system.

Our objective in this book is to concentrate on the data stored in a database
and the related design issues. To this end, we deliberately take a simplified
view of the other steps involved in software design and development. Beyond
the specific discussion of UML, the material in this section is intended to place
the design issues that we cover within the context of the larger software design
process. We hope that this will assist readers interested in a more comprehen-
sive discussion of software design to complement our discussion by referring to
other material on their preferred approach to overall system design.

2.8 CASE STUDY: THE INTERNET SHOP

We now introduce an illustrative, ‘cradle-to-grave’ design case study that we
use as a running example throughout this book. DBDudes Inc., a well-known
database consulting firm, has been called in to help Barns and Nobble (B&N)
with its database design and implementation. B&N is a large bookstore special-
izing in books on horse racing, and it has decided to go online. DBDudes first
verifies that B&N is willing and able to pay its steep fees and then schedules a
lunch meeting—billed to B&N, naturally—to do requirements analysis.

2.8.1 Requirements Analysis

The owner of B&N, unlike many people who need a database, has thought
extensively about what he wants and offers a concise summary:

“I would like my customers to be able to browse my catalog of books and
place orders over the Internet. Currently, I take orders over the phone. I have
mostly corporate customers who call me and give me the ISBN number of a
book and a quantity; they often pay by credit card. I then prepare a shipment
that contains the books they ordered. If I don’t have enough copies in stock,
I order additional copies and delay the shipment until the new copies arrive;
I want to ship a customer’s entire order together. My catalog includes all the
books I sell. For each book, the catalog contains its ISBN number, title, author,
purchase price, sales price, and the year the book was published. Most of my
customers are regulars, and I have records with their names and addresses.
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Figure 2.20 ER Diagram of the Initial Design

New customers have to call me first and establish an account before they can
use my website.

On my new website, customers should first identify themselves by their unique
customer identification number. Then they should be able to browse my catalog
and to place orders online.”

DBDudes’s consultants are a little surprised by how quickly the requirements
phase is completed—it usually takes weeks of discussions (and many lunches
and dinners) to get this done—but return to their offices to analyze this infor-
mation.

2.8.2 Conceptual Design

In the conceptual design step, DBDudes develops a high level description of
the data in terms of the ER model. The initial design is shown in Figure
2.20. Books and customers are modeled as entities and related through orders
that customers place. Orders is a relationship set connecting the Books and
Customers entity sets. For each order, the following attributes are stored:
quantity, order date, and ship date. As soon as an order is shipped, the ship
date is set; until then the ship date is set to null, indicating that this order has
not been shipped yet.

DBDudes has an internal design review at this point, and several questions are
raised. To protect their identities, we will refer to the design team leader as
Dude 1 and the design reviewer as Dude 2.

Dude 2: What if a customer places two orders for the same book in one day?
Dude 1: The first order is handled by creating a new Orders relationship and
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the second order is handled by updating the value of the quantity attribute in
this relationship.
Dude 2: What if a customer places two orders for different books in one day?
Dude 1: No problem. Each instance of the Orders relationship set relates the
customer to a different book.
Dude 2: Ah, but what if a customer places two orders for the same book on
different days?
Dude 1: We can use the attribute order date of the orders relationship to
distinguish the two orders.
Dude 2: Oh no you can’t. The attributes of Customers and Books must jointly
contain a key for Orders. So this design does not allow a customer to place
orders for the same book on different days.
Dude 1: Yikes, you’re right. Oh well, B&N probably won’t care; we’ll see.

DBDudes decides to proceed with the next phase, logical database design; we
rejoin them in Section 3.8.

2.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

Name the main steps in database design. What is the goal of each step?
In which step is the ER model mainly used? (Section 2.1)

Define these terms: entity, entity set, attribute, key. (Section 2.2)

Define these terms: relationship, relationship set, descriptive attributes.
(Section 2.3)

Define the following kinds of constraints, and give an example of each: key
constraint, participation constraint. What is a weak entity? What are class
hierarchies? What is aggregation? Give an example scenario motivating
the use of each of these ER model design constructs. (Section 2.4)

What guidelines would you use for each of these choices when doing ER
design: Whether to use an attribute or an entity set, an entity or a relation-
ship set, a binary or ternary relationship, or aggregation. (Section 2.5)

Why is designing a database for a large enterprise especially hard? (Sec-
tion 2.6)

What is UML? How does database design fit into the overall design of
a data-intensive software system? How is UML related to ER diagrams?
(Section 2.7)
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EXERCISES

Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relationship,

entity set, relationship set, one-to-many relationship, many-to-many relationship, participa-

tion constraint, overlap constraint, covering constraint, weak entity set, aggregation, and role

indicator.

Exercise 2.2 A university database contains information about professors (identified by so-
cial security number, or SSN) and courses (identified by courseid). Professors teach courses;
each of the following situations concerns the Teaches relationship set. For each situation,
draw an ER diagram that describes it (assuming no further constraints hold).

1. Professors can teach the same course in several semesters, and each offering must be
recorded.

2. Professors can teach the same course in several semesters, and only the most recent
such offering needs to be recorded. (Assume this condition applies in all subsequent
questions.)

3. Every professor must teach some course.

4. Every professor teaches exactly one course (no more, no less).

5. Every professor teaches exactly one course (no more, no less), and every course must be
taught by some professor.

6. Now suppose that certain courses can be taught by a team of professors jointly, but it
is possible that no one professor in a team can teach the course. Model this situation,
introducing additional entity sets and relationship sets if necessary.

Exercise 2.3 Consider the following information about a university database:

Professors have an SSN, a name, an age, a rank, and a research specialty.

Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending
date, and a budget.

Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S. or
Ph.D.).

Each project is managed by one professor (known as the project’s principal investigator).

Each project is worked on by one or more professors (known as the project’s co-investigators).

Professors can manage and/or work on multiple projects.

Each project is worked on by one or more graduate students (known as the project’s
research assistants).

When graduate students work on a project, a professor must supervise their work on the
project. Graduate students can work on multiple projects, in which case they will have
a (potentially different) supervisor for each one.

Departments have a department number, a department name, and a main office.

Departments have a professor (known as the chairman) who runs the department.

Professors work in one or more departments, and for each department that they work
in, a time percentage is associated with their job.

Graduate students have one major department in which they are working on their degree.
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Each graduate student has another, more senior graduate student (known as a student
advisor) who advises him or her on what courses to take.

Design and draw an ER diagram that captures the information about the university. Use only
the basic ER model here; that is, entities, relationships, and attributes. Be sure to indicate
any key and participation constraints.

Exercise 2.4 A company database needs to store information about employees (identified
by ssn, with salary and phone as attributes), departments (identified by dno, with dname and
budget as attributes), and children of employees (with name and age as attributes). Employees
work in departments; each department is managed by an employee; a child must be identified
uniquely by name when the parent (who is an employee; assume that only one parent works
for the company) is known. We are not interested in information about a child once the
parent leaves the company.

Draw an ER diagram that captures this information.

Exercise 2.5 Notown Records has decided to store information about musicians who perform
on its albums (as well as other company data) in a database. The company has wisely chosen
to hire you as a database designer (at your usual consulting fee of $2500/day).

Each musician that records at Notown has an SSN, a name, an address, and a phone
number. Poorly paid musicians often share the same address, and no address has more
than one phone.

Each instrument used in songs recorded at Notown has a name (e.g., guitar, synthesizer,
flute) and a musical key (e.g., C, B-flat, E-flat).

Each album recorded on the Notown label has a title, a copyright date, a format (e.g.,
CD or MC), and an album identifier.

Each song recorded at Notown has a title and an author.

Each musician may play several instruments, and a given instrument may be played by
several musicians.

Each album has a number of songs on it, but no song may appear on more than one
album.

Each song is performed by one or more musicians, and a musician may perform a number
of songs.

Each album has exactly one musician who acts as its producer. A musician may produce
several albums, of course.

Design a conceptual schema for Notown and draw an ER diagram for your schema. The
preceding information describes the situation that the Notown database must model. Be sure
to indicate all key and cardinality constraints and any assumptions you make. Identify any
constraints you are unable to capture in the ER diagram and briefly explain why you could
not express them.

Exercise 2.6 Computer Sciences Department frequent fliers have been complaining to Dane
County Airport officials about the poor organization at the airport. As a result, the officials
decided that all information related to the airport should be organized using a DBMS, and
you have been hired to design the database. Your first task is to organize the information
about all the airplanes stationed and maintained at the airport. The relevant information is
as follows:
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Every airplane has a registration number, and each airplane is of a specific model.

The airport accommodates a number of airplane models, and each model is identified by
a model number (e.g., DC-10) and has a capacity and a weight.

A number of technicians work at the airport. You need to store the name, SSN, address,
phone number, and salary of each technician.

Each technician is an expert on one or more plane model(s), and his or her expertise may
overlap with that of other technicians. This information about technicians must also be
recorded.

Traffic controllers must have an annual medical examination. For each traffic controller,
you must store the date of the most recent exam.

All airport employees (including technicians) belong to a union. You must store the
union membership number of each employee. You can assume that each employee is
uniquely identified by a social security number.

The airport has a number of tests that are used periodically to ensure that airplanes are
still airworthy. Each test has a Federal Aviation Administration (FAA) test number, a
name, and a maximum possible score.

The FAA requires the airport to keep track of each time a given airplane is tested by a
given technician using a given test. For each testing event, the information needed is the
date, the number of hours the technician spent doing the test, and the score the airplane
received on the test.

1. Draw an ER diagram for the airport database. Be sure to indicate the various attributes
of each entity and relationship set; also specify the key and participation constraints for
each relationship set. Specify any necessary overlap and covering constraints as well (in
English).

2. The FAA passes a regulation that tests on a plane must be conducted by a technician
who is an expert on that model. How would you express this constraint in the ER
diagram? If you cannot express it, explain briefly.

Exercise 2.7 The Prescriptions-R-X chain of pharmacies has offered to give you a free life-
time supply of medicine if you design its database. Given the rising cost of health care, you
agree. Here’s the information that you gather:

Patients are identified by an SSN, and their names, addresses, and ages must be recorded.

Doctors are identified by an SSN. For each doctor, the name, specialty, and years of
experience must be recorded.

Each pharmaceutical company is identified by name and has a phone number.

For each drug, the trade name and formula must be recorded. Each drug is sold by
a given pharmaceutical company, and the trade name identifies a drug uniquely from
among the products of that company. If a pharmaceutical company is deleted, you need
not keep track of its products any longer.

Each pharmacy has a name, address, and phone number.

Every patient has a primary physician. Every doctor has at least one patient.

Each pharmacy sells several drugs and has a price for each. A drug could be sold at
several pharmacies, and the price could vary from one pharmacy to another.
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Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for
several patients, and a patient could obtain prescriptions from several doctors. Each
prescription has a date and a quantity associated with it. You can assume that, if a
doctor prescribes the same drug for the same patient more than once, only the last such
prescription needs to be stored.

Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical
company can contract with several pharmacies, and a pharmacy can contract with several
pharmaceutical companies. For each contract, you have to store a start date, an end date,
and the text of the contract.

Pharmacies appoint a supervisor for each contract. There must always be a supervisor
for each contract, but the contract supervisor can change over the lifetime of the contract.

1. Draw an ER diagram that captures the preceding information. Identify any constraints
not captured by the ER diagram.

2. How would your design change if each drug must be sold at a fixed price by all pharma-
cies?

3. How would your design change if the design requirements change as follows: If a doctor
prescribes the same drug for the same patient more than once, several such prescriptions
may have to be stored.

Exercise 2.8 Although you always wanted to be an artist, you ended up being an expert on
databases because you love to cook data and you somehow confused database with data baste.
Your old love is still there, however, so you set up a database company, ArtBase, that builds a
product for art galleries. The core of this product is a database with a schema that captures
all the information that galleries need to maintain. Galleries keep information about artists,
their names (which are unique), birthplaces, age, and style of art. For each piece of artwork,
the artist, the year it was made, its unique title, its type of art (e.g., painting, lithograph,
sculpture, photograph), and its price must be stored. Pieces of artwork are also classified into
groups of various kinds, for example, portraits, still lifes, works by Picasso, or works of the
19th century; a given piece may belong to more than one group. Each group is identified by
a name (like those just given) that describes the group. Finally, galleries keep information
about customers. For each customer, galleries keep that person’s unique name, address, total
amount of dollars spent in the gallery (very important!), and the artists and groups of art
that the customer tends to like.

Draw the ER diagram for the database.

Exercise 2.9 Answer the following questions.

Explain the following terms briefly: UML, use case diagrams, statechart diagrams, class

diagrams, database diagrams, component diagrams, and deployment diagrams.

Explain the relationship between ER diagrams and UML.

BIBLIOGRAPHIC NOTES

Several books provide a good treatment of conceptual design; these include [63] (which also
contains a survey of commercial database design tools) and [730].
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of subsequent papers. Generalization and aggregation were introduced in [693]. [390, 589]
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View integration is discussed in several papers, including [97, 139, 184, 244, 535, 551, 550,
685, 697, 748]. [64] is a survey of several integration approaches.



3
THE RELATIONAL MODEL

☛ How is data represented in the relational model?

☛ What integrity constraints can be expressed?

☛ How can data be created and modified?

☛ How can data be manipulated and queried?

☛ How can we create, modify, and query tables using SQL?

☛ How do we obtain a relational database design from an ER diagram?

☛ What are views and why are they used?

➽ Key concepts: relation, schema, instance, tuple, field, domain,
degree, cardinality; SQL DDL, CREATE TABLE, INSERT, DELETE,

UPDATE; integrity constraints, domain constraints, key constraints,
PRIMARY KEY, UNIQUE, foreign key constraints, FOREIGN KEY; refer-
ential integrity maintenance, deferred and immediate constraints; re-
lational queries; logical database design, translating ER diagrams to
relations, expressing ER constraints using SQL; views, views and log-
ical independence, security; creating views in SQL, updating views,
querying views, dropping views

Table: An arrangement of words, numbers, or signs, or combinations of them,
as in parallel columns, to exhibit a set of facts or relations in a definite, compact,
and comprehensive form; a synopsis or scheme.

—Webster’s Dictionary of the English Language

Codd proposed the relational data model in 1970. At that time, most database
systems were based on one of two older data models (the hierarchical model

57
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SQL. Originally developed as the query language of the pioneering
System-R relational DBMS at IBM, structured query language (SQL)
has become the most widely used language for creating, manipulating,
and querying relational DBMSs. Since many vendors offer SQL products,
there is a need for a standard that defines ‘official SQL.’ The existence of
a standard allows users to measure a given vendor’s version of SQL for
completeness. It also allows users to distinguish SQL features specific to
one product from those that are standard; an application that relies on
nonstandard features is less portable.

The first SQL standard was developed in 1986 by the American National
Standards Institute (ANSI) and was called SQL-86. There was a minor
revision in 1989 called SQL-89 and a major revision in 1992 called SQL-
92. The International Standards Organization (ISO) collaborated with
ANSI to develop SQL-92. Most commercial DBMSs currently support (the
core subset of) SQL-92 and are working to support the recently adopted
SQL:1999 version of the standard, a major extension of SQL-92. Our
coverage of SQL is based on SQL:1999, but is applicable to SQL-92 as
well; features unique to SQL:1999 are explicitly noted.

and the network model); the relational model revolutionized the database field
and largely supplanted these earlier models. Prototype relational database
management systems were developed in pioneering research projects at IBM
and UC-Berkeley by the mid-1970s, and several vendors were offering relational
database products shortly thereafter. Today, the relational model is by far
the dominant data model and the foundation for the leading DBMS products,
including IBM’s DB2 family, Informix, Oracle, Sybase, Microsoft’s Access and
SQLServer, FoxBase, and Paradox. Relational database systems are ubiquitous
in the marketplace and represent a multibillion dollar industry.

The relational model is very simple and elegant: a database is a collection of
one or more relations, where each relation is a table with rows and columns.
This simple tabular representation enables even novice users to understand the
contents of a database, and it permits the use of simple, high-level languages
to query the data. The major advantages of the relational model over the older
data models are its simple data representation and the ease with which even
complex queries can be expressed.

While we concentrate on the underlying concepts, we also introduce the Data
Definition Language (DDL) features of SQL, the standard language for
creating, manipulating, and querying data in a relational DBMS. This allows
us to ground the discussion firmly in terms of real database systems.
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We discuss the concept of a relation in Section 3.1 and show how to create
relations using the SQL language. An important component of a data model is
the set of constructs it provides for specifying conditions that must be satisfied
by the data. Such conditions, called integrity constraints (ICs), enable the
DBMS to reject operations that might corrupt the data. We present integrity
constraints in the relational model in Section 3.2, along with a discussion of
SQL support for ICs. We discuss how a DBMS enforces integrity constraints
in Section 3.3.

In Section 3.4, we turn to the mechanism for accessing and retrieving data
from the database, query languages, and introduce the querying features of
SQL, which we examine in greater detail in a later chapter.

We then discuss converting an ER diagram into a relational database schema
in Section 3.5. We introduce views, or tables defined using queries, in Section
3.6. Views can be used to define the external schema for a database and thus
provide the support for logical data independence in the relational model. In
Section 3.7, we describe SQL commands to destroy and alter tables and views.

Finally, in Section 3.8 we extend our design case study, the Internet shop in-
troduced in Section 2.8, by showing how the ER diagram for its conceptual
schema can be mapped to the relational model, and how the use of views can
help in this design.

3.1 INTRODUCTION TO THE RELATIONAL MODEL

The main construct for representing data in the relational model is a relation.
A relation consists of a relation schema and a relation instance. The
relation instance is a table, and the relation schema describes the column heads
for the table. We first describe the relation schema and then the relation
instance. The schema specifies the relation’s name, the name of each field (or
column, or attribute), and the domain of each field. A domain is referred to
in a relation schema by the domain name and has a set of associated values.

We use the example of student information in a university database from Chap-
ter 1 to illustrate the parts of a relation schema:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

This says, for instance, that the field named sid has a domain named string.
The set of values associated with domain string is the set of all character
strings.
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We now turn to the instances of a relation. An instance of a relation is a set
of tuples, also called records, in which each tuple has the same number of
fields as the relation schema. A relation instance can be thought of as a table

in which each tuple is a row, and all rows have the same number of fields. (The
term relation instance is often abbreviated to just relation, when there is no
confusion with other aspects of a relation such as its schema.)

An instance of the Students relation appears in Figure 3.1. The instance S1

53831

53832

53650

53688

53666

50000 3.3

3.4

3.2

3.8

1.8

2.0

19

18

18

19

11

12

madayan@music

guldu@music

smith@math

smith@ee

jones@cs

dave@cs

Madayan

Guldu

Smith

Smith

Jones

Dave

age gpaloginname

TUPLES

FIELDS (ATTRIBUTES, COLUMNS)

(RECORDS,

ROWS)

Field names

  sid

Figure 3.1 An Instance S1 of the Students Relation

contains six tuples and has, as we expect from the schema, five fields. Note that
no two rows are identical. This is a requirement of the relational model—each
relation is defined to be a set of unique tuples or rows.

In practice, commercial systems allow tables to have duplicate rows, but we
assume that a relation is indeed a set of tuples unless otherwise noted. The
order in which the rows are listed is not important. Figure 3.2 shows the same
relation instance. If the fields are named, as in our schema definitions and

sid name login age gpa

53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8
53666 Jones jones@cs 18 3.4
50000 Dave dave@cs 19 3.3

Figure 3.2 An Alternative Representation of Instance S1 of Students

figures depicting relation instances, the order of fields does not matter either.
However, an alternative convention is to list fields in a specific order and refer
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to a field by its position. Thus, sid is field 1 of Students, login is field 3,
and so on. If this convention is used, the order of fields is significant. Most
database systems use a combination of these conventions. For example, in SQL,
the named fields convention is used in statements that retrieve tuples and the
ordered fields convention is commonly used when inserting tuples.

A relation schema specifies the domain of each field or column in the relation
instance. These domain constraints in the schema specify an important
condition that we want each instance of the relation to satisfy: The values
that appear in a column must be drawn from the domain associated with that
column. Thus, the domain of a field is essentially the type of that field, in
programming language terms, and restricts the values that can appear in the
field.

More formally, let R(f1:D1, . . ., fn:Dn) be a relation schema, and for each fi,
1 ≤ i ≤ n, let Domi be the set of values associated with the domain named Di.
An instance of R that satisfies the domain constraints in the schema is a set of
tuples with n fields:

{  f1 : d1, . . . , fn : dn | d1 ∈ Dom1, . . . , dn ∈ Domn }

The angular brackets  . . . identify the fields of a tuple. Using this notation,
the first Students tuple shown in Figure 3.1 is written as  sid: 50000, name:

Dave, login: dave@cs, age: 19, gpa: 3.3 . The curly brackets {. . .} denote a set
(of tuples, in this definition). The vertical bar | should be read ‘such that,’ the
symbol ∈ should be read ‘in,’ and the expression to the right of the vertical
bar is a condition that must be satisfied by the field values of each tuple in the
set. Therefore, an instance of R is defined as a set of tuples. The fields of each
tuple must correspond to the fields in the relation schema.

Domain constraints are so fundamental in the relational model that we hence-
forth consider only relation instances that satisfy them; therefore, relation

instance means relation instance that satisfies the domain constraints in the

relation schema.

The degree, also called arity, of a relation is the number of fields. The car-
dinality of a relation instance is the number of tuples in it. In Figure 3.1, the
degree of the relation (the number of columns) is five, and the cardinality of
this instance is six.

A relational database is a collection of relations with distinct relation names.
The relational database schema is the collection of schemas for the relations
in the database. For example, in Chapter 1, we discussed a university database
with relations called Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets In. An instance of a relational database is a collection of relation
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instances, one per relation schema in the database schema; of course, each
relation instance must satisfy the domain constraints in its schema.

3.1.1 Creating and Modifying Relations Using SQL

The SQL language standard uses the word table to denote relation, and we often
follow this convention when discussing SQL. The subset of SQL that supports
the creation, deletion, and modification of tables is called the Data Definition
Language (DDL). Further, while there is a command that lets users define new
domains, analogous to type definition commands in a programming language,
we postpone a discussion of domain definition until Section 5.7. For now, we
only consider domains that are built-in types, such as integer.

The CREATE TABLE statement is used to define a new table.1 To create the
Students relation, we can use the following statement:

CREATE TABLE Students ( sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL )

Tuples are inserted using the INSERT command. We can insert a single tuple
into the Students table as follows:

INSERT

INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

We can optionally omit the list of column names in the INTO clause and list
the values in the appropriate order, but it is good style to be explicit about
column names.

We can delete tuples using the DELETE command. We can delete all Students
tuples with name equal to Smith using the command:

DELETE

FROM Students S
WHERE S.name = ‘Smith’

1SQL also provides statements to destroy tables and to change the columns associated with a table;
we discuss these in Section 3.7.
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We can modify the column values in an existing row using the UPDATE com-
mand. For example, we can increment the age and decrement the gpa of the
student with sid 53688:

UPDATE Students S
SET S.age = S.age + 1, S.gpa = S.gpa − 1
WHERE S.sid = 53688

These examples illustrate some important points. The WHERE clause is applied
first and determines which rows are to be modified. The SET clause then
determines how these rows are to be modified. If the column being modified is
also used to determine the new value, the value used in the expression on the
right side of equals (=) is the old value, that is, before the modification. To
illustrate these points further, consider the following variation of the previous
query:

UPDATE Students S
SET S.gpa = S.gpa − 0.1
WHERE S.gpa >= 3.3

If this query is applied on the instance S1 of Students shown in Figure 3.1, we
obtain the instance shown in Figure 3.3.

sid name login age gpa

50000 Dave dave@cs 19 3.2
53666 Jones jones@cs 18 3.3
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.7
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 3.3 Students Instance S1 after Update

3.2 INTEGRITY CONSTRAINTS OVER RELATIONS

A database is only as good as the information stored in it, and a DBMS must
therefore help prevent the entry of incorrect information. An integrity con-
straint (IC) is a condition specified on a database schema and restricts the
data that can be stored in an instance of the database. If a database instance
satisfies all the integrity constraints specified on the database schema, it is a
legal instance. A DBMS enforces integrity constraints, in that it permits only
legal instances to be stored in the database.

Integrity constraints are specified and enforced at different times:
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1. When the DBA or end user defines a database schema, he or she specifies
the ICs that must hold on any instance of this database.

2. When a database application is run, the DBMS checks for violations and
disallows changes to the data that violate the specified ICs. (In some
situations, rather than disallow the change, the DBMS might make some
compensating changes to the data to ensure that the database instance
satisfies all ICs. In any case, changes to the database are not allowed to
create an instance that violates any IC.) It is important to specify exactly
when integrity constraints are checked relative to the statement that causes
the change in the data and the transaction that it is part of. We discuss
this aspect in Chapter 16, after presenting the transaction concept, which
we introduced in Chapter 1, in more detail.

Many kinds of integrity constraints can be specified in the relational model.
We have already seen one example of an integrity constraint in the domain

constraints associated with a relation schema (Section 3.1). In general, other
kinds of constraints can be specified as well; for example, no two students
have the same sid value. In this section we discuss the integrity constraints,
other than domain constraints, that a DBA or user can specify in the relational
model.

3.2.1 Key Constraints

Consider the Students relation and the constraint that no two students have the
same student id. This IC is an example of a key constraint. A key constraint
is a statement that a certain minimal subset of the fields of a relation is a
unique identifier for a tuple. A set of fields that uniquely identifies a tuple
according to a key constraint is called a candidate key for the relation; we
often abbreviate this to just key. In the case of the Students relation, the (set
of fields containing just the) sid field is a candidate key.

Let us take a closer look at the above definition of a (candidate) key. There
are two parts to the definition:2

1. Two distinct tuples in a legal instance (an instance that satisfies all ICs,
including the key constraint) cannot have identical values in all the fields
of a key.

2. No subset of the set of fields in a key is a unique identifier for a tuple.

2The term key is rather overworked. In the context of access methods, we speak of search keys,
which are quite different.
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The first part of the definition means that, in any legal instance, the values in
the key fields uniquely identify a tuple in the instance. When specifying a key
constraint, the DBA or user must be sure that this constraint will not prevent
them from storing a ‘correct’ set of tuples. (A similar comment applies to the
specification of other kinds of ICs as well.) The notion of ‘correctness’ here
depends on the nature of the data being stored. For example, several students
may have the same name, although each student has a unique student id. If
the name field is declared to be a key, the DBMS will not allow the Students
relation to contain two tuples describing different students with the same name!

The second part of the definition means, for example, that the set of fields
{sid, name} is not a key for Students, because this set properly contains the
key {sid}. The set {sid, name} is an example of a superkey, which is a set of
fields that contains a key.

Look again at the instance of the Students relation in Figure 3.1. Observe that
two different rows always have different sid values; sid is a key and uniquely
identifies a tuple. However, this does not hold for nonkey fields. For example,
the relation contains two rows with Smith in the name field.

Note that every relation is guaranteed to have a key. Since a relation is a set of
tuples, the set of all fields is always a superkey. If other constraints hold, some
subset of the fields may form a key, but if not, the set of all fields is a key.

A relation may have several candidate keys. For example, the login and age

fields of the Students relation may, taken together, also identify students uniquely.
That is, {login, age} is also a key. It may seem that login is a key, since no
two rows in the example instance have the same login value. However, the key
must identify tuples uniquely in all possible legal instances of the relation. By
stating that {login, age} is a key, the user is declaring that two students may
have the same login or age, but not both.

Out of all the available candidate keys, a database designer can identify a
primary key. Intuitively, a tuple can be referred to from elsewhere in the
database by storing the values of its primary key fields. For example, we can
refer to a Students tuple by storing its sid value. As a consequence of referring
to student tuples in this manner, tuples are frequently accessed by specifying
their sid value. In principle, we can use any key, not just the primary key,
to refer to a tuple. However, using the primary key is preferable because it
is what the DBMS expects—this is the significance of designating a particular
candidate key as a primary key—and optimizes for. For example, the DBMS
may create an index with the primary key fields as the search key, to make the
retrieval of a tuple given its primary key value efficient. The idea of referring
to a tuple is developed further in the next section.
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Specifying Key Constraints in SQL

In SQL, we can declare that a subset of the columns of a table constitute a key
by using the UNIQUE constraint. At most one of these candidate keys can be
declared to be a primary key, using the PRIMARY KEY constraint. (SQL does
not require that such constraints be declared for a table.)

Let us revisit our example table definition and specify key information:

CREATE TABLE Students ( sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL,
UNIQUE (name, age),
CONSTRAINT StudentsKey PRIMARY KEY (sid) )

This definition says that sid is the primary key and the combination of name

and age is also a key. The definition of the primary key also illustrates how
we can name a constraint by preceding it with CONSTRAINT constraint-name.
If the constraint is violated, the constraint name is returned and can be used
to identify the error.

3.2.2 Foreign Key Constraints

Sometimes the information stored in a relation is linked to the information
stored in another relation. If one of the relations is modified, the other must be
checked, and perhaps modified, to keep the data consistent. An IC involving
both relations must be specified if a DBMS is to make such checks. The most
common IC involving two relations is a foreign key constraint.

Suppose that, in addition to Students, we have a second relation:

Enrolled(studid: string, cid: string, grade: string)

To ensure that only bona fide students can enroll in courses, any value that
appears in the studid field of an instance of the Enrolled relation should also
appear in the sid field of some tuple in the Students relation. The studid field
of Enrolled is called a foreign key and refers to Students. The foreign key in
the referencing relation (Enrolled, in our example) must match the primary key
of the referenced relation (Students); that is, it must have the same number
of columns and compatible data types, although the column names can be
different.
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This constraint is illustrated in Figure 3.4. As the figure shows, there may well
be some Students tuples that are not referenced from Enrolled (e.g., the student
with sid=50000). However, every studid value that appears in the instance of
the Enrolled table appears in the primary key column of a row in the Students
table.
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Figure 3.4 Referential Integrity

If we try to insert the tuple  55555, Art104, A into E1, the IC is violated be-
cause there is no tuple in S1 with sid 55555; the database system should reject
such an insertion. Similarly, if we delete the tuple  53666, Jones, jones@cs, 18,

3.4 from S1, we violate the foreign key constraint because the tuple  53666,
History105, B in E1 contains studid value 53666, the sid of the deleted Stu-
dents tuple. The DBMS should disallow the deletion or, perhaps, also delete
the Enrolled tuple that refers to the deleted Students tuple. We discuss foreign
key constraints and their impact on updates in Section 3.3.

Finally, we note that a foreign key could refer to the same relation. For example,
we could extend the Students relation with a column called partner and declare
this column to be a foreign key referring to Students. Intuitively, every student
could then have a partner, and the partner field contains the partner’s sid. The
observant reader will no doubt ask, “What if a student does not (yet) have
a partner?” This situation is handled in SQL by using a special value called
null. The use of null in a field of a tuple means that value in that field is either
unknown or not applicable (e.g., we do not know the partner yet or there is
no partner). The appearance of null in a foreign key field does not violate the
foreign key constraint. However, null values are not allowed to appear in a
primary key field (because the primary key fields are used to identify a tuple
uniquely). We discuss null values further in Chapter 5.
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Specifying Foreign Key Constraints in SQL

Let us define Enrolled(studid: string, cid: string, grade: string):

CREATE TABLE Enrolled ( studid CHAR(20),
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (studid, cid),
FOREIGN KEY (studid) REFERENCES Students )

The foreign key constraint states that every studid value in Enrolled must also
appear in Students, that is, studid in Enrolled is a foreign key referencing Stu-
dents. Specifically, every studid value in Enrolled must appear as the value in
the primary key field, sid, of Students. Incidentally, the primary key constraint
for Enrolled states that a student has exactly one grade for each course he or
she is enrolled in. If we want to record more than one grade per student per
course, we should change the primary key constraint.

3.2.3 General Constraints

Domain, primary key, and foreign key constraints are considered to be a fun-
damental part of the relational data model and are given special attention in
most commercial systems. Sometimes, however, it is necessary to specify more
general constraints.

For example, we may require that student ages be within a certain range of
values; given such an IC specification, the DBMS rejects inserts and updates
that violate the constraint. This is very useful in preventing data entry errors.
If we specify that all students must be at least 16 years old, the instance of
Students shown in Figure 3.1 is illegal because two students are underage. If
we disallow the insertion of these two tuples, we have a legal instance, as shown
in Figure 3.5.

sid name login age gpa

53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8

Figure 3.5 An Instance S2 of the Students Relation

The IC that students must be older than 16 can be thought of as an extended
domain constraint, since we are essentially defining the set of permissible age
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values more stringently than is possible by simply using a standard domain
such as integer. In general, however, constraints that go well beyond domain,
key, or foreign key constraints can be specified. For example, we could require
that every student whose age is greater than 18 must have a gpa greater than
3.

Current relational database systems support such general constraints in the
form of table constraints and assertions. Table constraints are associated with a
single table and checked whenever that table is modified. In contrast, assertions
involve several tables and are checked whenever any of these tables is modified.
Both table constraints and assertions can use the full power of SQL queries to
specify the desired restriction. We discuss SQL support for table constraints

and assertions in Section 5.7 because a full appreciation of their power requires
a good grasp of SQL’s query capabilities.

3.3 ENFORCING INTEGRITY CONSTRAINTS

As we observed earlier, ICs are specified when a relation is created and enforced
when a relation is modified. The impact of domain, PRIMARY KEY, and UNIQUE

constraints is straightforward: If an insert, delete, or update command causes
a violation, it is rejected. Every potential IC violation is generally checked at
the end of each SQL statement execution, although it can be deferred until the
end of the transaction executing the statement, as we will see in Section 3.3.1.

Consider the instance S1 of Students shown in Figure 3.1. The following inser-
tion violates the primary key constraint because there is already a tuple with
the sid 53688, and it will be rejected by the DBMS:

INSERT

INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Mike’, ‘mike@ee’, 17, 3.4)

The following insertion violates the constraint that the primary key cannot
contain null:

INSERT

INTO Students (sid, name, login, age, gpa)
VALUES (null, ‘Mike’, ‘mike@ee’, 17, 3.4)

Of course, a similar problem arises whenever we try to insert a tuple with a
value in a field that is not in the domain associated with that field, that is,
whenever we violate a domain constraint. Deletion does not cause a violation
of domain, primary key or unique constraints. However, an update can cause
violations, similar to an insertion:
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UPDATE Students S
SET S.sid = 50000
WHERE S.sid = 53688

This update violates the primary key constraint because there is already a tuple
with sid 50000.

The impact of foreign key constraints is more complex because SQL sometimes
tries to rectify a foreign key constraint violation instead of simply rejecting the
change. We discuss the referential integrity enforcement steps taken by
the DBMS in terms of our Enrolled and Students tables, with the foreign key
constraint that Enrolled.sid is a reference to (the primary key of) Students.

In addition to the instance S1 of Students, consider the instance of Enrolled
shown in Figure 3.4. Deletions of Enrolled tuples do not violate referential
integrity, but insertions of Enrolled tuples could. The following insertion is
illegal because there is no Students tuple with sid 51111:

INSERT

INTO Enrolled (cid, grade, studid)
VALUES (‘Hindi101’, ‘B’, 51111)

On the other hand, insertions of Students tuples do not violate referential
integrity, and deletions of Students tuples could cause violations. Further,
updates on either Enrolled or Students that change the studid (respectively,
sid) value could potentially violate referential integrity.

SQL provides several alternative ways to handle foreign key violations. We
must consider three basic questions:

1. What should we do if an Enrolled row is inserted, with a studid column

value that does not appear in any row of the Students table?

In this case, the INSERT command is simply rejected.

2. What should we do if a Students row is deleted?

The options are:

Delete all Enrolled rows that refer to the deleted Students row.

Disallow the deletion of the Students row if an Enrolled row refers to
it.

Set the studid column to the sid of some (existing) ‘default’ student,
for every Enrolled row that refers to the deleted Students row.
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For every Enrolled row that refers to it, set the studid column to null.
In our example, this option conflicts with the fact that studid is part
of the primary key of Enrolled and therefore cannot be set to null.
Therefore, we are limited to the first three options in our example,
although this fourth option (setting the foreign key to null) is available
in general.

3. What should we do if the primary key value of a Students row is updated?

The options here are similar to the previous case.

SQL allows us to choose any of the four options on DELETE and UPDATE. For
example, we can specify that when a Students row is deleted, all Enrolled rows
that refer to it are to be deleted as well, but that when the sid column of a
Students row is modified, this update is to be rejected if an Enrolled row refers
to the modified Students row:

CREATE TABLE Enrolled ( studid CHAR(20),
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (studid, cid),
FOREIGN KEY (studid) REFERENCES Students

ON DELETE CASCADE

ON UPDATE NO ACTION )

The options are specified as part of the foreign key declaration. The default
option is NO ACTION, which means that the action (DELETE or UPDATE) is to be
rejected. Thus, the ON UPDATE clause in our example could be omitted, with
the same effect. The CASCADE keyword says that, if a Students row is deleted,
all Enrolled rows that refer to it are to be deleted as well. If the UPDATE clause
specified CASCADE, and the sid column of a Students row is updated, this update
is also carried out in each Enrolled row that refers to the updated Students row.

If a Students row is deleted, we can switch the enrollment to a ‘default’ student
by using ON DELETE SET DEFAULT. The default student is specified as part of
the definition of the sid field in Enrolled; for example, sid CHAR(20) DEFAULT

‘53666’. Although the specification of a default value is appropriate in some
situations (e.g., a default parts supplier if a particular supplier goes out of
business), it is really not appropriate to switch enrollments to a default student.
The correct solution in this example is to also delete all enrollment tuples for
the deleted student (that is, CASCADE) or to reject the update.

SQL also allows the use of null as the default value by specifying ON DELETE

SET NULL.
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3.3.1 Transactions and Constraints

As we saw in Chapter 1, a program that runs against a database is called a
transaction, and it can contain several statements (queries, inserts, updates,
etc.) that access the database. If (the execution of) a statement in a transac-
tion violates an integrity constraint, should the DBMS detect this right away
or should all constraints be checked together just before the transaction com-
pletes?

By default, a constraint is checked at the end of every SQL statement that
could lead to a violation, and if there is a violation, the statement is rejected.
Sometimes this approach is too inflexible. Consider the following variants of
the Students and Courses relations; every student is required to have an honors
course, and every course is required to have a grader, who is some student.

CREATE TABLE Students ( sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
honorsCHAR(10) NOT NULL,
gpa REAL )
PRIMARY KEY (sid),
FOREIGN KEY (honors) REFERENCES Courses (cid))

CREATE TABLE Courses ( cid CHAR(10),
cname CHAR(10),
creditsINTEGER,
grader CHAR(20) NOT NULL,
PRIMARY KEY (cid)
FOREIGN KEY (grader) REFERENCES Students (sid))

Whenever a Students tuple is inserted, a check is made to see if the honors
course is in the Courses relation, and whenever a Courses tuple is inserted,
a check is made to see that the grader is in the Students relation. How are
we to insert the very first course or student tuple? One cannot be inserted
without the other. The only way to accomplish this insertion is to defer the
constraint checking that would normally be carried out at the end of an INSERT

statement.

SQL allows a constraint to be in DEFERRED or IMMEDIATE mode.

SET CONSTRAINT ConstraintFoo DEFERRED
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A constraint in deferred mode is checked at commit time. In our example,
the foreign key constraints on Boats and Sailors can both be declared to be in
deferred mode. We can then insert a boat with a nonexistent sailor as the cap-
tain (temporarily making the database inconsistent), insert the sailor (restoring
consistency), then commit and check that both constraints are satisfied.

3.4 QUERYING RELATIONAL DATA

A relational database query (query, for short) is a question about the data,
and the answer consists of a new relation containing the result. For example,
we might want to find all students younger than 18 or all students enrolled in
Reggae203. A query language is a specialized language for writing queries.

SQL is the most popular commercial query language for a relational DBMS.
We now present some SQL examples that illustrate how easily relations can be
queried. Consider the instance of the Students relation shown in Figure 3.1.
We can retrieve rows corresponding to students who are younger than 18 with
the following SQL query:

SELECT *
FROM Students S
WHERE S.age < 18

The symbol ‘*’ means that we retain all fields of selected tuples in the result.
Think of S as a variable that takes on the value of each tuple in Students, one
tuple after the other. The condition S.age < 18 in the WHERE clause specifies
that we want to select only tuples in which the age field has a value less than
18. This query evaluates to the relation shown in Figure 3.6.

sid name login age gpa

53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 3.6 Students with age < 18 on Instance S1

This example illustrates that the domain of a field restricts the operations
that are permitted on field values, in addition to restricting the values that can
appear in the field. The condition S.age < 18 involves an arithmetic comparison
of an age value with an integer and is permissible because the domain of age
is the set of integers. On the other hand, a condition such as S.age = S.sid

does not make sense because it compares an integer value with a string value,
and this comparison is defined to fail in SQL; a query containing this condition
produces no answer tuples.
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In addition to selecting a subset of tuples, a query can extract a subset of the
fields of each selected tuple. We can compute the names and logins of students
who are younger than 18 with the following query:

SELECT S.name, S.login
FROM Students S
WHERE S.age < 18

Figure 3.7 shows the answer to this query; it is obtained by applying the se-
lection to the instance S1 of Students (to get the relation shown in Figure
3.6), followed by removing unwanted fields. Note that the order in which we
perform these operations does matter—if we remove unwanted fields first, we
cannot check the condition S.age < 18, which involves one of those fields.

name login

Madayan madayan@music
Guldu guldu@music

Figure 3.7 Names and Logins of Students under 18

We can also combine information in the Students and Enrolled relations. If we
want to obtain the names of all students who obtained an A and the id of the
course in which they got an A, we could write the following query:

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid = E.studid AND E.grade = ‘A’

This query can be understood as follows: “If there is a Students tuple S and
an Enrolled tuple E such that S.sid = E.studid (so that S describes the student
who is enrolled in E) and E.grade = ‘A’, then print the student’s name and
the course id.” When evaluated on the instances of Students and Enrolled in
Figure 3.4, this query returns a single tuple,  Smith, Topology112 .

We cover relational queries and SQL in more detail in subsequent chapters.

3.5 LOGICAL DATABASE DESIGN: ER TO

RELATIONAL

The ER model is convenient for representing an initial, high-level database
design. Given an ER diagram describing a database, a standard approach is
taken to generating a relational database schema that closely approximates
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the ER design. (The translation is approximate to the extent that we cannot
capture all the constraints implicit in the ER design using SQL, unless we use
certain SQL constraints that are costly to check.) We now describe how to
translate an ER diagram into a collection of tables with associated constraints,
that is, a relational database schema.

3.5.1 Entity Sets to Tables

An entity set is mapped to a relation in a straightforward way: Each attribute
of the entity set becomes an attribute of the table. Note that we know both
the domain of each attribute and the (primary) key of an entity set.

Consider the Employees entity set with attributes ssn, name, and lot shown in
Figure 3.8. A possible instance of the Employees entity set, containing three

name

lotssn

Employees

Figure 3.8 The Employees Entity Set

Employees entities, is shown in Figure 3.9 in a tabular format.

ssn name lot

123-22-3666 Attishoo 48
231-31-5368 Smiley 22
131-24-3650 Smethurst 35

Figure 3.9 An Instance of the Employees Entity Set

The following SQL statement captures the preceding information, including the
domain constraints and key information:

CREATE TABLE Employees ( ssn CHAR(11),
name CHAR(30),
lot INTEGER,
PRIMARY KEY (ssn) )
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3.5.2 Relationship Sets (without Constraints) to Tables

A relationship set, like an entity set, is mapped to a relation in the relational
model. We begin by considering relationship sets without key and participa-
tion constraints, and we discuss how to handle such constraints in subsequent
sections. To represent a relationship, we must be able to identify each partic-
ipating entity and give values to the descriptive attributes of the relationship.
Thus, the attributes of the relation include:

The primary key attributes of each participating entity set, as foreign key
fields.

The descriptive attributes of the relationship set.

The set of nondescriptive attributes is a superkey for the relation. If there are
no key constraints (see Section 2.4.1), this set of attributes is a candidate key.

Consider the Works In2 relationship set shown in Figure 3.10. Each department
has offices in several locations and we want to record the locations at which
each employee works.

dname

budget

since

Locations

Works_In2

capacity

Employees

name

lot

address

Departments

didssn

Figure 3.10 A Ternary Relationship Set

All the available information about the Works In2 table is captured by the
following SQL definition:

CREATE TABLE Works In2 ( ssn CHAR(11),
did INTEGER,
address CHAR(20),
since DATE,
PRIMARY KEY (ssn, did, address),
FOREIGN KEY (ssn) REFERENCES Employees,
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FOREIGN KEY (address) REFERENCES Locations,
FOREIGN KEY (did) REFERENCES Departments )

Note that the address, did, and ssn fields cannot take on null values. Because
these fields are part of the primary key for Works In2, a NOT NULL constraint
is implicit for each of these fields. This constraint ensures that these fields
uniquely identify a department, an employee, and a location in each tuple
of Works In. We can also specify that a particular action is desired when a
referenced Employees, Departments, or Locations tuple is deleted, as explained
in the discussion of integrity constraints in Section 3.2. In this chapter, we
assume that the default action is appropriate except for situations in which the
semantics of the ER diagram require some other action.

Finally, consider the Reports To relationship set shown in Figure 3.11. The

name

Employees

subordinate

ssn lot

supervisor

Reports_To

Figure 3.11 The Reports To Relationship Set

role indicators supervisor and subordinate are used to create meaningful field
names in the CREATE statement for the Reports To table:

CREATE TABLE Reports To (
supervisor ssn CHAR(11),
subordinate ssn CHAR(11),
PRIMARY KEY (supervisor ssn, subordinate ssn),
FOREIGN KEY (supervisor ssn) REFERENCES Employees(ssn),
FOREIGN KEY (subordinate ssn) REFERENCES Employees(ssn) )

Observe that we need to explicitly name the referenced field of Employees
because the field name differs from the name(s) of the referring field(s).
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3.5.3 Translating Relationship Sets with Key Constraints

If a relationship set involves n entity sets and some m of them are linked via
arrows in the ER diagram, the key for any one of these m entity sets constitutes
a key for the relation to which the relationship set is mapped. Hence we have
m candidate keys, and one of these should be designated as the primary key.
The translation discussed in Section 2.3 from relationship sets to a relation can
be used in the presence of key constraints, taking into account this point about
keys.

Consider the relationship set Manages shown in Figure 3.12. The table cor-

name dname

budget

since

Employees Departments

ssn lot

Manages

did

Figure 3.12 Key Constraint on Manages

responding to Manages has the attributes ssn, did, since. However, because
each department has at most one manager, no two tuples can have the same
did value but differ on the ssn value. A consequence of this observation is that
did is itself a key for Manages; indeed, the set did, ssn is not a key (because it
is not minimal). The Manages relation can be defined using the following SQL
statement:

CREATE TABLE Manages ( ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments )

A second approach to translating a relationship set with key constraints is
often superior because it avoids creating a distinct table for the relationship
set. The idea is to include the information about the relationship set in the
table corresponding to the entity set with the key, taking advantage of the
key constraint. In the Manages example, because a department has at most
one manager, we can add the key fields of the Employees tuple denoting the
manager and the since attribute to the Departments tuple.
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This approach eliminates the need for a separate Manages relation, and queries
asking for a department’s manager can be answered without combining infor-
mation from two relations. The only drawback to this approach is that space
could be wasted if several departments have no managers. In this case the
added fields would have to be filled with null values. The first translation (us-
ing a separate table for Manages) avoids this inefficiency, but some important
queries require us to combine information from two relations, which can be a
slow operation.

The following SQL statement, defining a Dept Mgr relation that captures the
information in both Departments and Manages, illustrates the second approach
to translating relationship sets with key constraints:

CREATE TABLE Dept Mgr ( did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees )

Note that ssn can take on null values.

This idea can be extended to deal with relationship sets involving more than
two entity sets. In general, if a relationship set involves n entity sets and some
m of them are linked via arrows in the ER diagram, the relation corresponding
to any one of the m sets can be augmented to capture the relationship.

We discuss the relative merits of the two translation approaches further after
considering how to translate relationship sets with participation constraints
into tables.

3.5.4 Translating Relationship Sets with Participation

Constraints

Consider the ER diagram in Figure 3.13, which shows two relationship sets,
Manages and Works In.

Every department is required to have a manager, due to the participation
constraint, and at most one manager, due to the key constraint. The following
SQL statement reflects the second translation approach discussed in Section
3.5.3, and uses the key constraint:
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name dname

ManagesManages

Works_In

lot did budget

DepartmentsEmployees

ssn

since

since

Figure 3.13 Manages and Works In

CREATE TABLE Dept Mgr ( did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE NO ACTION )

It also captures the participation constraint that every department must have
a manager: Because ssn cannot take on null values, each tuple of Dept Mgr
identifies a tuple in Employees (who is the manager). The NO ACTION specifi-
cation, which is the default and need not be explicitly specified, ensures that
an Employees tuple cannot be deleted while it is pointed to by a Dept Mgr
tuple. If we wish to delete such an Employees tuple, we must first change the
Dept Mgr tuple to have a new employee as manager. (We could have specified
CASCADE instead of NO ACTION, but deleting all information about a department
just because its manager has been fired seems a bit extreme!)

The constraint that every department must have a manager cannot be cap-
tured using the first translation approach discussed in Section 3.5.3. (Look
at the definition of Manages and think about what effect it would have if we
added NOT NULL constraints to the ssn and did fields. Hint: The constraint
would prevent the firing of a manager, but does not ensure that a manager is
initially appointed for each department!) This situation is a strong argument
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in favor of using the second approach for one-to-many relationships such as
Manages, especially when the entity set with the key constraint also has a total
participation constraint.

Unfortunately, there are many participation constraints that we cannot capture
using SQL, short of using table constraints or assertions. Table constraints and
assertions can be specified using the full power of the SQL query language
(as discussed in Section 5.7) and are very expressive but also very expensive to
check and enforce. For example, we cannot enforce the participation constraints
on the Works In relation without using these general constraints. To see why,
consider the Works In relation obtained by translating the ER diagram into
relations. It contains fields ssn and did, which are foreign keys referring to
Employees and Departments. To ensure total participation of Departments in
Works In, we have to guarantee that every did value in Departments appears
in a tuple of Works In. We could try to guarantee this condition by declaring
that did in Departments is a foreign key referring to Works In, but this is not
a valid foreign key constraint because did is not a candidate key for Works In.

To ensure total participation of Departments in Works In using SQL, we need
an assertion. We have to guarantee that every did value in Departments appears
in a tuple of Works In; further, this tuple of Works In must also have non-null
values in the fields that are foreign keys referencing other entity sets involved in
the relationship (in this example, the ssn field). We can ensure the second part
of this constraint by imposing the stronger requirement that ssn in Works In
cannot contain null values. (Ensuring that the participation of Employees in
Works In is total is symmetric.)

Another constraint that requires assertions to express in SQL is the requirement
that each Employees entity (in the context of the Manages relationship set)
must manage at least one department.

In fact, the Manages relationship set exemplifies most of the participation con-
straints that we can capture using key and foreign key constraints. Manages is
a binary relationship set in which exactly one of the entity sets (Departments)
has a key constraint, and the total participation constraint is expressed on that
entity set.

We can also capture participation constraints using key and foreign key con-
straints in one other special situation: a relationship set in which all participat-
ing entity sets have key constraints and total participation. The best translation
approach in this case is to map all the entities as well as the relationship into
a single table; the details are straightforward.
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3.5.5 Translating Weak Entity Sets

A weak entity set always participates in a one-to-many binary relationship and
has a key constraint and total participation. The second translation approach
discussed in Section 3.5.3 is ideal in this case, but we must take into account
that the weak entity has only a partial key. Also, when an owner entity is
deleted, we want all owned weak entities to be deleted.

Consider the Dependents weak entity set shown in Figure 3.14, with partial
key pname. A Dependents entity can be identified uniquely only if we take the
key of the owning Employees entity and the pname of the Dependents entity,
and the Dependents entity must be deleted if the owning Employees entity is
deleted.

name

agepname

Employees

ssn
cost

lot

DependentsPolicy

Figure 3.14 The Dependents Weak Entity Set

We can capture the desired semantics with the following definition of the
Dep Policy relation:

CREATE TABLE Dep Policy ( pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11),
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE CASCADE )

Observe that the primary key is  pname, ssn , since Dependents is a weak
entity. This constraint is a change with respect to the translation discussed in
Section 3.5.3. We have to ensure that every Dependents entity is associated
with an Employees entity (the owner), as per the total participation constraint
on Dependents. That is, ssn cannot be null. This is ensured because ssn is
part of the primary key. The CASCADE option ensures that information about
an employee’s policy and dependents is deleted if the corresponding Employees
tuple is deleted.
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3.5.6 Translating Class Hierarchies

We present the two basic approaches to handling ISA hierarchies by applying
them to the ER diagram shown in Figure 3.15:

name

ISA

ssn

Employee

lot

hourly_wages

hours_worked

Hourly_Emps Contract_Emps

contractid

Figure 3.15 Class Hierarchy

1. We can map each of the entity sets Employees, Hourly Emps, and Con-
tract Emps to a distinct relation. The Employees relation is created as
in Section 2.2. We discuss Hourly Emps here; Contract Emps is han-
dled similarly. The relation for Hourly Emps includes the hourly wages

and hours worked attributes of Hourly Emps. It also contains the key at-
tributes of the superclass (ssn, in this example), which serve as the primary
key for Hourly Emps, as well as a foreign key referencing the superclass
(Employees). For each Hourly Emps entity, the value of the name and
lot attributes are stored in the corresponding row of the superclass (Em-
ployees). Note that if the superclass tuple is deleted, the delete must be
cascaded to Hourly Emps.

2. Alternatively, we can create just two relations, corresponding to Hourly Emps
and Contract Emps. The relation for Hourly Emps includes all the at-
tributes of Hourly Emps as well as all the attributes of Employees (i.e.,
ssn, name, lot, hourly wages, hours worked).

The first approach is general and always applicable. Queries in which we want
to examine all employees and do not care about the attributes specific to the
subclasses are handled easily using the Employees relation. However, queries
in which we want to examine, say, hourly employees, may require us to com-
bine Hourly Emps (or Contract Emps, as the case may be) with Employees to
retrieve name and lot.
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The second approach is not applicable if we have employees who are neither
hourly employees nor contract employees, since there is no way to store such
employees. Also, if an employee is both an Hourly Emps and a Contract Emps
entity, then the name and lot values are stored twice. This duplication can lead
to some of the anomalies that we discuss in Chapter 19. A query that needs to
examine all employees must now examine two relations. On the other hand, a
query that needs to examine only hourly employees can now do so by examining
just one relation. The choice between these approaches clearly depends on the
semantics of the data and the frequency of common operations.

In general, overlap and covering constraints can be expressed in SQL only by
using assertions.

3.5.7 Translating ER Diagrams with Aggregation

Consider the ER diagram shown in Figure 3.16. The Employees, Projects,

since

name

budgetdidpid

started_on

pbudget

dname

ssn

DepartmentsProjects

Employees

Monitors

lot

Sponsors

until

Figure 3.16 Aggregation

and Departments entity sets and the Sponsors relationship set are mapped as
described in previous sections. For the Monitors relationship set, we create a
relation with the following attributes: the key attributes of Employees (ssn), the
key attributes of Sponsors (did, pid), and the descriptive attributes of Monitors
(until). This translation is essentially the standard mapping for a relationship
set, as described in Section 3.5.2.
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There is a special case in which this translation can be refined by dropping the
Sponsors relation. Consider the Sponsors relation. It has attributes pid, did,

and since; and in general we need it (in addition to Monitors) for two reasons:

1. We have to record the descriptive attributes (in our example, since) of the
Sponsors relationship.

2. Not every sponsorship has a monitor, and thus some  pid, did pairs in the
Sponsors relation may not appear in the Monitors relation.

However, if Sponsors has no descriptive attributes and has total participation
in Monitors, every possible instance of the Sponsors relation can be obtained
from the  pid, did columns of Monitors; Sponsors can be dropped.

3.5.8 ER to Relational: Additional Examples

Consider the ER diagram shown in Figure 3.17. We can use the key constraints

name

agepname

Dependents

ssn

cost

lot

Purchaser Beneficiary

Policies

Employees

policyid

Figure 3.17 Policy Revisited

to combine Purchaser information with Policies and Beneficiary information
with Dependents, and translate it into the relational model as follows:

CREATE TABLE Policies ( policyid INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (policyid),
FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE CASCADE )
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CREATE TABLE Dependents ( pname CHAR(20),
age INTEGER,
policyid INTEGER,
PRIMARY KEY (pname, policyid),
FOREIGN KEY (policyid) REFERENCES Policies

ON DELETE CASCADE )

Notice how the deletion of an employee leads to the deletion of all policies
owned by the employee and all dependents who are beneficiaries of those poli-
cies. Further, each dependent is required to have a covering policy—because
policyid is part of the primary key of Dependents, there is an implicit NOT NULL

constraint. This model accurately reflects the participation constraints in the
ER diagram and the intended actions when an employee entity is deleted.

In general, there could be a chain of identifying relationships for weak entity
sets. For example, we assumed that policyid uniquely identifies a policy. Sup-
pose that policyid distinguishes only the policies owned by a given employee;
that is, policyid is only a partial key and Policies should be modeled as a weak
entity set. This new assumption about policyid does not cause much to change
in the preceding discussion. In fact, the only changes are that the primary
key of Policies becomes  policyid, ssn , and as a consequence, the definition of
Dependents changes—a field called ssn is added and becomes part of both the
primary key of Dependents and the foreign key referencing Policies:

CREATE TABLE Dependents ( pname CHAR(20),
ssn CHAR(11),
age INTEGER,
policyid INTEGER NOT NULL,
PRIMARY KEY (pname, policyid, ssn),
FOREIGN KEY (policyid, ssn) REFERENCES Policies

ON DELETE CASCADE )

3.6 INTRODUCTION TO VIEWS

A view is a table whose rows are not explicitly stored in the database but
are computed as needed from a view definition. Consider the Students and
Enrolled relations. Suppose we are often interested in finding the names and
student identifiers of students who got a grade of B in some course, together
with the course identifier. We can define a view for this purpose. Using SQL
notation:

CREATE VIEW B-Students (name, sid, course)
AS SELECT S.sname, S.sid, E.cid
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FROM Students S, Enrolled E
WHERE S.sid = E.studid AND E.grade = ‘B’

The view B-Students has three fields called name, sid, and course with the
same domains as the fields sname and sid in Students and cid in Enrolled.
(If the optional arguments name, sid, and course are omitted from the CREATE
VIEW statement, the column names sname, sid, and cid are inherited.)

This view can be used just like a base table, or explicitly stored table, in
defining new queries or views. Given the instances of Enrolled and Students
shown in Figure 3.4, B-Students contains the tuples shown in Figure 3.18.
Conceptually, whenever B-Students is used in a query, the view definition is
first evaluated to obtain the corresponding instance of B-Students, then the rest
of the query is evaluated treating B-Students like any other relation referred
to in the query. (We discuss how queries on views are evaluated in practice in
Chapter 25.)

name sid course

Jones 53666 History105
Guldu 53832 Reggae203

Figure 3.18 An Instance of the B-Students View

3.6.1 Views, Data Independence, Security

Consider the levels of abstraction we discussed in Section 1.5.2. The physical

schema for a relational database describes how the relations in the conceptual
schema are stored, in terms of the file organizations and indexes used. The
conceptual schema is the collection of schemas of the relations stored in the
database. While some relations in the conceptual schema can also be exposed to
applications, that is, be part of the external schema of the database, additional
relations in the external schema can be defined using the view mechanism.
The view mechanism thus provides the support for logical data independence

in the relational model. That is, it can be used to define relations in the
external schema that mask changes in the conceptual schema of the database
from applications. For example, if the schema of a stored relation is changed,
we can define a view with the old schema and applications that expect to see
the old schema can now use this view.

Views are also valuable in the context of security: We can define views that
give a group of users access to just the information they are allowed to see. For
example, we can define a view that allows students to see the other students’
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name and age but not their gpa, and allows all students to access this view but
not the underlying Students table (see Chapter 21).

3.6.2 Updates on Views

The motivation behind the view mechanism is to tailor how users see the data.
Users should not have to worry about the view versus base table distinction.
This goal is indeed achieved in the case of queries on views; a view can be used
just like any other relation in defining a query. However, it is natural to want to
specify updates on views as well. Here, unfortunately, the distinction between
a view and a base table must be kept in mind.

The SQL-92 standard allows updates to be specified only on views that are
defined on a single base table using just selection and projection, with no use of
aggregate operations.3 Such views are called updatable views. This definition
is oversimplified, but it captures the spirit of the restrictions. An update on
such a restricted view can always be implemented by updating the underlying
base table in an unambiguous way. Consider the following view:

CREATE VIEW GoodStudents (sid, gpa)
AS SELECT S.sid, S.gpa

FROM Students S
WHERE S.gpa > 3.0

We can implement a command to modify the gpa of a GoodStudents row by
modifying the corresponding row in Students. We can delete a GoodStudents
row by deleting the corresponding row from Students. (In general, if the view
did not include a key for the underlying table, several rows in the table could
‘correspond’ to a single row in the view. This would be the case, for example,
if we used S.sname instead of S.sid in the definition of GoodStudents. A com-
mand that affects a row in the view then affects all corresponding rows in the
underlying table.)

We can insert a GoodStudents row by inserting a row into Students, using
null values in columns of Students that do not appear in GoodStudents (e.g.,
sname, login). Note that primary key columns are not allowed to contain null

values. Therefore, if we attempt to insert rows through a view that does not
contain the primary key of the underlying table, the insertions will be rejected.
For example, if GoodStudents contained sname but not sid, we could not insert
rows into Students through insertions to GoodStudents.

3There is also the restriction that the DISTINCT operator cannot be used in updatable view defi-
nitions. By default, SQL does not eliminate duplicate copies of rows from the result of a query; the
DISTINCT operator requires duplicate elimination. We discuss this point further in Chapter 5.
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Updatable Views in SQL:1999 The new SQL standard has expanded
the class of view definitions that are updatable, taking primary key
constraints into account. In contrast to SQL-92, a view definition that
contains more than one table in the FROM clause may be updatable under
the new definition. Intuitively, we can update a field of a view if it is
obtained from exactly one of the underlying tables, and the primary key
of that table is included in the fields of the view.

SQL:1999 distinguishes between views whose rows can be modified (updat-
able views) and views into which new rows can be inserted (insertable-
into views): Views defined using the SQL constructs UNION, INTERSECT,
and EXCEPT (which we discuss in Chapter 5) cannot be inserted into, even
if they are updatable. Intuitively, updatability ensures that an updated
tuple in the view can be traced to exactly one tuple in one of the tables
used to define the view. The updatability property, however, may still not
enable us to decide into which table to insert a new tuple.

An important observation is that an INSERT or UPDATE may change the un-
derlying base table so that the resulting (i.e., inserted or modified) row is not
in the view! For example, if we try to insert a row  51234, 2.8 into the view,
this row can be (padded with null values in the other fields of Students and
then) added to the underlying Students table, but it will not appear in the
GoodStudents view because it does not satisfy the view condition gpa > 3.0.
The SQL default action is to allow this insertion, but we can disallow it by
adding the clause WITH CHECK OPTION to the definition of the view. In this
case, only rows that will actually appear in the view are permissible insertions.

We caution the reader, that when a view is defined in terms of another view,
the interaction between these view definitions with respect to updates and the
CHECK OPTION clause can be complex; we not go into the details.

Need to Restrict View Updates

While the SQL rules on updatable views are more stringent than necessary,
there are some fundamental problems with updates specified on views and good
reason to limit the class of views that can be updated. Consider the Students
relation and a new relation called Clubs:

Clubs(cname: string, jyear: date, mname: string)
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cname jyear mname

Sailing 1996 Dave
Hiking 1997 Smith
Rowing 1998 Smith

Figure 3.19 An Instance C of Clubs

sid name login age gpa

50000 Dave dave@cs 19 3.3
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8

Figure 3.20 An Instance S3 of Students

name login club since

Dave dave@cs Sailing 1996
Smith smith@ee Hiking 1997
Smith smith@ee Rowing 1998
Smith smith@math Hiking 1997
Smith smith@math Rowing 1998

Figure 3.21 Instance of ActiveStudents

A tuple in Clubs denotes that the student called mname has been a member of
the club cname since the date jyear.4 Suppose that we are often interested in
finding the names and logins of students with a gpa greater than 3 who belong
to at least one club, along with the club name and the date they joined the
club. We can define a view for this purpose:

CREATE VIEW ActiveStudents (name, login, club, since)
AS SELECT S.sname, S.login, C.cname, C.jyear

FROM Students S, Clubs C
WHERE S.sname = C.mname AND S.gpa > 3

Consider the instances of Students and Clubs shown in Figures 3.19 and 3.20.
When evaluated using the instances C and S3, ActiveStudents contains the
rows shown in Figure 3.21.

Now suppose that we want to delete the row  Smith, smith@ee, Hiking, 1997 
from ActiveStudents. How are we to do this? ActiveStudents rows are not
stored explicitly but computed as needed from the Students and Clubs tables
using the view definition. So we must change either Students or Clubs (or
both) in such a way that evaluating the view definition on the modified instance
does not produce the row  Smith, smith@ee, Hiking, 1997. This task can be
accomplished in one of two ways: by either deleting the row  53688, Smith,

smith@ee, 18, 3.2 from Students or deleting the row  Hiking, 1997, Smith 

4We remark that Clubs has a poorly designed schema (chosen for the sake of our discussion of view
updates), since it identifies students by name, which is not a candidate key for Students.
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from Clubs. But neither solution is satisfactory. Removing the Students row
has the effect of also deleting the row  Smith, smith@ee, Rowing, 1998 from the
view ActiveStudents. Removing the Clubs row has the effect of also deleting the
row  Smith, smith@math, Hiking, 1997 from the view ActiveStudents. Neither
side effect is desirable. In fact, the only reasonable solution is to disallow such
updates on views.

Views involving more than one base table can, in principle, be safely updated.
The B-Students view we introduced at the beginning of this section is an ex-
ample of such a view. Consider the instance of B-Students shown in Figure
3.18 (with, of course, the corresponding instances of Students and Enrolled as
in Figure 3.4). To insert a tuple, say  Dave, 50000, Reggae203 B-Students, we
can simply insert a tuple  Reggae203, B, 50000 into Enrolled since there is al-
ready a tuple for sid 50000 in Students. To insert  John, 55000, Reggae203 , on
the other hand, we have to insert  Reggae203, B, 55000 into Enrolled and also
insert  55000, John, null, null, null into Students. Observe how null values
are used in fields of the inserted tuple whose value is not available. Fortunately,
the view schema contains the primary key fields of both underlying base tables;
otherwise, we would not be able to support insertions into this view. To delete
a tuple from the view B-Students, we can simply delete the corresponding tuple
from Enrolled.

Although this example illustrates that the SQL rules on updatable views are
unnecessarily restrictive, it also brings out the complexity of handling view
updates in the general case. For practical reasons, the SQL standard has chosen
to allow only updates on a very restricted class of views.

3.7 DESTROYING/ALTERING TABLES AND VIEWS

If we decide that we no longer need a base table and want to destroy it (i.e.,
delete all the rows and remove the table definition information), we can use
the DROP TABLE command. For example, DROP TABLE Students RESTRICT de-
stroys the Students table unless some view or integrity constraint refers to
Students; if so, the command fails. If the keyword RESTRICT is replaced by
CASCADE, Students is dropped and any referencing views or integrity constraints
are (recursively) dropped as well; one of these two keywords must always be
specified. A view can be dropped using the DROP VIEW command, which is just
like DROP TABLE.

ALTER TABLE modifies the structure of an existing table. To add a column
called maiden-name to Students, for example, we would use the following com-
mand:



92 Chapter 3

ALTER TABLE Students
ADD COLUMN maiden-name CHAR(10)

The definition of Students is modified to add this column, and all existing rows
are padded with null values in this column. ALTER TABLE can also be used
to delete columns and add or drop integrity constraints on a table; we do not
discuss these aspects of the command beyond remarking that dropping columns
is treated very similarly to dropping tables or views.

3.8 CASE STUDY: THE INTERNET STORE

The next design step in our running example, continued from Section 2.8, is
logical database design. Using the standard approach discussed in Chapter 3,
DBDudes maps the ER diagram shown in Figure 2.20 to the relational model,
generating the following tables:

CREATE TABLE Books ( isbn CHAR(10),
title CHAR(80),
author CHAR(80),
qty in stock INTEGER,
price REAL,
year published INTEGER,
PRIMARY KEY (isbn))

CREATE TABLE Orders ( isbn CHAR(10),
cid INTEGER,
cardnum CHAR(16),
qty INTEGER,
order date DATE,
ship date DATE,
PRIMARY KEY (isbn,cid),
FOREIGN KEY (isbn) REFERENCES Books,
FOREIGN KEY (cid) REFERENCES Customers )

CREATE TABLE Customers ( cid INTEGER,
cname CHAR(80),
address CHAR(200),
PRIMARY KEY (cid)

The design team leader, who is still brooding over the fact that the review
exposed a flaw in the design, now has an inspiration. The Orders table contains
the field order date and the key for the table contains only the fields isbn and
cid. Because of this, a customer cannot order the same book on different days,



The Relational Model 93

a restriction that was not intended. Why not add the order date attribute to
the key for the Orders table? This would eliminate the unwanted restriction:

CREATE TABLE Orders ( isbn CHAR(10),
...
PRIMARY KEY (isbn,cid,ship date),
...)

The reviewer, Dude 2, is not entirely happy with this solution, which he calls
a ‘hack’. He points out that no natural ER diagram reflects this design and
stresses the importance of the ER diagram as a design document. Dude 1
argues that, while Dude 2 has a point, it is important to present B&N with
a preliminary design and get feedback; everyone agrees with this, and they go
back to B&N.

The owner of B&N now brings up some additional requirements he did not
mention during the initial discussions: “Customers should be able to purchase
several different books in a single order. For example, if a customer wants to
purchase three copies of ‘The English Teacher’ and two copies of ‘The Character
of Physical Law,’ the customer should be able to place a single order for both
books.”

The design team leader, Dude 1, asks how this affects the shippping policy.
Does B&N still want to ship all books in an order together? The owner of
B&N explains their shipping policy: “As soon as we have have enough copies
of an ordered book we ship it, even if an order contains several books. So it
could happen that the three copies of ‘The English Teacher’ are shipped today
because we have five copies in stock, but that ‘The Character of Physical Law’
is shipped tomorrow, because we currently have only one copy in stock and
another copy arrives tomorrow. In addition, my customers could place more
than one order per day, and they want to be able to identify the orders they
placed.”

The DBDudes team thinks this over and identifies two new requirements: First,
it must be possible to order several different books in a single order and sec-
ond, a customer must be able to distinguish between several orders placed the
same day. To accomodate these requirements, they introduce a new attribute
into the Orders table called ordernum, which uniquely identifies an order and
therefore the customer placing the order. However, since several books could be
purchased in a single order, ordernum and isbn are both needed to determine
qty and ship date in the Orders table.

Orders are assigned order numbers sequentially and orders that are placed later
have higher order numbers. If several orders are placed by the same customer
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on a single day, these orders have different order numbers and can thus be
distinguished. The SQL DDL statement to create the modified Orders table
follows:

CREATE TABLE Orders ( ordernum INTEGER,
isbn CHAR(10),
cid INTEGER,
cardnum CHAR(16),
qty INTEGER,
order date DATE,
ship date DATE,
PRIMARY KEY (ordernum, isbn),
FOREIGN KEY (isbn) REFERENCES Books
FOREIGN KEY (cid) REFERENCES Customers )

The owner of B&N is quite happy with this design for Orders, but has realized
something else. (DBDudes is not surprised; customers almost always come up
with several new requirements as the design progresses.) While he wants all
his employees to be able to look at the details of an order, so that they can
respond to customer enquiries, he wants customers’ credit card information to
be secure. To address this concern, DBDudes creates the following view:

CREATE VIEW OrderInfo (isbn, cid, qty, order date, ship date)
AS SELECT O.cid, O.qty, O.order date, O.ship date

FROM Orders O

The plan is to allow employees to see this table, but not Orders; the latter is
restricted to B&N’s Accounting division. We’ll see how this is accomplished in
Section 21.7.

3.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What is a relation? Differentiate between a relation schema and a relation
instance. Define the terms arity and degree of a relation. What are domain
constraints? (Section 3.1)

What SQL construct enables the definition of a relation? What constructs
allow modification of relation instances? (Section 3.1.1)

What are integrity constraints? Define the terms primary key constraint

and foreign key constraint. How are these constraints expressed in SQL?
What other kinds of constraints can we express in SQL? (Section 3.2)
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What does the DBMS do when constraints are violated? What is referen-
tial integrity? What options does SQL give application programmers for
dealing with violations of referential integrity? (Section 3.3)

When are integrity constraints enforced by a DBMS? How can an appli-
cation programmer control the time that constraint violations are checked
during transaction execution? (Section 3.3.1)

What is a relational database query? (Section 3.4)

How can we translate an ER diagram into SQL statements to create ta-
bles? How are entity sets mapped into relations? How are relationship
sets mapped? How are constraints in the ER model, weak entity sets, class
hierarchies, and aggregation handled? (Section 3.5)

What is a view? How do views support logical data independence? How
are views used for security? How are queries on views evaluated? Why
does SQL restrict the class of views that can be updated? (Section 3.6)

What are the SQL constructs to modify the structure of tables and de-
stroy tables and views? Discuss what happens when we destroy a view.
(Section 3.7)

EXERCISES

Exercise 3.1 Define the following terms: relation schema, relational database schema, do-

main, relation instance, relation cardinality, and relation degree.

Exercise 3.2 How many distinct tuples are in a relation instance with cardinality 22?

Exercise 3.3 Does the relational model, as seen by an SQL query writer, provide physical
and logical data independence? Explain.

Exercise 3.4 What is the difference between a candidate key and the primary key for a given
relation? What is a superkey?

Exercise 3.5 Consider the instance of the Students relation shown in Figure 3.1.

1. Give an example of an attribute (or set of attributes) that you can deduce is not a
candidate key, based on this instance being legal.

2. Is there any example of an attribute (or set of attributes) that you can deduce is a
candidate key, based on this instance being legal?

Exercise 3.6 What is a foreign key constraint? Why are such constraints important? What
is referential integrity?

Exercise 3.7 Consider the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets In defined in Section 1.5.2.
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1. List all the foreign key constraints among these relations.

2. Give an example of a (plausible) constraint involving one or more of these relations that
is not a primary key or foreign key constraint.

Exercise 3.8 Answer each of the following questions briefly. The questions are based on the
following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, dname: string, budget: real, managerid: integer)

1. Give an example of a foreign key constraint that involves the Dept relation. What are
the options for enforcing this constraint when a user attempts to delete a Dept tuple?

2. Write the SQL statements required to create the preceding relations, including appro-
priate versions of all primary and foreign key integrity constraints.

3. Define the Dept relation in SQL so that every department is guaranteed to have a
manager.

4. Write an SQL statement to add John Doe as an employee with eid = 101, age = 32 and
salary = 15, 000.

5. Write an SQL statement to give every employee a 10 percent raise.

6. Write an SQL statement to delete the Toy department. Given the referential integrity
constraints you chose for this schema, explain what happens when this statement is
executed.

Exercise 3.9 Consider the SQL query whose answer is shown in Figure 3.6.

1. Modify this query so that only the login column is included in the answer.

2. If the clause WHERE S.gpa >= 2 is added to the original query, what is the set of tuples
in the answer?

Exercise 3.10 Explain why the addition of NOT NULL constraints to the SQL definition of
the Manages relation (in Section 3.5.3) would not enforce the constraint that each department
must have a manager. What, if anything, is achieved by requiring that the ssn field of Manages
be non-null?

Exercise 3.11 Suppose that we have a ternary relationship R between entity sets A, B,
and C such that A has a key constraint and total participation and B has a key constraint;
these are the only constraints. A has attributes a1 and a2, with a1 being the key; B and
C are similar. R has no descriptive attributes. Write SQL statements that create tables
corresponding to this information so as to capture as many of the constraints as possible. If
you cannot capture some constraint, explain why.

Exercise 3.12 Consider the scenario from Exercise 2.2, where you designed an ER diagram
for a university database. Write SQL statements to create the corresponding relations and
capture as many of the constraints as possible. If you cannot capture some constraints, explain
why.

Exercise 3.13 Consider the university database from Exercise 2.3 and the ER diagram you
designed. Write SQL statements to create the corresponding relations and capture as many
of the constraints as possible. If you cannot capture some constraints, explain why.
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Exercise 3.14 Consider the scenario from Exercise 2.4, where you designed an ER diagram
for a company database. Write SQL statements to create the corresponding relations and
capture as many of the constraints as possible. If you cannot capture some constraints,
explain why.

Exercise 3.15 Consider the Notown database from Exercise 2.5. You have decided to rec-
ommend that Notown use a relational database system to store company data. Show the
SQL statements for creating relations corresponding to the entity sets and relationship sets
in your design. Identify any constraints in the ER diagram that you are unable to capture in
the SQL statements and briefly explain why you could not express them.

Exercise 3.16 Translate your ER diagram from Exercise 2.6 into a relational schema, and
show the SQL statements needed to create the relations, using only key and null constraints.
If your translation cannot capture any constraints in the ER diagram, explain why.

In Exercise 2.6, you also modified the ER diagram to include the constraint that tests on a
plane must be conducted by a technician who is an expert on that model. Can you modify
the SQL statements defining the relations obtained by mapping the ER diagram to check this
constraint?

Exercise 3.17 Consider the ER diagram that you designed for the Prescriptions-R-X chain of
pharmacies in Exercise 2.7. Define relations corresponding to the entity sets and relationship
sets in your design using SQL.

Exercise 3.18 Write SQL statements to create the corresponding relations to the ER dia-
gram you designed for Exercise 2.8. If your translation cannot capture any constraints in the
ER diagram, explain why.

Exercise 3.19 Briefly answer the following questions based on this schema:

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

1. Suppose you have a view SeniorEmp defined as follows:

CREATE VIEW SeniorEmp (sname, sage, salary)
AS SELECT E.ename, E.age, E.salary

FROM Emp E
WHERE E.age > 50

Explain what the system will do to process the following query:

SELECT S.sname
FROM SeniorEmp S
WHERE S.salary > 100,000

2. Give an example of a view on Emp that could be automatically updated by updating
Emp.

3. Give an example of a view on Emp that would be impossible to update (automatically)
and explain why your example presents the update problem that it does.

Exercise 3.20 Consider the following schema:
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Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers. Answer the following
questions:

Give an example of an updatable view involving one relation.

Give an example of an updatable view involving two relations.

Give an example of an insertable-into view that is updatable.

Give an example of an insertable-into view that is not updatable.

PROJECT-BASED EXERCISES

Exercise 3.21 Create the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets In in Minibase.

Exercise 3.22 Insert the tuples shown in Figures 3.1 and 3.4 into the relations Students and
Enrolled. Create reasonable instances of the other relations.

Exercise 3.23 What integrity constraints are enforced by Minibase?

Exercise 3.24 Run the SQL queries presented in this chapter.
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4
RELATIONAL ALGEBRA

AND CALCULUS

☛ What is the foundation for relational query languages like SQL? What
is the difference between procedural and declarative languages?

☛ What is relational algebra, and why is it important?

☛ What are the basic algebra operators, and how are they combined to
write complex queries?

☛ What is relational calculus, and why is it important?

☛ What subset of mathematical logic is used in relational calculus, and
how is it used to write queries?

➽ Key concepts: relational algebra, select, project, union, intersection,
cross-product, join, division; tuple relational calculus, domain rela-
tional calculus, formulas, universal and existential quantifiers, bound
and free variables

Stand firm in your refusal to remain conscious during algebra. In real life, I
assure you, there is no such thing as algebra.

—Fran Lebowitz, Social Studies

This chapter presents two formal query languages associated with the relational
model. Query languages are specialized languages for asking questions, or
queries, that involve the data in a database. After covering some preliminaries
in Section 4.1, we discuss relational algebra in Section 4.2. Queries in relational
algebra are composed using a collection of operators, and each query describes
a step-by-step procedure for computing the desired answer; that is, queries are

100
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specified in an operational manner. In Section 4.3, we discuss relational calcu-
lus, in which a query describes the desired answer without specifying how the
answer is to be computed; this nonprocedural style of querying is called declar-
ative. We usually refer to relational algebra and relational calculus as algebra
and calculus, respectively. We compare the expressive power of algebra and
calculus in Section 4.4. These formal query languages have greatly influenced
commercial query languages such as SQL, which we discuss in later chapters.

4.1 PRELIMINARIES

We begin by clarifying some important points about relational queries. The
inputs and outputs of a query are relations. A query is evaluated using instances
of each input relation and it produces an instance of the output relation. In
Section 3.4, we used field names to refer to fields because this notation makes
queries more readable. An alternative is to always list the fields of a given
relation in the same order and refer to fields by position rather than by field
name.

In defining relational algebra and calculus, the alternative of referring to fields
by position is more convenient than referring to fields by name: Queries often
involve the computation of intermediate results, which are themselves relation
instances; and if we use field names to refer to fields, the definition of query
language constructs must specify the names of fields for all intermediate relation
instances. This can be tedious and is really a secondary issue, because we can
refer to fields by position anyway. On the other hand, field names make queries
more readable.

Due to these considerations, we use the positional notation to formally define
relational algebra and calculus. We also introduce simple conventions that
allow intermediate relations to ‘inherit’ field names, for convenience.

We present a number of sample queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: date)

The key fields are underlined, and the domain of each field is listed after the
field name. Thus, sid is the key for Sailors, bid is the key for Boats, and all
three fields together form the key for Reserves. Fields in an instance of one
of these relations are referred to by name, or positionally, using the order in
which they were just listed.
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In several examples illustrating the relational algebra operators, we use the
instances S1 and S2 (of Sailors) and R1 (of Reserves) shown in Figures 4.1,
4.2, and 4.3, respectively.

sid sname rating age

22 Dustin 7 45.0
31 Lubber 8 55.5
58 Rusty 10 35.0

Figure 4.1 Instance S1 of Sailors

sid sname rating age

28 yuppy 9 35.0
31 Lubber 8 55.5
44 guppy 5 35.0
58 Rusty 10 35.0

Figure 4.2 Instance S2 of Sailors

sid bid day

22 101 10/10/96
58 103 11/12/96

Figure 4.3 Instance R1 of Reserves

4.2 RELATIONAL ALGEBRA

Relational algebra is one of the two formal query languages associated with the
relational model. Queries in algebra are composed using a collection of oper-
ators. A fundamental property is that every operator in the algebra accepts
(one or two) relation instances as arguments and returns a relation instance
as the result. This property makes it easy to compose operators to form a
complex query—a relational algebra expression is recursively defined to be
a relation, a unary algebra operator applied to a single expression, or a binary
algebra operator applied to two expressions. We describe the basic operators of
the algebra (selection, projection, union, cross-product, and difference), as well
as some additional operators that can be defined in terms of the basic opera-
tors but arise frequently enough to warrant special attention, in the following
sections.

Each relational query describes a step-by-step procedure for computing the
desired answer, based on the order in which operators are applied in the query.
The procedural nature of the algebra allows us to think of an algebra expression
as a recipe, or a plan, for evaluating a query, and relational systems in fact use
algebra expressions to represent query evaluation plans.
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4.2.1 Selection and Projection

Relational algebra includes operators to select rows from a relation (σ) and to
project columns (π). These operations allow us to manipulate data in a single
relation. Consider the instance of the Sailors relation shown in Figure 4.2,
denoted as S2. We can retrieve rows corresponding to expert sailors by using
the σ operator. The expression

σrating>8(S2)

evaluates to the relation shown in Figure 4.4. The subscript rating>8 specifies
the selection criterion to be applied while retrieving tuples.

sid sname rating age

28 yuppy 9 35.0
58 Rusty 10 35.0

Figure 4.4 σrating>8(S2)

sname rating

yuppy 9
Lubber 8
guppy 5
Rusty 10

Figure 4.5 πsname,rating(S2)

The selection operator σ specifies the tuples to retain through a selection con-
dition. In general, the selection condition is a Boolean combination (i.e., an
expression using the logical connectives ∧ and ∨) of terms that have the form
attribute op constant or attribute1 op attribute2, where op is one of the com-
parison operators <,<=,=,  =, >=, or >. The reference to an attribute can be
by position (of the form .i or i) or by name (of the form .name or name). The
schema of the result of a selection is the schema of the input relation instance.

The projection operator π allows us to extract columns from a relation; for
example, we can find out all sailor names and ratings by using π. The expression

πsname,rating(S2)

evaluates to the relation shown in Figure 4.5. The subscript sname,rating
specifies the fields to be retained; the other fields are ‘projected out.’ The
schema of the result of a projection is determined by the fields that are projected
in the obvious way.

Suppose that we wanted to find out only the ages of sailors. The expression

πage(S2)

evaluates to the relation shown in Figure 4.6. The important point to note is
that, although three sailors are aged 35, a single tuple with age=35.0 appears in
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the result of the projection. This follows from the definition of a relation as a set
of tuples. In practice, real systems often omit the expensive step of eliminating
duplicate tuples, leading to relations that are multisets. However, our discussion
of relational algebra and calculus assumes that duplicate elimination is always
done so that relations are always sets of tuples.

Since the result of a relational algebra expression is always a relation, we can
substitute an expression wherever a relation is expected. For example, we can
compute the names and ratings of highly rated sailors by combining two of the
preceding queries. The expression

πsname,rating(σrating>8(S2))

produces the result shown in Figure 4.7. It is obtained by applying the selection
to S2 (to get the relation shown in Figure 4.4) and then applying the projection.

age

35.0
55.5

Figure 4.6 πage(S2)

sname rating

yuppy 9
Rusty 10

Figure 4.7 πsname,rating(σrating>8(S2))

4.2.2 Set Operations

The following standard operations on sets are also available in relational al-
gebra: union (∪), intersection (∩), set-difference (−), and cross-product (×).

Union: R ∪ S returns a relation instance containing all tuples that occur
in either relation instance R or relation instance S (or both). R and S
must be union-compatible, and the schema of the result is defined to be
identical to the schema of R.

Two relation instances are said to be union-compatible if the following
conditions hold:
– they have the same number of the fields, and

– corresponding fields, taken in order from left to right, have the same
domains.

Note that field names are not used in defining union-compatibility. For
convenience, we will assume that the fields of R∪S inherit names from R,
if the fields of R have names. (This assumption is implicit in defining the
schema of R ∪ S to be identical to the schema of R, as stated earlier.)

Intersection: R ∩ S returns a relation instance containing all tuples that
occur in both R and S. The relations R and S must be union-compatible,
and the schema of the result is defined to be identical to the schema of R.
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Set-difference: R−S returns a relation instance containing all tuples that
occur in R but not in S. The relations R and S must be union-compatible,
and the schema of the result is defined to be identical to the schema of R.

Cross-product: R×S returns a relation instance whose schema contains
all the fields of R (in the same order as they appear in R) followed by all
the fields of S (in the same order as they appear in S). The result of R×S
contains one tuple  r, s (the concatenation of tuples r and s) for each pair
of tuples r ∈ R, s ∈ S. The cross-product opertion is sometimes called
Cartesian product.

We use the convention that the fields of R × S inherit names from the
corresponding fields of R and S. It is possible for both R and S to contain
one or more fields having the same name; this situation creates a naming
conflict. The corresponding fields in R × S are unnamed and are referred
to solely by position.

In the preceding definitions, note that each operator can be applied to relation
instances that are computed using a relational algebra (sub)expression.

We now illustrate these definitions through several examples. The union of S1
and S2 is shown in Figure 4.8. Fields are listed in order; field names are also
inherited from S1. S2 has the same field names, of course, since it is also an
instance of Sailors. In general, fields of S2 may have different names; recall that
we require only domains to match. Note that the result is a set of tuples. Tuples
that appear in both S1 and S2 appear only once in S1 ∪ S2. Also, S1 ∪ R1 is
not a valid operation because the two relations are not union-compatible. The
intersection of S1 and S2 is shown in Figure 4.9, and the set-difference S1−S2
is shown in Figure 4.10.

sid sname rating age

22 Dustin 7 45.0
31 Lubber 8 55.5
58 Rusty 10 35.0
28 yuppy 9 35.0
44 guppy 5 35.0

Figure 4.8 S1 ∪ S2

The result of the cross-product S1 × R1 is shown in Figure 4.11. Because R1
and S1 both have a field named sid, by our convention on field names, the
corresponding two fields in S1×R1 are unnamed, and referred to solely by the
position in which they appear in Figure 4.11. The fields in S1 × R1 have the
same domains as the corresponding fields in R1 and S1. In Figure 4.11, sid is
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sid sname rating age

31 Lubber 8 55.5
58 Rusty 10 35.0

Figure 4.9 S1 ∩ S2

sid sname rating age

22 Dustin 7 45.0

Figure 4.10 S1 − S2

listed in parentheses to emphasize that it is not an inherited field name; only
the corresponding domain is inherited.

(sid) sname rating age (sid) bid day

22 Dustin 7 45.0 22 101 10/10/96
22 Dustin 7 45.0 58 103 11/12/96
31 Lubber 8 55.5 22 101 10/10/96
31 Lubber 8 55.5 58 103 11/12/96
58 Rusty 10 35.0 22 101 10/10/96
58 Rusty 10 35.0 58 103 11/12/96

Figure 4.11 S1 × R1

4.2.3 Renaming

We have been careful to adopt field name conventions that ensure that the result
of a relational algebra expression inherits field names from its argument (input)
relation instances in a natural way whenever possible. However, name conflicts
can arise in some cases; for example, in S1 × R1. It is therefore convenient
to be able to give names explicitly to the fields of a relation instance that is
defined by a relational algebra expression. In fact, it is often convenient to give
the instance itself a name so that we can break a large algebra expression into
smaller pieces by giving names to the results of subexpressions.

We introduce a renaming operator ρ for this purpose. The expression ρ(R(F ), E)
takes an arbitrary relational algebra expression E and returns an instance of
a (new) relation called R. R contains the same tuples as the result of E and
has the same schema as E, but some fields are renamed. The field names in
relation R are the same as in E, except for fields renamed in the renaming list
F , which is a list of terms having the form oldname → newname or position →
newname. For ρ to be well-defined, references to fields (in the form of oldnames
or positions in the renaming list) may be unambiguous and no two fields in the
result may have the same name. Sometimes we want to only rename fields or
(re)name the relation; we therefore treat both R and F as optional in the use
of ρ. (Of course, it is meaningless to omit both.)
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For example, the expression ρ(C(1 → sid1, 5 → sid2), S1 × R1) returns a
relation that contains the tuples shown in Figure 4.11 and has the following
schema: C(sid1: integer, sname: string, rating: integer, age: real, sid2:
integer, bid: integer, day: dates).

It is customary to include some additional operators in the algebra, but all of
them can be defined in terms of the operators we have defined thus far. (In
fact, the renaming operator is needed only for syntactic convenience, and even
the ∩ operator is redundant; R∩S can be defined as R−(R−S).) We consider
these additional operators and their definition in terms of the basic operators
in the next two subsections.

4.2.4 Joins

The join operation is one of the most useful operations in relational algebra
and the most commonly used way to combine information from two or more
relations. Although a join can be defined as a cross-product followed by selec-
tions and projections, joins arise much more frequently in practice than plain
cross-products. Further, the result of a cross-product is typically much larger
than the result of a join, and it is very important to recognize joins and imple-
ment them without materializing the underlying cross-product (by applying the
selections and projections ‘on-the-fly’). For these reasons, joins have received
a lot of attention, and there are several variants of the join operation.1

Condition Joins

The most general version of the join operation accepts a join condition c and
a pair of relation instances as arguments and returns a relation instance. The
join condition is identical to a selection condition in form. The operation is
defined as follows:

R   c S = σc(R × S)

Thus   is defined to be a cross-product followed by a selection. Note that the
condition c can (and typically does) refer to attributes of both R and S. The
reference to an attribute of a relation, say, R, can be by position (of the form
R.i) or by name (of the form R.name).

As an example, the result of S1   S1.sid<R1.sid R1 is shown in Figure 4.12.
Because sid appears in both S1 and R1, the corresponding fields in the result
of the cross-product S1×R1 (and therefore in the result of S1   S1.sid<R1.sid R1)

1Several variants of joins are not discussed in this chapter. An important class of joins, called
outer joins, is discussed in Chapter 5.
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are unnamed. Domains are inherited from the corresponding fields of S1 and
R1.

(sid) sname rating age (sid) bid day

22 Dustin 7 45.0 58 103 11/12/96
31 Lubber 8 55.5 58 103 11/12/96

Figure 4.12 S1   S1.sid<R1.sid R1

Equijoin

A common special case of the join operation R   S is when the join condition
consists solely of equalities (connected by ∧) of the form R.name1 = S.name2,
that is, equalities between two fields in R and S. In this case, obviously, there is
some redundancy in retaining both attributes in the result. For join conditions
that contain only such equalities, the join operation is refined by doing an
additional projection in which S.name2 is dropped. The join operation with
this refinement is called equijoin.

The schema of the result of an equijoin contains the fields of R (with the same
names and domains as in R) followed by the fields of S that do not appear
in the join conditions. If this set of fields in the result relation includes two
fields that inherit the same name from R and S, they are unnamed in the result
relation.

We illustrate S1   R.sid=S.sid R1 in Figure 4.13. Note that only one field called
sid appears in the result.

sid sname rating age bid day

22 Dustin 7 45.0 101 10/10/96
58 Rusty 10 35.0 103 11/12/96

Figure 4.13 S1   R.sid=S.sid R1

Natural Join

A further special case of the join operation R   S is an equijoin in which
equalities are specified on all fields having the same name in R and S. In
this case, we can simply omit the join condition; the default is that the join
condition is a collection of equalities on all common fields. We call this special
case a natural join, and it has the nice property that the result is guaranteed
not to have two fields with the same name.



Relational Algebra and Calculus 109

The equijoin expression S1   R.sid=S.sid R1 is actually a natural join and can
simply be denoted as S1   R1, since the only common field is sid. If the two
relations have no attributes in common, S1   R1 is simply the cross-product.

4.2.5 Division

The division operator is useful for expressing certain kinds of queries for exam-
ple, “Find the names of sailors who have reserved all boats.” Understanding
how to use the basic operators of the algebra to define division is a useful exer-
cise. However, the division operator does not have the same importance as the
other operators—it is not needed as often, and database systems do not try to
exploit the semantics of division by implementing it as a distinct operator (as,
for example, is done with the join operator).

We discuss division through an example. Consider two relation instances A
and B in which A has (exactly) two fields x and y and B has just one field y,
with the same domain as in A. We define the division operation A/B as the
set of all x values (in the form of unary tuples) such that for every y value in
(a tuple of) B, there is a tuple  x,y in A.

Another way to understand division is as follows. For each x value in (the first
column of) A, consider the set of y values that appear in (the second field of)
tuples of A with that x value. If this set contains (all y values in) B, the x
value is in the result of A/B.

An analogy with integer division may also help to understand division. For
integers A and B, A/B is the largest integer Q such that Q ∗ B ≤ A. For
relation instances A and B, A/B is the largest relation instance Q such that
Q× B ⊆ A.

Division is illustrated in Figure 4.14. It helps to think of A as a relation listing
the parts supplied by suppliers and of the B relations as listing parts. A/Bi
computes suppliers who supply all parts listed in relation instance Bi.

Expressing A/B in terms of the basic algebra operators is an interesting ex-
ercise, and the reader should try to do this before reading further. The basic
idea is to compute all x values in A that are not disqualified. An x value is
disqualified if by attaching a y value from B, we obtain a tuple  x,y that is not
in A. We can compute disqualified tuples using the algebra expression

πx((πx(A) × B)− A)

Thus, we can define A/B as

πx(A) − πx((πx(A) ×B) −A)
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Figure 4.14 Examples Illustrating Division

To understand the division operation in full generality, we have to consider the
case when both x and y are replaced by a set of attributes. The generalization is
straightforward and left as an exercise for the reader. We discuss two additional
examples illustrating division (Queries Q9 and Q10) later in this section.

4.2.6 More Examples of Algebra Queries

We now present several examples to illustrate how to write queries in relational
algebra. We use the Sailors, Reserves, and Boats schema for all our examples
in this section. We use parentheses as needed to make our algebra expressions
unambiguous. Note that all the example queries in this chapter are given
a unique query number. The query numbers are kept unique across both this
chapter and the SQL query chapter (Chapter 5). This numbering makes it easy
to identify a query when it is revisited in the context of relational calculus and
SQL and to compare different ways of writing the same query. (All references
to a query can be found in the subject index.)

In the rest of this chapter (and in Chapter 5), we illustrate queries using the
instances S3 of Sailors, R2 of Reserves, and B1 of Boats, shown in Figures
4.15, 4.16, and 4.17, respectively.

(Q1) Find the names of sailors who have reserved boat 103.

This query can be written as follows:

πsname((σbid=103Reserves)   Sailors)
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sid sname rating age

22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

Figure 4.15 An Instance S3 of Sailors

sid bid day

22 101 10/10/98
22 102 10/10/98
22 103 10/8/98
22 104 10/7/98
31 102 11/10/98
31 103 11/6/98
31 104 11/12/98
64 101 9/5/98
64 102 9/8/98
74 103 9/8/98

Figure 4.16 An Instance R2 of Reserves

We first compute the set of tuples in Reserves with bid = 103 and then take the
natural join of this set with Sailors. This expression can be evaluated on in-
stances of Reserves and Sailors. Evaluated on the instances R2 and S3, it yields
a relation that contains just one field, called sname, and three tuples  Dustin ,
 Horatio , and  Lubber . (Observe that two sailors are called Horatio and only
one of them has reserved a red boat.)

bid bname color

101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

Figure 4.17 An Instance B1 of Boats

We can break this query into smaller pieces using the renaming operator ρ:

ρ(Temp1, σbid=103Reserves)

ρ(Temp2, T emp1   Sailors)

πsname(Temp2)

Notice that because we are only using ρ to give names to intermediate relations,
the renaming list is optional and is omitted. Temp1 denotes an intermediate
relation that identifies reservations of boat 103. Temp2 is another intermediate
relation, and it denotes sailors who have made a reservation in the set Temp1.
The instances of these relations when evaluating this query on the instances R2
and S3 are illustrated in Figures 4.18 and 4.19. Finally, we extract the sname
column from Temp2.
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sid bid day

22 103 10/8/98
31 103 11/6/98
74 103 9/8/98

Figure 4.18 Instance of Temp1

sid sname rating age bid day

22 Dustin 7 45.0 103 10/8/98
31 Lubber 8 55.5 103 11/6/98
74 Horatio 9 35.0 103 9/8/98

Figure 4.19 Instance of Temp2

The version of the query using ρ is essentially the same as the original query;
the use of ρ is just syntactic sugar. However, there are indeed several distinct
ways to write a query in relational algebra. Here is another way to write this
query:

πsname(σbid=103(Reserves   Sailors))

In this version we first compute the natural join of Reserves and Sailors and
then apply the selection and the projection.

This example offers a glimpse of the role played by algebra in a relational
DBMS. Queries are expressed by users in a language such as SQL. The DBMS
translates an SQL query into (an extended form of) relational algebra and
then looks for other algebra expressions that produce the same answers but are
cheaper to evaluate. If the user’s query is first translated into the expression

πsname(σbid=103(Reserves   Sailors))

a good query optimizer will find the equivalent expression

πsname((σbid=103Reserves)   Sailors)

Further, the optimizer will recognize that the second expression is likely to
be less expensive to compute because the sizes of intermediate relations are
smaller, thanks to the early use of selection.

(Q2) Find the names of sailors who have reserved a red boat.

πsname((σcolor=�red�Boats)   Reserves   Sailors)

This query involves a series of two joins. First, we choose (tuples describing)
red boats. Then, we join this set with Reserves (natural join, with equality
specified on the bid column) to identify reservations of red boats. Next, we
join the resulting intermediate relation with Sailors (natural join, with equality
specified on the sid column) to retrieve the names of sailors who have made
reservations for red boats. Finally, we project the sailors’ names. The answer,
when evaluated on the instances B1, R2, and S3, contains the names Dustin,
Horatio, and Lubber.
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An equivalent expression is:

πsname(πsid((πbidσcolor= red Boats)   Reserves)   Sailors)

The reader is invited to rewrite both of these queries by using ρ to make the
intermediate relations explicit and compare the schemas of the intermediate
relations. The second expression generates intermediate relations with fewer
fields (and is therefore likely to result in intermediate relation instances with
fewer tuples as well). A relational query optimizer would try to arrive at the
second expression if it is given the first.

(Q3) Find the colors of boats reserved by Lubber.

πcolor((σsname= Lubber Sailors)   Reserves   Boats)

This query is very similar to the query we used to compute sailors who reserved
red boats. On instances B1, R2, and S3, the query returns the colors green
and red.

(Q4) Find the names of sailors who have reserved at least one boat.

πsname(Sailors   Reserves)

The join of Sailors and Reserves creates an intermediate relation in which tuples
consist of a Sailors tuple ‘attached to’ a Reserves tuple. A Sailors tuple appears
in (some tuple of) this intermediate relation only if at least one Reserves tuple
has the same sid value, that is, the sailor has made some reservation. The
answer, when evaluated on the instances B1, R2 and S3, contains the three
tuples  Dustin ,  Horatio , and  Lubber . Even though two sailors called
Horatio have reserved a boat, the answer contains only one copy of the tuple
 Horatio , because the answer is a relation, that is, a set of tuples, with no
duplicates.

At this point it is worth remarking on how frequently the natural join operation
is used in our examples. This frequency is more than just a coincidence based
on the set of queries we have chosen to discuss; the natural join is a very
natural, widely used operation. In particular, natural join is frequently used
when joining two tables on a foreign key field. In Query Q4, for example, the
join equates the sid fields of Sailors and Reserves, and the sid field of Reserves
is a foreign key that refers to the sid field of Sailors.

(Q5) Find the names of sailors who have reserved a red or a green boat.

ρ(Tempboats, (σcolor= red Boats) ∪ (σcolor= green Boats))

πsname(Tempboats   Reserves   Sailors)
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We identify the set of all boats that are either red or green (Tempboats, which
contains boats with the bids 102, 103, and 104 on instances B1, R2, and S3).
Then we join with Reserves to identify sids of sailors who have reserved one of
these boats; this gives us sids 22, 31, 64, and 74 over our example instances.
Finally, we join (an intermediate relation containing this set of sids) with Sailors
to find the names of Sailors with these sids. This gives us the names Dustin,
Horatio, and Lubber on the instances B1, R2, and S3. Another equivalent
definition is the following:

ρ(Tempboats, (σcolor= red ∨color= green Boats))

πsname(Tempboats   Reserves   Sailors)

Let us now consider a very similar query.

(Q6) Find the names of sailors who have reserved a red and a green boat. It
is tempting to try to do this by simply replacing ∪ by ∩ in the definition of
Tempboats:

ρ(Tempboats2, (σcolor= red Boats) ∩ (σcolor= green Boats))

πsname(Tempboats2   Reserves   Sailors)

However, this solution is incorrect—it instead tries to compute sailors who have
reserved a boat that is both red and green. (Since bid is a key for Boats, a boat
can be only one color; this query will always return an empty answer set.) The
correct approach is to find sailors who have reserved a red boat, then sailors
who have reserved a green boat, and then take the intersection of these two
sets:

ρ(Tempred, πsid((σcolor= red Boats)   Reserves))

ρ(Tempgreen, πsid((σcolor= green Boats)   Reserves))

πsname((Tempred ∩ Tempgreen)   Sailors)

The two temporary relations compute the sids of sailors, and their intersection
identifies sailors who have reserved both red and green boats. On instances
B1, R2, and S3, the sids of sailors who have reserved a red boat are 22, 31,
and 64. The sids of sailors who have reserved a green boat are 22, 31, and 74.
Thus, sailors 22 and 31 have reserved both a red boat and a green boat; their
names are Dustin and Lubber.

This formulation of Query Q6 can easily be adapted to find sailors who have
reserved red or green boats (Query Q5); just replace ∩ by ∪:

ρ(Tempred, πsid((σcolor= red Boats)   Reserves))

ρ(Tempgreen, πsid((σcolor= green Boats)   Reserves))

πsname((Tempred ∪ Tempgreen)   Sailors)
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In the formulations of Queries Q5 and Q6, the fact that sid (the field over
which we compute union or intersection) is a key for Sailors is very important.
Consider the following attempt to answer Query Q6:

ρ(Tempred, πsname((σcolor= red Boats)   Reserves   Sailors))

ρ(Tempgreen, πsname((σcolor= green Boats)   Reserves   Sailors))

Tempred ∩ Tempgreen

This attempt is incorrect for a rather subtle reason. Two distinct sailors with
the same name, such as Horatio in our example instances, may have reserved
red and green boats, respectively. In this case, the name Horatio (incorrectly)
is included in the answer even though no one individual called Horatio has
reserved a red boat and a green boat. The cause of this error is that sname
is used to identify sailors (while doing the intersection) in this version of the
query, but sname is not a key.

(Q7) Find the names of sailors who have reserved at least two boats.

ρ(Reservations, πsid,sname,bid(Sailors   Reserves))

ρ(Reservationpairs(1 → sid1, 2 → sname1, 3 → bid1, 4 → sid2,

5 → sname2, 6 → bid2), Reservations × Reservations)

πsname1σ(sid1=sid2)∧(bid1 =bid2)Reservationpairs

First, we compute tuples of the form  sid,sname,bid , where sailor sid has made
a reservation for boat bid; this set of tuples is the temporary relation Reserva-
tions. Next we find all pairs of Reservations tuples where the same sailor has
made both reservations and the boats involved are distinct. Here is the central
idea: To show that a sailor has reserved two boats, we must find two Reserva-
tions tuples involving the same sailor but distinct boats. Over instances B1,
R2, and S3, each of the sailors with sids 22, 31, and 64 have reserved at least
two boats. Finally, we project the names of such sailors to obtain the answer,
containing the names Dustin, Horatio, and Lubber.

Notice that we included sid in Reservations because it is the key field identifying
sailors, and we need it to check that two Reservations tuples involve the same
sailor. As noted in the previous example, we cannot use sname for this purpose.

(Q8) Find the sids of sailors with age over 20 who have not reserved a red boat.

πsid(σage>20Sailors)−

πsid((σcolor= red Boats)   Reserves   Sailors)

This query illustrates the use of the set-difference operator. Again, we use the
fact that sid is the key for Sailors. We first identify sailors aged over 20 (over
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instances B1, R2, and S3, sids 22, 29, 31, 32, 58, 64, 74, 85, and 95) and then
discard those who have reserved a red boat (sids 22, 31, and 64), to obtain the
answer (sids 29, 32, 58, 74, 85, and 95). If we want to compute the names of
such sailors, we must first compute their sids (as shown earlier) and then join
with Sailors and project the sname values.

(Q9) Find the names of sailors who have reserved all boats.

The use of the word all (or every) is a good indication that the division operation
might be applicable:

ρ(Tempsids, (πsid,bidReserves)/(πbidBoats))

πsname(Tempsids   Sailors)

The intermediate relation Tempsids is defined using division and computes the
set of sids of sailors who have reserved every boat (over instances B1, R2, and
S3, this is just sid 22). Note how we define the two relations that the division
operator (/) is applied to—the first relation has the schema (sid,bid) and the
second has the schema (bid). Division then returns all sids such that there is a
tuple  sid,bid in the first relation for each bid in the second. Joining Tempsids
with Sailors is necessary to associate names with the selected sids; for sailor
22, the name is Dustin.

(Q10) Find the names of sailors who have reserved all boats called Interlake.

ρ(Tempsids, (πsid,bidReserves)/(πbid(σbname= Interlake Boats)))

πsname(Tempsids   Sailors)

The only difference with respect to the previous query is that now we apply a
selection to Boats, to ensure that we compute bids only of boats named Interlake
in defining the second argument to the division operator. Over instances B1,
R2, and S3, Tempsids evaluates to sids 22 and 64, and the answer contains
their names, Dustin and Horatio.

4.3 RELATIONAL CALCULUS

Relational calculus is an alternative to relational algebra. In contrast to the
algebra, which is procedural, the calculus is nonprocedural, or declarative, in
that it allows us to describe the set of answers without being explicit about
how they should be computed. Relational calculus has had a big influence on
the design of commercial query languages such as SQL and, especially, Query-
by-Example (QBE).

The variant of the calculus we present in detail is called the tuple relational
calculus (TRC). Variables in TRC take on tuples as values. In another vari-
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ant, called the domain relational calculus (DRC), the variables range over
field values. TRC has had more of an influence on SQL, while DRC has strongly
influenced QBE. We discuss DRC in Section 4.3.2.2

4.3.1 Tuple Relational Calculus

A tuple variable is a variable that takes on tuples of a particular relation
schema as values. That is, every value assigned to a given tuple variable has
the same number and type of fields. A tuple relational calculus query has the
form { T | p(T) }, where T is a tuple variable and p(T ) denotes a formula that
describes T ; we will shortly define formulas and queries rigorously. The result
of this query is the set of all tuples t for which the formula p(T ) evaluates to
true with T = t. The language for writing formulas p(T ) is thus at the heart of
TRC and essentially a simple subset of first-order logic. As a simple example,
consider the following query.

(Q11) Find all sailors with a rating above 7.

{S | S ∈ Sailors ∧ S.rating > 7}

When this query is evaluated on an instance of the Sailors relation, the tuple
variable S is instantiated successively with each tuple, and the test S.rating>7
is applied. The answer contains those instances of S that pass this test. On
instance S3 of Sailors, the answer contains Sailors tuples with sid 31, 32, 58,
71, and 74.

Syntax of TRC Queries

We now define these concepts formally, beginning with the notion of a formula.
Let Rel be a relation name, R and S be tuple variables, a be an attribute of
R, and b be an attribute of S. Let op denote an operator in the set {<,>,=
,≤,≥,  =}. An atomic formula is one of the following:

R ∈ Rel

R.a op S.b

R.a op constant, or constant op R.a

A formula is recursively defined to be one of the following, where p and q
are themselves formulas and p(R) denotes a formula in which the variable R
appears:

2The material on DRC is referred to in the (online) chapter on QBE; with the exception of this
chapter, the material on DRC and TRC can be omitted without loss of continuity.
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any atomic formula

¬p, p ∧ q, p ∨ q, or p ⇒ q

∃R(p(R)), where R is a tuple variable

∀R(p(R)), where R is a tuple variable

In the last two clauses, the quantifiers ∃ and ∀ are said to bind the variable R.
A variable is said to be free in a formula or subformula (a formula contained
in a larger formula) if the (sub)formula does not contain an occurrence of a
quantifier that binds it.3

We observe that every variable in a TRC formula appears in a subformula
that is atomic, and every relation schema specifies a domain for each field; this
observation ensures that each variable in a TRC formula has a well-defined
domain from which values for the variable are drawn. That is, each variable
has a well-defined type, in the programming language sense. Informally, an
atomic formula R ∈ Rel gives R the type of tuples in Rel, and comparisons
such as R.a op S.b and R.a op constant induce type restrictions on the field
R.a. If a variable R does not appear in an atomic formula of the form R ∈ Rel
(i.e., it appears only in atomic formulas that are comparisons), we follow the
convention that the type of R is a tuple whose fields include all (and only) fields
of R that appear in the formula.

We do not define types of variables formally, but the type of a variable should
be clear in most cases, and the important point to note is that comparisons of
values having different types should always fail. (In discussions of relational
calculus, the simplifying assumption is often made that there is a single domain
of constants and this is the domain associated with each field of each relation.)

A TRC query is defined to be expression of the form {T | p(T)}, where T is
the only free variable in the formula p.

Semantics of TRC Queries

What does a TRC query mean? More precisely, what is the set of answer tuples
for a given TRC query? The answer to a TRC query {T | p(T)}, as noted
earlier, is the set of all tuples t for which the formula p(T ) evaluates to true

with variable T assigned the tuple value t. To complete this definition, we must
state which assignments of tuple values to the free variables in a formula make
the formula evaluate to true.

3We make the assumption that each variable in a formula is either free or bound by exactly one
occurrence of a quantifier, to avoid worrying about details such as nested occurrences of quantifiers
that bind some, but not all, occurrences of variables.
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A query is evaluated on a given instance of the database. Let each free variable
in a formula F be bound to a tuple value. For the given assignment of tuples
to variables, with respect to the given database instance, F evaluates to (or
simply ‘is’) true if one of the following holds:

F is an atomic formula R ∈ Rel, and R is assigned a tuple in the instance
of relation Rel.

F is a comparison R.a op S.b, R.a op constant, or constant op R.a, and
the tuples assigned to R and S have field values R.a and S.b that make the
comparison true.

F is of the form ¬p and p is not true, or of the form p∧ q, and both p and
q are true, or of the form p ∨ q and one of them is true, or of the form
p ⇒ q and q is true whenever4 p is true.

F is of the form ∃R(p(R)), and there is some assignment of tuples to the
free variables in p(R), including the variable R,5 that makes the formula
p(R) true.

F is of the form ∀R(p(R)), and there is some assignment of tuples to the
free variables in p(R) that makes the formula p(R) true no matter what
tuple is assigned to R.

Examples of TRC Queries

We now illustrate the calculus through several examples, using the instances
B1 of Boats, R2 of Reserves, and S3 of Sailors shown in Figures 4.15, 4.16,
and 4.17. We use parentheses as needed to make our formulas unambiguous.
Often, a formula p(R) includes a condition R ∈ Rel, and the meaning of the
phrases some tuple R and for all tuples R is intuitive. We use the notation
∃R ∈ Rel(p(R)) for ∃R(R ∈ Rel ∧ p(R)). Similarly, we use the notation
∀R ∈ Rel(p(R)) for ∀R(R ∈ Rel ⇒ p(R)).

(Q12) Find the names and ages of sailors with a rating above 7.

{P | ∃S ∈ Sailors(S.rating > 7 ∧ P.name = S.sname ∧ P.age = S.age)}

This query illustrates a useful convention: P is considered to be a tuple variable
with exactly two fields, which are called name and age, because these are the
only fields of P mentioned and P does not range over any of the relations in
the query; that is, there is no subformula of the form P ∈ Relname. The
result of this query is a relation with two fields, name and age. The atomic

4Whenever should be read more precisely as ‘for all assignments of tuples to the free variables.’
5Note that some of the free variables in p(R) (e.g., the variable R itself) may be bound in F .
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formulas P.name = S.sname and P.age = S.age give values to the fields of an
answer tuple P . On instances B1, R2, and S3, the answer is the set of tuples
 Lubber, 55.5 ,  Andy, 25.5 ,  Rusty, 35.0 ,  Zorba, 16.0 , and  Horatio, 35.0 .

(Q13) Find the sailor name, boat id, and reservation date for each reservation.

{P | ∃R ∈ Reserves ∃S ∈ Sailors

(R.sid = S.sid ∧ P.bid = R.bid ∧ P.day = R.day ∧ P.sname = S.sname)}

For each Reserves tuple, we look for a tuple in Sailors with the same sid. Given
a pair of such tuples, we construct an answer tuple P with fields sname, bid,
and day by copying the corresponding fields from these two tuples. This query
illustrates how we can combine values from different relations in each answer
tuple. The answer to this query on instances B1, R2, and S3 is shown in Figure
4.20.

sname bid day

Dustin 101 10/10/98
Dustin 102 10/10/98
Dustin 103 10/8/98
Dustin 104 10/7/98
Lubber 102 11/10/98
Lubber 103 11/6/98
Lubber 104 11/12/98
Horatio 101 9/5/98
Horatio 102 9/8/98
Horatio 103 9/8/98

Figure 4.20 Answer to Query Q13

(Q1) Find the names of sailors who have reserved boat 103.

{P | ∃S ∈ Sailors ∃R ∈ Reserves(R.sid = S.sid ∧ R.bid = 103

∧P.sname = S.sname)}

This query can be read as follows: “Retrieve all sailor tuples for which there
exists a tuple in Reserves having the same value in the sid field and with
bid = 103.” That is, for each sailor tuple, we look for a tuple in Reserves that
shows that this sailor has reserved boat 103. The answer tuple P contains just
one field, sname.

(Q2) Find the names of sailors who have reserved a red boat.

{P | ∃S ∈ Sailors ∃R ∈ Reserves(R.sid = S.sid ∧ P.sname = S.sname
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∧∃B ∈ Boats(B.bid = R.bid ∧B.color = red ))}

This query can be read as follows: “Retrieve all sailor tuples S for which
there exist tuples R in Reserves and B in Boats such that S.sid = R.sid,
R.bid = B.bid, and B.color = red .” Another way to write this query, which
corresponds more closely to this reading, is as follows:

{P | ∃S ∈ Sailors ∃R ∈ Reserves ∃B ∈ Boats

(R.sid = S.sid ∧ B.bid = R.bid ∧ B.color = red ∧ P.sname = S.sname)}

(Q7) Find the names of sailors who have reserved at least two boats.

{P | ∃S ∈ Sailors ∃R1 ∈ Reserves ∃R2 ∈ Reserves

(S.sid = R1.sid ∧ R1.sid = R2.sid ∧ R1.bid  = R2.bid

∧P.sname = S.sname)}

Contrast this query with the algebra version and see how much simpler the
calculus version is. In part, this difference is due to the cumbersome renaming
of fields in the algebra version, but the calculus version really is simpler.

(Q9) Find the names of sailors who have reserved all boats.

{P | ∃S ∈ Sailors ∀B ∈ Boats

(∃R ∈ Reserves(S.sid = R.sid ∧ R.bid = B.bid ∧ P.sname = S.sname))}

This query was expressed using the division operator in relational algebra. Note
how easily it is expressed in the calculus. The calculus query directly reflects
how we might express the query in English: “Find sailors S such that for all
boats B there is a Reserves tuple showing that sailor S has reserved boat B.”

(Q14) Find sailors who have reserved all red boats.

{S | S ∈ Sailors ∧ ∀B ∈ Boats

(B.color = red ⇒ (∃R ∈ Reserves(S.sid = R.sid ∧R.bid = B.bid)))}

This query can be read as follows: For each candidate (sailor), if a boat is red,
the sailor must have reserved it. That is, for a candidate sailor, a boat being
red must imply that the sailor has reserved it. Observe that since we can return
an entire sailor tuple as the answer instead of just the sailor’s name, we avoided
introducing a new free variable (e.g., the variable P in the previous example)
to hold the answer values. On instances B1, R2, and S3, the answer contains
the Sailors tuples with sids 22 and 31.

We can write this query without using implication, by observing that an ex-
pression of the form p ⇒ q is logically equivalent to ¬p ∨ q:

{S | S ∈ Sailors ∧ ∀B ∈ Boats



122 Chapter 4

(B.color  = red ∨ (∃R ∈ Reserves(S.sid = R.sid ∧ R.bid = B.bid)))}

This query should be read as follows: “Find sailors S such that, for all boats B,
either the boat is not red or a Reserves tuple shows that sailor S has reserved
boat B.”

4.3.2 Domain Relational Calculus

A domain variable is a variable that ranges over the values in the domain
of some attribute (e.g., the variable can be assigned an integer if it appears
in an attribute whose domain is the set of integers). A DRC query has the
form { x1, x2, . . . , xn | p( x1, x2, . . . , xn )}, where each xi is either a domain
variable or a constant and p( x1, x2, . . . , xn ) denotes a DRC formula whose
only free variables are the variables among the xi, 1 ≤ i ≤ n. The result of this
query is the set of all tuples  x1, x2, . . . , xn for which the formula evaluates to
true.

A DRC formula is defined in a manner very similar to the definition of a TRC
formula. The main difference is that the variables are now domain variables.
Let op denote an operator in the set {<,>,=,≤,≥,  =} and let X and Y be
domain variables. An atomic formula in DRC is one of the following:

 x1, x2, . . . , xn ∈ Rel, where Rel is a relation with n attributes; each
xi, 1 ≤ i ≤ n is either a variable or a constant

X op Y

X op constant, or constant op X

A formula is recursively defined to be one of the following, where p and q
are themselves formulas and p(X) denotes a formula in which the variable X
appears:

any atomic formula

¬p, p ∧ q, p ∨ q, or p ⇒ q

∃X(p(X)), where X is a domain variable

∀X(p(X)), where X is a domain variable

The reader is invited to compare this definition with the definition of TRC
formulas and see how closely these two definitions correspond. We will not
define the semantics of DRC formulas formally; this is left as an exercise for
the reader.
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Examples of DRC Queries

We now illustrate DRC through several examples. The reader is invited to
compare these with the TRC versions.

(Q11) Find all sailors with a rating above 7.

{ I,N, T,A |  I,N, T,A ∈ Sailors ∧ T > 7}

This differs from the TRC version in giving each attribute a (variable) name.
The condition  I,N, T,A ∈ Sailors ensures that the domain variables I, N ,
T , and A are restricted to be fields of the same tuple. In comparison with the
TRC query, we can say T > 7 instead of S.rating > 7, but we must specify the
tuple  I,N, T,A in the result, rather than just S.

(Q1) Find the names of sailors who have reserved boat 103.

{ N | ∃I, T,A( I,N, T,A ∈ Sailors

∧∃Ir,Br,D( Ir,Br,D ∈ Reserves ∧ Ir = I ∧ Br = 103))}

Note that only the sname field is retained in the answer and that only N
is a free variable. We use the notation ∃Ir,Br,D(. . .) as a shorthand for
∃Ir(∃Br(∃D(. . .))). Very often, all the quantified variables appear in a sin-
gle relation, as in this example. An even more compact notation in this case
is ∃ Ir,Br,D ∈ Reserves. With this notation, which we use henceforth, the
query would be as follows:

{ N | ∃I, T,A( I,N, T,A ∈ Sailors

∧∃ Ir,Br,D ∈ Reserves(Ir = I ∧ Br = 103))}

The comparison with the corresponding TRC formula should now be straight-
forward. This query can also be written as follows; note the repetition of
variable I and the use of the constant 103:

{ N | ∃I, T,A( I,N, T,A ∈ Sailors

∧∃D( I, 103,D ∈ Reserves))}

(Q2) Find the names of sailors who have reserved a red boat.

{ N | ∃I, T,A( I,N, T,A ∈ Sailors

∧∃ I,Br,D ∈ Reserves ∧ ∃ Br,BN, red  ∈ Boats)}

(Q7) Find the names of sailors who have reserved at least two boats.

{ N | ∃I, T,A( I,N, T,A ∈ Sailors ∧

∃Br1, Br2,D1,D2( I,Br1,D1 ∈ Reserves

∧ I,Br2,D2 ∈ Reserves ∧ Br1  = Br2))}
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Note how the repeated use of variable I ensures that the same sailor has reserved
both the boats in question.

(Q9) Find the names of sailors who have reserved all boats.

{ N | ∃I, T,A( I,N, T,A ∈ Sailors ∧

∀B,BN,C(¬( B,BN,C ∈ Boats) ∨

(∃ Ir,Br,D ∈ Reserves(I = Ir ∧ Br = B))))}

This query can be read as follows: “Find all values of N such that some tuple
 I,N, T,A in Sailors satisfies the following condition: For every  B,BN,C ,
either this is not a tuple in Boats or there is some tuple  Ir,Br,D in Reserves
that proves that Sailor I has reserved boat B.” The ∀ quantifier allows the
domain variables B, BN , and C to range over all values in their respective
attribute domains, and the pattern ‘¬( B,BN,C ∈ Boats)∨’ is necessary to
restrict attention to those values that appear in tuples of Boats. This pattern
is common in DRC formulas, and the notation ∀ B,BN,C ∈ Boats can be
used as a shortcut instead. This is similar to the notation introduced earlier
for ∃. With this notation, the query would be written as follows:

{ N | ∃I, T,A( I,N, T,A ∈ Sailors ∧ ∀ B,BN,C ∈ Boats

(∃ Ir,Br,D ∈ Reserves(I = Ir ∧Br = B)))}

(Q14) Find sailors who have reserved all red boats.

{ I,N, T,A |  I,N, T,A ∈ Sailors ∧ ∀ B,BN,C ∈ Boats

(C = red ⇒ ∃ Ir,Br,D ∈ Reserves(I = Ir ∧ Br = B))}

Here, we find all sailors such that, for every red boat, there is a tuple in Reserves
that shows the sailor has reserved it.

4.4 EXPRESSIVE POWER OF ALGEBRA AND

CALCULUS

We presented two formal query languages for the relational model. Are they
equivalent in power? Can every query that can be expressed in relational
algebra also be expressed in relational calculus? The answer is yes, it can.
Can every query that can be expressed in relational calculus also be expressed
in relational algebra? Before we answer this question, we consider a major
problem with the calculus as we presented it.

Consider the query {S | ¬(S ∈ Sailors)}. This query is syntactically correct.
However, it asks for all tuples S such that S is not in (the given instance of)
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Sailors. The set of such S tuples is obviously infinite, in the context of infinite
domains such as the set of all integers. This simple example illustrates an
unsafe query. It is desirable to restrict relational calculus to disallow unsafe
queries.

We now sketch how calculus queries are restricted to be safe. Consider a set I
of relation instances, with one instance per relation that appears in the query
Q. Let Dom(Q, I) be the set of all constants that appear in these relation
instances I or in the formulation of the query Q itself. Since we allow only
finite instances I, Dom(Q, I) is also finite.

For a calculus formula Q to be considered safe, at a minimum we want to
ensure that, for any given I, the set of answers for Q contains only values in
Dom(Q, I). While this restriction is obviously required, it is not enough. Not
only do we want the set of answers to be composed of constants in Dom(Q, I),
we wish to compute the set of answers by examining only tuples that contain
constants in Dom(Q, I)! This wish leads to a subtle point associated with the
use of quantifiers ∀ and ∃: Given a TRC formula of the form ∃R(p(R)), we want
to find all values for variable R that make this formula true by checking only
tuples that contain constants in Dom(Q, I). Similarly, given a TRC formula of
the form ∀R(p(R)), we want to find any values for variable R that make this
formula false by checking only tuples that contain constants in Dom(Q, I).

We therefore define a safe TRC formula Q to be a formula such that:

1. For any given I, the set of answers for Q contains only values that are in
Dom(Q, I).

2. For each subexpression of the form ∃R(p(R)) in Q, if a tuple r (assigned
to variable R) makes the formula true, then r contains only constants in
Dom(Q, I).

3. For each subexpression of the form ∀R(p(R)) in Q, if a tuple r (assigned
to variable R) contains a constant that is not in Dom(Q, I), then r must
make the formula true.

Note that this definition is not constructive, that is, it does not tell us how to
check if a query is safe.

The query Q = {S | ¬(S ∈ Sailors)} is unsafe by this definition. Dom(Q, I)
is the set of all values that appear in (an instance I of) Sailors. Consider the
instance S1 shown in Figure 4.1. The answer to this query obviously includes
values that do not appear in Dom(Q,S1).
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Returning to the question of expressiveness, we can show that every query that
can be expressed using a safe relational calculus query can also be expressed as
a relational algebra query. The expressive power of relational algebra is often
used as a metric of how powerful a relational database query language is. If
a query language can express all the queries that we can express in relational
algebra, it is said to be relationally complete. A practical query language is
expected to be relationally complete; in addition, commercial query languages
typically support features that allow us to express some queries that cannot be
expressed in relational algebra.

4.5 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What is the input to a relational query? What is the result of evaluating
a query? (Section 4.1)

Database systems use some variant of relational algebra to represent query
evaluation plans. Explain why algebra is suitable for this purpose. (Sec-
tion 4.2)

Describe the selection operator. What can you say about the cardinality
of the input and output tables for this operator? (That is, if the input has
k tuples, what can you say about the output?) Describe the projection
operator. What can you say about the cardinality of the input and output
tables for this operator? (Section 4.2.1)

Describe the set operations of relational algebra, including union (∪), in-
tersection (∩), set-difference (−), and cross-product (×). For each, what
can you say about the cardinality of their input and output tables? (Sec-
tion 4.2.2)

Explain how the renaming operator is used. Is it required? That is, if this
operator is not allowed, is there any query that can no longer be expressed
in algebra? (Section 4.2.3)

Define all the variations of the join operation. Why is the join operation
given special attention? Cannot we express every join operation in terms
of cross-product, selection, and projection? (Section 4.2.4)

Define the division operation in terms of the basic relational algebra op-
erations. Describe a typical query that calls for division. Unlike join, the
division operator is not given special treatment in database systems. Ex-
plain why. (Section 4.2.5)
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Relational calculus is said to be a declarative language, in contrast to alge-
bra, which is a procedural language. Explain the distinction. (Section 4.3)

How does a relational calculus query ‘describe’ result tuples? Discuss the
subset of first-order predicate logic used in tuple relational calculus, with
particular attention to universal and existential quantifiers, bound and free
variables, and restrictions on the query formula. (Section 4.3.1).

What is the difference between tuple relational calculus and domain rela-
tional calculus? (Section 4.3.2).

What is an unsafe calculus query? Why is it important to avoid such
queries? (Section 4.4)

Relational algebra and relational calculus are said to be equivalent in ex-
pressive power. Explain what this means, and how it is related to the
notion of relational completeness. (Section 4.4)

EXERCISES

Exercise 4.1 Explain the statement that relational algebra operators can be composed. Why
is the ability to compose operators important?

Exercise 4.2 Given two relations R1 and R2, where R1 contains N1 tuples, R2 contains N2
tuples, and N2 > N1 > 0, give the minimum and maximum possible sizes (in tuples) for the
resulting relation produced by each of the following relational algebra expressions. In each
case, state any assumptions about the schemas for R1 and R2 needed to make the expression
meaningful:

(1) R1∪R2, (2) R1∩R2, (3) R1−R2, (4) R1×R2, (5) σa=5(R1), (6) πa(R1), and
(7) R1/R2

Exercise 4.3 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

The key fields are underlined, and the domain of each field is listed after the field name.
Therefore sid is the key for Suppliers, pid is the key for Parts, and sid and pid together form
the key for Catalog. The Catalog relation lists the prices charged for parts by Suppliers. Write
the following queries in relational algebra, tuple relational calculus, and domain relational
calculus:

1. Find the names of suppliers who supply some red part.

2. Find the sids of suppliers who supply some red or green part.

3. Find the sids of suppliers who supply some red part or are at 221 Packer Ave.

4. Find the sids of suppliers who supply some red part and some green part.
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5. Find the sids of suppliers who supply every part.

6. Find the sids of suppliers who supply every red part.

7. Find the sids of suppliers who supply every red or green part.

8. Find the sids of suppliers who supply every red part or supply every green part.

9. Find pairs of sids such that the supplier with the first sid charges more for some part
than the supplier with the second sid.

10. Find the pids of parts supplied by at least two different suppliers.

11. Find the pids of the most expensive parts supplied by suppliers named Yosemite Sham.

12. Find the pids of parts supplied by every supplier at less than $200. (If any supplier either
does not supply the part or charges more than $200 for it, the part is not selected.)

Exercise 4.4 Consider the Supplier-Parts-Catalog schema from the previous question. State
what the following queries compute:

1. πsname(πsid(σcolor=�red�Parts)   (σcost<100Catalog)   Suppliers)

2. πsname(πsid((σcolor=�red�Parts)   (σcost<100Catalog)   Suppliers))

3. (πsname((σcolor=�red�Parts)   (σcost<100Catalog)   Suppliers)) ∩

(πsname((σcolor=�green�Parts)   (σcost<100Catalog)   Suppliers))

4. (πsid((σcolor=�red�Parts)   (σcost<100Catalog)   Suppliers)) ∩

(πsid((σcolor=�green�Parts)   (σcost<100Catalog)   Suppliers))

5. πsname((πsid,sname((σcolor=�red�Parts)   (σcost<100Catalog)   Suppliers)) ∩

(πsid,sname((σcolor=�green�Parts)   (σcost<100Catalog)   Suppliers)))

Exercise 4.5 Consider the following relations containing airline flight information:

Flights(flno: integer, from: string, to: string,

distance: integer, departs: time, arrives: time)
Aircraft(aid: integer, aname: string, cruisingrange: integer)

Certified(eid: integer, aid: integer)

Employees(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well; every
pilot is certified for some aircraft (otherwise, he or she would not qualify as a pilot), and only
pilots are certified to fly.

Write the following queries in relational algebra, tuple relational calculus, and domain rela-
tional calculus. Note that some of these queries may not be expressible in relational algebra
(and, therefore, also not expressible in tuple and domain relational calculus)! For such queries,
informally explain why they cannot be expressed. (See the exercises at the end of Chapter 5
for additional queries over the airline schema.)

1. Find the eids of pilots certified for some Boeing aircraft.

2. Find the names of pilots certified for some Boeing aircraft.

3. Find the aids of all aircraft that can be used on non-stop flights from Bonn to Madras.
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4. Identify the flights that can be piloted by every pilot whose salary is more than $100,000.

5. Find the names of pilots who can operate planes with a range greater than 3,000 miles
but are not certified on any Boeing aircraft.

6. Find the eids of employees who make the highest salary.

7. Find the eids of employees who make the second highest salary.

8. Find the eids of employees who are certified for the largest number of aircraft.

9. Find the eids of employees who are certified for exactly three aircraft.

10. Find the total amount paid to employees as salaries.

11. Is there a sequence of flights from Madison to Timbuktu? Each flight in the sequence is
required to depart from the city that is the destination of the previous flight; the first
flight must leave Madison, the last flight must reach Timbuktu, and there is no restriction
on the number of intermediate flights. Your query must determine whether a sequence
of flights from Madison to Timbuktu exists for any input Flights relation instance.

Exercise 4.6 What is relational completeness? If a query language is relationally complete,
can you write any desired query in that language?

Exercise 4.7 What is an unsafe query? Give an example and explain why it is important
to disallow such queries.

BIBLIOGRAPHIC NOTES

Relational algebra was proposed by Codd in [187], and he showed the equivalence of relational
algebra and TRC in [189]. Earlier, Kuhns [454] considered the use of logic to pose queries.
LaCroix and Pirotte discussed DRC in [459]. Klug generalized the algebra and calculus to
include aggregate operations in [439]. Extensions of the algebra and calculus to deal with
aggregate functions are also discussed in [578]. Merrett proposed an extended relational
algebra with quantifiers such as the number of that go beyond just universal and existential
quantification [530]. Such generalized quantifiers are discussed at length in [52].



5
SQL: QUERIES,

CONSTRAINTS, TRIGGERS

☛ What is included in the SQL language? What is SQL:1999?

☛ How are queries expressed in SQL? How is the meaning of a query
specified in the SQL standard?

☛ How does SQL build on and extend relational algebra and calculus?

☛ What is grouping? How is it used with aggregate operations?

☛ What are nested queries?

☛ What are null values?

☛ How can we use queries in writing complex integrity constraints?

☛ What are triggers, and why are they useful? How are they related to
integrity constraints?

➽ Key concepts: SQL queries, connection to relational algebra and
calculus; features beyond algebra, DISTINCT clause and multiset se-
mantics, grouping and aggregation; nested queries, correlation; set-
comparison operators; null values, outer joins; integrity constraints
specified using queries; triggers and active databases, event-condition-
action rules.

What men or gods are these? What maidens loth?
What mad pursuit? What struggle to escape?
What pipes and timbrels? What wild ecstasy?

—John Keats, Ode on a Grecian Urn

Structured Query Language (SQL) is the most widely used commercial rela-
tional database language. It was originally developed at IBM in the SEQUEL-

130
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SQL Standards Conformance: SQL:1999 has a collection of features
called Core SQL that a vendor must implement to claim conformance with
the SQL:1999 standard. It is estimated that all the major vendors can
comply with Core SQL with little effort. Many of the remaining features
are organized into packages.

For example, packages address each of the following (with relevant chapters
in parentheses): enhanced date and time, enhanced integrity management
and active databases (this chapter), external language interfaces (Chapter
6), OLAP (Chapter 25), and object features (Chapter 23). The SQL/MM
standard complements SQL:1999 by defining additional packages that sup-
port data mining (Chapter 26), spatial data (Chapter 28) and text docu-
ments (Chapter 27). Support for XML data and queries is forthcoming.

XRM and System-R projects (1974–1977). Almost immediately, other vendors
introduced DBMS products based on SQL, and it is now a de facto standard.
SQL continues to evolve in response to changing needs in the database area.
The current ANSI/ISO standard for SQL is called SQL:1999. While not all
DBMS products support the full SQL:1999 standard yet, vendors are working
toward this goal and most products already support the core features. The
SQL:1999 standard is very close to the previous standard, SQL-92, with re-
spect to the features discussed in this chapter. Our presentation is consistent
with both SQL-92 and SQL:1999, and we explicitly note any aspects that differ
in the two versions of the standard.

5.1 OVERVIEW

The SQL language has several aspects to it.

The Data Manipulation Language (DML): This subset of SQL allows
users to pose queries and to insert, delete, and modify rows. Queries are
the main focus of this chapter. We covered DML commands to insert,
delete, and modify rows in Chapter 3.

The Data Definition Language (DDL): This subset of SQL supports
the creation, deletion, and modification of definitions for tables and views.
Integrity constraints can be defined on tables, either when the table is
created or later. We cocvered the DDL features of SQL in Chapter 3. Al-
though the standard does not discuss indexes, commercial implementations
also provide commands for creating and deleting indexes.

Triggers and Advanced Integrity Constraints: The new SQL:1999
standard includes support for triggers, which are actions executed by the
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DBMS whenever changes to the database meet conditions specified in the
trigger. We cover triggers in this chapter. SQL allows the use of queries
to specify complex integrity constraint specifications. We also discuss such
constraints in this chapter.

Embedded and Dynamic SQL: Embedded SQL features allow SQL
code to be called from a host language such as C or COBOL. Dynamic
SQL features allow a query to be constructed (and executed) at run-time.
We cover these features in Chapter 6.

Client-Server Execution and Remote Database Access: These com-
mands control how a client application program can connect to an SQL
database server, or access data from a database over a network. We cover
these commands in Chapter 7.

Transaction Management: Various commands allow a user to explicitly
control aspects of how a transaction is to be executed. We cover these
commands in Chapter 21.

Security: SQL provides mechanisms to control users’ access to data ob-
jects such as tables and views. We cover these in Chapter 21.

Advanced features: The SQL:1999 standard includes object-oriented
features (Chapter 23), recursive queries (Chapter 24), decision support
queries (Chapter 25), and also addresses emerging areas such as data min-
ing (Chapter 26), spatial data (Chapter 28), and text and XML data man-
agement (Chapter 27).

5.1.1 Chapter Organization

The rest of this chapter is organized as follows. We present basic SQL queries
in Section 5.2 and introduce SQL’s set operators in Section 5.3. We discuss
nested queries, in which a relation referred to in the query is itself defined
within the query, in Section 5.4. We cover aggregate operators, which allow us
to write SQL queries that are not expressible in relational algebra, in Section
5.5. We discuss null values, which are special values used to indicate unknown
or nonexistent field values, in Section 5.6. We discuss complex integrity con-
straints that can be specified using the SQL DDL in Section 5.7, extending the
SQL DDL discussion from Chapter 3; the new constraint specifications allow
us to fully utilize the query language capabilities of SQL.

Finally, we discuss the concept of an active database in Sections 5.8 and 5.9.
An active database has a collection of triggers, which are specified by the
DBA. A trigger describes actions to be taken when certain situations arise. The
DBMS monitors the database, detects these situations, and invokes the trigger.
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The SQL:1999 standard requires support for triggers, and several relational
DBMS products already support some form of triggers.

About the Examples

We will present a number of sample queries using the following table definitions:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: date)

We give each query a unique number, continuing with the numbering scheme
used in Chapter 4. The first new query in this chapter has number Q15. Queries
Q1 through Q14 were introduced in Chapter 4.1 We illustrate queries using the
instances S3 of Sailors, R2 of Reserves, and B1 of Boats introduced in Chapter
4, which we reproduce in Figures 5.1, 5.2, and 5.3, respectively.

All the example tables and queries that appear in this chapter are available
online on the book’s webpage at

http://www.cs.wisc.edu/˜ dbbook

The online material includes instructions on how to set up Oracle, IBM DB2,
Microsoft SQL Server, and MySQL, and scripts for creating the example tables
and queries.

5.2 THE FORM OF A BASIC SQL QUERY

This section presents the syntax of a simple SQL query and explains its meaning
through a conceptual evaluation strategy. A conceptual evaluation strategy is
a way to evaluate the query that is intended to be easy to understand rather
than efficient. A DBMS would typically execute a query in a different and more
efficient way.

The basic form of an SQL query is as follows:

SELECT [ DISTINCT ] select-list
FROM from-list
WHERE qualification

1All references to a query can be found in the subject index for the book.
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sid sname rating age

22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5

Figure 5.1 An Instance S3 of Sailors

sid bid day

22 101 10/10/98
22 102 10/10/98
22 103 10/8/98
22 104 10/7/98
31 102 11/10/98
31 103 11/6/98
31 104 11/12/98
64 101 9/5/98
64 102 9/8/98
74 103 9/8/98

Figure 5.2 An Instance R2 of Reserves

bid bname color

101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

Figure 5.3 An Instance B1 of Boats

Every query must have a SELECT clause, which specifies columns to be retained
in the result, and a FROM clause, which specifies a cross-product of tables. The
optional WHERE clause specifies selection conditions on the tables mentioned in
the FROM clause.

Such a query intuitively corresponds to a relational algebra expression involving
selections, projections, and cross-products. The close relationship between SQL
and relational algebra is the basis for query optimization in a relational DBMS,
as we will see in Chapters 12 and 15. Indeed, execution plans for SQL queries
are represented using a variation of relational algebra expressions (Section 15.1).

Let us consider a simple example.

(Q15) Find the names and ages of all sailors.

SELECT DISTINCT S.sname, S.age
FROM Sailors S

The answer is a set of rows, each of which is a pair  sname, age . If two or
more sailors have the same name and age, the answer still contains just one pair
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with that name and age. This query is equivalent to applying the projection
operator of relational algebra.

If we omit the keyword DISTINCT, we would get a copy of the row  s,a for
each sailor with name s and age a; the answer would be a multiset of rows. A
multiset is similar to a set in that it is an unordered collection of elements,
but there could be several copies of each element, and the number of copies is
significant—two multisets could have the same elements and yet be different
because the number of copies is different for some elements. For example, {a,
b, b} and {b, a, b} denote the same multiset, and differ from the multiset {a,
a, b}.

The answer to this query with and without the keyword DISTINCT on instance
S3 of Sailors is shown in Figures 5.4 and 5.5. The only difference is that the
tuple for Horatio appears twice if DISTINCT is omitted; this is because there
are two sailors called Horatio and age 35.

sname age

Dustin 45.0
Brutus 33.0
Lubber 55.5
Andy 25.5
Rusty 35.0
Horatio 35.0
Zorba 16.0
Art 25.5
Bob 63.5

Figure 5.4 Answer to Q15

sname age

Dustin 45.0
Brutus 33.0
Lubber 55.5
Andy 25.5
Rusty 35.0
Horatio 35.0
Zorba 16.0
Horatio 35.0
Art 25.5
Bob 63.5

Figure 5.5 Answer to Q15 without DISTINCT

Our next query is equivalent to an application of the selection operator of
relational algebra.

(Q11) Find all sailors with a rating above 7.

SELECT S.sid, S.sname, S.rating, S.age
FROM Sailors AS S
WHERE S.rating > 7

This query uses the optional keyword AS to introduce a range variable. Inci-
dentally, when we want to retrieve all columns, as in this query, SQL provides a
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convenient shorthand: We can simply write SELECT *. This notation is useful
for interactive querying, but it is poor style for queries that are intended to be
reused and maintained because the schema of the result is not clear from the
query itself; we have to refer to the schema of the underlying Sailors table.

As these two examples illustrate, the SELECT clause is actually used to do pro-
jection, whereas selections in the relational algebra sense are expressed using
the WHERE clause! This mismatch between the naming of the selection and pro-
jection operators in relational algebra and the syntax of SQL is an unfortunate
historical accident.

We now consider the syntax of a basic SQL query in more detail.

The from-list in the FROM clause is a list of table names. A table name
can be followed by a range variable; a range variable is particularly useful
when the same table name appears more than once in the from-list.

The select-list is a list of (expressions involving) column names of tables
named in the from-list. Column names can be prefixed by a range variable.

The qualification in the WHERE clause is a boolean combination (i.e., an
expression using the logical connectives AND, OR, and NOT) of conditions
of the form expression op expression, where op is one of the comparison
operators {<,<=,=, <>,>=, >}.2 An expression is a column name, a
constant, or an (arithmetic or string) expression.

The DISTINCT keyword is optional. It indicates that the table computed
as an answer to this query should not contain duplicates, that is, two copies
of the same row. The default is that duplicates are not eliminated.

Although the preceding rules describe (informally) the syntax of a basic SQL
query, they do not tell us the meaning of a query. The answer to a query is
itself a relation—which is a multiset of rows in SQL!—whose contents can be
understood by considering the following conceptual evaluation strategy:

1. Compute the cross-product of the tables in the from-list.

2. Delete rows in the cross-product that fail the qualification conditions.

3. Delete all columns that do not appear in the select-list.

4. If DISTINCT is specified, eliminate duplicate rows.

2Expressions with NOT can always be replaced by equivalent expressions without NOT given the set

of comparison operators just listed.
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This straightforward conceptual evaluation strategy makes explicit the rows
that must be present in the answer to the query. However, it is likely to be
quite inefficient. We will consider how a DBMS actually evaluates queries in
later chapters; for now, our purpose is simply to explain the meaning of a query.
We illustrate the conceptual evaluation strategy using the following query:

(Q1) Find the names of sailors who have reserved boat number 103.

It can be expressed in SQL as follows.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid=103

Let us compute the answer to this query on the instances R3 of Reserves and
S4 of Sailors shown in Figures 5.6 and 5.7, since the computation on our usual
example instances (R2 and S3) would be unnecessarily tedious.

sid bid day

22 101 10/10/96
58 103 11/12/96

Figure 5.6 Instance R3 of Reserves

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

Figure 5.7 Instance S4 of Sailors

The first step is to construct the cross-product S4 × R3, which is shown in
Figure 5.8.

sid sname rating age sid bid day

22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

Figure 5.8 S4 × R3

The second step is to apply the qualification S.sid = R.sid AND R.bid=103.
(Note that the first part of this qualification requires a join operation.) This
step eliminates all but the last row from the instance shown in Figure 5.8. The
third step is to eliminate unwanted columns; only sname appears in the SELECT
clause. This step leaves us with the result shown in Figure 5.9, which is a table
with a single column and, as it happens, just one row.
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sname

rusty

Figure 5.9 Answer to Query Q1 on R3 and S4

5.2.1 Examples of Basic SQL Queries

We now present several example queries, many of which were expressed earlier
in relational algebra and calculus (Chapter 4). Our first example illustrates
that the use of range variables is optional, unless they are needed to resolve an
ambiguity. Query Q1, which we discussed in the previous section, can also be
expressed as follows:

SELECT sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND bid=103

Only the occurrences of sid have to be qualified, since this column appears in
both the Sailors and Reserves tables. An equivalent way to write this query is:

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid = Reserves.sid AND bid=103

This query shows that table names can be used implicitly as row variables.
Range variables need to be introduced explicitly only when the FROM clause
contains more than one occurrence of a relation.3 However, we recommend
the explicit use of range variables and full qualification of all occurrences of
columns with a range variable to improve the readability of your queries. We
will follow this convention in all our examples.

(Q16) Find the sids of sailors who have reserved a red boat.

SELECT R.sid
FROM Boats B, Reserves R
WHERE B.bid = R.bid AND B.color = ‘red’

This query contains a join of two tables, followed by a selection on the color
of boats. We can think of B and R as rows in the corresponding tables that

3The table name cannot be used as an implicit range variable once a range variable is introduced

for the relation.
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‘prove’ that a sailor with sid R.sid reserved a red boat B.bid. On our example
instances R2 and S3 (Figures 5.1 and 5.2), the answer consists of the sids 22,
31, and 64. If we want the names of sailors in the result, we must also consider
the Sailors relation, since Reserves does not contain this information, as the
next example illustrates.

(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

This query contains a join of three tables followed by a selection on the color
of boats. The join with Sailors allows us to find the name of the sailor who,
according to Reserves tuple R, has reserved a red boat described by tuple B.

(Q3) Find the colors of boats reserved by Lubber.

SELECT B.color
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND S.sname = ‘Lubber’

This query is very similar to the previous one. Note that in general there may
be more than one sailor called Lubber (since sname is not a key for Sailors);
this query is still correct in that it will return the colors of boats reserved by
some Lubber, if there are several sailors called Lubber.

(Q4) Find the names of sailors who have reserved at least one boat.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid

The join of Sailors and Reserves ensures that for each selected sname, the
sailor has made some reservation. (If a sailor has not made a reservation, the
second step in the conceptual evaluation strategy would eliminate all rows in
the cross-product that involve this sailor.)

5.2.2 Expressions and Strings in the SELECT Command

SQL supports a more general version of the select-list than just a list of
columns. Each item in a select-list can be of the form expression AS col-
umn name, where expression is any arithmetic or string expression over column
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names (possibly prefixed by range variables) and constants, and column name
is a new name for this column in the output of the query. It can also contain
aggregates such as sum and count, which we will discuss in Section 5.5. The
SQL standard also includes expressions over date and time values, which we will
not discuss. Although not part of the SQL standard, many implementations
also support the use of built-in functions such as sqrt, sin, and mod.

(Q17) Compute increments for the ratings of persons who have sailed two dif-
ferent boats on the same day.

SELECT S.sname, S.rating+1 AS rating
FROM Sailors S, Reserves R1, Reserves R2
WHERE S.sid = R1.sid AND S.sid = R2.sid

AND R1.day = R2.day AND R1.bid <> R2.bid

Also, each item in a qualification can be as general as expression1 = expression2.

SELECT S1.sname AS name1, S2.sname AS name2
FROM Sailors S1, Sailors S2
WHERE 2*S1.rating = S2.rating-1

For string comparisons, we can use the comparison operators (=, <,>, etc.)
with the ordering of strings determined alphabetically as usual. If we need
to sort strings by an order other than alphabetical (e.g., sort strings denoting
month names in the calendar order January, February, March, etc.), SQL sup-
ports a general concept of a collation, or sort order, for a character set. A
collation allows the user to specify which characters are ‘less than’ which others
and provides great flexibility in string manipulation.

In addition, SQL provides support for pattern matching through the LIKE op-
erator, along with the use of the wild-card symbols % (which stands for zero
or more arbitrary characters) and (which stands for exactly one, arbitrary,
character). Thus, ‘ AB%’ denotes a pattern matching every string that con-
tains at least three characters, with the second and third characters being A
and B respectively. Note that unlike the other comparison operators, blanks
can be significant for the LIKE operator (depending on the collation for the
underlying character set). Thus, ‘Jeff’ = ‘Jeff ’ is true while ‘Jeff’ LIKE ‘Jeff
’ is false. An example of the use of LIKE in a query is given below.

(Q18) Find the ages of sailors whose name begins and ends with B and has at
least three characters.

SELECT S.age
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Regular Expressions in SQL: Reflecting the increased importance of
text data, SQL:1999 includes a more powerful version of the LIKE operator
called SIMILAR. This operator allows a rich set of regular expressions to be
used as patterns while searching text. The regular expressions are similar to
those supported by the Unix operating system for string searches, although
the syntax is a little different.

Relational Algebra and SQL: The set operations of SQL are available in
relational algebra. The main difference, of course, is that they are multiset
operations in SQL, since tables are multisets of tuples.

FROM Sailors S
WHERE S.sname LIKE ‘B %B’

The only such sailor is Bob, and his age is 63.5.

5.3 UNION, INTERSECT, AND EXCEPT

SQL provides three set-manipulation constructs that extend the basic query
form presented earlier. Since the answer to a query is a multiset of rows, it is
natural to consider the use of operations such as union, intersection, and differ-
ence. SQL supports these operations under the names UNION, INTERSECT, and
EXCEPT.4 SQL also provides other set operations: IN (to check if an element
is in a given set), op ANY, op ALL (to compare a value with the elements in
a given set, using comparison operator op), and EXISTS (to check if a set is
empty). IN and EXISTS can be prefixed by NOT, with the obvious modification
to their meaning. We cover UNION, INTERSECT, and EXCEPT in this section,
and the other operations in Section 5.4.

Consider the following query:

(Q5) Find the names of sailors who have reserved a red or a green boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

AND (B.color = ‘red’ OR B.color = ‘green’)

4Note that although the SQL standard includes these operations, many systems currently support

only UNION. Also, many systems recognize the keyword MINUS for EXCEPT.
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This query is easily expressed using the OR connective in the WHERE clause.
However, the following query, which is identical except for the use of ‘and’
rather than ‘or’ in the English version, turns out to be much more difficult:

(Q6) Find the names of sailors who have reserved both a red and a green boat.

If we were to just replace the use of OR in the previous query by AND, in analogy
to the English statements of the two queries, we would retrieve the names of
sailors who have reserved a boat that is both red and green. The integrity
constraint that bid is a key for Boats tells us that the same boat cannot have
two colors, and so the variant of the previous query with AND in place of OR will
always return an empty answer set. A correct statement of Query Q6 using
AND is the following:

SELECT S.sname
FROM Sailors S, Reserves R1, Boats B1, Reserves R2, Boats B2
WHERE S.sid = R1.sid AND R1.bid = B1.bid

AND S.sid = R2.sid AND R2.bid = B2.bid
AND B1.color=‘red’ AND B2.color = ‘green’

We can think of R1 and B1 as rows that prove that sailor S.sid has reserved a
red boat. R2 and B2 similarly prove that the same sailor has reserved a green
boat. S.sname is not included in the result unless five such rows S, R1, B1, R2,
and B2 are found.

The previous query is difficult to understand (and also quite inefficient to ex-
ecute, as it turns out). In particular, the similarity to the previous OR query
(Query Q5) is completely lost. A better solution for these two queries is to use
UNION and INTERSECT.

The OR query (Query Q5) can be rewritten as follows:

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
UNION

SELECT S2.sname
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

This query says that we want the union of the set of sailors who have reserved
red boats and the set of sailors who have reserved green boats. In complete
symmetry, the AND query (Query Q6) can be rewritten as follows:

SELECT S.sname
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FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
INTERSECT

SELECT S2.sname
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

This query actually contains a subtle bug—if there are two sailors such as
Horatio in our example instances B1, R2, and S3, one of whom has reserved a
red boat and the other has reserved a green boat, the name Horatio is returned
even though no one individual called Horatio has reserved both a red and a
green boat. Thus, the query actually computes sailor names such that some
sailor with this name has reserved a red boat and some sailor with the same
name (perhaps a different sailor) has reserved a green boat.

As we observed in Chapter 4, the problem arises because we are using sname
to identify sailors, and sname is not a key for Sailors! If we select sid instead of
sname in the previous query, we would compute the set of sids of sailors who
have reserved both red and green boats. (To compute the names of such sailors
requires a nested query; we will return to this example in Section 5.4.4.)

Our next query illustrates the set-difference operation in SQL.

(Q19) Find the sids of all sailors who have reserved red boats but not green
boats.

SELECT S.sid
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
EXCEPT

SELECT S2.sid
FROM Sailors S2, Reserves R2, Boats B2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

Sailors 22, 64, and 31 have reserved red boats. Sailors 22, 74, and 31 have
reserved green boats. Hence, the answer contains just the sid 64.

Indeed, since the Reserves relation contains sid information, there is no need
to look at the Sailors relation, and we can use the following simpler query:

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = ‘red’
EXCEPT
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SELECT R2.sid
FROM Boats B2, Reserves R2
WHERE R2.bid = B2.bid AND B2.color = ‘green’

Observe that this query relies on referential integrity; that is, there are no
reservations for nonexisting sailors. Note that UNION, INTERSECT, and EXCEPT

can be used on any two tables that are union-compatible, that is, have the same
number of columns and the columns, taken in order, have the same types. For
example, we can write the following query:

(Q20) Find all sids of sailors who have a rating of 10 or reserved boat 104.

SELECT S.sid
FROM Sailors S
WHERE S.rating = 10
UNION

SELECT R.sid
FROM Reserves R
WHERE R.bid = 104

The first part of the union returns the sids 58 and 71. The second part returns
22 and 31. The answer is, therefore, the set of sids 22, 31, 58, and 71. A
final point to note about UNION, INTERSECT, and EXCEPT follows. In contrast
to the default that duplicates are not eliminated unless DISTINCT is specified
in the basic query form, the default for UNION queries is that duplicates are
eliminated! To retain duplicates, UNION ALL must be used; if so, the number
of copies of a row in the result is always m + n, where m and n are the num-
bers of times that the row appears in the two parts of the union. Similarly,
INTERSECT ALL retains duplicates—the number of copies of a row in the result
is min(m,n)—and EXCEPT ALL also retains duplicates—the number of copies
of a row in the result is m− n, where m corresponds to the first relation.

5.4 NESTED QUERIES

One of the most powerful features of SQL is nested queries. A nested query
is a query that has another query embedded within it; the embedded query
is called a subquery. The embedded query can of course be a nested query
itself; thus queries that have very deeply nested structures are possible. When
writing a query, we sometimes need to express a condition that refers to a table
that must itself be computed. The query used to compute this subsidiary table
is a subquery and appears as part of the main query. A subquery typically
appears within the WHERE clause of a query. Subqueries can sometimes appear
in the FROM clause or the HAVING clause (which we present in Section 5.5).
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Relational Algebra and SQL: Nesting of queries is a feature that is not
available in relational algebra, but nested queries can be translated into
algebra, as we will see in Chapter 15. Nesting in SQL is inspired more by
relational calculus than algebra. In conjunction with some of SQL’s other
features, such as (multi)set operators and aggregation, nesting is a very
expressive construct.

This section discusses only subqueries that appear in the WHERE clause. The
treatment of subqueries appearing elsewhere is quite similar. Some examples of
subqueries that appear in the FROM clause are discussed later in Section 5.5.1.

5.4.1 Introduction to Nested Queries

As an example, let us rewrite the following query, which we discussed earlier,
using a nested subquery:

(Q1) Find the names of sailors who have reserved boat 103.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN ( SELECT R.sid

FROM Reserves R
WHERE R.bid = 103 )

The nested subquery computes the (multi)set of sids for sailors who have re-
served boat 103 (the set contains 22, 31, and 74 on instances R2 and S3), and
the top-level query retrieves the names of sailors whose sid is in this set. The
IN operator allows us to test whether a value is in a given set of elements; an
SQL query is used to generate the set to be tested. Note that it is very easy to
modify this query to find all sailors who have not reserved boat 103—we can
just replace IN by NOT IN!

The best way to understand a nested query is to think of it in terms of a con-
ceptual evaluation strategy. In our example, the strategy consists of examining
rows in Sailors and, for each such row, evaluating the subquery over Reserves.
In general, the conceptual evaluation strategy that we presented for defining
the semantics of a query can be extended to cover nested queries as follows:
Construct the cross-product of the tables in the FROM clause of the top-level
query as before. For each row in the cross-product, while testing the qualifica-
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tion in the WHERE clause, (re)compute the subquery.5 Of course, the subquery
might itself contain another nested subquery, in which case we apply the same
idea one more time, leading to an evaluation strategy with several levels of
nested loops.

As an example of a multiply nested query, let us rewrite the following query.

(Q2) Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN ( SELECT R.sid

FROM Reserves R
WHERE R.bid IN ( SELECT B.bid

FROM Boats B
WHERE B.color = ‘red’ )

The innermost subquery finds the set of bids of red boats (102 and 104 on
instance B1). The subquery one level above finds the set of sids of sailors who
have reserved one of these boats. On instances B1, R2, and S3, this set of sids
contains 22, 31, and 64. The top-level query finds the names of sailors whose
sid is in this set of sids; we get Dustin, Lubber, and Horatio.

To find the names of sailors who have not reserved a red boat, we replace the
outermost occurrence of IN by NOT IN, as illustrated in the next query.

(Q21) Find the names of sailors who have not reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN ( SELECT R.sid

FROM Reserves R
WHERE R.bid IN ( SELECT B.bid

FROM Boats B
WHERE B.color = ‘red’ )

This query computes the names of sailors whose sid is not in the set 22, 31,
and 64.

In contrast to Query Q21, we can modify the previous query (the nested version
of Q2) by replacing the inner occurrence (rather than the outer occurence) of

5Since the inner subquery in our example does not depend on the ‘current’ row from the outer

query in any way, you might wonder why we have to recompute the subquery for each outer row. For

an answer, see Section 5.4.2.
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IN with NOT IN. This modified query would compute the names of sailors who
have reserved a boat that is not red, that is, if they have a reservation, it is not
for a red boat. Let us consider how. In the inner query, we check that R.bid
is not either 102 or 104 (the bids of red boats). The outer query then finds the
sids in Reserves tuples where the bid is not 102 or 104. On instances B1, R2,
and S3, the outer query computes the set of sids 22, 31, 64, and 74. Finally,
we find the names of sailors whose sid is in this set.

We can also modify the nested query Q2 by replacing both occurrences of IN
with NOT IN. This variant finds the names of sailors who have not reserved a
boat that is not red, that is, who have reserved only red boats (if they’ve re-
served any boats at all). Proceeding as in the previous paragraph, on instances
B1, R2, and S3, the outer query computes the set of sids (in Sailors) other
than 22, 31, 64, and 74. This is the set 29, 32, 58, 71, 85, and 95. We then find
the names of sailors whose sid is in this set.

5.4.2 Correlated Nested Queries

In the nested queries seen thus far, the inner subquery has been completely
independent of the outer query. In general, the inner subquery could depend on
the row currently being examined in the outer query (in terms of our conceptual
evaluation strategy). Let us rewrite the following query once more.

(Q1) Find the names of sailors who have reserved boat number 103.

SELECT S.sname
FROM Sailors S
WHERE EXISTS ( SELECT *

FROM Reserves R
WHERE R.bid = 103

AND R.sid = S.sid )

The EXISTS operator is another set comparison operator, such as IN. It allows
us to test whether a set is nonempty, an implicit comparison with the empty
set. Thus, for each Sailor row S, we test whether the set of Reserves rows
R such that R.bid = 103 AND S.sid = R.sid is nonempty. If so, sailor S has
reserved boat 103, and we retrieve the name. The subquery clearly depends
on the current row S and must be re-evaluated for each row in Sailors. The
occurrence of S in the subquery (in the form of the literal S.sid) is called a
correlation, and such queries are called correlated queries.

This query also illustrates the use of the special symbol * in situations where
all we want to do is to check that a qualifying row exists, and do not really
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want to retrieve any columns from the row. This is one of the two uses of * in
the SELECT clause that is good programming style; the other is as an argument
of the COUNT aggregate operation, which we describe shortly.

As a further example, by using NOT EXISTS instead of EXISTS, we can compute
the names of sailors who have not reserved a red boat. Closely related to
EXISTS is the UNIQUE predicate. When we apply UNIQUE to a subquery, the
resulting condition returns true if no row appears twice in the answer to the
subquery, that is, there are no duplicates; in particular, it returns true if the
answer is empty. (And there is also a NOT UNIQUE version.)

5.4.3 Set-Comparison Operators

We have already seen the set-comparison operators EXISTS, IN, and UNIQUE,
along with their negated versions. SQL also supports op ANY and op ALL, where
op is one of the arithmetic comparison operators {<,<=,=, <>,>=, >}. (SOME
is also available, but it is just a synonym for ANY.)

(Q22) Find sailors whose rating is better than some sailor called Horatio.

SELECT S.sid
FROM Sailors S
WHERE S.rating > ANY ( SELECT S2.rating

FROM Sailors S2
WHERE S2.sname = ‘Horatio’ )

If there are several sailors called Horatio, this query finds all sailors whose rating
is better than that of some sailor called Horatio. On instance S3, this computes
the sids 31, 32, 58, 71, and 74. What if there were no sailor called Horatio? In
this case the comparison S.rating > ANY . . . is defined to return false, and the
query returns an empty answer set. To understand comparisons involving ANY,
it is useful to think of the comparison being carried out repeatedly. In this
example, S.rating is successively compared with each rating value that is an
answer to the nested query. Intuitively, the subquery must return a row that
makes the comparison true, in order for S.rating > ANY . . . to return true.

(Q23) Find sailors whose rating is better than every sailor called Horatio.

We can obtain all such queries with a simple modification to Query Q22: Just
replace ANY with ALL in the WHERE clause of the outer query. On instance S3,
we would get the sids 58 and 71. If there were no sailor called Horatio, the
comparison S.rating > ALL . . . is defined to return true! The query would then
return the names of all sailors. Again, it is useful to think of the comparison
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being carried out repeatedly. Intuitively, the comparison must be true for every
returned row for S.rating > ALL . . . to return true.

As another illustration of ALL, consider the following query.

(Q24) Find the sailors with the highest rating.

SELECT S.sid
FROM Sailors S
WHERE S.rating >= ALL ( SELECT S2.rating

FROM Sailors S2 )

The subquery computes the set of all rating values in Sailors. The outer WHERE
condition is satisfied only when S.rating is greater than or equal to each of
these rating values, that is, when it is the largest rating value. In the instance
S3, the condition is satisfied only for rating 10, and the answer includes the
sids of sailors with this rating, i.e., 58 and 71.

Note that IN and NOT IN are equivalent to = ANY and <> ALL, respectively.

5.4.4 More Examples of Nested Queries

Let us revisit a query that we considered earlier using the INTERSECT operator.

(Q6) Find the names of sailors who have reserved both a red and a green boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

AND S.sid IN ( SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2.bid

AND B2.color = ‘green’ )

This query can be understood as follows: “Find all sailors who have reserved
a red boat and, further, have sids that are included in the set of sids of sailors
who have reserved a green boat.” This formulation of the query illustrates
how queries involving INTERSECT can be rewritten using IN, which is useful to
know if your system does not support INTERSECT. Queries using EXCEPT can
be similarly rewritten by using NOT IN. To find the sids of sailors who have
reserved red boats but not green boats, we can simply replace the keyword IN

in the previous query by NOT IN.



150 Chapter 5

As it turns out, writing this query (Q6) using INTERSECT is more complicated
because we have to use sids to identify sailors (while intersecting) and have to
return sailor names:

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (( SELECT R.sid

FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = ‘red’ )
INTERSECT

(SELECTR2.sid
FROM Boats B2, Reserves R2
WHERE R2.bid = B2.bid AND B2.color = ‘green’ ))

Our next example illustrates how the division operation in relational algebra
can be expressed in SQL.

(Q9) Find the names of sailors who have reserved all boats.

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (( SELECT B.bid

FROM Boats B )
EXCEPT

(SELECTR.bid
FROM Reserves R
WHERE R.sid = S.sid ))

Note that this query is correlated—for each sailor S, we check to see that the
set of boats reserved by S includes every boat. An alternative way to do this
query without using EXCEPT follows:

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ( SELECT B.bid

FROM Boats B
WHERE NOT EXISTS ( SELECT R.bid

FROM Reserves R
WHERE R.bid = B.bid

AND R.sid = S.sid ))

Intuitively, for each sailor we check that there is no boat that has not been
reserved by this sailor.
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SQL:1999 Aggregate Functions: The collection of aggregate functions
is greatly expanded in the new standard, including several statistical func-
tions such as standard deviation, covariance, and percentiles. However, the
new aggregate functions are in the SQL/OLAP package and may not be
supported by all vendors.

5.5 AGGREGATE OPERATORS

In addition to simply retrieving data, we often want to perform some compu-
tation or summarization. As we noted earlier in this chapter, SQL allows the
use of arithmetic expressions. We now consider a powerful class of constructs
for computing aggregate values such as MIN and SUM. These features represent
a significant extension of relational algebra. SQL supports five aggregate oper-
ations, which can be applied on any column, say A, of a relation:

1. COUNT ([DISTINCT] A): The number of (unique) values in the A column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) values in the A column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

Note that it does not make sense to specify DISTINCT in conjunction with MIN

or MAX (although SQL does not preclude this).

(Q25) Find the average age of all sailors.

SELECT AVG (S.age)
FROM Sailors S

On instance S3, the average age is 37.4. Of course, the WHERE clause can be
used to restrict the sailors considered in computing the average age.

(Q26) Find the average age of sailors with a rating of 10.

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating = 10

There are two such sailors, and their average age is 25.5. MIN (or MAX) can be
used instead of AVG in the above queries to find the age of the youngest (oldest)
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sailor. However, finding both the name and the age of the oldest sailor is more
tricky, as the next query illustrates.

(Q27) Find the name and age of the oldest sailor.

Consider the following attempt to answer this query:

SELECT S.sname, MAX (S.age)
FROM Sailors S

The intent is for this query to return not only the maximum age but also the
name of the sailors having that age. However, this query is illegal in SQL—if
the SELECT clause uses an aggregate operation, then it must use only aggregate
operations unless the query contains a GROUP BY clause! (The intuition behind
this restriction should become clear when we discuss the GROUP BY clause in
Section 5.5.1.) Therefore, we cannot use MAX (S.age) as well as S.sname in the
SELECT clause. We have to use a nested query to compute the desired answer
to Q27:

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age = ( SELECT MAX (S2.age)

FROM Sailors S2 )

Observe that we have used the result of an aggregate operation in the subquery
as an argument to a comparison operation. Strictly speaking, we are comparing
an age value with the result of the subquery, which is a relation. However,
because of the use of the aggregate operation, the subquery is guaranteed to
return a single tuple with a single field, and SQL converts such a relation to a
field value for the sake of the comparison. The following equivalent query for
Q27 is legal in the SQL standard but, unfortunately, is not supported in many
systems:

SELECT S.sname, S.age
FROM Sailors S
WHERE ( SELECT MAX (S2.age)

FROM Sailors S2 ) = S.age

We can count the number of sailors using COUNT. This example illustrates the
use of * as an argument to COUNT, which is useful when we want to count all
rows.

(Q28) Count the number of sailors.

SELECT COUNT (*)
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FROM Sailors S

We can think of * as shorthand for all the columns (in the cross-product of the
from-list in the FROM clause). Contrast this query with the following query,
which computes the number of distinct sailor names. (Remember that sname
is not a key!)

(Q29) Count the number of different sailor names.

SELECT COUNT ( DISTINCT S.sname )
FROM Sailors S

On instance S3, the answer to Q28 is 10, whereas the answer to Q29 is 9
(because two sailors have the same name, Horatio). If DISTINCT is omitted,
the answer to Q29 is 10, because the name Horatio is counted twice. If COUNT
does not include DISTINCT, then COUNT(*) gives the same answer as COUNT(x),
where x is any set of attributes. In our example, without DISTINCT Q29 is
equivalent to Q28. However, the use of COUNT (*) is better querying style,
since it is immediately clear that all records contribute to the total count.

Aggregate operations offer an alternative to the ANY and ALL constructs. For
example, consider the following query:

(Q30) Find the names of sailors who are older than the oldest sailor with a
rating of 10.

SELECT S.sname
FROM Sailors S
WHERE S.age > ( SELECT MAX ( S2.age )

FROM Sailors S2
WHERE S2.rating = 10 )

On instance S3, the oldest sailor with rating 10 is sailor 58, whose age is 35.
The names of older sailors are Bob, Dustin, Horatio, and Lubber. Using ALL,
this query could alternatively be written as follows:

SELECT S.sname
FROM Sailors S
WHERE S.age > ALL ( SELECT S2.age

FROM Sailors S2
WHERE S2.rating = 10 )

However, the ALL query is more error prone—one could easily (and incorrectly!)
use ANY instead of ALL, and retrieve sailors who are older than some sailor with
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Relational Algebra and SQL: Aggregation is a fundamental operation
that cannot be expressed in relational algebra. Similarly, SQL’s grouping
construct cannot be expressed in algebra.

a rating of 10. The use of ANY intuitively corresponds to the use of MIN, instead
of MAX, in the previous query.

5.5.1 The GROUP BY and HAVING Clauses

Thus far, we have applied aggregate operations to all (qualifying) rows in a
relation. Often we want to apply aggregate operations to each of a number
of groups of rows in a relation, where the number of groups depends on the
relation instance (i.e., is not known in advance). For example, consider the
following query.

(Q31) Find the age of the youngest sailor for each rating level.

If we know that ratings are integers in the range 1 to 10, we could write 10
queries of the form:

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

where i = 1, 2, . . . , 10. Writing 10 such queries is tedious. More important,
we may not know what rating levels exist in advance.

To write such queries, we need a major extension to the basic SQL query
form, namely, the GROUP BY clause. In fact, the extension also includes an
optional HAVING clause that can be used to specify qualifications over groups
(for example, we may be interested only in rating levels > 6. The general form
of an SQL query with these extensions is:

SELECT [ DISTINCT ] select-list
FROM from-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Using the GROUP BY clause, we can write Q31 as follows:

SELECT S.rating, MIN (S.age)
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FROM Sailors S
GROUP BY S.rating

Let us consider some important points concerning the new clauses:

The select-list in the SELECT clause consists of (1) a list of column names
and (2) a list of terms having the form aggop ( column-name ) AS new-
name. We already saw AS used to rename output columns. Columns that
are the result of aggregate operators do not already have a column name,
and therefore giving the column a name with AS is especially useful.

Every column that appears in (1) must also appear in grouping-list. The
reason is that each row in the result of the query corresponds to one group,
which is a collection of rows that agree on the values of columns in grouping-
list. In general, if a column appears in list (1), but not in grouping-list,
there can be multiple rows within a group that have different values in this
column, and it is not clear what value should be assigned to this column
in an answer row.

We can sometimes use primary key information to verify that a column
has a unique value in all rows within each group. For example, if the
grouping-list contains the primary key of a table in the from-list, every
column of that table has a unique value within each group. In SQL:1999,
such columns are also allowed to appear in part (1) of the select-list.

The expressions appearing in the group-qualification in the HAVING clause
must have a single value per group. The intuition is that the HAVING clause
determines whether an answer row is to be generated for a given group.
To satisfy this requirement in SQL-92, a column appearing in the group-
qualification must appear as the argument to an aggregation operator, or
it must also appear in grouping-list. In SQL:1999, two new set functions
have been introduced that allow us to check whether every or any row in a
group satisfies a condition; this allows us to use conditions similar to those
in a WHERE clause.

If GROUP BY is omitted, the entire table is regarded as a single group.

We explain the semantics of such a query through an example.

(Q32) Find the age of the youngest sailor who is eligible to vote (i.e., is at least
18 years old) for each rating level with at least two such sailors.

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1
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We will evaluate this query on instance S3 of Sailors, reproduced in Figure 5.10
for convenience. The instance of Sailors on which this query is to be evaluated is
shown in Figure 5.10. Extending the conceptual evaluation strategy presented
in Section 5.2, we proceed as follows. The first step is to construct the cross-
product of tables in the from-list. Because the only relation in the from-list
in Query Q32 is Sailors, the result is just the instance shown in Figure 5.10.

sid sname rating age

22 Dustin 7 45.0
29 Brutus 1 33.0
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35.0
64 Horatio 7 35.0
71 Zorba 10 16.0
74 Horatio 9 35.0
85 Art 3 25.5
95 Bob 3 63.5
96 Frodo 3 25.5

Figure 5.10 Instance S3 of Sailors

The second step is to apply the qualification in the WHERE clause, S.age >= 18.
This step eliminates the row  71, zorba, 10, 16 . The third step is to eliminate
unwanted columns. Only columns mentioned in the SELECT clause, the GROUP
BY clause, or the HAVING clause are necessary, which means we can eliminate
sid and sname in our example. The result is shown in Figure 5.11. Observe
that there are two identical rows with rating 3 and age 25.5—SQL does not
eliminate duplicates except when required to do so by use of the DISTINCT

keyword! The number of copies of a row in the intermediate table of Figure
5.11 is determined by the number of rows in the original table that had these
values in the projected columns.

The fourth step is to sort the table according to the GROUP BY clause to identify
the groups. The result of this step is shown in Figure 5.12.

The fifth step is to apply the group-qualification in the HAVING clause, that
is, the condition COUNT (*) > 1. This step eliminates the groups with rating
equal to 1, 9, and 10. Observe that the order in which the WHERE and GROUP

BY clauses are considered is significant: If the WHERE clause were not consid-
ered first, the group with rating=10 would have met the group-qualification
in the HAVING clause. The sixth step is to generate one answer row for each
remaining group. The answer row corresponding to a group consists of a subset
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rating age

7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
9 35.0
3 25.5
3 63.5
3 25.5

Figure 5.11 After Evaluation Step 3

rating age

1 33.0

3 25.5
3 25.5
3 63.5

7 45.0
7 35.0

8 55.5
8 25.5

9 35.0

10 35.0

Figure 5.12 After Evaluation Step 4

of the grouping columns, plus one or more columns generated by applying an
aggregation operator. In our example, each answer row has a rating column
and a minage column, which is computed by applying MIN to the values in the
age column of the corresponding group. The result of this step is shown in
Figure 5.13.

rating minage

3 25.5
7 35.0
8 25.5

Figure 5.13 Final Result in Sample Evaluation

If the query contains DISTINCT in the SELECT clause, duplicates are eliminated
in an additional, and final, step.

SQL:1999 has introduced two new set functions, EVERY and ANY. To illustrate
these functions, we can replace the HAVING clause in our example by

HAVING COUNT (*) > 1 AND EVERY ( S.age <= 60 )

The fifth step of the conceptual evaluation is the one affected by the change
in the HAVING clause. Consider the result of the fourth step, shown in Figure
5.12. The EVERY keyword requires that every row in a group must satisfy the
attached condition to meet the group-qualification. The group for rating 3 does
meet this criterion and is dropped; the result is shown in Figure 5.14.
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SQL:1999 Extensions: Two new set functions, EVERY and ANY, have
been added. When they are used in the HAVING clause, the basic intuition
that the clause specifies a condition to be satisfied by each group, taken as
a whole, remains unchanged. However, the condition can now involve tests
on individual tuples in the group, whereas it previously relied exclusively
on aggregate functions over the group of tuples.

It is worth contrasting the preceding query with the following query, in which
the condition on age is in the WHERE clause instead of the HAVING clause:

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S
WHERE S.age >= 18 AND S.age <= 60
GROUP BY S.rating
HAVING COUNT (*) > 1

Now, the result after the third step of conceptual evaluation no longer contains
the row with age 63.5. Nonetheless, the group for rating 3 satisfies the condition
COUNT (*) > 1, since it still has two rows, and meets the group-qualification
applied in the fifth step. The final result for this query is shown in Figure 5.15.

rating minage

7 45.0
8 55.5

Figure 5.14 Final Result of EVERY Query

rating minage

3 25.5
7 45.0
8 55.5

Figure 5.15 Result of Alternative Query

5.5.2 More Examples of Aggregate Queries

(Q33) For each red boat, find the number of reservations for this boat.

SELECT B.bid, COUNT (*) AS reservationcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = ‘red’
GROUP BY B.bid

On instances B1 and R2, the answer to this query contains the two tuples  102,
3 and  104, 2 .

Observe that this version of the preceding query is illegal:
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SELECT B.bid, COUNT (*) AS reservationcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid
GROUP BY B.bid
HAVING B.color = ‘red’

Even though the group-qualification B.color = ‘red’ is single-valued per group,
since the grouping attribute bid is a key for Boats (and therefore determines
color), SQL disallows this query.6 Only columns that appear in the GROUP BY

clause can appear in the HAVING clause, unless they appear as arguments to
an aggregate operator in the HAVING clause.

(Q34) Find the average age of sailors for each rating level that has at least two
sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
GROUP BY S.rating
HAVING COUNT (*) > 1

After identifying groups based on rating, we retain only groups with at least
two sailors. The answer to this query on instance S3 is shown in Figure 5.16.

rating avgage

3 44.5
7 40.0
8 40.5
10 25.5

Figure 5.16 Q34 Answer

rating avgage

3 45.5
7 40.0
8 40.5
10 35.0

Figure 5.17 Q35 Answer

rating avgage

3 45.5
7 40.0
8 40.5

Figure 5.18 Q36 Answer

The following alternative formulation of Query Q34 illustrates that the HAVING
clause can have a nested subquery, just like the WHERE clause. Note that we
can use S.rating inside the nested subquery in the HAVING clause because it
has a single value for the current group of sailors:

SELECT S.rating, AVG ( S.age ) AS avgage
FROM Sailors S
GROUP BY S.rating
HAVING 1 < ( SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating )

6This query can be easily rewritten to be legal in SQL:1999 using EVERY in the HAVING clause.
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(Q35) Find the average age of sailors who are of voting age (i.e., at least 18
years old) for each rating level that has at least two sailors.

SELECT S.rating, AVG ( S.age ) AS avgage
FROM Sailors S
WHERE S. age >= 18
GROUP BY S.rating
HAVING 1 < ( SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating )

In this variant of Query Q34, we first remove tuples with age <= 18 and group
the remaining tuples by rating. For each group, the subquery in the HAVING
clause computes the number of tuples in Sailors (without applying the selection
age <= 18) with the same rating value as the current group. If a group has
less than two sailors, it is discarded. For each remaining group, we output
the average age. The answer to this query on instance S3 is shown in Figure
5.17. Note that the answer is very similar to the answer for Q34, with the only
difference being that for the group with rating 10, we now ignore the sailor
with age 16 while computing the average.

(Q36) Find the average age of sailors who are of voting age (i.e., at least 18
years old) for each rating level that has at least two such sailors.

SELECT S.rating, AVG ( S.age ) AS avgage
FROM Sailors S
WHERE S. age > 18
GROUP BY S.rating
HAVING 1 < ( SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating = S2.rating AND S2.age >= 18 )

This formulation of the query reflects its similarity to Q35. The answer to Q36
on instance S3 is shown in Figure 5.18. It differs from the answer to Q35 in
that there is no tuple for rating 10, since there is only one tuple with rating 10
and age ≥ 18.

Query Q36 is actually very similar to Q32, as the following simpler formulation
shows:

SELECT S.rating, AVG ( S.age ) AS avgage
FROM Sailors S
WHERE S. age > 18
GROUP BY S.rating
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HAVING COUNT (*) > 1

This formulation of Q36 takes advantage of the fact that the WHERE clause is
applied before grouping is done; thus, only sailors with age > 18 are left when
grouping is done. It is instructive to consider yet another way of writing this
query:

SELECT Temp.rating, Temp.avgage
FROM ( SELECT S.rating, AVG ( S.age ) AS avgage,

COUNT (*) AS ratingcount
FROM Sailors S
WHERE S. age > 18
GROUP BY S.rating ) AS Temp

WHERE Temp.ratingcount > 1

This alternative brings out several interesting points. First, the FROM clause
can also contain a nested subquery according to the SQL standard.7 Second,
the HAVING clause is not needed at all. Any query with a HAVING clause can
be rewritten without one, but many queries are simpler to express with the
HAVING clause. Finally, when a subquery appears in the FROM clause, using
the AS keyword to give it a name is necessary (since otherwise we could not
express, for instance, the condition Temp.ratingcount > 1).

(Q37) Find those ratings for which the average age of sailors is the minimum
over all ratings.

We use this query to illustrate that aggregate operations cannot be nested. One
might consider writing it as follows:

SELECT S.rating
FROM Sailors S
WHERE AVG (S.age) = ( SELECT MIN (AVG (S2.age))

FROM Sailors S2
GROUP BY S2.rating )

A little thought shows that this query will not work even if the expression MIN

(AVG (S2.age)), which is illegal, were allowed. In the nested query, Sailors is
partitioned into groups by rating, and the average age is computed for each
rating value. For each group, applying MIN to this average age value for the
group will return the same value! A correct version of this query follows. It
essentially computes a temporary table containing the average age for each
rating value and then finds the rating(s) for which this average age is the
minimum.

7Not all commercial database systems currently support nested queries in the FROM clause.
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The Relational Model and SQL: Null values are not part of the basic
relational model. Like SQL’s treatment of tables as multisets of tuples,
this is a departure from the basic model.

SELECT Temp.rating, Temp.avgage
FROM ( SELECT S.rating, AVG (S.age) AS avgage,

FROM Sailors S
GROUP BY S.rating) AS Temp

WHERE Temp.avgage = ( SELECT MIN (Temp.avgage) FROM Temp )

The answer to this query on instance S3 is  10, 25.5 .

As an exercise, consider whether the following query computes the same answer.

SELECT Temp.rating, MIN ( Temp.avgage )
FROM ( SELECT S.rating, AVG (S.age) AS avgage,

FROM Sailors S
GROUP BY S.rating ) AS Temp

GROUP BY Temp.rating

5.6 NULL VALUES

Thus far, we have assumed that column values in a row are always known. In
practice column values can be unknown. For example, when a sailor, say Dan,
joins a yacht club, he may not yet have a rating assigned. Since the definition
for the Sailors table has a rating column, what row should we insert for Dan?
What is needed here is a special value that denotes unknown. Suppose the Sailor
table definition was modified to include a maiden-name column. However, only
married women who take their husband’s last name have a maiden name. For
women who do not take their husband’s name and for men, the maiden-name
column is inapplicable. Again, what value do we include in this column for the
row representing Dan?

SQL provides a special column value called null to use in such situations. We
use null when the column value is either unknown or inapplicable. Using our
Sailor table definition, we might enter the row  98,Dan, null, 39 to represent
Dan. The presence of null values complicates many issues, and we consider the
impact of null values on SQL in this section.
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5.6.1 Comparisons Using Null Values

Consider a comparison such as rating = 8. If this is applied to the row for Dan,
is this condition true or false? Since Dan’s rating is unknown, it is reasonable
to say that this comparison should evaluate to the value unknown. In fact, this
is the case for the comparisons rating > 8 and rating < 8 as well. Perhaps less
obviously, if we compare two null values using <,>,=, and so on, the result is
always unknown. For example, if we have null in two distinct rows of the sailor
relation, any comparison returns unknown.

SQL also provides a special comparison operator IS NULL to test whether a
column value is null; for example, we can say rating IS NULL, which would
evaluate to true on the row representing Dan. We can also say rating IS NOT

NULL, which would evaluate to false on the row for Dan.

5.6.2 Logical Connectives AND, OR, and NOT

Now, what about boolean expressions such as rating = 8 OR age < 40 and
rating = 8 AND age < 40? Considering the row for Dan again, because age
< 40, the first expression evaluates to true regardless of the value of rating, but
what about the second? We can only say unknown.

But this example raises an important point—once we have null values, we
must define the logical operators AND, OR, and NOT using a three-valued logic in
which expressions evaluate to true, false, or unknown. We extend the usual
interpretations of AND, OR, and NOT to cover the case when one of the arguments
is unknown as follows. The expression NOT unknown is defined to be unknown.
OR of two arguments evaluates to true if either argument evaluates to true,
and to unknown if one argument evaluates to false and the other evaluates to
unknown. (If both arguments are false, of course, OR evaluates to false.) AND
of two arguments evaluates to false if either argument evaluates to false, and
to unknown if one argument evaluates to unknown and the other evaluates to
true or unknown. (If both arguments are true, AND evaluates to true.)

5.6.3 Impact on SQL Constructs

Boolean expressions arise in many contexts in SQL, and the impact of null
values must be recognized. For example, the qualification in the WHERE clause
eliminates rows (in the cross-product of tables named in the FROM clause) for
which the qualification does not evaluate to true. Therefore, in the presence
of null values, any row that evaluates to false or unknown is eliminated. Elim-
inating rows that evaluate to unknown has a subtle but significant impact on
queries, especially nested queries involving EXISTS or UNIQUE.
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Another issue in the presence of null values is the definition of when two rows
in a relation instance are regarded as duplicates. The SQL definition is that two
rows are duplicates if corresponding columns are either equal, or both contain
null. Contrast this definition with the fact that if we compare two null values
using =, the result is unknown! In the context of duplicates, this comparison is
implicitly treated as true, which is an anomaly.

As expected, the arithmetic operations +,−, ∗, and / all return null if one of
their arguments is null. However, nulls can cause some unexpected behavior
with aggregate operations. COUNT(*) handles null values just like other values;
that is, they get counted. All the other aggregate operations (COUNT, SUM, AVG,
MIN, MAX, and variations using DISTINCT) simply discard null values—thus SUM
cannot be understood as just the addition of all values in the (multi)set of
values that it is applied to; a preliminary step of discarding all null values must
also be accounted for. As a special case, if one of these operators—other than
COUNT—is applied to only null values, the result is again null.

5.6.4 Outer Joins

Some interesting variants of the join operation that rely on null values, called
outer joins, are supported in SQL. Consider the join of two tables, say Sailors
  c Reserves. Tuples of Sailors that do not match some row in Reserves accord-
ing to the join condition c do not appear in the result. In an outer join, on
the other hand, Sailor rows without a matching Reserves row appear exactly
once in the result, with the result columns inherited from Reserves assigned
null values.

In fact, there are several variants of the outer join idea. In a left outer join,
Sailor rows without a matching Reserves row appear in the result, but not vice
versa. In a right outer join, Reserves rows without a matching Sailors row
appear in the result, but not vice versa. In a full outer join, both Sailors
and Reserves rows without a match appear in the result. (Of course, rows with
a match always appear in the result, for all these variants, just like the usual
joins, sometimes called inner joins, presented in Chapter 4.)

SQL allows the desired type of join to be specified in the FROM clause. For
example, the following query lists  sid, bid pairs corresponding to sailors and
boats they have reserved:

SELECT S.sid, R.bid
FROM Sailors S NATURAL LEFT OUTER JOIN Reserves R

The NATURAL keyword specifies that the join condition is equality on all common
attributes (in this example, sid), and the WHERE clause is not required (unless
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we want to specify additional, non-join conditions). On the instances of Sailors
and Reserves shown in Figure 5.6, this query computes the result shown in
Figure 5.19.

sid bid

22 101
31 null
58 103

Figure 5.19 Left Outer Join of Sailor1 and Reserves1

5.6.5 Disallowing Null Values

We can disallow null values by specifying NOT NULL as part of the field def-
inition; for example, sname CHAR(20) NOT NULL. In addition, the fields in a
primary key are not allowed to take on null values. Thus, there is an implicit
NOT NULL constraint for every field listed in a PRIMARY KEY constraint.

Our coverage of null values is far from complete. The interested reader should
consult one of the many books devoted to SQL for a more detailed treatment
of the topic.

5.7 COMPLEX INTEGRITY CONSTRAINTS IN SQL

In this section we discuss the specification of complex integrity constraints that
utilize the full power of SQL queries. The features discussed in this section
complement the integrity constraint features of SQL presented in Chapter 3.

5.7.1 Constraints over a Single Table

We can specify complex constraints over a single table using table constraints,
which have the form CHECK conditional-expression. For example, to ensure that
rating must be an integer in the range 1 to 10, we could use:

CREATE TABLE Sailors ( sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK ( rating >= 1 AND rating <= 10 ))
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To enforce the constraint that Interlake boats cannot be reserved, we could use:

CREATE TABLE Reserves ( sid INTEGER,
bid INTEGER,
day DATE,
FOREIGN KEY (sid) REFERENCES Sailors
FOREIGN KEY (bid) REFERENCES Boats
CONSTRAINT noInterlakeRes
CHECK ( ‘Interlake’ <>

( SELECT B.bname
FROM Boats B
WHERE B.bid = Reserves.bid )))

When a row is inserted into Reserves or an existing row is modified, the condi-
tional expression in the CHECK constraint is evaluated. If it evaluates to false,
the command is rejected.

5.7.2 Domain Constraints and Distinct Types

A user can define a new domain using the CREATE DOMAIN statement, which
uses CHECK constraints.

CREATE DOMAIN ratingval INTEGER DEFAULT 1
CHECK ( VALUE >= 1 AND VALUE <= 10 )

INTEGER is the underlying, or source, type for the domain ratingval, and
every ratingval value must be of this type. Values in ratingval are further
restricted by using a CHECK constraint; in defining this constraint, we use the
keyword VALUE to refer to a value in the domain. By using this facility, we
can constrain the values that belong to a domain using the full power of SQL
queries. Once a domain is defined, the name of the domain can be used to
restrict column values in a table; we can use the following line in a schema
declaration, for example:

rating ratingval

The optional DEFAULT keyword is used to associate a default value with a do-
main. If the domain ratingval is used for a column in some relation and
no value is entered for this column in an inserted tuple, the default value 1
associated with ratingval is used.

SQL’s support for the concept of a domain is limited in an important respect.
For example, we can define two domains called SailorId and BoatId, each
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SQL:1999 Distinct Types: Many systems, e.g., Informix UDS and IBM
DB2, already support this feature. With its introduction, we expect that
the support for domains will be deprecated, and eventually eliminated, in
future versions of the SQL standard. It is really just one part of a broad
set of object-oriented features in SQL:1999, which we discuss in Chapter
23.

using INTEGER as the underlying type. The intent is to force a comparison of a
SailorId value with a BoatId value to always fail (since they are drawn from
different domains); however, since they both have the same base type, INTEGER,
the comparison will succeed in SQL. This problem is addressed through the
introduction of distinct types in SQL:1999:

CREATE TYPE ratingtype AS INTEGER

This statement defines a new distinct type called ratingtype, with INTEGER

as its source type. Values of type ratingtype can be compared with each
other, but they cannot be compared with values of other types. In particular,
ratingtype values are treated as being distinct from values of the source type,
INTEGER—we cannot compare them to integers or combine them with integers
(e.g., add an integer to a ratingtype value). If we want to define operations
on the new type, for example, an average function, we must do so explicitly;
none of the existing operations on the source type carry over. We discuss how
such functions can be defined in Section 23.4.1.

5.7.3 Assertions: ICs over Several Tables

Table constraints are associated with a single table, although the conditional
expression in the CHECK clause can refer to other tables. Table constraints
are required to hold only if the associated table is nonempty. Thus, when
a constraint involves two or more tables, the table constraint mechanism is
sometimes cumbersome and not quite what is desired. To cover such situations,
SQL supports the creation of assertions, which are constraints not associated
with any one table.

As an example, suppose that we wish to enforce the constraint that the number
of boats plus the number of sailors should be less than 100. (This condition
might be required, say, to qualify as a ‘small’ sailing club.) We could try the
following table constraint:

CREATE TABLE Sailors ( sid INTEGER,
sname CHAR(10),
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rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK ( rating >= 1 AND rating <= 10)
CHECK ( ( SELECT COUNT (S.sid) FROM Sailors S )

+ ( SELECT COUNT (B.bid) FROM Boats B )
< 100 ))

This solution suffers from two drawbacks. It is associated with Sailors, al-
though it involves Boats in a completely symmetric way. More important,
if the Sailors table is empty, this constraint is defined (as per the semantics
of table constraints) to always hold, even if we have more than 100 rows in
Boats! We could extend this constraint specification to check that Sailors is
nonempty, but this approach becomes cumbersome. The best solution is to
create an assertion, as follows:

CREATE ASSERTION smallClub
CHECK ( ( SELECT COUNT (S.sid) FROM Sailors S )

+ ( SELECT COUNT (B.bid) FROM Boats B)
< 100 )

5.8 TRIGGERS AND ACTIVE DATABASES

A trigger is a procedure that is automatically invoked by the DBMS in re-
sponse to specified changes to the database, and is typically specified by the
DBA. A database that has a set of associated triggers is called an active
database. A trigger description contains three parts:

Event: A change to the database that activates the trigger.

Condition: A query or test that is run when the trigger is activated.

Action: A procedure that is executed when the trigger is activated and
its condition is true.

A trigger can be thought of as a ‘daemon’ that monitors a database, and is exe-
cuted when the database is modified in a way that matches the event specifica-
tion. An insert, delete, or update statement could activate a trigger, regardless
of which user or application invoked the activating statement; users may not
even be aware that a trigger was executed as a side effect of their program.

A condition in a trigger can be a true/false statement (e.g., all employee salaries
are less than $100,000) or a query. A query is interpreted as true if the answer
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set is nonempty and false if the query has no answers. If the condition part
evaluates to true, the action associated with the trigger is executed.

A trigger action can examine the answers to the query in the condition part
of the trigger, refer to old and new values of tuples modified by the statement
activating the trigger, execute new queries, and make changes to the database.
In fact, an action can even execute a series of data-definition commands (e.g.,
create new tables, change authorizations) and transaction-oriented commands
(e.g., commit) or call host-language procedures.

An important issue is when the action part of a trigger executes in relation to
the statement that activated the trigger. For example, a statement that inserts
records into the Students table may activate a trigger that is used to maintain
statistics on how many students younger than 18 are inserted at a time by a
typical insert statement. Depending on exactly what the trigger does, we may
want its action to execute before changes are made to the Students table or
afterwards: A trigger that initializes a variable used to count the number of
qualifying insertions should be executed before, and a trigger that executes once
per qualifying inserted record and increments the variable should be executed
after each record is inserted (because we may want to examine the values in
the new record to determine the action).

5.8.1 Examples of Triggers in SQL

The examples shown in Figure 5.20, written using Oracle Server syntax for
defining triggers, illustrate the basic concepts behind triggers. (The SQL:1999
syntax for these triggers is similar; we will see an example using SQL:1999
syntax shortly.) The trigger called init count initializes a counter variable be-
fore every execution of an INSERT statement that adds tuples to the Students
relation. The trigger called incr count increments the counter for each inserted
tuple that satisfies the condition age < 18.

One of the example triggers in Figure 5.20 executes before the activating state-
ment, and the other example executes after it. A trigger can also be scheduled
to execute instead of the activating statement; or in deferred fashion, at the
end of the transaction containing the activating statement; or in asynchronous
fashion, as part of a separate transaction.

The example in Figure 5.20 illustrates another point about trigger execution:
A user must be able to specify whether a trigger is to be executed once per
modified record or once per activating statement. If the action depends on in-
dividual changed records, for example, we have to examine the age field of the
inserted Students record to decide whether to increment the count, the trigger-
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CREATE TRIGGER init count BEFORE INSERT ON Students /* Event */

DECLARE

count INTEGER;

BEGIN /* Action */

count := 0;

END

CREATE TRIGGER incr count AFTER INSERT ON Students /* Event */

WHEN (new.age < 18) /* Condition; ‘new’ is just-inserted tuple */

FOR EACH ROW

BEGIN /* Action; a procedure in Oracle’s PL/SQL syntax */

count := count + 1;

END

Figure 5.20 Examples Illustrating Triggers

ing event should be defined to occur for each modified record; the FOR EACH

ROW clause is used to do this. Such a trigger is called a row-level trigger. On
the other hand, the init count trigger is executed just once per INSERT state-
ment, regardless of the number of records inserted, because we have omitted
the FOR EACH ROW phrase. Such a trigger is called a statement-level trigger.

In Figure 5.20, the keyword new refers to the newly inserted tuple. If an existing
tuple were modified, the keywords old and new could be used to refer to the
values before and after the modification. SQL:1999 also allows the action part
of a trigger to refer to the set of changed records, rather than just one changed
record at a time. For example, it would be useful to be able to refer to the set
of inserted Students records in a trigger that executes once after the INSERT
statement; we could count the number of inserted records with age< 18 through
an SQL query over this set. Such a trigger is shown in Figure 5.21 and is an
alternative to the triggers shown in Figure 5.20.

The definition in Figure 5.21 uses the syntax of SQL:1999, in order to illustrate
the similarities and differences with respect to the syntax used in a typical
current DBMS. The keyword clause NEW TABLE enables us to give a table name
(InsertedTuples) to the set of newly inserted tuples. The FOR EACH STATEMENT

clause specifies a statement-level trigger and can be omitted because it is the
default. This definition does not have a WHEN clause; if such a clause is included,
it follows the FOR EACH STATEMENT clause, just before the action specification.

The trigger is evaluated once for each SQL statement that inserts tuples into
Students, and inserts a single tuple into a table that contains statistics on mod-
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ifications to database tables. The first two fields of the tuple contain constants
(identifying the modified table, Students, and the kind of modifying statement,
an INSERT), and the third field is the number of inserted Students tuples with
age < 18. (The trigger in Figure 5.20 only computes the count; an additional
trigger is required to insert the appropriate tuple into the statistics table.)

CREATE TRIGGER set count AFTER INSERT ON Students /* Event */

REFERENCING NEW TABLE AS InsertedTuples

FOR EACH STATEMENT

INSERT /* Action */

INTO StatisticsTable(ModifiedTable, ModificationType, Count)

SELECT ‘Students’, ‘Insert’, COUNT *

FROM InsertedTuples I

WHERE I.age < 18

Figure 5.21 Set-Oriented Trigger

5.9 DESIGNING ACTIVE DATABASES

Triggers offer a powerful mechanism for dealing with changes to a database,
but they must be used with caution. The effect of a collection of triggers can
be very complex, and maintaining an active database can become very difficult.
Often, a judicious use of integrity constraints can replace the use of triggers.

5.9.1 Why Triggers Can Be Hard to Understand

In an active database system, when the DBMS is about to execute a statement
that modifies the database, it checks whether some trigger is activated by the
statement. If so, the DBMS processes the trigger by evaluating its condition
part, and then (if the condition evaluates to true) executing its action part.

If a statement activates more than one trigger, the DBMS typically processes
all of them, in some arbitrary order. An important point is that the execution
of the action part of a trigger could in turn activate another trigger. In par-
ticular, the execution of the action part of a trigger could again activate the
same trigger; such triggers are called recursive triggers. The potential for
such chain activations and the unpredictable order in which a DBMS processes
activated triggers can make it difficult to understand the effect of a collection
of triggers.
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5.9.2 Constraints versus Triggers

A common use of triggers is to maintain database consistency, and in such
cases, we should always consider whether using an integrity constraint (e.g., a
foreign key constraint) achieves the same goals. The meaning of a constraint is
not defined operationally, unlike the effect of a trigger. This property makes a
constraint easier to understand, and also gives the DBMS more opportunities
to optimize execution. A constraint also prevents the data from being made
inconsistent by any kind of statement, whereas a trigger is activated by a specific
kind of statement (INSERT, DELETE, or UPDATE). Again, this restriction makes
a constraint easier to understand.

On the other hand, triggers allow us to maintain database integrity in more
flexible ways, as the following examples illustrate.

Suppose that we have a table called Orders with fields itemid, quantity,
customerid, and unitprice. When a customer places an order, the first
three field values are filled in by the user (in this example, a sales clerk).
The fourth field’s value can be obtained from a table called Items, but it
is important to include it in the Orders table to have a complete record of
the order, in case the price of the item is subsequently changed. We can
define a trigger to look up this value and include it in the fourth field of
a newly inserted record. In addition to reducing the number of fields that
the clerk has to type in, this trigger eliminates the possibility of an entry
error leading to an inconsistent price in the Orders table.

Continuing with this example, we may want to perform some additional
actions when an order is received. For example, if the purchase is being
charged to a credit line issued by the company, we may want to check
whether the total cost of the purchase is within the current credit limit.
We can use a trigger to do the check; indeed, we can even use a CHECK

constraint. Using a trigger, however, allows us to implement more sophis-
ticated policies for dealing with purchases that exceed a credit limit. For
instance, we may allow purchases that exceed the limit by no more than
10% if the customer has dealt with the company for at least a year, and
add the customer to a table of candidates for credit limit increases.

5.9.3 Other Uses of Triggers

Many potential uses of triggers go beyond integrity maintenance. Triggers can
alert users to unusual events (as reflected in updates to the database). For
example, we may want to check whether a customer placing an order has made
enough purchases in the past month to qualify for an additional discount; if
so, the sales clerk must be informed so that he (or she) can tell the customer
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and possibly generate additional sales! We can relay this information by using
a trigger that checks recent purchases and prints a message if the customer
qualifies for the discount.

Triggers can generate a log of events to support auditing and security checks.
For example, each time a customer places an order, we can create a record with
the customer’s ID and current credit limit and insert this record in a customer
history table. Subsequent analysis of this table might suggest candidates for
an increased credit limit (e.g., customers who have never failed to pay a bill on
time and who have come within 10% of their credit limit at least three times
in the last month).

As the examples in Section 5.8 illustrate, we can use triggers to gather statistics
on table accesses and modifications. Some database systems even use triggers
internally as the basis for managing replicas of relations (Section 22.11.1). Our
list of potential uses of triggers is not exhaustive; for example, triggers have
also been considered for workflow management and enforcing business rules.

5.10 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What are the parts of a basic SQL query? Are the input and result tables
of an SQL query sets or multisets? How can you obtain a set of tuples as
the result of a query? (Section 5.2)

What are range variables in SQL? How can you give names to output
columns in a query that are defined by arithmetic or string expressions?
What support does SQL offer for string pattern matching? (Section 5.2)

What operations does SQL provide over (multi)sets of tuples, and how
would you use these in writing queries? (Section 5.3)

What are nested queries? What is correlation in nested queries? How
would you use the operators IN, EXISTS, UNIQUE, ANY, and ALL in writing
nested queries? Why are they useful? Illustrate your answer by showing
how to write the division operator in SQL. (Section 5.4)

What aggregate operators does SQL support? (Section 5.5)

What is grouping? Is there a counterpart in relational algebra? Explain
this feature, and discuss the interaction of the HAVING and WHERE clauses.
Mention any restrictions that must be satisfied by the fields that appear in
the GROUP BY clause. (Section 5.5.1)
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What are null values? Are they supported in the relational model, as
described in Chapter 3? How do they affect the meaning of queries? Can
primary key fields of a table contain null values? (Section 5.6)

What types of SQL constraints can be specified using the query language?
Can you express primary key constraints using one of these new kinds
of constraints? If so, why does SQL provide for a separate primary key
constraint syntax? (Section 5.7)

What is a trigger, and what are its three parts? What are the differences
between row-level and statement-level triggers? (Section 5.8)

Why can triggers be hard to understand? Explain the differences between
triggers and integrity constraints, and describe when you would use trig-
gers over integrity constrains and vice versa. What are triggers used for?
(Section 5.9)

EXERCISES

Online material is available for all exercises in this chapter on the book’s webpage at

http://www.cs.wisc.edu/˜dbbook

This includes scripts to create tables for each exercise for use with Oracle, IBM DB2, Microsoft
SQL Server, and MySQL.

Exercise 5.1 Consider the following relations:

Student(snum: integer, sname: string, major: string, level: string, age: integer)

Class(name: string, meets at: time, room: string, fid: integer)

Enrolled(snum: integer, cname: string)

Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per
student-class pair such that the student is enrolled in the class.

Write the following queries in SQL. No duplicates should be printed in any of the answers.

1. Find the names of all Juniors (level = JR) who are enrolled in a class taught by I. Teach.

2. Find the age of the oldest student who is either a History major or enrolled in a course
taught by I. Teach.

3. Find the names of all classes that either meet in room R128 or have five or more students
enrolled.

4. Find the names of all students who are enrolled in two classes that meet at the same
time.
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5. Find the names of faculty members who teach in every room in which some class is
taught.

6. Find the names of faculty members for whom the combined enrollment of the courses
that they teach is less than five.

7. Print the level and the average age of students for that level, for each level.

8. Print the level and the average age of students for that level, for all levels except JR.

9. For each faculty member that has taught classes only in room R128, print the faculty
member’s name and the total number of classes she or he has taught.

10. Find the names of students enrolled in the maximum number of classes.

11. Find the names of students not enrolled in any class.

12. For each age value that appears in Students, find the level value that appears most often.
For example, if there are more FR level students aged 18 than SR, JR, or SO students
aged 18, you should print the pair (18, FR).

Exercise 5.2 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers. Write the following
queries in SQL:

1. Find the pnames of parts for which there is some supplier.

2. Find the snames of suppliers who supply every part.

3. Find the snames of suppliers who supply every red part.

4. Find the pnames of parts supplied by Acme Widget Suppliers and no one else.

5. Find the sids of suppliers who charge more for some part than the average cost of that
part (averaged over all the suppliers who supply that part).

6. For each part, find the sname of the supplier who charges the most for that part.

7. Find the sids of suppliers who supply only red parts.

8. Find the sids of suppliers who supply a red part and a green part.

9. Find the sids of suppliers who supply a red part or a green part.

10. For every supplier that only supplies green parts, print the name of the supplier and the
total number of parts that she supplies.

11. For every supplier that supplies a green part and a red part, print the name and price
of the most expensive part that she supplies.

Exercise 5.3 The following relations keep track of airline flight information:

Flights(flno: integer, from: string, to: string, distance: integer,

departs: time, arrives: time, price: integer)
Aircraft(aid: integer, aname: string, cruisingrange: integer)

Certified(eid: integer, aid: integer)

Employees(eid: integer, ename: string, salary: integer)
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Note that the Employees relation describes pilots and other kinds of employees as well; every
pilot is certified for some aircraft, and only pilots are certified to fly. Write each of the
following queries in SQL. (Additional queries using the same schema are listed in the exercises

for Chapter 4.)

1. Find the names of aircraft such that all pilots certified to operate them earn more than
$80,000.

2. For each pilot who is certified for more than three aircraft, find the eid and the maximum
cruisingrange of the aircraft for which she or he is certified.

3. Find the names of pilots whose salary is less than the price of the cheapest route from
Los Angeles to Honolulu.

4. For all aircraft with cruisingrange over 1000 miles, find the name of the aircraft and the
average salary of all pilots certified for this aircraft.

5. Find the names of pilots certified for some Boeing aircraft.

6. Find the aids of all aircraft that can be used on routes from Los Angeles to Chicago.

7. Identify the routes that can be piloted by every pilot who makes more than $100,000.

8. Print the enames of pilots who can operate planes with cruisingrange greater than 3000
miles but are not certified on any Boeing aircraft.

9. A customer wants to travel from Madison to New York with no more than two changes
of flight. List the choice of departure times from Madison if the customer wants to arrive
in New York by 6 p.m.

10. Compute the difference between the average salary of a pilot and the average salary of
all employees (including pilots).

11. Print the name and salary of every nonpilot whose salary is more than the average salary
for pilots.

12. Print the names of employees who are certified only on aircrafts with cruising range
longer than 1000 miles.

13. Print the names of employees who are certified only on aircrafts with cruising range
longer than 1000 miles, but on at least two such aircrafts.

14. Print the names of employees who are certified only on aircrafts with cruising range
longer than 1000 miles and who are certified on some Boeing aircraft.

Exercise 5.4 Consider the following relational schema. An employee can work in more than
one department; the pct time field of the Works relation shows the percentage of time that a
given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

Write the following queries in SQL:

1. Print the names and ages of each employee who works in both the Hardware department
and the Software department.

2. For each department with more than 20 full-time-equivalent employees (i.e., where the
part-time and full-time employees add up to at least that many full-time employees),
print the did together with the number of employees that work in that department.
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sid sname rating age

18 jones 3 30.0
41 jonah 6 56.0
22 ahab 7 44.0
63 moby null 15.0

Figure 5.22 An Instance of Sailors

3. Print the name of each employee whose salary exceeds the budget of all of the depart-
ments that he or she works in.

4. Find the managerids of managers who manage only departments with budgets greater
than $1 million.

5. Find the enames of managers who manage the departments with the largest budgets.

6. If a manager manages more than one department, he or she controls the sum of all the
budgets for those departments. Find the managerids of managers who control more than
$5 million.

7. Find the managerids of managers who control the largest amounts.

8. Find the enames of managers who manage only departments with budgets larger than
$1 million, but at least one department with budget less than $5 million.

Exercise 5.5 Consider the instance of the Sailors relation shown in Figure 5.22.

1. Write SQL queries to compute the average rating, using AVG; the sum of the ratings,
using SUM; and the number of ratings, using COUNT.

2. If you divide the sum just computed by the count, would the result be the same as the
average? How would your answer change if these steps were carried out with respect to
the age field instead of rating?

3. Consider the following query: Find the names of sailors with a higher rating than all

sailors with age < 21. The following two SQL queries attempt to obtain the answer
to this question. Do they both compute the result? If not, explain why. Under what
conditions would they compute the same result?

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ( SELECT *

FROM Sailors S2
WHERE S2.age < 21

AND S.rating <= S2.rating )
SELECT *
FROM Sailors S
WHERE S.rating > ANY ( SELECT S2.rating

FROM Sailors S2
WHERE S2.age < 21 )

4. Consider the instance of Sailors shown in Figure 5.22. Let us define instance S1 of Sailors
to consist of the first two tuples, instance S2 to be the last two tuples, and S to be the
given instance.
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(a) Show the left outer join of S with itself, with the join condition being sid=sid.

(b) Show the right outer join of S with itself, with the join condition being sid=sid.

(c) Show the full outer join of S with itself, with the join condition being sid=sid.

(d) Show the left outer join of S1 with S2, with the join condition being sid=sid.

(e) Show the right outer join of S1 with S2, with the join condition being sid=sid.

(f) Show the full outer join of S1 with S2, with the join condition being sid=sid.

Exercise 5.6 Answer the following questions:

1. Explain the term impedance mismatch in the context of embedding SQL commands in a
host language such as C.

2. How can the value of a host language variable be passed to an embedded SQL command?

3. Explain the WHENEVER command’s use in error and exception handling.

4. Explain the need for cursors.

5. Give an example of a situation that calls for the use of embedded SQL; that is, interactive
use of SQL commands is not enough, and some host language capabilities are needed.

6. Write a C program with embedded SQL commands to address your example in the
previous answer.

7. Write a C program with embedded SQL commands to find the standard deviation of
sailors’ ages.

8. Extend the previous program to find all sailors whose age is within one standard deviation
of the average age of all sailors.

9. Explain how you would write a C program to compute the transitive closure of a graph,
represented as an SQL relation Edges(from, to), using embedded SQL commands. (You
need not write the program, just explain the main points to be dealt with.)

10. Explain the following terms with respect to cursors: updatability, sensitivity, and scrol-

lability.

11. Define a cursor on the Sailors relation that is updatable, scrollable, and returns answers
sorted by age. Which fields of Sailors can such a cursor not update? Why?

12. Give an example of a situation that calls for dynamic SQL; that is, even embedded SQL
is not sufficient.

Exercise 5.7 Consider the following relational schema and briefly answer the questions that
follow:

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

1. Define a table constraint on Emp that will ensure that every employee makes at least
$10,000.

2. Define a table constraint on Dept that will ensure that all managers have age > 30.

3. Define an assertion on Dept that will ensure that all managers have age > 30. Compare
this assertion with the equivalent table constraint. Explain which is better.
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4. Write SQL statements to delete all information about employees whose salaries exceed
that of the manager of one or more departments that they work in. Be sure to ensure
that all the relevant integrity constraints are satisfied after your updates.

Exercise 5.8 Consider the following relations:

Student(snum: integer, sname: string, major: string,

level: string, age: integer)
Class(name: string, meets at: time, room: string, fid: integer)

Enrolled(snum: integer, cname: string)

Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per
student-class pair such that the student is enrolled in the class.

1. Write the SQL statements required to create these relations, including appropriate ver-
sions of all primary and foreign key integrity constraints.

2. Express each of the following integrity constraints in SQL unless it is implied by the
primary and foreign key constraint; if so, explain how it is implied. If the constraint
cannot be expressed in SQL, say so. For each constraint, state what operations (inserts,
deletes, and updates on specific relations) must be monitored to enforce the constraint.

(a) Every class has a minimum enrollment of 5 students and a maximum enrollment
of 30 students.

(b) At least one class meets in each room.

(c) Every faculty member must teach at least two courses.

(d) Only faculty in the department with deptid=33 teach more than three courses.

(e) Every student must be enrolled in the course called Math101.

(f) The room in which the earliest scheduled class (i.e., the class with the smallest
meets at value) meets should not be the same as the room in which the latest
scheduled class meets.

(g) Two classes cannot meet in the same room at the same time.

(h) The department with the most faculty members must have fewer than twice the
number of faculty members in the department with the fewest faculty members.

(i) No department can have more than 10 faculty members.

(j) A student cannot add more than two courses at a time (i.e., in a single update).

(k) The number of CS majors must be more than the number of Math majors.

(l) The number of distinct courses in which CS majors are enrolled is greater than the
number of distinct courses in which Math majors are enrolled.

(m) The total enrollment in courses taught by faculty in the department with deptid=33

is greater than the number of Math majors.

(n) There must be at least one CS major if there are any students whatsoever.

(o) Faculty members from different departments cannot teach in the same room.

Exercise 5.9 Discuss the strengths and weaknesses of the trigger mechanism. Contrast
triggers with other integrity constraints supported by SQL.
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Exercise 5.10 Consider the following relational schema. An employee can work in more
than one department; the pct time field of the Works relation shows the percentage of time
that a given employee works in a given department.

Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

Write SQL-92 integrity constraints (domain, key, foreign key, or CHECK constraints; or asser-
tions) or SQL:1999 triggers to ensure each of the following requirements, considered indepen-
dently.

1. Employees must make a minimum salary of $1000.

2. Every manager must be also be an employee.

3. The total percentage of all appointments for an employee must be under 100%.

4. A manager must always have a higher salary than any employee that he or she manages.

5. Whenever an employee is given a raise, the manager’s salary must be increased to be at
least as much.

6. Whenever an employee is given a raise, the manager’s salary must be increased to be
at least as much. Further, whenever an employee is given a raise, the department’s
budget must be increased to be greater than the sum of salaries of all employees in the
department.

PROJECT-BASED EXERCISE

Exercise 5.11 Identify the subset of SQL queries that are supported in Minibase.

BIBLIOGRAPHIC NOTES
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DATABASE APPLICATION

DEVELOPMENT

☛ How do application programs connect to a DBMS?

☛ How can applications manipulate data retrieved from a DBMS?

☛ How can applications modify data in a DBMS?

☛ What are cursors?

☛ What is JDBC and how is it used?

☛ What is SQLJ and how is it used?

☛ What are stored procedures?

➽ Key concepts: Embedded SQL, Dynamic SQL, cursors; JDBC,
connections, drivers, ResultSets, java.sql, SQLJ; stored procedures,
SQL/PSM

He profits most who serves best.

—Motto for Rotary International

In Chapter 5, we looked at a wide range of SQL query constructs, treating SQL
as an independent language in its own right. A relational DBMS supports an
interactive SQL interface, and users can directly enter SQL commands. This
simple approach is fine as long as the task at hand can be accomplished entirely
with SQL commands. In practice, we often encounter situations in which we
need the greater flexibility of a general-purpose programming language in addi-
tion to the data manipulation facilities provided by SQL. For example, we may
want to integrate a database application with a nice graphical user interface,
or we may want to integrate with other existing applications.

185
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Applications that rely on the DBMS to manage data run as separate processes
that connect to the DBMS to interact with it. Once a connection is established,
SQL commands can be used to insert, delete, and modify data. SQL queries can
be used to retrieve desired data, but we need to bridge an important difference
in how a database system sees data and how an application program in a
language like Java or C sees data: The result of a database query is a set (or
multiset) or records, but Java has no set or multiset data type. This mismatch
is resolved through additional SQL constructs that allow applications to obtain
a handle on a collection and iterate over the records one at a time.

We introduce Embedded SQL, Dynamic SQL, and cursors in Section 6.1. Em-
bedded SQL allows us to access data using static SQL queries in application
code (Section 6.1.1); with Dynamic SQL, we can create the queries at run-time
(Section 6.1.3). Cursors bridge the gap between set-valued query answers and
programming languages that do not support set-values (Section 6.1.2).

The emergence of Java as a popular application development language, espe-
cially for Internet applications, has made accessing a DBMS from Java code a
particularly important topic. Section 6.2 covers JDBC, a programming inter-
face that allows us to execute SQL queries from a Java program and use the
results in the Java program. JDBC provides greater portability than Embed-
ded SQL or Dynamic SQL, and offers the ability to connect to several DBMSs
without recompiling the code. Section 6.4 covers SQLJ, which does the same
for static SQL queries, but is easier to program in than Java with JDBC.

Often, it is useful to execute application code at the database server, rather than
just retrieve data and execute application logic in a separate process. Section
6.5 covers stored procedures, which enable application logic to be stored and
executed at the database server. We conclude the chapter by discussing our
B&N case study in Section 6.6.

While writing database applications, we must also keep in mind that typically
many application programs run concurrently. The transaction concept, intro-
duced in Chapter 1, is used to encapsulate the effects of an application on
the database. An application can select certain transaction properties through
SQL commands to control the degree to which it is exposed to the changes of
other concurrently running applications. We touch on the transaction concept
at many points in this chapter, and, in particular, cover transaction-related as-
pects of JDBC. A full discussion of transaction properties and SQL’s support
for transactions is deferred until Chapter 16.

Examples that appear in this chapter are available online at

http://www.cs.wisc.edu/˜dbbook
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6.1 ACCESSING DATABASES FROM APPLICATIONS

In this section, we cover how SQL commands can be executed from within a
program in a host language such as C or Java. The use of SQL commands
within a host language program is called Embedded SQL. Details of Embed-
ded SQL also depend on the host language. Although similar capabilities are
supported for a variety of host languages, the syntax sometimes varies.

We first cover the basics of Embedded SQL with static SQL queries in Section
6.1.1. We then introduce cursors in Section 6.1.2. We discuss Dynamic SQL,
which allows us to construct SQL queries at runtime (and execute them) in
Section 6.1.3.

6.1.1 Embedded SQL

Conceptually, embedding SQL commands in a host language program is straight-
forward. SQL statements (i.e., not declarations) can be used wherever a state-
ment in the host language is allowed (with a few restrictions). SQL statements
must be clearly marked so that a preprocessor can deal with them before in-
voking the compiler for the host language. Also, any host language variables
used to pass arguments into an SQL command must be declared in SQL. In
particular, some special host language variables must be declared in SQL (so
that, for example, any error conditions arising during SQL execution can be
communicated back to the main application program in the host language).

There are, however, two complications to bear in mind. First, the data types
recognized by SQL may not be recognized by the host language and vice versa.
This mismatch is typically addressed by casting data values appropriately be-
fore passing them to or from SQL commands. (SQL, like other programming
languages, provides an operator to cast values of one type into values of an-
other type.) The second complication has to do with SQL being set-oriented,
and is addressed using cursors (see Section 6.1.2. Commands operate on and
produce tables, which are sets

In our discussion of Embedded SQL, we assume that the host language is C
for concreteness, because minor differences exist in how SQL statements are
embedded in different host languages.

Declaring Variables and Exceptions

SQL statements can refer to variables defined in the host program. Such host-
language variables must be prefixed by a colon (:) in SQL statements and be
declared between the commands EXEC SQL BEGIN DECLARE SECTION and EXEC
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SQL END DECLARE SECTION. The declarations are similar to how they would
look in a C program and, as usual in C, are separated by semicolons. For
example, we can declare variables c sname, c sid, c rating, and c age (with the
initial c used as a naming convention to emphasize that these are host language
variables) as follows:

EXEC SQL BEGIN DECLARE SECTION

char c sname[20];
long c sid;
short c rating;
float c age;
EXEC SQL END DECLARE SECTION

The first question that arises is which SQL types correspond to the various
C types, since we have just declared a collection of C variables whose val-
ues are intended to be read (and possibly set) in an SQL run-time environ-
ment when an SQL statement that refers to them is executed. The SQL-92
standard defines such a correspondence between the host language types and
SQL types for a number of host languages. In our example, c sname has the
type CHARACTER(20) when referred to in an SQL statement, c sid has the type
INTEGER, c rating has the type SMALLINT, and c age has the type REAL.

We also need some way for SQL to report what went wrong if an error condition
arises when executing an SQL statement. The SQL-92 standard recognizes
two special variables for reporting errors, SQLCODE and SQLSTATE. SQLCODE is
the older of the two and is defined to return some negative value when an
error condition arises, without specifying further just what error a particular
negative integer denotes. SQLSTATE, introduced in the SQL-92 standard for the
first time, associates predefined values with several common error conditions,
thereby introducing some uniformity to how errors are reported. One of these
two variables must be declared. The appropriate C type for SQLCODE is long
and the appropriate C type for SQLSTATE is char[6], that is, a character string
five characters long. (Recall the null-terminator in C strings.) In this chapter,
we assume that SQLSTATE is declared.

Embedding SQL Statements

All SQL statements embedded within a host program must be clearly marked,
with the details dependent on the host language; in C, SQL statements must be
prefixed by EXEC SQL. An SQL statement can essentially appear in any place
in the host language program where a host language statement can appear.
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As a simple example, the following Embedded SQL statement inserts a row,
whose column values are based on the values of the host language variables
contained in it, into the Sailors relation:

EXEC SQL

INSERT INTO Sailors VALUES (:c sname, :c sid, :c rating, :c age);

Observe that a semicolon terminates the command, as per the convention for
terminating statements in C.

The SQLSTATE variable should be checked for errors and exceptions after each
Embedded SQL statement. SQL provides the WHENEVER command to simplify
this tedious task:

EXEC SQL WHENEVER [ SQLERROR | NOT FOUND ] [ CONTINUE | GOTO stmt ]

The intent is that the value of SQLSTATE should be checked after each Embedded
SQL statement is executed. If SQLERROR is specified and the value of SQLSTATE
indicates an exception, control is transferred to stmt, which is presumably re-
sponsible for error and exception handling. Control is also transferred to stmt

if NOT FOUND is specified and the value of SQLSTATE is 02000, which denotes NO
DATA.

6.1.2 Cursors

A major problem in embedding SQL statements in a host language like C is
that an impedance mismatch occurs because SQL operates on sets of records,
whereas languages like C do not cleanly support a set-of-records abstraction.
The solution is to essentially provide a mechanism that allows us to retrieve
rows one at a time from a relation.

This mechanism is called a cursor. We can declare a cursor on any relation
or on any SQL query (because every query returns a set of rows). Once a
cursor is declared, we can open it (which positions the cursor just before the
first row); fetch the next row; move the cursor (to the next row, to the row
after the next n, to the first row, or to the previous row, etc., by specifying
additional parameters for the FETCH command); or close the cursor. Thus, a
cursor essentially allows us to retrieve the rows in a table by positioning the
cursor at a particular row and reading its contents.

Basic Cursor Definition and Usage

Cursors enable us to examine, in the host language program, a collection of
rows computed by an Embedded SQL statement:
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We usually need to open a cursor if the embedded statement is a SELECT
(i.e., a query). However, we can avoid opening a cursor if the answer
contains a single row, as we see shortly.

INSERT, DELETE, and UPDATE statements typically require no cursor, al-
though some variants of DELETE and UPDATE use a cursor.

As an example, we can find the name and age of a sailor, specified by assigning
a value to the host variable c sid, declared earlier, as follows:

EXEC SQL SELECT S.sname, S.age
INTO :c sname, :c age
FROM Sailors S
WHERE S.sid = :c sid;

The INTO clause allows us to assign the columns of the single answer row to
the host variables c sname and c age. Therefore, we do not need a cursor to
embed this query in a host language program. But what about the following
query, which computes the names and ages of all sailors with a rating greater
than the current value of the host variable c minrating?

SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > :c minrating

This query returns a collection of rows, not just one row. When executed
interactively, the answers are printed on the screen. If we embed this query in
a C program by prefixing the command with EXEC SQL, how can the answers
be bound to host language variables? The INTO clause is inadequate because
we must deal with several rows. The solution is to use a cursor:

DECLARE sinfo CURSOR FOR

SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating > :c minrating;

This code can be included in a C program, and once it is executed, the cursor
sinfo is defined. Subsequently, we can open the cursor:

OPEN sinfo;

The value of c minrating in the SQL query associated with the cursor is the
value of this variable when we open the cursor. (The cursor declaration is
processed at compile-time, and the OPEN command is executed at run-time.)
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A cursor can be thought of as ‘pointing’ to a row in the collection of answers
to the query associated with it. When a cursor is opened, it is positioned just
before the first row. We can use the FETCH command to read the first row of
cursor sinfo into host language variables:

FETCH sinfo INTO :c sname, :c age;

When the FETCH statement is executed, the cursor is positioned to point at
the next row (which is the first row in the table when FETCH is executed for
the first time after opening the cursor) and the column values in the row are
copied into the corresponding host variables. By repeatedly executing this
FETCH statement (say, in a while-loop in the C program), we can read all the
rows computed by the query, one row at a time. Additional parameters to the
FETCH command allow us to position a cursor in very flexible ways, but we do
not discuss them.

How do we know when we have looked at all the rows associated with the
cursor? By looking at the special variables SQLCODE or SQLSTATE, of course.
SQLSTATE, for example, is set to the value 02000, which denotes NO DATA, to
indicate that there are no more rows if the FETCH statement positions the cursor
after the last row.

When we are done with a cursor, we can close it:

CLOSE sinfo;

It can be opened again if needed, and the value of : c minrating in the
SQL query associated with the cursor would be the value of the host variable
c minrating at that time.

Properties of Cursors

The general form of a cursor declaration is:

DECLARE cursorname [INSENSITIVE] [SCROLL] CURSOR
[ WITH HOLD ]
FOR some query

[ ORDER BY order-item-list ]
[ FOR READ ONLY | FOR UPDATE ]

A cursor can be declared to be a read-only cursor (FOR READ ONLY) or, if
it is a cursor on a base relation or an updatable view, to be an updatable
cursor (FOR UPDATE). If it is updatable, simple variants of the UPDATE and
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DELETE commands allow us to update or delete the row on which the cursor
is positioned. For example, if sinfo is an updatable cursor and open, we can
execute the following statement:

UPDATE Sailors S
SET S.rating = S.rating - 1
WHERE CURRENT of sinfo;

This Embedded SQL statement modifies the rating value of the row currently
pointed to by cursor sinfo; similarly, we can delete this row by executing the
next statement:

DELETE Sailors S
WHERE CURRENT of sinfo;

A cursor is updatable by default unless it is a scrollable or insensitive cursor
(see below), in which case it is read-only by default.

If the keyword SCROLL is specified, the cursor is scrollable, which means that
variants of the FETCH command can be used to position the cursor in very
flexible ways; otherwise, only the basic FETCH command, which retrieves the
next row, is allowed.

If the keyword INSENSITIVE is specified, the cursor behaves as if it is ranging
over a private copy of the collection of answer rows. Otherwise, and by default,
other actions of some transaction could modify these rows, creating unpre-
dictable behavior. For example, while we are fetching rows using the sinfo

cursor, we might modify rating values in Sailor rows by concurrently executing
the command:

UPDATE Sailors S
SET S.rating = S.rating - 1

Consider a Sailor row such that (1) it has not yet been fetched, and (2) its
original rating value would have met the condition in the WHERE clause of the
query associated with sinfo, but the new rating value does not. Do we fetch
such a Sailor row? If INSENSITIVE is specified, the behavior is as if all answers
were computed and stored when sinfo was opened; thus, the update command
has no effect on the rows fetched by sinfo if it is executed after sinfo is opened.
If INSENSITIVE is not specified, the behavior is implementation dependent in
this situation.

A holdable cursor is specified using the WITH HOLD clause, and is not closed
when the transaction is committed. The motivation for this comes from long
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transactions in which we access (and possibly change) a large number of rows of
a table. If the transaction is aborted for any reason, the system potentially has
to redo a lot of work when the transaction is restarted. Even if the transaction
is not aborted, its locks are held for a long time and reduce the concurrency
of the system. The alternative is to break the transaction into several smaller
transactions, but remembering our position in the table between transactions
(and other similar details) is complicated and error-prone. Allowing the ap-
plication program to commit the transaction it initiated, while retaining its
handle on the active table (i.e., the cursor) solves this problem: The applica-
tion can commit its transaction and start a new transaction and thereby save
the changes it has made thus far.

Finally, in what order do FETCH commands retrieve rows? In general this order
is unspecified, but the optional ORDER BY clause can be used to specify a sort
order. Note that columns mentioned in the ORDER BY clause cannot be updated
through the cursor!

The order-item-list is a list of order-items; an order-item is a column name,
optionally followed by one of the keywords ASC or DESC. Every column men-
tioned in the ORDER BY clause must also appear in the select-list of the query
associated with the cursor; otherwise it is not clear what columns we should
sort on. The keywords ASC or DESC that follow a column control whether the
result should be sorted—with respect to that column—in ascending or descend-
ing order; the default is ASC. This clause is applied as the last step in evaluating
the query.

Consider the query discussed in Section 5.5.1, and the answer shown in Figure
5.13. Suppose that a cursor is opened on this query, with the clause:

ORDER BY minage ASC, rating DESC

The answer is sorted first in ascending order by minage, and if several rows
have the same minage value, these rows are sorted further in descending order
by rating. The cursor would fetch the rows in the order shown in Figure 6.1.

rating minage

8 25.5
3 25.5
7 35.0

Figure 6.1 Order in which Tuples Are Fetched
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6.1.3 Dynamic SQL

Consider an application such as a spreadsheet or a graphical front-end that
needs to access data from a DBMS. Such an application must accept commands
from a user and, based on what the user needs, generate appropriate SQL
statements to retrieve the necessary data. In such situations, we may not be
able to predict in advance just what SQL statements need to be executed, even
though there is (presumably) some algorithm by which the application can
construct the necessary SQL statements once a user’s command is issued.

SQL provides some facilities to deal with such situations; these are referred
to as Dynamic SQL. We illustrate the two main commands, PREPARE and
EXECUTE, through a simple example:

char c sqlstring[] = {”DELETE FROM Sailors WHERE rating>5”};
EXEC SQL PREPARE readytogo FROM :c sqlstring;
EXEC SQL EXECUTE readytogo;

The first statement declares the C variable c sqlstring and initializes its value to
the string representation of an SQL command. The second statement results in
this string being parsed and compiled as an SQL command, with the resulting
executable bound to the SQL variable readytogo. (Since readytogo is an SQL
variable, just like a cursor name, it is not prefixed by a colon.) The third
statement executes the command.

Many situations require the use of Dynamic SQL. However, note that the
preparation of a Dynamic SQL command occurs at run-time and is run-time
overhead. Interactive and Embedded SQL commands can be prepared once
at compile-time and then re-executed as often as desired. Consequently you
should limit the use of Dynamic SQL to situations in which it is essential.

There are many more things to know about Dynamic SQL—how we can pass
parameters from the host language program to the SQL statement being pre-
pared, for example—but we do not discuss it further.

6.2 AN INTRODUCTION TO JDBC

Embedded SQL enables the integration of SQL with a general-purpose pro-
gramming language. As described in Section 6.1.1, a DBMS-specific preproces-
sor transforms the Embedded SQL statements into function calls in the host
language. The details of this translation vary across DBMSs, and therefore
even though the source code can be compiled to work with different DBMSs,
the final executable works only with one specific DBMS.
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ODBC and JDBC, short for Open DataBase Connectivity and Java DataBase
Connectivity, also enable the integration of SQL with a general-purpose pro-
gramming language. Both ODBC and JDBC expose database capabilities in
a standardized way to the application programmer through an application
programming interface (API). In contrast to Embedded SQL, ODBC and
JDBC allow a single executable to access different DBMSs without recompi-

lation. Thus, while Embedded SQL is DBMS-independent only at the source
code level, applications using ODBC or JDBC are DBMS-independent at the
source code level and at the level of the executable. In addition, using ODBC
or JDBC, an application can access not just one DBMS but several different
ones simultaneously.

ODBC and JDBC achieve portability at the level of the executable by introduc-
ing an extra level of indirection. All direct interaction with a specific DBMS
happens through a DBMS-specific driver. A driver is a software program
that translates the ODBC or JDBC calls into DBMS-specific calls. Drivers
are loaded dynamically on demand since the DBMSs the application is going
to access are known only at run-time. Available drivers are registered with a
driver manager.

One interesting point to note is that a driver does not necessarily need to
interact with a DBMS that understands SQL. It is sufficient that the driver
translates the SQL commands from the application into equivalent commands
that the DBMS understands. Therefore, in the remainder of this section, we
refer to a data storage subsystem with which a driver interacts as a data
source.

An application that interacts with a data source through ODBC or JDBC se-
lects a data source, dynamically loads the corresponding driver, and establishes
a connection with the data source. There is no limit on the number of open
connections, and an application can have several open connections to different
data sources. Each connection has transaction semantics; that is, changes from
one connection are visible to other connections only after the connection has
committed its changes. While a connection is open, transactions are executed
by submitting SQL statements, retrieving results, processing errors, and finally
committing or rolling back. The application disconnects from the data source
to terminate the interaction.

In the remainder of this chapter, we concentrate on JDBC.
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JDBC Drivers: The most up-to-date source of JDBC drivers is the Sun
JDBC Driver page at
http://industry.java.sun.com/products/jdbc/drivers

JDBC drivers are available for all major database sytems.

6.2.1 Architecture

The architecture of JDBC has four main components: the application, the
driver manager, several data source specific drivers, and the corresponding
data sources.

The application initiates and terminates the connection with a data source.
It sets transaction boundaries, submits SQL statements, and retrieves the
results—all through a well-defined interface as specified by the JDBC API. The
primary goal of the driver manager is to load JDBC drivers and pass JDBC
function calls from the application to the correct driver. The driver manager
also handles JDBC initialization and information calls from the applications
and can log all function calls. In addition, the driver manager performs some
rudimentary error checking. The driver establishes the connection with the
data source. In addition to submitting requests and returning request results,
the driver translates data, error formats, and error codes from a form that is
specific to the data source into the JDBC standard. The data source processes
commands from the driver and returns the results.

Depending on the relative location of the data source and the application,
several architectural scenarios are possible. Drivers in JDBC are classified into
four types depending on the architectural relationship between the application
and the data source:

Type I—Bridges: This type of driver translates JDBC function calls
into function calls of another API that is not native to the DBMS. An
example is a JDBC-ODBC bridge; an application can use JDBC calls to
access an ODBC compliant data source. The application loads only one
driver, the bridge. Bridges have the advantage that it is easy to piggy-
back the application onto an existing installation, and no new drivers have
to be installed. But using bridges has several drawbacks. The increased
number of layers between data source and application affects performance.
In addition, the user is limited to the functionality that the ODBC driver
supports.

Type II—Direct Translation to the Native API via Non-Java
Driver: This type of driver translates JDBC function calls directly into
method invocations of the API of one specific data source. The driver is
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usually written using a combination of C++ and Java; it is dynamically
linked and specific to the data source. This architecture performs signif-
icantly better than a JDBC-ODBC bridge. One disadvantage is that the
database driver that implements the API needs to be installed on each
computer that runs the application.

Type III—Network Bridges: The driver talks over a network to a
middleware server that translates the JDBC requests into DBMS-specific
method invocations. In this case, the driver on the client site (i.e., the
network bridge) is not DBMS-specific. The JDBC driver loaded by the ap-
plication can be quite small, as the only functionality it needs to implement
is sending of SQL statements to the middleware server. The middleware
server can then use a Type II JDBC driver to connect to the data source.

Type IV—Direct Translation to the Native API via Java Driver:
Instead of calling the DBMS API directly, the driver communicates with
the DBMS through Java sockets. In this case, the driver on the client side is
written in Java, but it is DBMS-specific. It translates JDBC calls into the
native API of the database system. This solution does not require an in-
termediate layer, and since the implementation is all Java, its performance
is usually quite good.

6.3 JDBC CLASSES AND INTERFACES

JDBC is a collection of Java classes and interfaces that enables database access
from programs written in the Java language. It contains methods for con-
necting to a remote data source, executing SQL statements, examining sets
of results from SQL statements, transaction management, and exception han-
dling. The classes and interfaces are part of the java.sql package. Thus, all
code fragments in the remainder of this section should include the statement
import java.sql.* at the beginning of the code; we omit this statement in
the remainder of this section. JDBC 2.0 also includes the javax.sql pack-
age, the JDBC Optional Package. The package javax.sql adds, among
other things, the capability of connection pooling and the RowSet interface.
We discuss connection pooling in Section 6.3.2, and the ResultSet interface in
Section 6.3.4.

We now illustrate the individual steps that are required to submit a database
query to a data source and to retrieve the results.

6.3.1 JDBC Driver Management

In JDBC, data source drivers are managed by the Drivermanager class, which
maintains a list of all currently loaded drivers. The Drivermanager class has
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methods registerDriver, deregisterDriver, and getDrivers to enable dy-
namic addition and deletion of drivers.

The first step in connecting to a data source is to load the corresponding JDBC
driver. This is accomplished by using the Java mechanism for dynamically
loading classes. The static method forName in the Class class returns the Java
class as specified in the argument string and executes its static constructor.
The static constructor of the dynamically loaded class loads an instance of the
Driver class, and this Driver object registers itself with the DriverManager
class.

The following Java example code explicitly loads a JDBC driver:

Class.forName(‘‘oracle/jdbc.driver.OracleDriver’’);

There are two other ways of registering a driver. We can include the driver with
-Djdbc.drivers=oracle/jdbc.driver at the command line when we start the
Java application. Alternatively, we can explicitly instantiate a driver, but this
method is used only rarely, as the name of the driver has to be specified in the
application code, and thus the application becomes sensitive to changes at the
driver level.

After registering the driver, we connect to the data source.

6.3.2 Connections

A session with a data source is started through creation of a Connection object.
A connection identifies a logical session with a data source; multiple connections
within the same Java program can refer to different data sources or the same
data source. Connections are specified through a JDBC URL, a URL that
uses the jdbc protocol. Such a URL has the form

jdbc:<subprotocol>:<otherParameters>

The code example shown in Figure 6.2 establishes a connection to an Oracle
database assuming that the strings userId and password are set to valid values.

In JDBC, connections can have different properties. For example, a connection
can specify the granularity of transactions. If autocommit is set for a con-
nection, then each SQL statement is considered to be its own transaction. If
autocommit is off, then a series of statements that compose a transaction can
be committed using the commit() method of the Connection class, or aborted
using the rollback() method. The Connection class has methods to set the
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String url = ”jdbc:oracle:www.bookstore.com:3083”

Connection connection;

try {

Connection connection =

DriverManager.getConnection(url,userId,password);

}

catch(SQLException excpt) {

System.out.println(excpt.getMessage());

return;

}

Figure 6.2 Establishing a Connection with JDBC

JDBC Connections: Remember to close connections to data sources
and return shared connections to the connection pool. Database systems
have a limited number of resources available for connections, and orphan
connections can often only be detected through time-outs—and while the
database system is waiting for the connection to time-out, the resources
used by the orphan connection are wasted.

autocommit mode (Connection.setAutoCommit) and to retrieve the current
autocommit mode (getAutoCommit). The following methods are part of the
Connection interface and permit setting and getting other properties:

public int getTransactionIsolation() throws SQLException and
public void setTransactionIsolation(int l) throws SQLException.
These two functions get and set the current level of isolation for transac-
tions handled in the current connection. All five SQL levels of isolation
(see Section 16.6 for a full discussion) are possible, and argument l can be
set as follows:

– TRANSACTION NONE

– TRANSACTION READ UNCOMMITTED

– TRANSACTION READ COMMITTED

– TRANSACTION REPEATABLE READ

– TRANSACTION SERIALIZABLE

public boolean getReadOnly() throws SQLException and
public void setReadOnly(boolean readOnly) throws SQLException.
These two functions allow the user to specify whether the transactions
executed through this connection are read only.
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public boolean isClosed() throws SQLException.
Checks whether the current connection has already been closed.

setAutoCommit and get AutoCommit.
We already discussed these two functions.

Establishing a connection to a data source is a costly operation since it in-
volves several steps, such as establishing a network connection to the data
source, authentication, and allocation of resources such as memory. In case an
application establishes many different connections from different parties (such
as a Web server), connections are often pooled to avoid this overhead. A con-
nection pool is a set of established connections to a data source. Whenever a
new connection is needed, one of the connections from the pool is used, instead
of creating a new connection to the data source.

Connection pooling can be handled either by specialized code in the application,
or the optional javax.sql package, which provides functionality for connection
pooling and allows us to set different parameters, such as the capacity of the
pool, and shrinkage and growth rates. Most application servers (see Section
7.7.2) implement the javax.sql package or a proprietary variant.

6.3.3 Executing SQL Statements

We now discuss how to create and execute SQL statements using JDBC. In the
JDBC code examples in this section, we assume that we have a Connection

object named con. JDBC supports three different ways of executing statements:
Statement, PreparedStatement, and CallableStatement. The Statement

class is the base class for the other two statment classes. It allows us to query
the data source with any static or dynamically generated SQL query. We cover
the PreparedStatement class here and the CallableStatement class in Section
6.5, when we discuss stored procedures.

The PreparedStatement class dynamically generates precompiled SQL state-
ments that can be used several times; these SQL statements can have param-
eters, but their structure is fixed when the PreparedStatement object (repre-
senting the SQL statement) is created.

Consider the sample code using a PreparedStatment object shown in Figure
6.3. The SQL query specifies the query string, but uses ‘?’ for the values
of the parameters, which are set later using methods setString, setFloat,
and setInt. The ‘?’ placeholders can be used anywhere in SQL statements
where they can be replaced with a value. Examples of places where they can
appear include the WHERE clause (e.g., ‘WHERE author=?’), or in SQL UPDATE

and INSERT statements, as in Figure 6.3. The method setString is one way
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// initial quantity is always zero

String sql = ”INSERT INTO Books VALUES(?, ?, ?, ?, 0, ?)”;

PreparedStatement pstmt = con.prepareStatement(sql);

// now instantiate the parameters with values

// assume that isbn, title, etc. are Java variables that

// contain the values to be inserted

pstmt.clearParameters();

pstmt.setString(1, isbn);

pstmt.setString(2, title);

pstmt.setString(3, author);

pstmt.setFloat(5, price);

pstmt.setInt(6, year);

int numRows = pstmt.executeUpdate();

Figure 6.3 SQL Update Using a PreparedStatement Object

to set a parameter value; analogous methods are available for int, float,
and date. It is good style to always use clearParameters() before setting
parameter values in order to remove any old data.

There are different ways of submitting the query string to the data source. In
the example, we used the executeUpdate command, which is used if we know
that the SQL statement does not return any records (SQL UPDATE, INSERT,
ALTER, and DELETE statements). The executeUpdate method returns an inte-
ger indicating the number of rows the SQL statement modified; it returns 0 for
successful execution without modifying any rows.

The executeQuery method is used if the SQL statement returns data, such as
in a regular SELECT query. JDBC has its own cursor mechanism in the form
of a ResultSet object, which we discuss next. The execute method is more
general than executeQuery and executeUpdate; the references at the end of
the chapter provide pointers with more details.

6.3.4 ResultSets

As discussed in the previous section, the statement executeQuery returns a
ResultSet object, which is similar to a cursor. ResultSet cursors in JDBC
2.0 are very powerful; they allow forward and reverse scrolling and in-place
editing and insertions.
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In its most basic form, the ResultSet object allows us to read one row of the
output of the query at a time. Initially, the ResultSet is positioned before
the first row, and we have to retrieve the first row with an explicit call to the
next() method. The next method returns false if there are no more rows in
the query answer, and true otherwise. The code fragment shown in Figure 6.4
illustrates the basic usage of a ResultSet object.

ResultSet rs=stmt.executeQuery(sqlQuery);

// rs is now a cursor

// first call to rs.next() moves to the first record

// rs.next() moves to the next row

String sqlQuery;

ResultSet rs = stmt.executeQuery(sqlQuery)

while (rs.next()) {

// process the data

}

Figure 6.4 Using a ResultSet Object

While next() allows us to retrieve the logically next row in the query answer,
we can move about in the query answer in other ways too:

previous() moves back one row.

absolute(int num) moves to the row with the specified number.

relative(int num) moves forward or backward (if num is negative) rela-
tive to the current position. relative(-1) has the same effect as previous.

first() moves to the first row, and last() moves to the last row.

Matching Java and SQL Data Types

In considering the interaction of an application with a data source, the issues
we encountered in the context of Embedded SQL (e.g., passing information
between the application and the data source through shared variables) arise
again. To deal with such issues, JDBC provides special data types and speci-
fies their relationship to corresponding SQL data types. Figure 6.5 shows the
accessor methods in a ResultSet object for the most common SQL datatypes.
With these accessor methods, we can retrieve values from the current row of
the query result referenced by the ResultSet object. There are two forms for
each accessor method: One method retrieves values by column index, starting
at one, and the other retrieves values by column name. The following exam-
ple shows how to access fields of the current ResultSet row using accesssor
methods.
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SQL Type Java class ResultSet get method

BIT Boolean getBoolean()
CHAR String getString()

VARCHAR String getString()
DOUBLE Double getDouble()
FLOAT Double getDouble()

INTEGER Integer getInt()
REAL Double getFloat()
DATE java.sql.Date getDate()
TIME java.sql.Time getTime()

TIMESTAMP java.sql.TimeStamp getTimestamp()

Figure 6.5 Reading SQL Datatypes from a ResultSet Object

ResultSet rs=stmt.executeQuery(sqlQuery);

String sqlQuery;

ResultSet rs = stmt.executeQuery(sqlQuery)

while (rs.next()) {

isbn = rs.getString(1);

title = rs.getString(”TITLE”);

// process isbn and title

}

6.3.5 Exceptions and Warnings

Similar to the SQLSTATE variable, most of the methods in java.sql can throw
an exception of the type SQLException if an error occurs. The information
includes SQLState, a string that describes the error (e.g., whether the statement
contained an SQL syntax error). In addition to the standard getMessage()

method inherited from Throwable, SQLException has two additional methods
that provide further information, and a method to get (or chain) additional
exceptions:

public String getSQLState() returns an SQLState identifier based on
the SQL:1999 specification, as discussed in Section 6.1.1.

public int getErrorCode() retrieves a vendor-specific error code.

public SQLException getNextException() gets the next exception in a
chain of exceptions associated with the current SQLException object.

An SQLWarning is a subclass of SQLException. Warnings are not as severe as
errors and the program can usually proceed without special handling of warn-
ings. Warnings are not thrown like other exceptions, and they are not caught as
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part of the try–catch block around a java.sql statement. We need to specif-
ically test whether warnings exist. Connection, Statement, and ResultSet

objects all have a getWarnings() method with which we can retrieve SQL
warnings if they exist. Duplicate retrieval of warnings can be avoided through
clearWarnings(). Statement objects clear warnings automatically on execu-
tion of the next statement; ResultSet objects clear warnings every time a new
tuple is accessed.

Typical code for obtaining SQLWarnings looks similar to the code shown in
Figure 6.6.

try {

stmt = con.createStatement();

warning = con.getWarnings();

while( warning != null) {

// handleSQLWarnings //code to process warning

warning = warning.getNextWarning(); //get next warning

}

con.clearWarnings();

stmt.executeUpdate( queryString );

warning = stmt.getWarnings();

while( warning != null) {

// handleSQLWarnings //code to process warning

warning = warning.getNextWarning(); //get next warning

}

} // end try

catch ( SQLException SQLe) {

// code to handle exception

} // end catch

Figure 6.6 Processing JDBC Warnings and Exceptions

6.3.6 Examining Database Metadata

We can use the DatabaseMetaData object to obtain information about the
database system itself, as well as information from the database catalog. For
example, the following code fragment shows how to obtain the name and driver
version of the JDBC driver:

DatabaseMetaData md = con.getMetaData();

System.out.println(”Driver Information:”);
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System.out.println(”Name:” + md.getDriverName()

+ ”; version:” + md.getDriverVersion());

The DatabaseMetaData object has many more methods (in JDBC 2.0, exactly
134); we list some methods here:

public ResultSet getCatalogs() throws SQLException. This function
returns a ResultSet that can be used to iterate over all the catalog relations.
The functions getIndexInfo() and getTables() work analogously.

public int getMaxConnections() throws SQLException. This function
returns the maximum number of connections possible.

We will conclude our discussion of JDBC with an example code fragment that
examines all database metadata shown in Figure 6.7.

DatabaseMetaData dmd = con.getMetaData();

ResultSet tablesRS = dmd.getTables(null,null,null,null);

string tableName;

while(tablesRS.next()) {

tableName = tablesRS.getString(”TABLE NAME”);

// print out the attributes of this table

System.out.println(”The attributes of table ”

+ tableName + ” are:”);

ResultSet columnsRS = dmd.getColums(null,null,tableName, null);

while (columnsRS.next()) {

System.out.print(colummsRS.getString(”COLUMN NAME”)

+ ” ”);

}

// print out the primary keys of this table

System.out.println(”The keys of table ” + tableName + ” are:”);

ResultSet keysRS = dmd.getPrimaryKeys(null,null,tableName);

while (keysRS.next()) {

System.out.print(keysRS.getString(”COLUMN NAME”) + ” ”);

}

}

Figure 6.7 Obtaining Information about a Data Source
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6.4 SQLJ

SQLJ (short for ‘SQL-Java’) was developed by the SQLJ Group, a group of
database vendors and Sun. SQLJ was developed to complement the dynamic
way of creating queries in JDBC with a static model. It is therefore very close
to Embedded SQL. Unlike JDBC, having semi-static SQL queries allows the
compiler to perform SQL syntax checks, strong type checks of the compatibil-
ity of the host variables with the respective SQL attributes, and consistency
of the query with the database schema—tables, attributes, views, and stored
procedures—all at compilation time. For example, in both SQLJ and Embed-
ded SQL, variables in the host language always are bound statically to the
same arguments, whereas in JDBC, we need separate statements to bind each
variable to an argument and to retrieve the result. For example, the following
SQLJ statement binds host language variables title, price, and author to the
return values of the cursor books.

#sql books = {

SELECT title, price INTO :title, :price

FROM Books WHERE author = :author

};

In JDBC, we can dynamically decide which host language variables will hold
the query result. In the following example, we read the title of the book into
variable ftitle if the book was written by Feynman, and into variable otitle
otherwise:

// assume we have a ResultSet cursor rs

author = rs.getString(3);

if (author==”Feynman”) {

ftitle = rs.getString(2);

}

else {

otitle = rs.getString(2);

}

When writing SQLJ applications, we just write regular Java code and embed
SQL statements according to a set of rules. SQLJ applications are pre-processed
through an SQLJ translation program that replaces the embedded SQLJ code
with calls to an SQLJ Java library. The modified program code can then be
compiled by any Java compiler. Usually the SQLJ Java library makes calls to
a JDBC driver, which handles the connection to the database system.
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An important philosophical difference exists between Embedded SQL and SQLJ
and JDBC. Since vendors provide their own proprietary versions of SQL, it is
advisable to write SQL queries according to the SQL-92 or SQL:1999 standard.
However, when using Embedded SQL, it is tempting to use vendor-specific SQL
constructs that offer functionality beyond the SQL-92 or SQL:1999 standards.
SQLJ and JDBC force adherence to the standards, and the resulting code is
much more portable across different database systems.

In the remainder of this section, we give a short introduction to SQLJ.

6.4.1 Writing SQLJ Code

We will introduce SQLJ by means of examples. Let us start with an SQLJ code
fragment that selects records from the Books table that match a given author.

String title; Float price; String author;

#sql iterator Books (String title, Float price);

Books books;

// the application sets the author

// execute the query and open the cursor

#sql books = {

SELECT title, price INTO :title, :price

FROM Books WHERE author = :author

};

// retrieve results

while (books.next()) {

System.out.println(books.title() + ”, ” + books.price());

}

books.close();

The corresponding JDBC code fragment looks as follows (assuming we also
declared price, name, and author:

PreparedStatement stmt = connection.prepareStatement(

”SELECT title, price FROM Books WHERE author = ?”);

// set the parameter in the query and execute it

stmt.setString(1, author);

ResultSet rs = stmt.executeQuery();

// retrieve the results

while (rs.next()) {
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System.out.println(rs.getString(1) + ”, ” + rs.getFloat(2));

}

Comparing the JDBC and SQLJ code, we see that the SQLJ code is much
easier to read than the JDBC code. Thus, SQLJ reduces software development
and maintenance costs.

Let us consider the individual components of the SQLJ code in more detail.
All SQLJ statements have the special prefix #sql. In SQLJ, we retrieve the
results of SQL queries with iterator objects, which are basically cursors. An
iterator is an instance of an iterator class. Usage of an iterator in SQLJ goes
through five steps:

Declare the Iterator Class: In the preceding code, this happened through
the statement
#sql iterator Books (String title, Float price);

This statement creates a new Java class that we can use to instantiate
objects.

Instantiate an Iterator Object from the New Iterator Class: We
instantiated our iterator in the statement Books books;.

Initialize the Iterator Using a SQL Statement: In our example, this
happens through the statement #sql books = ....

Iteratively, Read the Rows From the Iterator Object: This step is
very similar to reading rows through a ResultSet object in JDBC.

Close the Iterator Object.

There are two types of iterator classes: named iterators and positional iterators.
For named iterators, we specify both the variable type and the name of each
column of the iterator. This allows us to retrieve individual columns by name as
in our previous example where we could retrieve the title column from the Books
table using the expression books.title(). For positional iterators, we need
to specify only the variable type for each column of the iterator. To access
the individual columns of the iterator, we use a FETCH ... INTO construct,
similar to Embedded SQL. Both iterator types have the same performance;
which iterator to use depends on the programmer’s taste.

Let us revisit our example. We can make the iterator a positional iterator
through the following statement:

#sql iterator Books (String, Float);

We then retrieve the individual rows from the iterator as follows:
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while (true) {

#sql { FETCH :books INTO :title, :price, };

if (books.endFetch()) {

break;

}

// process the book

}

6.5 STORED PROCEDURES

It is often important to execute some parts of the application logic directly in
the process space of the database system. Running application logic directly
at the database has the advantage that the amount of data that is transferred
between the database server and the client issuing the SQL statement can be
minimized, while at the same time utilizing the full power of the database
server.

When SQL statements are issued from a remote application, the records in the
result of the query need to be transferred from the database system back to
the application. If we use a cursor to remotely access the results of an SQL
statement, the DBMS has resources such as locks and memory tied up while the
application is processing the records retrieved through the cursor. In contrast,
a stored procedure is a program that is executed through a single SQL
statement that can be locally executed and completed within the process space
of the database server. The results can be packaged into one big result and
returned to the application, or the application logic can be performed directly
at the server, without having to transmit the results to the client at all.

Stored procedures are also beneficial for software engineering reasons. Once
a stored procedure is registered with the database server, different users can
re-use the stored procedure, eliminating duplication of efforts in writing SQL
queries or application logic, and making code maintenance easy. In addition,
application programmers do not need to know the the database schema if we
encapsulate all database access into stored procedures.

Although they are called stored procedures, they do not have to be procedures
in a programming language sense; they can be functions.

6.5.1 Creating a Simple Stored Procedure

Let us look at the example stored procedure written in SQL shown in Figure
6.8. We see that stored procedures must have a name; this stored procedure
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has the name ‘ShowNumberOfOrders.’ Otherwise, it just contains an SQL
statement that is precompiled and stored at the server.

CREATE PROCEDURE ShowNumberOfOrders
SELECT C.cid, C.cname, COUNT(*)

FROM Customers C, Orders O
WHERE C.cid = O.cid
GROUP BY C.cid, C.cname

Figure 6.8 A Stored Procedure in SQL

Stored procedures can also have parameters. These parameters have to be
valid SQL types, and have one of three different modes: IN, OUT, or INOUT.
IN parameters are arguments to the stored procedure. OUT parameters are
returned from the stored procedure; it assigns values to all OUT parameters
that the user can process. INOUT parameters combine the properties of IN and
OUT parameters: They contain values to be passed to the stored procedures, and
the stored procedure can set their values as return values. Stored procedures
enforce strict type conformance: If a parameter is of type INTEGER, it cannot
be called with an argument of type VARCHAR.

Let us look at an example of a stored procedure with arguments. The stored
procedure shown in Figure 6.9 has two arguments: book isbn and addedQty.
It updates the available number of copies of a book with the quantity from a
new shipment.

CREATE PROCEDURE AddInventory (
IN book isbn CHAR(10),
IN addedQty INTEGER)

UPDATE Books
SET qty in stock = qty in stock + addedQty
WHERE book isbn = isbn

Figure 6.9 A Stored Procedure with Arguments

Stored procedures do not have to be written in SQL; they can be written in any
host language. As an example, the stored procedure shown in Figure 6.10 is a
Java function that is dynamically executed by the database server whenever it
is called by the client:

6.5.2 Calling Stored Procedures

Stored procedures can be called in interactive SQL with the CALL statement:
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CREATE PROCEDURE RankCustomers(IN number INTEGER)
LANGUAGE Java
EXTERNAL NAME ‘file:///c:/storedProcedures/rank.jar’

Figure 6.10 A Stored Procedure in Java

CALL storedProcedureName(argument1, argument2, . . . , argumentN);

In Embedded SQL, the arguments to a stored procedure are usually variables
in the host language. For example, the stored procedure AddInventory would
be called as follows:

EXEC SQL BEGIN DECLARE SECTION

char isbn[10];

long qty;

EXEC SQL END DECLARE SECTION

// set isbn and qty to some values

EXEC SQL CALL AddInventory(:isbn,:qty);

Calling Stored Procedures from JDBC

We can call stored procedures from JDBC using the CallableStatment class.
CallableStatement is a subclass of PreparedStatement and provides the same
functionality. A stored procedure could contain multiple SQL statements or a
series of SQL statements—thus, the result could be many different ResultSet
objects. We illustrate the case when the stored procedure result is a single
ResultSet.

CallableStatement cstmt=

con.prepareCall(”{call ShowNumberOfOrders}”);

ResultSet rs = cstmt.executeQuery()

while (rs.next())

. . .

Calling Stored Procedures from SQLJ

The stored procedure ‘ShowNumberOfOrders’ is called as follows using SQLJ:

// create the cursor class

#sql Iterator CustomerInfo(int cid, String cname, int count);

// create the cursor
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CustomerInfo customerinfo;

// call the stored procedure

#sql customerinfo = {CALL ShowNumberOfOrders};

while (customerinfo.next()) {

System.out.println(customerinfo.cid() + ”,” +

customerinfo.count());

}

6.5.3 SQL/PSM

All major database systems provide ways for users to write stored procedures in
a simple, general purpose language closely aligned with SQL. In this section, we
briefly discuss the SQL/PSM standard, which is representative of most vendor-
specific languages. In PSM, we definemodules, which are collections of stored
procedures, temporary relations, and other declarations.

In SQL/PSM, we declare a stored procedure as follows:

CREATE PROCEDURE name (parameter1,. . ., parameterN)

local variable declarations

procedure code;

We can declare a function similarly as follows:

CREATE FUNCTION name (parameter1,. . ., parameterN)

RETURNS sqlDataType

local variable declarations

function code;

Each parameter is a triple consisting of the mode (IN, OUT, or INOUT as
discussed in the previous section), the parameter name, and the SQL datatype
of the parameter. We can seen very simple SQL/PSM procedures in Section
6.5.1. In this case, the local variable declarations were empty, and the procedure
code consisted of an SQL query.

We start out with an example of a SQL/PSM function that illustrates the
main SQL/PSM constructs. The function takes as input a customer identified
by her cid and a year. The function returns the rating of the customer, which
is defined as follows: Customers who have bought more than ten books during
the year are rated ‘two’; customer who have purchased between 5 and 10 books
are rated ‘one’, otherwise the customer is rated ‘zero’. The following SQL/PSM
code computes the rating for a given customer and year.

CREATE PROCEDURE RateCustomer
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(IN custId INTEGER, IN year INTEGER)
RETURNS INTEGER

DECLARE rating INTEGER;
DECLARE numOrders INTEGER;
SET numOrders =

(SELECT COUNT(*) FROM Orders O WHERE O.cid = custId);
IF (numOrders>10) THEN rating=2;
ELSEIF (numOrders>5) THEN rating=1;
ELSE rating=0;
END IF;

RETURN rating;

Let us use this example to give a short overview of some SQL/PSM constructs:

We can declare local variables using the DECLARE statement. In our exam-
ple, we declare two local variables: ‘rating’, and ‘numOrders’.

PSM/SQL functions return values via the RETURN statement. In our ex-
ample, we return the value of the local variable ‘rating’.

We can assign values to variables with the SET statement. In our example,
we assigned the return value of a query to the variable ‘numOrders’.

SQL/PSM has branches and loops. Branches have the following form:

IF (condition) THEN statements;
ELSEIF statements;
...
ELSEIF statements;
ELSE statements; END IF

Loops are of the form

LOOP

statements;
END LOOP

Queries can be used as part of expressions in branches; queries that return
a single value can be assigned to variables as in our example above.

We can use the same cursor statements as in Embedded SQL (OPEN, FETCH,
CLOSE), but we do not need the EXEC SQL constructs, and variables do not
have to be prefixed by a colon ‘:’.

We only gave a very short overview of SQL/PSM; the references at the end of
the chapter provide more information.
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6.6 CASE STUDY: THE INTERNET BOOK SHOP

DBDudes finished logical database design, as discussed in Section 3.8, and now
consider the queries that they have to support. They expect that the applica-
tion logic will be implemented in Java, and so they consider JDBC and SQLJ as
possible candidates for interfacing the database system with application code.

Recall that DBDudes settled on the following schema:

Books(isbn: CHAR(10), title: CHAR(8), author: CHAR(80),
qty in stock: INTEGER, price: REAL, year published: INTEGER)

Customers(cid: INTEGER, cname: CHAR(80), address: CHAR(200))
Orders(ordernum: INTEGER, isbn: CHAR(10), cid: INTEGER,

cardnum: CHAR(16), qty: INTEGER, order date: DATE, ship date: DATE)

Now, DBDudes considers the types of queries and updates that will arise. They
first create a list of tasks that will be performed in the application. Tasks
performed by customers include the following.

Customers search books by author name, title, or ISBN.

Customers register with the website. Registered customers might want
to change their contact information. DBDudes realize that they have to
augment the Customers table with additional information to capture login
and password information for each customer; we do not discuss this aspect
any further.

Customers check out a final shopping basket to complete a sale.

Customers add and delete books from a ‘shopping basket’ at the website.

Customers check the status of existing orders and look at old orders.

Administrative tasks performed by employees of B&N are listed next.

Employees look up customer contact information.

Employees add new books to the inventory.

Employees fulfill orders, and need to update the shipping date of individual
books.

Employees analyze the data to find profitable customers and customers
likely to respond to special marketing campaigns.

Next, DBDudes consider the types of queries that will arise out of these tasks.
To support searching for books by name, author, title, or ISBN, DBDudes
decide to write a stored procedure as follows:
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CREATE PROCEDURE SearchByISBN (IN book isbn CHAR(10))
SELECT B.title, B.author, B.qty in stock, B.price, B.year published
FROM Books B
WHERE B.isbn = book isbn

Placing an order involves inserting one or more records into the Orders table.
Since DBDudes has not yet chosen the Java-based technology to program the
application logic, they assume for now that the individual books in the order
are stored at the application layer in a Java array. To finalize the order, they
write the following JDBC code shown in Figure 6.11, which inserts the elements
from the array into the Orders table. Note that this code fragment assumes
several Java variables have been set beforehand.

String sql = ”INSERT INTO Orders VALUES(?, ?, ?, ?, ?, ?)”;

PreparedStatement pstmt = con.prepareStatement(sql);

con.setAutoCommit(false);

try {

// orderList is a vector of Order objects

// ordernum is the current order number

// cid is the ID of the customer, cardnum is the credit card number

for (int i=0; i¡orderList.length(); i++)

// now instantiate the parameters with values

Order currentOrder = orderList[i];

pstmt.clearParameters();

pstmt.setInt(1, ordernum);

pstmt.setString(2, Order.getIsbn());

pstmt.setInt(3, cid);

pstmt.setString(4, creditCardNum);

pstmt.setInt(5, Order.getQty());

pstmt.setDate(6, null);

pstmt.executeUpdate();

}

con.commit();

catch (SQLException e){

con.rollback();

System.out.println(e.getMessage());

}

Figure 6.11 Inserting a Completed Order into the Database
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DBDudes writes other JDBC code and stored procedures for all of the remain-
ing tasks. They use code similar to some of the fragments that we have seen in
this chapter.

Establishing a connection to a database, as shown in Figure 6.2.

Adding new books to the inventory, as shown in Figure 6.3.

Processing results from SQL queries as shown in Figure 6.4.

For each customer, showing how many orders he or she has placed. We
showed a sample stored procedure for this query in Figure 6.8.

Increasing the available number of copies of a book by adding inventory,
as shown in Figure 6.9.

Ranking customers according to their purchases, as shown in Figure 6.10.

DBDudes takes care to make the application robust by processing exceptions
and warnings, as shown in Figure 6.6.

DBDudes also decide to write a trigger, which is shown in Figure 6.12. When-
ever a new order is entered into the Orders table, it is inserted with ship date
set to NULL. The trigger processes each row in the order and calls the stored
procedure ‘UpdateShipDate’. This stored procedure (whose code is not shown
here) updates the (anticipated) ship date of the new order to ‘tomorrow’, in
case qty in stock of the corresponding book in the Books table is greater than
zero. Otherwise, the stored procedure sets the ship date to two weeks.

CREATE TRIGGER update ShipDate

AFTER INSERT ON Orders /* Event */

FOR EACH ROW

BEGIN CALL UpdateShipDate(new); END /* Action */

Figure 6.12 Trigger to Update the Shipping Date of New Orders

6.7 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

Why is it not straightforward to integrate SQL queries with a host pro-
gramming language? (Section 6.1.1)

How do we declare variables in Embedded SQL? (Section 6.1.1)
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How do we use SQL statements within a host language? How do we check
for errors in statement execution? (Section 6.1.1)

Explain the impedance mismatch between host languages and SQL, and
describe how cursors address this. (Section 6.1.2)

What properties can cursors have? (Section 6.1.2)

What is Dynamic SQL and how is it different from Embedded SQL? (Sec-
tion 6.1.3)

What is JDBC and what are its advantages? (Section 6.2)

What are the components of the JDBC architecture? Describe four differ-
ent architectural alternatives for JDBC drivers. (Section 6.2.1)

How do we load JDBC drivers in Java code? (Section 6.3.1)

How do we manage connections to data sources? What properties can
connections have? (Section 6.3.2)

What alternatives does JDBC provide for executing SQL DML and DDL
statements? (Section 6.3.3)

How do we handle exceptions and warnings in JDBC? (Section 6.3.5)

What functionality provides the DatabaseMetaData class? (Section 6.3.6)

What is SQLJ and how is it different from JDBC? (Section 6.4)

Why are stored procedures important? How do we declare stored proce-
dures and how are they called from application code? (Section 6.5)

EXERCISES

Exercise 6.1 Briefly answer the following questions.

1. Explain the following terms: Cursor, Embedded SQL, JDBC, SQLJ, stored procedure.

2. What are the differences between JDBC and SQLJ? Why do they both exist?

3. Explain the term stored procedure, and give examples why stored procedures are useful.

Exercise 6.2 Explain how the following steps are performed in JDBC:

1. Connect to a data source.

2. Start, commit, and abort transactions.

3. Call a stored procedure.

How are these steps performed in SQLJ?
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Exercise 6.3 Compare exception handling and handling of warnings in embedded SQL, dy-
namic SQL, JDBC, and SQLJ.

Exercise 6.4 Answer the following questions.

1. Why do we need a precompiler to translate embedded SQL and SQLJ? Why do we not
need a precompiler for JDBC?

2. SQLJ and embedded SQL use variables in the host language to pass parameters to SQL
queries, whereas JDBC uses placeholders marked with a ‘?’. Explain the difference, and
why the different mechanisms are needed.

Exercise 6.5 A dynamic web site generates HTML pages from information stored in a
database. Whenever a page is requested, is it dynamically assembled from static data and
data in a database, resulting in a database access. Connecting to the database is usually
a time-consuming process, since resources need to be allocated, and the user needs to be
authenticated. Therefore, connection pooling—setting up a pool of persistent database
connections and then reusing them for different requests can significantly improve the per-
formance of database-backed websites. Since servlets can keep information beyond single
requests, we can create a connection pool, and allocate resources from it to new requests.

Write a connection pool class that provides the following methods:

Create the pool with a specified number of open connections to the database system.

Obtain an open connection from the pool.

Release a connection to the pool.

Destroy the pool and close all connections.

PROJECT-BASED EXERCISES

In the following exercises, you will create database-backed applications. In this chapter, you
will create the parts of the application that access the database. In the next chapter, you
will extend this code to other aspects of the application. Detailed information about these
exercises and material for more exercises can be found online at

http://www.cs.wisc.edu/˜dbbook

Exercise 6.6 Recall the Notown Records database that you worked with in Exercise 2.5 and
Exercise 3.15. You have now been tasked with designing a website for Notown. It should
provide the following functionality:

Users can search for records by name of the musician, title of the album, and name of
the song.

Users can register with the site, and registered users can log on to the site. Once logged
on, users should not have to log on again unless they are inactive for a long time.

Users who have logged on to the site can add items to a shopping basket.

Users with items in their shopping basket can check out and make a purchase.
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Notown wants to use JDBC to access the database. Write JDBC code that performs the
necessary data access and manipulation. You will integrate this code with application logic
and presentation in the next chapter.

If Notown had chosen SQLJ instead of JDBC, how would your code change?

Exercise 6.7 Recall the database schema for Prescriptions-R-X that you created in Exer-
cise 2.7. The Prescriptions-R-X chain of pharmacies has now engaged you to design their
new website. The website has two different classes of users: doctors and patients. Doctors
should be able to enter new prescriptions for their patients and modify existing prescriptions.
Patients should be able to declare themselves as patients of a doctor; they should be able
to check the status of their prescriptions online; and they should be able to purchase the
prescriptions online so that the drugs can be shipped to their home address.

Follow the analogous steps from Exercise 6.6 to write JDBC code that performs the nec-
essary data access and manipulation. You will integrate this code with application logic and
presentation in the next chapter.

Exercise 6.8 Recall the university database schema that you worked with in Exercise 5.1.
The university has decided to move enrollment to an online system. The website has two
different classes of users: faculty and students. Faculty should be able to create new courses
and delete existing courses, and students should be able to enroll in existing courses.

Follow the analogous steps from Exercise 6.6 to write JDBC code that performs the nec-
essary data access and manipulation. You will integrate this code with application logic and
presentation in the next chapter.

Exercise 6.9 Recall the airline reservation schema that you worked on in Exercise 5.3. De-
sign an online airline reservation system. The reservation system will have two types of users:
airline employees, and airline passengers. Airline employees can schedule new flights and can-
cel existing flights. Airline passengers can book existing flights from a given destination.

Follow the analogous steps from Exercise 6.6 to write JDBC code that performs the nec-
essary data access and manipulation. You will integrate this code with application logic and
presentation in the next chapter.

BIBLIOGRAPHIC NOTES

Information on ODBC can be found on Microsoft’s web page (www.microsoft.com/data/odbc),
and information on JDBC can be found on the Java web page (java.sun.com/products/jdbc).
There exist many books on ODBC, for example, Sanders’ ODBC Developer’s Guide [652] and
the Microsoft ODBC SDK [533]. Books on JDBC include works by Hamilton et al. [359],
Reese [621], and White et al. [773].
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INTERNET APPLICATIONS

☛ How do we name resources on the Internet?

☛ How do Web browsers and webservers communicate?

☛ How do we present documents on the Internet? How do we differen-
tiate between formatting and content?

☛ What is a three-tier application architecture? How do we write three-
tiered applications?

☛ Why do we have application servers?

➽ Key concepts: Uniform Resource Identifiers (URI), Uniform Re-
source Locators (URL); Hypertext Transfer Protocol (HTTP), state-
less protocol; Java; HTML; XML, XML DTD; three-tier architecture,
client-server architecture; HTML forms; JavaScript; cascading style
sheets, XSL; application server; Common Gateway Interface (CGI);
servlet; JavaServer Page (JSP); cookie

Wow! They’ve got the Internet on computers now!

—Homer Simpson, The Simpsons

7.1 INTRODUCTION

The proliferation of computer networks, including the Internet and corporate
‘intranets,’ has enabled users to access a large number of data sources. This
increased access to databases is likely to have a great practical impact; data
and services can now be offered directly to customers in ways impossible until

220
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recently. Examples of such electronic commerce applications include pur-
chasing books through a Web retailer such as Amazon.com, engaging in online
auctions at a site such as eBay, and exchanging bids and specifications for
products between companies. The emergence of standards such as XML for
describing the content of documents is likely to further accelerate electronic
commerce and other online applications.

While the first generation of Internet sites were collections of HTML files, most
major sites today store a large part (if not all) of their data in database systems.
They rely on DBMSs to provide fast, reliable responses to user requests received
over the Internet. This is especially true of sites for electronic commerce and
other business applications.

In this chapter, we present an overview of concepts that are central to Internet
application development. We start out with a basic overview of how the Internet
works in Section 7.2. We introduce HTML and XML, two data formats that are
used to present data on the Internet, in Sections 7.3 and 7.4. In Section 7.5, we
introduce three-tier architectures, a way of structuring Internet applications
into different layers that encapsulate different functionality. In Sections 7.6
and 7.7, we describe the presentation layer and the middle layer in detail; the
DBMS is the third layer. We conclude the chapter by discussing our B&N case
study in Section 7.8.

Examples that appear in this chapter are available online at

http://www.cs.wisc.edu/˜ dbbook

7.2 INTERNET CONCEPTS

The Internet has emerged as a universal connector between globally distributed
software systems. To understand how it works, we begin by discussing two basic
issues: how sites on the Internet are identified, and how programs at one site
communicate with other sites.

We first introduce Uniform Resource Identifiers, a naming schema for locating
resources on the Internet in Section 7.2.1. We then talk about the most popular
protocol for accessing resources over the Web, the hypertext transfer protocol
(HTTP) in Section 7.2.2.

7.2.1 Uniform Resource Identifiers

Uniform Resource Identifiers (URIs), are strings that uniquely identify
resources on the Internet. A resource is any kind of information that can
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Distributed Applications and Service-Oriented Architectures:
The advent of XML, due to its loosely-coupled nature, has made infor-
mation exchange between different applications feasible to an extent previ-
ously unseen. By using XML for information exchange, applications can be
written in different programming languages, run on different operating sys-
tems, and yet they can still share information with each other. There are
also standards for externally describing the intended content of an XML
file or message, most notably the recently adopted W3C XML Schemas
standard.
A promising concept that has arisen out of the XML revolution is the notion
of a Web service. A Web service is an application that provides a well-
defined service, packaged as a set of remotely callable procedures accessible
through the Internet. Web services have the potential to enable powerful
new applications by composing existing Web services—all communicating
seamlessly thanks to the use of standardized XML-based information ex-
change. Several technologies have been developed or are currently under
development that facilitate design and implementation of distributed ap-
plications. SOAP is a W3C standard for XML-based invocation of remote
services (think XML RPC) that allows distributed applications to commu-
nicate either synchronously or asynchronously via structured, typed XML
messages. SOAP calls can ride on a variety of underlying transport layers,
including HTTP (part of what is making SOAP so successful) and vari-
ous reliable messaging layers. Related to the SOAP standard are W3C’s
Web Services Description Language (WSDL) for describing Web
service interfaces, and Universal Description, Discovery, and Inte-
gration (UDDI), a WSDL-based Web services registry standard (think
yellow pages for Web services).
SOAP-based Web services are the foundation for Microsoft’s recently re-
leased .NET framework, their application development infrastructure and
associated run-time system for developing distributed applications, as well
as for the Web services offerings of major software vendors such as IBM,
BEA, and others. Many large software application vendors (major compa-
nies like PeopleSoft and SAP) have announced plans to provide Web service
interfaces to their products and the data that they manage, and many are
hoping that XML and Web services will finally provide the answer to the
long-standing problem of enterprise application integration. Web services
are also being looked to as a natural foundation for the next generation of
business process management (or workflow) systems.
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be identified by a URI, and examples include webpages, images, downloadable
files, services that can be remotely invoked, mailboxes, and so on. The most
common kind of resource is a static file (such as a HTML document), but a
resource may also be a dynamically-generated HTML file, a movie, the output
of a program, etc.

A URI has three parts:

The (name of the) protocol used to access the resource.

The host computer where the resource is located.

The path name of the resource itself on the host computer.

Consider an example URI, such as http://www.bookstore.com/index.html.
This URI can be interpreted as follows. Use the HTTP protocol (explained in
the next section) to retrieve the document index.html located at the computer
www.bookstore.com. This example URI is an instance of a Universal Re-
source Locator (URL), a subset of the more general URI naming scheme;
the distinction is not important for our purposes. As another example, the
following HTML fragment shows a URI that is an email address:

<a href="mailto:webmaster@bookstore.com">Email the webmaster.</A>

7.2.2 The Hypertext Transfer Protocol (HTTP)

A communication protocol is a set of standards that defines the structure
of messages between two communicating parties so that they can understand
each other’s messages. The Hypertext Transfer Protocol (HTTP) is the
most common communication protocol used over the Internet. It is a client-
server protocol in which a client (usually a Web browser) sends a request to an
HTTP server, which sends a response back to the client. When a user requests
a webpage (e.g., clicks on a hyperlink), the browser sends HTTP request
messages for the objects in the page to the server. The server receives the
requests and responds with HTTP response messages, which include the
objects. It is important to recognize that HTTP is used to transmit all kinds
of resources, not just files, but most resources on the Internet today are either
static files or files output from server-side scripts.

A variant of the HTTP protocol called the Secure Sockets Layer (SSL)
protocol uses encryption to exchange information securely between client and
server. We postpone a discussion of SSL to Section 21.5.2 and present the basic
HTTP protocol in this chapter.
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As an example, consider what happens if a user clicks on the following link:
http://www.bookstore.com/index.html. We first explain the structure of an
HTTP request message and then the structure of an HTTP response message.

HTTP Requests

The client (Web browser) establishes a connection with the webserver that
hosts the resource and sends a HTTP request message. The following example
shows a sample HTTP request message:

GET index.html HTTP/1.1

User-agent: Mozilla/4.0

Accept: text/html, image/gif, image/jpeg

The general structure of an HTTP request consists of several lines of ASCII
text, with an empty line at the end. The first line, the request line, has three
fields: the HTTP method field, the URI field, and the HTTP version
field. The method field can take on values GET and POST; in the exam-
ple the message requests the object index.html. (We discuss the differences
between HTTP GET and HTTP POST in detail in Section 7.11.) The version
field indicates which version of HTTP is used by the client and can be used
for future extensions of the protocol. The user agent indicates the type of
the client (e.g., versions of Netscape or Internet Explorer); we do not discuss
this option further. The third line, starting with Accept, indicates what types
of files the client is willing to accept. For example, if the page index.html

contains a movie file with the extension .mpg, the server will not send this file
to the client, as the client is not ready to accept it.

HTTP Responses

The server responds with an HTTP response message. It retrieves the page
index.html, uses it to assemble the HTTP response message, and sends the
message to the client. A sample HTTP response looks like this:

HTTP/1.1 200 OK

Date: Mon, 04 Mar 2002 12:00:00 GMT

Content-Length: 1024

Content-Type: text/html

Last-Modified: Mon, 22 Jun 1998 09:23:24 GMT

<HTML>

<HEAD>

</HEAD>

<BODY>
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<H1>Barns and Nobble Internet Bookstore</H1>

Our inventory:

<H3>Science</H3>

<B>The Character of Physical Law</B>

...

The HTTP response message has three parts: a status line, several header
lines, and the body of the message (which contains the actual object that the
client requested). The status line has three fields (analogous to the request
line of the HTTP request message): the HTTP version (HTTP/1.1), a status
code (200), and an associated server message (OK). Common status codes and
associated messages are:

200 OK: The request succeeded and the object is contained in the body of
the response message”;

400 Bad Request: A generic error code indicating that the request could
not be fulfilled by the server.

404 Not Found: The requested object does not exist on the server.

505 HTTP Version Not Supported: The HTTP protocol version that the
client uses is not supported by the server. (Recall that the HTTP protocol
version sent in the client’s request.)

Our example has three header lines: The date header line indicates the time
and date when the HTTP response was created (not that this is not the object
creation time). The Last-Modified header line indicates when the object was
created. The Content-Length header line indicates the number of bytes in the
object being sent after the last header line. The Content-Type header line
indicates that the object in the entity body is HTML text.

The client (the Web browser) receives the response message, extracts the HTML
file, parses it, and displays it. In doing so, it might find additional URIs in the
file, and it then uses the HTTP protocol to retrieve each of these resources,
establishing a new connection each time.

One important issue is that the HTTP protocol is a stateless protocol. Every
message—from the client to the HTTP server and vice-versa—is self-contained,
and the connection established with a request is maintained only until the
response message is sent. The protocol provides no mechanism to automatically
‘remember’ previous interactions between client and server.

The stateless nature of the HTTP protocol has a major impact on how Inter-
net applications are written. Consider a user who interacts with our example
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bookstore application. Assume that the bookstore permits users to log into
the site and then carry out several actions, such as ordering books or changing
their address, without logging in again (until the login expires or the user logs
out). How do we keep track of whether a user is logged in or not? Since HTTP
is stateless, we cannot switch to a different state (say the ‘logged in’ state) at
the protocol level. Instead, for every request that the user (more precisely, his
or her Web browser) sends to the server, we must encode any state information
required by the application, such as the user’s login status. Alternatively, the
server-side application code must maintain this state information and look it
up on a per-request basis. This issue is explored further in Section 7.7.5.

Note that the statelessness of HTTP is a tradeoff between ease of implementa-
tion of the HTTP protocol and ease of application development. The designers
of HTTP chose to keep the protocol itself simple, and deferred any functionality
beyond the request of objects to application layers above the HTTP protocol.

7.3 HTML DOCUMENTS

In this section and the next, we focus on introducing HTML and XML. In
Section 7.6, we consider how applications can use HTML and XML to create
forms that capture user input, communicate with an HTTP server, and convert
the results produced by the data management layer into one of these formats.

HTML is a simple language used to describe a document. It is also called a
markup language because HTML works by augmenting regular text with
‘marks’ that hold special meaning for a Web browser. Commands in the lan-
guage, called tags, consist (usually) of a start tag and an end tag of the
form <TAG> and </TAG>, respectively. For example, consider the HTML frag-
ment shown in Figure 7.1. It describes a webpage that shows a list of books.
The document is enclosed by the tags <HTML> and </HTML>, marking it as an
HTML document. The remainder of the document—enclosed in <BODY> . . .
</BODY>—contains information about three books. Data about each book is
represented as an unordered list (UL) whose entries are marked with the LI

tag. HTML defines the set of valid tags as well as the meaning of the tags. For
example, HTML specifies that the tag <TITLE> is a valid tag that denotes the
title of the document. As another example, the tag <UL> always denotes an
unordered list.

Audio, video, and even programs (written in Java, a highly portable language)
can be included in HTML documents. When a user retrieves such a document
using a suitable browser, images in the document are displayed, audio and video
clips are played, and embedded programs are executed at the user’s machine;
the result is a rich multimedia presentation. The ease with which HTML docu-
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<HTML>

<HEAD>

</HEAD>

<BODY>

<H1>Barns and Nobble Internet Bookstore</H1>

Our inventory:

<H3>Science</H3>

<B>The Character of Physical Law</B>

<UL>

<LI>Author: Richard Feynman</LI>

<LI>Published 1980</LI>

<LI>Hardcover</LI>

</UL>

<H3>Fiction</H3>

<B>Waiting for the Mahatma</B>

<UL>

<LI>Author: R.K. Narayan</LI>

<LI>Published 1981</LI>

</UL>

<B>The English Teacher</B>

<UL>

<LI>Author: R.K. Narayan</LI>

<LI>Published 1980</LI>

<LI>Paperback</LI>

</UL>

</BODY>

</HTML>

Figure 7.1 Book Listing in HTML

ments can be created—there are now visual editors that automatically generate
HTML—and accessed using Internet browsers has fueled the explosive growth
of the Web.

7.4 XML DOCUMENTS

In this section, we introduce XML as a document format, and consider how
applications can utilize XML. Managing XML documents in a DBMS poses
several new challenges; we discuss this aspect of XML in Chapter 27.
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While HTML can be used to mark up documents for display purposes, it is
not adequate to describe the structure of the content for more general applica-
tions. For example, we can send the HTML document shown in Figure 7.1 to
another application that displays it, but the second application cannot distin-
guish the first names of authors from their last names. (The application can
try to recover such information by looking at the text inside the tags, but this
defeats the purpose of using tags to describe document structure.) Therefore,
HTML is unsuitable for the exchange of complex documents containing product
specifications or bids, for example.

Extensible Markup Language (XML) is a markup language developed to
remedy the shortcomings of HTML. In contrast to a fixed set of tags whose
meaning is specified by the language (as in HTML), XML allows users to de-
fine new collections of tags that can be used to structure any type of data or
document the user wishes to transmit. XML is an important bridge between
the document-oriented view of data implicit in HTML and the schema-oriented
view of data that is central to a DBMS. It has the potential to make database
systems more tightly integrated into Web applications than ever before.

XML emerged from the confluence of two technologies, SGML and HTML. The
Standard Generalized Markup Language (SGML) is a metalanguage
that allows the definition of data and document interchange languages such as
HTML. The SGML standard was published in 1988, and many organizations
that manage a large number of complex documents have adopted it. Due to its
generality, SGML is complex and requires sophisticated programs to harness
its full potential. XML was developed to have much of the power of SGML
while remaining relatively simple. Nonetheless, XML, like SGML, allows the
definition of new document markup languages.

Although XML does not prevent a user from designing tags that encode the
display of the data in a Web browser, there is a style language for XML called
Extensible Style Language (XSL). XSL is a standard way of describing
how an XML document that adheres to a certain vocabulary of tags should be
displayed.

7.4.1 Introduction to XML

We use the small XML document shown in Figure 7.2 as an example.

Elements: Elements, also called tags, are the primary building blocks of
an XML document. The start of the content of an element ELM is marked
with <ELM>, which is called the start tag, and the end of the content end
is marked with </ELM>, called the end tag. In our example document,
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The Design Goals of XML: XML was developed starting in 1996 by a
working group under guidance of the World Wide Web Consortium (W3C)
XML Special Interest Group. The design goals for XML included the
following:

1. XML should be compatible with SGML.

2. It should be easy to write programs that process XML documents.

3. The design of XML should be formal and concise.

the element BOOKLIST encloses all information in the sample document.
The element BOOK demarcates all data associated with a single book.
XML elements are case sensitive: the element BOOK is different from
Book. Elements must be properly nested. Start tags that appear inside
the content of other tags must have a corresponding end tag. For example,
consider the following XML fragment:

<BOOK>

<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME>

<LASTNAME>Feynman</LASTNAME>

</AUTHOR>

</BOOK>

The element AUTHOR is completely nested inside the element BOOK, and
both the elements LASTNAME and FIRSTNAME are nested inside the element
AUTHOR.

Attributes: An element can have descriptive attributes that provide ad-
ditional information about the element. The values of attributes are set
inside the start tag of an element. For example, let ELM denote an element
with the attribute att. We can set the value of att to value through the
following expression: <ELM att="value">. All attribute values must be
enclosed in quotes. In Figure 7.2, the element BOOK has two attributes.
The attribute GENRE indicates the genre of the book (science or fiction)
and the attribute FORMAT indicates whether the book is a hardcover or a
paperback.

Entity References: Entities are shortcuts for portions of common text or
the content of external files, and we call the usage of an entity in the XML
document an entity reference. Wherever an entity reference appears in
the document, it is textually replaced by its content. Entity references
start with a ‘&’ and end with a ‘;’. Five predefined entities in XML are
placeholders for characters with special meaning in XML. For example, the
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<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<BOOKLIST>

<BOOK GENRE=”Science” FORMAT=”Hardcover”>

<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME>

<LASTNAME>Feynman</LASTNAME>

</AUTHOR>

<TITLE>The Character of Physical Law</TITLE>

<PUBLISHED>1980</PUBLISHED>

</BOOK>

<BOOK> GENRE=”Fiction”>

<AUTHOR>

<FIRSTNAME>R.K.</FIRSTNAME>

<LASTNAME>Narayan</LASTNAME>

</AUTHOR>

<TITLE>Waiting for the Mahatma</TITLE>

<PUBLISHED>1981</PUBLISHED>

</BOOK>

<BOOK GENRE=”Fiction”>

<AUTHOR>

<FIRSTNAME>R.K.</FIRSTNAME>

<LASTNAME>Narayan</LASTNAME>

</AUTHOR>

<TITLE>The English Teacher</TITLE>

<PUBLISHED>1980</PUBLISHED>

</BOOK>

</BOOKLIST>

Figure 7.2 Book Information in XML

< character that marks the beginning of an XML command is reserved and
has to be represented by the entity lt. The other four reserved characters
are &, >, ”, and ’; they are represented by the entities amp, gt, quot,
and apos. For example, the text ‘1 < 5’ has to be encoded in an XML
document as follows: &apos;1&lt;5&apos;. We can also use entities to
insert arbitrary Unicode characters into the text. Unicode is a standard
for character representations, similar to ASCII. For example, we can display
the Japanese Hiragana character a using the entity reference &#x3042.

Comments: We can insert comments anywhere in an XML document.
Comments start with <!- and end with ->. Comments can contain arbi-
trary text except the string --.
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Document Type Declarations (DTDs): In XML, we can define our
own markup language. A DTD is a set of rules that allows us to specify
our own set of elements, attributes, and entities. Thus, a DTD is basically
a grammar that indicates what tags are allowed, in what order they can
appear, and how they can be nested. We discuss DTDs in detail in the
next section.

We call an XML document well-formed if it has no associated DTD but
follows these structural guidelines:

The document starts with an XML declaration. An example of an XML
declaration is the first line of the XML document shown in Figure 7.2.

A root element contains all the other elements. In our example, the root
element is the element BOOKLIST.

All elements must be properly nested. This requirement states that start
and end tags of an element must appear within the same enclosing element.

7.4.2 XML DTDs

A DTD is a set of rules that allows us to specify our own set of elements,
attributes, and entities. A DTD specifies which elements we can use and con-
straints on these elements, for example, how elements can be nested and where
elements can appear in the document. We call a document valid if a DTD is
associated with it and the document is structured according to the rules set by
the DTD. In the remainder of this section, we use the example DTD shown in
Figure 7.3 to illustrate how to construct DTDs.

<!DOCTYPE BOOKLIST [

<!ELEMENT BOOKLIST (BOOK)*>

<!ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?)>

<!ELEMENT AUTHOR (FIRSTNAME,LASTNAME)>

<!ELEMENT FIRSTNAME (#PCDATA)>

<!ELEMENT LASTNAME (#PCDATA)>

<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT PUBLISHED (#PCDATA)>

<!ATTLIST BOOK GENRE (Science|Fiction) #REQUIRED>

<!ATTLIST BOOK FORMAT (Paperback|Hardcover) ”Paperback”>

]>

Figure 7.3 Bookstore XML DTD



232 Chapter 7

A DTD is enclosed in <!DOCTYPE name [DTDdeclaration]>, where name is
the name of the outermost enclosing tag, and DTDdeclaration is the text of
the rules of the DTD. The DTD starts with the outermost element—the root

element—which is BOOKLIST in our example. Consider the next rule:
<!ELEMENT BOOKLIST (BOOK)*>

This rule tells us that the element BOOKLIST consists of zero or more BOOK

elements. The * after BOOK indicates how many BOOK elements can appear
inside the BOOKLIST element. A * denotes zero or more occurrences, a + denotes
one or more occurrences, and a ? denotes zero or one occurrence. For example,
if we want to ensure that a BOOKLIST has at least one book, we could change
the rule as follows:

<!ELEMENT BOOKLIST (BOOK)+>

Let us look at the next rule:

<!ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?)>

This rule states that a BOOK element contains a AUTHOR element, a TITLE ele-
ment, and an optional PUBLISHED element. Note the use of the ? to indicate
that the information is optional by having zero or one occurrence of the element.
Let us move ahead to the following rule:

<!ELEMENT LASTNAME (#PCDATA)>

Until now we considered only elements that contained other elements. This
rule states that LASTNAME is an element that does not contain other elements,
but contains actual text. Elements that only contain other elements are said
to have element content, whereas elements that also contain #PCDATA are
said to have mixed content. In general, an element type declaration has the
following structure:

<!ELEMENT (contentType)>

Five possible content types are:

Other elements.

The special symbol #PCDATA, which indicates (parsed) character data.

The special symbol EMPTY, which indicates that the element has no content.
Elements that have no content are not required to have an end tag.

The special symbol ANY, which indicates that any content is permitted.
This content should be avoided whenever possible since it disables all check-
ing of the document structure inside the element.
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A regular expression constructed from the preceding four choices. A
regular expression is one of the following:

– exp1, exp2, exp3: A list of regular expressions.

– exp∗: An optional expression (zero or more occurrences).

– exp?: An optional expression (zero or one occurrences).

– exp+: A mandatory expression (one or more occurrences).

– exp1 | exp2: exp1 or exp2.

Attributes of elements are declared outside the element. For example, consider
the following attribute declaration from Figure 7.3:

<!ATTLIST BOOK GENRE (Science|Fiction) #REQUIRED>>

This XML DTD fragment specifies the attribute GENRE, which is an attribute
of the element BOOK. The attribute can take two values: Science or Fiction.
Each BOOK element must be described in its start tag by a GENRE attribute
since the attribute is required as indicated by #REQUIRED. Let us look at the
general structure of a DTD attribute declaration:

<!ATTLIST elementName (attName attType default)+>

The keyword ATTLIST indicates the beginning of an attribute declaration. The
string elementName is the name of the element with which the following at-
tribute definition is associated. What follows is the declaration of one or more
attributes. Each attribute has a name, as indicated by attName, and a type,
as indicated by attType. XML defines several possible types for an attribute.
We discuss only string types and enumerated types here. An attribute of
type string can take any string as a value. We can declare such an attribute by
setting its type field to CDATA. For example, we can declare a third attribute of
type string of the element BOOK as follows:

<!ATTLIST BOOK edition CDATA ”1”>

If an attribute has an enumerated type, we list all its possible values in the
attribute declaration. In our example, the attribute GENRE is an enumerated
attribute type; its possible attribute values are ‘Science’ and ‘Fiction’.

The last part of an attribute declaration is called its default specification.
The DTD in Figure 7.3 shows two different default specifications: #REQUIRED

and the string ‘Paperback’. The default specification #REQUIRED indicates that
the attribute is required and whenever its associated element appears some-
where in the XML document a value for the attribute must be specified. The
default specification indicated by the string ‘Paperback’ indicates that the at-
tribute is not required; whenever its associated element appears without setting
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<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE BOOKLIST SYSTEM ”books.dtd”>

<BOOKLIST>

<BOOK GENRE=”Science” FORMAT=”Hardcover”>

<AUTHOR>

...

Figure 7.4 Book Information in XML

XML Schema: The DTD mechanism has several limitations, in spite of
its widespread use. For example, elements and attributes cannot be as-
signed types in a flexible way, and elements are always ordered, even if the
application does not require this. XML Schema is a new W3C proposal
that provides a more powerful way to describe document structure than
DTDs; it is a superset of DTDs, allowing legacy data to be handled eas-
ily. An interesting aspect is that it supports uniqueness and foreign key
constraints.

a value for the attribute, the attribute automatically takes the value ‘Paper-
back’. For example, we can make the attribute value ‘Science’ the default value
for the GENRE attribute as follows:

<!ATTLIST BOOK GENRE (Science|Fiction) ”Science”>

In our bookstore example, the XML document with a reference to the DTD is
shown in Figure 7.4.

7.4.3 Domain-Specific DTDs

Recently, DTDs have been developed for several specialized domains—including
a wide range of commercial, engineering, financial, industrial, and scientific
domains—and a lot of the excitement about XML has its origins in the belief
that more and more standardized DTDs will be developed. Standardized DTDs
would enable seamless data exchange among heterogeneous sources, a problem
solved today either by implementing specialized protocols such as Electronic
Data Interchange (EDI) or by implementing ad hoc solutions.

Even in an environment where all XML data is valid, it is not possible to
straightforwardly integrate several XML documents by matching elements in
their DTDs, because even when two elements have identical names in two
different DTDs, the meaning of the elements could be completely different.
If both documents use a single, standard DTD, we avoid this problem. The
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development of standardized DTDs is more a social process than a research
problem, since the major players in a given domain or industry segment have
to collaborate.

For example, the mathematical markup language (MathML) has been
developed for encoding mathematical material on the Web. There are two
types of MathML elements. The 28 presentation elements describe the lay-
out structure of a document; examples are the mrow element, which indicates a
horizontal row of characters, and the msup element, which indicates a base and a
subscript. The 75 content elements describe mathematical concepts. An ex-
ample is the plus element, which denotes the addition operator. (A third type
of element, the math element, is used to pass parameters to the MathML pro-
cessor.) MathML allows us to encode mathematical objects in both notations
since the requirements of the user of the objects might be different. Content
elements encode the precise mathematical meaning of an object without ambi-
guity, and the description can be used by applications such as computer algebra
systems. On the other hand, good notation can suggest the logical structure to
a human and emphasize key aspects of an object; presentation elements allow
us to describe mathematical objects at this level.

For example, consider the following simple equation:

x2 − 4x− 32 = 0

Using presentation elements, the equation is represented as follows:

<mrow>

<mrow> <msup><mi>x</mi><mn>2</mn></msup>

<mo>-</mo>

<mrow><mn>4</mn>

<mo>&invisibletimes;</mo>

<mi>x</mi>

</mrow>

<mo>-</mo><mn>32</mn>

</mrow><mo>=</mo><mn>0</mn>

</mrow>

Using content elements, the equation is described as follows:

<reln><eq/>

<apply>

<minus/>

<apply> <power/> <ci>x</ci> <cn>2</cn> </apply>

<apply> <times/> <cn>4</cn> <ci>x</ci> </apply>

<cn>32</cn>
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</apply> <cn>0</cn>

</reln>

Note the additional power that we gain from using MathML instead of en-
coding the formula in HTML. The common way of displaying mathematical
objects inside an HTML object is to include images that display the objects,
for example, as in the following code fragment:

<IMG SRC="images/equation.gif" ALT=" x**2 - 4x - 32 = 10 " >

The equation is encoded inside an IMG tag with an alternative display format
specified in the ALT tag. Using this encoding of a mathematical object leads
to the following presentation problems. First, the image is usually sized to
match a certain font size, and on systems with other font sizes the image is
either too small or too large. Second, on systems with a different background
color, the picture does not blend into the background and the resolution of the
image is usually inferior when printing the document. Apart from problems
with changing presentations, we cannot easily search for a formula or formula
fragments on a page, since there is no specific markup tag.

7.5 THE THREE-TIER APPLICATION ARCHITECTURE

In this section, we discuss the overall architecture of data-intensive Internet
applications. Data-intensive Internet applications can be understood in terms
of three different functional components: data management, application logic,

and presentation. The component that handles data mangement usually utilizes
a DBMS for data storage, but application logic and presentation involve much
more than just the DBMS itself.

We start with a short overview of the history of database-backed application
architectures, and introduce single-tier and client-server architectures in Section
7.5.1. We explain the three-tier architecture in detail in Section 7.5.2, and show
its advantages in Section 7.5.3.

7.5.1 Single-Tier and Client-Server Architectures

In this section, we provide some perspective on the three-tier architecture by
discussing single-tier and client-server architectures, the predecessors of the
three-tier architecture. Initially, data-intensive applications were combined into
a single tier, including the DBMS, application logic, and user interface, as
illustrated in Figure 7.5. The application typically ran on a mainframe, and
users accessed it through dumb terminals that could perform only data input
and display. This approach has the benefit of being easily maintained by a
central administrator.
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Figure 7.5 A Single-Tier Architecture
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Figure 7.6 A Two-Server Architecture: Thin Clients

Single-tier architectures have an important drawback: Users expect graphical
interfaces that require much more computational power than simple dumb ter-
minals. Centralized computation of the graphical displays of such interfaces
requires much more computational power than a single server has available,
and thus single-tier architectures do not scale to thousands of users. The com-
moditization of the PC and the availability of cheap client computers led to
the development of the two-tier architecture.

Two-tier architectures, often also referred to as client-server architec-
tures, consist of a client computer and a server computer, which interact
through a well-defined protocol. What part of the functionality the client im-
plements, and what part is left to the server, can vary. In the traditional client-
server architecture, the client implements just the graphical user interface,
and the server implements both the business logic and the data management;
such clients are often called thin clients, and this architecture is illustrated in
Figure 7.6.

Other divisions are possible, such as more powerful clients that implement both
user interface and business logic, or clients that implement user interface and
part of the business logic, with the remaining part being implemented at the
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Figure 7.7 A Two-Tier Architecture: Thick Clients

server level; such clients are often called thick clients, and this architecture is
illustrated in Figure 7.7.

Compared to the single-tier architecture, two-tier architectures physically sep-
arate the user interface from the data management layer. To implement two-
tier architectures, we can no longer have dumb terminals on the client side;
we require computers that run sophisticated presentation code (and possibly,
application logic).

Over the last ten years, a large number of client-server development tools such
Microsoft Visual Basic and Sybase Powerbuilder have been developed. These
tools permit rapid development of client-server software, contributing to the
success of the client-server model, especially the thin-client version.

The thick-client model has several disadvantages when compared to the thin-
client model. First, there is no central place to update and maintain the busi-
ness logic, since the application code runs at many client sites. Second, a large
amount of trust is required between the server and the clients. As an exam-
ple, the DBMS of a bank has to trust the (application executing at an) ATM
machine to leave the database in a consistent state. (One way to address this
problem is through stored procedures, trusted application code that is registered
with the DBMS and can be called from SQL statements. We discuss stored
procedures in detail in Section 6.5.)

A third disadvantage of the thick-client architecture is that it does not scale
with the number of clients; it typically cannot handle more than a few hundred
clients. The application logic at the client issues SQL queries to the server
and the server returns the query result to the client, where further processing
takes place. Large query results might be transferred between client and server.
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Figure 7.8 A Standard Three-Tier Architecture

(Stored procedures can mitigate this bottleneck.) Fourth, thick-client systems
do not scale as the application accesses more and more database systems. As-
sume there are x different database systems that are accessed by y clients, then
there are x · y different connections open at any time, clearly not a scalable
solution.

These disadvantages of thick-client systems and the widespread adoption of
standard, very thin clients—notably, Web browsers—have led to the widespread
use thin-client architectures.

7.5.2 Three-Tier Architectures

The thin-client two-tier architecture essentially separates presentation issues
from the rest of the application. The three-tier architecture goes one step
further, and also separates application logic from data management:

Presentation Tier: Users require a natural interface to make requests,
provide input, and to see results. The widespread use of the Internet has
made Web-based interfaces increasingly popular.

Middle Tier: The application logic executes here. An enterprise-class
application reflects complex business processes, and is coded in a general
purpose language such as C++ or Java.

Data Management Tier: Data-intensive Web applications involve DBMSs,
which are the subject of this book.

Figure 7.8 shows a basic three-tier architecture. Different technologies have
been developed to enable distribution of the three tiers of an application across
multiple hardware platforms and different physical sites. Figure 7.9 shows the
technologies relevant to each tier.
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Figure 7.9 Technologies for the Three Tiers

Overview of the Presentation Tier

At the presentation layer, we need to provide forms through which the user
can issue requests, and display responses that the middle tier generates. The
hypertext markup language (HTML) discussed in Section 7.3 is the basic data
presentation language.

It is important that this layer of code be easy to adapt to different display
devices and formats; for example, regular desktops versus handheld devices
versus cell phones. This adaptivity can be achieved either at the middle tier
through generation of different pages for different types of client, or directly at
the client through style sheets that specify how the data should be presented.
In the latter case, the middle tier is responsible for producing the appropriate
data in response to user requests, whereas the presentation layer decides how

to display that information.

We cover presentation tier technologies, including style sheets, in Section 7.6.

Overview of the Middle Tier

The middle layer runs code that implements the business logic of the applica-
tion: It controls what data needs to be input before an action can be executed,
determines the control flow between multi-action steps, controls access to the
database layer, and often assembles dynamically generated HTML pages from
database query results.
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The middle tier code is responsible for supporting all the different roles involved
in the application. For example, in an Internet shopping site implementation,
we would like customers to be able to browse the catalog and make purchases,
administrators to be able to inspect current inventory, and possibly data ana-
lysts to ask summary queries about purchase histories. Each of these roles can
require support for several complex actions.

For example, consider the a customer who wants to buy an item (after browsing
or searching the site to find it). Before a sale can happen, the customer has
to go through a series of steps: She has to add items to her shopping basket,
she has to provide her shipping address and credit card number (unless she has
an account at the site), and she has to finally confirm the sale with tax and
shipping costs added. Controlling the flow among these steps and remembering
already executed steps is done at the middle tier of the application. The data
carried along during this series of steps might involve database accesses, but
usually it is not yet permanent (for example, a shopping basket is not stored
in the database until the sale is confirmed).

We cover the middle tier in detail in Section 7.7.

7.5.3 Advantages of the Three-Tier Architecture

The three-tier architecture has the following advantages:

Heterogeneous Systems: Applications can utilize the strengths of dif-
ferent platforms and different software components at the different tiers.
It is easy to modify or replace the code at any tier without affecting the
other tiers.

Thin Clients: Clients only need enough computation power for the pre-
sentation layer. Typically, clients are Web browsers.

Integrated Data Access: In many applications, the data must be ac-
cessed from several sources. This can be handled transparently at the
middle tier, where we can centrally manage connections to all database
systems involved.

Scalability to Many Clients: Each client is lightweight and all access to
the system is through the middle tier. The middle tier can share database
connections across clients, and if the middle tier becomes the bottle-neck,
we can deploy several servers executing the middle tier code; clients can
connect to any one of these servers, if the logic is designed appropriately.
This is illustrated in Figure 7.10, which also shows how the middle tier
accesses multiple data sources. Of course, we rely upon the DBMS for each
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Figure 7.10 Middle-Tier Replication and Access to Multiple Data Sources

data source to be scalable (and this might involve additional parallelization
or replication, as discussed in Chapter 22).

Software Development Benefits: By dividing the application cleanly
into parts that address presentation, data access, and business logic, we
gain many advantages. The business logic is centralized, and is therefore
easy to maintain, debug, and change. Interaction between tiers occurs
through well-defined, standardized APIs. Therefore, each application tier
can be built out of reusable components that can be individually developed,
debugged, and tested.

7.6 THE PRESENTATION LAYER

In this section, we describe technologies for the client side of the three-tier ar-
chitecture. We discuss HTML forms as a special means of passing arguments
from the client to the middle tier (i.e., from the presentation tier to the middle
tier) in Section 7.6.1. In Section 7.6.2, we introduce JavaScript, a Java-based
scripting language that can be used for light-weight computation in the client
tier (e.g., for simple animations). We conclude our discussion of client-side tech-
nologies by presenting style sheets in Section 7.6.3. Style sheets are languages
that allow us to present the same webpage with different formatting for clients
with different presentation capabilities; for example, Web browsers versus cell
phones, or even a Netscape browser versus Microsoft’s Internet Explorer.

7.6.1 HTML Forms

HTML forms are a common way of communicating data from the client tier to
the middle tier. The general format of a form is the following:

<FORM ACTION=”page.jsp” METHOD="GET" NAME=”LoginForm”>
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...

</FORM>

A single HTML document can contain more than one form. Inside an HTML
form, we can have any HTML tags except another FORM element.

The FORM tag has three important attributes:

ACTION: Specifies the URI of the page to which the form contents are
submitted; if the ACTION attribute is absent, then the URI of the current
page is used. In the sample above, the form input would be submited to
the page named page.jsp, which should provide logic for processing the
input from the form. (We will explain methods for reading form data at
the middle tier in Section 7.7.)

METHOD: The HTTP/1.0 method used to submit the user input from the
filled-out form to the webserver. There are two choices, GET and POST; we
postpone their discussion to the next section.

NAME: This attribute gives the form a name. Although not necessary,
naming forms is good style. In Section 7.6.2, we discuss how to write
client-side programs in JavaScript that refer to forms by name and perform
checks on form fields.

Inside HTML forms, the INPUT, SELECT, and TEXTAREA tags are used to specify
user input elements; a form can have many elements of each type. The simplest
user input element is an INPUT field, a standalone tag with no terminating tag.
An example of an INPUT tag is the following:

<INPUT TYPE="text" NAME=”title”>

The INPUT tag has several attributes. The three most important ones are TYPE,
NAME, and VALUE. The TYPE attribute determines the type of the input field. If
the TYPE attribute has value text, then the field is a text input field. If the
TYPE attribute has value password, then the input field is a text field where the
entered characters are displayed as stars on the screen. If the TYPE attribute
has value reset, it is a simple button that resets all input fields within the
form to their default values. If the TYPE attribute has value submit, then it is
a button that sends the values of the different input fields in the form to the
server. Note that reset and submit input fields affect the entire form.

The NAME attribute of the INPUT tag specifies the symbolic name for this field
and is used to identify the value of this input field when it is sent to the server.
NAME has to be set for INPUT tags of all types except submit and reset. In the
preceding example, we specified title as the NAME of the input field.
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The VALUE attribute of an input tag can be used for text or password fields to
specify the default contents of the field. For submit or reset buttons, VALUE
determines the label of the button.

The form in Figure 7.11 shows two text fields, one regular text input field and
one password field. It also contains two buttons, a reset button labeled ‘Reset
Values’ and a submit button labeled ‘Log on.’ Note that the two input fields
are named, whereas the reset and submit button have no NAME attributes.

<FORM ACTION=”page.jsp” METHOD="GET" NAME=”LoginForm”>

<INPUT TYPE="text" NAME=”username” VALUE=”Joe”><P>

<INPUT TYPE="password" NAME=”password”><P>

<INPUT TYPE="reset" VALUE=”Reset Values”><P>

<INPUT TYPE="submit" VALUE=”Log on”>

</FORM>

Figure 7.11 HTML Form with Two Text Fields and Two Buttons

HTML forms have other ways of specifying user input, such as the aforemen-
tioned TEXTAREA and SELECT tags; we do not discuss them.

Passing Arguments to Server-Side Scripts

As mentioned at the beginning of Section 7.6.1, there are two different ways to
submit HTML Form data to the webserver. If the method GET is used, then
the contents of the form are assembled into a query URI (as discussed next)
and sent to the server. If the method POST is used, then the contents of the
form are encoded as in the GET method, but the contents are sent in a separate
data block instead of appending them directly to the URI. Thus, in the GET

method the form contents are directly visible to the user as the constructed
URI, whereas in the POST method, the form contents are sent inside the HTTP
request message body and are not visible to the user.

Using the GET method gives users the opportunity to bookmark the page with
the constructed URI and thus directly jump to it in subsequent sessions; this
is not possible with the POST method. The choice of GET versus POST should
be determined by the application and its requirements.

Let us look at the encoding of the URI when the GET method is used. The
encoded URI has the following form:

action?name1=value1&name2=value2&name3=value3
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The action is the URI specified in the ACTION attribute to the FORM tag, or the
current document URI if no ACTION attribute was specified. The ‘name=value’
pairs are the user inputs from the INPUT fields in the form. For form INPUT

fields where the user did not input anything, the name is stil present with an
empty value (name=). As a concrete example, consider the password submission
form at the end of the previous section. Assume that the user inputs ‘John
Doe’ as username, and ‘secret’ as password. Then the request URI is:

page.jsp?username=John+Doe&password=secret

The user input from forms can contain general ASCII characters, such as the
space character, but URIs have to be single, consecutive strings with no spaces.
Therefore, special characters such as spaces, ‘=’, and other unprintable charac-
ters are encoded in a special way. To create a URI that has form fields encoded,
we perform the following three steps:

1. Convert all special characters in the names and values to ‘%xyz,’ where
‘xyz’ is the ASCII value of the character in hexadecimal. Special characters
include =, &, %, +, and other unprintable characters. Note that we could
encode all characters by their ASCII value.

2. Convert all space characters to the ‘+’ character.

3. Glue corresponding names and values from an individual HTML INPUT tag
together with ‘=’ and then paste name-value pairs from different HTML
INPUT tags together using ‘&’ to create a request URI of the form:
action?name1=value1&name2=value2&name3=value3

Note that in order to process the input elements from the HTML form at
the middle tier, we need the ACTION attribute of the FORM tag to point to a
page, script, or program that will process the values of the form fields the user
entered. We discuss ways of receiving values from form fields in Sections 7.7.1
and 7.7.3.

7.6.2 JavaScript

JavaScript is a scripting language at the client tier with which we can add
programs to webpages that run directly at the client (i.e., at the machine run-
ning the Web browser). JavaScript is often used for the following types of
computation at the client:

Browser Detection: JavaScript can be used to detect the browser type
and load a browser-specific page.

Form Validation: JavaScript is used to perform simple consistency checks
on form fields. For example, a JavaScript program might check whether a
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form input that asks for an email address contains the character ‘@,’ or if
all required fields have been input by the user.

Browser Control: This includes opening pages in customized windows;
examples include the annoying pop-up advertisements that you see at many
websites, which are programmed using JavaScript.

JavaScript is usually embedded into an HTML document with a special tag,
the SCRIPT tag. The SCRIPT tag has the attribute LANGUAGE, which indicates
the language in which the script is written. For JavaScript, we set the lan-
guage attribute to JavaScript. Another attribute of the SCRIPT tag is the
SRC attribute, which specifies an external file with JavaScript code that is au-
tomatically embedded into the HTML document. Usually JavaScript source
code files use a ‘.js’ extension. The following fragment shows a JavaScript file
included in an HTML document:

<SCRIPT LANGUAGE=”JavaScript” SRC=”validateForm.js”> </SCRIPT>

The SCRIPT tag can be placed inside HTML comments so that the JavaScript
code is not displayed verbatim in Web browsers that do not recognize the
SCRIPT tag. Here is another JavaScipt code example that creates a pop-up
box with a welcoming message. We enclose the JavaScipt code inside HTML
comments for the reasons just mentioned.

<SCRIPT LANGUAGE=”JavaScript”>

<!--

alert(”Welcome to our bookstore”);

//-->

</SCRIPT>

JavaScript provides two different commenting styles: single-line comments that
start with the ‘//’ character, and multi-line comments starting with ‘/*’ and
ending with ‘*/’ characters.1

JavaScript has variables that can be numbers, boolean values (true or false),
strings, and some other data types that we do not discuss. Global variables have
to be declared in advance of their usage with the keyword var, and they can
be used anywhere inside the HTML documents. Variables local to a JavaScript
function (explained next) need not be declared. Variables do not have a fixed
type, but implicitly have the type of the data to which they have been assigned.

1Actually, ‘<!--’ also marks the start of a single-line comment, which is why we did not have

to mark the HTML starting comment ‘<!--’ in the preceding example using JavaScript comment

notation. In contrast, the HTML closing comment “-->” has to be commented out in JavaScript as

it is interpreted otherwise.
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JavaScript has the usual assignment operators (=, + =, etc.), the usual arith-
metic operators (+, −, ∗, /, %), the usual comparison operators (==, ! =,
>=, etc.), and the usual boolean operators (&& for logical AND, || for logical
OR, and ! for negation). Strings can be concatenated using the ‘+’ charac-
ter. The type of an object determines the behavior of operators; for example
1+1 is 2, since we are adding numbers, whereas ”1”+”1” is ”11,” since we
are concatenating strings. JavaScript contains the usual types of statements,
such as assignments, conditional statements (if (condition) {statements;}
else {statements; }), and loops (for-loop, do-while, and while-loop).

JavaScript allows us to create functions using the function keyword: function
f(arg1, arg2) {statements;}. We can call functions from JavaScript code,
and functions can return values using the keyword return.

We conclude this introduction to JavaScript with a larger example of a JavaScript
function that tests whether the login and password fields of a HTML form are
not empty. Figure 7.12 shows the JavaScript function and the HTML form.
The JavaScript code is a function called testLoginEmpty() that tests whether
either of the two input fields in the form named LoginForm is empty. In the
function testLoginEmpty, we first use variable loginForm to refer to the form
LoginForm using the implicitly defined variable document, which refers to the
current HTML page. (JavaScript has a library of objects that are implicitly de-
fined.) We then check whether either of the strings loginForm.userif.value
or loginForm.password.value is empty.

The function testLoginEmpty is checked within a form event handler. An
event handler is a function that is called if an event happens on an object in
a webpage. The event handler we use is onSubmit, which is called if the submit
button is pressed (or if the user presses return in a text field in the form). If
the event handler returns true, then the form contents are submitted to the
server, otherwise the form contents are not submitted to the server.

JavaScript has functionality that goes beyond the basics that we explained in
this section; the interested reader is referred to the bibliographic notes at the
end of this chapter.

7.6.3 Style Sheets

Different clients have different displays, and we need correspondingly different
ways of displaying the same information. For example, in the simplest case,
we might need to use different font sizes or colors that provide high-contrast
on a black-and-white screen. As a more sophisticated example, we might need
to re-arrange objects on the page to accommodate small screens in personal
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<SCRIPT LANGUAGE=”JavaScript”>

<!--

function testLoginEmpty()

{

loginForm = document.LoginForm

if ((loginForm.userid.value == "") ||

(loginForm.password.value == "")) {

alert(’Please enter values for userid and password.’);

return false;

}

else

return true;

}

//-->

</SCRIPT>

<H1 ALIGN = "CENTER">Barns and Nobble Internet Bookstore</H1>

<H3 ALIGN = "CENTER">Please enter your userid and password:</H3>

<FORM NAME = "LoginForm" METHOD="POST"

ACTION="TableOfContents.jsp"

onSubmit="return testLoginEmpty()">

Userid: <INPUT TYPE="TEXT" NAME="userid"><P>

Password: <INPUT TYPE="PASSWORD" NAME="password"><P>

<INPUT TYPE="SUBMIT" VALUE="Login" NAME="SUBMIT">

<INPUT TYPE="RESET" VALUE="Clear Input" NAME="RESET">

</FORM>

Figure 7.12 Form Validation with JavaScript

digital assistants (PDAs). As another example, we might highlight different
information to focus on some important part of the page. A style sheet is a
method to adapt the same document contents to different presentation formats.
A style sheet contains instructions that tell a Web browser (or whatever the
client uses to display the webpage) how to translate the data of a document
into a presentation that is suitable for the client’s display.

Style sheets separate the transformative aspect of the page from the ren-
dering aspects of the page. During transformation, the objects in the XML
document are rearranged to form a different structure, to omit parts of the
XML document, or to merge two different XML documents into a single docu-
ment. During rendering, we take the existing hierarchical structure of the XML
document and format the document according to the user’s display device.
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BODY {BACKGROUND-COLOR: yellow}

H1 {FONT-SIZE: 36pt}

H3 {COLOR: blue}

P {MARGIN-LEFT: 50px; COLOR: red}

Figure 7.13 An Example Style sheet

The use of style sheets has many advantages. First, we can reuse the same doc-
ument many times and display it differently depending on the context. Second,
we can tailor the display to the reader’s preference such as font size, color style,
and even level of detail. Third, we can deal with different output formats, such
as different output devices (laptops versus cell phones), different display sizes
(letter versus legal paper), and different display media (paper versus digital
display). Fourth, we can standardize the display format within a corporation
and thus apply style sheet conventions to documents at any time. Further,
changes and improvements to these display conventions can be managed at a
central place.

There are two style sheet languages: XSL and CSS. CSS was created for HTML
with the goal of separating the display characteristics of different formatting
tags from the tags themselves. XSL is an extension of CSS to arbitrary XML
documents; besides allowing us to define ways of formatting objects, XSL con-
tains a transformation language that enables us to rearrange objects. The
target files for CSS are HTML files, whereas the target files for XSL are XML
files.

Cascading Style Sheets

A Cascading Style Sheet (CSS) defines how to display HTML elements.
(In Section 7.13, we introduce a more general style sheet language designed for
XML documents.) Styles are normally stored in style sheets, which are files
that contain style definitions. Many different HTML documents, such as all
documents in a website, can refer to the same CSS. Thus, we can change the
format of a website by changing a single file. This is a very convenient way
of changing the layout of many webpages at the same time, and a first step
toward the separation of content from presentation.

An example style sheet is shown in Figure 7.13. It is included into an HTML
file with the following line:

<LINK REL="style sheet" TYPE="text/css" HREF="books.css" />
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Each line in a CSS sheet consists of three parts; a selector, a property, and a
value. They are syntactically arranged in the following way:

selector {property: value}

The selector is the element or tag whose format we are defining. The property
indicates the tag’s attribute whose value we want to set in the style sheet, and
the property is the actual value of the attribute. As an example, consider the
first line of the example style sheet shown in Figure 7.13:

BODY {BACKGROUND-COLOR: yellow}

This line has the same effect as changing the HTML code to the following:

<BODY BACKGROUND-COLOR="yellow">.

The value should always be quoted, as it could consist of several words. More
than one property for the same selector can be separated by semicolons as
shown in the last line of the example in Figure 7.13:

P {MARGIN-LEFT: 50px; COLOR: red}

Cascading style sheets have an extensive syntax; the bibliographic notes at the
end of the chapter point to books and online resources on CSSs.

XSL

XSL is a language for expressing style sheets. An XSL style sheet is, like CSS,
a file that describes how to display an XML document of a given type. XSL
shares the functionality of CSS and is compatible with it (although it uses a
different syntax).

The capabilities of XSL vastly exceed the functionality of CSS. XSL contains
the XSL Transformation language, or XSLT, a language that allows us to
transform the input XML document into a XML document with another struc-
ture. For example, with XSLT we can change the order of elements that we are
displaying (e.g., by sorting them), process elements more than once, suppress
elements in one place and present them in another, and add generated text to
the presentation.

XSL also contains the XML Path Language (XPath), a language that
allows us to refer to parts of an XML document. We discuss XPath in Section
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27. XSL also contains XSL Formatting Object, a way of formatting the output
of an XSL transformation.

7.7 THE MIDDLE TIER

In this section, we discuss technologies for the middle tier. The first gen-
eration of middle-tier applications were stand-alone programs written in a
general-purpose programming language such as C, C++, and Perl. Program-
mers quickly realized that interaction with a stand-alone application was quite
costly; the overheads include starting the application every time it is invoked
and switching processes between the webserver and the application. Therefore,
such interactions do not scale to large numbers of concurrent users. This led
to the development of the application server, which provides the run-time
environment for several technologies that can be used to program middle-tier
application components. Most of today’s large-scale websites use an application
server to run application code at the middle tier.

Our coverage of technologies for the middle tier mirrors this evolution. We
start in Section 7.7.1 with the Common Gateway Interface, a protocol that is
used to transmit arguments from HTML forms to application programs run-
ning at the middle tier. We introduce application servers in Section 7.7.2. We
then describe technologies for writing application logic at the middle tier: Java
servlets (Section 7.7.3) and Java Server Pages (Section 7.7.4). Another impor-
tant functionality is the maintenance of state in the middle tier component of
the application as the client component goes through a series of steps to com-
plete a transaction (for example, the purchase of a market basket of items or
the reservation of a flight). In Section 7.7.5, we discuss Cookies, one approach
to maintaining state.

7.7.1 CGI: The Common Gateway Interface

The Common Gateway Interface connects HTML forms with application pro-
grams. It is a protocol that defines how arguments from forms are passed to
programs at the server side. We do not go into the details of the actual CGI
protocol since libraries enable application programs to get arguments from the
HTML form; we shortly see an example in a CGI program. Programs that
communicate with the webserver via CGI are often called CGI scripts, since
many such application programs were written in a scripting language such as
Perl.

As an example of a program that interfaces with an HTML form via CGI,
consider the sample page shown in Figure 7.14. This webpage contains a form
where a user can fill in the name of an author. If the user presses the ‘Send
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<HTML><HEAD><TITLE>The Database Bookstore</TITLE></HEAD>

<BODY>

<FORM ACTION="find books.cgi" METHOD=POST>

Type an author name:

<INPUT TYPE="text" NAME="authorName"

SIZE=30 MAXLENGTH=50>

<INPUT TYPE="submit" value="Send it">

<INPUT TYPE="reset" VALUE="Clear form">

</FORM>

</BODY></HTML>

Figure 7.14 A Sample Web Page Where Form Input Is Sent to a CGI Script

it’ button, the Perl script ‘findBooks.cgi’ shown in Figure 7.14 is executed as
a separate process. The CGI protocol defines how the communication between
the form and the script is performed. Figure 7.15 illustrates the processes
created when using the CGI protocol.

Figure 7.16 shows the example CGI script, written in Perl. We omit error-
checking code for simplicity. Perl is an interpreted language that is often used
for CGI scripting and many Perl libraries, called modules, provide high-level
interfaces to the CGI protocol. We use one such library, called the DBI li-
brary, in our example. The CGI module is a convenient collection of functions
for creating CGI scripts. In part 1 of the sample script, we extract the argument
of the HTML form that is passed along from the client as follows:

$authorName = $dataIn− >param(‘authorName’);

Note that the parameter name authorName was used in the form in Figure
7.14 to name the first input field. Conveniently, the CGI protocol abstracts the
actual implementation of how the webpage is returned to the Web browser; the
webpage consists simply of the output of our program, and we start assembling
the output HTML page in part 2. Everything the script writes in print-
statements is part of the dynamically constructed webpage returned to the
browser. We finish in part 3 by appending the closing format tags to the
resulting page.

7.7.2 Application Servers

Application logic can be enforced through server-side programs that are in-
voked using the CGI protocol. However, since each page request results in the
creation of a new process, this solution does not scale well to a large number
of simultaneous requests. This performance problem led to the development of
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Figure 7.15 Process Structure with CGI Scripts

#!/usr/bin/perl

use CGI;

### part 1

$dataIn = new CGI;

$dataIn-¿header();

$authorName = $dataIn-¿param(‘authorName’);

### part 2

print("<HTML><TITLE>Argument passing test</TITLE>");

print("The user passed the following argument:");

print("authorName: ", $authorName);

### part 3

print ("</HTML>");

exit;

Figure 7.16 A Simple Perl Script

specialized programs called application servers. An application server main-
tains a pool of threads or processes and uses these to execute requests. Thus,
it avoids the startup cost of creating a new process for each request.

Application servers have evolved into flexible middle-tier packages that pro-
vide many functions in addition to eliminating the process-creation overhead.
They facilitate concurrent access to several heterogeneous data sources (e.g., by
providing JDBC drivers), and provide session management services. Often,
business processes involve several steps. Users expect the system to maintain
continuity during such a multistep session. Several session identifiers such as
cookies, URI extensions, and hidden fields in HTML forms can be used to
identify a session. Application servers provide functionality to detect when a
session starts and ends and keep track of the sessions of individual users. They
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Figure 7.17 Process Structure in the Application Server Architecture

also help to ensure secure database access by supporting a general user-id mech-
anism. (For more on security, see Chapter 21.)

A possible architecture for a website with an application server is shown in Fig-
ure 7.17. The client (a Web browser) interacts with the webserver through the
HTTP protocol. The webserver delivers static HTML or XML pages directly
to the client. To assemble dynamic pages, the webserver sends a request to the
application server. The application server contacts one or more data sources to
retrieve necessary data or sends update requests to the data sources. After the
interaction with the data sources is completed, the application server assembles
the webpage and reports the result to the webserver, which retrieves the page
and delivers it to the client.

The execution of business logic at the webserver’s site, server-side process-
ing, has become a standard model for implementing more complicated business
processes on the Internet. There are many different technologies for server-side
processing and we only mention a few in this section; the interested reader is
referred to the bibliographic notes at the end of the chapter.

7.7.3 Servlets

Java servlets are pieces of Java code that run on the middle tier, in either
webservers or application servers. There are special conventions on how to
read the input from the user request and how to write output generated by the
servlet. Servlets are truly platform-independent, and so they have become very
popular with Web developers.

Since servlets are Java programs, they are very versatile. For example, servlets
can build webpages, access databases, and maintain state. Servlets have access
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import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

PrintWriter out = response.getWriter();

// Use ’out’ to send content to browser

out.println("Hello World");

}

}

Figure 7.18 Servlet Template

to all Java APIs, including JDBC. All servlets must implement the Servlet

interface. In most cases, servlets extend the specific HttpServlet class for
servers that communicate with clients via HTTP. The HttpServlet class pro-
vides methods such as doGet and doPost to receive arguments from HTML
forms, and it sends its output back to the client via HTTP. Servlets that
communicate through other protocols (such as ftp) need to extend the class
GenericServlet.

Servlets are compiled Java classes executed and maintained by a servlet con-
tainer. The servlet container manages the lifespan of individual servlets by
creating and destroying them. Although servlets can respond to any type of re-
quest, they are commonly used to extend the applications hosted by webservers.
For such applications, there is a useful library of HTTP-specific servlet classes.

Servlets usually handle requests from HTML forms and maintain state between
the client and the server. We discuss how to maintain state in Section 7.7.5.
A template of a generic servlet structure is shown in Figure 7.18. This simple
servlet just outputs the two words “Hello World,” but it shows the general
structure of a full-fledged servlet. The request object is used to read HTML
form data. The response object is used to specify the HTTP response status
code and headers of the HTTP response. The object out is used to compose
the content that is returned to the client.

Recall that HTTP sends back the status line, a header, a blank line, and then
the context. Right now our servlet just returns plain text. We can extend our
servlet by setting the content type to HTML, generating HTML as follows:
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PrintWriter out = response.getWriter();

String docType =

"<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 " +

"Transitional//EN"> \n";

out.println(docType +

"<HTML>\n" +

"<HEAD><TITLE>Hello WWW</TITLE></HEAD>\n" +

"<BODY>\n" +

"<H1>Hello WWW</H1>\n" +

"</BODY></HTML>");

What happens during the life of a servlet? Several methods are called at
different stages in the development of a servlet. When a requested page is
a servlet, the webserver forwards the request to the servlet container, which
creates an instance of the servlet if necessary. At servlet creation time, the
servlet container calls the init() method, and before deallocating the servlet,
the servlet container calls the servlet’s destroy() method.

When a servlet container calls a servlet because of a requested page, it starts
with the service()method, whose default behavior is to call one of the follow-
ing methods based on the HTTP transfer method: service() calls doGet()

for a HTTP GET request, and it calls doPost() for a HTTP POST request.
This automatic dispatching allows the servlet to perform different tasks on the
request data depending on the HTTP transfer method. Usually, we do not over-
ride the service() method, unless we want to program a servlet that handles
both HTTP POST and HTTP GET requests identically.

We conclude our discussion of servlets with an example, shown in Figure 7.19,
that illustrates how to pass arguments from an HTML form to a servlet.

7.7.4 JavaServer Pages

In the previous section, we saw how to use Java programs in the middle tier
to encode application logic and dynamically generate webpages. If we needed
to generate HTML output, we wrote it to the out object. Thus, we can think
about servlets as Java code embodying application logic, with embedded HTML
for output.

JavaServer pages (JSPs) interchange the roles of output and application logic.
JavaServer pages are written in HTML with servlet-like code embedded in
special HTML tags. Thus, in comparison to servlets, JavaServer pages are
better suited to quickly building interfaces that have some logic inside, whereas
servlets are better suited for complex application logic.
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import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class ReadUserName extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

response.setContentType(”text/html”);

PrintWriter out = response.getWriter();

out.println("<BODY>\n" +

"<H1 ALIGN=CENTER> Username: </H1>\n" +

"<UL>\n" +

" <LI>title: "

+ request.getParameter(”userid”) + ”\n” +

+ request.getParameter(”password”) + ”\n” +

"</UL>\n" +

"</BODY></HTML>");

}

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

doGet(request, response);

}

}

Figure 7.19 Extracting the User Name and Password From a Form
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While there is a big difference for the programmer, the middle tier handles
JavaServer pages in a very simple way: They are usually compiled into a servlet,
which is then handled by a servlet container analogous to other servlets.

The code fragment in Figure 7.20 shows a simple JSP example. In the middle
of the HTML code, we access information that was passed from a form.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">

<HTML>

<HEAD><TITLE>Welcome to Barnes and Nobble</TITLE></HEAD>

<BODY>

<H1>Welcome back!</H1>

<% String name=”NewUser";

if (request.getParameter("username") != null) {

name=request.getParameter(”username”);

}

%>

You are logged on as user <%=name%>

<P>

Regular HTML for all the rest of the on-line store’s webpage.

</BODY>

</HTML>

Figure 7.20 Reading Form Parameters in JSP

7.7.5 Maintaining State

As discussed in previous sections, there is a need to maintain a user’s state
across different pages. As an example, consider a user who wants to make a
purchase at the Barnes and Nobble website. The user must first add items
into her shopping basket, which persists while she navigates through the site.
Thus, we use the notion of state mainly to remember information as the user
navigates through the site.

The HTTP protocol is stateless. We call an interaction with a webserver state-
less if no information is retained from one request to the next request. We call
an interaction with a webserver stateful, or we say that state is maintained,
if some memory is stored between requests to the server, and different actions
are taken depending on the contents stored.
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In our example of Barnes and Nobble, we need to maintain the shopping basket
of a user. Since state is not encapsulated in the HTTP protocol, it has to be
maintained either at the server or at the client. Since the HTTP protocol
is stateless by design, let us review the advantages and disadvantages of this
design decision. First, a stateless protocol is easy to program and use, and
it is great for applications that require just retrieval of static information. In
addition, no extra memory is used to maintain state, and thus the protocol
itself is very efficient. On the other hand, without some additional mechanism
at the presentation tier and the middle tier, we have no record of previous
requests, and we cannot program shopping baskets or user logins.

Since we cannot maintain state in the HTTP protocol, where should we mtain-
tain state? There are basically two choices. We can maintain state in the
middle tier, by storing information in the local main memory of the applica-
tion logic, or even in a database system. Alternatively, we can maintain state
on the client side by storing data in the form of a cookie. We discuss these two
ways of maintaining state in the next two sections.

Maintaining State at the Middle Tier

At the middle tier, we have several choices as to where we maintain state.
First, we could store the state at the bottom tier, in the database server. The
state survives crashes of the system, but a database access is required to query
or update the state, a potential performance bottleneck. An alternative is to
store state in main memory at the middle tier. The drawbacks are that this
information is volatile and that it might take up a lot of main memory. We
can also store state in local files at the middle tier, as a compromise between
the first two approaches.

A rule of thumb is to use state maintenance at the middle tier or database tier
only for data that needs to persist over many different user sessions. Examples
of such data are past customer orders, click-stream data recording a user’s
movement through the website, or other permanent choices that a user makes,
such as decisions about personalized site layout, types of messages the user is
willing to receive, and so on. As these examples illustrate, state information is
often centered around users who interact with the website.

Maintaining State at the Presentation Tier: Cookies

Another possibility is to store state at the presentation tier and pass it to the
middle tier with every HTTP request. We essentially work around around
the statelessness of the HTTP protocol by sending additional information with
every request. Such information is called a cookie.
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A cookie is a collection of  name, value –pairs that can be manipulated at
the presentation and middle tiers. Cookies are easy to use in Java servlets
and JavaServer Pages and provide a simple way to make non-essential data
persistent at the client. They survive several client sessions because they persist
in the browser cache even after the browser is closed.

One disadvantage of cookies is that they are often perceived as as being invasive,
and many users disable cookies in their Web browser; browsers allow users to
prevent cookies from being saved on their machines. Another disadvantage is
that the data in a cookie is currently limited to 4KB, but for most applications
this is not a bad limit.

We can use cookies to store information such as the user’s shopping basket, login
information, and other non-permanent choices made in the current session.

Next, we discuss how cookies can be manipulated from servlets at the middle
tier.

The Servlet Cookie API

A cookie is stored in a small text file at the client and contains  name, value –
pairs, where both name and value are strings. We create a new cookie through
the Java Cookie class in the middle tier application code:

Cookie cookie = new Cookie("username","guest");

cookie.setDomain("www.bookstore.com");

cookie.setSecure(false); // no SSL required

cookie.setMaxAge(60*60*24*7*31); // one month lifetime

response.addCookie(cookie);

Let us look at each part of this code. First, we create a new Cookie object with
the specified  name, value –pair. Then we set attributes of the cookie; we list
some of the most common attributes below:

setDomain and getDomain: The domain specifies the website that will
receive the cookie. The default value for this attribute is the domain that
created the cookie.

setSecure and getSecure: If this flag is true, then the cookie is sent only
if we are using a secure version of the HTTP protocol, such as SSL.

setMaxAge and getMaxAge: The MaxAge attribute determines the lifetime
of the cookie in seconds. If the value of MaxAge is less than or equal to
zero, the cookie is deleted when the browser is closed.
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setName and getName: We did not use these functions in our code fragment;
they allow us to name the cookie.

setValue and getValue: These functions allow us to set and read the
value of the cookie.

The cookie is added to the request object within the Java servlet to be sent
to the client. Once a cookie is received from a site (www.bookstore.com in this
example), the client’s Web browser appends it to all HTTP requests it sends
to this site, until the cookie expires.

We can access the contents of a cookie in the middle-tier code through the
request object getCookies() method, which returns an array of Cookie ob-
jects. The following code fragment reads the array and looks for the cookie
with name ‘username.’

Cookie[] cookies = request.getCookies();

String theUser;

for(int i=0; i < cookies.length; i++) {

Cookie cookie = cookies[i];

if (cookie.getName().equals("username"))

theUser = cookie.getValue();

}

A simple test can be used to check whether the user has turned off cookies:
Send a cookie to the user, and then check whether the request object that
is returned still contains the cookie. Note that a cookie should never contain
an unencrypted password or other private, unencrypted data, as the user can
easily inspect, modify, and erase any cookie at any time, including in the middle
of a session. The application logic needs to have sufficient consistency checks
to ensure that the data in the cookie is valid.

7.8 CASE STUDY: THE INTERNET BOOK SHOP

DBDudes now moves on to the implementation of the application layer and
considers alternatives for connecting the DBMS to the World Wide Web.

DBDudes begins by considering session management. For example, users who
log in to the site, browse the catalog, and select books to buy do not want
to re-enter their customer identification numbers. Session management has to
extend to the whole process of selecting books, adding them to a shopping cart,
possibly removing books from the cart, and checking out and paying for the
books.
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DBDudes then considers whether webpages for books should be static or dy-
namic. If there is a static webpage for each book, then we need an extra
database field in the Books relation that points to the location of the file.
Even though this enables special page designs for different books, it is a very
labor-intensive solution. DBDudes convinces B&N to dynamically assemble
the webpage for a book from a standard template instantiated with informa-
tion about the book in the Books relation. Thus, DBDudes do not use static
HTML pages, such as the one shown in Figure 7.1, to display the inventory.

DBDudes considers the use of XML as a data exchange format between the
database server and the middle tier, or the middle tier and the client tier.
Representation of the data in XML at the middle tier as shown in Figures 7.2
and 7.3 would allow easier integration of other data sources in the future, but
B&N decides that they do not anticipate a need for such integration, and so
DBDudes decide not to use XML data exchange at this time.

DBDudes designs the application logic as follows. They think that there will
be four different webpages:

index.jsp: The home page of Barns and Nobble. This is the main entry
point for the shop. This page has search text fields and buttons that allow
the user to search by author name, ISBN, or title of the book. There is
also a link to the page that shows the shopping cart, cart.jsp.

login.jsp: Allows registered users to log in. Here DBDudes use an
HTML form similar to the one displayed in Figure 7.11. At the middle
tier, they use a code fragment similar to the piece shown in Figure 7.19
and JavaServerPages as shown in Figure 7.20.

search.jsp: Lists all books in the database that match the search condi-
tion specified by the user. The user can add listed items to the shopping
basket; each book has a button next to it that adds it. (If the item is
already in the shopping basket, it increments the quantity by one.) There
is also a counter that shows the total number of items currently in the
shopping basket. (DBDudes makes a note that that a quantity of five for a
single item in the shopping basket should indicate a total purchase quantity
of five as well.) The search.jsp page also contains a button that directs
the user to cart.jsp.

cart.jsp: Lists all the books currently in the shopping basket. The list-
ing should include all items in the shopping basket with the product name,
price, a text box for the quantity (which the user can use to change quanti-
ties of items), and a button to remove the item from the shopping basket.
This page has three other buttons: one button to continue shopping (which
returns the user to page index.jsp), a second button to update the shop-
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ping basket with the altered quantities from the text boxes, and a third
button to place the order, which directs the user to the page confirm.jsp.

confirm.jsp: Lists the complete order so far and allows the user to enter
his or her contact information or customer ID. There are two buttons on
this page: one button to cancel the order and a second button to submit
the final order. The cancel button empties the shopping basket and returns
the user to the home page. The submit button updates the database with
the new order, empties the shopping basket, and returns the user to the
home page.

DBDudes also considers the use of JavaScript at the presentation tier to check
user input before it is sent to the middle tier. For example, in the page
login.jsp, DBDudes is likely to write JavaScript code similar to that shown
in Figure 7.12.

This leaves DBDudes with one final decision: how to connect applications to
the DBMS. They consider the two main alternatives presented in Section 7.7:
CGI scripts versus using an application server infrastructure. If they use CGI
scripts, they would have to encode session management logic—not an easy task.
If they use an application server, they can make use of all the functionality
that the application server provides. Therefore, they recommend that B&N
implement server-side processing using an application server.

B&N accepts the decision to use an application server, but decides that no
code should be specific to any particular application server, since B&N does
not want to lock itself into one vendor. DBDudes agrees proceeds to build the
following pieces:

DBDudes designs top level pages that allow customers to navigate the
website as well as various search forms and result presentations.

Assuming that DBDudes selects a Java-based application server, they have
to write Java servlets to process form-generated requests. Potentially, they
could reuse existing (possibly commercially available) JavaBeans. They
can use JDBC as a database interface; examples of JDBC code can be
found in Section 6.2. Instead of programming servlets, they could resort
to Java Server Pages and annotate pages with special JSP markup tags.

DBDudes select an application server that uses proprietary markup tags,
but due to their arrangement with B&N, they are not allowed to use such
tags in their code.

For completeness, we remark that if DBDudes and B&N had agreed to use CGI
scripts, DBDudes would have had the following tasks:
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Create the top level HTML pages that allow users to navigate the site and
various forms that allow users to search the catalog by ISBN, author name,
or title. An example page containing a search form is shown in Figure
7.1. In addition to the input forms, DBDudes must develop appropriate
presentations for the results.

Develop the logic to track a customer session. Relevant information must be
stored either at the server side or in the customer’s browser using cookies.

Write the scripts that process user requests. For example, a customer can
use a form called ‘Search books by title’ to type in a title and search for
books with that title. The CGI interface communicates with a script that
processes the request. An example of such a script written in Perl using
the DBI library for data access is shown in Figure 7.16.

Our discussion thus far covers only the customer interface, the part of the
website that is exposed to B&N’s customers. DBDudes also needs to add
applications that allow the employees and the shop owner to query and access
the database and to generate summary reports of business activities.

Complete files for the case study can be found on the webpage for this book.

7.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What are URIs and URLs? (Section 7.2.1)

How does the HTTP protocol work? What is a stateless protocol? (Sec-
tion 7.2.2)

Explain the main concepts of HTML. Why is it used only for data presen-
tation and not data exchange? (Section 7.3)

What are some shortcomings of HTML, and how does XML address them?
(Section 7.4)

What are the main components of an XML document? (Section 7.4.1)

Why do we have XML DTDs? What is a well-formed XML document?
What is a valid XML document? Give an example of an XML document
that is valid but not well-formed, and vice versa. (Section 7.4.2)

What is the role of domain-specific DTDs? (Section 7.4.3)

What is a three-tier architecture? What advantages does it offer over single-
tier and two-tier architectures? Give a short overview of the functionality
at each of the three tiers. (Section 7.5)
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Explain how three-tier architectures address each of the following issues
of database-backed Internet applications: heterogeneity, thin clients, data
integration, scalability, software development. (Section 7.5.3)

Write an HTML form. Describe all the components of an HTML form.
(Section 7.6.1)

What is the difference between the HTML GET and POST methods? How
does URI encoding of an HTML form work? (Section 7.11)

What is JavaScript used for? Write a JavaScipt function that checks
whether an HTML form element contains a syntactically valid email ad-
dress. (Section 7.6.2)

What problem do style sheets address? What are the advantages of using
style sheets? (Section 7.6.3)

What are Cascading Style Sheets? Explain the components of Cascading
Style Sheets. What is XSL and how it is different from CSS? (Sections
7.6.3 and 7.13)

What is CGI and what problem does it address? (Section 7.7.1)

What are application servers and how are they different from webservers?
(Section 7.7.2)

What are servlets? How do servlets handle data from HTML forms? Ex-
plain what happens during the lifetime of a servlet. (Section 7.7.3)

What is the difference between servlets and JSP? When should we use
servlets and when should we use JSP? (Section 7.7.4)

Why do we need to maintain state at the middle tier? What are cookies?
How does a browser handle cookies? How can we access the data in cookies
from servlets? (Section 7.7.5)

EXERCISES

Exercise 7.1 Briefly answer the following questions:

1. Explain the following terms and describe what they are used for: HTML, URL, XML,
Java, JSP, XSL, XSLT, servlet, cookie, HTTP, CSS, DTD.

2. What is CGI? Why was CGI introduced? What are the disadvantages of an architecture
using CGI scripts?

3. What is the difference between a webserver and an application server? What funcionality
do typical application servers provide?

4. When is an XML document well-formed? When is an XML document valid?

Exercise 7.2 Briefly answer the following questions about the HTTP protocol:
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1. What is a communication protocol?

2. What is the structure of an HTTP request message? What is the structure of an HTTP
response message? Why do HTTP messages carry a version field?

3. What is a stateless protocol? Why was HTTP designed to be stateless?

4. Show the HTTP request message generated when you request the home page of this
book (http://www.cs.wisc.edu/˜dbbook). Show the HTTP response message that the
server generates for that page.

Exercise 7.3 In this exercise, you are asked to write the functionality of a generic shopping
basket; you will use this in several subsequent project exercises. Write a set of JSP pages that
displays a shopping basket of items and allows users to add, remove, and change the quantity
of items. To do this, use a cookie storage scheme that stores the following information:

The UserId of the user who owns the shopping basket.

The number of products stored in the shopping basket.

A product id and a quantity for each product.

When manipulating cookies, remember to set the Expires property such that the cookie can
persist for a session or indefinitely. Experiment with cookies using JSP and make sure you
know how to retrieve, set values, and delete the cookie.

You need to create five JSP pages to make your prototype complete:

Index Page (index.jsp): This is the main entry point. It has a link that directs the
user to the Products page so they can start shopping.

Products Page (products.jsp): Shows a listing of all products in the database with
their descriptions and prices. This is the main page where the user fills out the shopping
basket. Each listed product should have a button next to it, which adds it to the shopping
basket. (If the item is already in the shopping basket, it increments the quantity by
one.) There should also be a counter to show the total number of items currently in the
shopping basket. Note that if a user has a quantity of five of a single item in the shopping
basket, the counter should indicate a total quantity of five. The page also contains a
button that directs the user to the Cart page.

Cart Page (cart.jsp): Shows a listing of all items in the shopping basket cookie. The
listing for each item should include the product name, price, a text box for the quantity
(the user can change the quantity of items here), and a button to remove the item from
the shopping basket. This page has three other buttons: one button to continue shopping
(which returns the user to the Products page), a second button to update the cookie
with the altered quantities from the text boxes, and a third button to place or confirm
the order, which directs the user to the Confirm page.

Confirm Page (confirm.jsp): Lists the final order. There are two buttons on this
page. One button cancels the order and the other submits the completed order. The
cancel button just deletes the cookie and returns the user to the Index page. The submit
button updates the database with the new order, deletes the cookie, and returns the user
to the Index page.

Exercise 7.4 In the previous exercise, replace the page products.jsp with the following
search page search.jsp. This page allows users to search products by name or descrip-
tion. There should be both a text box for the search text and radio buttons to allow the
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user to choose between search-by-name and search-by-description (as well as a submit but-
ton to retrieve the results). The page that handles search results should be modeled after
products.jsp (as described in the previous exercise) and be called products.jsp. It should
retrieve all records where the search text is a substring of the name or description (as chosen
by the user). To integrate this with the previous exercise, simply replace all the links to
products.jsp with search.jsp.

Exercise 7.5 Write a simple authentication mechanism (without using encrypted transfer of
passwords, for simplicity). We say a user is authenticated if she has provided a valid username-
password combination to the system; otherwise, we say the user is not authenticated. Assume
for simplicity that you have a database schema that stores only a customer id and a password:

Passwords(cid: integer, username: string, password: string)

1. How and where are you going to track when a user is ‘logged on’ to the system?

2. Design a page that allows a registered user to log on to the system.

3. Design a page header that checks whether the user visiting this page is logged in.

Exercise 7.6 (Due to Jeff Derstadt) TechnoBooks.com is in the process of reorganizing its
website. A major issue is how to efficiently handle a large number of search results. In a
human interaction study, it found that modem users typically like to view 20 search results at
a time, and it would like to program this logic into the system. Queries that return batches of
sorted results are called top N queries. (See Section 25.5 for a discussion of database support
for top N queries.) For example, results 1-20 are returned, then results 21-40, then 41-60,
and so on. Different techniques are used for performing top N queries and TechnoBooks.com
would like you to implement two of them.

Infrastructure: Create a database with a table called Books and populate it with some
books, using the format that follows. This gives you 111 books in your database with a title
of AAA, BBB, CCC, DDD, or EEE, but the keys are not sequential for books with the same
title.

Books(bookid: INTEGER, title: CHAR(80), author: CHAR(80), price: REAL)

For i = 1 to 111 {
Insert the tuple (i, “AAA”, “AAA Author”, 5.99)
i = i + 1
Insert the tuple (i, “BBB”, “BBB Author”, 5.99)
i = i + 1
Insert the tuple (i, “CCC”, “CCC Author”, 5.99)
i = i + 1
Insert the tuple (i, “DDD”, “DDD Author”, 5.99)
i = i + 1
Insert the tuple (i, “EEE”, “EEE Author”, 5.99)

}

Placeholder Technique: The simplest approach to top N queries is to store a placeholder
for the first and last result tuples, and then perform the same query. When the new query
results are returned, you can iterate to the placeholders and return the previous or next 20
results.
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Tuples Shown Lower Placeholder Previous Set Upper Placeholder Next Set

1-20 1 None 20 21-40

21-40 21 1-20 40 41-60

41-60 41 21-40 60 61-80

Write a webpage in JSP that displays the contents of the Books table, sorted by the Title and
BookId, and showing the results 20 at a time. There should be a link (where appropriate) to
get the previous 20 results or the next 20 results. To do this, you can encode the placeholders
in the Previous or Next Links as follows. Assume that you are displaying records 21–40. Then
the previous link is display.jsp?lower=21 and the next link is display.jsp?upper=40.

You should not display a previous link when there are no previous results; nor should you
show a Next link if there are no more results. When your page is called again to get another
batch of results, you can perform the same query to get all the records, iterate through the
result set until you are at the proper starting point, then display 20 more results.

What are the advantages and disadvantages of this technique?

Query Constraints Technique: A second technique for performing top N queries is to
push boundary constraints into the query (in the WHERE clause) so that the query returns only
results that have not yet been displayed. Although this changes the query, fewer results are
returned and it saves the cost of iterating up to the boundary. For example, consider the
following table, sorted by (title, primary key).

Batch Result Number Title Primary Key

1 1 AAA 105

1 2 BBB 13

1 3 CCC 48

1 4 DDD 52

1 5 DDD 101

2 6 DDD 121

2 7 EEE 19

2 8 EEE 68

2 9 FFF 2

2 10 FFF 33

3 11 FFF 58

3 12 FFF 59

3 13 GGG 93

3 14 HHH 132

3 15 HHH 135

In batch 1, rows 1 through 5 are displayed, in batch 2 rows 6 through 10 are displayed, and so
on. Using the placeholder technique, all 15 results would be returned for each batch. Using
the constraint technique, batch 1 displays results 1-5 but returns results 1-15, batch 2 will
display results 6-10 but returns only results 6-15, and batch 3 will display results 11-15 but
return only results 11-15.
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The constraint can be pushed into the query because of the sorting of this table. Consider
the following query for batch 2 (displaying results 6-10):

EXEC SQL SELECT B.Title
FROM Books B
WHERE (B.Title = ’DDD’ AND B.BookId > 101) OR (B.Title > ’DDD’)
ORDER BY B.Title, B.BookId

This query first selects all books with the title ‘DDD,’ but with a primary key that is greater
than that of record 5 (record 5 has a primary key of 101). This returns record 6. Also, any
book that has a title after ‘DDD’ alphabetically is returned. You can then display the first
five results.

The following information needs to be retained to have Previous and Next buttons that return
more results:

Previous: The title of the first record in the previous set, and the primary key of the
first record in the previous set.

Next: The title of the first record in the next set; the primary key of the first record in
the next set.

These four pieces of information can be encoded into the Previous and Next buttons as in the
previous part. Using your database table from the first part, write a JavaServer Page that
displays the book information 20 records at a time. The page should include Previous and
Next buttons to show the previous or next record set if there is one. Use the constraint query
to get the Previous and Next record sets.

PROJECT-BASED EXERCISES

In this chapter, you continue the exercises from the previous chapter and create the parts of
the application that reside at the middle tier and at the presentation tier. More information
about these exercises and material for more exercises can be found online at

http://www.cs.wisc.edu/˜dbbook

Exercise 7.7 Recall the Notown Records website that you worked on in Exercise 6.6. Next,
you are asked to develop the actual pages for the Notown Records website. Design the part
of the website that involves the presentation tier and the middle tier, and integrate the code
that you wrote in Exercise 6.6 to access the database.

1. Describe in detail the set of webpages that users can access. Keep the following issues
in mind:

All users start at a common page.

For each action, what input does the user provide? How will the user provide it—by
clicking on a link or through an HTML form?

What sequence of steps does a user go through to purchase a record? Describe the
high-level application flow by showing how each user action is handled.
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2. Write the webpages in HTML without dynamic content.

3. Write a page that allows users to log on to the site. Use cookies to store the information
permanently at the user’s browser.

4. Augment the log-on page with JavaScript code that checks that the username consists
only of the characters from a to z.

5. Augment the pages that allow users to store items in a shopping basket with a condition
that checks whether the user has logged on to the site. If the user has not yet logged on,
there should be no way to add items to the shopping cart. Implement this functionality
using JSP by checking cookie information from the user.

6. Create the remaining pages to finish the website.

Exercise 7.8 Recall the online pharmacy project that you worked on in Exercise 6.7 in
Chapter 6. Follow the analogous steps from Exercise 7.7 to design the application logic and
presentation layer and finish the website.

Exercise 7.9 Recall the university database project that you worked on in Exercise 6.8 in
Chapter 6. Follow the analogous steps from Exercise 7.7 to design the application logic and
presentation layer and finish the website.

Exercise 7.10 Recall the airline reservation project that you worked on in Exercise 6.9 in
Chapter 6. Follow the analogous steps from Exercise 7.7 to design the application logic and
presentation layer and finish the website.

BIBLIOGRAPHIC NOTES

The latest version of the standards mentioned in this chapter can be found at the website
of the World Wide Web Consortium (www.w3.org). It contains links to information about
HTML, cascading style sheets, XML, XSL, and much more. The book by Hall is a gen-
eral introduction to Web programming technologies [357]; a good starting point on the Web
is www.Webdeveloper.com. There are many introductory books on CGI programming, for
example [210, 198]. The JavaSoft (java.sun.com) home page is a good starting point for
Servlets, JSP, and all other Java-related technologies. The book by Hunter [394] is a good
introduction to Java Servlets. Microsoft supports Active Server Pages (ASP), a comparable
technology to JSP. More information about ASP can be found on the Microsoft Developer’s
Network home page (msdn.microsoft.com).

There are excellent websites devoted to the advancement of XML, for example www.xml.com

and www.ibm.com/xml, that also contain a plethora of links with information about the other
standards. There are good introductory books on many different aspects of XML, for example
[195, 158, 597, 474, 381, 320]. Information about UNICODE can be found on its home page
http://www.unicode.org.

Information about JavaServer Pages and servlets can be found on the JavaSoft home page at
java.sun.com at java.sun.com/products/jsp and at java.sun.com/products/servlet.
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8
OVERVIEW OF STORAGE

AND INDEXING

☛ How does a DBMS store and access persistent data?

☛ Why is I/O cost so important for database operations?

☛ How does a DBMS organize files of data records on disk to minimize
I/O costs?

☛ What is an index, and why is it used?

☛ What is the relationship between a file of data records and any indexes
on this file of records?

☛ What are important properties of indexes?

☛ How does a hash-based index work, and when is it most effective?

☛ How does a tree-based index work, and when is it most effective?

☛ How can we use indexes to optimize performance for a given workload?

➽ Key concepts: external storage, buffer manager, page I/O; file orga-
nization, heap files, sorted files; indexes, data entries, search keys, clus-
tered index, clustered file, primary index; index organization, hash-
based and tree-based indexes; cost comparison, file organizations and
common operations; performance tuning, workload, composite search
keys, use of clustering,

If you don’t find it in the index, look very carefully through the entire catalog.

—Sears, Roebuck, and Co., Consumers’ Guide, 1897

The basic abstraction of data in a DBMS is a collection of records, or a file,
and each file consists of one or more pages. The files and access methods
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software layer organizes data carefully to support fast access to desired subsets
of records. Understanding how records are organized is essential to using a
database system effectively, and it is the main topic of this chapter.

A file organization is a method of arranging the records in a file when the
file is stored on disk. Each file organization makes certain operations efficient
but other operations expensive.

Consider a file of employee records, each containing age, name, and sal fields,
which we use as a running example in this chapter. If we want to retrieve
employee records in order of increasing age, sorting the file by age is a good file
organization, but the sort order is expensive to maintain if the file is frequently
modified. Further, we are often interested in supporting more than one oper-
ation on a given collection of records. In our example, we may also want to
retrieve all employees who make more than $5000. We have to scan the entire
file to find such employee records.

A technique called indexing can help when we have to access a collection of
records in multiple ways, in addition to efficiently supporting various kinds of
selection. Section 8.2 introduces indexing, an important aspect of file organi-
zation in a DBMS. We present an overview of index data structures in Section
8.3; a more detailed discussion is included in Chapters 10 and 11.

We illustrate the importance of choosing an appropriate file organization in
Section 8.4 through a simplified analysis of several alternative file organizations.
The cost model used in this analysis, presented in Section 8.4.1, is used in
later chapters as well. In Section 8.5, we highlight some important choices to
be made in creating indexes. Choosing a good collection of indexes to build
is arguably the single most powerful tool a database administrator has for
improving performance.

8.1 DATA ON EXTERNAL STORAGE

A DBMS stores vast quantities of data, and the data must persist across pro-
gram executions. Therefore, data is stored on external storage devices such as
disks and tapes, and fetched into main memory as needed for processing. The
unit of information read from or written to disk is a page. The size of a page
is a DBMS parameter, and typical values are 4KB or 8KB.

The cost of page I/O (input from disk to main memory and output from mem-
ory to disk) dominates the cost of typical database operations, and database
systems are carefully optimized to minimize this cost. While the details of how
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files of records are physically stored on disk and how main memory is utilized
are covered in Chapter 9, the following points are important to keep in mind:

Disks are the most important external storage devices. They allow us to
retrieve any page at a (more or less) fixed cost per page. However, if we
read several pages in the order that they are stored physically, the cost can
be much less than the cost of reading the same pages in a random order.

Tapes are sequential access devices and force us to read data one page after
the other. They are mostly used to archive data that is not needed on a
regular basis.

Each record in a file has a unique identifier called a record id, or rid for
short. An rid has the property that we can identify the disk address of the
page containing the record by using the rid.

Data is read into memory for processing, and written to disk for persistent
storage, by a layer of software called the buffer manager. When the files and

access methods layer (which we often refer to as just the file layer) needs to
process a page, it asks the buffer manager to fetch the page, specifying the
page’s rid. The buffer manager fetches the page from disk if it is not already
in memory.

Space on disk is managed by the disk space manager, according to the DBMS
software architecture described in Section 1.8. When the files and access meth-
ods layer needs additional space to hold new records in a file, it asks the disk
space manager to allocate an additional disk page for the file; it also informs
the disk space manager when it no longer needs one of its disk pages. The disk
space manager keeps track of the pages in use by the file layer; if a page is freed
by the file layer, the space manager tracks this, and reuses the space if the file
layer requests a new page later on.

In the rest of this chapter, we focus on the files and access methods layer.

8.2 FILE ORGANIZATIONS AND INDEXING

The file of records is an important abstraction in a DBMS, and is imple-
mented by the files and access methods layer of the code. A file can be created,
destroyed, and have records inserted into and deleted from it. It also supports
scans; a scan operation allows us to step through all the records in the file one
at a time. A relation is typically stored as a file of records.

The file layer stores the records in a file in a collection of disk pages. It keeps
track of pages allocated to each file, and as records are inserted into and deleted
from the file, it also tracks available space within pages allocated to the file.
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The simplest file structure is an unordered file, or heap file. Records in a
heap file are stored in random order across the pages of the file. A heap file
organization supports retrieval of all records, or retrieval of a particular record
specified by its rid; the file manager must keep track of the pages allocated for
the file. (We defer the details of how a heap file is implemented to Chapter 9.)

An index is a data structure that organizes data records on disk to optimize
certain kinds of retrieval operations. An index allows us to efficiently retrieve
all records that satisfy search conditions on the search key fields of the index.
We can also create additional indexes on a given collection of data records,
each with a different search key, to speed up search operations that are not
efficiently supported by the file organization used to store the data records.

Consider our example of employee records. We can store the records in a file
organized as an index on employee age; this is an alternative to sorting the file
by age. Additionally, we can create an auxiliary index file based on salary, to
speed up queries involving salary. The first file contains employee records, and
the second contains records that allow us to locate employee records satisfying
a query on salary.

We use the term data entry to refer to the records stored in an index file. A
data entry with search key value k, denoted as k∗, contains enough information
to locate (one or more) data records with search key value k. We can efficiently
search an index to find the desired data entries, and then use these to obtain
data records (if these are distinct from data entries).

There are three main alternatives for what to store as a data entry in an index:

1. A data entry k∗ is an actual data record (with search key value k).

2. A data entry is a  k, rid  pair, where rid is the record id of a data record
with search key value k.

3. A data entry is a  k, rid-list  pair, where rid-list is a list of record ids of
data records with search key value k.

Of course, if the index is used to store actual data records, Alternative (1),
each entry k∗ is a data record with search key value k. We can think of such an
index as a special file organization. Such an indexed file organization can
be used instead of, for example, a sorted file or an unordered file of records.

Alternatives (2) and (3), which contain data entries that point to data records,
are independent of the file organization that is used for the indexed file (i.e.,
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the file that contains the data records). Alternative (3) offers better space uti-
lization than Alternative (2), but data entries are variable in length, depending
on the number of data records with a given search key value.

If we want to build more than one index on a collection of data records—for
example, we want to build indexes on both the age and the sal fields for a col-
lection of employee records—at most one of the indexes should use Alternative
(1) because we should avoid storing data records multiple times.

8.2.1 Clustered Indexes

When a file is organized so that the ordering of data records is the same as
or close to the ordering of data entries in some index, we say that the index
is clustered; otherwise, it clustered is an unclustered index. An index that
uses Alternative (1) is clustered, by definition. An index that uses Alternative
(2) or (3) can be a clustered index only if the data records are sorted on the
search key field. Otherwise, the order of the data records is random, defined
purely by their physical order, and there is no reasonable way to arrange the
data entries in the index in the same order.

In practice, files are rarely kept sorted since this is too expensive to maintain
when the data is updated. So, in practice, a clustered index is an index that uses
Alternative (1), and indexes that use Alternatives (2) or (3) are unclustered.
We sometimes refer to an index using Alternative (1) as a clustered file,
because the data entries are actual data records, and the index is therefore a
file of data records. (As observed earlier, searches and scans on an index return
only its data entries, even if it contains additional information to organize the
data entries.)

The cost of using an index to answer a range search query can vary tremen-
dously based on whether the index is clustered. If the index is clustered, i.e.,
we are using the search key of a clustered file, the rids in qualifying data entries
point to a contiguous collection of records, and we need to retrieve only a few
data pages. If the index is unclustered, each qualifying data entry could contain
a rid that points to a distinct data page, leading to as many data page I/Os
as the number of data entries that match the range selection, as illustrated in
Figure 8.1. This point is discussed further in Chapter 13.

8.2.2 Primary and Secondary Indexes

An index on a set of fields that includes the primary key (see Chapter 3) is
called a primary index; other indexes are called secondary indexes. (The
terms primary index and secondary index are sometimes used with a different
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Data file
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Figure 8.1 Unclustered Index Using Alternative (2)

meaning: An index that uses Alternative (1) is called a primary index, and
one that uses Alternatives (2) or (3) is called a secondary index. We will be
consistent with the definitions presented earlier, but the reader should be aware
of this lack of standard terminology in the literature.)

Two data entries are said to be duplicates if they have the same value for the
search key field associated with the index. A primary index is guaranteed not
to contain duplicates, but an index on other (collections of) fields can contain
duplicates. In general, a secondary index contains duplicates. If we know
that no duplicates exist, that is, we know that the search key contains some
candidate key, we call the index a unique index.

An important issue is how data entries in an index are organized to support
efficient retrieval of data entries. We discuss this next.

8.3 INDEX DATA STRUCTURES

One way to organize data entries is to hash data entries on the search key.
Another way to organize data entries is to build a tree-like data structure that
directs a search for data entries. We introduce these two basic approaches in
this section. We study tree-based indexing in more detail in Chapter 10 and
hash-based indexing in Chapter 11.

We note that the choice of hash or tree indexing techniques can be combined
with any of the three alternatives for data entries.
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8.3.1 Hash-Based Indexing

We can organize records using a technique called hashing to quickly find records
that have a given search key value. For example, if the file of employee records
is hashed on the name field, we can retrieve all records about Joe.

In this approach, the records in a file are grouped in buckets, where a bucket
consists of a primary page and, possibly, additional pages linked in a chain.
The bucket to which a record belongs can be determined by applying a special
function, called a hash function, to the search key. Given a bucket number,
a hash-based index structure allows us to retrieve the primary page for the
bucket in one or two disk I/Os.

On inserts, the record is inserted into the appropriate bucket, with ‘overflow’
pages allocated as necessary. To search for a record with a given search key
value, we apply the hash function to identify the bucket to which such records
belong and look at all pages in that bucket. If we do not have the search key
value for the record, for example, the index is based on sal and we want records
with a given age value, we have to scan all pages in the file.

In this chapter, we assume that applying the hash function to (the search key
of) a record allows us to identify and retrieve the page containing the record
with one I/O. In practice, hash-based index structures that adjust gracefully
to inserts and deletes and allow us to retrieve the page containing a record in
one to two I/Os (see Chapter 11) are known.

Hash indexing is illustrated in Figure 8.2, where the data is stored in a file that
is hashed on age; the data entries in this first index file are the actual data
records. Applying the hash function to the age field identifies the page that
the record belongs to. The hash function h for this example is quite simple;
it converts the search key value to its binary representation and uses the two
least significant bits as the bucket identifier.

Figure 8.2 also shows an index with search key sal that contains  sal, rid pairs
as data entries. The rid (short for record id) component of a data entry in this
second index is a pointer to a record with search key value sal (and is shown
in the figure as an arrow pointing to the data record).

Using the terminology introduced in Section 8.2, Figure 8.2 illustrates Alter-
natives (1) and (2) for data entries. The file of employee records is hashed on
age, and Alternative (1) is used for for data entries. The second index, on sal,
also uses hashing to locate data entries, which are now  sal, rid of employee

record pairs; that is, Alternative (2) is used for data entries.
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Figure 8.2 Index-Organized File Hashed on age, with Auxiliary Index on sal

Note that the search key for an index can be any sequence of one or more
fields, and it need not uniquely identify records. For example, in the salary
index, two data entries have the same search key value 6003. (There is an
unfortunate overloading of the term key in the database literature. A primary

key or candidate key—fields that uniquely identify a record; see Chapter 3—is
unrelated to the concept of a search key.)

8.3.2 Tree-Based Indexing

An alternative to hash-based indexing is to organize records using a tree-
like data structure. The data entries are arranged in sorted order by search
key value, and a hierarchical search data structure is maintained that directs
searches to the correct page of data entries.

Figure 8.3 shows the employee records from Figure 8.2, this time organized in a
tree-structured index with search key age. Each node in this figure (e.g., nodes
labeled A, B, L1, L2) is a physical page, and retrieving a node involves a disk
I/O.

The lowest level of the tree, called the leaf level, contains the data entries;
in our example, these are employee records. To illustrate the ideas better, we
have drawn Figure 8.3 as if there were additional employee records, some with
age less than 22 and some with age greater than 50 (the lowest and highest
age values that appear in Figure 8.2). Additional records with age less than
22 would appear in leaf pages to the left page L1, and records with age greater
than 50 would appear in leaf pages to the right of page L3.
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Figure 8.3 Tree-Structured Index

This structure allows us to efficiently locate all data entries with search key
values in a desired range. All searches begin at the topmost node, called the
root, and the contents of pages in non-leaf levels direct searches to the correct
leaf page. Non-leaf pages contain node pointers separated by search key values.
The node pointer to the left of a key value k points to a subtree that contains
only data entries less than k. The node pointer to the right of a key value k
points to a subtree that contains only data entries greater than or equal to k.

In our example, suppose we want to find all data entries with 24 < age < 50.
Each edge from the root node to a child node in Figure 8.2 has a label that
explains what the corresponding subtree contains. (Although the labels for the
remaining edges in the figure are not shown, they should be easy to deduce.)
In our example search, we look for data entries with search key value > 24,
and get directed to the middle child, node A. Again, examining the contents
of this node, we are directed to node B. Examining the contents of node B, we
are directed to leaf node L1, which contains data entries we are looking for.

Observe that leaf nodes L2 and L3 also contain data entries that satisfy our
search criterion. To facilitate retrieval of such qualifying entries during search,
all leaf pages are maintained in a doubly-linked list. Thus, we can fetch page
L2 using the ‘next’ pointer on page L1, and then fetch page L3 using the ‘next’
pointer on L2.

Thus, the number of disk I/Os incurred during a search is equal to the length
of a path from the root to a leaf, plus the number of leaf pages with qualifying
data entries. The B+ tree is an index structure that ensures that all paths
from the root to a leaf in a given tree are of the same length, that is, the
structure is always balanced in height. Finding the correct leaf page is faster
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than binary search of the pages in a sorted file because each non-leaf node can
accommodate a very large number of node-pointers, and the height of the tree
is rarely more than three or four in practice. The height of a balanced tree is
the length of a path from root to leaf; in Figure 8.3, the height is three. The
number of I/Os to retrieve a desired leaf page is four, including the root and
the leaf page. (In practice, the root is typically in the buffer pool because it
is frequently accessed, and we really incur just three I/Os for a tree of height
three.)

The average number of children for a non-leaf node is called the fan-out of
the tree. If every non-leaf node has n children, a tree of height h has nh leaf
pages. In practice, nodes do not have the same number of children, but using
the average value F for n, we still get a good approximation to the number of
leaf pages, F h. In practice, F is at least 100, which means a tree of height four
contains 100 million leaf pages. Thus, we can search a file with 100 million leaf
pages and find the page we want using four I/Os; in contrast, binary search of
the same file would take log2100, 000, 000 (over 25) I/Os.

8.4 COMPARISON OF FILE ORGANIZATIONS

We now compare the costs of some simple operations for several basic file
organizations on a collection of employee records. We assume that the files and
indexes are organized according to the composite search key  age,sal , and that
all selection operations are specified on these fields. The organizations that we
consider are the following:

File of randomly ordered employee records, or heap file.

File of employee records sorted on  age, sal .

Clustered B+ tree file with search key  age, sal .

Heap file with an unclustered B+ tree index on  age, sal .

Heap file with an unclustered hash index on  age, sal .

Our goal is to emphasize the importance of the choice of an appropriate file
organization, and the above list includes the main alternatives to consider in
practice. Obviously, we can keep the records unsorted or sort them. We can
also choose to build an index on the data file. Note that even if the data file
is sorted, an index whose search key differs from the sort order behaves like an
index on a heap file!

The operations we consider are these:
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Scan: Fetch all records in the file. The pages in the file must be fetched
from disk into the buffer pool. There is also a CPU overhead per record
for locating the record on the page (in the pool).

Search with Equality Selection: Fetch all records that satisfy an equal-
ity selection; for example, “Find the employee record for the employee with
age 23 and sal 50.” Pages that contain qualifying records must be fetched
from disk, and qualifying records must be located within retrieved pages.

Search with Range Selection: Fetch all records that satisfy a range
selection; for example, “Find all employee records with age greater than
35.”

Insert a Record: Insert a given record into the file. We must identify the
page in the file into which the new record must be inserted, fetch that page
from disk, modify it to include the new record, and then write back the
modified page. Depending on the file organization, we may have to fetch,
modify, and write back other pages as well.

Delete a Record: Delete a record that is specified using its rid. We must
identify the page that contains the record, fetch it from disk, modify it, and
write it back. Depending on the file organization, we may have to fetch,
modify, and write back other pages as well.

8.4.1 Cost Model

In our comparison of file organizations, and in later chapters, we use a simple
cost model that allows us to estimate the cost (in terms of execution time) of
different database operations. We use B to denote the number of data pages
when records are packed onto pages with no wasted space, and R to denote
the number of records per page. The average time to read or write a disk
page is D, and the average time to process a record (e.g., to compare a field
value to a selection constant) is C. In the hashed file organization, we use a
function, called a hash function, to map a record into a range of numbers; the
time required to apply the hash function to a record is H. For tree indexes, we
will use F to denote the fan-out, which typically is at least 100 as mentioned
in Section 8.3.2.

Typical values today are D = 15 milliseconds, C and H = 100 nanoseconds; we
therefore expect the cost of I/O to dominate. I/O is often (even typically) the
dominant component of the cost of database operations, and so considering I/O
costs gives us a good first approximation to the true costs. Further, CPU speeds
are steadily rising, whereas disk speeds are not increasing at a similar pace. (On
the other hand, as main memory sizes increase, a much larger fraction of the
needed pages are likely to fit in memory, leading to fewer I/O requests!) We
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have chosen to concentrate on the I/O component of the cost model, and we
assume the simple constant C for in-memory per-record processing cost. Bear
the following observations in mind:

Real systems must consider other aspects of cost, such as CPU costs (and
network transmission costs in a distributed database).

Even with our decision to focus on I/O costs, an accurate model would be
too complex for our purposes of conveying the essential ideas in a simple
way. We therefore use a simplistic model in which we just count the number
of pages read from or written to disk as a measure of I/O. We ignore the
important issue of blocked access in our analysis—typically, disk systems
allow us to read a block of contiguous pages in a single I/O request. The
cost is equal to the time required to seek the first page in the block and
transfer all pages in the block. Such blocked access can be much cheaper
than issuing one I/O request per page in the block, especially if these
requests do not follow consecutively, because we would have an additional
seek cost for each page in the block.

We discuss the implications of the cost model whenever our simplifying as-
sumptions are likely to affect our conclusions in an important way.

8.4.2 Heap Files

Scan: The cost is B(D+RC) because we must retrieve each of B pages taking
time D per page, and for each page, process R records taking time C per record.

Search with Equality Selection: Suppose that we know in advance that
exactly one record matches the desired equality selection, that is, the selection
is specified on a candidate key. On average, we must scan half the file, assuming
that the record exists and the distribution of values in the search field is uniform.
For each retrieved data page, we must check all records on the page to see if
it is the desired record. The cost is 0.5B(D + RC). If no record satisfies the
selection, however, we must scan the entire file to verify this.

If the selection is not on a candidate key field (e.g., “Find employees aged 18”),
we always have to scan the entire file because records with age = 18 could be
dispersed all over the file, and we have no idea how many such records exist.

Search with Range Selection: The entire file must be scanned because
qualifying records could appear anywhere in the file, and we do not know how
many qualifying records exist. The cost is B(D +RC).
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Insert: We assume that records are always inserted at the end of the file. We
must fetch the last page in the file, add the record, and write the page back.
The cost is 2D + C.

Delete: We must find the record, remove the record from the page, and write
the modified page back. We assume that no attempt is made to compact the
file to reclaim the free space created by deletions, for simplicity.1 The cost is
the cost of searching plus C +D.

We assume that the record to be deleted is specified using the record id. Since
the page id can easily be obtained from the record id, we can directly read in
the page. The cost of searching is therefore D.

If the record to be deleted is specified using an equality or range condition
on some fields, the cost of searching is given in our discussion of equality and
range selections. The cost of deletion is also affected by the number of qualifying
records, since all pages containing such records must be modified.

8.4.3 Sorted Files

Scan: The cost is B(D+RC) because all pages must be examined. Note that
this case is no better or worse than the case of unordered files. However, the
order in which records are retrieved corresponds to the sort order, that is, all
records in age order, and for a given age, by sal order.

Search with Equality Selection: We assume that the equality selection
matches the sort order  age, sal . In other words, we assume that a selection
condition is specified on at least the first field in the composite key (e.g., age =
30). If not (e.g., selection sal = 50 or department = ”Toy”), the sort order
does not help us and the cost is identical to that for a heap file.

We can locate the first page containing the desired record or records, should
any qualifying records exist, with a binary search in log2B steps. (This analysis
assumes that the pages in the sorted file are stored sequentially, and we can
retrieve the ith page on the file directly in one disk I/O.) Each step requires
a disk I/O and two comparisons. Once the page is known, the first qualifying
record can again be located by a binary search of the page at a cost of Clog2R.
The cost is Dlog2B+Clog2R, which is a significant improvement over searching
heap files.

1In practice, a directory or other data structure is used to keep track of free space, and records are
inserted into the first available free slot, as discussed in Chapter 9. This increases the cost of insertion
and deletion a little, but not enough to affect our comparison.
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If several records qualify (e.g., “Find all employees aged 18”), they are guar-
anteed to be adjacent to each other due to the sorting on age, and so the
cost of retrieving all such records is the cost of locating the first such record
(Dlog2B+Clog2R) plus the cost of reading all the qualifying records in sequen-
tial order. Typically, all qualifying records fit on a single page. If no records
qualify, this is established by the search for the first qualifying record, which
finds the page that would have contained a qualifying record, had one existed,
and searches that page.

Search with Range Selection: Again assuming that the range selection
matches the composite key, the first record that satisfies the selection is located
as for search with equality. Subsequently, data pages are sequentially retrieved
until a record is found that does not satisfy the range selection; this is similar
to an equality search with many qualifying records.

The cost is the cost of search plus the cost of retrieving the set of records that
satisfy the search. The cost of the search includes the cost of fetching the first
page containing qualifying, or matching, records. For small range selections,
all qualifying records appear on this page. For larger range selections, we have
to fetch additional pages containing matching records.

Insert: To insert a record while preserving the sort order, we must first find
the correct position in the file, add the record, and then fetch and rewrite all
subsequent pages (because all the old records are shifted by one slot, assuming
that the file has no empty slots). On average, we can assume that the inserted
record belongs in the middle of the file. Therefore, we must read the latter half
of the file and then write it back after adding the new record. The cost is that
of searching to find the position of the new record plus 2 · (0.5B(D + RC)),
that is, search cost plus B(D +RC).

Delete: We must search for the record, remove the record from the page, and
write the modified page back. We must also read and write all subsequent
pages because all records that follow the deleted record must be moved up to
compact the free space.2 The cost is the same as for an insert, that is, search
cost plus B(D + RC). Given the rid of the record to delete, we can fetch the
page containing the record directly.

If records to be deleted are specified by an equality or range condition, the cost
of deletion depends on the number of qualifying records. If the condition is
specified on the sort field, qualifying records are guaranteed to be contiguous,
and the first qualifying record can be located using binary search.

2Unlike a heap file, there is no inexpensive way to manage free space, so we account for the cost
of compacting a file when a record is deleted.
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8.4.4 Clustered Files

In a clustered file, extensive empirical study has shown that pages are usually
at about 67 percent occupancy. Thus, the number of physical data pages is
about 1.5B, and we use this observation in the following analysis.

Scan: The cost of a scan is 1.5B(D + RC) because all data pages must be
examined; this is similar to sorted files, with the obvious adjustment for the
increased number of data pages. Note that our cost metric does not capture
potential differences in cost due to sequential I/O. We would expect sorted files
to be superior in this regard, although a clustered file using ISAM (rather than
B+ trees) would be close.

Search with Equality Selection: We assume that the equality selection
matches the search key  age, sal . We can locate the first page containing
the desired record or records, should any qualifying records exist, in logF 1.5B
steps, that is, by fetching all pages from the root to the appropriate leaf. In
practice, the root page is likely to be in the buffer pool and we save an I/O,
but we ignore this in our simplified analysis. Each step requires a disk I/O
and two comparisons. Once the page is known, the first qualifying record can
again be located by a binary search of the page at a cost of Clog2R. The cost
is DlogF1.5B+Clog2R, which is a significant improvement over searching even
sorted files.

If several records qualify (e.g., “Find all employees aged 18”), they are guar-
anteed to be adjacent to each other due to the sorting on age, and so the
cost of retrieving all such records is the cost of locating the first such record
(DlogF 1.5B + Clog2R) plus the cost of reading all the qualifying records in
sequential order.

Search with Range Selection: Again assuming that the range selection
matches the composite key, the first record that satisfies the selection is located
as it is for search with equality. Subsequently, data pages are sequentially
retrieved (using the next and previous links at the leaf level) until a record is
found that does not satisfy the range selection; this is similar to an equality
search with many qualifying records.

Insert: To insert a record, we must first find the correct leaf page in the index,
reading every page from root to leaf. Then, we must add the new record. Most
of the time, the leaf page has sufficient space for the new record, and all we
need to do is to write out the modified leaf page. Occasionally, the leaf is full
and we need to retrieve and modify other pages, but this is sufficiently rare
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that we can ignore it in this simplified analysis. The cost is therefore the cost
of search plus one write, DlogF1.5B + Clog2R+D.

Delete: We must search for the record, remove the record from the page,
and write the modified page back. The discussion and cost analysis for insert
applies here as well.

8.4.5 Heap File with Unclustered Tree Index

The number of leaf pages in an index depends on the size of a data entry.
We assume that each data entry in the index is a tenth the size of an em-
ployee data record, which is typical. The number of leaf pages in the index is
0.1(1.5B) = 0.15B, if we take into account the 67 percent occupancy of index
pages. Similarly, the number of data entries on a page 10(0.67R) = 6.7R,
taking into account the relative size and occupancy.

Scan: Consider Figure 8.1, which illustrates an unclustered index. To do a full
scan of the file of employee records, we can scan the leaf level of the index and
for each data entry, fetch the corresponding data record from the underlying
file, obtaining data records in the sort order  age, sal .

We can read all data entries at a cost of 0.15B(D + 6.7RC) I/Os. Now comes
the expensive part: We have to fetch the employee record for each data entry
in the index. The cost of fetching the employee records is one I/O per record,
since the index is unclustered and each data entry on a leaf page of the index
could point to a different page in the employee file. The cost of this step is
BR(D + C), which is prohibitively high. If we want the employee records
in sorted order, we would be better off ignoring the index and scanning the
employee file directly, and then sorting it. A simple rule of thumb is that a file
can be sorted by a two-pass algorithm in which each pass requires reading and
writing the entire file. Thus, the I/O cost of sorting a file with B pages is 4B,
which is much less than the cost of using an unclustered index.

Search with Equality Selection: We assume that the equality selection
matches the sort order  age, sal . We can locate the first page containing the
desired data entry or entries, should any qualifying entries exist, in logF 0.15B
steps, that is, by fetching all pages from the root to the appropriate leaf. Each
step requires a disk I/O and two comparisons. Once the page is known, the
first qualifying data entry can again be located by a binary search of the page
at a cost of Clog26.7R. The first qualifying data record can be fetched from
the employee file with another I/O. The cost is DlogF 0.15B +Clog26.7R+D,
which is a significant improvement over searching sorted files.
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If several records qualify (e.g., “Find all employees aged 18”), they are not

guaranteed to be adjacent to each other. The cost of retrieving all such records
is the cost of locating the first qualifying data entry (DlogF 0.15B+Clog26.7R)
plus one I/O per qualifying record. The cost of using an unclustered index is
therefore very dependent on the number of qualifying records.

Search with Range Selection: Again assuming that the range selection
matches the composite key, the first record that satisfies the selection is located
as it is for search with equality. Subsequently, data entries are sequentially
retrieved (using the next and previous links at the leaf level of the index)
until a data entry is found that does not satisfy the range selection. For each
qualifying data entry, we incur one I/O to fetch the corresponding employee
records. The cost can quickly become prohibitive as the number of records that
satisfy the range selection increases. As a rule of thumb, if 10 percent of data
records satisfy the selection condition, we are better off retrieving all employee
records, sorting them, and then retaining those that satisfy the selection.

Insert: We must first insert the record in the employee heap file, at a cost of
2D+C. In addition, we must insert the corresponding data entry in the index.
Finding the right leaf page costs DlogF0.15B + Clog26.7R, and writing it out
after adding the new data entry costs another D.

Delete: We need to locate the data record in the employee file and the data
entry in the index, and this search step costs DlogF 0.15B + Clog26.7R + D.
Now, we need to write out the modified pages in the index and the data file,
at a cost of 2D.

8.4.6 Heap File With Unclustered Hash Index

As for unclustered tree indexes, we assume that each data entry is one tenth
the size of a data record. We consider only static hashing in our analysis, and
for simplicity we assume that there are no overflow chains.3

In a static hashed file, pages are kept at about 80 percent occupancy (to leave
space for future insertions and minimize overflows as the file expands). This is
achieved by adding a new page to a bucket when each existing page is 80 percent
full, when records are initially loaded into a hashed file structure. The number
of pages required to store data entries is therefore 1.25 times the number of
pages when the entries are densely packed, that is, 1.25(0.10B) = 0.125B.
The number of data entries that fit on a page is 10(0.80R) = 8R, taking into
account the relative size and occupancy.

3The dynamic variants of hashing are less susceptible to the problem of overflow chains, and have
a slightly higher average cost per search, but are otherwise similar to the static version.
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Scan: As for an unclustered tree index, all data entries can be retrieved in-
expensively, at a cost of 0.125B(D + 8RC) I/Os. However, for each entry, we
incur the additional cost of one I/O to fetch the corresponding data record; the
cost of this step is BR(D + C). This is prohibitively expensive, and further,
results are unordered. So no one ever scans a hash index.

Search with Equality Selection: This operation is supported very efficiently
for matching selections, that is, equality conditions are specified for each field
in the composite search key  age, sal . The cost of identifying the page that
contains qualifying data entries is H. Assuming that this bucket consists of
just one page (i.e., no overflow pages), retrieving it costs D. If we assume that
we find the data entry after scanning half the records on the page, the cost of
scanning the page is 0.5(8R)C = 4RC. Finally, we have to fetch the data
record from the employee file, which is another D. The total cost is therefore
H + 2D + 4RC, which is even lower than the cost for a tree index.

If several records qualify, they are not guaranteed to be adjacent to each other.
The cost of retrieving all such records is the cost of locating the first qualifying
data entry (H+D+4RC) plus one I/O per qualifying record. The cost of using
an unclustered index therefore depends heavily on the number of qualifying
records.

Search with Range Selection: The hash structure offers no help, and the
entire heap file of employee records must be scanned at a cost of B(D +RC).

Insert: We must first insert the record in the employee heap file, at a cost
of 2D + C. In addition, the appropriate page in the index must be located,
modified to insert a new data entry, and then written back. The additional
cost is H + 2D + C.

Delete: We need to locate the data record in the employee file and the data
entry in the index; this search step costs H + 2D + 4RC. Now, we need to
write out the modified pages in the index and the data file, at a cost of 2D.

8.4.7 Comparison of I/O Costs

Figure 8.4 compares I/O costs for the various file organizations that we dis-
cussed. A heap file has good storage efficiency and supports fast scanning and
insertion of records. However, it is slow for searches and deletions.

A sorted file also offers good storage efficiency, but insertion and deletion of
records is slow. Searches are faster than in heap files. It is worth noting that,
in a real DBMS, a file is almost never kept fully sorted.
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Figure 8.4 A Comparison of I/O Costs

A clustered file offers all the advantages of a sorted file and supports inserts
and deletes efficiently. (There is a space overhead for these benefits, relative to
a sorted file, but the trade-off is well worth it.) Searches are even faster than in
sorted files, although a sorted file can be faster when a large number of records
are retrieved sequentially, because of blocked I/O efficiencies.

Unclustered tree and hash indexes offer fast searches, insertion, and deletion,
but scans and range searches with many matches are slow. Hash indexes are a
little faster on equality searches, but they do not support range searches.

In summary, Figure 8.4 demonstrates that no one file organization is uniformly
superior in all situations.

8.5 INDEXES AND PERFORMANCE TUNING

In this section, we present an overview of choices that arise when using indexes
to improve performance in a database system. The choice of indexes has a
tremendous impact on system performance, and must be made in the context
of the expected workload, or typical mix of queries and update operations.

A full discussion of indexes and performance requires an understanding of
database query evaluation and concurrency control. We therefore return to
this topic in Chapter 20, where we build on the discussion in this section. In
particular, we discuss examples involving multiple tables in Chapter 20 because
they require an understanding of join algorithms and query evaluation plans.
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8.5.1 Impact of the Workload

The first thing to consider is the expected workload and the common opera-
tions. Different file organizations and indexes, as we have seen, support different
operations well.

In general, an index supports efficient retrieval of data entries that satisfy a
given selection condition. Recall from the previous section that there are two
important kinds of selections: equality selection and range selection. Hash-
based indexing techniques are optimized only for equality selections and fare
poorly on range selections, where they are typically worse than scanning the
entire file of records. Tree-based indexing techniques support both kinds of
selection conditions efficiently, explaining their widespread use.

Both tree and hash indexes can support inserts, deletes, and updates quite
efficiently. Tree-based indexes, in particular, offer a superior alternative to
maintaining fully sorted files of records. In contrast to simply maintaining the
data entries in a sorted file, our discussion of (B+ tree) tree-structured indexes
in Section 8.3.2 highlights two important advantages over sorted files:

1. We can handle inserts and deletes of data entries efficiently.

2. Finding the correct leaf page when searching for a record by search key
value is much faster than binary search of the pages in a sorted file.

The one relative disadvantage is that the pages in a sorted file can be allocated
in physical order on disk, making it much faster to retrieve several pages in
sequential order. Of course, inserts and deletes on a sorted file are extremely
expensive. A variant of B+ trees, called Indexed Sequential Access Method
(ISAM), offers the benefit of sequential allocation of leaf pages, plus the benefit
of fast searches. Inserts and deletes are not handled as well as in B+ trees, but
are much better than in a sorted file. We will study tree-structured indexing
in detail in Chapter 10.

8.5.2 Clustered Index Organization

As we saw in Section 8.2.1, a clustered index is really a file organization for
the underlying data records. Data records can be large, and we should avoid
replicating them; so there can be at most one clustered index on a given collec-
tion of records. On the other hand, we can build several unclustered indexes
on a data file. Suppose that employee records are sorted by age, or stored in a
clustered file with search key age. If, in addition, we have an index on the sal

field, the latter must be an unclustered index. We can also build an unclustered
index on, say, department, if there is such a field.
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Clustered indexes, while less expensive to maintain than a fully sorted file, are
nonetheless expensive to maintain. When a new record has to be inserted into
a full leaf page, a new leaf page must be allocated and some existing records
have to be moved to the new page. If records are identified by a combination of
page id and slot, as is typically the case in current database systems, all places
in the database that point to a moved record (typically, entries in other indexes
for the same collection of records) must also be updated to point to the new
location. Locating all such places and making these additional updates can
involve several disk I/Os. Clustering must be used sparingly and only when
justified by frequent queries that benefit from clustering. In particular, there
is no good reason to build a clustered file using hashing, since range queries
cannot be answered using hash-indexes.

In dealing with the limitation that at most one index can be clustered, it is
often useful to consider whether the information in an index’s search key is
sufficient to answer the query. If so, modern database systems are intelligent
enough to avoid fetching the actual data records. For example, if we have
an index on age, and we want to compute the average age of employees, the
DBMS can do this by simply examining the data entries in the index. This is an
example of an index-only evaluation. In an index-only evaluation of a query
we need not access the data records in the files that contain the relations in the
query; we can evaluate the query completely through indexes on the files. An
important benefit of index-only evaluation is that it works equally efficiently
with only unclustered indexes, as only the data entries of the index are used in
the queries. Thus, unclustered indexes can be used to speed up certain queries
if we recognize that the DBMS will exploit index-only evaluation.

Design Examples Illustrating Clustered Indexes

To illustrate the use of a clustered index on a range query, consider the following
example:

SELECT E.dno
FROM Employees E
WHERE E.age > 40

If we have a B+ tree index on age, we can use it to retrieve only tuples that
satisfy the selection E.age> 40. Whether such an index is worthwhile depends
first of all on the selectivity of the condition. What fraction of the employees are
older than 40? If virtually everyone is older than 40, we gain little by using an
index on age; a sequential scan of the relation would do almost as well. However,
suppose that only 10 percent of the employees are older than 40. Now, is an
index useful? The answer depends on whether the index is clustered. If the
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index is unclustered, we could have one page I/O per qualifying employee, and
this could be more expensive than a sequential scan, even if only 10 percent
of the employees qualify! On the other hand, a clustered B+ tree index on
age requires only 10 percent of the I/Os for a sequential scan (ignoring the few
I/Os needed to traverse from the root to the first retrieved leaf page and the
I/Os for the relevant index leaf pages).

As another example, consider the following refinement of the previous query:

SELECT E.dno, COUNT(*)
FROM Employees E
WHERE E.age > 10
GROUP BY E.dno

If a B+ tree index is available on age, we could retrieve tuples using it, sort
the retrieved tuples on dno, and so answer the query. However, this may not
be a good plan if virtually all employees are more than 10 years old. This plan
is especially bad if the index is not clustered.

Let us consider whether an index on dno might suit our purposes better. We
could use the index to retrieve all tuples, grouped by dno, and for each dno

count the number of tuples with age > 10. (This strategy can be used with
both hash and B+ tree indexes; we only require the tuples to be grouped, not
necessarily sorted, by dno.) Again, the efficiency depends crucially on whether
the index is clustered. If it is, this plan is likely to be the best if the condition
on age is not very selective. (Even if we have a clustered index on age, if the
condition on age is not selective, the cost of sorting qualifying tuples on dno is
likely to be high.) If the index is not clustered, we could perform one page I/O
per tuple in Employees, and this plan would be terrible. Indeed, if the index
is not clustered, the optimizer will choose the straightforward plan based on
sorting on dno. Therefore, this query suggests that we build a clustered index
on dno if the condition on age is not very selective. If the condition is very
selective, we should consider building an index (not necessarily clustered) on
age instead.

Clustering is also important for an index on a search key that does not include
a candidate key, that is, an index in which several data entries can have the
same key value. To illustrate this point, we present the following query:

SELECT E.dno
FROM Employees E
WHERE E.hobby=‘Stamps’
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If many people collect stamps, retrieving tuples through an unclustered index
on hobby can be very inefficient. It may be cheaper to simply scan the relation
to retrieve all tuples and to apply the selection on-the-fly to the retrieved tuples.
Therefore, if such a query is important, we should consider making the index
on hobby a clustered index. On the other hand, if we assume that eid is a key
for Employees, and replace the condition E.hobby=‘Stamps’ by E.eid=552, we
know that at most one Employees tuple will satisfy this selection condition. In
this case, there is no advantage to making the index clustered.

The next query shows how aggregate operations can influence the choice of
indexes:

SELECT E.dno, COUNT(*)
FROM Employees E
GROUP BY E.dno

A straightforward plan for this query is to sort Employees on dno to compute
the count of employees for each dno. However, if an index—hash or B+ tree—
on dno is available, we can answer this query by scanning only the index. For
each dno value, we simply count the number of data entries in the index with
this value for the search key. Note that it does not matter whether the index
is clustered because we never retrieve tuples of Employees.

8.5.3 Composite Search Keys

The search key for an index can contain several fields; such keys are called
composite search keys or concatenated keys. As an example, consider a
collection of employee records, with fields name, age, and sal, stored in sorted
order by name. Figure 8.5 illustrates the difference between a composite index
with key  age, sal , a composite index with key  sal, age , an index with key
age, and an index with key sal. All indexes shown in the figure use Alternative
(2) for data entries.

If the search key is composite, an equality query is one in which each field in
the search key is bound to a constant. For example, we can ask to retrieve all
data entries with age = 20 and sal = 10. The hashed file organization supports
only equality queries, since a hash function identifies the bucket containing
desired records only if a value is specified for each field in the search key.

With respect to a composite key index, in a range query not all fields in the
search key are bound to constants. For example, we can ask to retrieve all data
entries with age = 20; this query implies that any value is acceptable for the
sal field. As another example of a range query, we can ask to retrieve all data
entries with age < 30 and sal > 40.
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Figure 8.5 Composite Key Indexes

Note that the index cannot help on the query sal > 40, because, intuitively,
the index organizes records by age first and then sal. If age is left unspeci-
fied, qualifying records could be spread across the entire index. We say that
an index matches a selection condition if the index can be used to retrieve
just the tuples that satisfy the condition. For selections of the form condition

∧ . . .∧ condition, we can define when an index matches the selection as fol-
lows:4 For a hash index, a selection matches the index if it includes an equality
condition (‘field = constant’) on every field in the composite search key for the
index. For a tree index, a selection matches the index if it includes an equal-
ity or range condition on a prefix of the composite search key. (As examples,
 age and  age, sal, department are prefixes of key  age, sal, department , but
 age, department and  sal, department are not.)

Trade-offs in Choosing Composite Keys

A composite key index can support a broader range of queries because it
matches more selection conditions. Further, since data entries in a composite
index contain more information about the data record (i.e., more fields than
a single-attribute index), the opportunities for index-only evaluation strategies
are increased. (Recall from Section 8.5.2 that an index-only evaluation does
not need to access data records, but finds all required field values in the data
entries of indexes.)

On the negative side, a composite index must be updated in response to any
operation (insert, delete, or update) that modifies any field in the search key.
A composite index is also likely to be larger than a single-attribute search key

4For a more general discussion, see Section 14.2.)
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index because the size of entries is larger. For a composite B+ tree index, this
also means a potential increase in the number of levels, although key compres-
sion can be used to alleviate this problem (see Section 10.8.1).

Design Examples of Composite Keys

Consider the following query, which returns all employees with 20 < age < 30
and 3000 < sal < 5000:

SELECT E.eid
FROM Employees E
WHERE E.age BETWEEN 20 AND 30

AND E.sal BETWEEN 3000 AND 5000

A composite index on  age, sal could help if the conditions in the WHERE clause
are fairly selective. Obviously, a hash index will not help; a B+ tree (or ISAM)
index is required. It is also clear that a clustered index is likely to be superior
to an unclustered index. For this query, in which the conditions on age and sal

are equally selective, a composite, clustered B+ tree index on  age, sal is as
effective as a composite, clustered B+ tree index on  sal, age . However, the
order of search key attributes can sometimes make a big difference, as the next
query illustrates:

SELECT E.eid
FROM Employees E
WHERE E.age = 25

AND E.sal BETWEEN 3000 AND 5000

In this query a composite, clustered B+ tree index on  age, sal will give good
performance because records are sorted by age first and then (if two records
have the same age value) by sal. Thus, all records with age = 25 are clustered
together. On the other hand, a composite, clustered B+ tree index on  sal, age 
will not perform as well. In this case, records are sorted by sal first, and there-
fore two records with the same age value (in particular, with age = 25) may be
quite far apart. In effect, this index allows us to use the range selection on sal,
but not the equality selection on age, to retrieve tuples. (Good performance
on both variants of the query can be achieved using a single spatial index. We
discuss spatial indexes in Chapter 28.)

Composite indexes are also useful in dealing with many aggregate queries. Con-
sider:

SELECT AVG (E.sal)
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FROM Employees E
WHERE E.age = 25

AND E.sal BETWEEN 3000 AND 5000

A composite B+ tree index on  age, sal allows us to answer the query with
an index-only scan. A composite B+ tree index on  sal, age also allows us
to answer the query with an index-only scan, although more index entries are
retrieved in this case than with an index on  age, sal .

Here is a variation of an earlier example:

SELECT E.dno, COUNT(*)
FROM Employees E
WHERE E.sal=10,000
GROUP BY E.dno

An index on dno alone does not allow us to evaluate this query with an index-
only scan, because we need to look at the sal field of each tuple to verify that
sal = 10, 000. However, we can use an index-only plan if we have a composite
B+ tree index on  sal, dno or  dno, sal . In an index with key  sal, dno , all
data entries with sal = 10, 000 are arranged contiguously (whether or not the
index is clustered). Further, these entries are sorted by dno, making it easy to
obtain a count for each dno group. Note that we need to retrieve only data
entries with sal = 10, 000.

It is worth observing that this strategy does not work if the WHERE clause is
modified to use sal > 10, 000. Although it suffices to retrieve only index data
entries—that is, an index-only strategy still applies—these entries must now
be sorted by dno to identify the groups (because, for example, two entries with
the same dno but different sal values may not be contiguous). An index with
key  dno, sal is better for this query: Data entries with a given dno value are
stored together, and each such group of entries is itself sorted by sal. For each
dno group, we can eliminate the entries with sal not greater than 10,000 and
count the rest. (Using this index is less efficient than an index-only scan with
key  sal, dno for the query with sal = 10, 000, because we must read all data
entries. Thus, the choice between these indexes is influenced by which query is
more common.)

As another example, suppose we want to find the minimum sal for each dno:

SELECT E.dno, MIN(E.sal)
FROM Employees E
GROUP BY E.dno
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An index on dno alone does not allow us to evaluate this query with an index-
only scan. However, we can use an index-only plan if we have a composite B+
tree index on  dno, sal . Note that all data entries in the index with a given
dno value are stored together (whether or not the index is clustered). Further,
this group of entries is itself sorted by sal. An index on  sal, dno enables us
to avoid retrieving data records, but the index data entries must be sorted on
dno.

8.5.4 Index Specification in SQL:1999

A natural question to ask at this point is how we can create indexes using
SQL. The SQL:1999 standard does not include any statement for creating or
dropping index structures. In fact, the standard does not even require SQL
implementations to support indexes! In practice, of course, every commercial
relational DBMS supports one or more kinds of indexes. The following com-
mand to create a B+ tree index—we discuss B+ tree indexes in Chapter 10—is
illustrative:

CREATE INDEX IndAgeRating ON Students
WITH STRUCTURE = BTREE,

KEY = (age, gpa)

This specifies that a B+ tree index is to be created on the Students table using
the concatenation of the age and gpa columns as the key. Thus, key values are
pairs of the form  age, gpa , and there is a distinct entry for each such pair.
Once created, the index is automatically maintained by the DBMS adding or
removing data entries in response to inserts or deletes of records on the Students
relation.

8.6 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

Where does a DBMS store persistent data? How does it bring data into
main memory for processing? What DBMS component reads and writes
data from main memory, and what is the unit of I/O? (Section 8.1)

What is a file organization? What is an index? What is the relationship
between files and indexes? Can we have several indexes on a single file
of records? Can an index itself store data records (i.e., act as a file)?
(Section 8.2)

What is the search key for an index? What is a data entry in an index?
(Section 8.2)
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What is a clustered index? What is a primary index? How many clustered
indexes can you build on a file? How many unclustered indexes can you
build? (Section 8.2.1)

How is data organized in a hash-based index? When would you use a
hash-based index? (Section 8.3.1)

How is data organized in a tree-based index? When would you use a tree-
based index? (Section 8.3.2)

Consider the following operations: scans, equality and range selections,

inserts, and deletes, and the following file organizations: heap files, sorted

files, clustered files, heap files with an unclustered tree index on the search

key, and heap files with an unclustered hash index. Which file organization
is best suited for each operation? (Section 8.4)

What are the main contributors to the cost of database operations? Discuss
a simple cost model that reflects this. (Section 8.4.1)

How does the expected workload influence physical database design deci-
sions such as what indexes to build? Why is the choice of indexes a central
aspect of physical database design? (Section 8.5)

What issues are considered in using clustered indexes? What is an index-

only evaluation method? What is its primary advantage? (Section 8.5.2)

What is a composite search key? What are the pros and cons of composite
search keys? (Section 8.5.3)

What SQL commands support index creation? (Section 8.5.4)

EXERCISES

Exercise 8.1 Answer the following questions about data on external storage in a DBMS:

1. Why does a DBMS store data on external storage?

2. Why are I/O costs important in a DBMS?

3. What is a record id? Given a record’s id, how many I/Os are needed to fetch it into
main memory?

4. What is the role of the buffer manager in a DBMS? What is the role of the disk space
manager? How do these layers interact with the file and access methods layer?

Exercise 8.2 Answer the following questions about files and indexes:

1. What operations are supported by the file of records abstraction?

2. What is an index on a file of records? What is a search key for an index? Why do we
need indexes?
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sid name login age gpa

53831 Madayan madayan@music 11 1.8

53832 Guldu guldu@music 12 2.0

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 19 3.2

53650 Smith smith@math 19 3.8

Figure 8.6 An Instance of the Students Relation, Sorted by age

3. What alternatives are available for the data entries in an index?

4. What is the difference between a primary index and a secondary index? What is a
duplicate data entry in an index? Can a primary index contain duplicates?

5. What is the difference between a clustered index and an unclustered index? If an index
contains data records as ‘data entries,’ can it be unclustered?

6. How many clustered indexes can you create on a file? Would you always create at least
one clustered index for a file?

7. Consider Alternatives (1), (2) and (3) for ‘data entries’ in an index, as discussed in
Section 8.2 . Are all of them suitable for secondary indexes? Explain.

Exercise 8.3 Consider a relation stored as a randomly ordered file for which the only index
is an unclustered index on a field called sal. If you want to retrieve all records with sal > 20,
is using the index always the best alternative? Explain.

Exercise 8.4 Consider the instance of the Students relation shown in Figure 8.6, sorted by
age: For the purposes of this question, assume that these tuples are stored in a sorted file in
the order shown; the first tuple is on page 1 the second tuple is also on page 1; and so on.
Each page can store up to three data records; so the fourth tuple is on page 2.

Explain what the data entries in each of the following indexes contain. If the order of entries
is significant, say so and explain why. If such an index cannot be constructed, say so and
explain why.

1. An unclustered index on age using Alternative (1).

2. An unclustered index on age using Alternative (2).

3. An unclustered index on age using Alternative (3).

4. A clustered index on age using Alternative (1).

5. A clustered index on age using Alternative (2).

6. A clustered index on age using Alternative (3).

7. An unclustered index on gpa using Alternative (1).

8. An unclustered index on gpa using Alternative (2).

9. An unclustered index on gpa using Alternative (3).

10. A clustered index on gpa using Alternative (1).

11. A clustered index on gpa using Alternative (2).

12. A clustered index on gpa using Alternative (3).



302 Chapter 8

File Scan Equality Range Insert Delete

Type Search Search

Heap file

Sorted file

Clustered file

Unclustered tree index

Unclustered hash index

Figure 8.7 I/O Cost Comparison

Exercise 8.5 Explain the difference between Hash indexes and B+-tree indexes. In partic-
ular, discuss how equality and range searches work, using an example.

Exercise 8.6 Fill in the I/O costs in Figure 8.7.

Exercise 8.7 If you were about to create an index on a relation, what considerations would
guide your choice? Discuss:

1. The choice of primary index.

2. Clustered versus unclustered indexes.

3. Hash versus tree indexes.

4. The use of a sorted file rather than a tree-based index.

5. Choice of search key for the index. What is a composite search key, and what consid-
erations are made in choosing composite search keys? What are index-only plans, and
what is the influence of potential index-only evaluation plans on the choice of search key
for an index?

Exercise 8.8 Consider a delete specified using an equality condition. For each of the five
file organizations, what is the cost if no record qualifies? What is the cost if the condition is
not on a key?

Exercise 8.9 What main conclusions can you draw from the discussion of the five basic file
organizations discussed in Section 8.4? Which of the five organizations would you choose for
a file where the most frequent operations are as follows?

1. Search for records based on a range of field values.

2. Perform inserts and scans, where the order of records does not matter.

3. Search for a record based on a particular field value.

Exercise 8.10 Consider the following relation:

Emp(eid: integer, sal: integer, age: real, did: integer)

There is a clustered index on eid and an unclustered index on age.

1. How would you use the indexes to enforce the constraint that eid is a key?

2. Give an example of an update that is definitely speeded up because of the available
indexes. (English description is sufficient.)
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3. Give an example of an update that is definitely slowed down because of the indexes.
(English description is sufficient.)

4. Can you give an example of an update that is neither speeded up nor slowed down by
the indexes?

Exercise 8.11 Consider the following relations:

Emp(eid: integer, ename: varchar, sal: integer, age: integer, did: integer)
Dept(did: integer, budget: integer, floor: integer, mgr eid: integer)

Salaries range from $10,000 to $100,000, ages vary from 20 to 80, each department has about
five employees on average, there are 10 floors, and budgets vary from $10,000 to $1 million.
You can assume uniform distributions of values.

For each of the following queries, which of the listed index choices would you choose to speed
up the query? If your database system does not consider index-only plans (i.e., data records
are always retrieved even if enough information is available in the index entry), how would
your answer change? Explain briefly.

1. Query: Print ename, age, and sal for all employees.

(a) Clustered hash index on �ename, age, sal� fields of Emp.

(b) Unclustered hash index on �ename, age, sal� fields of Emp.

(c) Clustered B+ tree index on �ename, age, sal� fields of Emp.

(d) Unclustered hash index on �eid, did� fields of Emp.

(e) No index.

2. Query: Find the dids of departments that are on the 10th floor and have a budget of less

than $15,000.

(a) Clustered hash index on the floor field of Dept.

(b) Unclustered hash index on the floor field of Dept.

(c) Clustered B+ tree index on �floor, budget� fields of Dept.

(d) Clustered B+ tree index on the budget field of Dept.

(e) No index.

PROJECT-BASED EXERCISES

Exercise 8.12 Answer the following questions:

1. What indexing techniques are supported in Minibase?

2. What alternatives for data entries are supported?

3. Are clustered indexes supported?

BIBLIOGRAPHIC NOTES

Several books discuss file organization in detail [29, 312, 442, 531, 648, 695, 775].

Bibliographic notes for hash-indexes and B+-trees are included in Chapters 10 and 11.



9
STORING DATA:

DISKS AND FILES

☛ What are the different kinds of memory in a computer system?

☛ What are the physical characteristics of disks and tapes, and how do
they affect the design of database systems?

☛ What are RAID storage systems, and what are their advantages?

☛ How does a DBMS keep track of space on disks? How does a DBMS
access and modify data on disks? What is the significance of pages as
a unit of storage and transfer?

☛ How does a DBMS create and maintain files of records? How are
records arranged on pages, and how are pages organized within a file?

➽ Key concepts: memory hierarchy, persistent storage, random versus
sequential devices; physical disk architecture, disk characteristics, seek
time, rotational delay, transfer time; RAID, striping, mirroring, RAID
levels; disk space manager; buffer manager, buffer pool, replacement
policy, prefetching, forcing; file implementation, page organization,
record organization

A memory is what is left when something happens and does not completely
unhappen.

—Edward DeBono

This chapter initiates a study of the internals of an RDBMS. In terms of the
DBMS architecture presented in Section 1.8, it covers the disk space manager,

304
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the buffer manager, and implementation-oriented aspects of the files and access
methods layer.

Section 9.1 introduces disks and tapes. Section 9.2 describes RAID disk sys-
tems. Section 9.3 discusses how a DBMS manages disk space, and Section 9.4
explains how a DBMS fetches data from disk into main memory. Section 9.5
discusses how a collection of pages is organized into a file and how auxiliary
data structures can be built to speed up retrieval of records from a file. Sec-
tion 9.6 covers different ways to arrange a collection of records on a page, and
Section 9.7 covers alternative formats for storing individual records.

9.1 THE MEMORY HIERARCHY

Memory in a computer system is arranged in a hierarchy, as shown in Fig-
ure 9.1. At the top, we have primary storage, which consists of cache and
main memory and provides very fast access to data. Then comes secondary
storage, which consists of slower devices, such as magnetic disks. Tertiary
storage is the slowest class of storage devices; for example, optical disks and
tapes. Currently, the cost of a given amount of main memory is about 100 times

Data satisfying request

Request for data

CPU

CACHE

MAIN MEMORY

MAGNETIC DISK

TAPE

Primary storage

Secondary storage

Tertiary storage

Figure 9.1 The Memory Hierarchy

the cost of the same amount of disk space, and tapes are even less expensive
than disks. Slower storage devices such as tapes and disks play an important
role in database systems because the amount of data is typically very large.
Since buying enough main memory to store all data is prohibitively expensive,
we must store data on tapes and disks and build database systems that can
retrieve data from lower levels of the memory hierarchy into main memory as
needed for processing.
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There are reasons other than cost for storing data on secondary and tertiary
storage. On systems with 32-bit addressing, only 232 bytes can be directly ref-
erenced in main memory; the number of data objects may exceed this number!
Further, data must be maintained across program executions. This requires
storage devices that retain information when the computer is restarted (after
a shutdown or a crash); we call such storage nonvolatile. Primary storage is
usually volatile (although it is possible to make it nonvolatile by adding a bat-
tery backup feature), whereas secondary and tertiary storage are nonvolatile.

Tapes are relatively inexpensive and can store very large amounts of data. They
are a good choice for archival storage, that is, when we need to maintain data
for a long period but do not expect to access it very often. A Quantum DLT
4000 drive is a typical tape device; it stores 20 GB of data and can store about
twice as much by compressing the data. It records data on 128 tape tracks,
which can be thought of as a linear sequence of adjacent bytes, and supports
a sustained transfer rate of 1.5 MB/sec with uncompressed data (typically 3.0
MB/sec with compressed data). A single DLT 4000 tape drive can be used to
access up to seven tapes in a stacked configuration, for a maximum compressed
data capacity of about 280 GB.

The main drawback of tapes is that they are sequential access devices. We must
essentially step through all the data in order and cannot directly access a given
location on tape. For example, to access the last byte on a tape, we would have
to wind through the entire tape first. This makes tapes unsuitable for storing
operational data, or data that is frequently accessed. Tapes are mostly used to
back up operational data periodically.

9.1.1 Magnetic Disks

Magnetic disks support direct access to a desired location and are widely used
for database applications. A DBMS provides seamless access to data on disk;
applications need not worry about whether data is in main memory or disk.
To understand how disks work, consider Figure 9.2, which shows the structure
of a disk in simplified form.

Data is stored on disk in units called disk blocks. A disk block is a contiguous
sequence of bytes and is the unit in which data is written to a disk and read
from a disk. Blocks are arranged in concentric rings called tracks, on one or
more platters. Tracks can be recorded on one or both surfaces of a platter;
we refer to platters as single-sided or double-sided, accordingly. The set of all
tracks with the same diameter is called a cylinder, because the space occupied
by these tracks is shaped like a cylinder; a cylinder contains one track per
platter surface. Each track is divided into arcs, called sectors, whose size is a
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Disk arm Disk head Spindle

Rotation

Platter 

Tracks

Cylinder 

Sectors

Arm movement

Block

Figure 9.2 Structure of a Disk

characteristic of the disk and cannot be changed. The size of a disk block can
be set when the disk is initialized as a multiple of the sector size.

An array of disk heads, one per recorded surface, is moved as a unit; when
one head is positioned over a block, the other heads are in identical positions
with respect to their platters. To read or write a block, a disk head must be
positioned on top of the block.

Current systems typically allow at most one disk head to read or write at any
one time. All the disk heads cannot read or write in parallel—this technique
would increase data transfer rates by a factor equal to the number of disk
heads and considerably speed up sequential scans. The reason they cannot is
that it is very difficult to ensure that all the heads are perfectly aligned on the
corresponding tracks. Current approaches are both expensive and more prone
to faults than disks with a single active head. In practice, very few commercial
products support this capability and then only in a limited way; for example,
two disk heads may be able to operate in parallel.

A disk controller interfaces a disk drive to the computer. It implements com-
mands to read or write a sector by moving the arm assembly and transferring
data to and from the disk surfaces. A checksum is computed for when data
is written to a sector and stored with the sector. The checksum is computed
again when the data on the sector is read back. If the sector is corrupted or the
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An Example of a Current Disk: The IBM Deskstar 14GPX. The
IBM Deskstar 14GPX is a 3.5 inch, 14.4 GB hard disk with an average
seek time of 9.1 milliseconds (msec) and an average rotational delay of
4.17 msec. However, the time to seek from one track to the next is just 2.2
msec, the maximum seek time is 15.5 msec. The disk has five double-sided
platters that spin at 7200 rotations per minute. Each platter holds 3.35 GB
of data, with a density of 2.6 gigabit per square inch. The data transfer
rate is about 13 MB per second. To put these numbers in perspective,
observe that a disk access takes about 10 msecs, whereas accessing a main
memory location typically takes less than 60 nanoseconds!

read is faulty for some reason, it is very unlikely that the checksum computed
when the sector is read matches the checksum computed when the sector was
written. The controller computes checksums, and if it detects an error, it tries
to read the sector again. (Of course, it signals a failure if the sector is corrupted
and read fails repeatedly.)

While direct access to any desired location in main memory takes approxi-
mately the same time, determining the time to access a location on disk is
more complicated. The time to access a disk block has several components.
Seek time is the time taken to move the disk heads to the track on which
a desired block is located. As the size of a platter decreases, seek times also
decrease, since we have to move a disk head a shorter distance. Typical platter
diameters are 3.5 inches and 5.25 inches. Rotational delay is the waiting
time for the desired block to rotate under the disk head; it is the time required
for half a rotation on average and is usually less than seek time. Transfer
time is the time to actually read or write the data in the block once the head
is positioned, that is, the time for the disk to rotate over the block.

9.1.2 Performance Implications of Disk Structure

1. Data must be in memory for the DBMS to operate on it.

2. The unit for data transfer between disk and main memory is a block; if a
single item on a block is needed, the entire block is transferred. Reading
or writing a disk block is called an I/O (for input/output) operation.

3. The time to read or write a block varies, depending on the location of the
data:

access time = seek time + rotational delay + transfer time

These observations imply that the time taken for database operations is affected
significantly by how data is stored on disks. The time for moving blocks to
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or from disk usually dominates the time taken for database operations. To
minimize this time, it is necessary to locate data records strategically on disk
because of the geometry and mechanics of disks. In essence, if two records are
frequently used together, we should place them close together. The ‘closest’
that two records can be on a disk is to be on the same block. In decreasing
order of closeness, they could be on the same track, the same cylinder, or an
adjacent cylinder.

Two records on the same block are obviously as close together as possible,
because they are read or written as part of the same block. As the platter
spins, other blocks on the track being read or written rotate under the active
head. In current disk designs, all the data on a track can be read or written
in one revolution. After a track is read or written, another disk head becomes
active, and another track in the same cylinder is read or written. This process
continues until all tracks in the current cylinder are read or written, and then
the arm assembly moves (in or out) to an adjacent cylinder. Thus, we have a
natural notion of ‘closeness’ for blocks, which we can extend to a notion of next
and previous blocks.

Exploiting this notion of next by arranging records so they are read or written
sequentially is very important in reducing the time spent in disk I/Os. Sequen-
tial access minimizes seek time and rotational delay and is much faster than
random access. (This observation is reinforced and elaborated in Exercises 9.5
and 9.6, and the reader is urged to work through them.)

9.2 REDUNDANT ARRAYS OF INDEPENDENT DISKS

Disks are potential bottlenecks for system performance and storage system re-
liability. Even though disk performance has been improving continuously, mi-
croprocessor performance has advanced much more rapidly. The performance
of microprocessors has improved at about 50 percent or more per year, but
disk access times have improved at a rate of about 10 percent per year and
disk transfer rates at a rate of about 20 percent per year. In addition, since
disks contain mechanical elements, they have much higher failure rates than
electronic parts of a computer system. If a disk fails, all the data stored on it
is lost.

A disk array is an arrangement of several disks, organized to increase per-
formance and improve reliability of the resulting storage system. Performance
is increased through data striping. Data striping distributes data over several
disks to give the impression of having a single large, very fast disk. Reliabil-
ity is improved through redundancy. Instead of having a single copy of the
data, redundant information is maintained. The redundant information is care-
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fully organized so that, in case of a disk failure, it can be used to reconstruct
the contents of the failed disk. Disk arrays that implement a combination of
data striping and redundancy are called redundant arrays of independent
disks, or in short, RAID.1 Several RAID organizations, referred to as RAID
levels, have been proposed. Each RAID level represents a different trade-off
between reliability and performance.

In the remainder of this section, we first discuss data striping and redundancy
and then introduce the RAID levels that have become industry standards.

9.2.1 Data Striping

A disk array gives the user the abstraction of having a single, very large disk.
If the user issues an I/O request, we first identify the set of physical disk blocks
that store the data requested. These disk blocks may reside on a single disk in
the array or may be distributed over several disks in the array. Then the set
of blocks is retrieved from the disk(s) involved. Thus, how we distribute the
data over the disks in the array influences how many disks are involved when
an I/O request is processed.

In data striping, the data is segmented into equal-size partitions distributed
over multiple disks. The size of the partition is called the striping unit. The
partitions are usually distributed using a round-robin algorithm: If the disk
array consists of D disks, then partition i is written onto disk i mod D.

As an example, consider a striping unit of one bit. Since any D successive data
bits are spread over all D data disks in the array, all I/O requests involve all
disks in the array. Since the smallest unit of transfer from a disk is a block,
each I/O request involves transfer of at least D blocks. Since we can read the D
blocks from the D disks in parallel, the transfer rate of each request is D times
the transfer rate of a single disk; each request uses the aggregated bandwidth
of all disks in the array. But the disk access time of the array is basically the
access time of a single disk, since all disk heads have to move for all requests.
Therefore, for a disk array with a striping unit of a single bit, the number of
requests per time unit that the array can process and the average response time
for each individual request are similar to that of a single disk.

As another example, consider a striping unit of a disk block. In this case, I/O
requests of the size of a disk block are processed by one disk in the array. If
many I/O requests of the size of a disk block are made, and the requested

1Historically, the I in RAID stood for inexpensive, as a large number of small disks was much more

economical than a single very large disk. Today, such very large disks are not even manufactured—a

sign of the impact of RAID.



Storing Data: Disks and Files 311

Redundancy Schemes: Alternatives to the parity scheme include
schemes based on Hamming codes and Reed-Solomon codes. In ad-
dition to recovery from single disk failures, Hamming codes can identify
which disk failed. Reed-Solomon codes can recover from up to two simul-
taneous disk failures. A detailed discussion of these schemes is beyond
the scope of our discussion here; the bibliography provides pointers for the
interested reader.

blocks reside on different disks, we can process all requests in parallel and thus
reduce the average response time of an I/O request. Since we distributed the
striping partitions round-robin, large requests of the size of many contiguous
blocks involve all disks. We can process the request by all disks in parallel and
thus increase the transfer rate to the aggregated bandwidth of all D disks.

9.2.2 Redundancy

While having more disks increases storage system performance, it also low-
ers overall storage system reliability. Assume that the mean-time-to-failure
(MTTF), of a single disk is 50, 000 hours (about 5.7 years). Then, the MTTF
of an array of 100 disks is only 50, 000/100 = 500 hours or about 21 days,
assuming that failures occur independently and the failure probability of a disk
does not change over time. (Actually, disks have a higher failure probability
early and late in their lifetimes. Early failures are often due to undetected
manufacturing defects; late failures occur since the disk wears out. Failures do
not occur independently either: consider a fire in the building, an earthquake,
or purchase of a set of disks that come from a ‘bad’ manufacturing batch.)

Reliability of a disk array can be increased by storing redundant information.
If a disk fails, the redundant information is used to reconstruct the data on the
failed disk. Redundancy can immensely increase the MTTF of a disk array.
When incorporating redundancy into a disk array design, we have to make two
choices. First, we have to decide where to store the redundant information. We
can either store the redundant information on a small number of check disks
or distribute the redundant information uniformly over all disks.

The second choice we have to make is how to compute the redundant infor-
mation. Most disk arrays store parity information: In the parity scheme, an
extra check disk contains information that can be used to recover from failure
of any one disk in the array. Assume that we have a disk array with D disks
and consider the first bit on each data disk. Suppose that i of the D data bits
are 1. The first bit on the check disk is set to 1 if i is odd; otherwise, it is set to
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0. This bit on the check disk is called the parity of the data bits. The check
disk contains parity information for each set of corresponding D data bits.

To recover the value of the first bit of a failed disk we first count the number
of bits that are 1 on the D− 1 nonfailed disks; let this number be j. If j is odd
and the parity bit is 1, or if j is even and the parity bit is 0, then the value
of the bit on the failed disk must have been 0. Otherwise, the value of the bit
on the failed disk must have been 1. Thus, with parity we can recover from
failure of any one disk. Reconstruction of the lost information involves reading
all data disks and the check disk.

For example, with an additional 10 disks with redundant information, the
MTTF of our example storage system with 100 data disks can be increased
to more than 250 years! What is more important, a large MTTF implies a
small failure probability during the actual usage time of the storage system,
which is usually much smaller than the reported lifetime or the MTTF. (Who
actually uses 10-year-old disks?)

In a RAID system, the disk array is partitioned into reliability groups, where
a reliability group consists of a set of data disks and a set of check disks. A
common redundancy scheme (see box) is applied to each group. The number
of check disks depends on the RAID level chosen. In the remainder of this
section, we assume for ease of explanation that there is only one reliability
group. The reader should keep in mind that actual RAID implementations
consist of several reliability groups, and the number of groups plays a role in
the overall reliability of the resulting storage system.

9.2.3 Levels of Redundancy

Throughout the discussion of the different RAID levels, we consider sample
data that would just fit on four disks. That is, with no RAID technology our
storage system would consist of exactly four data disks. Depending on the
RAID level chosen, the number of additional disks varies from zero to four.

Level 0: Nonredundant

A RAID Level 0 system uses data striping to increase the maximum bandwidth
available. No redundant information is maintained. While being the solution
with the lowest cost, reliability is a problem, since the MTTF decreases linearly
with the number of disk drives in the array. RAID Level 0 has the best write
performance of all RAID levels, because absence of redundant information im-
plies that no redundant information needs to be updated! Interestingly, RAID
Level 0 does not have the best read performance of all RAID levels, since sys-
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tems with redundancy have a choice of scheduling disk accesses, as explained
in the next section.

In our example, the RAID Level 0 solution consists of only four data disks.
Independent of the number of data disks, the effective space utilization for a
RAID Level 0 system is always 100 percent.

Level 1: Mirrored

A RAID Level 1 system is the most expensive solution. Instead of having
one copy of the data, two identical copies of the data on two different disks are
maintained. This type of redundancy is often called mirroring. Every write of
a disk block involves a write on both disks. These writes may not be performed
simultaneously, since a global system failure (e.g., due to a power outage) could
occur while writing the blocks and then leave both copies in an inconsistent
state. Therefore, we always write a block on one disk first and then write the
other copy on the mirror disk. Since two copies of each block exist on different
disks, we can distribute reads between the two disks and allow parallel reads

of different disk blocks that conceptually reside on the same disk. A read of a
block can be scheduled to the disk that has the smaller expected access time.
RAID Level 1 does not stripe the data over different disks, so the transfer rate
for a single request is comparable to the transfer rate of a single disk.

In our example, we need four data and four check disks with mirrored data for
a RAID Level 1 implementation. The effective space utilization is 50 percent,
independent of the number of data disks.

Level 0+1: Striping and Mirroring

RAID Level 0+1—sometimes also referred to as RAID Level 10—combines
striping and mirroring. As in RAID Level 1, read requests of the size of a disk
block can be scheduled both to a disk and its mirror image. In addition, read
requests of the size of several contiguous blocks benefit from the aggregated
bandwidth of all disks. The cost for writes is analogous to RAID Level 1.

As in RAID Level 1, our example with four data disks requires four check disks
and the effective space utilization is always 50 percent.

Level 2: Error-Correcting Codes

In RAID Level 2, the striping unit is a single bit. The redundancy scheme used
is Hamming code. In our example with four data disks, only three check disks
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are needed. In general, the number of check disks grows logarithmically with
the number of data disks.

Striping at the bit level has the implication that in a disk array with D data
disks, the smallest unit of transfer for a read is a set of D blocks. Therefore,
Level 2 is good for workloads with many large requests, since for each request,
the aggregated bandwidth of all data disks is used. But RAID Level 2 is bad
for small requests of the size of an individual block for the same reason. (See
the example in Section 9.2.1.) A write of a block involves reading D blocks
into main memory, modifying D + C blocks, and writing D + C blocks to
disk, where C is the number of check disks. This sequence of steps is called a
read-modify-write cycle.

For a RAID Level 2 implementation with four data disks, three check disks
are needed. In our example, the effective space utilization is about 57 percent.
The effective space utilization increases with the number of data disks. For
example, in a setup with 10 data disks, four check disks are needed and the
effective space utilization is 71 percent. In a setup with 25 data disks, five
check disks are required and the effective space utilization grows to 83 percent.

Level 3: Bit-Interleaved Parity

While the redundancy schema used in RAID Level 2 improves in terms of cost
over RAID Level 1, it keeps more redundant information than is necessary.
Hamming code, as used in RAID Level 2, has the advantage of being able to
identify which disk has failed. But disk controllers can easily detect which
disk has failed. Therefore, the check disks do not need to contain information
to identify the failed disk. Information to recover the lost data is sufficient.
Instead of using several disks to store Hamming code, RAID Level 3 has a
single check disk with parity information. Thus, the reliability overhead for
RAID Level 3 is a single disk, the lowest overhead possible.

The performance characteristics of RAID Levels 2 and 3 are very similar. RAID
Level 3 can also process only one I/O at a time, the minimum transfer unit is
D blocks, and a write requires a read-modify-write cycle.

Level 4: Block-Interleaved Parity

RAID Level 4 has a striping unit of a disk block, instead of a single bit as in
RAID Level 3. Block-level striping has the advantage that read requests of
the size of a disk block can be served entirely by the disk where the requested
block resides. Large read requests of several disk blocks can still utilize the
aggregated bandwidth of the D disks.
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The write of a single block still requires a read-modify-write cycle, but only
one data disk and the check disk are involved. The parity on the check disk
can be updated without reading all D disk blocks, because the new parity can
be obtained by noticing the differences between the old data block and the new
data block and then applying the difference to the parity block on the check
disk:

NewParity = (OldData XOR NewData) XOR OldParity

The read-modify-write cycle involves reading of the old data block and the old
parity block, modifying the two blocks, and writing them back to disk, resulting
in four disk accesses per write. Since the check disk is involved in each write,
it can easily become the bottleneck.

RAID Level 3 and 4 configurations with four data disks require just a single
check disk. In our example, the effective space utilization is 80 percent. The
effective space utilization increases with the number of data disks, since always
only one check disk is necessary.

Level 5: Block-Interleaved Distributed Parity

RAID Level 5 improves on Level 4 by distributing the parity blocks uniformly
over all disks, instead of storing them on a single check disk. This distribution
has two advantages. First, several write requests could be processed in parallel,
since the bottleneck of a unique check disk has been eliminated. Second, read
requests have a higher level of parallelism. Since the data is distributed over
all disks, read requests involve all disks, whereas in systems with a dedicated
check disk the check disk never participates in reads.

A RAID Level 5 system has the best performance of all RAID levels with
redundancy for small and large read and large write requests. Small writes still
require a read-modify-write cycle and are thus less efficient than in RAID Level
1.

In our example, the corresponding RAID Level 5 system has five disks overall
and thus the effective space utilization is the same as in RAID Levels 3 and 4.

Level 6: P+Q Redundancy

The motivation for RAID Level 6 is the observation that recovery from failure
of a single disk is not sufficient in very large disk arrays. First, in large disk
arrays, a second disk might fail before replacement of an already failed disk
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could take place. In addition, the probability of a disk failure during recovery
of a failed disk is not negligible.

A RAID Level 6 system uses Reed-Solomon codes to be able to recover from
up to two simultaneous disk failures. RAID Level 6 requires (conceptually)
two check disks, but it also uniformly distributes redundant information at the
block level as in RAID Level 5. Thus, the performance characteristics for small
and large read requests and for large write requests are analogous to RAID
Level 5. For small writes, the read-modify-write procedure involves six instead
of four disks as compared to RAID Level 5, since two blocks with redundant
information need to be updated.

For a RAID Level 6 system with storage capacity equal to four data disks, six
disks are required. In our example, the effective space utilization is 66 percent.

9.2.4 Choice of RAID Levels

If data loss is not an issue, RAID Level 0 improves overall system performance
at the lowest cost. RAID Level 0+1 is superior to RAID Level 1. The main
application areas for RAID Level 0+1 systems are small storage subsystems
where the cost of mirroring is moderate. Sometimes, RAID Level 0+1 is used
for applications that have a high percentage of writes in their workload, since
RAID Level 0+1 provides the best write performance. RAID Levels 2 and
4 are always inferior to RAID Levels 3 and 5, respectively. RAID Level 3 is
appropriate for workloads consisting mainly of large transfer requests of several
contiguous blocks. The performance of a RAID Level 3 system is bad for
workloads with many small requests of a single disk block. RAID Level 5 is a
good general-purpose solution. It provides high performance for large as well
as small requests. RAID Level 6 is appropriate if a higher level of reliability is
required.

9.3 DISK SPACE MANAGEMENT

The lowest level of software in the DBMS architecture discussed in Section 1.8,
called the disk space manager, manages space on disk. Abstractly, the disk
space manager supports the concept of a page as a unit of data and provides
commands to allocate or deallocate a page and read or write a page. The size
of a page is chosen to be the size of a disk block and pages are stored as disk
blocks so that reading or writing a page can be done in one disk I/O.

It is often useful to allocate a sequence of pages as a contiguous sequence of
blocks to hold data frequently accessed in sequential order. This capability
is essential for exploiting the advantages of sequentially accessing disk blocks,
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which we discussed earlier in this chapter. Such a capability, if desired, must
be provided by the disk space manager to higher-level layers of the DBMS.

The disk space manager hides details of the underlying hardware (and possibly
the operating system) and allows higher levels of the software to think of the
data as a collection of pages.

9.3.1 Keeping Track of Free Blocks

A database grows and shrinks as records are inserted and deleted over time.
The disk space manager keeps track of which disk blocks are in use, in addition
to keeping track of which pages are on which disk blocks. Although it is likely
that blocks are initially allocated sequentially on disk, subsequent allocations
and deallocations could in general create ‘holes.’

One way to keep track of block usage is to maintain a list of free blocks. As
blocks are deallocated (by the higher-level software that requests and uses these
blocks), we can add them to the free list for future use. A pointer to the first
block on the free block list is stored in a known location on disk.

A second way is to maintain a bitmap with one bit for each disk block, which
indicates whether a block is in use or not. A bitmap also allows very fast
identification and allocation of contiguous areas on disk. This is difficult to
accomplish with a linked list approach.

9.3.2 Using OS File Systems to Manage Disk Space

Operating systems also manage space on disk. Typically, an operating system
supports the abstraction of a file as a sequence of bytes. The OS manages
space on the disk and translates requests, such as “Read byte i of file f ,” into
corresponding low-level instructions: “Read block m of track t of cylinder c
of disk d.” A database disk space manager could be built using OS files. For
example, the entire database could reside in one or more OS files for which
a number of blocks are allocated (by the OS) and initialized. The disk space
manager is then responsible for managing the space in these OS files.

Many database systems do not rely on the OS file system and instead do their
own disk management, either from scratch or by extending OS facilities. The
reasons are practical as well as technical. One practical reason is that a DBMS
vendor who wishes to support several OS platforms cannot assume features
specific to any OS, for portability, and would therefore try to make the DBMS
code as self-contained as possible. A technical reason is that on a 32-bit system,
the largest file size is 4 GB, whereas a DBMS may want to access a single file
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larger than that. A related problem is that typical OS files cannot span disk
devices, which is often desirable or even necessary in a DBMS. Additional
technical reasons why a DBMS does not rely on the OS file system are outlined
in Section 9.4.2.

9.4 BUFFER MANAGER

To understand the role of the buffer manager, consider a simple example. Sup-
pose that the database contains 1 million pages, but only 1000 pages of main
memory are available for holding data. Consider a query that requires a scan
of the entire file. Because all the data cannot be brought into main memory at
one time, the DBMS must bring pages into main memory as they are needed
and, in the process, decide what existing page in main memory to replace to
make space for the new page. The policy used to decide which page to replace
is called the replacement policy.

In terms of the DBMS architecture presented in Section 1.8, the buffer man-
ager is the software layer responsible for bringing pages from disk to main
memory as needed. The buffer manager manages the available main memory
by partitioning it into a collection of pages, which we collectively refer to as the
buffer pool. The main memory pages in the buffer pool are called frames;
it is convenient to think of them as slots that can hold a page (which usually
resides on disk or other secondary storage media).

Higher levels of the DBMS code can be written without worrying about whether
data pages are in memory or not; they ask the buffer manager for the page,
and it is brought into a frame in the buffer pool if it is not already there.
Of course, the higher-level code that requests a page must also release the
page when it is no longer needed, by informing the buffer manager, so that
the frame containing the page can be reused. The higher-level code must also
inform the buffer manager if it modifies the requested page; the buffer manager
then makes sure that the change is propagated to the copy of the page on disk.
Buffer management is illustrated in Figure 9.3.

In addition to the buffer pool itself, the buffer manager maintains some book-
keeping information and two variables for each frame in the pool: pin count
and dirty. The number of times that the page currently in a given frame has
been requested but not released—the number of current users of the page—is
recorded in the pin count variable for that frame. The Boolean variable dirty
indicates whether the page has been modified since it was brought into the
buffer pool from disk.
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Figure 9.3 The Buffer Pool

Initially, the pin count for every frame is set to 0, and the dirty bits are turned
off. When a page is requested the buffer manager does the following:

1. Checks the buffer pool to see if some frame contains the requested page
and, if so, increments the pin count of that frame. If the page is not in the
pool, the buffer manager brings it in as follows:

(a) Chooses a frame for replacement, using the replacement policy, and
increments its pin count.

(b) If the dirty bit for the replacement frame is on, writes the page it
contains to disk (that is, the disk copy of the page is overwritten with
the contents of the frame).

(c) Reads the requested page into the replacement frame.

2. Returns the (main memory) address of the frame containing the requested
page to the requestor.

Incrementing pin count is often called pinning the requested page in its frame.
When the code that calls the buffer manager and requests the page subsequently
calls the buffer manager and releases the page, the pin count of the frame
containing the requested page is decremented. This is called unpinning the
page. If the requestor has modified the page, it also informs the buffer manager
of this at the time that it unpins the page, and the dirty bit for the frame is set.
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The buffer manager will not read another page into a frame until its pin count
becomes 0, that is, until all requestors of the page have unpinned it.

If a requested page is not in the buffer pool and a free frame is not available
in the buffer pool, a frame with pin count 0 is chosen for replacement. If there
are many such frames, a frame is chosen according to the buffer manager’s
replacement policy. We discuss various replacement policies in Section 9.4.1.

When a page is eventually chosen for replacement, if the dirty bit is not set,
it means that the page has not been modified since being brought into main
memory. Hence, there is no need to write the page back to disk; the copy
on disk is identical to the copy in the frame, and the frame can simply be
overwritten by the newly requested page. Otherwise, the modifications to the
page must be propagated to the copy on disk. (The crash recovery protocol
may impose further restrictions, as we saw in Section 1.7. For example, in the
Write-Ahead Log (WAL) protocol, special log records are used to describe the
changes made to a page. The log records pertaining to the page to be replaced
may well be in the buffer; if so, the protocol requires that they be written to
disk before the page is written to disk.)

If no page in the buffer pool has pin count 0 and a page that is not in the pool
is requested, the buffer manager must wait until some page is released before
responding to the page request. In practice, the transaction requesting the page
may simply be aborted in this situation! So pages should be released—by the
code that calls the buffer manager to request the page—as soon as possible.

A good question to ask at this point is, “What if a page is requested by several
different transactions?” That is, what if the page is requested by programs
executing independently on behalf of different users? Such programs could
make conflicting changes to the page. The locking protocol (enforced by higher-
level DBMS code, in particular the transaction manager) ensures that each
transaction obtains a shared or exclusive lock before requesting a page to read
or modify. Two different transactions cannot hold an exclusive lock on the
same page at the same time; this is how conflicting changes are prevented. The
buffer manager simply assumes that the appropriate lock has been obtained
before a page is requested.

9.4.1 Buffer Replacement Policies

The policy used to choose an unpinned page for replacement can affect the time
taken for database operations considerably. Of the many alternative policies,
each is suitable in different situations.
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The best-known replacement policy is least recently used (LRU). This can
be implemented in the buffer manager using a queue of pointers to frames with
pin count 0. A frame is added to the end of the queue when it becomes a
candidate for replacement (that is, when the pin count goes to 0). The page
chosen for replacement is the one in the frame at the head of the queue.

A variant of LRU, called clock replacement, has similar behavior but less
overhead. The idea is to choose a page for replacement using a current variable
that takes on values 1 through N , where N is the number of buffer frames, in
circular order. We can think of the frames being arranged in a circle, like a
clock’s face, and current as a clock hand moving across the face. To approximate
LRU behavior, each frame also has an associated referenced bit, which is turned
on when the page pin count goes to 0.

The current frame is considered for replacement. If the frame is not chosen for
replacement, current is incremented and the next frame is considered; this pro-
cess is repeated until some frame is chosen. If the current frame has pin count
greater than 0, then it is not a candidate for replacement and current is in-
cremented. If the current frame has the referenced bit turned on, the clock
algorithm turns the referenced bit off and increments current—this way, a re-
cently referenced page is less likely to be replaced. If the current frame has
pin count 0 and its referenced bit is off, then the page in it is chosen for re-
placement. If all frames are pinned in some sweep of the clock hand (that is,
the value of current is incremented until it repeats), this means that no page
in the buffer pool is a replacement candidate.

The LRU and clock policies are not always the best replacement strategies for a
database system, particularly if many user requests require sequential scans of
the data. Consider the following illustrative situation. Suppose the buffer pool
has 10 frames, and the file to be scanned has 10 or fewer pages. Assuming,
for simplicity, that there are no competing requests for pages, only the first
scan of the file does any I/O. Page requests in subsequent scans always find the
desired page in the buffer pool. On the other hand, suppose that the file to be
scanned has 11 pages (which is one more than the number of available pages
in the buffer pool). Using LRU, every scan of the file will result in reading
every page of the file! In this situation, called sequential flooding, LRU is
the worst possible replacement strategy.

Other replacement policies include first in first out (FIFO) and most re-
cently used (MRU), which also entail overhead similar to LRU, and random,
among others. The details of these policies should be evident from their names
and the preceding discussion of LRU and clock.
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Buffer Management in Practice: IBM DB2 and Sybase ASE allow
buffers to be partitioned into named pools. Each database, table, or in-
dex can be bound to one of these pools. Each pool can be configured to
use either LRU or clock replacement in ASE; DB2 uses a variant of clock
replacement, with the initial clock value based on the nature of the page
(e.g., index non-leaves get a higher starting clock value, which delays their
replacement). Interestingly, a buffer pool client in DB2 can explicitly indi-
cate that it hates a page, making the page the next choice for replacement.
As a special case, DB2 applies MRU for the pages fetched in some utility
operations (e.g., RUNSTATS), and DB2 V6 also supports FIFO. Informix
and Oracle 7 both maintain a single global buffer pool using LRU; Mi-
crosoft SQL Server has a single pool using clock replacement. In Oracle
8, tables can be bound to one of two pools; one has high priority, and the
system attempts to keep pages in this pool in memory.
Beyond setting a maximum number of pins for a given transaction, there
are typically no features for controlling buffer pool usage on a per-
transaction basis. Microsoft SQL Server, however, supports a reservation of
buffer pages by queries that require large amounts of memory (e.g., queries
involving sorting or hashing).

9.4.2 Buffer Management in DBMS versus OS

Obvious similarities exist between virtual memory in operating systems and
buffer management in database management systems. In both cases, the goal
is to provide access to more data than will fit in main memory, and the basic
idea is to bring in pages from disk to main memory as needed, replacing pages
no longer needed in main memory. Why can’t we build a DBMS using the
virtual memory capability of an OS? A DBMS can often predict the order
in which pages will be accessed, or page reference patterns, much more
accurately than is typical in an OS environment, and it is desirable to utilize
this property. Further, a DBMS needs more control over when a page is written
to disk than an OS typically provides.

A DBMS can often predict reference patterns because most page references
are generated by higher-level operations (such as sequential scans or particular
implementations of various relational algebra operators) with a known pattern
of page accesses. This ability to predict reference patterns allows for a better
choice of pages to replace and makes the idea of specialized buffer replacement
policies more attractive in the DBMS environment.

Even more important, being able to predict reference patterns enables the use
of a simple and very effective strategy called prefetching of pages. The
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Prefetching: IBM DB2 supports both sequential and list prefetch
(prefetching a list of pages). In general, the prefetch size is 32 4KB pages,
but this can be set by the user. For some sequential type database utilities
(e.g., COPY, RUNSTATS), DB2 prefetches up to 64 4KB pages. For a
smaller buffer pool (i.e., less than 1000 buffers), the prefetch quantity is
adjusted downward to 16 or 8 pages. The prefetch size can be configured by
the user; for certain environments, it may be best to prefetch 1000 pages at
a time! Sybase ASE supports asynchronous prefetching of up to 256 pages,
and uses this capability to reduce latency during indexed access to a table
in a range scan. Oracle 8 uses prefetching for sequential scan, retrieving
large objects, and certain index scans. Microsoft SQL Server supports
prefetching for sequential scan and for scans along the leaf level of a B+
tree index, and the prefetch size can be adjusted as a scan progresses. SQL
Server also uses asynchronous prefetching extensively. Informix supports
prefetching with a user-defined prefetch size.

buffer manager can anticipate the next several page requests and fetch the
corresponding pages into memory before the pages are requested. This strategy
has two benefits. First, the pages are available in the buffer pool when they
are requested. Second, reading in a contiguous block of pages is much faster
than reading the same pages at different times in response to distinct requests.
(Review the discussion of disk geometry to appreciate why this is so.) If the
pages to be prefetched are not contiguous, recognizing that several pages need
to be fetched can nonetheless lead to faster I/O because an order of retrieval
can be chosen for these pages that minimizes seek times and rotational delays.

Incidentally, note that the I/O can typically be done concurrently with CPU
computation. Once the prefetch request is issued to the disk, the disk is re-
sponsible for reading the requested pages into memory pages and the CPU can
continue to do other work.

A DBMS also requires the ability to explicitly force a page to disk, that is, to
ensure that the copy of the page on disk is updated with the copy in memory.
As a related point, a DBMS must be able to ensure that certain pages in the
buffer pool are written to disk before certain other pages to implement the WAL
protocol for crash recovery, as we saw in Section 1.7. Virtual memory imple-
mentations in operating systems cannot be relied on to provide such control
over when pages are written to disk; the OS command to write a page to disk
may be implemented by essentially recording the write request and deferring
the actual modification of the disk copy. If the system crashes in the interim,
the effects can be catastrophic for a DBMS. (Crash recovery is discussed further
in Chapter 18.)
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Indexes as Files: In Chapter 8, we presented indexes as a way of organiz-
ing data records for efficient search. From an implementation standpoint,
indexes are just another kind of file, containing records that direct traffic
on requests for data records. For example, a tree index is a collection of
records organized into one page per node in the tree. It is convenient to
actually think of a tree index as two files, because it contains two kinds
of records: (1) a file of index entries, which are records with fields for the
index’s search key, and fields pointing to a child node, and (2) a file of data
entries, whose structure depends on the choice of data entry alternative.

9.5 FILES OF RECORDS

We now turn our attention from the way pages are stored on disk and brought
into main memory to the way pages are used to store records and organized
into logical collections or files. Higher levels of the DBMS code treat a page as
effectively being a collection of records, ignoring the representation and storage
details. In fact, the concept of a collection of records is not limited to the
contents of a single page; a file can span several pages. In this section, we
consider how a collection of pages can be organized as a file. We discuss how
the space on a page can be organized to store a collection of records in Sections
9.6 and 9.7.

9.5.1 Implementing Heap Files

The data in the pages of a heap file is not ordered in any way, and the only
guarantee is that one can retrieve all records in the file by repeated requests
for the next record. Every record in the file has a unique rid, and every page
in a file is of the same size.

Supported operations on a heap file include create and destroy files, insert a
record, delete a record with a given rid, get a record with a given rid, and scan
all records in the file. To get or delete a record with a given rid, note that we
must be able to find the id of the page containing the record, given the id of
the record.

We must keep track of the pages in each heap file to support scans, and we must
keep track of pages that contain free space to implement insertion efficiently.
We discuss two alternative ways to maintain this information. In each of these
alternatives, pages must hold two pointers (which are page ids) for file-level
bookkeeping in addition to the data.
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Linked List of Pages

One possibility is to maintain a heap file as a doubly linked list of pages. The
DBMS can remember where the first page is located by maintaining a table
containing pairs of  heap file name, page 1 addr in a known location on disk.
We call the first page of the file the header page.

An important task is to maintain information about empty slots created by
deleting a record from the heap file. This task has two distinct parts: how to
keep track of free space within a page and how to keep track of pages that have
some free space. We consider the first part in Section 9.6. The second part can
be addressed by maintaining a doubly linked list of pages with free space and
a doubly linked list of full pages; together, these lists contain all pages in the
heap file. This organization is illustrated in Figure 9.4; note that each pointer
is really a page id.
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Data Data

Data Data

page page 

page page 
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Linked list of pages 

full pages
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Figure 9.4 Heap File Organization with a Linked List

If a new page is required, it is obtained by making a request to the disk space
manager and then added to the list of pages in the file (probably as a page
with free space, because it is unlikely that the new record will take up all the
space on the page). If a page is to be deleted from the heap file, it is removed
from the list and the disk space manager is told to deallocate it. (Note that the
scheme can easily be generalized to allocate or deallocate a sequence of several
pages and maintain a doubly linked list of these page sequences.)

One disadvantage of this scheme is that virtually all pages in a file will be on
the free list if records are of variable length, because it is likely that every page
has at least a few free bytes. To insert a typical record, we must retrieve and
examine several pages on the free list before we find one with enough free space.
The directory-based heap file organization that we discuss next addresses this
problem.
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Directory of Pages

An alternative to a linked list of pages is to maintain a directory of pages.
The DBMS must remember where the first directory page of each heap file is
located. The directory is itself a collection of pages and is shown as a linked
list in Figure 9.5. (Other organizations are possible for the directory itself, of
course.)

Data

page N

Data 

page 1

page 2

Data

Header page

DIRECTORY

Figure 9.5 Heap File Organization with a Directory

Each directory entry identifies a page (or a sequence of pages) in the heap file.
As the heap file grows or shrinks, the number of entries in the directory—and
possibly the number of pages in the directory itself—grows or shrinks corre-
spondingly. Note that since each directory entry is quite small in comparison to
a typical page, the size of the directory is likely to be very small in comparison
to the size of the heap file.

Free space can be managed by maintaining a bit per entry, indicating whether
the corresponding page has any free space, or a count per entry, indicating the
amount of free space on the page. If the file contains variable-length records,
we can examine the free space count for an entry to determine if the record
fits on the page pointed to by the entry. Since several entries fit on a directory
page, we can efficiently search for a data page with enough space to hold a
record to be inserted.

9.6 PAGE FORMATS

The page abstraction is appropriate when dealing with I/O issues, but higher
levels of the DBMS see data as a collection of records. In this section, we
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Rids in Commercial Systems: IBM DB2, Informix, Microsoft SQL
Server, Oracle 8, and Sybase ASE all implement record ids as a page id
and slot number. Sybase ASE uses the following page organization, which
is typical: Pages contain a header followed by the rows and a slot array.
The header contains the page identity, its allocation state, page free space
state, and a timestamp. The slot array is simply a mapping of slot number
to page offset.
Oracle 8 and SQL Server use logical record ids rather than page id and slot
number in one special case: If a table has a clustered index, then records in
the table are identified using the key value for the clustered index. This has
the advantage that secondary indexes need not be reorganized if records
are moved across pages.

consider how a collection of records can be arranged on a page. We can think
of a page as a collection of slots, each of which contains a record. A record is
identified by using the pair  page id, slot number ; this is the record id (rid).
(We remark that an alternative way to identify records is to assign each record
a unique integer as its rid and maintain a table that lists the page and slot of
the corresponding record for each rid. Due to the overhead of maintaining this
table, the approach of using  page id, slot number as an rid is more common.)

We now consider some alternative approaches to managing slots on a page.
The main considerations are how these approaches support operations such as
searching, inserting, or deleting records on a page.

9.6.1 Fixed-Length Records

If all records on the page are guaranteed to be of the same length, record slots
are uniform and can be arranged consecutively within a page. At any instant,
some slots are occupied by records and others are unoccupied. When a record
is inserted into the page, we must locate an empty slot and place the record
there. The main issues are how we keep track of empty slots and how we locate
all records on a page. The alternatives hinge on how we handle the deletion of
a record.

The first alternative is to store records in the first N slots (where N is the
number of records on the page); whenever a record is deleted, we move the last
record on the page into the vacated slot. This format allows us to locate the
ith record on a page by a simple offset calculation, and all empty slots appear
together at the end of the page. However, this approach does not work if there
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are external references to the record that is moved (because the rid contains
the slot number, which is now changed).

The second alternative is to handle deletions by using an array of bits, one per
slot, to keep track of free slot information. Locating records on the page requires
scanning the bit array to find slots whose bit is on; when a record is deleted,
its bit is turned off. The two alternatives for storing fixed-length records are
illustrated in Figure 9.6. Note that in addition to the information about records
on the page, a page usually contains additional file-level information (e.g., the
id of the next page in the file). The figure does not show this additional
information.
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Figure 9.6 Alternative Page Organizations for Fixed-Length Records

The slotted page organization described for variable-length records in Section
9.6.2 can also be used for fixed-length records. It becomes attractive if we need
to move records around on a page for reasons other than keeping track of space
freed by deletions. A typical example is that we want to keep the records on a
page sorted (according to the value in some field).

9.6.2 Variable-Length Records

If records are of variable length, then we cannot divide the page into a fixed
collection of slots. The problem is that, when a new record is to be inserted,
we have to find an empty slot of just the right length—if we use a slot that
is too big, we waste space, and obviously we cannot use a slot that is smaller
than the record length. Therefore, when a record is inserted, we must allocate
just the right amount of space for it, and when a record is deleted, we must
move records to fill the hole created by the deletion, to ensure that all the free
space on the page is contiguous. Therefore, the ability to move records on a
page becomes very important.
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The most flexible organization for variable-length records is to maintain a di-
rectory of slots for each page, with a  record offset, record length pair per
slot. The first component (record offset) is a ‘pointer’ to the record, as shown
in Figure 9.7; it is the offset in bytes from the start of the data area on the
page to the start of the record. Deletion is readily accomplished by setting the
record offset to −1. Records can be moved around on the page because the rid,
which is the page number and slot number (that is, position in the directory),
does not change when the record is moved; only the record offset stored in the
slot changes.

N

1

16 2420

Record with rid = (i,1)

offset of record from

length = 24

2N

FREE SPACE

PAGE  iDATA AREA

rid = (i,2)

rid = (i,N)

start of data area

Pointer to start
of free space

Number of entries
in slot directorySLOT DIRECTORY

Figure 9.7 Page Organization for Variable-Length Records

The space available for new records must be managed carefully because the page
is not preformatted into slots. One way to manage free space is to maintain a
pointer (that is, offset from the start of the data area on the page) that indicates
the start of the free space area. When a new record is too large to fit into the
remaining free space, we have to move records on the page to reclaim the space
freed by records deleted earlier. The idea is to ensure that, after reorganization,
all records appear in contiguous order, followed by the available free space.

A subtle point to be noted is that the slot for a deleted record cannot always
be removed from the slot directory, because slot numbers are used to identify
records—by deleting a slot, we change (decrement) the slot number of subse-
quent slots in the slot directory, and thereby change the rid of records pointed
to by subsequent slots. The only way to remove slots from the slot directory is
to remove the last slot if the record that it points to is deleted. However, when
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a record is inserted, the slot directory should be scanned for an element that
currently does not point to any record, and this slot should be used for the new
record. A new slot is added to the slot directory only if all existing slots point
to records. If inserts are much more common than deletes (as is typically the
case), the number of entries in the slot directory is likely to be very close to
the actual number of records on the page.

This organization is also useful for fixed-length records if we need to move
them around frequently; for example, when we want to maintain them in some
sorted order. Indeed, when all records are the same length, instead of storing
this common length information in the slot for each record, we can store it once
in the system catalog.

In some special situations (e.g., the internal pages of a B+ tree, which we
discuss in Chapter 10), we may not care about changing the rid of a record. In
this case, the slot directory can be compacted after every record deletion; this
strategy guarantees that the number of entries in the slot directory is the same
as the number of records on the page. If we do not care about modifying rids,
we can also sort records on a page in an efficient manner by simply moving slot
entries rather than actual records, which are likely to be much larger than slot
entries.

A simple variation on the slotted organization is to maintain only record offsets
in the slots. For variable-length records, the length is then stored with the
record (say, in the first bytes). This variation makes the slot directory structure
for pages with fixed-length records the same as for pages with variable-length
records.

9.7 RECORD FORMATS

In this section, we discuss how to organize fields within a record. While choosing
a way to organize the fields of a record, we must take into account whether the
fields of the record are of fixed or variable length and consider the cost of various
operations on the record, including retrieval and modification of fields.

Before discussing record formats, we note that in addition to storing individual
records, information common to all records of a given record type (such as the
number of fields and field types) is stored in the system catalog, which can
be thought of as a description of the contents of a database, maintained by the
DBMS (Section 12.1). This avoids repeated storage of the same information
with each record of a given type.
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Record Formats in Commercial Aystems: In IBM DB2, fixed-length
fields are at fixed offsets from the beginning of the record. Variable-length
fields have offset and length in the fixed offset part of the record, and
the fields themselves follow the fixed-length part of the record. Informix,
Microsoft SQL Server, and Sybase ASE use the same organization with
minor variations. In Oracle 8, records are structured as if all fields are
potentially of variable length; a record is a sequence of length–data pairs,
with a special length value used to denote a null value.

9.7.1 Fixed-Length Records

In a fixed-length record, each field has a fixed length (that is, the value in this
field is of the same length in all records), and the number of fields is also fixed.
The fields of such a record can be stored consecutively, and, given the address of
the record, the address of a particular field can be calculated using information
about the lengths of preceding fields, which is available in the system catalog.
This record organization is illustrated in Figure 9.8.

F1 F2 F3 F4

L1 L2 L3 L4

Base address (B) Address = B+L1+L2

Li = Length of

        field  i

Fi = Field  i

Figure 9.8 Organization of Records with Fixed-Length Fields

9.7.2 Variable-Length Records

In the relational model, every record in a relation contains the same number
of fields. If the number of fields is fixed, a record is of variable length only
because some of its fields are of variable length.

One possible organization is to store fields consecutively, separated by delim-
iters (which are special characters that do not appear in the data itself). This
organization requires a scan of the record to locate a desired field.

An alternative is to reserve some space at the beginning of a record for use as
an array of integer offsets—the ith integer in this array is the starting address
of the ith field value relative to the start of the record. Note that we also store
an offset to the end of the record; this offset is needed to recognize where the
last field ends. Both alternatives are illustrated in Figure 9.9.
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F1 F3 F4
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F2

Fi = Field  i

Fields delimited by special symbol $

Figure 9.9 Alternative Record Organizations for Variable-Length Fields

The second approach is typically superior. For the overhead of the offset array,
we get direct access to any field. We also get a clean way to deal with null
values. A null value is a special value used to denote that the value for a field
is unavailable or inapplicable. If a field contains a null value, the pointer to the
end of the field is set to be the same as the pointer to the beginning of the field.
That is, no space is used for representing the null value, and a comparison of
the pointers to the beginning and the end of the field is used to determine that
the value in the field is null.

Variable-length record formats can obviously be used to store fixed-length
records as well; sometimes, the extra overhead is justified by the added flexibil-
ity, because issues such as supporting null values and adding fields to a record
type arise with fixed-length records as well.

Having variable-length fields in a record can raise some subtle issues, especially
when a record is modified.

Modifying a field may cause it to grow, which requires us to shift all subse-
quent fields to make space for the modification in all three record formats
just presented.

A modified record may no longer fit into the space remaining on its page.
If so, it may have to be moved to another page. If rids, which are used
to ‘point’ to a record, include the page number (see Section 9.6), moving
a record to another page causes a problem. We may have to leave a ‘for-
warding address’ on this page identifying the new location of the record.
And to ensure that space is always available for this forwarding address,
we would have to allocate some minimum space for each record, regardless
of its length.
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Large Records in Real Systems: In Sybase ASE, a record can be at
most 1962 bytes. This limit is set by the 2KB log page size, since records
are not allowed to be larger than a page. The exceptions to this rule are
BLOBs and CLOBs, which consist of a set of bidirectionally linked pages.
IBM DB2 and Microsoft SQL Server also do not allow records to span
pages, although large objects are allowed to span pages and are handled
separately from other data types. In DB2, record size is limited only by
the page size; in SQL Server, a record can be at most 8KB, excluding
LOBs. Informix and Oracle 8 allow records to span pages. Informix allows
records to be at most 32KB, while Oracle has no maximum record size;
large records are organized as a singly directed list.

A record may grow so large that it no longer fits on any one page. We have
to deal with this condition by breaking a record into smaller records. The
smaller records could be chained together—part of each smaller record is
a pointer to the next record in the chain—to enable retrieval of the entire
original record.

9.8 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

Explain the term memory hierarchy. What are the differences between
primary, secondary, and tertiary storage? Give examples of each. Which
of these is volatile, and which are persistent? Why is persistent storage
more important for a DBMS than, say, a program that generates prime
numbers? (Section 9.1)

Why are disks used so widely in a DBMS? What are their advantages
over main memory and tapes? What are their relative disadvantages?
(Section 9.1.1)

What is a disk block or page? How are blocks arranged in a disk? How
does this affect the time to access a block? Discuss seek time, rotational
delay, and transfer time. (Section 9.1.1)

Explain how careful placement of pages on the disk to exploit the geometry
of a disk can minimize the seek time and rotational delay when pages are
read sequentially. (Section 9.1.2)

Explain what a RAID system is and how it improves performance and
reliability. Discuss striping and its impact on performance and redundancy
and its impact on reliability. What are the trade-offs between reliability
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and performance in the different RAID organizations called RAID levels?
(Section 9.2)

What is the role of the DBMS disk space manager? Why do database
systems not rely on the operating system instead? (Section 9.3)

Why does every page request in a DBMS go through the buffer manager?
What is the buffer pool? What is the difference between a frame in a buffer
pool, a page in a file, and a block on a disk? (Section 9.4)

What information does the buffer manager maintain for each page in the
buffer pool? What information is maintained for each frame? What is
the significance of pin count and the dirty flag for a page? Under what
conditions can a page in the pool be replaced? Under what conditions
must a replaced page be written back to disk? (Section 9.4)

Why does the buffer manager have to replace pages in the buffer pool?
How is a page chosen for replacement? What is sequential flooding, and
what replacement policy causes it? (Section 9.4.1)

A DBMS buffer manager can often predict the access pattern for disk pages.
How does it utilize this ability to minimize I/O costs? Discuss prefetch-
ing. What is forcing, and why is it required to support the write-ahead
log protocol in a DBMS? In light of these points, explain why database
systems reimplement many services provided by operating systems. (Sec-
tion 9.4.2)

Why is the abstraction of a file of records important? How is the software
in a DBMS layered to take advantage of this? (Section 9.5)

What is a heap file? How are pages organized in a heap file? Discuss list
versus directory organizations. (Section 9.5.1)

Describe how records are arranged on a page. What is a slot, and how
are slots used to identify records? How do slots enable us to move records
on a page without altering the record’s identifier? What are the differ-
ences in page organizations for fixed-length and variable-length records?
(Section 9.6)

What are the differences in how fields are arranged within fixed-length and
variable-length records? For variable-length records, explain how the array
of offsets organization provides direct access to a specific field and supports
null values. (Section 9.7)
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EXERCISES

Exercise 9.1 What is the most important difference between a disk and a tape?

Exercise 9.2 Explain the terms seek time, rotational delay, and transfer time.

Exercise 9.3 Both disks and main memory support direct access to any desired location
(page). On average, main memory accesses are faster, of course. What is the other important
difference (from the perspective of the time required to access a desired page)?

Exercise 9.4 If you have a large file that is frequently scanned sequentially, explain how you
would store the pages in the file on a disk.

Exercise 9.5 Consider a disk with a sector size of 512 bytes, 2000 tracks per surface, 50
sectors per track, five double-sided platters, and average seek time of 10 msec.

1. What is the capacity of a track in bytes? What is the capacity of each surface? What is
the capacity of the disk?

2. How many cylinders does the disk have?

3. Give examples of valid block sizes. Is 256 bytes a valid block size? 2048? 51,200?

4. If the disk platters rotate at 5400 rpm (revolutions per minute), what is the maximum
rotational delay?

5. If one track of data can be transferred per revolution, what is the transfer rate?

Exercise 9.6 Consider again the disk specifications from Exercise 9.5 and suppose that a
block size of 1024 bytes is chosen. Suppose that a file containing 100,000 records of 100 bytes
each is to be stored on such a disk and that no record is allowed to span two blocks.

1. How many records fit onto a block?

2. How many blocks are required to store the entire file? If the file is arranged sequentially
on disk, how many surfaces are needed?

3. How many records of 100 bytes each can be stored using this disk?

4. If pages are stored sequentially on disk, with page 1 on block 1 of track 1, what page is
stored on block 1 of track 1 on the next disk surface? How would your answer change if
the disk were capable of reading and writing from all heads in parallel?

5. What time is required to read a file containing 100,000 records of 100 bytes each sequen-
tially? Again, how would your answer change if the disk were capable of reading/writing
from all heads in parallel (and the data was arranged optimally)?

6. What is the time required to read a file containing 100,000 records of 100 bytes each in a
random order? To read a record, the block containing the record has to be fetched from
disk. Assume that each block request incurs the average seek time and rotational delay.

Exercise 9.7 Explain what the buffer manager must do to process a read request for a page.
What happens if the requested page is in the pool but not pinned?

Exercise 9.8 When does a buffer manager write a page to disk?

Exercise 9.9 What does it mean to say that a page is pinned in the buffer pool? Who is
responsible for pinning pages? Who is responsible for unpinning pages?
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Exercise 9.10 When a page in the buffer pool is modified, how does the DBMS ensure that
this change is propagated to disk? (Explain the role of the buffer manager as well as the
modifier of the page.)

Exercise 9.11 What happens if a page is requested when all pages in the buffer pool are
dirty?

Exercise 9.12 What is sequential flooding of the buffer pool?

Exercise 9.13 Name an important capability of a DBMS buffer manager that is not sup-
ported by a typical operating system’s buffer manager.

Exercise 9.14 Explain the term prefetching. Why is it important?

Exercise 9.15 Modern disks often have their own main memory caches, typically about
1 MB, and use this to prefetch pages. The rationale for this technique is the empirical
observation that, if a disk page is requested by some (not necessarily database!) application,
80% of the time the next page is requested as well. So the disk gambles by reading ahead.

1. Give a nontechnical reason that a DBMS may not want to rely on prefetching controlled
by the disk.

2. Explain the impact on the disk’s cache of several queries running concurrently, each
scanning a different file.

3. Is this problem addressed by the DBMS buffer manager prefetching pages? Explain.

4. Modern disks support segmented caches, with about four to six segments, each of which
is used to cache pages from a different file. Does this technique help, with respect to
the preceding problem? Given this technique, does it matter whether the DBMS buffer
manager also does prefetching?

Exercise 9.16 Describe two possible record formats. What are the trade-offs between them?

Exercise 9.17 Describe two possible page formats. What are the trade-offs between them?

Exercise 9.18 Consider the page format for variable-length records that uses a slot directory.

1. One approach to managing the slot directory is to use a maximum size (i.e., a maximum
number of slots) and allocate the directory array when the page is created. Discuss the
pros and cons of this approach with respect to the approach discussed in the text.

2. Suggest a modification to this page format that would allow us to sort records (according
to the value in some field) without moving records and without changing the record ids.

Exercise 9.19 Consider the two internal organizations for heap files (using lists of pages and
a directory of pages) discussed in the text.

1. Describe them briefly and explain the trade-offs. Which organization would you choose
if records are variable in length?

2. Can you suggest a single page format to implement both internal file organizations?

Exercise 9.20 Consider a list-based organization of the pages in a heap file in which two
lists are maintained: a list of all pages in the file and a list of all pages with free space. In
contrast, the list-based organization discussed in the text maintains a list of full pages and a
list of pages with free space.
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1. What are the trade-offs, if any? Is one of them clearly superior?

2. For each of these organizations, describe a suitable page format.

Exercise 9.21 Modern disk drives store more sectors on the outer tracks than the inner
tracks. Since the rotation speed is constant, the sequential data transfer rate is also higher on
the outer tracks. The seek time and rotational delay are unchanged. Given this information,
explain good strategies for placing files with the following kinds of access patterns:

1. Frequent, random accesses to a small file (e.g., catalog relations).

2. Sequential scans of a large file (e.g., selection from a relation with no index).

3. Random accesses to a large file via an index (e.g., selection from a relation via the index).

4. Sequential scans of a small file.

Exercise 9.22 Why do frames in the buffer pool have a pin count instead of a pin flag?

PROJECT-BASED EXERCISES

Exercise 9.23 Study the public interfaces for the disk space manager, the buffer manager,
and the heap file layer in Minibase.

1. Are heap files with variable-length records supported?

2. What page format is used in Minibase heap files?

3. What happens if you insert a record whose length is greater than the page size?

4. How is free space handled in Minibase?
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TREE-STRUCTURED

INDEXING

☛ What is the intuition behind tree-structured indexes? Why are they
good for range selections?

☛ How does an ISAM index handle search, insert, and delete?

☛ How does a B+ tree index handle search, insert, and delete?

☛ What is the impact of duplicate key values on index implementation?

☛ What is key compression, and why is it important?

☛ What is bulk-loading, and why is it important?

☛ What happens to record identifiers when dynamic indexes are up-
dated? How does this affect clustered indexes?

➽ Key concepts: ISAM, static indexes, overflow pages, locking issues;
B+ trees, dynamic indexes, balance, sequence sets, node format; B+
tree insert operation, node splits, delete operation, merge versus redis-
tribution, minimum occupancy; duplicates, overflow pages, including
rids in search keys; key compression; bulk-loading; effects of splits on
rids in clustered indexes.

One that would have the fruit must climb the tree.

Thomas Fuller

We now consider two index data structures, called ISAM and B+ trees, based
on tree organizations. These structures provide efficient support for range
searches, including sorted file scans as a special case. Unlike sorted files, these

338
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index structures support efficient insertion and deletion. They also provide
support for equality selections, although they are not as efficient in this case as
hash-based indexes, which are discussed in Chapter 11.

An ISAM1 tree is a static index structure that is effective when the file is
not frequently updated, but it is unsuitable for files that grow and shrink a
lot. We discuss ISAM in Section 10.2. The B+ tree is a dynamic structure
that adjusts to changes in the file gracefully. It is the most widely used index
structure because it adjusts well to changes and supports both equality and
range queries. We introduce B+ trees in Section 10.3. We cover B+ trees in
detail in the remaining sections. Section 10.3.1 describes the format of a tree
node. Section 10.4 considers how to search for records by using a B+ tree
index. Section 10.5 presents the algorithm for inserting records into a B+ tree,
and Section 10.6 presents the deletion algorithm. Section 10.7 discusses how
duplicates are handled. We conclude with a discussion of some practical issues
concerning B+ trees in Section 10.8.

Notation: In the ISAM and B+ tree structures, leaf pages contain data entries,
according to the terminology introduced in Chapter 8. For convenience, we
denote a data entry with search key value k as k∗. Non-leaf pages contain
index entries of the form  search key value, page id and are used to direct the
search for a desired data entry (which is stored in some leaf). We often simply
use entry where the context makes the nature of the entry (index or data) clear.

10.1 INTUITION FOR TREE INDEXES

Consider a file of Students records sorted by gpa. To answer a range selection
such as “Find all students with a gpa higher than 3.0,” we must identify the
first such student by doing a binary search of the file and then scan the file
from that point on. If the file is large, the initial binary search can be quite
expensive, since cost is proportional to the number of pages fetched; can we
improve upon this method?

One idea is to create a second file with one record per page in the original
(data) file, of the form  first key on page, pointer to page , again sorted by the
key attribute (which is gpa in our example). The format of a page in the second
index file is illustrated in Figure 10.1.

We refer to pairs of the form  key, pointer as index entries or just entries when
the context is clear. Note that each index page contains one pointer more than

1ISAM stands for Indexed Sequential Access Method.
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Figure 10.1 Format of an Index Page

the number of keys—each key serves as a separator for the contents of the pages
pointed to by the pointers to its left and right.

The simple index file data structure is illustrated in Figure 10.2.

k2 kNk1

Data file

Index file

Page 3Page 2Page 1 Page N

Figure 10.2 One-Level Index Structure

We can do a binary search of the index file to identify the page containing the
first key (gpa) value that satisfies the range selection (in our example, the first
student with gpa over 3.0) and follow the pointer to the page containing the first
data record with that key value. We can then scan the data file sequentially
from that point on to retrieve other qualifying records. This example uses the
index to find the first data page containing a Students record with gpa greater
than 3.0, and the data file is scanned from that point on to retrieve other such
Students records.

Because the size of an entry in the index file (key value and page id) is likely
to be much smaller than the size of a page, and only one such entry exists per
page of the data file, the index file is likely to be much smaller than the data
file; therefore, a binary search of the index file is much faster than a binary
search of the data file. However, a binary search of the index file could still
be fairly expensive, and the index file is typically still large enough to make
inserts and deletes expensive.

The potential large size of the index file motivates the tree indexing idea: Why
not apply the previous step of building an auxiliary structure on the collection
of index records and so on recursively until the smallest auxiliary structure fits
on one page? This repeated construction of a one-level index leads to a tree
structure with several levels of non-leaf pages.
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As we observed in Section 8.3.2, the power of the approach comes from the fact
that locating a record (given a search key value) involves a traversal from the
root to a leaf, with one I/O (at most; some pages, e.g., the root, are likely to be
in the buffer pool) per level. Given the typical fan-out value (over 100), trees
rarely have more than 3–4 levels.

The next issue to consider is how the tree structure can handle inserts and
deletes of data entries. Two distinct approaches have been used, leading to the
ISAM and B+ tree data structures, which we discuss in subsequent sections.

10.2 INDEXED SEQUENTIAL ACCESS METHOD (ISAM)

The ISAM data structure is illustrated in Figure 10.3. The data entries of the
ISAM index are in the leaf pages of the tree and additional overflow pages
chained to some leaf page. Database systems carefully organize the layout of
pages so that page boundaries correspond closely to the physical characteristics
of the underlying storage device. The ISAM structure is completely static
(except for the overflow pages, of which it is hoped, there will be few) and
facilitates such low-level optimizations.

pages

pages

Primary pages

Leaf

Non−leaf

Overflow page

Figure 10.3 ISAM Index Structure

Each tree node is a disk page, and all the data resides in the leaf pages. This
corresponds to an index that uses Alternative (1) for data entries, in terms of
the alternatives described in Chapter 8; we can create an index with Alternative
(2) by storing the data records in a separate file and storing  key, rid pairs in
the leaf pages of the ISAM index. When the file is created, all leaf pages are
allocated sequentially and sorted on the search key value. (If Alternative (2)
or (3) is used, the data records are created and sorted before allocating the leaf
pages of the ISAM index.) The non-leaf level pages are then allocated. If there
are several inserts to the file subsequently, so that more entries are inserted into
a leaf than will fit onto a single page, additional pages are needed because the
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index structure is static. These additional pages are allocated from an overflow
area. The allocation of pages is illustrated in Figure 10.4.

Overflow Pages

Index Pages

Data Pages

Figure 10.4 Page Allocation in ISAM

The basic operations of insertion, deletion, and search are all quite straightfor-
ward. For an equality selection search, we start at the root node and determine
which subtree to search by comparing the value in the search field of the given
record with the key values in the node. (The search algorithm is identical to
that for a B+ tree; we present this algorithm in more detail later.) For a range
query, the starting point in the data (or leaf) level is determined similarly, and
data pages are then retrieved sequentially. For inserts and deletes, the appro-
priate page is determined as for a search, and the record is inserted or deleted
with overflow pages added if necessary.

The following example illustrates the ISAM index structure. Consider the tree
shown in Figure 10.5. All searches begin at the root. For example, to locate a
record with the key value 27, we start at the root and follow the left pointer,
since 27 < 40. We then follow the middle pointer, since 20 <= 27 < 33. For a
range search, we find the first qualifying data entry as for an equality selection
and then retrieve primary leaf pages sequentially (also retrieving overflow pages
as needed by following pointers from the primary pages). The primary leaf
pages are assumed to be allocated sequentially—this assumption is reasonable
because the number of such pages is known when the tree is created and does
not change subsequently under inserts and deletes—and so no ‘next leaf page’
pointers are needed.

We assume that each leaf page can contain two entries. If we now insert a
record with key value 23, the entry 23* belongs in the second data page, which
already contains 20* and 27* and has no more space. We deal with this situation
by adding an overflow page and putting 23* in the overflow page. Chains of
overflow pages can easily develop. For instance, inserting 48*, 41*, and 42*
leads to an overflow chain of two pages. The tree of Figure 10.5 with all these
insertions is shown in Figure 10.6.
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Figure 10.5 Sample ISAM Tree
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Figure 10.6 ISAM Tree after Inserts
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The deletion of an entry k∗ is handled by simply removing the entry. If this
entry is on an overflow page and the overflow page becomes empty, the page can
be removed. If the entry is on a primary page and deletion makes the primary
page empty, the simplest approach is to simply leave the empty primary page
as it is; it serves as a placeholder for future insertions (and possibly non-empty
overflow pages, because we do not move records from the overflow pages to the
primary page when deletions on the primary page create space). Thus, the
number of primary leaf pages is fixed at file creation time.

10.2.1 Overflow Pages, Locking Considerations

Note that, once the ISAM file is created, inserts and deletes affect only the
contents of leaf pages. A consequence of this design is that long overflow chains
could develop if a number of inserts are made to the same leaf. These chains
can significantly affect the time to retrieve a record because the overflow chain
has to be searched as well when the search gets to this leaf. (Although data in
the overflow chain can be kept sorted, it usually is not, to make inserts fast.) To
alleviate this problem, the tree is initially created so that about 20 percent of
each page is free. However, once the free space is filled in with inserted records,
unless space is freed again through deletes, overflow chains can be eliminated
only by a complete reorganization of the file.

The fact that only leaf pages are modified also has an important advantage with
respect to concurrent access. When a page is accessed, it is typically ‘locked’
by the requestor to ensure that it is not concurrently modified by other users
of the page. To modify a page, it must be locked in ‘exclusive’ mode, which is
permitted only when no one else holds a lock on the page. Locking can lead
to queues of users (transactions, to be more precise) waiting to get access to a
page. Queues can be a significant performance bottleneck, especially for heavily
accessed pages near the root of an index structure. In the ISAM structure,
since we know that index-level pages are never modified, we can safely omit
the locking step. Not locking index-level pages is an important advantage of
ISAM over a dynamic structure like a B+ tree. If the data distribution and
size are relatively static, which means overflow chains are rare, ISAM might be
preferable to B+ trees due to this advantage.

10.3 B+ TREES: A DYNAMIC INDEX STRUCTURE

A static structure such as the ISAM index suffers from the problem that long
overflow chains can develop as the file grows, leading to poor performance. This
problem motivated the development of more flexible, dynamic structures that
adjust gracefully to inserts and deletes. The B+ tree search structure, which
is widely used, is a balanced tree in which the internal nodes direct the search
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and the leaf nodes contain the data entries. Since the tree structure grows and
shrinks dynamically, it is not feasible to allocate the leaf pages sequentially as in
ISAM, where the set of primary leaf pages was static. To retrieve all leaf pages
efficiently, we have to link them using page pointers. By organizing them into a
doubly linked list, we can easily traverse the sequence of leaf pages (sometimes
called the sequence set) in either direction. This structure is illustrated in
Figure 10.7.2

Index entries

Data entries

("Sequence set")

(To direct search)

Index
file

Figure 10.7 Structure of a B+ Tree

The following are some of the main characteristics of a B+ tree:

Operations (insert, delete) on the tree keep it balanced.

A minimum occupancy of 50 percent is guaranteed for each node except
the root if the deletion algorithm discussed in Section 10.6 is implemented.
However, deletion is often implemented by simply locating the data entry
and removing it, without adjusting the tree as needed to guarantee the 50
percent occupancy, because files typically grow rather than shrink.

Searching for a record requires just a traversal from the root to the appro-
priate leaf. We refer to the length of a path from the root to a leaf—any
leaf, because the tree is balanced—as the height of the tree. For example,
a tree with only a leaf level and a single index level, such as the tree shown
in Figure 10.9, has height 1, and a tree that has only the root node has
height 0. Because of high fan-out, the height of a B+ tree is rarely more
than 3 or 4.

We will study B+ trees in which every node contains m entries, where d ≤
m ≤ 2d. The value d is a parameter of the B+ tree, called the order of the

2If the tree is created by bulk-loading (see Section 10.8.2) an existing data set, the sequence set
can be made physically sequential, but this physical ordering is gradually destroyed as new data is
added and deleted over time.
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tree, and is a measure of the capacity of a tree node. The root node is the
only exception to this requirement on the number of entries; for the root, it is
simply required that 1 ≤ m ≤ 2d.

If a file of records is updated frequently and sorted access is important, main-
taining a B+ tree index with data records stored as data entries is almost
always superior to maintaining a sorted file. For the space overhead of storing
the index entries, we obtain all the advantages of a sorted file plus efficient in-
sertion and deletion algorithms. B+ trees typically maintain 67 percent space
occupancy. B+ trees are usually also preferable to ISAM indexing because in-
serts are handled gracefully without overflow chains. However, if the dataset
size and distribution remain fairly static, overflow chains may not be a major
problem. In this case, two factors favor ISAM: the leaf pages are allocated in
sequence (making scans over a large range more efficient than in a B+ tree, in
which pages are likely to get out of sequence on disk over time, even if they were
in sequence after bulk-loading), and the locking overhead of ISAM is lower than
that for B+ trees. As a general rule, however, B+ trees are likely to perform
better than ISAM.

10.3.1 Format of a Node

The format of a node is the same as for ISAM and is shown in Figure 10.1.
Non-leaf nodes with m index entries contain m+1 pointers to children. Pointer
Pi points to a subtree in which all key values K are such that Ki ≤ K < Ki+1.
As special cases, P0 points to a tree in which all key values are less than K1,
and Pm points to a tree in which all key values are greater than or equal to
Km. For leaf nodes, entries are denoted as k∗, as usual. Just as in ISAM, leaf
nodes (and only leaf nodes!) contain data entries. In the common case that
Alternative (2) or (3) is used, leaf entries are  K,I(K)  pairs, just like non-leaf
entries. Regardless of the alternative chosen for leaf entries, the leaf pages are
chained together in a doubly linked list. Thus, the leaves form a sequence,
which can be used to answer range queries efficiently.

The reader should carefully consider how such a node organization can be
achieved using the record formats presented in Section 9.7; after all, each key–
pointer pair can be thought of as a record. If the field being indexed is of
fixed length, these index entries will be of fixed length; otherwise, we have
variable-length records. In either case the B+ tree can itself be viewed as a file
of records. If the leaf pages do not contain the actual data records, then the
B+ tree is indeed a file of records that is distinct from the file that contains the
data. If the leaf pages contain data records, then a file contains the B+ tree as
well as the data.
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10.4 SEARCH

The algorithm for search finds the leaf node in which a given data entry belongs.
A pseudocode sketch of the algorithm is given in Figure 10.8. We use the
notation *ptr to denote the value pointed to by a pointer variable ptr and &
(value) to denote the address of value. Note that finding i in tree search requires
us to search within the node, which can be done with either a linear search or
a binary search (e.g., depending on the number of entries in the node).

In discussing the search, insertion, and deletion algorithms for B+ trees, we
assume that there are no duplicates. That is, no two data entries are allowed
to have the same key value. Of course, duplicates arise whenever the search
key does not contain a candidate key and must be dealt with in practice. We
consider how duplicates can be handled in Section 10.7.

func find (search key value K) returns nodepointer

// Given a search key value, finds its leaf node

return tree search(root, K); // searches from root

endfunc

func tree search (nodepointer, search key value K) returns nodepointer

// Searches tree for entry

if *nodepointer is a leaf, return nodepointer;

else,

if K < K1 then return tree search(P0, K);

else,

if K ≥ Km then return tree search(Pm, K); // m = # entries

else,

find i such that Ki ≤ K < Ki+1;

return tree search(Pi, K)

endfunc

Figure 10.8 Algorithm for Search

Consider the sample B+ tree shown in Figure 10.9. This B+ tree is of order
d=2. That is, each node contains between 2 and 4 entries. Each non-leaf entry
is a  key value, nodepointer pair; at the leaf level, the entries are data records
that we denote by k∗. To search for entry 5*, we follow the left-most child
pointer, since 5 < 13. To search for the entries 14* or 15*, we follow the second
pointer, since 13 ≤ 14 < 17, and 13 ≤ 15 < 17. (We do not find 15* on the
appropriate leaf and can conclude that it is not present in the tree.) To find
24*, we follow the fourth child pointer, since 24 ≤ 24 < 30.
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Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Figure 10.9 Example of a B+ Tree, Order d=2

10.5 INSERT

The algorithm for insertion takes an entry, finds the leaf node where it belongs,
and inserts it there. Pseudocode for the B+ tree insertion algorithm is given
in Figure 10.10. The basic idea behind the algorithm is that we recursively
insert the entry by calling the insert algorithm on the appropriate child node.
Usually, this procedure results in going down to the leaf node where the entry
belongs, placing the entry there, and returning all the way back to the root
node. Occasionally a node is full and it must be split. When the node is split,
an entry pointing to the node created by the split must be inserted into its
parent; this entry is pointed to by the pointer variable newchildentry. If the
(old) root is split, a new root node is created and the height of the tree increases
by 1.

To illustrate insertion, let us continue with the sample tree shown in Figure
10.9. If we insert entry 8*, it belongs in the left-most leaf, which is already
full. This insertion causes a split of the leaf page; the split pages are shown in
Figure 10.11. The tree must now be adjusted to take the new leaf page into
account, so we insert an entry consisting of the pair  5, pointer to new page 
into the parent node. Note how the key 5, which discriminates between the
split leaf page and its newly created sibling, is ‘copied up.’ We cannot just
‘push up’ 5, because every data entry must appear in a leaf page.

Since the parent node is also full, another split occurs. In general we have to
split a non-leaf node when it is full, containing 2d keys and 2d+1 pointers, and
we have to add another index entry to account for a child split. We now have
2d+1 keys and 2d+2 pointers, yielding two minimally full non-leaf nodes, each
containing d keys and d + 1 pointers, and an extra key, which we choose to be
the ‘middle’ key. This key and a pointer to the second non-leaf node constitute
an index entry that must be inserted into the parent of the split non-leaf node.
The middle key is thus ‘pushed up’ the tree, in contrast to the case for a split
of a leaf page.
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proc insert (nodepointer, entry, newchildentry)

// Inserts entry into subtree with root ‘*nodepointer’; degree is d;

//‘newchildentry’ null initially, and null on return unless child is split

if *nodepointer is a non-leaf node, say N ,

find i such that Ki ≤ entry’s key value < Ki+1; // choose subtree

insert(Pi, entry, newchildentry); // recursively, insert entry

if newchildentry is null, return; // usual case; didn’t split child

else, // we split child, must insert *newchildentry in N

if N has space, // usual case

put *newchildentry on it, set newchildentry to null, return;

else, // note difference wrt splitting of leaf page!

split N : // 2d + 1 key values and 2d + 2 nodepointers

first d key values and d + 1 nodepointers stay,

last d keys and d + 1 pointers move to new node, N2;

// *newchildentry set to guide searches between N and N2

newchildentry = & ( smallest key value on N2,

pointer to N2 );

if N is the root, // root node was just split

create new node with  pointer to N , *newchildentry ;

make the tree’s root-node pointer point to the new node;

return;

if *nodepointer is a leaf node, say L,

if L has space, // usual case

put entry on it, set newchildentry to null, and return;

else, // once in a while, the leaf is full

split L: first d entries stay, rest move to brand new node L2;

newchildentry = & ( smallest key value on L2, pointer to L2 );

set sibling pointers in L and L2;

return;

endproc

Figure 10.10 Algorithm for Insertion into B+ Tree of Order d
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2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.

(Note that 5 is ‘copied up’ and 

continues to appear in the leaf.)

Figure 10.11 Split Leaf Pages during Insert of Entry 8*

The split pages in our example are shown in Figure 10.12. The index entry
pointing to the new non-leaf node is the pair  17, pointer to new index-level
page ; note that the key value 17 is ‘pushed up’ the tree, in contrast to the
splitting key value 5 in the leaf split, which was ‘copied up.’

5 24 30

17

13

Entry to be inserted in parent node.

(Note that 17 is ‘pushed up’ and

and appears once in the index. Contrast

this with a leaf split.)

Figure 10.12 Split Index Pages during Insert of Entry 8*

The difference in handling leaf-level and index-level splits arises from the B+
tree requirement that all data entries k∗ must reside in the leaves. This re-
quirement prevents us from ‘pushing up’ 5 and leads to the slight redundancy
of having some key values appearing in the leaf level as well as in some index
level. However, range queries can be efficiently answered by just retrieving the
sequence of leaf pages; the redundancy is a small price to pay for efficiency. In
dealing with the index levels, we have more flexibility, and we ‘push up’ 17 to
avoid having two copies of 17 in the index levels.

Now, since the split node was the old root, we need to create a new root node
to hold the entry that distinguishes the two split index pages. The tree after
completing the insertion of the entry 8* is shown in Figure 10.13.

One variation of the insert algorithm tries to redistribute entries of a node N
with a sibling before splitting the node; this improves average occupancy. The
sibling of a node N, in this context, is a node that is immediately to the left
or right of N and has the same parent as N.
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Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*2* 3*

Figure 10.13 B+ Tree after Inserting Entry 8*

To illustrate redistribution, reconsider insertion of entry 8* into the tree shown
in Figure 10.9. The entry belongs in the left-most leaf, which is full. However,
the (only) sibling of this leaf node contains only two entries and can thus
accommodate more entries. We can therefore handle the insertion of 8* with a
redistribution. Note how the entry in the parent node that points to the second
leaf has a new key value; we ‘copy up’ the new low key value on the second
leaf. This process is illustrated in Figure 10.14.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*8*

8

Figure 10.14 B+ Tree after Inserting Entry 8* Using Redistribution

To determine whether redistribution is possible, we have to retrieve the sibling.
If the sibling happens to be full, we have to split the node anyway. On average,
checking whether redistribution is possible increases I/O for index node splits,
especially if we check both siblings. (Checking whether redistribution is possible
may reduce I/O if the redistribution succeeds whereas a split propagates up the
tree, but this case is very infrequent.) If the file is growing, average occupancy
will probably not be affected much even if we do not redistribute. Taking these
considerations into account, not redistributing entries at non-leaf levels usually
pays off.

If a split occurs at the leaf level, however, we have to retrieve a neighbor
to adjust the previous and next-neighbor pointers with respect to the newly
created leaf node. Therefore, a limited form of redistribution makes sense: If a
leaf node is full, fetch a neighbor node; if it has space and has the same parent,
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redistribute the entries. Otherwise (the neighbor has different parent, i.e., it is
not a sibling, or it is also full) split the leaf node and adjust the previous and
next-neighbor pointers in the split node, the newly created neighbor, and the
old neighbor.

10.6 DELETE

The algorithm for deletion takes an entry, finds the leaf node where it belongs,
and deletes it. Pseudocode for the B+ tree deletion algorithm is given in
Figure 10.15. The basic idea behind the algorithm is that we recursively delete
the entry by calling the delete algorithm on the appropriate child node. We
usually go down to the leaf node where the entry belongs, remove the entry
from there, and return all the way back to the root node. Occasionally a
node is at minimum occupancy before the deletion, and the deletion causes
it to go below the occupancy threshold. When this happens, we must either
redistribute entries from an adjacent sibling or merge the node with a sibling to
maintain minimum occupancy. If entries are redistributed between two nodes,
their parent node must be updated to reflect this; the key value in the index
entry pointing to the second node must be changed to be the lowest search key
in the second node. If two nodes are merged, their parent must be updated to
reflect this by deleting the index entry for the second node; this index entry is
pointed to by the pointer variable oldchildentry when the delete call returns to
the parent node. If the last entry in the root node is deleted in this manner
because one of its children was deleted, the height of the tree decreases by 1.

To illustrate deletion, let us consider the sample tree shown in Figure 10.13. To
delete entry 19*, we simply remove it from the leaf page on which it appears,
and we are done because the leaf still contains two entries. If we subsequently
delete 20*, however, the leaf contains only one entry after the deletion. The
(only) sibling of the leaf node that contained 20* has three entries, and we can
therefore deal with the situation by redistribution; we move entry 24* to the
leaf page that contained 20* and copy up the new splitting key (27, which is
the new low key value of the leaf from which we borrowed 24*) into the parent.
This process is illustrated in Figure 10.16.

Suppose that we now delete entry 24*. The affected leaf contains only one entry
(22*) after the deletion, and the (only) sibling contains just two entries (27*
and 29*). Therefore, we cannot redistribute entries. However, these two leaf
nodes together contain only three entries and can be merged. While merging,
we can ‘toss’ the entry ( 27, pointer to second leaf page ) in the parent, which
pointed to the second leaf page, because the second leaf page is empty after the
merge and can be discarded. The right subtree of Figure 10.16 after this step
in the deletion of entry 24* is shown in Figure 10.17.
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proc delete (parentpointer, nodepointer, entry, oldchildentry)

// Deletes entry from subtree with root ‘*nodepointer’; degree is d;

// ‘oldchildentry’ null initially, and null upon return unless child deleted

if *nodepointer is a non-leaf node, say N ,

find i such that Ki ≤ entry’s key value < Ki+1; // choose subtree

delete(nodepointer, Pi, entry, oldchildentry); // recursive delete

if oldchildentry is null, return; // usual case: child not deleted

else, // we discarded child node (see discussion)

remove *oldchildentry from N , // next, check for underflow

if N has entries to spare, // usual case

set oldchildentry to null, return; // delete doesn’t go further

else, // note difference wrt merging of leaf pages!

get a sibling S of N : // parentpointer arg used to find S

if S has extra entries,

redistribute evenly between N and S through parent;

set oldchildentry to null, return;

else, merge N and S // call node on rhs M

oldchildentry = & (current entry in parent for M);

pull splitting key from parent down into node on left;

move all entries from M to node on left;

discard empty node M , return;

if *nodepointer is a leaf node, say L,

if L has entries to spare, // usual case

remove entry, set oldchildentry to null, and return;

else, // once in a while, the leaf becomes underfull

get a sibling S of L; // parentpointer used to find S

if S has extra entries,

redistribute evenly between L and S;

find entry in parent for node on right; // call it M

replace key value in parent entry by new low-key value in M ;

set oldchildentry to null, return;

else, merge L and S // call node on rhs M

oldchildentry = & (current entry in parent for M);

move all entries from M to node on left;

discard empty node M , adjust sibling pointers, return;

endproc

Figure 10.15 Algorithm for Deletion from B+ Tree of Order d
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Root
17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*2* 3*

Figure 10.16 B+ Tree after Deleting Entries 19* and 20*

30

22* 27* 29* 33* 34* 38* 39*

Figure 10.17 Partial B+ Tree during Deletion of Entry 24*

Deleting the entry  27, pointer to second leaf page has created a non-leaf-level
page with just one entry, which is below the minimum of d = 2. To fix this
problem, we must either redistribute or merge. In either case, we must fetch a
sibling. The only sibling of this node contains just two entries (with key values
5 and 13), and so redistribution is not possible; we must therefore merge.

The situation when we have to merge two non-leaf nodes is exactly the opposite
of the situation when we have to split a non-leaf node. We have to split a non-
leaf node when it contains 2d keys and 2d + 1 pointers, and we have to add
another key–pointer pair. Since we resort to merging two non-leaf nodes only
when we cannot redistribute entries between them, the two nodes must be
minimally full; that is, each must contain d keys and d + 1 pointers prior to
the deletion. After merging the two nodes and removing the key–pointer pair
to be deleted, we have 2d − 1 keys and 2d + 1 pointers: Intuitively, the left-
most pointer on the second merged node lacks a key value. To see what key
value must be combined with this pointer to create a complete index entry,
consider the parent of the two nodes being merged. The index entry pointing
to one of the merged nodes must be deleted from the parent because the node
is about to be discarded. The key value in this index entry is precisely the key
value we need to complete the new merged node: The entries in the first node
being merged, followed by the splitting key value that is ‘pulled down’ from the
parent, followed by the entries in the second non-leaf node gives us a total of 2d
keys and 2d + 1 pointers, which is a full non-leaf node. Note how the splitting
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key value in the parent is pulled down, in contrast to the case of merging two
leaf nodes.

Consider the merging of two non-leaf nodes in our example. Together, the non-
leaf node and the sibling to be merged contain only three entries, and they have
a total of five pointers to leaf nodes. To merge the two nodes, we also need to
pull down the index entry in their parent that currently discriminates between
these nodes. This index entry has key value 17, and so we create a new entry
 17, left-most child pointer in sibling . Now we have a total of four entries and
five child pointers, which can fit on one page in a tree of order d = 2. Note that
pulling down the splitting key 17 means that it will no longer appear in the
parent node following the merge. After we merge the affected non-leaf node
and its sibling by putting all the entries on one page and discarding the empty
sibling page, the new node is the only child of the old root, which can therefore
be discarded. The tree after completing all these steps in the deletion of entry
24* is shown in Figure 10.18.

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

Figure 10.18 B+ Tree after Deleting Entry 24*

The previous examples illustrated redistribution of entries across leaves and
merging of both leaf-level and non-leaf-level pages. The remaining case is that
of redistribution of entries between non-leaf-level pages. To understand this
case, consider the intermediate right subtree shown in Figure 10.17. We would
arrive at the same intermediate right subtree if we try to delete 24* from a
tree similar to the one shown in Figure 10.16 but with the left subtree and
root key value as shown in Figure 10.19. The tree in Figure 10.19 illustrates
an intermediate stage during the deletion of 24*. (Try to construct the initial
tree.)

In contrast to the case when we deleted 24* from the tree of Figure 10.16, the
non-leaf level node containing key value 30 now has a sibling that can spare
entries (the entries with key values 17 and 20). We move these entries3 over
from the sibling. Note that, in doing so, we essentially push them through the

3It is sufficient to move over just the entry with key value 20, but we are moving over two entries
to illustrate what happens when several entries are redistributed.
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Root

135

17* 18* 20*

17 20

22

33* 34* 38* 39*

30

22* 27* 29*21*7*5* 8*3*2* 16*14*

Figure 10.19 A B+ Tree during a Deletion

splitting entry in their parent node (the root), which takes care of the fact that
17 becomes the new low key value on the right and therefore must replace the
old splitting key in the root (the key value 22). The tree with all these changes
is shown in Figure 10.20.

Root

14* 16*

135

33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*

17

3020 22

7*5* 8*2* 3*

Figure 10.20 B+ Tree after Deletion

In concluding our discussion of deletion, we note that we retrieve only one
sibling of a node. If this node has spare entries, we use redistribution; otherwise,
we merge. If the node has a second sibling, it may be worth retrieving that
sibling as well to check for the possibility of redistribution. Chances are high
that redistribution is possible, and unlike merging, redistribution is guaranteed
to propagate no further than the parent node. Also, the pages have more
space on them, which reduces the likelihood of a split on subsequent insertions.
(Remember, files typically grow, not shrink!) However, the number of times
that this case arises (the node becomes less than half-full and the first sibling
cannot spare an entry) is not very high, so it is not essential to implement this
refinement of the basic algorithm that we presented.

10.7 DUPLICATES

The search, insertion, and deletion algorithms that we presented ignore the
issue of duplicate keys, that is, several data entries with the same key value.
We now discuss how duplicates can be handled.
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Duplicate Handling in Commercial Systems: In a clustered index in
Sybase ASE, the data rows are maintained in sorted order on the page and
in the collection of data pages. The data pages are bidirectionally linked
in sort order. Rows with duplicate keys are inserted into (or deleted from)
the ordered set of rows. This may result in overflow pages of rows with
duplicate keys being inserted into the page chain or empty overflow pages
removed from the page chain. Insertion or deletion of a duplicate key does
not affect the higher index levels unless a split or merge of a non-overflow
page occurs. In IBM DB2, Oracle 8, and Microsoft SQL Server, duplicates
are handled by adding a row id if necessary to eliminate duplicate key
values.

The basic search algorithm assumes that all entries with a given key value reside
on a single leaf page. One way to satisfy this assumption is to use overflow
pages to deal with duplicates. (In ISAM, of course, we have overflow pages in
any case, and duplicates are easily handled.)

Typically, however, we use an alternative approach for duplicates. We handle
them just like any other entries and several leaf pages may contain entries with
a given key value. To retrieve all data entries with a given key value, we must
search for the left-most data entry with the given key value and then possibly
retrieve more than one leaf page (using the leaf sequence pointers). Modifying
the search algorithm to find the left-most data entry in an index with duplicates
is an interesting exercise (in fact, it is Exercise 10.11).

One problem with this approach is that, when a record is deleted, if we use
Alternative (2) for data entries, finding the corresponding data entry to delete
in the B+ tree index could be inefficient because we may have to check several
duplicate entries  key, rid with the same key value. This problem can be
addressed by considering the rid value in the data entry to be part of the
search key, for purposes of positioning the data entry in the tree. This solution
effectively turns the index into a unique index (i.e., no duplicates). Remember
that a search key can be any sequence of fields—in this variant, the rid of the
data record is essentially treated as another field while constructing the search
key.

Alternative (3) for data entries leads to a natural solution for duplicates, but if
we have a large number of duplicates, a single data entry could span multiple
pages. And of course, when a data record is deleted, finding the rid to delete
from the corresponding data entry can be inefficient. The solution to this
problem is similar to the one discussed previously for Alternative (2): We can
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maintain the list of rids within each data entry in sorted order (say, by page
number and then slot number if a rid consists of a page id and a slot id).

10.8 B+ TREES IN PRACTICE

In this section we discuss several important pragmatic issues.

10.8.1 Key Compression

The height of a B+ tree depends on the number of data entries and the size of
index entries. The size of index entries determines the number of index entries
that will fit on a page and, therefore, the fan-out of the tree. Since the height
of the tree is proportional to logfan−out(# of data entries), and the number of
disk I/Os to retrieve a data entry is equal to the height (unless some pages are
found in the buffer pool), it is clearly important to maximize the fan-out to
minimize the height.

An index entry contains a search key value and a page pointer. Hence the
size depends primarily on the size of the search key value. If search key
values are very long (for instance, the name Devarakonda Venkataramana
Sathyanarayana Seshasayee Yellamanchali Murthy, or Donaudampfschifffahrts-
kapitänsanwärtersmütze), not many index entries will fit on a page: Fan-out is
low, and the height of the tree is large.

On the other hand, search key values in index entries are used only to direct
traffic to the appropriate leaf. When we want to locate data entries with a
given search key value, we compare this search key value with the search key
values of index entries (on a path from the root to the desired leaf). During
the comparison at an index-level node, we want to identify two index entries
with search key values k1 and k2 such that the desired search key value k falls
between k1 and k2. To accomplish this, we need not store search key values in
their entirety in index entries.

For example, suppose we have two adjacent index entries in a node, with search
key values ‘David Smith’ and ‘Devarakonda . . . ’ To discriminate between these
two values, it is sufficient to store the abbreviated forms ‘Da’ and ‘De.’ More
generally, the meaning of the entry ‘David Smith’ in the B+ tree is that every
value in the subtree pointed to by the pointer to the left of ‘David Smith’ is less
than ‘David Smith,’ and every value in the subtree pointed to by the pointer
to the right of ‘David Smith’ is (greater than or equal to ‘David Smith’ and)
less than ‘Devarakonda . . . ’
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B+ Trees in Real Systems: IBM DB2, Informix, Microsoft SQL Server,
Oracle 8, and Sybase ASE all support clustered and unclustered B+ tree
indexes, with some differences in how they handle deletions and duplicate
key values. In Sybase ASE, depending on the concurrency control scheme
being used for the index, the deleted row is removed (with merging if
the page occupancy goes below threshold) or simply marked as deleted; a
garbage collection scheme is used to recover space in the latter case. In
Oracle 8, deletions are handled by marking the row as deleted. To reclaim
the space occupied by deleted records, we can rebuild the index online (i.e.,
while users continue to use the index) or coalesce underfull pages (which
does not reduce tree height). Coalesce is in-place, rebuild creates a copy.
Informix handles deletions by simply marking records as deleted. DB2 and
SQL Server remove deleted records and merge pages when occupancy goes
below threshold.
Oracle 8 also allows records from multiple relations to be co-clustered on
the same page. The co-clustering can be based on a B+ tree search key or
static hashing and up to 32 relations can be stored together.

To ensure such semantics for an entry is preserved, while compressing the entry
with key ‘David Smith,’ we must examine the largest key value in the subtree to
the left of ‘David Smith’ and the smallest key value in the subtree to the right
of ‘David Smith,’ not just the index entries (‘Daniel Lee’ and ‘Devarakonda
. . . ’) that are its neighbors. This point is illustrated in Figure 10.21; the value
‘Davey Jones’ is greater than ‘Dav,’ and thus, ‘David Smith’ can be abbreviated
only to ‘Davi,’ not to ‘Dav.’

Daniel Lee Devarakonda ...David Smith

Dante Wu Darius Rex Davey Jones

Figure 10.21 Example Illustrating Prefix Key Compression

This technique. called prefix key compression or simply key compres-
sion, is supported in many commercial implementations of B+ trees. It can
substantially increase the fan-out of a tree. We do not discuss the details of
the insertion and deletion algorithms in the presence of key compression.
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10.8.2 Bulk-Loading a B+ Tree

Entries are added to a B+ tree in two ways. First, we may have an existing
collection of data records with a B+ tree index on it; whenever a record is
added to the collection, a corresponding entry must be added to the B+ tree
as well. (Of course, a similar comment applies to deletions.) Second, we may
have a collection of data records for which we want to create a B+ tree index
on some key field(s). In this situation, we can start with an empty tree and
insert an entry for each data record, one at a time, using the standard insertion
algorithm. However, this approach is likely to be quite expensive because each
entry requires us to start from the root and go down to the appropriate leaf
page. Even though the index-level pages are likely to stay in the buffer pool
between successive requests, the overhead is still considerable.

For this reason many systems provide a bulk-loading utility for creating a B+
tree index on an existing collection of data records. The first step is to sort
the data entries k∗ to be inserted into the (to be created) B+ tree according to
the search key k. (If the entries are key–pointer pairs, sorting them does not
mean sorting the data records that are pointed to, of course.) We use a running
example to illustrate the bulk-loading algorithm. We assume that each data
page can hold only two entries, and that each index page can hold two entries
and an additional pointer (i.e., the B+ tree is assumed to be of order d = 1).

After the data entries have been sorted, we allocate an empty page to serve as
the root and insert a pointer to the first page of (sorted) entries into it. We
illustrate this process in Figure 10.22, using a sample set of nine sorted pages
of data entries.

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

Sorted pages of data entries not yet in B+ tree
Root

Figure 10.22 Initial Step in B+ Tree Bulk-Loading

We then add one entry to the root page for each page of the sorted data entries.
The new entry consists of  low key value on page, pointer to page . We proceed
until the root page is full; see Figure 10.23.

To insert the entry for the next page of data entries, we must split the root and
create a new root page. We show this step in Figure 10.24.
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3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

6 10
Root Data entry pages not yet in B+ tree

Figure 10.23 Root Page Fills up in B+ Tree Bulk-Loading

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages not yet in B+ tree6

10

12

Figure 10.24 Page Split during B+ Tree Bulk-Loading
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We have redistributed the entries evenly between the two children of the root,
in anticipation of the fact that the B+ tree is likely to grow. Although it is
difficult (!) to illustrate these options when at most two entries fit on a page,
we could also have just left all the entries on the old page or filled up some
desired fraction of that page (say, 80 percent). These alternatives are simple
variants of the basic idea.

To continue with the bulk-loading example, entries for the leaf pages are always
inserted into the right-most index page just above the leaf level. When the right-
most index page above the leaf level fills up, it is split. This action may cause
a split of the right-most index page one step closer to the root, as illustrated
in Figures 10.25 and 10.26.

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages 

not yet in B+ tree
3523126

10 20

Figure 10.25 Before Adding Entry for Leaf Page Containing 38*

4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree

Data entry pages 

3*

Figure 10.26 After Adding Entry for Leaf Page Containing 38*
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Note that splits occur only on the right-most path from the root to the leaf
level. We leave the completion of the bulk-loading example as a simple exercise.

Let us consider the cost of creating an index on an existing collection of records.
This operation consists of three steps: (1) creating the data entries to insert
in the index, (2) sorting the data entries, and (3) building the index from the
sorted entries. The first step involves scanning the records and writing out the
corresponding data entries; the cost is (R+E) I/Os, where R is the number of
pages containing records and E is the number of pages containing data entries.
Sorting is discussed in Chapter 13; you will see that the index entries can be
generated in sorted order at a cost of about 3E I/Os. These entries can then be
inserted into the index as they are generated, using the bulk-loading algorithm
discussed in this section. The cost of the third step, that is, inserting the entries
into the index, is then just the cost of writing out all index pages.

10.8.3 The Order Concept

We presented B+ trees using the parameter d to denote minimum occupancy. It
is worth noting that the concept of order (i.e., the parameter d), while useful for
teaching B+ tree concepts, must usually be relaxed in practice and replaced
by a physical space criterion; for example, that nodes must be kept at least
half-full.

One reason for this is that leaf nodes and non-leaf nodes can usually hold
different numbers of entries. Recall that B+ tree nodes are disk pages and
non-leaf nodes contain only search keys and node pointers, while leaf nodes can
contain the actual data records. Obviously, the size of a data record is likely
to be quite a bit larger than the size of a search entry, so many more search
entries than records fit on a disk page.

A second reason for relaxing the order concept is that the search key may
contain a character string field (e.g., the name field of Students) whose size
varies from record to record; such a search key leads to variable-size data entries
and index entries, and the number of entries that will fit on a disk page becomes
variable.

Finally, even if the index is built on a fixed-size field, several records may still
have the same search key value (e.g., several Students records may have the
same gpa or name value). This situation can also lead to variable-size leaf entries
(if we use Alternative (3) for data entries). Because of all these complications,
the concept of order is typically replaced by a simple physical criterion (e.g.,
merge if possible when more than half of the space in the node is unused).
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10.8.4 The Effect of Inserts and Deletes on Rids

If the leaf pages contain data records—that is, the B+ tree is a clustered index—
then operations such as splits, merges, and redistributions can change rids.
Recall that a typical representation for a rid is some combination of (physical)
page number and slot number. This scheme allows us to move records within
a page if an appropriate page format is chosen but not across pages, as is the
case with operations such as splits. So unless rids are chosen to be independent
of page numbers, an operation such as split or merge in a clustered B+ tree
may require compensating updates to other indexes on the same data.

A similar comment holds for any dynamic clustered index, regardless of whether
it is tree-based or hash-based. Of course, the problem does not arise with
nonclustered indexes, because only index entries are moved around.

10.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

Why are tree-structured indexes good for searches, especially range selec-
tions? (Section 10.1)

Describe how search, insert, and delete operations work in ISAM indexes.
Discuss the need for overflow pages, and their potential impact on perfor-
mance. What kinds of update workloads are ISAM indexes most vulnerable
to, and what kinds of workloads do they handle well? (Section 10.2)

Only leaf pages are affected in updates in ISAM indexes. Discuss the
implications for locking and concurrent access. Compare ISAM and B+
trees in this regard. (Section 10.2.1)

What are the main differences between ISAM and B+ tree indexes? (Sec-
tion 10.3)

What is the order of a B+ tree? Describe the format of nodes in a B+
tree. Why are nodes at the leaf level linked? (Section 10.3)

How many nodes must be examined for equality search in a B+ tree? How
many for a range selection? Compare this with ISAM. (Section 10.4)

Describe the B+ tree insertion algorithm, and explain how it eliminates
overflow pages. Under what conditions can an insert increase the height of
the tree? (Section 10.5)

During deletion, a node might go below the minimum occupancy threshold.
How is this handled? Under what conditions could a deletion decrease the
height of the tree? (Section 10.6)
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Root

32*39* 41*45* 52* 58* 73* 80* 91*99*

8573

50

27*18*10*8*6*5*2*1*

8 18 32 40

Figure 10.27 Tree for Exercise 10.1

Why do duplicate search keys require modifications to the implementation
of the basic B+ tree operations? (Section 10.7)

What is key compression, and why is it important? (Section 10.8.1)

How can a new B+ tree index be efficiently constructed for a set of records?
Describe the bulk-loading algorithm. (Section 10.8.2)

Discuss the impact of splits in clustered B+ tree indexes. (Section 10.8.4)

EXERCISES

Exercise 10.1 Consider the B+ tree index of order d = 2 shown in Figure 10.27.

1. Show the tree that would result from inserting a data entry with key 9 into this tree.

2. Show the B+ tree that would result from inserting a data entry with key 3 into the
original tree. How many page reads and page writes does the insertion require?

3. Show the B+ tree that would result from deleting the data entry with key 8 from the
original tree, assuming that the left sibling is checked for possible redistribution.

4. Show the B+ tree that would result from deleting the data entry with key 8 from the
original tree, assuming that the right sibling is checked for possible redistribution.

5. Show the B+ tree that would result from starting with the original tree, inserting a data
entry with key 46 and then deleting the data entry with key 52.

6. Show the B+ tree that would result from deleting the data entry with key 91 from the
original tree.

7. Show the B+ tree that would result from starting with the original tree, inserting a data
entry with key 59, and then deleting the data entry with key 91.

8. Show the B+ tree that would result from successively deleting the data entries with keys
32, 39, 41, 45, and 73 from the original tree.

Exercise 10.2 Consider the B+ tree index shown in Figure 10.28, which uses Alternative
(1) for data entries. Each intermediate node can hold up to five pointers and four key values.
Each leaf can hold up to four records, and leaf nodes are doubly linked as usual, although
these links are not shown in the figure. Answer the following questions.

1. Name all the tree nodes that must be fetched to answer the following query: “Get all
records with search key greater than 38.”
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10 20 30 80

35 42 50 65 90 98

A B C

30* 31*

36* 38*

42* 43*

51* 52* 56* 60*

68* 69* 70* 79*

81* 82*

94* 95* 96* 97*

98* 99* 105*

L1

L2

L3

L4

L5

L6

L7

L8

I1

I2 I3

100*

Figure 10.28 Tree for Exercise 10.2

2. Insert a record with search key 109 into the tree.

3. Delete the record with search key 81 from the (original) tree.

4. Name a search key value such that inserting it into the (original) tree would cause an
increase in the height of the tree.

5. Note that subtrees A, B, and C are not fully specified. Nonetheless, what can you infer
about the contents and the shape of these trees?

6. How would your answers to the preceding questions change if this were an ISAM index?

7. Suppose that this is an ISAM index. What is the minimum number of insertions needed
to create a chain of three overflow pages?

Exercise 10.3 Answer the following questions:

1. What is the minimum space utilization for a B+ tree index?

2. What is the minimum space utilization for an ISAM index?

3. If your database system supported both a static and a dynamic tree index (say, ISAM and
B+ trees), would you ever consider using the static index in preference to the dynamic

index?

Exercise 10.4 Suppose that a page can contain at most four data values and that all data
values are integers. Using only B+ trees of order 2, give examples of each of the following:

1. A B+ tree whose height changes from 2 to 3 when the value 25 is inserted. Show your
structure before and after the insertion.

2. A B+ tree in which the deletion of the value 25 leads to a redistribution. Show your
structure before and after the deletion.

3. A B+ tree in which the deletion of the value 25 causes a merge of two nodes but without
altering the height of the tree.

4. An ISAM structure with four buckets, none of which has an overflow page. Further,
every bucket has space for exactly one more entry. Show your structure before and after
inserting two additional values, chosen so that an overflow page is created.
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Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Figure 10.29 Tree for Exercise 10.5

Exercise 10.5 Consider the B+ tree shown in Figure 10.29.

1. Identify a list of five data entries such that:

(a) Inserting the entries in the order shown and then deleting them in the opposite
order (e.g., insert a, insert b, delete b, delete a) results in the original tree.

(b) Inserting the entries in the order shown and then deleting them in the opposite
order (e.g., insert a, insert b, delete b, delete a) results in a different tree.

2. What is the minimum number of insertions of data entries with distinct keys that will
cause the height of the (original) tree to change from its current value (of 1) to 3?

3. Would the minimum number of insertions that will cause the original tree to increase to
height 3 change if you were allowed to insert duplicates (multiple data entries with the
same key), assuming that overflow pages are not used for handling duplicates?

Exercise 10.6 Answer Exercise 10.5 assuming that the tree is an ISAM tree! (Some of the
examples asked for may not exist—if so, explain briefly.)

Exercise 10.7 Suppose that you have a sorted file and want to construct a dense primary
B+ tree index on this file.

1. One way to accomplish this task is to scan the file, record by record, inserting each
one using the B+ tree insertion procedure. What performance and storage utilization
problems are there with this approach?

2. Explain how the bulk-loading algorithm described in the text improves upon this scheme.

Exercise 10.8 Assume that you have just built a dense B+ tree index using Alternative (2)
on a heap file containing 20,000 records. The key field for this B+ tree index is a 40-byte
string, and it is a candidate key. Pointers (i.e., record ids and page ids) are (at most) 10-
byte values. The size of one disk page is 1000 bytes. The index was built in a bottom-up
fashion using the bulk-loading algorithm, and the nodes at each level were filled up as much
as possible.

1. How many levels does the resulting tree have?

2. For each level of the tree, how many nodes are at that level?

3. How many levels would the resulting tree have if key compression is used and it reduces
the average size of each key in an entry to 10 bytes?
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sid name login age gpa

53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 3.8
53666 Jones jones@cs 18 3.4
53901 Jones jones@toy 18 3.4
53902 Jones jones@physics 18 3.4
53903 Jones jones@english 18 3.4
53904 Jones jones@genetics 18 3.4
53905 Jones jones@astro 18 3.4
53906 Jones jones@chem 18 3.4
53902 Jones jones@sanitation 18 3.8
53688 Smith smith@ee 19 3.2
53650 Smith smith@math 19 3.8
54001 Smith smith@ee 19 3.5
54005 Smith smith@cs 19 3.8
54009 Smith smith@astro 19 2.2

Figure 10.30 An Instance of the Students Relation

4. How many levels would the resulting tree have without key compression but with all
pages 70 percent full?

Exercise 10.9 The algorithms for insertion and deletion into a B+ tree are presented as
recursive algorithms. In the code for insert, for instance, a call is made at the parent of a
node N to insert into (the subtree rooted at) node N , and when this call returns, the current
node is the parent of N . Thus, we do not maintain any ‘parent pointers’ in nodes of B+
tree. Such pointers are not part of the B+ tree structure for a good reason, as this exercise
demonstrates. An alternative approach that uses parent pointers—again, remember that such
pointers are not part of the standard B+ tree structure!—in each node appears to be simpler:

Search to the appropriate leaf using the search algorithm; then insert the entry and
split if necessary, with splits propagated to parents if necessary (using the parent
pointers to find the parents).

Consider this (unsatisfactory) alternative approach:

1. Suppose that an internal node N is split into nodes N and N2. What can you say about
the parent pointers in the children of the original node N?

2. Suggest two ways of dealing with the inconsistent parent pointers in the children of node
N .

3. For each of these suggestions, identify a potential (major) disadvantage.

4. What conclusions can you draw from this exercise?

Exercise 10.10 Consider the instance of the Students relation shown in Figure 10.30. Show
a B+ tree of order 2 in each of these cases, assuming that duplicates are handled using overflow
pages. Clearly indicate what the data entries are (i.e., do not use the k∗ convention).



Tree-Structured Indexing 369

1. A B+ tree index on age using Alternative (1) for data entries.

2. A dense B+ tree index on gpa using Alternative (2) for data entries. For this question,
assume that these tuples are stored in a sorted file in the order shown in the figure: The
first tuple is in page 1, slot 1; the second tuple is in page 1, slot 2; and so on. Each page
can store up to three data records. You can use �page-id, slot� to identify a tuple.

Exercise 10.11 Suppose that duplicates are handled using the approach without overflow
pages discussed in Section 10.7. Describe an algorithm to search for the left-most occurrence
of a data entry with search key value K.

Exercise 10.12 Answer Exercise 10.10 assuming that duplicates are handled without using
overflow pages, using the alternative approach suggested in Section 9.7.

PROJECT-BASED EXERCISES

Exercise 10.13 Compare the public interfaces for heap files, B+ tree indexes, and linear
hashed indexes. What are the similarities and differences? Explain why these similarities and
differences exist.

Exercise 10.14 This exercise involves using Minibase to explore the earlier (non-project)
exercises further.

1. Create the trees shown in earlier exercises and visualize them using the B+ tree visualizer
in Minibase.

2. Verify your answers to exercises that require insertion and deletion of data entries by
doing the insertions and deletions in Minibase and looking at the resulting trees using
the visualizer.

Exercise 10.15 (Note to instructors: Additional details must be provided if this exercise is

assigned; see Appendix 30.) Implement B+ trees on top of the lower-level code in Minibase.

BIBLIOGRAPHIC NOTES

The original version of the B+ tree was presented by Bayer and McCreight [69]. The B+
tree is described in [442] and [194]. B tree indexes for skewed data distributions are studied
in [260]. The VSAM indexing structure is described in [764]. Various tree structures for
supporting range queries are surveyed in [79]. An early paper on multiattribute search keys
is [498].

References for concurrent access to B+ trees are in the bibliography for Chapter 17.
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HASH-BASED INDEXING

☛ What is the intuition behind hash-structured indexes? Why are they
especially good for equality searches but useless for range selections?

☛ What is Extendible Hashing? How does it handle search, insert, and
delete?

☛ What is Linear Hashing? How does it handle search, insert, and
delete?

☛ What are the similarities and differences between Extendible and Lin-
ear Hashing?

➽ Key concepts: hash function, bucket, primary and overflow pages,
static versus dynamic hash indexes; Extendible Hashing, directory of
buckets, splitting a bucket, global and local depth, directory doubling,
collisions and overflow pages; Linear Hashing, rounds of splitting, fam-
ily of hash functions, overflow pages, choice of bucket to split and time
to split; relationship between Extendible Hashing’s directory and Lin-
ear Hashing’s family of hash functions, need for overflow pages in both
schemes in practice, use of a directory for Linear Hashing.

Not chaos-like, together crushed and bruised,
But, as the world harmoniously confused:
Where order in variety we see.

—Alexander Pope, Windsor Forest

In this chapter we consider file organizations that are excellent for equality
selections. The basic idea is to use a hashing function, which maps values

370
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in a search field into a range of bucket numbers to find the page on which a
desired data entry belongs. We use a simple scheme called Static Hashing to
introduce the idea. This scheme, like ISAM, suffers from the problem of long
overflow chains, which can affect performance. Two solutions to the problem
are presented. The Extendible Hashing scheme uses a directory to support
inserts and deletes efficiently with no overflow pages. The Linear Hashing
scheme uses a clever policy for creating new buckets and supports inserts and
deletes efficiently without the use of a directory. Although overflow pages are
used, the length of overflow chains is rarely more than two.

Hash-based indexing techniques cannot support range searches, unfortunately.
Tree-based indexing techniques, discussed in Chapter 10, can support range
searches efficiently and are almost as good as hash-based indexing for equality
selections. Thus, many commercial systems choose to support only tree-based
indexes. Nonetheless, hashing techniques prove to be very useful in imple-
menting relational operations such as joins, as we will see in Chapter 14. In
particular, the Index Nested Loops join method generates many equality se-
lection queries, and the difference in cost between a hash-based index and a
tree-based index can become significant in this context.

The rest of this chapter is organized as follows. Section 11.1 presents Static
Hashing. Like ISAM, its drawback is that performance degrades as the data
grows and shrinks. We discuss a dynamic hashing technique, called Extendible
Hashing, in Section 11.2 and another dynamic technique, called Linear Hashing,
in Section 11.3. We compare Extendible and Linear Hashing in Section 11.4.

11.1 STATIC HASHING

The Static Hashing scheme is illustrated in Figure 11.1. The pages containing
the data can be viewed as a collection of buckets, with one primary page
and possibly additional overflow pages per bucket. A file consists of buckets
0 through N − 1, with one primary page per bucket initially. Buckets contain
data entries, which can be any of the three alternatives discussed in Chapter
8.

To search for a data entry, we apply a hash function h to identify the bucket
to which it belongs and then search this bucket. To speed the search of a
bucket, we can maintain data entries in sorted order by search key value; in
this chapter, we do not sort entries, and the order of entries within a bucket
has no significance. To insert a data entry, we use the hash function to identify
the correct bucket and then put the data entry there. If there is no space for
this data entry, we allocate a new overflow page, put the data entry on this
page, and add the page to the overflow chain of the bucket. To delete a data
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h

key

Primary bucket pages Overflow pages

1

0

N-1

h(key) mod N

Figure 11.1 Static Hashing

entry, we use the hashing function to identify the correct bucket, locate the
data entry by searching the bucket, and then remove it. If this data entry is
the last in an overflow page, the overflow page is removed from the overflow
chain of the bucket and added to a list of free pages.

The hash function is an important component of the hashing approach. It must
distribute values in the domain of the search field uniformly over the collection
of buckets. If we have N buckets, numbered 0 through N − 1, a hash function
h of the form h(value) = (a ∗ value+ b) works well in practice. (The bucket
identified is h(value) mod N .) The constants a and b can be chosen to ‘tune’
the hash function.

Since the number of buckets in a Static Hashing file is known when the file
is created, the primary pages can be stored on successive disk pages. Hence,
a search ideally requires just one disk I/O, and insert and delete operations
require two I/Os (read and write the page), although the cost could be higher
in the presence of overflow pages. As the file grows, long overflow chains can
develop. Since searching a bucket requires us to search (in general) all pages
in its overflow chain, it is easy to see how performance can deteriorate. By
initially keeping pages 80 percent full, we can avoid overflow pages if the file
does not grow too much, but in general the only way to get rid of overflow
chains is to create a new file with more buckets.

The main problem with Static Hashing is that the number of buckets is fixed.
If a file shrinks greatly, a lot of space is wasted; more important, if a file grows
a lot, long overflow chains develop, resulting in poor performance. Therefore,
Static Hashing can be compared to the ISAM structure (Section 10.2), which
can also develop long overflow chains in case of insertions to the same leaf.
Static Hashing also has the same advantages as ISAM with respect to concur-
rent access (see Section 10.2.1).
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One simple alternative to Static Hashing is to periodically ‘rehash’ the file to
restore the ideal situation (no overflow chains, about 80 percent occupancy).
However, rehashing takes time and the index cannot be used while rehashing
is in progress. Another alternative is to use dynamic hashing techniques
such as Extendible and Linear Hashing, which deal with inserts and deletes
gracefully. We consider these techniques in the rest of this chapter.

11.1.1 Notation and Conventions

In the rest of this chapter, we use the following conventions. As in the previous
chapter, record with search key k, we denote the index data entry by k∗. For
hash-based indexes, the first step in searching for, inserting, or deleting a data
entry with search key k is to apply a hash function h to k; we denote this
operation by h(k), and the value h(k) identifies the bucket for the data entry
k∗. Note that two different search keys can have the same hash value.

11.2 EXTENDIBLE HASHING

To understand Extendible Hashing, let us begin by considering a Static Hashing
file. If we have to insert a new data entry into a full bucket, we need to add
an overflow page. If we do not want to add overflow pages, one solution is
to reorganize the file at this point by doubling the number of buckets and
redistributing the entries across the new set of buckets. This solution suffers
from one major defect—the entire file has to be read, and twice as many pages
have to be written to achieve the reorganization. This problem, however, can
be overcome by a simple idea: Use a directory of pointers to buckets, and
double the size of the number of buckets by doubling just the directory and
splitting only the bucket that overflowed.

To understand the idea, consider the sample file shown in Figure 11.2. The
directory consists of an array of size 4, with each element being a pointer to
a bucket. (The global depth and local depth fields are discussed shortly, ignore
them for now.) To locate a data entry, we apply a hash function to the search
field and take the last 2 bits of its binary representation to get a number
between 0 and 3. The pointer in this array position gives us the desired bucket;
we assume that each bucket can hold four data entries. Therefore, to locate a
data entry with hash value 5 (binary 101), we look at directory element 01 and
follow the pointer to the data page (bucket B in the figure).

To insert a data entry, we search to find the appropriate bucket. For example,
to insert a data entry with hash value 13 (denoted as 13*), we examine directory
element 01 and go to the page containing data entries 1*, 5*, and 21*. Since
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Figure 11.2 Example of an Extendible Hashed File

the page has space for an additional data entry, we are done after we insert the
entry (Figure 11.3).
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Figure 11.3 After Inserting Entry r with h(r) = 13

Next, let us consider insertion of a data entry into a full bucket. The essence
of the Extendible Hashing idea lies in how we deal with this case. Consider the
insertion of data entry 20* (binary 10100). Looking at directory element 00,
we are led to bucket A, which is already full. We must first split the bucket
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by allocating a new bucket1 and redistributing the contents (including the new
entry to be inserted) across the old bucket and its ‘split image.’ To redistribute
entries across the old bucket and its split image, we consider the last three bits
of h(r); the last two bits are 00, indicating a data entry that belongs to one of
these two buckets, and the third bit discriminates between these buckets. The
redistribution of entries is illustrated in Figure 11.4.

00
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11

2 2

2

2

LOCAL DEPTH
2

2

DIRECTORY

GLOBAL DEPTH Bucket A

Bucket B

Bucket C

Bucket D

1* 5* 21* 13*

32* 16*

10*

15* 7* 19*

4* 12* 20*
Bucket A2 (split image of bucket A)

Figure 11.4 While Inserting Entry r with h(r)=20

Note a problem that we must now resolve—we need three bits to discriminate
between two of our data pages (A and A2), but the directory has only enough
slots to store all two-bit patterns. The solution is to double the directory. El-
ements that differ only in the third bit from the end are said to ‘correspond’:
Corresponding elements of the directory point to the same bucket with the
exception of the elements corresponding to the split bucket. In our example,
bucket 0 was split; so, new directory element 000 points to one of the split ver-
sions and new element 100 points to the other. The sample file after completing
all steps in the insertion of 20* is shown in Figure 11.5.

Therefore, doubling the file requires allocating a new bucket page, writing both
this page and the old bucket page that is being split, and doubling the directory
array. The directory is likely to be much smaller than the file itself because
each element is just a page-id, and can be doubled by simply copying it over

1Since there are no overflow pages in Extendible Hashing, a bucket can be thought of as a single
page.
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Figure 11.5 After Inserting Entry r with h(r) = 20

(and adjusting the elements for the split buckets). The cost of doubling is now
quite acceptable.

We observe that the basic technique used in Extendible Hashing is to treat the
result of applying a hash function h as a binary number and interpret the last d
bits, where d depends on the size of the directory, as an offset into the directory.
In our example, d is originally 2 because we only have four buckets; after the
split, d becomes 3 because we now have eight buckets. A corollary is that,
when distributing entries across a bucket and its split image, we should do so
on the basis of the dth bit. (Note how entries are redistributed in our example;
see Figure 11.5.) The number d, called the global depth of the hashed file, is
kept as part of the header of the file. It is used every time we need to locate a
data entry.

An important point that arises is whether splitting a bucket necessitates a
directory doubling. Consider our example, as shown in Figure 11.5. If we now
insert 9*, it belongs in bucket B; this bucket is already full. We can deal with
this situation by splitting the bucket and using directory elements 001 and 101
to point to the bucket and its split image, as shown in Figure 11.6.

Hence, a bucket split does not necessarily require a directory doubling. How-
ever, if either bucket A or A2 grows full and an insert then forces a bucket split,
we are forced to double the directory again.
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Figure 11.6 After Inserting Entry r with h(r) = 9

To differentiate between these cases and determine whether a directory doubling
is needed, we maintain a local depth for each bucket. If a bucket whose local
depth is equal to the global depth is split, the directory must be doubled. Going
back to the example, when we inserted 9* into the index shown in Figure 11.5,
it belonged to bucket B with local depth 2, whereas the global depth was 3.
Even though the bucket was split, the directory did not have to be doubled.
Buckets A and A2, on the other hand, have local depth equal to the global
depth, and, if they grow full and are split, the directory must then be doubled.

Initially, all local depths are equal to the global depth (which is the number of
bits needed to express the total number of buckets). We increment the global
depth by 1 each time the directory doubles, of course. Also, whenever a bucket
is split (whether or not the split leads to a directory doubling), we increment
by 1 the local depth of the split bucket and assign this same (incremented)
local depth to its (newly created) split image. Intuitively, if a bucket has local
depth l, the hash values of data entries in it agree on the last l bits; further, no
data entry in any other bucket of the file has a hash value with the same last l
bits. A total of 2d−l directory elements point to a bucket with local depth l; if
d = l, exactly one directory element points to the bucket and splitting such a
bucket requires directory doubling.
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A final point to note is that we can also use the first d bits (the most significant
bits) instead of the last d (least significant bits), but in practice the last d bits
are used. The reason is that a directory can then be doubled simply by copying
it.

In summary, a data entry can be located by computing its hash value, taking
the last d bits, and looking in the bucket pointed to by this directory element.
For inserts, the data entry is placed in the bucket to which it belongs and the
bucket is split if necessary to make space. A bucket split leads to an increase in
the local depth and, if the local depth becomes greater than the global depth
as a result, to a directory doubling (and an increase in the global depth) as
well.

For deletes, the data entry is located and removed. If the delete leaves the
bucket empty, it can be merged with its split image, although this step is
often omitted in practice. Merging buckets decreases the local depth. If each
directory element points to the same bucket as its split image (i.e., 0 and 2d−1

point to the same bucket, namely, A; 1 and 2d−1 +1 point to the same bucket,
namely, B, which may or may not be identical to A; etc.), we can halve the
directory and reduce the global depth, although this step is not necessary for
correctness.

The insertion examples can be worked out backwards as examples of deletion.
(Start with the structure shown after an insertion and delete the inserted ele-
ment. In each case the original structure should be the result.)

If the directory fits in memory, an equality selection can be answered in a
single disk access, as for Static Hashing (in the absence of overflow pages), but
otherwise, two disk I/Os are needed. As a typical example, a 100MB file with
100 bytes per data entry and a page size of 4KB contains 1 million data entries
and only about 25,000 elements in the directory. (Each page/bucket contains
roughly 40 data entries, and we have one directory element per bucket.) Thus,
although equality selections can be twice as slow as for Static Hashing files,
chances are high that the directory will fit in memory and performance is the
same as for Static Hashing files.

On the other hand, the directory grows in spurts and can become large for
skewed data distributions (where our assumption that data pages contain roughly
equal numbers of data entries is not valid). In the context of hashed files, in a
skewed data distribution the distribution of hash values of search field values
(rather than the distribution of search field values themselves) is skewed (very
‘bursty’ or nonuniform). Even if the distribution of search values is skewed, the
choice of a good hashing function typically yields a fairly uniform distribution
of hash values; skew is therefore not a problem in practice.
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Further, collisions, or data entries with the same hash value, cause a problem
and must be handled specially: When more data entries than will fit on a page
have the same hash value, we need overflow pages.

11.3 LINEAR HASHING

Linear Hashing is a dynamic hashing technique, like Extendible Hashing, ad-
justing gracefully to inserts and deletes. In contrast to Extendible Hashing,
it does not require a directory, deals naturally with collisions, and offers a lot
of flexibility with respect to the timing of bucket splits (allowing us to trade
off slightly greater overflow chains for higher average space utilization). If the
data distribution is very skewed, however, overflow chains could cause Linear
Hashing performance to be worse than that of Extendible Hashing.

The scheme utilizes a family of hash functions h0, h1, h2, . . ., with the property
that each function’s range is twice that of its predecessor. That is, if hi maps
a data entry into one of M buckets, hi+1 maps a data entry into one of 2M
buckets. Such a family is typically obtained by choosing a hash function h and
an initial number N of buckets,2 and defining hi(value) = h(value) mod (2iN).
If N is chosen to be a power of 2, then we apply h and look at the last di bits;
d0 is the number of bits needed to represent N , and di = d0 + i. Typically we
choose h to be a function that maps a data entry to some integer. Suppose
that we set the initial number N of buckets to be 32. In this case d0 is 5, and
h0 is therefore h mod 32, that is, a number in the range 0 to 31. The value of
d1 is d0 + 1 = 6, and h1 is h mod (2 ∗ 32), that is, a number in the range 0 to
63. Then h2 yields a number in the range 0 to 127, and so on.

The idea is best understood in terms of rounds of splitting. During round
number Level, only hash functions hLevel and hLevel+1 are in use. The buckets
in the file at the beginning of the round are split, one by one from the first to
the last bucket, thereby doubling the number of buckets. At any given point
within a round, therefore, we have buckets that have been split, buckets that
are yet to be split, and buckets created by splits in this round, as illustrated in
Figure 11.7.

Consider how we search for a data entry with a given search key value. We
apply hash function hLevel, and if this leads us to one of the unsplit buckets,
we simply look there. If it leads us to one of the split buckets, the entry may
be there or it may have been moved to the new bucket created earlier in this
round by splitting this bucket; to determine which of the two buckets contains
the entry, we apply hLevel+1.

2Note that 0 to N − 1 is not the range of h!
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Figure 11.7 Buckets during a Round in Linear Hashing

Unlike Extendible Hashing, when an insert triggers a split, the bucket into
which the data entry is inserted is not necessarily the bucket that is split. An
overflow page is added to store the newly inserted data entry (which triggered
the split), as in Static Hashing. However, since the bucket to split is chosen
in round-robin fashion, eventually all buckets are split, thereby redistributing
the data entries in overflow chains before the chains get to be more than one
or two pages long.

We now describe Linear Hashing in more detail. A counter Level is used to
indicate the current round number and is initialized to 0. The bucket to split
is denoted by Next and is initially bucket 0 (the first bucket). We denote the
number of buckets in the file at the beginning of round Level by NLevel. We
can easily verify that NLevel = N ∗ 2Level. Let the number of buckets at the
beginning of round 0, denoted by N0, be N . We show a small linear hashed
file in Figure 11.8. Each bucket can hold four data entries, and the file initially
contains four buckets, as shown in the figure.

We have considerable flexibility in how to trigger a split, thanks to the use of
overflow pages. We can split whenever a new overflow page is added, or we can
impose additional conditions based on conditions such as space utilization. For
our examples, a split is ‘triggered’ when inserting a new data entry causes the
creation of an overflow page.

Whenever a split is triggered the Next bucket is split, and hash function hLevel+1
redistributes entries between this bucket (say bucket number b) and its split
image; the split image is therefore bucket number b+NLevel. After splitting a
bucket, the value of Next is incremented by 1. In the example file, insertion of
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Figure 11.8 Example of a Linear Hashed File

data entry 43* triggers a split. The file after completing the insertion is shown
in Figure 11.9.
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Figure 11.9 After Inserting Record r with h(r) = 43

At any time in the middle of a round Level, all buckets above bucket Next have
been split, and the file contains buckets that are their split images, as illustrated
in Figure 11.7. Buckets Next through NLevel have not yet been split. If we use
hLevel on a data entry and obtain a number b in the range Next through NLevel,
the data entry belongs to bucket b. For example, h0(18) is 2 (binary 10); since
this value is between the current values of Next (= 1) and N1 (= 4), this bucket
has not been split. However, if we obtain a number b in the range 0 through
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Next, the data entry may be in this bucket or in its split image (which is bucket
number b+NLevel); we have to use hLevel+1 to determine to which of these two
buckets the data entry belongs. In other words, we have to look at one more
bit of the data entry’s hash value. For example, h0(32) and h0(44) are both 0
(binary 00). Since Next is currently equal to 1, which indicates a bucket that
has been split, we have to apply h1. We have h1(32) = 0 (binary 000) and
h1(44) = 4 (binary 100). Therefore, 32 belongs in bucket A and 44 belongs in
its split image, bucket A2.

Not all insertions trigger a split, of course. If we insert 37* into the file shown
in Figure 11.9, the appropriate bucket has space for the new data entry. The
file after the insertion is shown in Figure 11.10.
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Figure 11.10 After Inserting Record r with h(r) = 37

Sometimes the bucket pointed to by Next (the current candidate for splitting)
is full, and a new data entry should be inserted in this bucket. In this case, a
split is triggered, of course, but we do not need a new overflow bucket. This
situation is illustrated by inserting 29* into the file shown in Figure 11.10. The
result is shown in Figure 11.11.

When Next is equal to NLevel − 1 and a split is triggered, we split the last of
the buckets present in the file at the beginning of round Level. The number
of buckets after the split is twice the number at the beginning of the round,
and we start a new round with Level incremented by 1 and Next reset to 0.
Incrementing Level amounts to doubling the effective range into which keys are
hashed. Consider the example file in Figure 11.12, which was obtained from the
file of Figure 11.11 by inserting 22*, 66*, and 34*. (The reader is encouraged to
try to work out the details of these insertions.) Inserting 50* causes a split that
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Figure 11.11 After Inserting Record r with h(r) = 29

leads to incrementing Level, as discussed previously; the file after this insertion
is shown in Figure 11.13.
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Figure 11.12 After Inserting Records with h(r) = 22, 66, and34

In summary, an equality selection costs just one disk I/O unless the bucket has
overflow pages; in practice, the cost on average is about 1.2 disk accesses for
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Figure 11.13 After Inserting Record r with h(r) = 50

reasonably uniform data distributions. (The cost can be considerably worse—
linear in the number of data entries in the file—if the distribution is very skewed.
The space utilization is also very poor with skewed data distributions.) Inserts
require reading and writing a single page, unless a split is triggered.

We not discuss deletion in detail, but it is essentially the inverse of insertion.
If the last bucket in the file is empty, it can be removed and Next can be
decremented. (If Next is 0 and the last bucket becomes empty, Next is made to
point to bucket (M/2)− 1, where M is the current number of buckets, Level is
decremented, and the empty bucket is removed.) If we wish, we can combine the
last bucket with its split image even when it is not empty, using some criterion
to trigger this merging in essentially the same way. The criterion is typically
based on the occupancy of the file, and merging can be done to improve space
utilization.

11.4 EXTENDIBLE VS. LINEAR HASHING

To understand the relationship between Linear Hashing and Extendible Hash-
ing, imagine that we also have a directory in Linear Hashing with elements 0
to N − 1. The first split is at bucket 0, and so we add directory element N . In
principle, we may imagine that the entire directory has been doubled at this
point; however, because element 1 is the same as element N + 1, element 2 is
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the same as element N + 2, and so on, we can avoid the actual copying for
the rest of the directory. The second split occurs at bucket 1; now directory
element N + 1 becomes significant and is added. At the end of the round, all
the original N buckets are split, and the directory is doubled in size (because
all elements point to distinct buckets).

We observe that the choice of hashing functions is actually very similar to
what goes on in Extendible Hashing—in effect, moving from hi to hi+1 in
Linear Hashing corresponds to doubling the directory in Extendible Hashing.
Both operations double the effective range into which key values are hashed;
but whereas the directory is doubled in a single step of Extendible Hashing,
moving from hi to hi+1, along with a corresponding doubling in the number
of buckets, occurs gradually over the course of a round in Linear Hashing.
The new idea behind Linear Hashing is that a directory can be avoided by a
clever choice of the bucket to split. On the other hand, by always splitting the
appropriate bucket, Extendible Hashing may lead to a reduced number of splits
and higher bucket occupancy.

The directory analogy is useful for understanding the ideas behind Extendible
and Linear Hashing. However, the directory structure can be avoided for Linear
Hashing (but not for Extendible Hashing) by allocating primary bucket pages
consecutively, which would allow us to locate the page for bucket i by a simple
offset calculation. For uniform distributions, this implementation of Linear
Hashing has a lower average cost for equality selections (because the directory
level is eliminated). For skewed distributions, this implementation could result
in any empty or nearly empty buckets, each of which is allocated at least one
page, leading to poor performance relative to Extendible Hashing, which is
likely to have higher bucket occupancy.

A different implementation of Linear Hashing, in which a directory is actually
maintained, offers the flexibility of not allocating one page per bucket; null
directory elements can be used as in Extendible Hashing. However, this imple-
mentation introduces the overhead of a directory level and could prove costly
for large, uniformly distributed files. (Also, although this implementation alle-
viates the potential problem of low bucket occupancy by not allocating pages
for empty buckets, it is not a complete solution because we can still have many
pages with very few entries.)

11.5 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.
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How does a hash-based index handle an equality query? Discuss the use of
the hash function in identifying a bucket to search. Given a bucket number,
explain how the record is located on disk.

Explain how insert and delete operations are handled in a static hash index.
Discuss how overflow pages are used, and their impact on performance.
How many disk I/Os does an equality search require, in the absence of
overflow chains? What kinds of workload does a static hash index handle
well, and when it is especially poor? (Section 11.1)

How does Extendible Hashing use a directory of buckets? How does Ex-
tendible Hashing handle an equality query? How does it handle insert and
delete operations? Discuss the global depth of the index and local depth of
a bucket in your answer. Under what conditions can the directory can get
large? (Section 11.2)

What are collisions? Why do we need overflow pages to handle them?
(Section 11.2)

How does Linear Hashing avoid a directory? Discuss the round-robin split-
ting of buckets. Explain how the split bucket is chosen, and what triggers
a split. Explain the role of the family of hash functions, and the role of
the Level and Next counters. When does a round of splitting end? (Sec-
tion 11.3)

Discuss the relationship between Extendible and Linear Hashing. What are
their relative merits? Consider space utilization for skewed distributions,
the use of overflow pages to handle collisions in Extendible Hashing, and
the use of a directory in Linear Hashing. (Section 11.4)

EXERCISES

Exercise 11.1 Consider the Extendible Hashing index shown in Figure 11.14. Answer the
following questions about this index:

1. What can you say about the last entry that was inserted into the index?

2. What can you say about the last entry that was inserted into the index if you know that
there have been no deletions from this index so far?

3. Suppose you are told that there have been no deletions from this index so far. What can
you say about the last entry whose insertion into the index caused a split?

4. Show the index after inserting an entry with hash value 68.

5. Show the original index after inserting entries with hash values 17 and 69.

6. Show the original index after deleting the entry with hash value 21. (Assume that the
full deletion algorithm is used.)

7. Show the original index after deleting the entry with hash value 10. Is a merge triggered
by this deletion? If not, explain why. (Assume that the full deletion algorithm is used.)
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Exercise 11.2 Consider the Linear Hashing index shown in Figure 11.15. Assume that we
split whenever an overflow page is created. Answer the following questions about this index:

1. What can you say about the last entry that was inserted into the index?

2. What can you say about the last entry that was inserted into the index if you know that
there have been no deletions from this index so far?

3. Suppose you know that there have been no deletions from this index so far. What can
you say about the last entry whose insertion into the index caused a split?

4. Show the index after inserting an entry with hash value 4.
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5. Show the original index after inserting an entry with hash value 15.

6. Show the original index after deleting the entries with hash values 36 and 44. (Assume
that the full deletion algorithm is used.)

7. Find a list of entries whose insertion into the original index would lead to a bucket with
two overflow pages. Use as few entries as possible to accomplish this. What is the
maximum number of entries that can be inserted into this bucket before a split occurs
that reduces the length of this overflow chain?

Exercise 11.3 Answer the following questions about Extendible Hashing:

1. Explain why local depth and global depth are needed.

2. After an insertion that causes the directory size to double, how many buckets have
exactly one directory entry pointing to them? If an entry is then deleted from one of
these buckets, what happens to the directory size? Explain your answers briefly.

3. Does Extendible Hashing guarantee at most one disk access to retrieve a record with a
given key value?

4. If the hash function distributes data entries over the space of bucket numbers in a very
skewed (non-uniform) way, what can you say about the size of the directory? What can
you say about the space utilization in data pages (i.e., non-directory pages)?

5. Does doubling the directory require us to examine all buckets with local depth equal to
global depth?

6. Why is handling duplicate key values in Extendible Hashing harder than in ISAM?

Exercise 11.4 Answer the following questions about Linear Hashing:

1. How does Linear Hashing provide an average-case search cost of only slightly more than
one disk I/O, given that overflow buckets are part of its data structure?

2. Does Linear Hashing guarantee at most one disk access to retrieve a record with a given
key value?

3. If a Linear Hashing index using Alternative (1) for data entries contains N records, with
P records per page and an average storage utilization of 80 percent, what is the worst-
case cost for an equality search? Under what conditions would this cost be the actual
search cost?

4. If the hash function distributes data entries over the space of bucket numbers in a very
skewed (non-uniform) way, what can you say about the space utilization in data pages?

Exercise 11.5 Give an example of when you would use each element (A or B) for each of
the following ‘A versus B’ pairs:

1. A hashed index using Alternative (1) versus heap file organization.

2. Extendible Hashing versus Linear Hashing.

3. Static Hashing versus Linear Hashing.

4. Static Hashing versus ISAM.

5. Linear Hashing versus B+ trees.

Exercise 11.6 Give examples of the following:

1. A Linear Hashing index and an Extendible Hashing index with the same data entries,
such that the Linear Hashing index has more pages.
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2. A Linear Hashing index and an Extendible Hashing index with the same data entries,
such that the Extendible Hashing index has more pages.

Exercise 11.7 Consider a relation R(a, b, c, d) containing 1 million records, where each page
of the relation holds 10 records. R is organized as a heap file with unclustered indexes, and
the records in R are randomly ordered. Assume that attribute a is a candidate key for R, with
values lying in the range 0 to 999,999. For each of the following queries, name the approach
that would most likely require the fewest I/Os for processing the query. The approaches to
consider follow:

Scanning through the whole heap file for R.

Using a B+ tree index on attribute R.a.

Using a hash index on attribute R.a.

The queries are:

1. Find all R tuples.

2. Find all R tuples such that a < 50.

3. Find all R tuples such that a = 50.

4. Find all R tuples such that a > 50 and a < 100.

Exercise 11.8 How would your answers to Exercise 11.7 change if a is not a candidate key
for R? How would they change if we assume that records in R are sorted on a?

Exercise 11.9 Consider the snapshot of the Linear Hashing index shown in Figure 11.16.
Assume that a bucket split occurs whenever an overflow page is created.

1. What is the maximum number of data entries that can be inserted (given the best possible
distribution of keys) before you have to split a bucket? Explain very briefly.

2. Show the file after inserting a single record whose insertion causes a bucket split.
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3. (a) What is the minimum number of record insertions that will cause a split of all four
buckets? Explain very briefly.

(b) What is the value of Next after making these insertions?

(c) What can you say about the number of pages in the fourth bucket shown after this
series of record insertions?

Exercise 11.10 Consider the data entries in the Linear Hashing index for Exercise 11.9.

1. Show an Extendible Hashing index with the same data entries.

2. Answer the questions in Exercise 11.9 with respect to this index.

Exercise 11.11 In answering the following questions, assume that the full deletion algorithm
is used. Assume that merging is done when a bucket becomes empty.

1. Give an example of Extendible Hashing where deleting an entry reduces global depth.

2. Give an example of Linear Hashing in which deleting an entry decrements Next but leaves
Level unchanged. Show the file before and after the deletion.

3. Give an example of Linear Hashing in which deleting an entry decrements Level. Show
the file before and after the deletion.

4. Give an example of Extendible Hashing and a list of entries e1, e2, e3 such that inserting
the entries in order leads to three splits and deleting them in the reverse order yields the
original index. If such an example does not exist, explain.

5. Give an example of a Linear Hashing index and a list of entries e1, e2, e3 such that
inserting the entries in order leads to three splits and deleting them in the reverse order
yields the original index. If such an example does not exist, explain.

PROJECT-BASED EXERCISES

Exercise 11.12 (Note to instructors: Additional details must be provided if this question is

assigned. See Appendix 30.) Implement Linear Hashing or Extendible Hashing in Minibase.

BIBLIOGRAPHIC NOTES

Hashing is discussed in detail in [442]. Extendible Hashing is proposed in [256]. Litwin
proposed Linear Hashing in [483]. A generalization of Linear Hashing for distributed envi-
ronments is described in [487]. There has been extensive research into hash-based indexing
techniques. Larson describes two variations of Linear Hashing in [469] and [470]. Ramakr-
ishna presents an analysis of hashing techniques in [607]. Hash functions that do not produce
bucket overflows are studied in [608]. Order-preserving hashing techniques are discussed in
[484] and [308]. Partitioned-hashing, in which each field is hashed to obtain some bits of
the bucket address, extends hashing for the case of queries in which equality conditions are
specified only for some of the key fields. This approach was proposed by Rivest [628] and is
discussed in [747]; a further development is described in [616].
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OVERVIEW OF QUERY

EVALUATION

☛ What descriptive information does a DBMS store in its catalog?

☛ What alternatives are considered for retrieving rows from a table?

☛ Why does a DBMS implement several algorithms for each algebra
operation? What factors affect the relative performance of different
algorithms?

☛ What are query evaluation plans and how are they represented?

☛ Why is it important to find a good evaluation plan for a query? How
is this done in a relational DBMS?

➽ Key concepts: catalog, system statistics; fundamental techniques,
indexing, iteration, and partitioning; access paths, matching indexes
and selection conditions; selection operator, indexes versus scans, im-
pact of clustering; projection operator, duplicate elimination; join op-
erator, index nested-loops join, sort-merge join; query evaluation plan;
materialization vs. pipelinining; iterator interface; query optimiza-
tion, algebra equivalences, plan enumeration; cost estimation

This very remarkable man, commends a most practical plan:
You can do what you want, if you don’t think you can’t,
So don’t think you can’t if you can.

—Charles Inge

In this chapter, we present an overview of how queries are evaluated in a rela-
tional DBMS. We begin with a discussion of how a DBMS describes the data

393
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that it manages, including tables and indexes, in Section 12.1. This descriptive
data, or metadata, stored in special tables called the system catalogs, is
used to find the best way to evaluate a query.

SQL queries are translated into an extended form of relational algebra, and
query evaluation plans are represented as trees of relational operators, along
with labels that identify the algorithm to use at each node. Thus, relational op-
erators serve as building blocks for evaluating queries, and the implementation
of these operators is carefully optimized for good performance. We introduce
operator evaluation in Section 12.2 and describe evaluation algorithms for var-
ious operators in Section 12.3.

In general, queries are composed of several operators, and the algorithms for
individual operators can be combined in many ways to evaluate a query. The
process of finding a good evaluation plan is called query optimization. We intro-
duce query optimization in Section 12.4. The basic task in query optimization,
which is to consider several alternative evaluation plans for a query, is moti-
vated through examples in Section 12.5. In Section 12.6, we describe the space
of plans considered by a typical relational optimizer.

The ideas are presented in sufficient detail to allow readers to understand
how current database systems evaluate typical queries. This chapter provides
the necessary background in query evaluation for the discussion of physical
database design and tuning in Chapter 20. Relational operator implementa-
tion and query optimization are discussed further in Chapters 13, 14, and 15;
this in-depth coverage describes how current systems are implemented.

We consider a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Reserves(sid: integer, bid: integer, day: dates, rname: string)

We assume that each tuple of Reserves is 40 bytes long, that a page can hold
100 Reserves tuples, and that we have 1000 pages of such tuples. Similarly,
we assume that each tuple of Sailors is 50 bytes long, that a page can hold 80
Sailors tuples, and that we have 500 pages of such tuples.

12.1 THE SYSTEM CATALOG

We can store a table using one of several alternative file structures, and we can
create one or more indexes—each stored as a file—on every table. Conversely,
in a relational DBMS, every file contains either the tuples in a table or the
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entries in an index. The collection of files corresponding to users’ tables and
indexes represents the data in the database.

A relational DBMS maintains information about every table and index that it
contains. The descriptive information is itself stored in a collection of special
tables called the catalog tables. An example of a catalog table is shown
in Figure 12.1. The catalog tables are also called the data dictionary, the
system catalog, or simply the catalog.

12.1.1 Information in the Catalog

Let us consider what is stored in the system catalog. At a minimum, we have
system-wide information, such as the size of the buffer pool and the page size,
and the following information about individual tables, indexes, and views:

For each table:

– Its table name, the file name (or some identifier), and the file structure
(e.g., heap file) of the file in which it is stored.

– The attribute name and type of each of its attributes.

– The index name of each index on the table.

– The integrity constraints (e.g., primary key and foreign key constraints)
on the table.

For each index:

– The index name and the structure (e.g., B+ tree) of the index.

– The search key attributes.

For each view:

– Its view name and definition.

In addition, statistics about tables and indexes are stored in the system catalogs
and updated periodically (not every time the underlying tables are modified).
The following information is commonly stored:

Cardinality: The number of tuples NTuples(R) for each table R.

Size: The number of pages NPages(R) for each table R.

Index Cardinality: The number of distinct key values NKeys(I) for each
index I.

Index Size: The number of pages INPages(I) for each index I. (For a B+
tree index I, we take INPages to be the number of leaf pages.)
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Index Height: The number of nonleaf levels IHeight(I) for each tree index
I.

Index Range: The minimum present key value ILow(I) and the maximum
present key value IHigh(I) for each index I.

We assume that the database architecture presented in Chapter 1 is used.
Further, we assume that each file of records is implemented as a separate file of
pages. Other file organizations are possible, of course. For example, a page file
can contain pages that store records from more than one record file. If such a
file organization is used, additional statistics must be maintained, such as the
fraction of pages in a file that contain records from a given collection of records.

The catalogs also contain information about users, such as accounting infor-
mation and authorization information (e.g., Joe User can modify the Reserves
table but only read the Sailors table).

How Catalogs are Stored

An elegant aspect of a relational DBMS is that the system catalog is itself
a collection of tables. For example, we might store information about the
attributes of tables in a catalog table called Attribute Cat:

Attribute Cat(attr name: string, rel name: string,
type: string, position: integer)

Suppose that the database contains the two tables that we introduced at the
begining of this chapter:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Reserves(sid: integer, bid: integer, day: dates, rname: string)

Figure 12.1 shows the tuples in the Attribute Cat table that describe the at-
tributes of these two tables. Note that in addition to the tuples describing
Sailors and Reserves, other tuples (the first four listed) describe the four at-
tributes of the Attribute Cat table itself! These other tuples illustrate an im-
portant Point: the catalog tables describe all the tables in the database, includ-
ing the catalog tables themselves. When information about a table is needed,
it is obtained from the system catalog. Of course, at the implementation level,
whenever the DBMS needs to find the schema of a catalog table, the code
that retrieves this information must be handled specially. (Otherwise, the code
has to retrieve this information from the catalog tables without, presumably,
knowing the schema of the catalog tables.)
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attr name rel name type position

attr name Attribute Cat string 1
rel name Attribute Cat string 2
type Attribute Cat string 3
position Attribute Cat integer 4
sid Sailors integer 1
sname Sailors string 2
rating Sailors integer 3
age Sailors real 4
sid Reserves integer 1
bid Reserves integer 2
day Reserves dates 3
rname Reserves string 4

Figure 12.1 An Instance of the Attribute Cat Relation

The fact that the system catalog is also a collection of tables is very useful. For
example, catalog tables can be queried just like any other table, using the query
language of the DBMS! Further, all the techniques available for implementing
and managing tables apply directly to catalog tables. The choice of catalog
tables and their schemas is not unique and is made by the implementor of the
DBMS. Real systems vary in their catalog schema design, but the catalog is
always implemented as a collection of tables, and it essentially describes all the
data stored in the database.1

12.2 INTRODUCTION TO OPERATOR EVALUATION

Several alternative algorithms are available for implementing each relational
operator, and for most operators no algorithm is universally superior. Several
factors influence which algorithm performs best, including the sizes of the tables
involved, existing indexes and sort orders, the size of the available buffer pool,
and the buffer replacement policy.

In this section, we describe some common techniques used in developing eval-
uation algorithms for relational operators, and introduce the concept of access
paths, which are the different ways in which rows of a table can be retrieved.

1Some systems may store additional information in a non-relational form. For example, a system
with a sophisticated query optimizer may maintain histograms or other statistical information about
the distribution of values in certain attributes of a table. We can think of such information, when it
is maintained, as a supplement to the catalog tables.
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12.2.1 Three Common Techniques

The algorithms for various relational operators actually have a lot in common.
A few simple techniques are used to develop algorithms for each operator:

Indexing: If a selection or join condition is specified, use an index to
examine just the tuples that satisfy the condition.

Iteration: Examine all tuples in an input table, one after the other. If
we need only a few fields from each tuple and there is an index whose key
contains all these fields, instead of examining data tuples, we can scan all
index data entries. (Scanning all data entries sequentially makes no use
of the index’s hash- or tree-based search structure; in a tree index, for
example, we would simply examine all leaf pages in sequence.)

Partitioning: By partitioning tuples on a sort key, we can often decom-
pose an operation into a less expensive collection of operations on parti-
tions. Sorting and hashing are two commonly used partitioning techniques.

We discuss the role of indexing in Section 12.2.2. The iteration and partitioning
techniques are seen in Section 12.3.

12.2.2 Access Paths

An access path is a way of retrieving tuples from a table and consists of
either (1) a file scan or (2) an index plus a matching selection condition. Every
relational operator accepts one or more tables as input, and the access methods
used to retrieve tuples contribute significantly to the cost of the operator.

Consider a simple selection that is a conjunction of conditions of the form
attr op value, where op is one of the comparison operators <, ≤, =,  =, ≥,
or >. Such selections are said to be in conjunctive normal form (CNF),
and each condition is called a conjunct.2 Intuitively, an index matches a
selection condition if the index can be used to retrieve just the tuples that
satisfy the condition.

A hash index matches a CNF selection if there is a term of the form
attribute=value in the selection for each attribute in the index’s search key.

A tree index matches a CNF selection if there is a term of the form
attribute op value for each attribute in a prefix of the index’s search key.
( a and  a, b are prefixes of key  a, b, c , but  a, c and  b, c are not.)

2We consider more complex selection conditions in Section 14.2.
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Note that op can be any comparison; it is not restricted to be equality as
it is for matching selections on a hash index.

An index can match some subset of the conjuncts in a selection condition (in
CNF), even though it does not match the entire condition. We refer to the
conjuncts that the index matches as the primary conjuncts in the selection.

The following examples illustrate access paths.

If we have a hash index H on the search key  rname,bid,sid , we can
use the index to retrieve just the Sailors tuples that satisfy the condition
rname=‘Joe’ ∧ bid=5 ∧ sid=3. The index matches the entire condition
rname=‘Joe’ ∧ bid=5 ∧ sid= 3. On the other hand, if the selection con-
dition is rname=‘Joe’ ∧ bid=5, or some condition on date, this index does
not match. That is, it cannot be used to retrieve just the tuples that satisfy
these conditions.

In contrast, if the index were a B+ tree, it would match both rname=‘Joe’
∧ bid=5 ∧ sid=3 and rname=‘Joe’ ∧ bid=5. However, it would not match
bid=5 ∧ sid=3 (since tuples are sorted primarily by rname).

If we have an index (hash or tree) on the search key  bid,sid and the se-
lection condition rname=‘Joe’ ∧ bid=5 ∧ sid=3, we can use the index to
retrieve tuples that satisfy bid=5 ∧ sid=3; these are the primary conjuncts.
The fraction of tuples that satisfy these conjuncts (and whether the index
is clustered) determines the number of pages that are retrieved. The ad-
ditional condition on rname must then be applied to each retrieved tuple
and will eliminate some of the retrieved tuples from the result.

If we have an index on the search key  bid, sid and we also have a B+ tree
index on day, the selection condition day < 8/9/2002 ∧ bid=5 ∧ sid=3
offers us a choice. Both indexes match (part of) the selection condition,
and we can use either to retrieve Reserves tuples. Whichever index we use,
the conjuncts in the selection condition that are not matched by the index
(e.g., bid=5 ∧ sid=3 if we use the B+ tree index on day) must be checked
for each retrieved tuple.

Selectivity of Access Paths

The selectivity of an access path is the number of pages retrieved (index pages
plus data pages) if we use this access path to retrieve all desired tuples. If a
table contains an index that matches a given selection, there are at least two
access paths: the index and a scan of the data file. Sometimes, of course, we
can scan the index itself (rather than scanning the data file or using the index
to probe the file), giving us a third access path.
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The most selective access path is the one that retrieves the fewest pages;
using the most selective access path minimizes the cost of data retrieval. The
selectivity of an access path depends on the primary conjuncts in the selection
condition (with respect to the index involved). Each conjunct acts as a filter
on the table. The fraction of tuples in the table that satisfy a given conjunct is
called the reduction factor. When there are several primary conjuncts, the
fraction of tuples that satisfy all of them can be approximated by the product
of their reduction factors; this effectively treats them as independent filters,
and while they may not actually be independent, the approximation is widely
used in practice.

Supose we have a hash index H on Sailors with search key  rname,bid,sid , and
we are given the selection condition rname=‘Joe’ ∧ bid=5 ∧ sid=3. We can
use the index to retrieve tuples that satisfy all three conjuncts. The catalog
contains the number of distinct key values, NKeys(H), in the hash index, as
well as the number of pages, NPages, in the Sailors table. The fraction of
pages satisfying the primary conjuncts is Npages(Sailors) · 1

NKeys(H) .

If the index has search key  bid,sid , the primary conjuncts are bid=5 ∧ sid=3.
If we know the number of distinct values in the bid column, we can estimate
the reduction factor for the first conjunct. This information is available in
the catalog if there is an index with bid as the search key; if not, optimizers
typically use a default value such as 1/10. Multiplying the reduction factors
for bid=5 and sid=3 gives us (under the simplifying independence assumption)
the fraction of tuples retrieved; if the index is clustered, this is also the fraction
of pages retrieved. If the index is not clustered, each retrieved tuple could be
on a different page. (Review Section 8.4 at this time.)

We estimate the reduction factor for a range condition such as day > 8/9/2002
by assuming that values in the column are uniformly distributed. If there is a

B+ tree T with key day, the reduction factor is High(T ) − value

High(T ) − Low(T ) .

12.3 ALGORITHMS FOR RELATIONAL OPERATIONS

We now briefly discuss evaluation algorithms for the main relational operators.
While the important ideas are introduced here, a more in-depth treatment is
deferred to Chapter 14. As in Chapter 8, we consider only I/O costs and
measure I/O costs in terms of the number of page I/Os. In this chapter, we
use detailed examples to illustrate how to compute the cost of an algorithm.
Although we do not present rigorous cost formulas in this chapter, the reader
should be able to apply the underlying ideas to do cost calculations on other
similar examples.
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12.3.1 Selection

The selection operation is a simple retrieval of tuples from a table, and its
implementation is essentially covered in our discussion of access paths. To
summarize, given a selection of the form σR.attr op value(R), if there is no index
on R.attr, we have to scan R.

If one or more indexes on R match the selection, we can use the index to re-
trieve matching tuples, and apply any remaining selection conditions to further
restrict the result set. As an example, consider a selection of the form rname
< ‘C%’ on the Reserves table. Assuming that names are uniformly distributed
with respect to the initial letter, for simplicity, we estimate that roughly 10%
of Reserves tuples are in the result. This is a total of 10,000 tuples, or 100
pages. If we have a clustered B+ tree index on the rname field of Reserves, we
can retrieve the qualifying tuples with 100 I/Os (plus a few I/Os to traverse
from the root to the appropriate leaf page to start the scan). However, if the
index is unclustered, we could have up to 10,000 I/Os in the worst case, since
each tuple could cause us to read a page.

As a rule of thumb, it is probably cheaper to simply scan the entire table
(instead of using an unclustered index) if over 5% of the tuples are to be
retrieved.

See Section 14.1 for more details on implementation of selections.

12.3.2 Projection

The projection operation requires us to drop certain fields of the input, which
is easy to do. The expensive aspect of the operation is to ensure that no
duplicates appear in the result. For example, if we only want the sid and bid
fields from Reserves, we could have duplicates if a sailor has reserved a given
boat on several days.

If duplicates need not be eliminated (e.g., the DISTINCT keyword is not in-
cluded in the SELECT clause), projection consists of simply retrieving a subset
of fields from each tuple of the input table. This can be accomplished by simple
iteration on either the table or an index whose key contains all necessary fields.
(Note that we do not care whether the index is clustered, since the values we
want are in the data entries of the index itself!)

If we have to eliminate duplicates, we typically have to use partitioning. Sup-
pose we want to obtain  sid, bid by projecting from Reserves. We can partition
by (1) scanning Reserves to obtain  sid, bid pairs and (2) sorting these pairs
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using  sid, bid as the sort key. We can then scan the sorted pairs and easily
discard duplicates, which are now adjacent.

Sorting large disk-resident datasets is a very important operation in database
systems, and is discussed in Chapter 13. Sorting a table typically requires two
or three passes, each of which reads and writes the entire table.

The projection operation can be optimized by combining the initial scan of
Reserves with the scan in the first pass of sorting. Similarly, the scanning
of sorted pairs can be combined with the last pass of sorting. With such an
optimized implemention, projection with duplicate elimination requires (1) a
first pass in which the entire table is scanned, and only pairs  sid, bid are
written out, and (2) a final pass in which all pairs are scanned, but only one
copy of each pair is written out. In addition, there might be an intermediate
pass in which all pairs are read from and written to disk.

The availability of appropriate indexes can lead to less expensive plans than
sorting for duplicate elimination. If we have an index whose search key contains
all the fields retained by the projection, we can sort the data entries in the
index, rather than the data records themselves. If all the retained attributes
appear in a prefix of the search key for a clustered index, we can do even
better; we can simply retrieve data entries using the index, and duplicates are
easily detected since they are adjacent. These plans are further examples of
index-only evaluation strategies, which we discussed in Section 8.5.2.

See Section 14.3 for more details on implementation of projections.

12.3.3 Join

Joins are expensive operations and very common. Therefore, they have been
widely studied, and systems typically support several algorithms to carry out
joins.

Consider the join of Reserves and Sailors, with the join condition Reserves.sid =
Sailors.sid. Suppose that one of the tables, say Sailors, has an index on the
sid column. We can scan Reserves and, for each tuple, use the index to probe
Sailors for matching tuples. This approach is called index nested loops join.

Suppose that we have a hash-based index using Alternative (2) on the sid
attribute of Sailors and that it takes about 1.2 I/Os on average3 to retrieve
the appropriate page of the index. Since sid is a key for Sailors, we have at

3This is a typical cost for hash-based indexes.



Overview of Query Evaluation 403

most one matching tuple. Indeed, sid in Reserves is a foreign key referring
to Sailors, and therefore we have exactly one matching Sailors tuple for each
Reserves tuple. Let us consider the cost of scanning Reserves and using the
index to retrieve the matching Sailors tuple for each Reserves tuple. The cost of
scanning Reserves is 1000. There are 100 ∗1000 tuples in Reserves. For each of
these tuples, retrieving the index page containing the rid of the matching Sailors
tuple costs 1.2 I/Os (on average); in addition, we have to retrieve the Sailors
page containing the qualifying tuple. Therefore, we have 100, 000 ∗ (1 + 1.2)
I/Os to retrieve matching Sailors tuples. The total cost is 221,000 I/Os.4

If we do not have an index that matches the join condition on either table, we
cannot use index nested loops. In this case, we can sort both tables on the join
column, and then scan them to find matches. This is called sort-merge join..
Assuming that we can sort Reserves in two passes, and Sailors in two passes
as well, let us consider the cost of sort-merge join. Consider the join of the
tables Reserves and Sailors. Because we read and write Reserves in each pass,
the sorting cost is 2 ∗ 2 ∗ 1000 = 4000 I/Os. Similarly, we can sort Sailors at a
cost of 2 ∗ 2 ∗ 500 = 2000 I/Os. In addition, the second phase of the sort-merge
join algorithm requires an additional scan of both tables. Thus the total cost
is 4000 + 2000 + 1000 + 500 = 7500 I/Os.

Observe that the cost of sort-merge join, which does not require a pre-existing
index, is lower than the cost of index nested loops join. In addition, the result
of the sort-merge join is sorted on the join column(s). Other join algorithms
that do not rely on an existing index and are often cheaper than index nested
loops join are also known (block nested loops and hash joins; see Chapter 14).
Given this, why consider index nested loops at all?

Index nested loops has the nice property that it is incremental. The cost of our
example join is incremental in the number of Reserves tuples that we process.
Therefore, if some additional selection in the query allows us to consider only
a small subset of Reserves tuples, we can avoid computing the join of Reserves
and Sailors in its entirety. For instance, suppose that we only want the result
of the join for boat 101, and there are very few such reservations. For each
such Reserves tuple, we probe Sailors, and we are done. If we use sort-merge
join, on the other hand, we have to scan the entire Sailors table at least once,
and the cost of this step alone is likely to be much higher than the entire cost
of index nested loops join.

Observe that the choice of index nested loops join is based on considering the
query as a whole, including the extra selection on Reserves, rather than just

4As an exercise, the reader should write formulas for the cost estimates in this example in terms
of the properties—e.g., NPages—of the tables and indexes involved.
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the join operation by itself. This leads us to our next topic, query optimization,
which is the process of finding a good plan for an entire query.

See Section 14.4 for more details.

12.3.4 Other Operations

A SQL query contains group-by and aggregation in addition to the basic re-
lational operations. Different query blocks can be combined with union, set-
difference, and set-intersection.

The expensive aspect of set operations such as union and intersection is du-
plicate elimination, just like for projection. The approach used to implement
projection is easily adapted for these operations as well. See Section 14.5 for
more details.

Group-by is typically implemented through sorting. Sometimes, the input table
has a tree index with a search key that matches the grouping attributes. In this
case, we can retrieve tuples using the index in the appropriate order without
an explicit sorting step. Aggregate operations are carried out using temporary
counters in main memory as tuples are retrieved. See Section 14.6 for more
details.

12.4 INTRODUCTION TO QUERY OPTIMIZATION

Query optimization is one of the most important tasks of a relational DBMS.
One of the strengths of relational query languages is the wide variety of ways in
which a user can express and thus the system can evaluate a query. Although
this flexibility makes it easy to write queries, good performance relies greatly
on the quality of the query optimizer—a given query can be evaluated in many
ways, and the difference in cost between the best and worst plans may be
several orders of magnitude. Realistically, we cannot expect to always find the
best plan, but we expect to consistently find a plan that is quite good.

A more detailed view of the query optimization and execution layer in the
DBMS architecture from Section 1.8 is shown in Figure 12.2. Queries are
parsed and then presented to a query optimizer, which is responsible for
identifying an efficient execution plan. The optimizer generates alternative
plans and chooses the plan with the least estimated cost.

The space of plans considered by a typical relational query optimizer can be
understood by recognizing that a query is essentially treated as a σ − π−   
algebra expression, with the remaining operations (if any, in a given query)
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Figure 12.2 Query Parsing, Optimization, and Execution

Commercial Optimizers: Current relational DBMS optimizers are very
complex pieces of software with many closely guarded details, and they
typically represent 40 to 50 man-years of development effort!

carried out on the result of the σ − π−   expression. Optimizing such a
relational algebra expression involves two basic steps:

Enumerating alternative plans for evaluating the expression. Typically, an
optimizer considers a subset of all possible plans because the number of
possible plans is very large.

Estimating the cost of each enumerated plan and choosing the plan with
the lowest estimated cost.

In this section we lay the foundation for our discussion of query optimization
by introducing evaluation plans.

12.4.1 Query Evaluation Plans

A query evaluation plan (or simply plan) consists of an extended relational
algebra tree, with additional annotations at each node indicating the access
methods to use for each table and the implementation method to use for each
relational operator.

Consider the following SQL query:



406 Chapter 12

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

AND R.bid = 100 AND S.rating > 5

This query can be expressed in relational algebra as follows:

πsname(σbid=100∧rating>5(Reserves  sid=sidSailors))

This expression is shown in the form of a tree in Figure 12.3. The algebra
expression partially specifies how to evaluate the query—we first compute the
natural join of Reserves and Sailors, then perform the selections, and finally
project the sname field.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Figure 12.3 Query Expressed as a Relational Algebra Tree

To obtain a fully specified evaluation plan, we must decide on an implemen-
tation for each of the algebra operations involved. For example, we can use
a page-oriented simple nested loops join with Reserves as the outer table and
apply selections and projections to each tuple in the result of the join as it is
produced; the result of the join before the selections and projections is never
stored in its entirety. This query evaluation plan is shown in Figure 12.4.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(On-the-fly)

(On-the-fly)

(Simple nested loops)

(File scan)(File scan)

Figure 12.4 Query Evaluation Plan for Sample Query
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In drawing the query evaluation plan, we have used the convention that the
outer table is the left child of the join operator. We adopt this convention
henceforth.

12.4.2 Multi-operator Queries: Pipelined Evaluation

When a query is composed of several operators, the result of one operator is
sometimes pipelined to another operator without creating a temporary table
to hold the intermediate result. The plan in Figure 12.4 pipelines the output of
the join of Sailors and Reserves into the selections and projections that follow.
Pipelining the output of an operator into the next operator saves the cost of
writing out the intermediate result and reading it back in, and the cost sav-
ings can be significant. If the output of an operator is saved in a temporary
table for processing by the next operator, we say that the tuples arematerial-
ized. Pipelined evaluation has lower overhead costs than materialization and
is chosen whenever the algorithm for the operator evaluation permits it.

There are many opportunities for pipelining in typical query plans, even simple
plans that involve only selections. Consider a selection query in which only
part of the selection condition matches an index. We can think of such a query
as containing two instances of the selection operator: The first contains the
primary, or matching, part of the original selection condition, and the second
contains the rest of the selection condition. We can evaluate such a query
by applying the primary selection and writing the result to a temporary table
and then applying the second selection to the temporary table. In contrast,
a pipelined evaluation consists of applying the second selection to each tuple
in the result of the primary selection as it is produced and adding tuples that
qualify to the final result. When the input table to a unary operator (e.g.,
selection or projection) is pipelined into it, we sometimes say that the operator
is applied on-the-fly.

As a second and more general example, consider a join of the form (A   B)   
C, shown in Figure 12.5 as a tree of join operations.

Result tuples

of first join

pipelined into

join with C

A B

C

Figure 12.5 A Query Tree Illustrating Pipelining
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Both joins can be evaluated in pipelined fashion using some version of a nested
loops join. Conceptually, the evaluation is initiated from the root, and the node
joining A and B produces tuples as and when they are requested by its parent
node. When the root node gets a page of tuples from its left child (the outer
table), all the matching inner tuples are retrieved (using either an index or a
scan) and joined with matching outer tuples; the current page of outer tuples
is then discarded. A request is then made to the left child for the next page
of tuples, and the process is repeated. Pipelined evaluation is thus a control
strategy governing the rate at which different joins in the plan proceed. It has
the great virtue of not writing the result of intermediate joins to a temporary
file because the results are produced, consumed, and discarded one page at a
time.

12.4.3 The Iterator Interface

A query evaluation plan is a tree of relational operators and is executed by
calling the operators in some (possibly interleaved) order. Each operator has
one or more inputs and an output, which are also nodes in the plan, and tuples
must be passed between operators according to the plan’s tree structure.

To simplify the code responsible for coordinating the execution of a plan, the
relational operators that form the nodes of a plan tree (which is to be evaluated
using pipelining) typically support a uniform iterator interface, hiding the
internal implementation details of each operator. The iterator interface for
an operator includes the functions open, get next, and close. The open
function initializes the state of the iterator by allocating buffers for its inputs
and output, and is also used to pass in arguments such as selection conditions
that modify the behavior of the operator. The code for the get next function
calls the get next function on each input node and calls operator-specific code
to process the input tuples. The output tuples generated by the processing
are placed in the output buffer of the operator, and the state of the iterator is
updated to keep track of how much input has been consumed. When all output
tuples have been produced through repeated calls to get next, the close function
is called (by the code that initiated execution of this operator) to deallocate
state information.

The iterator interface supports pipelining of results naturally; the decision to
pipeline or materialize input tuples is encapsulated in the operator-specific code
that processes input tuples. If the algorithm implemented for the operator
allows input tuples to be processed completely when they are received, input
tuples are not materialized and the evaluation is pipelined. If the algorithm
examines the same input tuples several times, they are materialized. This
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decision, like other details of the operator’s implementation, is hidden by the
iterator interface for the operator.

The iterator interface is also used to encapsulate access methods such as B+
trees and hash-based indexes. Externally, access methods can be viewed simply
as operators that produce a stream of output tuples. In this case, the open
function can be used to pass the selection conditions that match the access
path.

12.5 ALTERNATIVE PLANS: A MOTIVATING EXAMPLE

Consider the example query from Section 12.4. Let us consider the cost of
evaluating the plan shown in Figure 12.4. We ignore the cost of writing out
the final result since this is common to all algorithms, and does not affect
their relative costs. The cost of the join is 1000 + 1000 ∗ 500 = 501, 000 page
I/Os. The selections and the projection are done on-the-fly and do not incur
additional I/Os. The total cost of this plan is therefore 501,000 page I/Os.
This plan is admittedly naive; however, it is possible to be even more naive by
treating the join as a cross-product followed by a selection.

We now consider several alternative plans for evaluating this query. Each al-
ternative improves on the original plan in a different way and introduces some
optimization ideas that are examined in more detail in the rest of this chapter.

12.5.1 Pushing Selections

A join is a relatively expensive operation, and a good heuristic is to reduce
the sizes of the tables to be joined as much as possible. One approach is to
apply selections early; if a selection operator appears after a join operator, it is
worth examining whether the selection can be ‘pushed’ ahead of the join. As
an example, the selection bid=100 involves only the attributes of Reserves and
can be applied to Reserves before the join. Similarly, the selection rating> 5
involves only attributes of Sailors and can be applied to Sailors before the join.
Let us suppose that the selections are performed using a simple file scan, that
the result of each selection is written to a temporary table on disk, and that
the temporary tables are then joined using a sort-merge join. The resulting
query evaluation plan is shown in Figure 12.6.

Let us assume that five buffer pages are available and estimate the cost of
this query evaluation plan. (It is likely that more buffer pages are available
in practice. We chose a small number simply for illustration in this example.)
The cost of applying bid=100 to Reserves is the cost of scanning Reserves
(1000 pages) plus the cost of writing the result to a temporary table, say T1.
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Reserves Sailors

sid=sid

bid=100 

sname

rating > 5
(Scan;
write to 
temp T1)

(Sort-merge join)

(On-the-fly)

(Scan;
write to
temp T2)

File scanFile scan

Figure 12.6 A Second Query Evaluation Plan

(Note that the cost of writing the temporary table cannot be ignored—we can
ignore only the cost of writing out the final result of the query, which is the
only component of the cost that is the same for all plans.) To estimate the
size of T1, we require additional information. For example, if we assume that
the maximum number of reservations of a given boat is one, just one tuple
appears in the result. Alternatively, if we know that there are 100 boats, we
can assume that reservations are spread out uniformly across all boats and
estimate the number of pages in T1 to be 10. For concreteness, assume that
the number of pages in T1 is indeed 10.

The cost of applying rating > 5 to Sailors is the cost of scanning Sailors (500
pages) plus the cost of writing out the result to a temporary table, say, T2. If
we assume that ratings are uniformly distributed over the range 1 to 10, we
can approximately estimate the size of T2 as 250 pages.

To do a sort-merge join of T1 and T2, let us assume that a straightforward
implementation is used in which the two tables are first completely sorted and
then merged. Since five buffer pages are available, we can sort T1 (which has
10 pages) in two passes. Two runs of five pages each are produced in the first
pass and these are merged in the second pass. In each pass, we read and write
10 pages; thus, the cost of sorting T1 is 2 ∗ 2 ∗ 10 = 40 page I/Os. We need
four passes to sort T2, which has 250 pages. The cost is 2 ∗ 4 ∗ 250 = 2000
page I/Os. To merge the sorted versions of T1 and T2, we need to scan these
tables, and the cost of this step is 10 + 250 = 260. The final projection is done
on-the-fly, and by convention we ignore the cost of writing the final result.

The total cost of the plan shown in Figure 12.6 is the sum of the cost of the
selection (1000+10+500+250 = 1760) and the cost of the join (40+2000+260 =
2300), that is, 4060 page I/Os.
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Sort-merge join is one of several join methods. We may be able to reduce the
cost of this plan by choosing a different join method. As an alternative, suppose
that we used block nested loops join instead of sort-merge join. Using T1 as
the outer table, for every three-page block of T1, we scan all of T2; thus, we
scan T2 four times. The cost of the join is therefore the cost of scanning T1
(10) plus the cost of scanning T2 (4 ∗ 250 = 1000). The cost of the plan is now
1760 + 1010 = 2770 page I/Os.

A further refinement is to push the projection, just like we pushed the selec-
tions past the join. Observe that only the sid attribute of T1 and the sid and
sname attributes of T2 are really required. As we scan Reserves and Sailors to
do the selections, we could also eliminate unwanted columns. This on-the-fly
projection reduces the sizes of the temporary tables T1 and T2. The reduction
in the size of T1 is substantial because only an integer field is retained. In fact,
T1 now fits within three buffer pages, and we can perform a block nested loops
join with a single scan of T2. The cost of the join step drops to under 250 page
I/Os, and the total cost of the plan drops to about 2000 I/Os.

12.5.2 Using Indexes

If indexes are available on the Reserves and Sailors tables, even better query
evaluation plans may be available. For example, suppose that we have a clus-
tered static hash index on the bid field of Reserves and another hash index on
the sid field of Sailors. We can then use the query evaluation plan shown in
Figure 12.7.

Reserves

Sailors

sid=sid

bid=100 

sname

rating > 5

(On-the-fly)

(On-the-fly)

(Index nested loops,
with pipelining )

(Use hash
index; do
not write
result to 
temp)

Hash index on bid

Hash index on sid

Figure 12.7 A Query Evaluation Plan Using Indexes

The selection bid=100 is performed on Reserves by using the hash index on
bid to retrieve only matching tuples. As before, if we know that 100 boats are
available and assume that reservations are spread out uniformly across all boats,
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we can estimate the number of selected tuples to be 100, 000/100 = 1000. Since
the index on bid is clustered, these 1000 tuples appear consecutively within the
same bucket; therefore, the cost is 10 page I/Os.

For each selected tuple, we retrieve matching Sailors tuples using the hash index
on the sid field; selected Reserves tuples are not materialized and the join is
pipelined. For each tuple in the result of the join, we perform the selection
rating>5 and the projection of sname on-the-fly. There are several important
points to note here:

1. Since the result of the selection on Reserves is not materialized, the opti-
mization of projecting out fields that are not needed subsequently is un-
necessary (and is not used in the plan shown in Figure 12.7).

2. The join field sid is a key for Sailors. Therefore, at most one Sailors tuple
matches a given Reserves tuple. The cost of retrieving this matching tuple
depends on whether the directory of the hash index on the sid column of
Sailors fits in memory and on the presence of overflow pages (if any). How-
ever, the cost does not depend on whether this index is clustered because
there is at most one matching Sailors tuple and requests for Sailors tuples
are made in random order by sid (because Reserves tuples are retrieved by
bid and are therefore considered in random order by sid). For a hash index,
1.2 page I/Os (on average) is a good estimate of the cost for retrieving a
data entry. Assuming that the sid hash index on Sailors uses Alternative
(1) for data entries, 1.2 I/Os is the cost to retrieve a matching Sailors tu-
ple (and if one of the other two alternatives is used, the cost would be 2.2
I/Os).

3. We have chosen not to push the selection rating>5 ahead of the join, and
there is an important reason for this decision. If we performed the selection
before the join, the selection would involve scanning Sailors, assuming that
no index is available on the rating field of Sailors. Further, whether or
not such an index is available, once we apply such a selection, we have
no index on the sid field of the result of the selection (unless we choose
to build such an index solely for the sake of the subsequent join). Thus,
pushing selections ahead of joins is a good heuristic, but not always the
best strategy. Typically, as in this example, the existence of useful indexes
is the reason a selection is not pushed. (Otherwise, selections are pushed.)

Let us estimate the cost of the plan shown in Figure 12.7. The selection of
Reserves tuples costs 10 I/Os, as we saw earlier. There are 1000 such tuples,
and for each, the cost of finding the matching Sailors tuple is 1.2 I/Os, on
average. The cost of this step (the join) is therefore 1200 I/Os. All remaining
selections and projections are performed on-the-fly. The total cost of the plan
is 1210 I/Os.
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As noted earlier, this plan does not utilize clustering of the Sailors index. The
plan can be further refined if the index on the sid field of Sailors is clustered.
Suppose we materialize the result of performing the selection bid=100 on Re-
serves and sort this temporary table. This table contains 10 pages. Selecting
the tuples costs 10 page I/Os (as before), writing out the result to a temporary
table costs another 10 I/Os, and with five buffer pages, sorting this temporary
costs 2 ∗ 2 ∗ 10 = 40 I/Os. (The cost of this step is reduced if we push the
projection on sid. The sid column of materialized Reserves tuples requires only
three pages and can be sorted in memory with five buffer pages.) The selected
Reserves tuples can now be retrieved in order by sid.

If a sailor has reserved the same boat many times, all corresponding Reserves
tuples are now retrieved consecutively; the matching Sailors tuple will be found
in the buffer pool on all but the first request for it. This improved plan also
demonstrates that pipelining is not always the best strategy.

The combination of pushing selections and using indexes illustrated by this
plan is very powerful. If the selected tuples from the outer table join with a
single inner tuple, the join operation may become trivial, and the performance
gains with respect to the naive plan in Figure 12.6 are even more dramatic.
The following variant of our example query illustrates this situation:

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

AND R.bid = 100 AND S.rating > 5
AND R.day = ‘8/9/2002’

A slight variant of the plan shown in Figure 12.7, designed to answer this query,
is shown in Figure 12.8. The selection day=‘8/9/2002’ is applied on-the-fly to
the result of the selection bid=100 on the Reserves table.

Suppose that bid and day form a key for Reserves. (Note that this assumption
differs from the schema presented earlier in this chapter.) Let us estimate the
cost of the plan shown in Figure 12.8. The selection bid=100 costs 10 page
I/Os, as before, and the additional selection day=‘8/9/2002’ is applied on-the-
fly, eliminating all but (at most) one Reserves tuple. There is at most one
matching Sailors tuple, and this is retrieved in 1.2 I/Os (an average value).
The selection on rating and the projection on sname are then applied on-the-
fly at no additional cost. The total cost of the plan in Figure 12.8 is thus about
11 I/Os. In contrast, if we modify the naive plan in Figure 12.6 to perform
the additional selection on day together with the selection bid=100, the cost
remains at 501,000 I/Os.
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(Use hash
index; do
not write
result to 
temp)

Sailors

sid=sid

sname

rating > 5

Reserves

bid=100 

day=’8/9/94’

(On-the-fly)

(On-the-fly)

(Index nested loops,
with pipelining )

(On-the-fly)
Hash index on sid
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Figure 12.8 A Query Evaluation Plan for the Second Example

12.6 WHAT A TYPICAL OPTIMIZER DOES

A relational query optimizer uses relational algebra equivalences to identify
many equivalent expressions for a given query. For each such equivalent ver-
sion of the query, all available implementation techniques are considered for the
relational operators involved, thereby generating several alternative query eval-
uation plans. The optimizer estimates the cost of each such plan and chooses
the one with the lowest estimated cost.

12.6.1 Alternative Plans Considered

Two relational algebra expressions over the same set of input tables are said
to be equivalent if they produce the same result on all instances of the in-
put tables. Relational algebra equivalences play a central role in identifying
alternative plans.

Consider a basic SQL query consisting of a SELECT clause, a FROM clause, and
a WHERE clause. This is easily represented as an algebra expression; the fields
mentioned in the SELECT are projected from the cross-product of tables in
the FROM clause, after applying the selections in the WHERE clause. The use
of equivalences enable us to convert this initial representation into equivalent
expressions. In particular:

Selections and cross-products can be combined into joins.

Joins can be extensively reordered.
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Selections and projections, which reduce the size of the input, can be
“pushed” ahead of joins.

The query discussed in Section 12.5 illustrates these points; pushing the selec-
tion in that query ahead of the join yielded a dramatically better evaluation
plan. We discuss relational algebra equivalences in detail in Section 15.3.

Left-Deep Plans

Consider a query of the form A   B   C   D; that is, the natural join of
four tables. Three relational algebra operator trees that are equivalent to this
query (based on algebra equivalences) are shown in Figure 12.9. By convention,
the left child of a join node is the outer table and the right child is the inner
table. By adding details such as the join method for each join node, it is
straightforward to obtain several query evaluation plans from these trees.

A B

C

D

A B C D

C

A B

D

Figure 12.9 Three Join Trees

The first two trees in Figure 12.9 are examples of linear trees. In a linear tree,
at least one child of a join node is a base table. The first tree is an example of
a left-deep tree—the right child of each join node is a base table. The third
tree is an example of a non-linear or bushy tree.

Optimizers typically use a dynamic-programming approach (see Section 15.4.2)
to efficiently search the class of all left-deep plans. The second and third kinds
of trees are therefore never considered. Intuitively, the first tree represents a
plan in which we join A and B first, then join the result with C, then join
the result with D. There are 235 other left-deep plans that differ only in the
order that tables are joined. If any of these plans has selection and projection
conditions other than the joins themselves, these conditions are applied as early
as possible (consitent with algebra equivalences) given the choice of a join order
for the tables.

Of course, this decision rules out many alternative plans that may cost less
than the best plan using a left-deep tree; we have to live with the fact that

5The reader should think through the number 23 in this example.
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the optimizer will never find such plans. There are two main reasons for this
decision to concentrate on left-deep plans, or plans based on left-deep trees:

1. As the number of joins increases, the number of alternative plans increases
rapidly and it becomes necessary to prune the space of alternative plans.

2. Left-deep trees allow us to generate all fully pipelined plans; that is,
plans in which all joins are evaluated using pipelining. (Inner tables must
always be materialized because we must examine the entire inner table for
each tuple of the outer table. So, a plan in which an inner table is the
result of a join forces us to materialize the result of that join.)

12.6.2 Estimating the Cost of a Plan

The cost of a plan is the sum of costs for the operators it contains. The cost
of individual relational operators in the plan is estimated using information,
obtained from the system catalog, about properties (e.g., size, sort order) of
their input tables. We illustrated how to estimate the cost of single-operator
plans in Sections 12.2 and 12.3, and how to estimate the cost of multi-operator
plans in Section 12.5.

If we focus on the metric of I/O costs, the cost of a plan can be broken down
into three parts: (1) reading the input tables (possibly multiple times in the
case of some join and sorting algorithms), (2) writing intermediate tables, and
(possibly) (3) sorting the final result (if the query specifies duplicate elimination
or an output order). The third part is common to all plans (unless one of the
plans happens to produce output in the required order), and, in the common
case that a fully-pipelined plan is chosen, no intermediate tables are written.

Thus, the cost for a fully-pipelined plan is dominated by part (1). This cost
depends greatly on the access paths used to read input tables; of course, access
paths that are used repeatedly to retrieve matching tuples in a join algorithm
are especially important.

For plans that are not fully pipelined, the cost of materializing temporary tables
can be significant. The cost of materializing an intermediate result depends
on its size, and the size also influences the cost of the operator for which the
temporary is an input table. The number of tuples in the result of a selection is
estimated by multiplying the input size by the reduction factor for the selection
conditions. The number of tuples in the result of a projection is the same as
the input, assuming that duplicates are not eliminated; of course, each result
tuple is smaller since it contains fewer fields.
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The result size for a join can be estimated by multiplying the maximum result
size, which is the product of the input table sizes, by the reduction factor of the
join condition. The reduction factor for join condition column1 = column2 can
be approximated by the formula 1

MAX (NKeys(I1),NKeys(I2))
if there are indexes

I1 and I2 on column1 and column2, respectively. This formula assumes that
each key value in the smaller index, say I1, has a matching value in the other
index. Given a value for column1, we assume that each of the NKeys(I2)
values for column2 is equally likely. Thus, the number of tuples that have the
same value in column2 as a given value in column1 is 1

NKeys(I2) .

12.7 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What is metadata? What metadata is stored in the system catalog? De-
scribe the information stored per relation, and per index. (Section 12.1)

The catalog is itself stored as a collection of relations. Explain why. (Sec-
tion 12.1)

What three techniques are commonly used in algorithms to evaluate rela-
tional operators? (Section 12.2)

What is an access path? When does an index match a search condition?
(Section 12.2.2)

What are the main approaches to evaluating selections? Discuss the use of
indexes, in particular. (Section 12.3.1)

What are the main approaches to evaluating projections? What makes
projections potentially expensive? (Section 12.3.2)

What are the main approaches to evaluating joins? Why are joins expen-
sive? (Section 12.3.3)

What is the goal of query optimization? Is it to find the best plan? (Sec-
tion 12.4)

How does a DBMS represent a relational query evaluation plan? (Sec-
tion 12.4.1)

What is pipelined evaluation? What is its benefit? (Section 12.4.2)

Describe the iterator interface for operators and access methods. What is
its purpose? (Section 12.4.3)
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Discuss why the difference in cost between alternative plans for a query can
be very large. Give specific examples to illustrate the impact of pushing
selections, the choice of join methods, and the availability of appropriate
indexes. (Section 12.5)

What is the role of relational algebra equivalences in query optimization?
(Section 12.6)

What is the space of plans considered by a typical relational query opti-
mizer? Justify the choice of this space of plans. (Section 12.6.1)

How is the cost of a plan estimated? What is the role of the system catalog?
What is the selectivity of an access path, and how does it influence the cost
of a plan? Why is it important to be able to estimate the size of the result
of a plan? (Section 12.6.2)

EXERCISES

Exercise 12.1 Briefly answer the following questions:

1. Describe three techniques commonly used when developing algorithms for relational op-
erators. Explain how these techniques can be used to design algorithms for the selection,
projection, and join operators.

2. What is an access path? When does an index match an access path? What is a primary

conjunct, and why is it important?

3. What information is stored in the system catalogs?

4. What are the benefits of making the system catalogs be relations?

5. What is the goal of query optimization? Why is optimization important?

6. Describe pipelining and its advantages.

7. Give an example query and plan in which pipelining cannot be used.

8. Describe the iterator interface and explain its advantages.

9. What role do statistics gathered from the database play in query optimization?

10. What were the important design decisions made in the System R optimizer?

11. Why do query optimizers consider only left-deep join trees? Give an example of a query
and a plan that would not be considered because of this restriction.

Exercise 12.2 Consider a relation R(a,b,c,d,e) containing 5,000,000 records, where each data
page of the relation holds 10 records. R is organized as a sorted file with secondary indexes.
Assume that R.a is a candidate key for R, with values lying in the range 0 to 4,999,999, and
that R is stored in R.a order. For each of the following relational algebra queries, state which
of the following three approaches is most likely to be the cheapest:

Access the sorted file for R directly.

Use a (clustered) B+ tree index on attribute R.a.

Use a linear hashed index on attribute R.a.
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1. σa<50,000(R)

2. σa=50,000(R)

3. σa>50,000∧a<50,010(R)

4. σa  =50,000(R)

Exercise 12.3 For each of the following SQL queries, for each relation involved, list the
attributes that must be examined to compute the answer. All queries refer to the following
relations:

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))
Dept(did: integer, dname: char(20), floor: integer, budget: real)

1. SELECT * FROM Emp

2. SELECT * FROM Emp, Dept

3. SELECT * FROM Emp E, Dept D WHERE E.did = D.did

4. SELECT E.eid, D.dname FROM Emp E, Dept D WHERE E.did = D.did

Exercise 12.4 Consider the following schema with the Sailors relation:

Sailors(sid: integer, sname: string, rating: integer, age: real)

For each of the following indexes, list whether the index matches the given selection conditions.
If there is a match, list the primary conjuncts.

1. A B+-tree index on the search key  Sailors.sid  .

(a) σSailors.sid<50,000(Sailors)

(b) σSailors.sid=50,000(Sailors)

2. A hash index on the search key  Sailors.sid  .

(a) σSailors.sid<50,000(Sailors)

(b) σSailors.sid=50,000(Sailors)

3. A B+-tree index on the search key  Sailors.sid, Sailors.age  .

(a) σSailors.sid<50,000∧Sailors.age=21(Sailors)

(b) σSailors.sid=50,000∧Sailors.age>21(Sailors)

(c) σSailors.sid=50,000(Sailors)

(d) σSailors.age=21(Sailors)

4. A hash-tree index on the search key  Sailors.sid, Sailors.age  .

(a) σSailors.sid=50,000∧Sailors.age=21(Sailors)

(b) σSailors.sid=50,000∧Sailors.age>21(Sailors)

(c) σSailors.sid=50,000(Sailors)

(d) σSailors.age=21(Sailors)

Exercise 12.5 Consider again the schema with the Sailors relation:
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Sailors(sid: integer, sname: string, rating: integer, age: real)

Assume that each tuple of Sailors is 50 bytes long, that a page can hold 80 Sailors tuples, and
that we have 500 pages of such tuples. For each of the following selection conditions, estimate
the number of pages retrieved, given the catalog information in the question.

1. Assume that we have a B+-tree index T on the search key � Sailors.sid �, and assume
that IHeight(T ) = 4, INPages(T ) = 50, Low(T ) = 1, and High(T ) = 100,000.

(a) σSailors.sid<50,000(Sailors)

(b) σSailors.sid=50,000(Sailors)

2. Assume that we have a hash index T on the search key � Sailors.sid �, and assume that
IHeight(T ) = 2, INPages(T ) = 50, Low(T ) = 1, and High(T ) = 100,000.

(a) σSailors.sid<50,000(Sailors)

(b) σSailors.sid=50,000(Sailors)

Exercise 12.6 Consider the two join methods described in Section 12.3.3. Assume that we
join two relations R and S, and that the systems catalog contains appropriate statistics about
R and S. Write formulas for the cost estimates of the index nested loops join and sort-merge
join using the appropriate variables from the systems catalog in Section 12.1. For index nested
loops join, consider both a B+ tree index and a hash index. (For the hash index, you can
assume that you can retrieve the index page containing the rid of the matching tuple with
1.2 I/Os on average.)

Note: Additional exercises on the material covered in this chapter can be found in the exercises

for Chapters 14 and 15.

BIBLIOGRAPHIC NOTES

See the bibliograpic notes for Chapters 14 and 15.



13
EXTERNAL SORTING

☛ Why is sorting important in a DBMS?

☛ Why is sorting data on disk different from sorting in-memory data?

☛ How does external merge-sort work?

☛ How do techniques like blocked I/O and overlapped I/O affect the
design of external sorting algorithms?

☛ When can we use a B+ tree to retrieve records in sorted order?

➽ Key concepts: motivation, bulk-loading, duplicate elimination, sort-
merge joins; external merge sort, sorted runs, merging runs; replace-
ment sorting, increasing run length; I/O cost versus number of I/Os,
blocked I/Os, double buffering; B+ trees for sorting, impact of clus-
tering.

Good order is the foundation of all things.

—Edmund Burke

In this chapter, we consider a widely used and relatively expensive operation,
sorting records according to a search key. We begin by considering the many
uses of sorting in a database system in Section 13.1. We introduce the idea of
external sorting by considering a very simple algorithm in Section 13.2; using
repeated passes over the data, even very large datasets can be sorted with a
small amount of memory. This algorithm is generalized to develop a realistic
external sorting algorithm in Section 13.3. Three important refinements are

421
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Sorting in Commercial RDBMSs: IBM DB2, Informix, Microsoft SQL
Server, Oracle 8, and Sybase ASE all use external merge sort. Sybase ASE
uses a memory partition called the procedure cache for sorting. This is
a main memory region used for compilation and execution as well as for
caching the plans for recently executed stored procedures; it is not part
of the buffer pool. IBM, Informix, and Oracle also use a separate area of
main memory to do sorting. In contrast, Microsoft and Sybase IQ use buffer
pool frames for sorting. None of these systems uses the optimization that
produces runs larger than available memory, in part because it is difficult
to implement it efficiently in the presence of variable length records. In
all systems, the I/O is asynchronous and uses prefetching. Microsoft and
Sybase ASE use merge sort as the in-memory sorting algorithm; IBM and
Sybase IQ use radix sorting. Oracle uses insertion sort for in-memory
sorting.

discussed. The first, discussed in Section 13.3.1, enables us to reduce the num-
ber of passes. The next two refinements, covered in Section 13.4, require us
to consider a more detailed model of I/O costs than the number of page I/Os.
Section 13.4.1 discusses the effect of blocked I/O, that is, reading and writing
several pages at a time; and Section 13.4.2 considers how to use a technique
called double buffering to minimize the time spent waiting for an I/O operation
to complete. Section 13.5 discusses the use of B+ trees for sorting.

With the exception of Section 13.4, we consider only I/O costs, which we ap-
proximate by counting the number of pages read or written, as per the cost
model discussed in Chapter 8. Our goal is to use a simple cost model to convey
the main ideas, rather than to provide a detailed analysis.

13.1 WHEN DOES A DBMS SORT DATA?

Sorting a collection of records on some (search) key is a very useful operation.
The key can be a single attribute or an ordered list of attributes, of course.
Sorting is required in a variety of situations, including the following important
ones:

Users may want answers in some order; for example, by increasing age
(Section 5.2).

Sorting records is the first step in bulk loading a tree index (Section 10.8.2).

Sorting is useful for eliminating duplicate copies in a collection of records
(Section 14.3).



External Sorting 423

A widely used algorithm for performing a very important relational algebra
operation, called join, requires a sorting step (Section 14.4.2).

Although main memory sizes are growing rapidly the ubiquity of database
systems has lead to increasingly larger datasets as well. When the data to
be sorted is too large to fit into available main memory, we need an external
sorting algorithm. Such algorithms seek to minimize the cost of disk accesses.

13.2 A SIMPLE TWO-WAY MERGE SORT

We begin by presenting a simple algorithm to illustrate the idea behind external
sorting. This algorithm utilizes only three pages of main memory, and it is
presented only for pedagogical purposes. In practice, many more pages of
memory are available, and we want our sorting algorithm to use the additional
memory effectively; such an algorithm is presented in Section 13.3. When
sorting a file, several sorted subfiles are typically generated in intermediate
steps. In this chapter, we refer to each sorted subfile as a run.

Even if the entire file does not fit into the available main memory, we can sort
it by breaking it into smaller subfiles, sorting these subfiles, and then merging
them using a minimal amount of main memory at any given time. In the first
pass, the pages in the file are read in one at a time. After a page is read in,
the records on it are sorted and the sorted page (a sorted run one page long) is
written out. Quicksort or any other in-memory sorting technique can be used
to sort the records on a page. In subsequent passes, pairs of runs from the
output of the previous pass are read in and merged to produce runs that are
twice as long. This algorithm is shown in Figure 13.1.

If the number of pages in the input file is 2k, for some k, then:

Pass 0 produces 2k sorted runs of one page each,
Pass 1 produces 2k−1 sorted runs of two pages each,
Pass 2 produces 2k−2 sorted runs of four pages each,
and so on, until
Pass k produces one sorted run of 2k pages.

In each pass, we read every page in the file, process it, and write it out.
Therefore we have two disk I/Os per page, per pass. The number of passes
is  log2N + 1, where N is the number of pages in the file. The overall cost is
2N( log2N + 1) I/Os.

The algorithm is illustrated on an example input file containing seven pages
in Figure 13.2. The sort takes four passes, and in each pass, we read and
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proc 2-way extsort (file)

// Given a file on disk, sorts it using three buffer pages

// Produce runs that are one page long: Pass 0

Read each page into memory, sort it, write it out.

// Merge pairs of runs to produce longer runs until only

// one run (containing all records of input file) is left

While the number of runs at end of previous pass is > 1:

// Pass i = 1, 2, ...

While there are runs to be merged from previous pass:

Choose next two runs (from previous pass).

Read each run into an input buffer; page at a time.

Merge the runs and write to the output buffer;

force output buffer to disk one page at a time.

endproc

Figure 13.1 Two-Way Merge Sort

write seven pages, for a total of 56 I/Os. This result agrees with the preceding
analysis because 2 ·7( log27 +1) = 56. The dark pages in the figure illustrate
what would happen on a file of eight pages; the number of passes remains at
four ( log28 + 1 = 4), but we read and write an additional page in each pass
for a total of 64 I/Os. (Try to work out what would happen on a file with, say,
five pages.)

This algorithm requires just three buffer pages in main memory, as Figure 13.3
illustrates. This observation raises an important point: Even if we have more
buffer space available, this simple algorithm does not utilize it effectively. The
external merge sort algorithm that we discuss next addresses this problem.

13.3 EXTERNAL MERGE SORT

Suppose that B buffer pages are available in memory and that we need to sort
a large file with N pages. How can we improve on the two-way merge sort
presented in the previous section? The intuition behind the generalized algo-
rithm that we now present is to retain the basic structure of making multiple
passes while trying to minimize the number of passes. There are two important
modifications to the two-way merge sort algorithm:

1. In Pass 0, read in B pages at a time and sort internally to produce  N/B 
runs of B pages each (except for the last run, which may contain fewer
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Figure 13.2 Two-Way Merge Sort of a Seven-Page File

DiskDisk Main memory buffers

OUTPUT

INPUT 2

INPUT 1

Figure 13.3 Two-Way Merge Sort with Three Buffer Pages



426 Chapter 13

pages). This modification is illustrated in Figure 13.4, using the input file
from Figure 13.2 and a buffer pool with four pages.

2. In passes i = 1, 2, . . . use B−1 buffer pages for input and use the remaining
page for output; hence, you do a (B − 1)-way merge in each pass. The
utilization of buffer pages in the merging passes is illustrated in Figure
13.5.

6,2

8,79,4

3,4

2,3

4,4

6,7

8,9

1,2

3,5

6

5,6

2

3,1

3,4

9,4

6,2

8,7

Input file

1st output run

2nd output run

Buffer pool with B=4 pages

Figure 13.4 External Merge Sort with B Buffer Pages: Pass 0

Disk Disk
B main memory buffers

INPUT 2

INPUT 1

INPUT B-1

OUTPUT

Figure 13.5 External Merge Sort with B Buffer Pages: Pass i > 0

The first refinement reduces the number of runs produced by Pass 0 to N1 =
 N/B , versus N for the two-way merge.1 The second refinement is even more
important. By doing a (B − 1)-way merge, the number of passes is reduced
dramatically—including the initial pass, it becomes  logB−1N1 + 1 versus
 log2N + 1 for the two-way merge algorithm presented earlier. Because B is

1Note that the technique used for sorting data in buffer pages is orthogonal to external sorting.
You could use, say, Quicksort for sorting data in buffer pages.



External Sorting 427

typically quite large, the savings can be substantial. The external merge sort
algorithm is shown is Figure 13.6.

proc extsort (file)

// Given a file on disk, sorts it using three buffer pages

// Produce runs that are B pages long: Pass 0

Read B pages into memory, sort them, write out a run.

// Merge B − 1 runs at a time to produce longer runs until only

// one run (containing all records of input file) is left

While the number of runs at end of previous pass is > 1:

// Pass i = 1, 2, . . .

While there are runs to be merged from previous pass:

Choose next B − 1 runs (from previous pass).

Read each run into an input buffer; page at a time.

Merge the runs and write to the output buffer;

force output buffer to disk one page at a time.

endproc

Figure 13.6 External Merge Sort

As an example, suppose that we have five buffer pages available and want to
sort a file with 108 pages.

Pass 0 produces  108/5 = 22 sorted runs of five pages each, except
for the last run, which is only three pages long.
Pass 1 does a four-way merge to produce  22/4 = six sorted runs of
20 pages each, except for the last run, which is only eight pages long.
Pass 2 produces  6/4 = two sorted runs; one with 80 pages and one
with 28 pages.
Pass 3 merges the two runs produced in Pass 2 to produce the sorted
file.

In each pass we read and write 108 pages; thus the total cost is 2∗108∗4 = 864
I/Os. Applying our formula, we have N1 =  108/5 = 22 and cost =
2 ∗N ∗ ( logB−1N1 + 1) = 2 ∗ 108 ∗ ( log422 + 1) = 864, as expected.

To emphasize the potential gains in using all available buffers, in Figure 13.7,
we show the number of passes, computed using our formula, for several values
of N and B. To obtain the cost, the number of passes should be multiplied
by 2N . In practice, one would expect to have more than 257 buffers, but this
table illustrates the importance of a high fan-in during merging.
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N B = 3 B = 5 B = 9 B = 17 B = 129 B = 257

100 7 4 3 2 1 1
1000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

Figure 13.7 Number of Passes of External Merge Sort

Of course, the CPU cost of a multiway merge can be greater than that for
a two-way merge, but in general the I/O costs tend to dominate. In doing
a (B − 1)-way merge, we have to repeatedly pick the ‘lowest’ record in the
B − 1 runs being merged and write it to the output buffer. This operation can
be implemented simply by examining the first (remaining) element in each of
the B − 1 input buffers. In practice, for large values of B, more sophisticated
techniques can be used, although we do not discuss them here. Further, as we
will see shortly, there are other ways to utilize buffer pages to reduce I/O costs;
these techniques involve allocating additional pages to each input (and output)
run, thereby making the number of runs merged in each pass considerably
smaller than the number of buffer pages B.

13.3.1 Minimizing the Number of Runs

In Pass 0 we read in B pages at a time and sort them internally to produce
 N/B runs of B pages each (except for the last run, which may contain fewer
pages). With a more aggressive implementation, called replacement sort, we
can write out runs of approximately 2 · B internally sorted pages on average.
This improvement is achieved as follows. We begin by reading in pages of the
file of tuples to be sorted, say R, until the buffer is full, reserving (say) one
page for use as an input buffer and one page for use as an output buffer. We
refer to the B − 2 pages of R tuples that are not in the input or output buffer
as the current set. Suppose that the file is to be sorted in ascending order on
some search key k. Tuples are appended to the output in ascending order by k
value.

The idea is to repeatedly pick the tuple in the current set with the smallest
k value that is still greater than the largest k value in the output buffer and
append it to the output buffer. For the output buffer to remain sorted, the
chosen tuple must satisfy the condition that its k value be greater than or
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equal to the largest k value currently in the output buffer; of all tuples in
the current set that satisfy this condition, we pick the one with the smallest
k value and append it to the output buffer. Moving this tuple to the output
buffer creates some space in the current set, which we use to add the next input
tuple to the current set. (We assume for simplicity that all tuples are the same
size.) This process is illustrated in Figure 13.8. The tuple in the current set
that is going to be appended to the output next is highlighted, as is the most
recently appended output tuple.

INPUT OUTPUT

5

3

4

12

2

8

10

CURRENT SET

Figure 13.8 Generating Longer Runs

When all tuples in the input buffer have been consumed in this manner, the
next page of the file is read in. Of course, the output buffer is written out
when it is full, thereby extending the current run (which is gradually built up
on disk).

The important question is this: When do we have to terminate the current run
and start a new run? As long as some tuple t in the current set has a bigger k
value than the most recently appended output tuple, we can append t to the
output buffer and the current run can be extended.2 In Figure 13.8, although
a tuple (k = 2) in the current set has a smaller k value than the largest output
tuple (k = 5), the current run can be extended because the current set also has
a tuple (k = 8) that is larger than the largest output tuple.

When every tuple in the current set is smaller than the largest tuple in the
output buffer, the output buffer is written out and becomes the last page in
the current run. We then start a new run and continue the cycle of writing
tuples from the input buffer to the current set to the output buffer. It is known
that this algorithm produces runs that are about 2 ·B pages long, on average.

This refinement has not been implemented in commercial database systems
because managing the main memory available for sorting becomes difficult with

2If B is large, the CPU cost of finding such a tuple t can be significant unless appropriate in-
memory data structures are used to organize the tuples in the buffer pool. We will not discuss this
issue further.
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replacement sort, especially in the presence of variable length records. Recent
work on this issue, however, shows promise and it could lead to the use of
replacement sort in commercial systems.

13.4 MINIMIZING I/O COST VERSUS NUMBER OF I/OS

We have thus far used the number of page I/Os as a cost metric. This metric is
only an approximation of true I/O costs because it ignores the effect of blocked
I/O—issuing a single request to read (or write) several consecutive pages can
be much cheaper than reading (or writing) the same number of pages through
independent I/O requests, as discussed in Chapter 8. This difference turns out
to have some very important consequences for our external sorting algorithm.

Further, the time taken to perform I/O is only part of the time taken by the
algorithm; we must consider CPU costs as well. Even if the time taken to do
I/O accounts for most of the total time, the time taken for processing records is
nontrivial and definitely worth reducing. In particular, we can use a technique
called double buffering to keep the CPU busy while an I/O operation is in
progress.

In this section, we consider how the external sorting algorithm can be refined
using blocked I/O and double buffering. The motivation for these optimiza-
tions requires us to look beyond the number of I/Os as a cost metric. These
optimizations can also be applied to other I/O intensive operations such as
joins, which we study in Chapter 14.

13.4.1 Blocked I/O

If the number of page I/Os is taken to be the cost metric, the goal is clearly to
minimize the number of passes in the sorting algorithm because each page in
the file is read and written in each pass. It therefore makes sense to maximize
the fan-in during merging by allocating just one buffer pool page per run (which
is to be merged) and one buffer page for the output of the merge. Thus, we
can merge B−1 runs, where B is the number of pages in the buffer pool. If we
take into account the effect of blocked access, which reduces the average cost
to read or write a single page, we are led to consider whether it might be better
to read and write in units of more than one page.

Suppose we decide to read and write in units, which we call buffer blocks,
of b pages. We must now set aside one buffer block per input run and one
buffer block for the output of the merge, which means that we can merge at
most  B−b

b
 runs in each pass. For example, if we have 10 buffer pages, we

can either merge nine runs at a time with one-page input and output buffer
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blocks, or we can merge four runs at a time with two-page input and output
buffer blocks. If we choose larger buffer blocks, however, the number of passes
increases, while we continue to read and write every page in the file in each
pass! In the example, each merging pass reduces the number of runs by a factor
of 4, rather than a factor of 9. Therefore, the number of page I/Os increases.
This is the price we pay for decreasing the per-page I/O cost and is a trade-off
we must take into account when designing an external sorting algorithm.

In practice, however, current main memory sizes are large enough that all
but the largest files can be sorted in just two passes, even using blocked I/O.
Suppose we have B buffer pages and choose to use a blocking factor of b pages.
That is, we read and write b pages at a time, and all our input and output
buffer blocks are b pages long. The first pass produces about N2 =  N/2B 
sorted runs, each of length 2B pages, if we use the optimization described in
Section 13.3.1, and about N1 =  N/B sorted runs, each of length B pages,
otherwise. For the purposes of this section, we assume that the optimization is
used.

In subsequent passes we can merge F =  B/b − 1 runs at a time. The
number of passes is therefore 1+ logFN2 , and in each pass we read and write
all pages in the file. Figure 13.9 shows the number of passes needed to sort files
of various sizes N , given B buffer pages, using a blocking factor b of 32 pages.
It is quite reasonable to expect 5000 pages to be available for sorting purposes;
with 4KB pages, 5000 pages is only 20MB. (With 50,000 buffer pages, we can
do 1561-way merges; with 10,000 buffer pages, we can do 311-way merges; with
5000 buffer pages, we can do 155-way merges; and with 1000 buffer pages, we
can do 30-way merges.)

N B = 1000 B = 5000 B = 10, 000 B = 50, 000

100 1 1 1 1
1000 1 1 1 1
10,000 2 2 1 1
100,000 3 2 2 2
1,000,000 3 2 2 2
10,000,000 4 3 3 2
100,000,000 5 3 3 2
1,000,000,000 5 4 3 3

Figure 13.9 Number of Passes of External Merge Sort with Block Size b = 32

To compute the I/O cost, we need to calculate the number of 32-page blocks
read or written and multiply this number by the cost of doing a 32-page block
I/O. To find the number of block I/Os, we can find the total number of page
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I/Os (number of passes multiplied by the number of pages in the file) and
divide by the block size, 32. The cost of a 32-page block I/O is the seek time
and rotational delay for the first page, plus transfer time for all 32 pages, as
discussed in Chapter 8. The reader is invited to calculate the total I/O cost
of sorting files of the sizes mentioned in Figure 13.9 with 5000 buffer pages for
different block sizes (say, b = 1, 32, and 64) to get a feel for the benefits of
using blocked I/O.

13.4.2 Double Buffering

Consider what happens in the external sorting algorithm when all the tuples
in an input block have been consumed: An I/O request is issued for the next
block of tuples in the corresponding input run, and the execution is forced to
suspend until the I/O is complete. That is, for the duration of the time taken
for reading in one block, the CPU remains idle (assuming that no other jobs are
running). The overall time taken by an algorithm can be increased considerably
because the CPU is repeatedly forced to wait for an I/O operation to complete.
This effect becomes more and more important as CPU speeds increase relative
to I/O speeds, which is a long-standing trend in relative speeds. It is therefore
desirable to keep the CPU busy while an I/O request is being carried out;
that is, to overlap CPU and I/O processing. Current hardware supports such
overlapped computation, and it is therefore desirable to design algorithms to
take advantage of this capability.

In the context of external sorting, we can achieve this overlap by allocating
extra pages to each input buffer. Suppose a block size of b = 32 is chosen. The
idea is to allocate an additional 32-page block to every input (and the output)
buffer. Now, when all the tuples in a 32-page block have been consumed, the
CPU can process the next 32 pages of the run by switching to the second,
‘double,’ block for this run. Meanwhile, an I/O request is issued to fill the
empty block. Thus, assuming that the time to consume a block is greater
than the time to read in a block, the CPU is never idle! On the other hand,
the number of pages allocated to a buffer is doubled (for a given block size,
which means the total I/O cost stays the same). This technique, called double
buffering, can considerably reduce the total time taken to sort a file. The use
of buffer pages is illustrated in Figure 13.10.

Note that although double buffering can considerably reduce the response time
for a given query, it may not have a significant impact on throughput, because
the CPU can be kept busy by working on other queries while waiting for one
query’s I/O operation to complete.
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Figure 13.10 Double Buffering

13.5 USING B+ TREES FOR SORTING

Suppose that we have a B+ tree index on the (search) key to be used for sorting
a file of records. Instead of using an external sorting algorithm, we could use
the B+ tree index to retrieve the records in search key order by traversing the
sequence set (i.e., the sequence of leaf pages). Whether this is a good strategy
depends on the nature of the index.

13.5.1 Clustered Index

If the B+ tree index is clustered, then the traversal of the sequence set is
very efficient. The search key order corresponds to the order in which the
data records are stored, and for each page of data records we retrieve, we can
read all the records on it in sequence. This correspondence between search
key ordering and data record ordering is illustrated in Figure 13.11, with the
assumption that data entries are  key, rid pairs (i.e., Alternative (2) is used
for data entries).

The cost of using the clustered B+ tree index to retrieve the data records in
search key order is the cost to traverse the tree from root to the left-most leaf
(which is usually less than four I/Os) plus the cost of retrieving the pages in
the sequence set, plus the cost of retrieving the (say, N) pages containing the
data records. Note that no data page is retrieved twice, thanks to the ordering
of data entries being the same as the ordering of data records. The number of
pages in the sequence set is likely to be much smaller than the number of data
pages because data entries are likely to be smaller than typical data records.
Thus, the strategy of using a clustered B+ tree index to retrieve the records
in sorted order is a good one and should be used whenever such an index is
available.
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Figure 13.11 Clustered B+ Tree for Sorting

What if Alternative (1) is used for data entries? Then, the leaf pages would
contain the actual data records, and retrieving the pages in the sequence set
(a total of N pages) would be the only cost. (Note that the space utilization is
about 67% in a B+ tree; the number of leaf pages is greater than the number
of pages needed to hold the data records in a sorted file, where, in principle,
100% space utilization can be achieved.) In this case, the choice of the B+ tree
for sorting is excellent!

13.5.2 Unclustered Index

What if the B+ tree index on the key to be used for sorting is unclustered?
This is illustrated in Figure 13.12, with the assumption that data entries are
 key, rid .

In this case each rid in a leaf page could point to a different data page. Should
this happen, the cost (in disk I/Os) of retrieving all data records could equal
the number of data records. That is, the worst-case cost is equal to the number
of data records, because fetching each record could require a disk I/O. This
cost is in addition to the cost of retrieving leaf pages of the B+ tree to get the
data entries (which point to the data records).

If p is the average number of records per data page and there are N data pages,
the number of data records is p ·N . If we take f to be the ratio of the size of a
data entry to the size of a data record, we can approximate the number of leaf
pages in the tree by f · N . The total cost of retrieving records in sorted order
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Figure 13.12 Unclustered B+ Tree for Sorting

using an unclustered B+ tree is therefore (f + p) ·N . Since f is usually 0.1 or
smaller and p is typically much larger than 10, p · N is a good approximation.

In practice, the cost may be somewhat less because some rids in a leaf page
lead to the same data page, and further, some pages are found in the buffer
pool, thereby avoiding an I/O. Nonetheless, the usefulness of an unclustered
B+ tree index for sorted retrieval highly depends on the extent to which the
order of data entries corresponds and—this is just a matter of chance—to the
physical ordering of data records.

We illustrate the cost of sorting a file of records using external sorting and un-
clustered B+ tree indexes in Figure 13.13. The costs shown for the unclustered
index are worst-case numbers, based on the approximate formula p · N . For
comparison, note that the cost for a clustered index is approximately equal to
N , the number of pages of data records.

N Sorting p = 1 p = 10 p = 100

100 200 100 1000 10,000
1000 2000 1000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

Figure 13.13 Cost of External Sorting (B = 1000, b = 32) versus Unclustered Index
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Keep in mind that p is likely to be closer to 100 and B is likely to be higher
than 1,000 in practice. The ratio of the cost of sorting versus the cost of using
an unclustered index is likely to be even lower than indicated by Figure 13.13
because the I/O for sorting is in 32-page buffer blocks, whereas the I/O for the
unclustered indexes is one page at a time. The value of p is determined by the
page size and the size of a data record; for p to be 10, with 4KB pages, the
average data record size must be about 400 bytes. In practice, p is likely to be
greater than 10.

For even modest file sizes, therefore, sorting by using an unclustered index is
clearly inferior to external sorting. Indeed, even if we want to retrieve only
about 10–20% of the data records, for example, in response to a range query
such as “Find all sailors whose rating is greater than 7,” sorting the file may
prove to be more efficient than using an unclustered index!

13.6 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What database operations utilize sorting? (Section 13.1)

Describe how the two-way merge sort algorithm can sort a file of arbitrary
length using only three main-memory pages at any time. Explain what
a run is and how runs are created and merged. Discuss the cost of the
algorithm in terms of the number of passes and the I/O cost per pass.
(Section 13.2)

How does the general external merge sort algorithm improve upon the two-
way merge sort? Discuss the length of initial runs, and how memory is
utilized in subsequent merging passes. Discuss the cost of the algorithm in
terms of the number of passes and the I/O cost per pass. (Section 13.3)

Discuss the use of replacement sort to increase the average length of initial
runs and thereby reduce the number of runs to be merged. How does this
affect the cost of external sorting? (Section 13.3.1)

What is blocked I/O? Why is it cheaper to read a sequence of pages using
blocked I/O than to read them through several independent requests? How
does the use of blocking affect the external sorting algorithm, and how does
it change the cost formula? (Section 13.4.1)

What is double buffering? What is the motivation for using it? (Sec-
tion 13.4.2)

If we want to sort a file and there is a B+ tree with the same search key, we
have the option of retrieving records in order through the index. Compare
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the cost of this approach to retrieving the records in random order and then
sorting them. Consider both clustered and unclustered B+ trees. What
conclusions can you draw from your comparison? (Section 13.5)

EXERCISES

Exercise 13.1 Suppose you have a file with 10,000 pages and you have three buffer pages.
Answer the following questions for each of these scenarios, assuming that our most general
external sorting algorithm is used:

(a) A file with 10,000 pages and three available buffer pages.

(b) A file with 20,000 pages and five available buffer pages.

(c) A file with 2,000,000 pages and 17 available buffer pages.

1. How many runs will you produce in the first pass?

2. How many passes will it take to sort the file completely?

3. What is the total I/O cost of sorting the file?

4. How many buffer pages do you need to sort the file completely in just two passes?

Exercise 13.2 Answer Exercise 13.1 assuming that a two-way external sort is used.

Exercise 13.3 Suppose that you just finished inserting several records into a heap file and
now want to sort those records. Assume that the DBMS uses external sort and makes efficient
use of the available buffer space when it sorts a file. Here is some potentially useful information
about the newly loaded file and the DBMS software available to operate on it:

The number of records in the file is 4500. The sort key for the file is 4 bytes long.
You can assume that rids are 8 bytes long and page ids are 4 bytes long. Each
record is a total of 48 bytes long. The page size is 512 bytes. Each page has 12
bytes of control information on it. Four buffer pages are available.

1. How many sorted subfiles will there be after the initial pass of the sort, and how long
will each subfile be?

2. How many passes (including the initial pass just considered) are required to sort this
file?

3. What is the total I/O cost for sorting this file?

4. What is the largest file, in terms of the number of records, you can sort with just four
buffer pages in two passes? How would your answer change if you had 257 buffer pages?

5. Suppose that you have a B+ tree index with the search key being the same as the desired
sort key. Find the cost of using the index to retrieve the records in sorted order for each
of the following cases:

The index uses Alternative (1) for data entries.

The index uses Alternative (2) and is unclustered. (You can compute the worst-case
cost in this case.)
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How would the costs of using the index change if the file is the largest that you
can sort in two passes of external sort with 257 buffer pages? Give your answer for
both clustered and unclustered indexes.

Exercise 13.4 Consider a disk with an average seek time of 10ms, average rotational delay
of 5ms, and a transfer time of 1ms for a 4K page. Assume that the cost of reading/writing
a page is the sum of these values (i.e., 16ms) unless a sequence of pages is read/written. In
this case, the cost is the average seek time plus the average rotational delay (to find the first
page in the sequence) plus 1ms per page (to transfer data). You are given 320 buffer pages
and asked to sort a file with 10,000,000 pages.

1. Why is it a bad idea to use the 320 pages to support virtual memory, that is, to ‘new’
10,000,000 · 4K bytes of memory, and to use an in-memory sorting algorithm such as
Quicksort?

2. Assume that you begin by creating sorted runs of 320 pages each in the first pass.
Evaluate the cost of the following approaches for the subsequent merging passes:

(a) Do 319-way merges.

(b) Create 256 ‘input’ buffers of 1 page each, create an ‘output’ buffer of 64 pages, and
do 256-way merges.

(c) Create 16 ‘input’ buffers of 16 pages each, create an ‘output’ buffer of 64 pages,
and do 16-way merges.

(d) Create eight ‘input’ buffers of 32 pages each, create an ‘output’ buffer of 64 pages,
and do eight-way merges.

(e) Create four ‘input’ buffers of 64 pages each, create an ‘output’ buffer of 64 pages,
and do four-way merges.

Exercise 13.5 Consider the refinement to the external sort algorithm that produces runs of
length 2B on average, where B is the number of buffer pages. This refinement was described
in Section 11.2.1 under the assumption that all records are the same size. Explain why this
assumption is required and extend the idea to cover the case of variable-length records.

PROJECT-BASED EXERCISES

Exercise 13.6 (Note to instructors: Additional details must be provided if this exercise is

assigned; see Appendix 30.) Implement external sorting in Minibase.

BIBLIOGRAPHIC NOTES

Knuth’s text [442] is the classic reference for sorting algorithms. Memory management for
replacement sort is discussed in [471]. A number of papers discuss parallel external sorting
algorithms, including [66, 71, 223, 494, 566, 647].



14
EVALUATING RELATIONAL

OPERATORS

☛ What are the alternative algorithms for selection? Which alterna-
tives are best under different conditions? How are complex selection
conditions handled?

☛ How can we eliminate duplicates in projection? How do sorting and
hashing approaches compare?

☛ What are the alternative join evaluation algorithms? Which alterna-
tives are best under different conditions?

☛ How are the set operations (union, intersection, set-difference, cross-
product) implemented?

☛ How are aggregate operations and grouping handled?

☛ How does the size of the buffer pool and the buffer replacement policy
affect algorithms for evaluating relational operators?

➽ Key concepts: selections, CNF; projections, sorting versus hash-
ing; joins, block nested loops, index nested loops, sort-merge, hash;
union, set-difference, duplicate elimination; aggregate operations, run-
ning information, partitioning into groups, using indexes; buffer man-
agement, concurrent execution, repeated access patterns

Now, here, you see, it takes all the running you can do, to keep in the same
place. If you want to get somewhere else, you must run at least twice as fast as
that!

—Lewis Carroll, Through the Looking Glass

439
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In this chapter, we consider the implementation of individual relational op-
erators in sufficient detail to understand how DBMSs are implemented. The
discussion builds on the foundation laid in Chapter 12. We present implemen-
tation alternatives for the selection operator in Sections 14.1 and 14.2. It is
instructive to see the variety of alternatives and the wide variation in perfor-
mance of these alternatives, for even such a simple operator. In Section 14.3,
we consider the other unary operator in relational algebra, projection.

We then discuss the implementation of binary operators, beginning with joins
in Section 14.4. Joins are among the most expensive operators in a relational
database system, and their implementation has a big impact on performance.
After discussing the join operator, we consider implementation of the binary
operators cross-product, intersection, union, and set-difference in Section 14.5.
We discuss the implementation of grouping and aggregate operators, which are
extensions of relational algebra, in Section 14.6. We conclude with a discussion
of how buffer management affects operator evaluation costs in Section 14.7.

The discussion of each operator is largely independent of the discussion of other
operators. Several alternative implementation techniques are presented for each
operator; the reader who wishes to cover this material in less depth can skip
some of these alternatives without loss of continuity.

Preliminaries: Examples and Cost Calculations

We present a number of example queries using the same schema as in Chapter
12:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Reserves(sid: integer, bid: integer, day: dates, rname: string)

This schema is a variant of the one that we used in Chapter 5; we added a
string field rname to Reserves. Intuitively, this field is the name of the person
who made the reservation (and may be different from the name of the sailor sid
for whom the reservation was made; a reservation may be made by a person
who is not a sailor on behalf of a sailor). The addition of this field gives us
more flexibility in choosing illustrative examples. We assume that each tuple
of Reserves is 40 bytes long, that a page can hold 100 Reserves tuples, and
that we have 1000 pages of such tuples. Similarly, we assume that each tuple
of Sailors is 50 bytes long, that a page can hold 80 Sailors tuples, and that we
have 500 pages of such tuples.

Two points must be kept in mind to understand our discussion of costs:
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As discussed in Chapter 8, we consider only I/O costs and measure I/O
cost in terms of the number of page I/Os. We also use big-O notation to
express the complexity of an algorithm in terms of an input parameter and
assume that the reader is familiar with this notation. For example, the
cost of a file scan is O(M), where M is the size of the file.

We discuss several alternate algorithms for each operation. Since each
alternative incurs the same cost in writing out the result, should this be
necessary, we uniformly ignore this cost in comparing alternatives.

14.1 THE SELECTION OPERATION

In this section, we describe various algorithms to evaluate the selection opera-
tor. To motivate the discussion, consider the selection query shown in Figure
14.1, which has the selection condition rname=‘Joe’.

SELECT *
FROM Reserves R
WHERE R.rname=‘Joe’

Figure 14.1 Simple Selection Query

We can evaluate this query by scanning the entire relation, checking the condi-
tion on each tuple, and adding the tuple to the result if the condition is satisfied.
The cost of this approach is 1000 I/Os, since Reserves contains 1000 pages. If
only a few tuples have rname=‘Joe’, this approach is expensive because it does
not utilize the selection to reduce the number of tuples retrieved in any way.
How can we improve on this approach? The key is to utilize information in the
selection condition and use an index if a suitable index is available. For exam-
ple, a B+ tree index on rname could be used to answer this query considerably
faster, but an index on bid would not be useful.

In the rest of this section, we consider various situations with respect to the file
organization used for the relation and the availability of indexes and discuss
appropriate algorithms for the selection operation. We discuss only simple
selection operations of the form σR.attr op value(R) until Section 14.2, where
we consider general selections. In terms of the general techniques listed in
Section 12.2, the algorithms for selection use either iteration or indexing.

14.1.1 No Index, Unsorted Data

Given a selection of the form σR.attr op value(R), if there is no index on R.attr
and R is not sorted on R.attr, we have to scan the entire relation. Therefore,
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the most selective access path is a file scan. For each tuple, we must test the
condition R.attr op value and add the tuple to the result if the condition is
satisfied.

14.1.2 No Index, Sorted Data

Given a selection of the form σR.attr op value(R), if there is no index on R.attr,
but R is physically sorted on R.attr, we can utilize the sort order by doing
a binary search to locate the first tuple that satisfies the selection condition.
Further, we can then retrieve all tuples that satisfy the selection condition
by starting at this location and scanning R until the selection condition is
no longer satisfied. The access method in this case is a sorted-file scan with
selection condition σR.attr op value(R).

For example, suppose that the selection condition is R.attr1 > 5, and that R is
sorted on attr1 in ascending order. After a binary search to locate the position
in R corresponding to 5, we simply scan all remaining records.

The cost of the binary search is O(log2M). In addition, we have the cost of the
scan to retrieve qualifying tuples. The cost of the scan depends on the number
of such tuples and can vary from zero to M . In our selection from Reserves
(Figure 14.1), the cost of the binary search is log21000 ≈ 10 I/Os.

In practice, it is unlikely that a relation will be kept sorted if the DBMS sup-
ports Alternative (1) for index data entries; that is, allows data records to be
stored as index data entries. If the ordering of data records is important, a
better way to maintain it is through a B+ tree index that uses Alternative (1).

14.1.3 B+ Tree Index

If a clustered B+ tree index is available on R.attr, the best strategy for selection
conditions σR.attr op value(R) in which op is not equality is to use the index.
This strategy is also a good access path for equality selections, although a hash
index on R.attr would be a little better. If the B+ tree index is not clustered,
the cost of using the index depends on the number of tuples that satisfy the
selection, as discussed later.

We can use the index as follows: We search the tree to find the first index
entry that points to a qualifying tuple of R. Then we scan the leaf pages of the
index to retrieve all entries in which the key value satisfies the selection condi-
tion. For each of these entries, we retrieve the corresponding tuple of R. (For
concreteness in this discussion, we assume that data entries use Alternatives
(2) or (3); if Alternative (1) is used, the data entry contains the actual tuple
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and there is no additional cost—beyond the cost of retrieving data entries—for
retrieving tuples.)

The cost of identifying the starting leaf page for the scan is typically two or
three I/Os. The cost of scanning the leaf level page for qualifying data entries
depends on the number of such entries. The cost of retrieving qualifying tuples
from R depends on two factors:

The number of qualifying tuples.

Whether the index is clustered. (Clustered and unclustered B+ tree indexes
are illustrated in Figures 13.11 and 13.12. The figures should give the
reader a feel for the impact of clustering, regardless of the type of index
involved.)

If the index is clustered, the cost of retrieving qualifying tuples is probably
just one page I/O (since it is likely that all such tuples are contained in a
single page). If the index is not clustered, each index entry could point to a
qualifying tuple on a different page, and the cost of retrieving qualifying tuples
in a straightforward way could be one page I/O per qualifying tuple (unless we
get lucky with buffering). We can significantly reduce the number of I/Os to
retrieve qualifying tuples from R by first sorting the rids (in the index’s data
entries) by their page-id component. This sort ensures that, when we bring in
a page of R, all qualifying tuples on this page are retrieved one after the other.
The cost of retrieving qualifying tuples is now the number of pages of R that
contain qualifying tuples.

Consider a selection of the form rname < ‘C%’ on the Reserves relation. As-
suming that names are uniformly distributed with respect to the initial letter,
for simplicity, we estimate that roughly 10% of Reserves tuples are in the result.
This is a total of 10,000 tuples, or 100 pages. If we have a clustered B+ tree
index on the rname field of Reserves, we can retrieve the qualifying tuples with
100 I/Os (plus a few I/Os to traverse from the root to the appropriate leaf page
to start the scan). However, if the index is unclustered, we could have up to
10,000 I/Os in the worst case, since each tuple could cause us to read a page. If
we sort the rids of Reserves tuples by the page number and then retrieve pages
of Reserves, we avoid retrieving the same page multiple times; nonetheless, the
tuples to be retrieved are likely to be scattered across many more than 100
pages. Therefore, the use of an unclustered index for a range selection could
be expensive; it might be cheaper to simply scan the entire relation (which is
1000 pages in our example).
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14.1.4 Hash Index, Equality Selection

If a hash index is available on R.attr and op is equality, the best way to imple-
ment the selection σR.attr op value(R) is obviously to use the index to retrieve
qualifying tuples.

The cost includes a few (typically one or two) I/Os to retrieve the appropriate
bucket page in the index, plus the cost of retrieving qualifying tuples from
R. The cost of retrieving qualifying tuples from R depends on the number of
such tuples and on whether the index is clustered. Since op is equality, there
is exactly one qualifying tuple if R.attr is a (candidate) key for the relation.
Otherwise, we could have several tuples with the same value in this attribute.

Consider the selection in Figure 14.1. Suppose that there is an unclustered
hash index on the rname attribute, that we have 10 buffer pages, and that
100 reservations were made by people named Joe. The cost of retrieving the
index page containing the rids of such reservations is one or two I/Os. The cost
of retrieving the 100 Reserves tuples can vary between 1 and 100, depending
on how these records are distributed across pages of Reserves and the order
in which we retrieve these records. If these 100 records are contained in, say,
some five pages of Reserves, we have just five additional I/Os if we sort the
rids by their page component. Otherwise, it is possible that we bring in one of
these five pages, then look at some of the other pages, and find that the first
page has been paged out when we need it again. (Remember that several users
and DBMS operations share the buffer pool.) This situation could cause us to
retrieve the same page several times.

14.2 GENERAL SELECTION CONDITIONS

In our discussion of the selection operation thus far, we have considered selec-
tion conditions of the form σR.attr op value(R). In general, a selection condition
is a Boolean combination (i.e., an expression using the logical connectives ∧
and ∨) of terms that have the form attribute op constant or attribute1 op
attribute2. For example, if the WHERE clause in the query shown in Figure 14.1
contained the condition R.rname=‘Joe’ AND R.bid=r, the equivalent algebra
expression would be σR.rname= Joe ∧R.bid=r(R).

In Section 14.2.1, we provide a more rigorous definition of CNF, which we
introduced in Section 12.2.2. We consider algorithms for applying selection
conditions without disjunction in Section 14.2.2 and then discuss conditions
with disjunction in Section 14.2.3.
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14.2.1 CNF and Index Matching

To process a selection operation with a general selection condition, we first
express the condition in conjunctive normal form (CNF), that is, as a
collection of conjuncts that are connected through the use of the ∧ operator.
Each conjunct consists of one or more terms (of the form described previously)
connected by ∨.1 Conjuncts that contain ∨ are said to be disjunctive or to
contain disjunction.

As an example, suppose that we have a selection on Reserves with the condition
(day < 8/9/02 ∧ rname = ‘Joe’) ∨ bid=5 ∨ sid=3. We can rewrite this in
conjunctive normal form as (day < 8/9/02 ∨ bid=5 ∨ sid=3) ∧ (rname =
‘Joe’ ∨ bid=5 ∨ sid=3).

We discussed when an index matches a CNF selection in Section 12.2.2 and in-
troduced selectivity of access paths. The reader is urged to review that material
now.

14.2.2 Evaluating Selections without Disjunction

When the selection does not contain disjunction, that is, it is a conjunction of
terms, we have two evaluation options to consider:

We can retrieve tuples using a file scan or a single index that matches
some conjuncts (and which we estimate to be the most selective access
path) and apply all nonprimary conjuncts in the selection to each retrieved
tuple. This approach is very similar to how we use indexes for simple
selection conditions, and we do not discuss it further. (We emphasize that
the number of tuples retrieved depends on the selectivity of the primary
conjuncts in the selection, and the remaining conjuncts only reduce the
cardinality of the result of the selection.)

We can try to utilize several indexes. We examine this approach in the rest
of this section.

If several indexes containing data entries with rids (i.e., Alternatives (2) or (3))
match conjuncts in the selection, we can use these indexes to compute sets of
rids of candidate tuples. We can then intersect these sets of rids, typically by
first sorting them, then retrieving those records whose rids are in the intersec-
tion. If additional conjuncts are present in the selection, we can apply these
conjuncts to discard some of the candidate tuples from the result.

1Every selection condition can be expressed in CNF. We refer the reader to any standard text on

mathematical logic for the details.
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Intersecting rid Sets: Oracle 8 uses several techniques to do rid set in-
tersection for selections with AND. One is to AND bitmaps. Another is to
do a hash join of indexes. For example, given sal < 5 ∧ price > 30 and
indexes on sal and price, we can join the indexes on the rid column, con-
sidering only entries that satisfy the given selection conditions. Microsoft
SQL Server implements rid set intersection through index joins. IBM DB2
implements intersection of rid sets using Bloom filters (which are discussed
in Section 22.10.2). Sybase ASE does not do rid set intersection for AND
selections; Sybase ASIQ does it using bitmap operations. Informix also
does rid set intersection.

As an example, given the condition day < 8/9/02 ∧ bid=5 ∧ sid=3, we can
retrieve the rids of records that meet the condition day < 8/9/02 by using a
B+ tree index on day, retrieve the rids of records that meet the condition sid=3
by using a hash index on sid, and intersect these two sets of rids. (If we sort
these sets by the page id component to do the intersection, a side benefit is
that the rids in the intersection are obtained in sorted order by the pages that
contain the corresponding tuples, which ensures that we do not fetch the same
page twice while retrieving tuples using their rids.) We can now retrieve the
necessary pages of Reserves to retrieve tuples and check bid=5 to obtain tuples
that meet the condition day < 8/9/02 ∧ bid=5 ∧ sid=3.

14.2.3 Selections with Disjunction

Now let us consider that one of the conjuncts in the selection condition is a
disjunction of terms. If even one of these terms requires a file scan because
suitable indexes or sort orders are unavailable, testing this conjunct by itself
(i.e., without taking advantage of other conjuncts) requires a file scan. For
example, suppose that the only available indexes are a hash index on rname
and a hash index on sid, and that the selection condition contains just the
(disjunctive) conjunct (day < 8/9/02 ∨ rname=‘Joe’). We can retrieve tuples
satisfying the condition rname=‘Joe’ by using the index on rname. However,
day < 8/9/02 requires a file scan. So we might as well do a file scan and
check the condition rname=‘Joe’ for each retrieved tuple. Therefore, the most
selective access path in this example is a file scan.

On the other hand, if the selection condition is (day < 8/9/02 ∨ rname=‘Joe’)
∧ sid=3, the index on sid matches the conjunct sid=3. We can use this index
to find qualifying tuples and apply day < 8/9/02 ∨ rname=‘Joe’ to just these
tuples. The best access path in this example is the index on sid with the
primary conjunct sid=3.
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Disjunctions: Microsoft SQL Server considers the use of unions and
bitmaps for dealing with disjunctive conditions. Oracle 8 considers four
ways to handle disjunctive conditions: (1) Convert the query into a union
of queries without OR. (2) If the conditions involve the same attribute, such
as sal < 5 ∨ sal > 30, use a nested query with an IN list and an index on
the attribute to retrieve tuples matching a value in the list. (3) Use bitmap
operations, e.g., evaluate sal < 5∨ sal > 30 by generating bitmaps for the
values 5 and 30 and OR the bitmaps to find the tuples that satisfy one of
the conditions. (We discuss bitmaps in Chapter 25.) (4) Simply apply the
disjunctive condition as a filter on the set of retrieved tuples. Sybase ASE
considers the use of unions for dealing with disjunctive queries and Sybase
ASIQ uses bitmap operations.

Finally, if every term in a disjunction has a matching index, we can retrieve
candidate tuples using the indexes and then take the union. For example, if the
selection condition is the conjunct (day < 8/9/02 ∨ rname=‘Joe’) and we have
B+ tree indexes on day and rname, we can retrieve all tuples such that day <
8/9/02 using the index on day, retrieve all tuples such that rname=‘Joe’ using
the index on rname, and then take the union of the retrieved tuples. If all the
matching indexes use Alternative (2) or (3) for data entries, a better approach
is to take the union of rids and sort them before retrieving the qualifying data
records. Thus, in the example, we can find rids of tuples such that day <
8/9/02 using the index on day, find rids of tuples such that rname=‘Joe’ using
the index on rname, take the union of these sets of rids and sort them by page
number, and then retrieve the actual tuples from Reserves. This strategy can
be thought of as a (complex) access path that matches the selection condition
(day < 8/9/02 ∨ rname=‘Joe’).

Most current systems do not handle selection conditions with disjunction effi-
ciently and concentrate on optimizing selections without disjunction.

14.3 THE PROJECTION OPERATION

Consider the query shown in Figure 14.2. The optimizer translates this query
into the relational algebra expression πsid,bidReserves. In general the projection
operator is of the form πattr1,attr2,...,attrm(R). To implement projection, we have

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Figure 14.2 Simple Projection Query
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to do the following:

1. Remove unwanted attributes (i.e., those not specified in the projection).

2. Eliminate any duplicate tuples produced.

The second step is the difficult one. There are two basic algorithms, one based
on sorting and one based on hashing. In terms of the general techniques listed in
Section 12.2, both algorithms are instances of partitioning. While the technique
of using an index to identify a subset of useful tuples is not applicable for
projection, the sorting or hashing algorithms can be applied to data entries
in an index, instead of to data records, under certain conditions described in
Section 14.3.4.

14.3.1 Projection Based on Sorting

The algorithm based on sorting has the following steps (at least conceptually):

1. Scan R and produce a set of tuples that contain only the desired attributes.

2. Sort this set of tuples using the combination of all its attributes as the key
for sorting.

3. Scan the sorted result, comparing adjacent tuples, and discard duplicates.

If we use temporary relations at each step, the first step costs M I/Os to scan
R, where M is the number of pages of R, and T I/Os to write the temporary
relation, where T is the number of pages of the temporary; T is O(M). (The
exact value of T depends on the number of fields retained and the sizes of these
fields.) The second step costs O(T logT ) (which is also O(MlogM), of course).
The final step costs T . The total cost is O(MlogM). The first and third steps
are straightforward and relatively inexpensive. (As noted in the chapter on
sorting, the cost of sorting grows linearly with dataset size in practice, given
typical dataset sizes and main memory sizes.)

Consider the projection on Reserves shown in Figure 14.2. We can scan Re-
serves at a cost of 1000 I/Os. If we assume that each tuple in the temporary
relation created in the first step is 10 bytes long, the cost of writing this tem-
porary relation is 250 I/Os. Suppose we have 20 buffer pages. We can sort the
temporary relation in two passes at a cost of 2 · 2 · 250 = 1000 I/Os. The scan
required in the third step costs an additional 250 I/Os. The total cost is 2500
I/Os.
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This approach can be improved on by modifying the sorting algorithm to do
projection with duplicate elimination. Recall the structure of the external sort-
ing algorithm presented in Chapter 13. The very first pass (Pass 0) involves
a scan of the records that are to be sorted to produce the initial set of (in-
ternally) sorted runs. Subsequently, one or more passes merge runs. Two
important modifications to the sorting algorithm adapt it for projection:

We can project out unwanted attributes during the first pass (Pass 0) of
sorting. If B buffer pages are available, we can read in B pages of R and
write out (T/M) · B internally sorted pages of the temporary relation. In
fact, with a more aggressive implementation, we can write out approxi-
mately 2 · B internally sorted pages of the temporary relation on average.
(The idea is similar to the refinement of external sorting discussed in Sec-
tion 13.3.1.)

We can eliminate duplicates during the merging passes. In fact, this modifi-
cation reduces the cost of the merging passes since fewer tuples are written
out in each pass. (Most of the duplicates are eliminated in the very first
merging pass.)

Let us consider our example again. In the first pass we scan Reserves, at a cost
of 1000 I/Os and write out 250 pages. With 20 buffer pages, the 250 pages
are written out as seven internally sorted runs, each (except the last) about 40
pages long. In the second pass we read the runs, at a cost of 250 I/Os, and
merge them. The total cost is 1,500 I/Os, which is much lower than the cost
of the first approach used to implement projection.

14.3.2 Projection Based on Hashing

If we have a fairly large number (say, B) of buffer pages relative to the number
of pages of R, a hash-based approach is worth considering. There are two
phases: partitioning and duplicate elimination.

In the partitioning phase, we have one input buffer page and B−1 output buffer
pages. The relation R is read into the input buffer page, one page at a time.
The input page is processed as follows: For each tuple, we project out the
unwanted attributes and then apply a hash function h to the combination of
all remaining attributes. The function h is chosen so that tuples are distributed
uniformly to one of B − 1 partitions; there is one output page per partition.
After the projection the tuple is written to the output buffer page that it is
hashed to by h.

At the end of the partitioning phase, we have B − 1 partitions, each of which
contains a collection of tuples that share a common hash value (computed by
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applying h to all fields), and have only the desired fields. The partitioning
phase is illustrated in Figure 14.3.

INPUT

OUTPUT 1

hash

function

h

B-1

2

B main memory buffersDisk

Original relation Partitions

Disk

B-1

2

1

Figure 14.3 Partitioning Phase of Hash-Based Projection

Two tuples that belong to different partitions are guaranteed not to be dupli-
cates because they have different hash values. Thus, if two tuples are duplicates,
they are in the same partition. In the duplicate elimination phase, we read in
the B − 1 partitions one at a time to eliminate duplicates. The basic idea
is to build an in-memory hash table as we process tuples in order to detect
duplicates.

For each partition produced in the first phase:

1. Read in the partition one page at a time. Hash each tuple by applying
hash function h2 ( = h) to the combination of all fields and then insert it
into an in-memory hash table. If a new tuple hashes to the same value as
some existing tuple, compare the two to check whether the new tuple is a
duplicate. Discard duplicates as they are detected.

2. After the entire partition has been read in, write the tuples in the hash table
(which is free of duplicates) to the result file. Then clear the in-memory
hash table to prepare for the next partition.

Note that h2 is intended to distribute the tuples in a partition across many
buckets to minimize collisions (two tuples having the same h2 values). Since
all tuples in a given partition have the same h value, h2 cannot be the same as
h!

This hash-based projection strategy will not work well if the size of the hash
table for a partition (produced in the partitioning phase) is greater than the
number of available buffer pages B. One way to handle this partition over-
flow problem is to recursively apply the hash-based projection technique to
eliminate the duplicates in each partition that overflows. That is, we divide
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an overflowing partition into subpartitions, then read each subpartition into
memory to eliminate duplicates.

If we assume that h distributes the tuples with perfect uniformity and that the
number of pages of tuples after the projection (but before duplicate elimination)
is T , each partition contains T

B−1
pages. (Note that the number of partitions

is B − 1 because one of the buffer pages is used to read in the relation during
the partitioning phase.) The size of a partition is therefore T

B−1
, and the size

of a hash table for a partition is T
B−1

· f ; where f is a fudge factor used to
capture the (small) increase in size between the partition and a hash table for
the partition. The number of buffer pages B must be greater than the partition
size T

B−1
·f to avoid partition overflow. This observation implies that we require

approximately B >
√
f · T buffer pages.

Now let us consider the cost of hash-based projection. In the partitioning
phase, we read R, at a cost of M I/Os. We also write out the projected tuples,
a total of T pages, where T is some fraction of M , depending on the fields that
are projected out. The cost of this phase is therefore M + T I/Os; the cost of
hashing is a CPU cost, and we do not take it into account. In the duplicate
elimination phase, we have to read in every partition. The total number of
pages in all partitions is T . We also write out the in-memory hash table for
each partition after duplicate elimination; this hash table is part of the result
of the projection, and we ignore the cost of writing out result tuples, as usual.
Thus, the total cost of both phases is M + 2T . In our projection on Reserves
(Figure 14.2), this cost is 1000 + 2 · 250 = 1500 I/Os.

14.3.3 Sorting Versus Hashing for Projections

The sorting-based approach is superior to hashing if we have many duplicates
or if the distribution of (hash) values is very nonuniform. In this case, some
partitions could be much larger than average, and a hash table for such a par-
tition would not fit in memory during the duplicate elimination phase. Also,
a useful side effect of using the sorting-based approach is that the result is
sorted. Further, since external sorting is required for a variety of reasons, most
database systems have a sorting utility, which can be used to implement pro-
jection relatively easily. For these reasons, sorting is the standard approach
for projection. And perhaps due to a simplistic use of the sorting utility, un-
wanted attribute removal and duplicate elimination are separate steps in many
systems (i.e., the basic sorting algorithm is often used without the refinements
we outlined).

We observe that, if we have B >
√
T buffer pages, where T is the size of

the projected relation before duplicate elimination, both approaches have the
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Projection in Commercial Systems: Informix uses hashing. IBM DB2,
Oracle 8, and Sybase ASE use sorting. Microsoft SQL Server and Sybase
ASIQ implement both hash-based and sort-based algorithms.

same I/O cost. Sorting takes two passes. In the first pass, we read M pages
of the original relation and write out T pages. In the second pass, we read
the T pages and output the result of the projection. Using hashing, in the
partitioning phase, we read M pages and write T pages’ worth of partitions.
In the second phase, we read T pages and output the result of the projection.
Thus, considerations such as CPU costs, desirability of sorted order in the
result, and skew in the distribution of values drive the choice of projection
method.

14.3.4 Use of Indexes for Projections

Neither the hashing nor the sorting approach utilizes any existing indexes.
An existing index is useful if the key includes all the attributes we wish to
retain in the projection. In this case, we can simply retrieve the key values
from the index—without ever accessing the actual relation—and apply our
projection techniques to this (much smaller) set of pages. This technique,
called an index-only scan, and was discussed in Sections 8.5.2 and 12.3.2. If
we have an ordered (i.e., a tree) index whose search key includes the wanted
attributes as a prefix, we can do even better: Just retrieve the data entries
in order, discarding unwanted fields, and compare adjacent entries to check
for duplicates. The index-only scan technique is discussed further in Section
15.4.1.

14.4 THE JOIN OPERATION

Consider the following query:

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

This query can be expressed in relational algebra using the join operation:
R   S. The join operation, one of the most useful operations in relational
algebra, is the primary means of combining information from two or more
relations.
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Joins in Commercial Systems: Sybase ASE supports index nested loop
and sort-merge join. Sybase ASIQ supports page-oriented nested loop, in-
dex nested loop, simple hash, and sort-merge join, in addition to join in-
dexes (which we discuss in Chapter 25). Oracle 8 supports page-oriented
nested loops join, sort-merge join, and a variant of hybrid hash join. IBM
DB2 supports block nested loop, sort-merge, and hybrid hash join. Mi-
crosoft SQL Server supports block nested loops, index nested loops, sort-
merge, hash join, and a technique called hash teams. Informix supports
block nested loops, index nested loops, and hybrid hash join.

Although a join can be defined as a cross-product followed by selections and pro-
jections, joins arise much more frequently in practice than plain cross-products.
Further, the result of a cross-product is typically much larger than the result of
a join, so it is very important to recognize joins and implement them without
materializing the underlying cross-product. Joins have therefore received a lot
of attention.

We now consider several alternative techniques for implementing joins. We
begin by discussing two algorithms (simple nested loops and block nested loops)
that essentially enumerate all tuples in the cross-product and discard tuples
that do not meet the join conditions. These algorithms are instances of the
simple iteration technique mentioned in Section 12.2.

The remaining join algorithms avoid enumerating the cross-product. They
are instances of the indexing and partitioning techniques mentioned in Section
12.2. Intuitively, if the join condition consists of equalities, tuples in the two
relations can be thought of as belonging to partitions, such that only tuples in
the same partition can join with each other; the tuples in a partition contain
the same values in the join columns. Index nested loops join scans one of the
relations and, for each tuple in it, uses an index on the (join columns of the)
second relation to locate tuples in the same partition. Thus, only a subset of
the second relation is compared with a given tuple of the first relation, and the
entire cross-product is not enumerated. The last two algorithms (sort-merge
join and hash join) also take advantage of join conditions to partition tuples in
the relations to be joined and compare only tuples in the same partition while
computing the join, but they do not rely on a pre-existing index. Instead, they
either sort or hash the relations to be joined to achieve the partitioning.

We discuss the join of two relations R and S, with the join condition Ri = Sj,
using positional notation. (If we have more complex join conditions, the basic
idea behind each algorithm remains essentially the same. We discuss the details
in Section 14.4.4.) We assume M pages in R with pR tuples per page and N
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pages in S with pS tuples per page. We use R and S in our presentation of the
algorithms, and the Reserves and Sailors relations for specific examples.

14.4.1 Nested Loops Join

The simplest join algorithm is a tuple-at-a-time nested loops evaluation. We
scan the outer relation R, and for each tuple r ∈ R, we scan the entire inner
relation S. The cost of scanning R is M I/Os. We scan S a total of pR · M
times, and each scan costs N I/Os. Thus, the total cost is M + pR ·M ·N .

foreach tuple r ∈ R do

foreach tuple s ∈ S do

if ri==sj then add  r, s to result

Figure 14.4 Simple Nested Loops Join

Suppose we choose R to be Reserves and S to be Sailors. The value of M
is then 1,000, pR is 100, and N is 500. The cost of simple nested loops join
is 1000 + 100 · 1000 · 500 page I/Os (plus the cost of writing out the result;
we remind the reader again that we uniformly ignore this component of the
cost). The cost is staggering: 1000 + (5 · 107) I/Os. Note that each I/O costs
about 10ms on current hardware, which means that this join will take about
140 hours!

A simple refinement is to do this join page-at-a-time: For each page of R, we
can retrieve each page of S and write out tuples  r, s for all qualifying tuples
r ∈ R-page and s ∈ S-page. This way, the cost is M to scan R, as before.
However, S is scanned only M times, and so the total cost is M + M · N .
Thus, the page-at-a-time refinement gives us an improvement of a factor of pR.
In the example join of the Reserves and Sailors relations, the cost is reduced
to 1000 + 1000 · 500 = 501, 000 I/Os and would take about 1.4 hours. This
dramatic improvement underscores the importance of page-oriented operations
for minimizing disk I/O.

From these cost formulas a straightforward observation is that we should choose
the outer relation R to be the smaller of the two relations (R   B = B   R,
as long as we keep track of field names). This choice does not change the costs
significantly, however. If we choose the smaller relation, Sailors, as the outer
relation, the cost of the page-at-a-time algorithm is 500 +500 · 1000 = 500, 500
I/Os, which is only marginally better than the cost of page-oriented simple
nested loops join with Reserves as the outer relation.
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Block Nested Loops Join

The simple nested loops join algorithm does not effectively utilize buffer pages.
Suppose we have enough memory to hold the smaller relation, say, R, with
at least two extra buffer pages left over. We can read in the smaller relation
and use one of the extra buffer pages to scan the larger relation S. For each
tuple s ∈ S, we check R and output a tuple  r, s for qualifying tuples s (i.e.,
ri = sj). The second extra buffer page is used as an output buffer. Each
relation is scanned just once, for a total I/O cost of M +N , which is optimal.

If enough memory is available, an important refinement is to build an in-
memory hash table for the smaller relation R. The I/O cost is still M +N , but
the CPU cost is typically much lower with the hash table refinement.

What if we have too little memory to hold the entire smaller relation? We can
generalize the preceding idea by breaking the relation R into blocks that can
fit into the available buffer pages and scanning all of S for each block of R. R
is the outer relation, since it is scanned only once, and S is the inner relation,
since it is scanned multiple times. If we have B buffer pages, we can read in
B − 2 pages of the outer relation R and scan the inner relation S using one of
the two remaining pages. We can write out tuples  r, s , where r ∈ R-block,
s ∈ S-page, and ri = sj, using the last buffer page for output.

An efficient way to find matching pairs of tuples (i.e., tuples satisfying the
join condition ri = sj) is to build a main-memory hash table for the block of R.
Because a hash table for a set of tuples takes a little more space than just the
tuples themselves, building a hash table involves a trade-off: The effective block
size of R, in terms of the number of tuples per block, is reduced. Building a hash
table is well worth the effort. The block nested loops algorithm is described in
Figure 14.5. Buffer usage in this algorithm is illustrated in Figure 14.6.

foreach block of B − 2 pages of R do

foreach page of S do {
for all matching in-memory tuples r ∈ R-block and s ∈ S-page,

add  r, s to result

}

Figure 14.5 Block Nested Loops Join

The cost of this strategy is M I/Os for reading in R (which is scanned only
once). S is scanned a total of  M

B−2
 times—ignoring the extra space required

per page due to the in-memory hash table—and each scan costs N I/Os. The
total cost is thus M +N ·  M

B−2
 .
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Figure 14.6 Buffer Usage in Block Nested Loops Join

Consider the join of the Reserves and Sailors relations. Let us choose Reserves
to be the outer relation R and assume we have enough buffers to hold an in-
memory hash table for 100 pages of Reserves (with at least two additional
buffers, of course). We have to scan Reserves, at a cost of 1000 I/Os. For each
100-page block of Reserves, we have to scan Sailors. Therefore, we perform
10 scans of Sailors, each costing 500 I/Os. The total cost is 1000 + 10 · 500 =
6000 I/Os. If we had only enough buffers to hold 90 pages of Reserves, we
would have to scan Sailors  1000/90 = 12 times, and the total cost would be
1000 + 12 · 500 = 7000 I/Os.

Suppose we choose Sailors to be the outer relation R instead. Scanning Sailors
costs 500 I/Os. We would scan Reserves  500/100 = 5 times. The total cost
is 500 + 5 · 1, 000 = 5500 I/Os. If instead we have only enough buffers for 90
pages of Sailors, we would scan Reserves a total of  500/90 = 6 times. The
total cost in this case is 500 + 6 · 1000 = 6500 I/Os. We note that the block
nested loops join algorithm takes a little over a minute on our running example,
assuming 10ms per I/O as before.

Impact of Blocked Access

If we consider the effect of blocked access to several pages, there is a funda-
mental change in the way we allocate buffers for block nested loops. Rather
than using just one buffer page for the inner relation, the best approach is to
split the buffer pool evenly between the two relations. This allocation results
in more passes over the inner relation, leading to more page fetches. However,
the time spent on seeking for pages is dramatically reduced.

The technique of double buffering (discussed in Chapter 13 in the context of
sorting) can also be used, but we do not discuss it further.
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Index Nested Loops Join

If there is an index on one of the relations on the join attribute(s), we can take
advantage of the index by making the indexed relation be the inner relation.
Suppose we have a suitable index on S; Figure 14.7 describes the index nested
loops join algorithm.

foreach tuple r ∈ R do

foreach tuple s ∈ S where ri == sj
add  r, s to result

Figure 14.7 Index Nested Loops Join

For each tuple r ∈ R, we use the index to retrieve matching tuples of S.
Intuitively, we compare r only with tuples of S that are in the same partition,
in that they have the same value in the join column. Unlike the other nested
loops join algorithms, therefore, the index nested loops join algorithm does not
enumerate the cross-product of R and S. The cost of scanning R is M , as
before. The cost of retrieving matching S tuples depends on the kind of index
and the number of matching tuples; for each R tuple, the cost is as follows:

1. If the index on S is a B+ tree index, the cost to find the appropriate leaf
is typically 2–4 I/Os. If the index is a hash index, the cost to find the
appropriate bucket is 1–2 I/Os.

2. Once we find the appropriate leaf or bucket, the cost of retrieving matching
S tuples depends on whether the index is clustered. If it is, the cost per
outer tuple r ∈ R is typically just one more I/O. If it is not clustered, the
cost could be one I/O per matching S-tuple (since each of these could be
on a different page in the worst case).

As an example, suppose that we have a hash-based index using Alternative (2)
on the sid attribute of Sailors and that it takes about 1.2 I/Os on average2

to retrieve the appropriate page of the index. Since sid is a key for Sailors,
we have at most one matching tuple. Indeed, sid in Reserves is a foreign key
referring to Sailors, and therefore we have exactly one matching Sailors tuple
for each Reserves tuple. Let us consider the cost of scanning Reserves and
using the index to retrieve the matching Sailors tuple for each Reserves tuple.
The cost of scanning Reserves is 1000. There are 100 · 1000 tuples in Reserves.
For each of these tuples, retrieving the index page containing the rid of the
matching Sailors tuple costs 1.2 I/Os (on average); in addition, we have to
retrieve the Sailors page containing the qualifying tuple. Therefore, we have

2This is a typical cost for hash-based indexes.
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100,000 ·(1 + 1.2) I/Os to retrieve matching Sailors tuples. The total cost is
221,000 I/Os.

As another example, suppose that we have a hash-based index using Alternative
(2) on the sid attribute of Reserves. Now we can scan Sailors (500 I/Os),
and for each tuple, use the index to retrieve matching Reserves tuples. We
have a total of 80 · 500 Sailors tuples, and each tuple could match with either
zero or more Reserves tuples; a sailor may have no reservations or several.
For each Sailors tuple, we can retrieve the index page containing the rids of
matching Reserves tuples (assuming that we have at most one such index page,
which is a reasonable guess) in 1.2 I/Os on average. The total cost thus far is
500 + 40, 000 · 1.2 = 48, 500 I/Os.

In addition, we have the cost of retrieving matching Reserves tuples. Since we
have 100,000 reservations for 40,000 Sailors, assuming a uniform distribution
we can estimate that each Sailors tuple matches with 2.5 Reserves tuples on
average. If the index on Reserves is clustered, and these matching tuples are
typically on the same page of Reserves for a given sailor, the cost of retrieving
them is just one I/O per Sailor tuple, which adds up to 40,000 extra I/Os.
If the index is not clustered, each matching Reserves tuple may well be on
a different page, leading to a total of 2.5 · 40, 000 I/Os for retrieving qualify-
ing tuples. Therefore, the total cost can vary from 48,500+40,000=88,500 to
48,500+100,000=148,500 I/Os. Assuming 10ms per I/O, this would take about
15 to 25 minutes.

So, even with an unclustered index, if the number of matching inner tuples for
each outer tuple is small (on average), the cost of the index nested loops join
algorithm is likely to be much less than the cost of a simple nested loops join.

14.4.2 Sort-Merge Join

The basic idea behind the sort-merge join algorithm is to sort both relations
on the join attribute and then look for qualifying tuples r ∈ R and s ∈ S
by essentially merging the two relations. The sorting step groups all tuples
with the same value in the join column and thus makes it easy to identify
partitions, or groups of tuples with the same value, in the join column. We
exploit this partitioning by comparing the R tuples in a partition with only the
S tuples in the same partition (rather than with all S tuples), thereby avoiding
enumeration of the cross-product of R and S. (This partition-based approach
works only for equality join conditions.)

The external sorting algorithm discussed in Chapter 13 can be used to do the
sorting, and of course, if a relation is already sorted on the join attribute, we
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need not sort it again. We now consider the merging step in detail: We scan
the relations R and S, looking for qualifying tuples (i.e., tuples Tr in R and
Ts in S such that Tri = Tsj). The two scans start at the first tuple in each
relation. We advance the scan of R as long as the current R tuple is less than
the current S tuple (with respect to the values in the join attribute). Similarly,
we advance the scan of S as long as the current S tuple is less than the current
R tuple. We alternate between such advances until we find an R tuple Tr and
a S tuple Ts with Tri = Tsj.

When we find tuples Tr and Ts such that Tri = Tsj, we need to output the
joined tuple. In fact, we could have several R tuples and several S tuples with
the same value in the join attributes as the current tuples Tr and Ts. We
refer to these tuples as the current R partition and the current S partition. For
each tuple r in the current R partition, we scan all tuples s in the current S
partition and output the joined tuple  r, s . We then resume scanning R and
S, beginning with the first tuples that follow the partitions of tuples that we
just processed.

The sort-merge join algorithm is shown in Figure 14.8. We assign only tuple
values to the variables Tr, Ts, and Gs and use the special value eof to denote
that there are no more tuples in the relation being scanned. Subscripts identify
fields, for example, Tri denotes the ith field of tuple Tr. If Tr has the value
eof , any comparison involving Tri is defined to evaluate to false.

We illustrate sort-merge join on the Sailors and Reserves instances shown in
Figures 14.9 and 14.10, with the join condition being equality on the sid at-
tributes.

These two relations are already sorted on sid, and the merging phase of the
sort-merge join algorithm begins with the scans positioned at the first tuple of
each relation instance. We advance the scan of Sailors, since its sid value, now
22, is less than the sid value of Reserves, which is now 28. The second Sailors
tuple has sid = 28, which is equal to the sid value of the current Reserves tuple.
Therefore, we now output a result tuple for each pair of tuples, one from Sailors
and one from Reserves, in the current partition (i.e., with sid = 28). Since we
have just one Sailors tuple with sid = 28 and two such Reserves tuples, we
write two result tuples. After this step, we position the scan of Sailors at the
first tuple after the partition with sid = 28, which has sid = 31. Similarly, we
position the scan of Reserves at the first tuple with sid = 31. Since these two
tuples have the same sid values, we have found the next matching partition,
and we must write out the result tuples generated from this partition (there
are three such tuples). After this, the Sailors scan is positioned at the tuple
with sid = 36, and the Reserves scan is positioned at the tuple with sid = 58.
The rest of the merge phase proceeds similarly.
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proc smjoin(R,S, ‘Ri = S 

j)

if R not sorted on attribute i, sort it;

if S not sorted on attribute j, sort it;

Tr = first tuple in R; // ranges over R

Ts = first tuple in S; // ranges over S

Gs = first tuple in S; // start of current S-partition

while Tr  = eof and Gs  = eof do {

while Tri < Gsj do

Tr = next tuple in R after Tr; // continue scan of R

while Tri > Gsj do

Gs = next tuple in S after Gs // continue scan of S

Ts = Gs; // Needed in case Tri  = Gsj
while Tri == Gsj do { // process current R partition

Ts = Gs; // reset S partition scan

while Tsj == Tri do { // process current R tuple

add  Tr, Ts to result; // output joined tuples

Ts = next tuple in S after Ts;} // advance S partition scan

Tr = next tuple in R after Tr; // advance scan of R

} // done with current R partition

Gs = Ts; // initialize search for next S partition

}

Figure 14.8 Sort-Merge Join

sid sname rating age

22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
36 lubber 6 36.0
44 guppy 5 35.0
58 rusty 10 35.0

Figure 14.9 An Instance of Sailors

sid bid day rname

28 103 12/04/96 guppy
28 103 11/03/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Figure 14.10 An Instance of Reserves
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In general, we have to scan a partition of tuples in the second relation as often
as the number of tuples in the corresponding partition in the first relation.
The first relation in the example, Sailors, has just one tuple in each partition.
(This is not happenstance but a consequence of the fact that sid is a key—
this example is a key–foreign key join.) In contrast, suppose that the join
condition is changed to be sname=rname. Now, both relations contain more
than one tuple in the partition with sname=rname=‘lubber’. The tuples with
rname=‘lubber’ in Reserves have to be scanned for each Sailors tuple with
sname=‘lubber’.

Cost of Sort-Merge Join

The cost of sorting R is O(MlogM) and the cost of sorting S is O(NlogN).
The cost of the merging phase is M +N if no S partition is scanned multiple
times (or the necessary pages are found in the buffer after the first pass). This
approach is especially attractive if at least one relation is already sorted on the
join attribute or has a clustered index on the join attribute.

Consider the join of the relations Reserves and Sailors. Assuming that we have
100 buffer pages (roughly the same number that we assumed were available
in our discussion of block nested loops join), we can sort Reserves in just two
passes. The first pass produces 10 internally sorted runs of 100 pages each.
The second pass merges these 10 runs to produce the sorted relation. Because
we read and write Reserves in each pass, the sorting cost is 2 · 2 · 1000 = 4000
I/Os. Similarly, we can sort Sailors in two passes, at a cost of 2 · 2 · 500 = 2000
I/Os. In addition, the second phase of the sort-merge join algorithm requires
an additional scan of both relations. Thus the total cost is 4000 + 2000 +
1000 + 500 = 7500 I/Os, which is similar to the cost of the block nested loops
algorithm.

Suppose that we have only 35 buffer pages. We can still sort both Reserves and
Sailors in two passes, and the cost of the sort-merge join algorithm remains at
7500 I/Os. However, the cost of the block nested loops join algorithm is more
than 15,000 I/Os. On the other hand, if we have 300 buffer pages, the cost
of the sort-merge join remains at 7500 I/Os, whereas the cost of the block
nested loops join drops to 2500 I/Os. (We leave it to the reader to verify these
numbers.)

We note that multiple scans of a partition of the second relation are potentially
expensive. In our example, if the number of Reserves tuples in a repeatedly
scanned partition is small (say, just a few pages), the likelihood of finding the
entire partition in the buffer pool on repeated scans is very high, and the I/O
cost remains essentially the same as for a single scan. However, if many pages
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of Reserves tuples are in a given partition, the first page of such a partition
may no longer be in the buffer pool when we request it a second time (after
first scanning all pages in the partition; remember that each page is unpinned
as the scan moves past it). In this case, the I/O cost could be as high as the
number of pages in the Reserves partition times the number of tuples in the
corresponding Sailors partition!

In the worst-case scenario, the merging phase could require us to read the
complete second relation for each tuple in the first relation, and the number of
I/Os is O(M ·N) I/Os! (This scenario occurs when all tuples in both relations
contain the same value in the join attribute; it is extremely unlikely.)

In practice, the I/O cost of the merge phase is typically just a single scan of
each relation. A single scan can be guaranteed if at least one of the relations
involved has no duplicates in the join attribute; this is the case, fortunately,
for key–foreign key joins, which are very common.

A Refinement

We assumed that the two relations are sorted first and then merged in a distinct
pass. It is possible to improve the sort-merge join algorithm by combining the
merging phase of sorting with the merging phase of the join. First, we produce
sorted runs of size B for both R and S. If B >

√
L, where L is the size of the

larger relation, the number of runs per relation is less than
√
L. Suppose that

the number of buffers available for the merging phase is at least 2
√
L; that

is, more than the total number of runs for R and S. We allocate one buffer
page for each run of R and one for each run of S. We then merge the runs of
R (to generate the sorted version of R), merge the runs of S, and merge the
resulting R and S streams as they are generated; we apply the join condition
as we merge the R and S streams and discard tuples in the cross-product that
do not meet the join condition.

Unfortunately, this idea increases the number of buffers required to 2
√
L. How-

ever, by using the technique discussed in Section 13.3.1 we can produce sorted
runs of size approximately 2 ·B for both R and S. Consequently, we have fewer
than

√
L/2 runs of each relation, given the assumption that B >

√
L. Thus,

the total number of runs is less than
√
L, that is, less than B, and we can

combine the merging phases with no need for additional buffers.

This approach allows us to perform a sort-merge join at the cost of reading and
writing R and S in the first pass and reading R and S in the second pass. The
total cost is thus 3 · (M +N). In our example, the cost goes down from 7500
to 4500 I/Os.
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Blocked Access and Double-Buffering

The blocked I/O and double-buffering optimizations, discussed in Chapter 13
in the context of sorting, can be used to speed up the merging pass as well as
the sorting of the relations to be joined; we do not discuss these refinements.

14.4.3 Hash Join

The hash join algorithm, like the sort-merge join algorithm, identifies par-
titions in R and S in a partitioning phase and, in a subsequent probing
phase, compares tuples in an R partition only with tuples in the correspond-
ing S partition for testing equality join conditions. Unlike sort-merge join, hash
join uses hashing to identify partitions rather than sorting. The partitioning
(also called building) phase of hash join is similar to the partitioning in hash-
based projection and is illustrated in Figure 14.3. The probing (sometimes
called matching) phase is illustrated in Figure 14.11.

(k < B-1 pages)

Input buffer Output buffer

hash

function

h2

h2 Hash table for partition Ri

(To scan Si)

B main memory buffers

Join result

DiskDisk

Partitions of R and S

Figure 14.11 Probing Phase of Hash Join

The idea is to hash both relations on the join attribute, using the same hash
function h. If we hash each relation (ideally uniformly) into k partitions, we
are assured that R tuples in partition i can join only with S tuples in the same
partition i. This observation can be used to good effect: We can read in a
(complete) partition of the smaller relation R and scan just the corresponding
partition of S for matches. We never need to consider these R and S tuples
again. Thus, once R and S are partitioned, we can perform the join by reading
in R and S just once, provided enough memory is available to hold all the
tuples in any given partition of R.

In practice we build an in-memory hash table for the R partition, using a hash
function h2 that is different from h (since h2 is intended to distribute tuples
in a partition based on h), to reduce CPU costs. We need enough memory to
hold this hash table, which is a little larger than the R partition itself.
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The hash join algorithm is presented in Figure 14.12. (There are several variants
on this idea; this version is called Grace hash join in the literature.) Consider
the cost of the hash join algorithm. In the partitioning phase, we have to
scan both R and S once and write them out once. The cost of this phase
is therefore 2(M + N). In the second phase, we scan each partition once,
assuming no partition overflows, at a cost of M + N I/Os. The total cost is
therefore 3(M +N), given our assumption that each partition fits into memory
in the second phase. On our example join of Reserves and Sailors, the total
cost is 3 · (500 + 1000) = 4500 I/Os, and assuming 10ms per I/O, hash join
takes under a minute. Compare this with simple nested loops join, which took
about 140 hours—this difference underscores the importance of using a good
join algorithm.

// Partition R into k partitions

foreach tuple r ∈ R do

read r and add it to buffer page h(ri); // flushed as page fills

// Partition S into k partitions

foreach tuple s ∈ S do

read s and add it to buffer page h(sj); // flushed as page fills

// Probing phase

for l = 1, . . . , k do {

// Build in-memory hash table for Rl, using h2

foreach tuple r ∈ partition Rl do

read r and insert into hash table using h2(ri) ;

// Scan Sl and probe for matching Rl tuples

foreach tuple s ∈ partition Sl do {
read s and probe table using h2(sj);

for matching R tuples r, output  r, s };

clear hash table to prepare for next partition;

}
Figure 14.12 Hash Join

Memory Requirements and Overflow Handling

To increase the chances of a given partition fitting into available memory in
the probing phase, we must minimize the size of a partition by maximizing
the number of partitions. In the partitioning phase, to partition R (similarly,
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S) into k partitions, we need at least k output buffers and one input buffer.
Therefore, given B buffer pages, the maximum number of partitions is k =
B − 1. Assuming that partitions are equal in size, this means that the size of
each R partition is M

B−1
(as usual, M is the number of pages of R). The number

of pages in the (in-memory) hash table built during the probing phase for a

partition is thus f ·M
B−1

, where f is a fudge factor used to capture the (small)
increase in size between the partition and a hash table for the partition.

During the probing phase, in addition to the hash table for the R partition,
we require a buffer page for scanning the S partition and an output buffer.
Therefore, we require B > f ·M

B−1
+ 2. We need approximately B >

√
f ·M for

the hash join algorithm to perform well.

Since the partitions of R are likely to be close in size but not identical, the
largest partition is somewhat larger than M

B−1
, and the number of buffer pages

required is a little more than B >
√
f ·M . There is also the risk that, if the

hash function h does not partition R uniformly, the hash table for one or more
R partitions may not fit in memory during the probing phase. This situation
can significantly degrade performance.

As we observed in the context of hash-based projection, one way to handle this
partition overflow problem is to recursively apply the hash join technique to the
join of the overflowing R partition with the corresponding S partition. That
is, we first divide the R and S partitions into subpartitions. Then, we join the
subpartitions pairwise. All subpartitions of R probably fit into memory; if not,
we apply the hash join technique recursively.

Utilizing Extra Memory: Hybrid Hash Join

The minimum amount of memory required for hash join is B >
√
f ·M . If

more memory is available, a variant of hash join called hybrid hash join
offers better performance. Suppose that B > f · (M/k), for some integer k.
This means that, if we divide R into k partitions of size M/k, an in-memory
hash table can be built for each partition. To partition R (similarly, S) into k
partitions, we need k output buffers and one input buffer; that is, k+ 1 pages.
This leaves us with B − (k + 1) extra pages during the partitioning phase.

Suppose that B− (k+1) > f · (M/k). That is, we have enough extra memory
during the partitioning phase to hold an in-memory hash table for a partition
of R. The idea behind hybrid hash join is to build an in-memory hash table
for the first partition of R during the partitioning phase, which means that
we do not write this partition to disk. Similarly, while partitioning S, rather
than write out the tuples in the first partition of S, we can directly probe the
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in-memory table for the first R partition and write out the results. At the end
of the partitioning phase, we have completed the join of the first partitions of
R and S, in addition to partitioning the two relations; in the probing phase,
we join the remaining partitions as in hash join.

The savings realized through hybrid hash join is that we avoid writing the first
partitions of R and S to disk during the partitioning phase and reading them
in again during the probing phase. Consider our example, with 500 pages in
the smaller relation R and 1000 pages in S.3 If we have B = 300 pages, we can
easily build an in-memory hash table for the first R partition while partitioning
R into two partitions. During the partitioning phase of R, we scan R and write
out one partition; the cost is 500 + 250 if we assume that the partitions are of
equal size. We then scan S and write out one partition; the cost is 1000 + 500.
In the probing phase, we scan the second partition of R and of S; the cost is
250 + 500. The total cost is 750 + 1500 + 750 = 3000. In contrast, the cost of
hash join is 4500.

If we have enough memory to hold an in-memory hash table for all of R, the
savings are even greater. For example, if B > f ·N + 2, that is, k = 1, we can
build an in-memory hash table for all of R. This means that we read R only
once, to build this hash table, and read S once, to probe the R hash table. The
cost is 500 + 1000 = 1500.

Hash Join Versus Block Nested Loops Join

While presenting the block nested loops join algorithm, we briefly discussed
the idea of building an in-memory hash table for the inner relation. We now
compare this (more CPU-efficient) version of block nested loops join with hybrid
hash join.

If a hash table for the entire smaller relation fits in memory, the two algorithms
are identical. If both relations are large relative to the available buffer size, we
require several passes over one of the relations in block nested loops join; hash
join is a more effective application of hashing techniques in this case. The I/O
saved in this case by using the hash join algorithm in comparison to a block
nested loops join is illustrated in Figure 14.13. In the latter, we read in all of
S for each block of R; the I/O cost corresponds to the whole rectangle. In the
hash join algorithm, for each block of R, we read only the corresponding block
of S; the I/O cost corresponds to the shaded areas in the figure. This difference
in I/O due to scans of S is highlighted in the figure.

3It is unfortunate, that in our running example, the smaller relation, which we denoted by the

variable R in our discussion of hash join, is in fact the Sailors relation, which is more naturally

denoted by S!
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Figure 14.13 Hash Join Vs. Block Nested Loops for Large Relations

We note that this picture is rather simplistic. It does not capture the costs
of scanning R in the block nested loops join and the partitioning phase in the
hash join, and it focuses on the cost of the probing phase.

Hash Join Versus Sort-Merge Join

Let us compare hash join with sort-merge join. If we have B >
√
M buffer

pages, where M is the number of pages in the smaller relation and we assume
uniform partitioning, the cost of hash join is 3(M + N) I/Os. If we have
B >

√
N buffer pages, where N is the number of pages in the larger relation,

the cost of sort-merge join is also 3(M +N), as discussed in Section 14.4.2. A
choice between these techniques is therefore governed by other factors, notably:

If the partitions in hash join are not uniformly sized, hash join could cost
more. Sort-merge join is less sensitive to such data skew.

If the available number of buffers falls between
√
M and

√
N , hash join

costs less than sort-merge join, since we need only enough memory to hold
partitions of the smaller relation, whereas in sort-merge join the memory
requirements depend on the size of the larger relation. The larger the
difference in size between the two relations, the more important this factor
becomes.

Additional considerations include the fact that the result is sorted in sort-
merge join.

14.4.4 General Join Conditions

We have discussed several join algorithms for the case of a simple equality
join condition. Other important cases include a join condition that involves
equalities over several attributes and inequality conditions. To illustrate the
case of several equalities, we consider the join of Reserves R and Sailors S with
the join condition R.sid=S.sid ∧ R.rname=S.sname:
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For index nested loops join, we can build an index on Reserves on the
combination of fields  R.sid,R.rname and treat Reserves as the inner
relation. We can also use an existing index on this combination of fields,
or on R.sid, or on R.rname. (Similar remarks hold for the choice of Sailors
as the inner relation, of course.)

For sort-merge join, we sort Reserves on the combination of fields  sid,
rname and Sailors on the combination of fields  sid, sname . Similarly,
for hash join, we partition on these combinations of fields.

The other join algorithms we discussed are essentially unaffected.

If we have an inequality comparison, for example, a join of Reserves R and
Sailors S with the join condition R.rname < S.sname:

We require a B+ tree index for index nested loops join.

Hash join and sort-merge join are not applicable.

The other join algorithms we discussed are essentially unaffected.

Of course, regardless of the algorithm, the number of qualifying tuples in an
inequality join is likely to be much higher than in an equality join.

We conclude our presentation of joins with the observation that no one join
algorithm is uniformly superior to the others. The choice of a good algorithm
depends on the sizes of the relations being joined, available access methods,
and the size of the buffer pool. This choice can have a considerable impact on
performance because the difference between a good and a bad algorithm for a
given join can be enormous.

14.5 THE SET OPERATIONS

We now briefly consider the implementation of the set operations R∩S, R×S,
R∪S, and R−S. From an implementation standpoint, intersection and cross-
product can be seen as special cases of join (with equality on all fields as the
join condition for intersection, and with no join condition for cross-product).
Therefore, we will not discuss them further.

The main point to address in the implementation of union is the elimination
of duplicates. Set-difference can also be implemented using a variation of the
techniques for duplicate elimination. (Union and difference queries on a sin-
gle relation can be thought of as a selection query with a complex selection
condition. The techniques discussed in Section 14.2 are applicable for such
queries.)
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There are two implementation algorithms for union and set-difference, again
based on sorting and hashing. Both algorithms are instances of the partitioning
technique mentioned in Section 12.2.

14.5.1 Sorting for Union and Difference

To implement R ∪ S:

1. Sort R using the combination of all fields; similarly, sort S.

2. Scan the sorted R and S in parallel and merge them, eliminating duplicates.

As a refinement, we can produce sorted runs of R and S and merge these
runs in parallel. (This refinement is similar to the one discussed in detail for
projection.) The implementation of R−S is similar. During the merging pass,
we write only tuples of R to the result, after checking that they do not appear
in S.

14.5.2 Hashing for Union and Difference

To implement R ∪ S:

1. Partition R and S using a hash function h.

2. Process each partition l as follows:

Build an in-memory hash table (using hash function h2  = h) for Sl.

Scan Rl. For each tuple, probe the hash table for Sl. If the tuple is in
the hash table, discard it; otherwise, add it to the table.

Write out the hash table and then clear it to prepare for the next
partition.

To implement R− S, we proceed similarly. The difference is in the processing
of a partition. After building an in-memory hash table for Sl, we scan Rl. For
each Rl tuple, we probe the hash table; if the tuple is not in the table, we write
it to the result.

14.6 AGGREGATE OPERATIONS

The SQL query shown in Figure 14.14 involves an aggregate operation, AVG.
The other aggregate operations supported in SQL-92 are MIN, MAX, SUM, and
COUNT.
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SELECT AVG(S.age)
FROM Sailors S

Figure 14.14 Simple Aggregation Query

The basic algorithm for aggregate operators consists of scanning the entire
Sailors relation and maintaining some running information about the scanned
tuples; the details are straightforward. The running information for each ag-
gregate operation is shown in Figure 14.15. The cost of this operation is the
cost of scanning all Sailors tuples.

Aggregate Operation Running Information

SUM Total of the values retrieved
AVG  Total, Count of the values retrieved
COUNT Count of values retrieved
MIN Smallest value retrieved
MAX Largest value retrieved

Figure 14.15 Running Information for Aggregate Operations

Aggregate operators can also be used in combination with a GROUP BY clause.
If we add GROUP BY rating to the query in Figure 14.14, we would have to
compute the average age of sailors for each rating group. For queries with
grouping, there are two good evaluation algorithms that do not rely on an
existing index: One algorithm is based on sorting and the other is based on
hashing. Both algorithms are instances of the partitioning technique mentioned
in Section 12.2.

The sorting approach is simple—we sort the relation on the grouping attribute
(rating) and then scan it again to compute the result of the aggregate operation
for each group. The second step is similar to the way we implement aggregate
operations without grouping, with the only additional point being that we have
to watch for group boundaries. (It is possible to refine the approach by doing
aggregation as part of the sorting step; we leave this as an exercise for the
reader.) The I/O cost of this approach is just the cost of the sorting algorithm.

In the hashing approach we build a hash table (in main memory, if possible)
on the grouping attribute. The entries have the form  grouping-value, running-
info . The running information depends on the aggregate operation, as per the
discussion of aggregate operations without grouping. As we scan the relation,
for each tuple, we probe the hash table to find the entry for the group to which
the tuple belongs and update the running information. When the hash table
is complete, the entry for a grouping value can be used to compute the answer
tuple for the corresponding group in the obvious way. If the hash table fits in
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memory, which is likely because each entry is quite small and there is only one
entry per grouping value, the cost of the hashing approach is O(M), where M
is the size of the relation.

If the relation is so large that the hash table does not fit in memory, we can
partition the relation using a hash function h on grouping-value. Since all tuples
with a given grouping value are in the same partition, we can then process each
partition independently by building an in-memory hash table for the tuples in
it.

14.6.1 Implementing Aggregation by Using an Index

The technique of using an index to select a subset of useful tuples is not ap-
plicable for aggregation. However, under certain conditions, we can evaluate
aggregate operations efficiently by using the data entries in an index instead of
the data records:

If the search key for the index includes all the attributes needed for the
aggregation query, we can apply the techniques described earlier in this
section to the set of data entries in the index, rather than to the collection
of data records and thereby avoid fetching data records.

If the GROUP BY clause attribute list forms a prefix of the index search
key and the index is a tree index, we can retrieve data entries (and data
records, if necessary) in the order required for the grouping operation and
thereby avoid a sorting step.

A given index may support one or both of these techniques; both are examples
of index-only plans. We discuss the use of indexes for queries with grouping and
aggregation in the context of queries that also include selections and projections
in Section 15.4.1.

14.7 THE IMPACT OF BUFFERING

In implementations of relational operators, effective use of the buffer pool is
very important, and we explicitly considered the size of the buffer pool in de-
termining algorithm parameters for several of the algorithms discussed. There
are three main points to note:

1. If several operations execute concurrently, they share the buffer pool. This
effectively reduces the number of buffer pages available for each operation.

2. If tuples are accessed using an index, especially an unclustered index, the
likelihood of finding a page in the buffer pool if it is requested multiple



472 Chapter 14

times depends (in a rather unpredictable way, unfortunately) on the size of
the buffer pool and the replacement policy. Further, if tuples are accessed
using an unclustered index, each tuple retrieved is likely to require us to
bring in a new page; therefore, the buffer pool fills up quickly, leading to a
high level of paging activity.

3. If an operation has a pattern of repeated page accesses, we can increase
the likelihood of finding a page in memory by a good choice of replacement
policy or by reserving a sufficient number of buffers for the operation (if the
buffer manager provides this capability). Several examples of such patterns
of repeated access follow:

Consider a simple nested loops join. For each tuple of the outer re-
lation, we repeatedly scan all pages in the inner relation. If we have
enough buffer pages to hold the entire inner relation, the replacement
policy is irrelevant. Otherwise, the replacement policy becomes criti-
cal. With LRU, we will never find a page when it is requested, because
it is paged out. This is the sequential flooding problem discussed in
Section 9.4.1. With MRU, we obtain the best buffer utilization—the
first B−2 pages of the inner relation always remain in the buffer pool.
(B is the number of buffer pages; we use one page for scanning the
outer relation4 and always replace the last page used for scanning the
inner relation.)

In a block nested loops join, for each block of the outer relation, we
scan the entire inner relation. However, since only one unpinned page
is available for the scan of the inner relation, the replacement policy
makes no difference.

In an index nested loops join, for each tuple of the outer relation, we
use the index to find matching inner tuples. If several tuples of the
outer relation have the same value in the join attribute, there is a
repeated pattern of access on the inner relation; we can maximize the
repetition by sorting the outer relation on the join attributes.

14.8 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

Consider a simple selection query of the form σR.attr op value(R). What
are the alternative access paths in each of these cases: (i) there is no
index and the file is not sorted, (ii) there is no index but the file is sorted.
(Section 14.1)

4Think about the sequence of pins and unpins used to achieve this.
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If a B+ tree index matches the selection condition, how does clustering
affect the cost? Discuss this in terms of the selectivity of the condition.
(Section 14.1)

Describe conjunctive normal form for general selections. Define the terms
conjunct and disjunct. Under what conditions does a general selection
condition match an index? (Section 14.2)

Describe the various implementation options for general selections. (Sec-
tion 14.2)

Discuss the use of sorting versus hashing to eliminate duplicates during
projection. (Section 14.3)

When can an index be used to implement projections, without retrieving
actual data records? When does the index additionally allow us to elimi-
nate duplicates without sorting or hashing? (Section 14.3)

Consider the join of relations R and S. Describe simple nested loops join
and block nested loops join. What are the similarities and differences? How
does the latter reduce I/O costs? Discuss how you would utilize buffers in
block nested loops. (Section 14.4.1)

Describe index nested loops join. How does it differ from block nested loops
join? (Section 14.4.1)

Describe sort-merge join of R and S. What join conditions are supported?
What optimizations are possible beyond sorting both R and S on the join
attributes and then doing a merge of the two? In particular, discuss how
steps in sorting can be combined with the merge pass. (Section 14.4.2)

What is the idea behind hash join? What is the additional optimization in
hybrid hash join? (Section 14.4.3)

Discuss how the choice of join algorithm depends on the number of buffer
pages available, the sizes of R and S, and the indexes available. Be spe-
cific in your discussion and refer to cost formulas for the I/O cost of each
algorithm. (Sections 14.12–Section 14.13)

How are general join conditions handled? (Section 14.4.4)

Why are the set operations R∩S and R×S special cases of joins? What is
the similarity between the set operations R∪S and R−S? (Section 14.5)

Discuss the use of sorting versus hashing in implementing R∪S and R−S.
Compare this with the implementation of projection. (Section 14.5)

Discuss the use of running information in implementing aggregate opera-
tions. Discuss the use of sorting versus hashing for dealing with grouping.
(Section 14.6)
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Under what conditions can we use an index to implement aggregate oper-
ations without retrieving data records? Under what conditions do indexes
allow us to avoid sorting or hashing? (Section 14.6)

Using the cost formulas for the various relational operator evaluation algo-
rithms, discuss which operators are most sensitive to the number of avail-
able buffer pool pages. How is this number influenced by the number of
operators being evaluated concurrently? (Section 14.7)

Explain how the choice of a good buffer pool replacement policy can in-
fluence overall performance. Identify the patterns of access in typical rela-
tional operator evaluation and how they influence the choice of replacement
policy. (Section 14.7)

EXERCISES

Exercise 14.1 Briefly answer the following questions:

1. Consider the three basic techniques, iteration, indexing, and partitioning, and the rela-
tional algebra operators selection, projection, and join. For each technique-operator pair,
describe an algorithm based on the technique for evaluating the operator.

2. Define the term most selective access path for a query.

3. Describe conjunctive normal form, and explain why it is important in the context of
relational query evaluation.

4. When does a general selection condition match an index? What is a primary term in a
selection condition with respect to a given index?

5. How does hybrid hash join improve on the basic hash join algorithm?

6. Discuss the pros and cons of hash join, sort-merge join, and block nested loops join.

7. If the join condition is not equality, can you use sort-merge join? Can you use hash join?
Can you use index nested loops join? Can you use block nested loops join?

8. Describe how to evaluate a grouping query with aggregation operator MAX using a sorting-
based approach.

9. Suppose that you are building a DBMS and want to add a new aggregate operator called
SECOND LARGEST, which is a variation of the MAX operator. Describe how you would
implement it.

10. Give an example of how buffer replacement policies can affect the performance of a join
algorithm.

Exercise 14.2 Consider a relation R(a,b,c,d,e) containing 5,000,000 records, where each data
page of the relation holds 10 records. R is organized as a sorted file with secondary indexes.
Assume that R.a is a candidate key for R, with values lying in the range 0 to 4,999,999, and
that R is stored in R.a order. For each of the following relational algebra queries, state which
of the following approaches (or combination thereof) is most likely to be the cheapest:

Access the sorted file for R directly.
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Use a clustered B+ tree index on attribute R.a.

Use a linear hashed index on attribute R.a.

Use a clustered B+ tree index on attributes (R.a,R.b).

Use a linear hashed index on attributes (R.a,R.b).

Use an unclustered B+ tree index on attribute R.b.

1. σa<50,000∧b<50,000(R)

2. σa=50,000∧b<50,000(R)

3. σa>50,000∧b=50,000(R)

4. σa=50,000∧a=50,010(R)

5. σa  =50,000∧b=50,000(R)

6. σa<50,000∨b=50,000(R)

Exercise 14.3 Consider processing the following SQL projection query:

SELECT DISTINCT E.title, E.ename FROM Executives E

You are given the following information:

Executives has attributes ename, title, dname, and address; all are string fields of
the same length.
The ename attribute is a candidate key.
The relation contains 10,000 pages.
There are 10 buffer pages.

Consider the optimized version of the sorting-based projection algorithm: The initial sorting
pass reads the input relation and creates sorted runs of tuples containing only attributes ename

and title. Subsequent merging passes eliminate duplicates while merging the initial runs to
obtain a single sorted result (as opposed to doing a separate pass to eliminate duplicates from
a sorted result containing duplicates).

1. How many sorted runs are produced in the first pass? What is the average length of
these runs? (Assume that memory is utilized well and any available optimization to
increase run size is used.) What is the I/O cost of this sorting pass?

2. How many additional merge passes are required to compute the final result of the pro-
jection query? What is the I/O cost of these additional passes?

3. (a) Suppose that a clustered B+ tree index on title is available. Is this index likely to
offer a cheaper alternative to sorting? Would your answer change if the index were
unclustered? Would your answer change if the index were a hash index?

(b) Suppose that a clustered B+ tree index on ename is available. Is this index likely
to offer a cheaper alternative to sorting? Would your answer change if the index
were unclustered? Would your answer change if the index were a hash index?

(c) Suppose that a clustered B+ tree index on  ename, title is available. Is this index
likely to offer a cheaper alternative to sorting? Would your answer change if the
index were unclustered? Would your answer change if the index were a hash index?

4. Suppose that the query is as follows:

SELECT E.title, E.ename FROM Executives E
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That is, you are not required to do duplicate elimination. How would your answers to
the previous questions change?

Exercise 14.4 Consider the join R  R.a=S.bS, given the following information about the
relations to be joined. The cost metric is the number of page I/Os unless otherwise noted,
and the cost of writing out the result should be uniformly ignored.

Relation R contains 10,000 tuples and has 10 tuples per page.
Relation S contains 2000 tuples and also has 10 tuples per page.
Attribute b of relation S is the primary key for S.
Both relations are stored as simple heap files.
Neither relation has any indexes built on it.
52 buffer pages are available.

1. What is the cost of joining R and S using a page-oriented simple nested loops join? What
is the minimum number of buffer pages required for this cost to remain unchanged?

2. What is the cost of joining R and S using a block nested loops join? What is the minimum
number of buffer pages required for this cost to remain unchanged?

3. What is the cost of joining R and S using a sort-merge join? What is the minimum
number of buffer pages required for this cost to remain unchanged?

4. What is the cost of joining R and S using a hash join? What is the minimum number of
buffer pages required for this cost to remain unchanged?

5. What would be the lowest possible I/O cost for joining R and S using any join algorithm,
and how much buffer space would be needed to achieve this cost? Explain briefly.

6. How many tuples does the join of R and S produce, at most, and how many pages are
required to store the result of the join back on disk?

7. Would your answers to any of the previous questions in this exercise change if you were
told that R.a is a foreign key that refers to S.b?

Exercise 14.5 Consider the join of R and S described in Exercise 14.1.

1. With 52 buffer pages, if unclustered B+ indexes existed on R.a and S.b, would either
provide a cheaper alternative for performing the join (using an index nested loops join)
than a block nested loops join? Explain.

(a) Would your answer change if only five buffer pages were available?

(b) Would your answer change if S contained only 10 tuples instead of 2000 tuples?

2. With 52 buffer pages, if clustered B+ indexes existed on R.a and S.b, would either provide
a cheaper alternative for performing the join (using the index nested loops algorithm)
than a block nested loops join? Explain.

(a) Would your answer change if only five buffer pages were available?

(b) Would your answer change if S contained only 10 tuples instead of 2000 tuples?

3. If only 15 buffers were available, what would be the cost of a sort-merge join? What
would be the cost of a hash join?

4. If the size of S were increased to also be 10,000 tuples, but only 15 buffer pages were
available, what would be the cost of a sort-merge join? What would be the cost of a
hash join?
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5. If the size of S were increased to also be 10,000 tuples, and 52 buffer pages were available,
what would be the cost of sort-merge join? What would be the cost of hash join?

Exercise 14.6 Answer each of the questions—if some question is inapplicable, explain why—
in Exercise 14.1 again but using the following information about R and S:

Relation R contains 200,000 tuples and has 20 tuples per page.
Relation S contains 4,000,000 tuples and also has 20 tuples per page.
Attribute a of relation R is the primary key for R.
Each tuple of R joins with exactly 20 tuples of S.
1,002 buffer pages are available.

Exercise 14.7 We described variations of the join operation called outer joins in Section 5.6.4
. One approach to implementing an outer join operation is to first evaluate the corresponding
(inner) join and then add additional tuples padded with null values to the result in accordance
with the semantics of the given outer join operator. However, this requires us to compare
the result of the inner join with the input relations to determine the additional tuples to be
added. The cost of this comparison can be avoided by modifying the join algorithm to add
these extra tuples to the result while input tuples are processed during the join. Consider the
following join algorithms: block nested loops join, index nested loops join, sort-merge join, and
hash join. Describe how you would modify each of these algorithms to compute the following
operations on the Sailors and Reserves tables discussed in this chapter:

1. Sailors NATURAL LEFT OUTER JOIN Reserves

2. Sailors NATURAL RIGHT OUTER JOIN Reserves

3. Sailors NATURAL FULL OUTER JOIN Reserves

PROJECT-BASED EXERCISES

Exercise 14.8 (Note to instructors: Additional details must be provided if this exercise is

assigned; see Appendix 30.) Implement the various join algorithms described in this chapter
in Minibase. (As additional exercises, you may want to implement selected algorithms for the
other operators as well.)
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15
A TYPICAL RELATIONAL

QUERY OPTIMIZER

☛ How are SQL queries translated into relational algebra? As a conse-
quence, what class of relation algebra queries does a query optimizer
concentrate on?

☛ What information is stored in the system catalog of a DBMS and how
is it used in query optimization?

☛ How does an optimizer estimate the cost of a query evaluation plan?

☛ How does an optimizer generate alternative plans for a query? What
is the space of plans considered? What is the role of relational algebra
equivalences in generating plans?

☛ How are nested SQL queries optimized?

➽ Key concepts: SQL to algebra, query block; system catalog, data
dictionary, metadata, system statistics, relational representation of
catalogs; cost estimation, size estimation, reduction factors; his-
tograms, equiwidth, equidepth, compressed; algebra equivalences,
pushing selections, join ordering; plan space, single-relation plans,
multi-relation left-deep plans; enumerating plans, dynamic program-
ming approach, alternative approaches

Life is what happens while you’re busy making other plans.

—John Lennon

In this chapter, we present a typical relational query optimizer in detail. We
begin by discussing how SQL queries are converted into units called blocks

478
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and how blocks are translated into (extended) relational algebra expressions
(Section 15.1). The central task of an optimizer is to find a good plan for
evaluating such expressions. Optimizing a relational algebra expression involves
two basic steps:

Enumerating alternative plans for evaluating the expression. Typically, an
optimizer considers a subset of all possible plans because the number of
possible plans is very large.

Estimating the cost of each enumerated plan and choosing the plan with
the lowest estimated cost.

We discuss how to use system statistics to estimate the properties of the result
of a relational operation, in particular result sizes, in Section 15.2. After dis-
cussing how to estimate the cost of a given plan, we describe the space of plans
considered by a typical relational query optimizer in Sections 15.3 and 15.4.
We discuss how nested SQL queries are handled in Section 15.5. We briefly
discuss some of the influential choices made in the System R query optimizer
in Section 15.6. We conclude with a short discussion of other approaches to
query optimization in Section 15.7.

We consider a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: dates, rname: string)

As in Chapter 14, we assume that each tuple of Reserves is 40 bytes long, that a
page can hold 100 Reserves tuples, and that we have 1000 pages of such tuples.
Similarly, we assume that each tuple of Sailors is 50 bytes long, that a page
can hold 80 Sailors tuples, and that we have 500 pages of such tuples.

15.1 TRANSLATING SQL QUERIES INTO ALGEBRA

SQL queries are optimized by decomposing them into a collection of smaller
units, called blocks. A typical relational query optimizer concentrates on op-
timizing a single block at a time. In this section, we describe how a query
is decomposed into blocks and how the optimization of a single block can be
understood in terms of plans composed of relational algebra operators.

15.1.1 Decomposition of a Query into Blocks

When a user submits an SQL query, the query is parsed into a collection of
query blocks and then passed on to the query optimizer. A query block
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SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’ AND

S.rating = ( SELECT MAX (S2.rating)
FROM Sailors S2 )

GROUP BY S.sid
HAVING COUNT (*) > 1

Figure 15.1 Sailors Reserving Red Boats

(or simply block) is an SQL query with no nesting and exactly one SELECT

clause and one FROM clause and at most one WHERE clause, GROUP BY clause,
and HAVING clause. The WHERE clause is assumed to be in conjunctive normal
form, as per the discussion in Section 14.2. We use the following query as a
running example:

For each sailor with the highest rating (over all sailors) and at least two reser-
vations for red boats, find the sailor id and the earliest date on which the sailor
has a reservation for a red boat.

The SQL version of this query is shown in Figure 15.1. This query has two
query blocks. The nested block is:

SELECT MAX (S2.rating)
FROM Sailors S2

The nested block computes the highest sailor rating. The outer block is shown
in Figure 15.2. Every SQL query can be decomposed into a collection of query
blocks without nesting.

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’ AND

S.rating = Reference to nested block
GROUP BY S.sid
HAVING COUNT (*) > 1

Figure 15.2 Outer Block of Red Boats Query

The optimizer examines the system catalogs to retrieve information about the
types and lengths of fields, statistics about the referenced relations, and the
access paths (indexes) available for them. The optimizer then considers each
query block and chooses a query evaluation plan for that block. We focus mostly
on optimizing a single query block and defer a discussion of nested queries to
Section 15.5.



A Typical Query Optimizer 481

15.1.2 A Query Block as a Relational Algebra Expression

The first step in optimizing a query block is to express it as a relational algebra
expression. For uniformity, let us assume that GROUP BY and HAVING are also
operators in the extended algebra used for plans and that aggregate operations
are allowed to appear in the argument list of the projection operator. The
meaning of the operators should be clear from our discussion of SQL. The SQL
query of Figure 15.2 can be expressed in the extended algebra as:

πS.sid,MIN(R.day)(

HAV INGCOUNT (∗)>2(

GROUP BY S.sid(

σS.sid=R.sid∧R.bid=B.bid∧B.color= red ∧S.rating=value from nested block(

Sailors× Reserves× Boats))))

For brevity, we used S, R, and B (rather than Sailors, Reserves, and Boats)
to prefix attributes. Intuitively, the selection is applied to the cross-product of
the three relations. Then the qualifying tuples are grouped by S.sid, and the
HAVING clause condition is used to discard some groups. For each remaining
group, a result tuple containing the attributes (and count) mentioned in the
projection list is generated. This algebra expression is a faithful summary of
the semantics of an SQL query, which we discussed in Chapter 5.

Every SQL query block can be expressed as an extended algebra expression
having this form. The SELECT clause corresponds to the projection operator,
the WHERE clause corresponds to the selection operator, the FROM clause corre-
sponds to the cross-product of relations, and the remaining clauses are mapped
to corresponding operators in a straightforward manner.

The alternative plans examined by a typical relational query optimizer can be
understood by recognizing that a query is essentially treated as a σπ× algebra
expression, with the remaining operations (if any, in a given query) carried
out on the result of the σπ× expression. The σπ× expression for the query in
Figure 15.2 is:

πS.sid,R.day(

σS.sid=R.sid∧R.bid=B.bid∧B.color= red ∧S.rating=value from nested block(

Sailors× Reserves× Boats))

To make sure that the GROUP BY and HAVING operations in the query can be
carried out, the attributes mentioned in these clauses are added to the projec-
tion list. Further, since aggregate operations in the SELECT clause, such as the
MIN(R.day) operation in our example, are computed after first computing the
σπ× part of the query, aggregate expressions in the projection list are replaced
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by the names of the attributes to which they refer. Thus, the optimization of
the σπ× part of the query essentially ignores these aggregate operations.

The optimizer finds the best plan for the σπ× expression obtained in this
manner from a query. This plan is evaluated and the resulting tuples are
then sorted (alternatively, hashed) to implement the GROUP BY clause. The
HAVING clause is applied to eliminate some groups, and aggregate expressions
in the SELECT clause are computed for each remaining group. This procedure
is summarized in the following extended algebra expression:

πS.sid,MIN(R.day)(

HAV INGCOUNT (∗)>2(

GROUP BY S.sid(

πS.sid,R.day(

σS.sid=R.sid∧R.bid=B.bid∧B.color= red ∧S.rating=value from nested block(

Sailors× Reserves× Boats)))))

Some optimizations are possible if the FROM clause contains just one relation
and the relation has some indexes that can be used to carry out the grouping
operation. We discuss this situation further in Section 15.4.1.

To a first approximation therefore, the alternative plans examined by a typical
optimizer can be understood in terms of the plans considered for σπ× queries.
An optimizer enumerates plans by applying several equivalences between rela-
tional algebra expressions, which we present in Section 15.3. We discuss the
space of plans enumerated by an optimizer in Section 15.4.

15.2 ESTIMATING THE COST OF A PLAN

For each enumerated plan, we have to estimate its cost. There are two parts
to estimating the cost of an evaluation plan for a query block:

1. For each node in the tree, we must estimate the cost of performing the corre-
sponding operation. Costs are affected significantly by whether pipelining
is used or temporary relations are created to pass the output of an operator
to its parent.

2. For each node in the tree, we must estimate the size of the result and
whether it is sorted. This result is the input for the operation that corre-
sponds to the parent of the current node, and the size and sort order in
turn affect the estimation of size, cost, and sort order for the parent.

We discussed the cost of implementation techniques for relational operators in
Chapter 14. As we saw there, estimating costs requires knowledge of various
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parameters of the input relations, such as the number of pages and available
indexes. Such statistics are maintained in the DBMS’s system catalogs. In this
section, we describe the statistics maintained by a typical DBMS and discuss
how result sizes are estimated. As in Chapter 14, we use the number of page
I/Os as the metric of cost and ignore issues such as blocked access, for the sake
of simplicity.

The estimates used by a DBMS for result sizes and costs are at best approx-
imations to actual sizes and costs. It is unrealistic to expect an optimizer to
find the very best plan; it is more important to avoid the worst plans and find
a good plan.

15.2.1 Estimating Result Sizes

We now discuss how a typical optimizer estimates the size of the result com-
puted by an operator on given inputs. Size estimation plays an important role
in cost estimation as well because the output of one operator can be the input
to another operator, and the cost of an operator depends on the size of its
inputs.

Consider a query block of the form:

SELECT attribute list

FROM relation list

WHERE term1 ∧ term2 ∧ . . . ∧ termn

The maximum number of tuples in the result of this query (without duplicate
elimination) is the product of the cardinalities of the relations in the FROM

clause. Every term in the WHERE clause, however, eliminates some of these po-
tential result tuples. We can model the effect of the WHERE clause on the result
size by associating a reduction factor with each term, which is the ratio of the
(expected) result size to the input size considering only the selection represented
by the term. The actual size of the result can be estimated as the maximum size
times the product of the reduction factors for the terms in the WHERE clause.
Of course, this estimate reflects the—unrealistic but simplifying—assumption
that the conditions tested by each term are statistically independent.

We now consider how reduction factors can be computed for different kinds of
terms in the WHERE clause by using the statistics available in the catalogs:

column = value: For a term of this form, the reduction factor can be
approximated by 1

NKeys(I) if there is an index I on column for the relation

in question. This formula assumes uniform distribution of tuples among the
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index key values; this uniform distribution assumption is frequently made
in arriving at cost estimates in a typical relational query optimizer. If there
is no index on column, the System R optimizer arbitrarily assumes that the
reduction factor is 1

10 . Of course, it is possible to maintain statistics such
as the number of distinct values present for any attribute whether or not
there is an index on that attribute. If such statistics are maintained, we
can do better than the arbitrary choice of 1

10 .

column1 = column2: In this case the reduction factor can be approximated
by 1

MAX (NKeys(I1),NKeys(I2))
if there are indexes I1 and I2 on column1 and

column2, respectively. This formula assumes that each key value in the
smaller index, say, I1, has a matching value in the other index. Given
a value for column1, we assume that each of the NKeys(I2) values for
column2 is equally likely. Therefore, the number of tuples that have the
same value in column2 as a given value in column1 is 1

NKeys(I2) . If only

one of the two columns has an index I, we take the reduction factor to
be 1

NKeys(I) ; if neither column has an index, we approximate it by the

ubiquitous 1
10 . These formulas are used whether or not the two columns

appear in the same relation.

column > value: The reduction factor is approximated by High(I) − value

High(I) − Low(I)

if there is an index I on column. If the column is not of an arithmetic type
or there is no index, a fraction less than half is arbitrarily chosen. Similar
formulas for the reduction factor can be derived for other range selections.

column IN (list of values): The reduction factor is taken to be the reduction
factor for column = value multiplied by the number of items in the list.
However, it is allowed to be at most half, reflecting the heuristic belief that
each selection eliminates at least half the candidate tuples.

These estimates for reduction factors are at best approximations that rely on as-
sumptions such as uniform distribution of values and independent distribution
of values in different columns. In recent years more sophisticated techniques
based on storing more detailed statistics (e.g., histograms of the values in a
column, which we consider later in this section) have been proposed and are
finding their way into commercial systems.

Reduction factors can also be approximated for terms of the form column IN

subquery (ratio of the estimated size of the subquery result to the number
of distinct values in column in the outer relation); NOT condition (1−reduction
factor for condition); value1<column<value2; the disjunction of two conditions;
and so on, but we will not discuss such reduction factors.

To summarize, regardless of the plan chosen, we can estimate the size of the
final result by taking the product of the sizes of the relations in the FROM clause
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Estimating Query Characteristics: IBM DB2, Informix, Microsoft
SQL Server, Oracle 8, and Sybase ASE all use histograms to estimate query
characteristics such as result size and cost. As an example, Sybase ASE
uses one-dimensional, equidepth histograms with some special attention
paid to high frequency values, so that their count is estimated accurately.
ASE also keeps the average count of duplicates for each prefix of an index
to estimate correlations between histograms for composite keys (although
it does not maintain such histograms). ASE also maintains estimates of
the degree of clustering in tables and indexes. IBM DB2, Informix, and Or-
acle also use one-dimensional equidepth histograms; Oracle automatically
switches to maintaining a count of duplicates for each value when there
are few values in a column. Microsoft SQL Server uses one-dimensional
equiarea histograms with some optimizations (adjacent buckets with sim-
ilar distributions are sometimes combined to compress the histogram). In
SQL Server, the creation and maintenance of histograms is done automat-
ically with no need for user input.
Although sampling techniques have been studied for estimating result sizes
and costs, in current systems, sampling is used only by system utilities to
estimate statistics or build histograms but not directly by the optimizer
to estimate query characteristics. Sometimes, sampling is used to do load
balancing in parallel implementations.

and the reduction factors for the terms in the WHERE clause. We can similarly
estimate the size of the result of each operator in a plan tree by using reduction
factors, since the subtree rooted at that operator’s node is itself a query block.

Note that the number of tuples in the result is not affected by projections if du-
plicate elimination is not performed. However, projections reduce the number
of pages in the result because tuples in the result of a projection are smaller
than the original tuples; the ratio of tuple sizes can be used as a reduction
factor for projection to estimate the result size in pages, given the size of
the input relation.

Improved Statistics: Histograms

Consider a relation with N tuples and a selection of the form column > value
on a column with an index I. The reduction factor r is approximated by
High(I) − value

High(I) − Low(I) , and the size of the result is estimated as rN . This estimate

relies on the assumption that the distribution of values is uniform.
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Estimates can be improved considerably by maintaining more detailed statistics
than just the low and high values in the index I. Intuitively, we want to
approximate the distribution of key values I as accurately as possible. Consider
the two distributions of values shown in Figure 15.3. The first is a nonuniform
distribution D of values (say, for an attribute called age). The frequency of a
value is the number of tuples with that age value; a distribution is represented
by showing the frequency for each possible age value. In our example, the lowest
age value is 0, the highest is 14, and all recorded age values are integers in the
range 0 to 14. The second distribution approximates D by assuming that each
age value in the range 0 to 14 appears equally often in the underlying collection
of tuples. This approximation can be stored compactly because we need to
record only the low and high values for the age range (0 and 14 respectively)
and the total count of all frequencies (which is 45 in our example).

10 11 12 13 140 2 31 5 6 7 8 94 10 11 12 13 140 2 31 5 6 7 8 94

3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3

1 1
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Distribution D Uniform distribution approximating D

Figure 15.3 Uniform vs. Nonuniform Distributions

Consider the selection age > 13. From the distribution D in Figure 15.3, we
see that the result has 9 tuples. Using the uniform distribution approximation,
on the other hand, we estimate the result size as 1

15 · 45 = 3 tuples. Clearly,
the estimate is quite inaccurate.

A histogram is a data structure maintained by a DBMS to approximate a data
distribution. In Figure 15.4, we show how the data distribution from Figure
15.3 can be approximated by dividing the range of age values into subranges
called buckets, and for each bucket, counting the number of tuples with age
values within that bucket. Figure 15.4 shows two different kinds of histograms,
called equiwidth and equidepth, respectively.

Consider the selection query age > 13 again and the first (equiwidth) his-
togram. We can estimate the size of the result to be 5 because the selected
range includes a third of the range for Bucket 5. Since Bucket 5 represents a
total of 15 tuples, the selected range corresponds to 1

3 · 15 = 5 tuples. As this
example shows, we assume that the distribution within a histogram bucket is
uniform. Therefore, when we simply maintain the high and low values for index
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Figure 15.4 Histograms Approximating Distribution D

I, we effectively use a ‘histogram’ with a single bucket. Using histograms with
a small number of buckets instead leads to much more accurate estimates, at
the cost of a few hundred bytes per histogram. (Like all statistics in a DBMS,
histograms are updated periodically rather than whenever the data is changed.)

One important question is how to divide the value range into buckets. In an
equiwidth histogram, we divide the range into subranges of equal size (in
terms of the age value range). We could also choose subranges such that the
number of tuples within each subrange (i.e., bucket) is equal. Such a histogram,
called an equidepth histogram, is also illustrated in Figure 15.4. Consider
the selection age > 13 again. Using the equidepth histogram, we are led to
Bucket 5, which contains only the age value 15, and thus we arrive at the exact
answer, 9. While the relevant bucket (or buckets) generally contains more
than one tuple, equidepth histograms provide better estimates than equiwidth
histograms. Intuitively, buckets with very frequently occurring values contain
fewer values, and thus the uniform distribution assumption is applied to a
smaller range of values, leading to better approximations. Conversely, buckets
with mostly infrequent values are approximated less accurately in an equidepth
histogram, but for good estimation, the frequent values are important.

Proceeding further with the intuition about the importance of frequent values,
another alternative is to maintain separate counts for a small number of very
frequent values, say the age values 7 and 14 in our example, and maintain an
equidepth (or other) histogram to cover the remaining values. Such a histogram
is called a compressed histogram. Most commercial DBMSs currently use
equidepth histograms, and some use compressed histograms.
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15.3 RELATIONAL ALGEBRA EQUIVALENCES

In this section, we present several equivalences among relational algebra expres-
sions; and in Section 15.4, we discuss the space of alternative plans considered
by a optimizer.

Our discussion of equivalences is aimed at explaining the role that such equiva-
lences play in a System R style optimizer. In essence, a basic SQL query block
can be thought of as an algebra expression consisting of the cross-product of
all relations in the FROM clause, the selections in the WHERE clause, and the
projections in the SELECT clause. The optimizer can choose to evaluate any
equivalent expression and still obtain the same result. Algebra equivalences
allow us to convert cross-products to joins, choose different join orders, and
push selections and projections ahead of joins. For simplicity, we assume that
naming conflicts never arise and we need not consider the renaming operator
ρ.

15.3.1 Selections

Two important equivalences involve the selection operation. The first one in-
volves cascading of selections:

σc1∧c2∧...cn(R) ≡ σc1(σc2(. . . (σcn(R)) . . .))

Going from the right side to the left, this equivalence allows us to combine sev-
eral selections into one selection. Intuitively, we can test whether a tuple meets
each of the conditions c1 . . . cn at the same time. In the other direction, this
equivalence allows us to take a selection condition involving several conjuncts
and replace it with several smaller selection operations. Replacing a selection
with several smaller selections turns out to be very useful in combination with
other equivalences, especially commutation of selections with joins or cross-
products, which we discuss shortly. Intuitively, such a replacement is useful in
cases where only part of a complex selection condition can be pushed.

The second equivalence states that selections are commutative:

σc1(σc2(R)) ≡ σc2(σc1(R))

In other words, we can test the conditions c1 and c2 in either order.

15.3.2 Projections

The rule for cascading projections says that successively eliminating columns
from a relation is equivalent to simply eliminating all but the columns retained
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by the final projection:

πa1(R) ≡ πa1(πa2(. . . (πan(R)) . . .))

Each ai is a set of attributes of relation R, and ai ⊆ ai+1 for i = 1 . . . n −
1. This equivalence is useful in conjunction with other equivalences such as
commutation of projections with joins.

15.3.3 Cross-Products and Joins

Two important equivalences involving cross-products and joins. We present
them in terms of natural joins for simplicity, but they hold for general joins as
well.

First, assuming that fields are identified by name rather than position, these
operations are commutative:

R × S ≡ S × R

R   S ≡ S   R

This property is very important. It allows us to choose which relation is to be
the inner and which the outer in a join of two relations.

The second equivalence states that joins and cross-products are associative:

R × (S × T ) ≡ (R × S) × T

R   (S   T ) ≡ (R   S)   T

Thus we can either join R and S first and then join T to the result, or join S

and T first and then join R to the result. The intuition behind associativity
of cross-products is that, regardless of the order in which the three relations
are considered, the final result contains the same columns. Join associativity is
based on the same intuition, with the additional observation that the selections
specifying the join conditions can be cascaded. Thus the same rows appear in
the final result, regardless of the order in which the relations are joined.

Together with commutativity, associativity essentially says that we can choose
to join any pair of these relations, then join the result with the third relation,
and always obtain the same final result. For example, let us verify that

R   (S   T ) ≡ (T   R)   S

From commutativity, we have:

R   (S   T ) ≡ R   (T   S)
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From associativity, we have:

R   (T   S) ≡ (R   T )   S

Using commutativity again, we have:

(R   T )   S ≡ (T   R)   S

In other words, when joining several relations, we are free to join the relations
in any order we choose. This order-independence is fundamental to how a query
optimizer generates alternative query evaluation plans.

15.3.4 Selects, Projects, and Joins

Some important equivalences involve two or more operators.

We can commute a selection with a projection if the selection operation in-
volves only attributes retained by the projection:

πa(σc(R)) ≡ σc(πa(R))

Every attribute mentioned in the selection condition c must be included in the
set of attributes a.

We can combine a selection with a cross-product to form a join, as per the
definition of join:

R   c S ≡ σc(R × S)

We can commute a selection with a cross-product or a join if the selection
condition involves only attributes of one of the arguments to the cross-product
or join:

σc(R × S) ≡ σc(R) × S

σc(R   S) ≡ σc(R)   S

The attributes mentioned in c must appear only in R and not in S. Similar
equivalences hold if c involves only attributes of S and not R, of course.

In general, a selection σc on R × S can be replaced by a cascade of selections
σc1, σc2, and σc3 such that c1 involves attributes of both R and S, c2 involves
only attributes of R, and c3 involves only attributes of S:

σc(R × S) ≡ σc1∧c2∧c3(R × S)

Using the cascading rule for selections, this expression is equivalent to

σc1(σc2(σc3(R × S)))
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Using the rule for commuting selections and cross-products, this expression is
equivalent to

σc1(σc2(R) × σc3(S))

Thus we can push part of the selection condition c ahead of the cross-product.
This observation also holds for selections in combination with joins, of course.

We can commute a projection with a cross-product:

πa(R × S) ≡ πa1(R)× πa2(S)

where a1 is the subset of attributes in a that appear in R, and a2 is the subset
of attributes in a that appear in S. We can also commute a projection with
a join if the join condition involves only attributes retained by the projection:

πa(R   c S) ≡ πa1(R)   c πa2(S)

where a1 is the subset of attributes in a that appear in R, and a2 is the subset
of attributes in a that appear in S. Further, every attribute mentioned in the
join condition c must appear in a.

Intuitively, we need to retain only those attributes of R and S that are either
mentioned in the join condition c or included in the set of attributes a retained
by the projection. Clearly, if a includes all attributes mentioned in c, the
previous commutation rules hold. If a does not include all attributes mentioned
in c, we can generalize the commutation rules by first projecting out attributes
that are not mentioned in c or a, performing the join, and then projecting out
all attributes that are not in a:

πa(R   c S) ≡ πa(πa1(R)   c πa2(S))

Now, a1 is the subset of attributes of R that appear in either a or c, and a2 is
the subset of attributes of S that appear in either a or c.

We can in fact derive the more general commutation rule by using the rule for
cascading projections and the simple commutation rule, and we leave this as
an exercise for the reader.

15.3.5 Other Equivalences

Additional equivalences hold when we consider operations such as set-difference,
union, and intersection. Union and intersection are associative and commuta-
tive. Selections and projections can be commuted with each of the set opera-
tions (set-difference, union, and intersection). We do not discuss these equiva-
lences further.
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SELECT S.rating, COUNT (*)
FROM Sailors S
WHERE S.rating > 5 AND S.age = 20
GROUP BY S.rating
HAVING COUNT DISTINCT (S.sname) > 2

Figure 15.5 A Single-Relation Query

15.4 ENUMERATION OF ALTERNATIVE PLANS

We now come to an issue that is at the heart of an optimizer, namely, the space
of alternative plans considered for a given query. Given a query, an optimizer
essentially enumerates a certain set of plans and chooses the plan with the
least estimated cost; the discussion in Section 12.1.1 indicated how the cost
of a plan is estimated. The algebraic equivalences discussed in Section 15.3
form the basis for generating alternative plans, in conjunction with the choice
of implementation technique for the relational operators (e.g., joins) present
in the query. However, not all algebraically equivalent plans are considered,
because doing so would make the cost of optimization prohibitively expensive
for all but the simplest queries. This section describes the subset of plans
considered by a typical optimizer.

There are two important cases to consider: queries in which the FROM clause
contains a single relation and queries in which the FROM clause contains two or
more relations.

15.4.1 Single-Relation Queries

If the query contains a single relation in the FROM clause, only selection, pro-
jection, grouping, and aggregate operations are involved; there are no joins. If
we have just one selection or projection or aggregate operation applied to a re-
lation, the alternative implementation techniques and cost estimates discussed
in Chapter 14 cover all the plans that must be considered. We now consider
how to optimize queries that involve a combination of several such operations,
using the following query as an example:

For each rating greater than 5, print the rating and the number of 20-year-old
sailors with that rating, provided that there are at least two such sailors with
different names.

The SQL version of this query is shown in Figure 15.5. Using the extended
algebra notation introduced in Section 15.1.2, we can write this query as:

πS.rating,COUNT (∗)(
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HAV INGCOUNTDISTINCT(S.sname)>2(

GROUP BY S.rating(

πS.rating,S.sname(

σS.rating>5∧S.age=20(

Sailors)))))

Notice that S.sname is added to the projection list, even though it is not in the
SELECT clause, because it is required to test the HAVING clause condition.

We are now ready to discuss the plans that an optimizer would consider. The
main decision to be made is which access path to use in retrieving Sailors
tuples. If we considered only the selections, we would simply choose the most
selective access path, based on which available indexes match the conditions in
the WHERE clause (as per the definition in Section 14.2.1). Given the additional
operators in this query, we must also take into account the cost of subsequent
sorting steps and consider whether these operations can be performed without
sorting by exploiting some index. We first discuss the plans generated when
there are no suitable indexes and then examine plans that utilize some index.

Plans without Indexes

The basic approach in the absence of a suitable index is to scan the Sailors
relation and apply the selection and projection (without duplicate elimination)
operations to each retrieved tuple, as indicated by the following algebra expres-
sion:

πS.rating,S.sname(

σS.rating>5∧S.age=20(

Sailors))

The resulting tuples are then sorted according to the GROUP BY clause (in the
example query, on rating), and one answer tuple is generated for each group that
meets the condition in the HAVING clause. The computation of the aggregate
functions in the SELECT and HAVING clauses is done for each group, using one
of the techniques described in Section 14.6.

The cost of this approach consists of the costs of each of these steps:

1. Performing a file scan to retrieve tuples and apply the selections and pro-
jections.

2. Writing out tuples after the selections and projections.

3. Sorting these tuples to implement the GROUP BY clause.
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Note that the HAVING clause does not cause additional I/O. The aggregate
computations can be done on-the-fly (with respect to I/O) as we generate the
tuples in each group at the end of the sorting step for the GROUP BY clause.

In the example query the cost includes the cost of a file scan on Sailors plus
the cost of writing out  S.rating, S.sname pairs plus the cost of sorting as per
the GROUP BY clause. The cost of the file scan is NPages(Sailors), which is 500
I/Os, and the cost of writing out  S.rating, S.sname pairs is NPages(Sailors)
times the ratio of the size of such a pair to the size of a Sailors tuple times the
reduction factors of the two selection conditions. In our example, the result
tuple size ratio is about 0.8, the rating selection has a reduction factor of 0.5,
and we use the default factor of 0.1 for the age selection. Therefore, the cost
of this step is 20 I/Os. The cost of sorting this intermediate relation (which
we call Temp) can be estimated as 3*NPages(Temp), which is 60 I/Os, if we
assume that enough pages are available in the buffer pool to sort it in two
passes. (Relational optimizers often assume that a relation can be sorted in
two passes, to simplify the estimation of sorting costs. If this assumption is not
met at run-time, the actual cost of sorting may be higher than the estimate.)
The total cost of the example query is therefore 500 + 20 + 60 = 580 I/Os.

Plans Utilizing an Index

Indexes can be utilized in several ways and can lead to plans that are signifi-
cantly faster than any plan that does not utilize indexes:

1. Single-Index Access Path: If several indexes match the selection condi-
tions in the WHERE clause, each matching index offers an alternative access
path. An optimizer can choose the access path that it estimates will result
in retrieving the fewest pages, apply any projections and nonprimary se-
lection terms (i.e., parts of the selection condition that do not match the
index), and proceed to compute the grouping and aggregation operations
(by sorting on the GROUP BY attributes).

2. Multiple-Index Access Path: If several indexes using Alternatives (2)
or (3) for data entries match the selection condition, each such index can
be used to retrieve a set of rids. We can intersect these sets of rids, then
sort the result by page id (assuming that the rid representation includes
the page id) and retrieve tuples that satisfy the primary selection terms of
all the matching indexes. Any projections and nonprimary selection terms
can then be applied, followed by grouping and aggregation operations.

3. Sorted Index Access Path: If the list of grouping attributes is a prefix
of a tree index, the index can be used to retrieve tuples in the order required
by the GROUP BY clause. All selection conditions can be applied on each
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retrieved tuple, unwanted fields can be removed, and aggregate operations
computed for each group. This strategy works well for clustered indexes.

4. Index-Only Access Path: If all the attributes mentioned in the query
(in the SELECT, WHERE, GROUP BY, or HAVING clauses) are included in the
search key for some dense index on the relation in the FROM clause, an
index-only scan can be used to compute answers. Because the data
entries in the index contain all the attributes of a tuple needed for this
query and there is one index entry per tuple, we never need to retrieve
actual tuples from the relation. Using just the data entries from the index,
we can carry out the following steps as needed in a given query: Apply
selection conditions, remove unwanted attributes, sort the result to achieve
grouping, and compute aggregate functions within each group. This index-
only approach works even if the index does not match the selections in the
WHERE clause. If the index matches the selection, we need examine only
a subset of the index entries; otherwise, we must scan all index entries.
In either case, we can avoid retrieving actual data records; therefore, the
cost of this strategy does not depend on whether the index is clustered. In
addition, if the index is a tree index and the list of attributes in the GROUP
BY clause forms a prefix of the index key, we can retrieve data entries in
the order needed for the GROUP BY clause and thereby avoid sorting!

We now illustrate each of these four cases, using the query shown in Figure
15.5 as a running example. We assume that the following indexes, all using
Alternative (2) for data entries, are available: a B+ tree index on rating, a
hash index on age, and a B+ tree index on  rating, sname, age . For brevity,
we do not present detailed cost calculations, but the reader should be able to
calculate the cost of each plan. The steps in these plans are scans (a file scan,
a scan retrieving tuples by using an index, or a scan of only index entries),
sorting, and writing temporary relations; and we have already discussed how
to estimate the costs of these operations.

As an example of the first case, we could choose to retrieve Sailors tuples such
that S.age=20 using the hash index on age. The cost of this step is the cost
of retrieving the index entries plus the cost of retrieving the corresponding
Sailors tuples, which depends on whether the index is clustered. We can then
apply the condition S.rating > 5 to each retrieved tuple; project out fields not
mentioned in the SELECT, GROUP BY, and HAVING clauses; and write the result
to a temporary relation. In the example, only the rating and sname fields need
to be retained. The temporary relation is then sorted on the rating field to
identify the groups, and some groups are eliminated by applying the HAVING

condition.
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Utilizing Indexes: All of the main RDBMSs recognize the importance
of index-only plans and look for such plans whenever possible. In IBM
DB2, when creating an index a user can specify a set of ‘include’ columns
that are to be kept in the index but are not part of the index key. This
allows a richer set of index-only queries to be handled, because columns
frequently accessed are included in the index even if they are not part of
the key. In Microsoft SQL Server, an interesting class of index-only plans
is considered: Consider a query that selects attributes sal and age from a
table, given an index on sal and another index on age. SQL Server uses
the indexes by joining the entries on the rid of data records to identify
 sal, age pairs that appear in the table.

As an example of the second case, we can retrieve rids of tuples satisfying
rating>5 using the index on rating, retrieve rids of tuples satisfying age=20 us-
ing the index on age, sort the retrieved rids by page number, and then retrieve
the corresponding Sailors tuples. We can retain just the rating and name fields
and write the result to a temporary relation, which we can sort on rating to
implement the GROUP BY clause. (A good optimizer might pipeline the pro-
jected tuples to the sort operator without creating a temporary relation.) The
HAVING clause is handled as before.

As an example of the third case, we can retrieve Sailors tuples in which S.rating
> 5, ordered by rating, using the B+ tree index on rating. We can compute
the aggregate functions in the HAVING and SELECT clauses on-the-fly because
tuples are retrieved in rating order.

As an example of the fourth case, we can retrieve data entries from the  rating,
sname, age index in which rating > 5. These entries are sorted by rating (and
then by sname and age, although this additional ordering is not relevant for
this query). We can choose entries with age=20 and compute the aggregate
functions in the HAVING and SELECT clauses on-the-fly because the data entries
are retrieved in rating order. In this case, in contrast to the previous case, we
do not retrieve any Sailors tuples. This property of not retrieving data records
makes the index-only strategy especially valuable with unclustered indexes.

15.4.2 Multiple-Relation Queries

Query blocks that contain two or more relations in the FROM clause require joins
(or cross-products). Finding a good plan for such queries is very important
because these queries can be quite expensive. Regardless of the plan chosen,
the size of the final result can be estimated by taking the product of the sizes
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of the relations in the FROM clause and the reduction factors for the terms in
the WHERE clause. But, depending on the order in which relations are joined,
intermediate relations of widely varying sizes can be created, leading to plans
with very different costs.

Enumeration of Left-Deep Plans

As we saw in Chapter 12, current relational systems, following the lead of the
System R optimizer, only consider left-deep plans. We now discuss how this
class of plans is efficiently searched using dynamic programming.

Consider a query block of the form:

SELECT attribute list
FROM relation list
WHERE term1 ∧ term2 ∧ . . . ∧ termn

A System R style query optimizer enumerates all left-deep plans, with selections
and projections considered (but not necessarily applied!) as early as possible.
The enumeration of plans can be understood as a multiple-pass algorithm in
which we proceed as follows:

Pass 1: We enumerate all single-relation plans (over some relation in the
FROM clause). Intuitively, each single-relation plan is a partial left-deep plan
for evaluating the query in which the given relation is the first (in the linear
join order for the left-deep plan of which it is a part). When considering
plans involving a relation A, we identify those selection terms in the WHERE

clause that mention only attributes of A. These are the selections that can
be performed when first accessing A, before any joins that involve A. We also
identify those attributes of A not mentioned in the SELECT clause or in terms
in the WHERE clause involving attributes of other relations. These attributes
can be projected out when first accessing A, before any joins that involve A.
We choose the best access method for A to carry out these selections and
projections, as per the discussion in Section 15.4.1.

For each relation, if we find plans that produce tuples in different orders, we
retain the cheapest plan for each such ordering of tuples. An ordering of tuples
could prove useful at a subsequent step, say, for a sort-merge join or imple-
menting a GROUP BY or ORDER BY clause. Hence, for a single relation, we may
retain a file scan (as the cheapest overall plan for fetching all tuples) and a B+
tree index (as the cheapest plan for fetching all tuples in the search key order).

Pass 2: We generate all two-relation plans by considering each single-relation
plan retained after Pass 1 as the outer relation and (successively) every other
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relation as the inner relation. Suppose that A is the outer relation and B

the inner relation for a particular two-relation plan. We examine the list of
selections in the WHERE clause and identify:

1. Selections that involve only attributes of B and can be applied before the
join.

2. Selections that define the join (i.e., are conditions involving attributes of
both A and B and no other relation).

3. Selections that involve attributes of other relations and can be applied only
after the join.

The first two groups of selections can be considered while choosing an access
path for the inner relation B. We also identify the attributes of B that do not
appear in the SELECT clause or in any selection conditions in the second or
third group and can therefore be projected out before the join.

Note that our identification of attributes that can be projected out before the
join and selections that can be applied before the join is based on the relational
algebra equivalences discussed earlier. In particular, we rely on the equivalences
that allow us to push selections and projections ahead of joins. As we will see,
whether we actually perform these selections and projections ahead of a given
join depends on cost considerations. The only selections that are really applied
before the join are those that match the chosen access paths for A and B. The
remaining selections and projections are done on-the-fly as part of the join.

An important point to note is that tuples generated by the outer plan are as-
sumed to be pipelined into the join. That is, we avoid having the outer plan
write its result to a file that is subsequently read by the join (to obtain outer
tuples). For some join methods, the join operator might require materializing
the outer tuples. For example, a hash join would partition the incoming tuples,
and a sort-merge join would sort them if they are not already in the appropri-
ate sort order. Nested loops joins, however, can use outer tuples as they are
generated and avoid materializing them. Similarly, sort-merge joins can use
outer tuples as they are generated if they are generated in the sorted order
required for the join. We include the cost of materializing the outer relation,
should this be necessary, in the cost of the join. The adjustments to the join
costs discussed in Chapter 14 to reflect the use of pipelining or materialization
of the outer are straightforward.

For each single-relation plan for A retained after Pass 1, for each join method
that we consider, we must determine the best access method to use for B. The
access method chosen for B retrieves, in general, a subset of the tuples in B,
possibly with some fields eliminated, as discussed later. Consider relation B.
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We have a collection of selections (some of which are the join conditions) and
projections on a single relation, and the choice of the best access method is
made as per the discussion in Section 15.4.1. The only additional consideration
is that the join method might require tuples to be retrieved in some order. For
example, in a sort-merge join, we want the inner tuples in sorted order on the
join column(s). If a given access method does not retrieve inner tuples in this
order, we must add the cost of an additional sorting step to the cost of the
access method.

Pass 3: We generate all three-relation plans. We proceed as in Pass 2, except
that we now consider plans retained after Pass 2 as outer relations, instead of
plans retained after Pass 1.

Additional Passes: This process is repeated with additional passes until we
produce plans that contain all the relations in the query. We now have the
cheapest overall plan for the query as well as the cheapest plan for producing
the answers in some interesting order.

If a multiple-relation query contains a GROUP BY clause and aggregate functions
such as MIN, MAX, and SUM in the SELECT clause, these are dealt with at the
very end. If the query block includes a GROUP BY clause, a set of tuples is
computed based on the rest of the query, as described above, and this set is
sorted as per the GROUP BY clause. Of course, if there is a plan according to
which the set of tuples is produced in the desired order, the cost of this plan
is compared with the cost of the cheapest plan (assuming that the two are
different) plus the sorting cost. Given the sorted set of tuples, partitions are
identified and any aggregate functions in the SELECT clause are applied on a
per-partition basis, as per the discussion in Chapter 14.

Examples of Multiple-Relation Query Optimization

Consider the query tree shown in Figure 12.3. Figure 15.6 shows the same
query, taking into account how selections and projections are considered early.

In looking at this figure, it is worth emphasizing that the selections shown on
the leaves are not necessarily done in a distinct step that precedes the join—
rather, as we have seen, they are considered as potential matching predicates
when considering the available access paths on the relations.

Suppose that we have the following indexes, all unclustered and using Alter-
native (2) for data entries: a B+ tree index on the rating field of Sailors, a
hash index on the sid field of Sailors, and a B+ tree index on the bid field of
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Optimization in Commercial Systems: IBM DB2, Informix, Microsoft
SQL Server, Oracle 8, and Sybase ASE all search for left-deep trees using
dynamic programming, as described here, with several variations. For ex-
ample, Oracle always considers interchanging the two relations in a hash
join, which could lead to right-deep trees or hybrids. DB2 generates some
bushy trees as well. Systems often use a variety of strategies for generating
plans, going beyond the systematic bottom-up enumeration that we de-
scribed, in conjunction with a dynamic programming strategy for costing
plans and remembering interesting plans (to avoid repeated analysis of the
same plan). Systems also vary in the degree of control they give users.
Sybase ASE and Oracle 8 allow users to force the choice of join orders
and indexes—Sybase ASE even allows users to explicitly edit the execu-
tion plan—whereas IBM DB2 does not allow users to direct the optimizer
other than by setting an ‘optimization level,’ which influences how many
alternative plans the optimizer considers.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Figure 15.6 A Query Tree
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Reserves. In addition, we assume that we can do a sequential scan of both
Reserves and Sailors. Let us consider how the optimizer proceeds.

In Pass 1, we consider three access methods for Sailors (B+ tree, hash index,
and sequential scan), taking into account the selection σrating>5. This selection
matches the B+ tree on rating and therefore reduces the cost for retrieving
tuples that satisfy this selection. The cost of retrieving tuples using the hash
index and the sequential scan is likely to be much higher than the cost of using
the B+ tree. So the plan retained for Sailors is access via the B+ tree index, and
it retrieves tuples in sorted order by rating. Similarly, we consider two access
methods for Reserves taking into account the selection σbid=100. This selection
matches the B+ tree index on Reserves, and the cost of retrieving matching
tuples via this index is likely to be much lower than the cost of retrieving tuples
using a sequential scan; access through the B+ tree index is therefore the only
plan retained for Reserves after Pass 1.

In Pass 2, we consider taking the (relation computed by the) plan for Reserves
and joining it (as the outer) with Sailors. In doing so, we recognize that now,
we need only Sailors tuples that satisfy σrating>5 and σsid=value, where value

is some value from an outer tuple. The selection σsid=value matches the hash
index on the sid field of Sailors, and the selection σrating>5 matches the B+
tree index on the rating field. Since the equality selection has a much lower
reduction factor, the hash index is likely to be the cheaper access method.
In addition to the preceding consideration of alternative access methods, we
consider alternative join methods. All available join methods are considered.
For example, consider a sort-merge join. The inputs must be sorted by sid;
since neither input is sorted by sid or has an access method that can return
tuples in this order, the cost of the sort-merge join in this case must include
the cost of storing the two inputs in temporary relations and sorting them. A
sort-merge join provides results in sorted order by sid, but this is not a useful
ordering in this example because the projection πsname is applied (on-the-fly)
to the result of the join, thereby eliminating the sid field from the answer.
Therefore, the plan using sort-merge join is retained after Pass 2 only if it is
the least expensive plan involving Reserves and Sailors.

Similarly, we also consider taking the plan for Sailors retained after Pass 1 and
joining it (as the outer relation) with Reserves. Now we recognize that we need
only Reserves tuples that satisfy σbid=100 and σsid=value, where value is some
value from an outer tuple. Again, we consider all available join methods.

We finally retain the cheapest plan overall.

As another example, illustrating the case when more than two relations are
joined, consider the following query:
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SELECT S.sid, COUNT(*) AS numres
FROM Boats B, Reserves R, Sailors S
WHERE R.sid = S.sid AND B.bid=R.bid AND B.color = ‘red’
GROUP BY S.sid

This query finds the number of red boats reserved by each sailor. This query
is shown in the form of a tree in Figure 15.7.

GROUPBY sid

sid, COUNT(*) AS numres

color=’red’

sid=sid

bid=bid

Boats

Sailors

Reserves

Figure 15.7 A Query Tree

Suppose that the following indexes are available: for Reserves, a B+ tree on the
sid field and a clustered B+ tree on the bid field; for Sailors, a B+ tree index on
the sid field and a hash index on the sid field; and for Boats, a B+ tree index
on the color field and a hash index on the color field. (The list of available
indexes is contrived to create a relatively simple, illustrative example.) Let us
consider how this query is optimized. The initial focus is on the SELECT, FROM,
and WHERE clauses.

In Pass 1, the best plan is found for accessing each relation, regarded as the
first relation in an execution plan. For Reserves and Sailors, the best plan is
obviously a file scan because no selections match an available index. The best
plan for Boats is to use the hash index on color, which matches the selection
B.color = ‘red’. The B+ tree on color also matches this selection and is retained
even though the hash index is cheaper, because it returns tuples in sorted order
by color.

In Pass 2, for each of the plans generated in Pass 1, taken as the outer relation,
we consider joining another relation as the inner one. Hence, we consider each
of the following joins: file scan of Reserves (outer) with Boats (inner), file scan
of Reserves (outer) with Sailors (inner), file scan of Sailors (outer) with Boats
(inner), file scan of Sailors (outer) with Reserves (inner), Boats accessed via
B+ tree index on color (outer) with Sailors (inner), Boats accessed via hash
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index on color (outer) with Sailors (inner), Boats accessed via B+ tree index
on color (outer) with Reserves (inner), and Boats accessed via hash index on
color (outer) with Reserves (inner).

For each such pair, we consider every join method, and for each join method,
we consider every available access path for the inner relation. For each pair
of relations, we retain the cheapest of the plans considered for every sorted
order in which the tuples are generated. For example, with Boats accessed
via the hash index on color as the outer relation, an index nested loops join
accessing Reserves via the B+ tree index on bid is likely to be a good plan;
observe that there is no hash index on this field of Reserves. Another plan for
joining Reserves and Boats is to access Boats using the hash index on color,
access Reserves using the B+ tree on bid, and use a sort-merge join; this plan,
in contrast to the previous one, generates tuples in sorted order by bid. It
is retained even if the previous plan is cheaper, unless an even cheaper plan
produces the tuples in sorted order by bid. However, the previous plan, which
produces tuples in no particular order, would not be retained if this plan is
cheaper.

A good heuristic is to avoid considering cross-products if possible. If we apply
this heuristic, we would not consider the following ‘joins’ in Pass 2 of this
example: file scan of Sailors (outer) with Boats (inner), Boats accessed via B+
tree index on color (outer) with Sailors (inner), and Boats accessed via hash
index on color (outer) with Sailors (inner).

In Pass 3, for each plan retained in Pass 2, taken as the outer relation, we
consider how to join the remaining relation as the inner one. An example of a
plan generated at this step is the following: Access Boats via the hash index
on color, access Reserves via the B+ tree index on bid, and join them using
a sort-merge join, then take the result of this join as the outer and join with
Sailors using a sort-merge join, accessing Sailors via the B+ tree index on the
sid field. Note that, since the result of the first join is produced in sorted order
by bid, whereas the second join requires its inputs to be sorted by sid, the result
of the first join must be sorted by sid before being used in the second join. The
tuples in the result of the second join are generated in sorted order by sid.

The GROUP BY clause is considered after all joins, and it requires sorting on
the sid field. For each plan retained in Pass 3, if the result is not sorted on
sid, we add the cost of sorting on the sid field. The sample plan generated in
Pass 3 produces tuples in sid order; therefore, it may be the cheapest plan for
the query even if a cheaper plan joins all three relations but does not produce
tuples in sid order.
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15.5 NESTED SUBQUERIES

The unit of optimization in a typical system is a query block, and nested queries
are dealt with using some form of nested loops evaluation. Consider the fol-
lowing nested query in SQL: Find the names of sailors with the highest rating:

SELECT S.sname
FROM Sailors S
WHERE S.rating = ( SELECT MAX (S2.rating)

FROM Sailors S2 )

In this simple query, the nested subquery can be evaluated just once, yielding
a single value. This value is incorporated into the top-level query as if it had
been part of the original statement of the query. For example, if the highest
rated sailor has a rating of 8, the WHERE clause is effectively modified to WHERE

S.rating = 8.

However, the subquery sometimes returns a relation, or more precisely, a table
in the SQL sense (i.e., possibly with duplicate rows). Consider the following
query: Find the names of sailors who have reserved boat number 103:

SELECT S.sname
FROM Sailors S
WHERE S.sid IN ( SELECT R.sid

FROM Reserves R
WHERE R.bid = 103 )

Again, the nested subquery can be evaluated just once, yielding a collection
of sids. For each tuple of Sailors, we must now check whether the sid value
is in the computed collection of sids; this check entails a join of Sailors and
the computed collection of sids, and in principle we have the full range of join
methods to choose from. For example, if there is an index on the sid field
of Sailors, an index nested loops join with the computed collection of sids as
the outer relation and Sailors as the inner one might be the most efficient join
method. However, in many systems, the query optimizer is not smart enough
to find this strategy—a common approach is to always do a nested loops join
in which the inner relation is the collection of sids computed from the subquery
(and this collection may not be indexed).

The motivation for this approach is that it is a simple variant of the technique
used to deal with correlated queries such as the following version of the previous
query:

SELECT S.sname
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FROM Sailors S
WHERE EXISTS ( SELECT *

FROM Reserves R
WHERE R.bid = 103

AND S.sid = R.sid )

This query is correlated—the tuple variable S from the top-level query appears
in the nested subquery. Therefore, we cannot evaluate the subquery just once.
In this case the typical evaluation strategy is to evaluate the nested subquery
for each tuple of Sailors.

An important point to note about nested queries is that a typical optimizer
is likely to do a poor job, because of the limited approach to nested query
optimization. This is highlighted next:

In a nested query with correlation, the join method is effectively index
nested loops, with the inner relation typically a subquery (and therefore
potentially expensive to compute). This approach creates two distinct
problems. First, the nested subquery is evaluated once per outer tuple;
if the same value appears in the correlation field (S.sid in our example) of
several outer tuples, the same subquery is evaluated many times. The sec-
ond problem is that the approach to nested subqueries is not set-oriented.
In effect, a join is seen as a scan of the outer relation with a selection on
the inner subquery for each outer tuple. This precludes consideration of
alternative join methods, such as a sort-merge join or a hash join, that
could lead to superior plans.

Even if index nested loops is the appropriate join method, nested query
evaluation may be inefficient. For example, if there is an index on the sid
field of Reserves, a good strategy might be to do an index nested loops join
with Sailors as the outer relation and Reserves as the inner relation and
apply the selection on bid on-the-fly. However, this option is not considered
when optimizing the version of the query that uses IN, because the nested
subquery is fully evaluated as a first step; that is, Reserves tuples that
meet the bid selection are retrieved first.

Opportunities for finding a good evaluation plan may also be missed be-
cause of the implicit ordering imposed by the nesting. For example, if there
is an index on the sid field of Sailors, an index nested loops join with Re-
serves as the outer relation and Sailors as the inner one might be the most
efficient plan for our example correlated query. However, this join ordering
is never considered by an optimizer.

A nested query often has an equivalent query without nesting, and a correlated
query often has an equivalent query without correlation. We already saw cor-
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Nested Queries: IBM DB2, Informix, Microsoft SQL Server, Oracle 8,
and Sybase ASE all use some version of correlated evaluation to handle
nested queries, which are an important part of the TPC-D benchmark;
IBM and Informix support a version in which the results of subqueries are
stored in a ‘memo’ table and the same subquery is not executed multiple
times. All these RDBMSs consider decorrelation and “flattening” of nested
queries as an option. Microsoft SQL Server, Oracle 8 and IBM DB2 also
use rewriting techniques, e.g., Magic Sets (see Chapter 24) or variants, in
conjunction with decorrelation.

related and uncorrelated versions of the example nested query. There is also
an equivalent query without nesting:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.bid=103

A typical SQL optimizer is likely to find a much better evaluation strategy if it is
given the unnested or ‘decorrelated’ version of the example query than if it were
given either of the nested versions of the query. Many current optimizers cannot
recognize the equivalence of these queries and transform one of the nested
versions to the nonnested form. This is, unfortunately, up to the educated user.
From an efficiency standpoint, users are advised to consider such alternative
formulations of a query.

We conclude our discussion of nested queries by observing that there could be
several levels of nesting. In general, the approach we sketched is extended by
evaluating such queries from the innermost to the outermost levels, in order, in
the absence of correlation. A correlated subquery must be evaluated for each
candidate tuple of the higher-level (sub)query that refers to it. The basic idea
is therefore similar to the case of one-level nested queries; we omit the details.

15.6 THE SYSTEM R OPTIMIZER

Current relational query optimizers have been greatly influenced by choices
made in the design of IBM’s System R query optimizer. Important design
choices in the System R optimizer include:

1. The use of statistics about the database instance to estimate the cost of a
query evaluation plan.

2. A decision to consider only plans with binary joins in which the inner
relation is a base relation (i.e., not a temporary relation). This heuristic
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reduces the (potentially very large) number of alternative plans that must
be considered.

3. A decision to focus optimization on the class of SQL queries without nesting
and treat nested queries in a relatively ad hoc way.

4. A decision not to perform duplicate elimination for projections (except as
a final step in the query evaluation when required by a DISTINCT clause).

5. A model of cost that accounted for CPU costs as well as I/O costs.

Our discussion of optimization reflects these design choices, except for the last
point in the preceding list, which we ignore to retain our simple cost model
based on the number of page I/Os.

15.7 OTHER APPROACHES TO QUERY OPTIMIZATION

We have described query optimization based on an exhaustive search of a large
space of plans for a given query. The space of all possible plans grows rapidly
with the size of the query expression, in particular with respect to the number
of joins, because join-order optimization is a central issue. Therefore, heuristics
are used to limit the space of plans considered by an optimizer. A widely used
heuristic is that only left-deep plans are considered, which works well for most
queries. However, once the number of joins becomes greater than about 15,
the cost of optimization using this exhaustive approach becomes prohibitively
high, even if we consider only left-deep plans.

Such complex queries are becoming important in decision-support environ-
ments, and other approaches to query optimization have been proposed. These
include rule-based optimizers, which use a set of rules to guide the gen-
eration of candidate plans, and randomized plan generation, which uses
probabilistic algorithms such as simulated annealing to explore a large space of
plans quickly, with a reasonable likelihood of finding a good plan.

Current research in this area also involves techniques for estimating the size
of intermediate relations more accurately; parametric query optimization,
which seeks to find good plans for a given query for each of several different
conditions that might be encountered at run-time; and multiple-query opti-
mization, in which the optimizer takes concurrent execution of several queries
into account.

15.8 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.
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What is an SQL query block? Why is it important in the context of query
optimization? (Section 15.1)

Describe how a query block is translated into extended relational algebra.
Describe and motivate the extensions to relational algebra. Why are σπ×
expressions the focus of an optimizer? (Section 15.1)

What are the two parts to estimating the cost of a query plan? (Sec-
tion 15.2)

How is the result size estimated for a σπ× expression? Describe the use of
reduction factors, and explain how they are calculated for different kinds
of selections? (Section 15.2.1)

What are histograms? How do they help in cost estimation? Explain
the differences between the different kinds of histograms, with particular
attention to the role of frequent data values. (Section 15.2.1)

When are two relational algebra expressions considered equivalent? How is
equivalence used in query optimization? What algebra equivalences that
justify the common optimizations of pushing selections ahead of joins and
re-ordering join expressions? (Section 15.3)

Describe left-deep plans and explain why optimizers typically consider only
such plans. (Section 15.4)

What plans are considered for (sub)queries with a single relation? Of
these, which plans are retained in the dynamic programming approach to
enumerating left-deep plans? Discuss access methods and output order
in your answer. In particular, explain index-only plans and why they are
attractive. (Section 15.4)

Explain how query plans are generated for queries with multiple relations.
Discuss the space and time complexity of the dynamic programming ap-
proach, and how the plan generation process incorporates heuristics like
pushing selections and join ordering. How are index-only plans for multiple-
relation queries identified? How are pipelining opportunities identified?
(Section 15.4)

How are nested subqueries optimized and evaluated? Discuss correlated
queries and the additional optimization challenges they present. Why are
plans produced for nested queries typically of poor quality? What is the
lesson for application programmers? (Section 15.5)

Discuss some of the influential design choices made in the System R opti-
mizer. (Section 15.6)

Briefly survey optimization techniques that go beyond the dynamic pro-
gramming framework discussed in this chapter. (Section 15.7)
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EXERCISES

Exercise 15.1 Briefly answer the following questions:

1. In the context of query optimization, what is an SQL query block?

2. Define the term reduction factor.

3. Describe a situation in which projection should precede selection in processing a project-
select query, and describe a situation where the opposite processing order is better.
(Assume that duplicate elimination for projection is done via sorting.)

4. If there are unclustered (secondary) B+ tree indexes on both R.a and S.b, the join
R   a=bS could be processed by doing a sort-merge type of join—without doing any
sorting—by using these indexes.

(a) Would this be a good idea if R and S each has only one tuple per page or would it
be better to ignore the indexes and sort R and S? Explain.

(b) What if R and S each have many tuples per page? Again, explain.

5. Explain the role of interesting orders in the System R optimizer.

Exercise 15.2 Consider a relation with this schema:

Employees(eid: integer, ename: string, sal: integer, title: string, age: integer)

Suppose that the following indexes, all using Alternative (2) for data entries, exist: a hash
index on eid, a B+ tree index on sal, a hash index on age, and a clustered B+ tree index
on  age, sal . Each Employees record is 100 bytes long, and you can assume that each index
data entry is 20 bytes long. The Employees relation contains 10,000 pages.

1. Consider each of the following selection conditions and, assuming that the reduction
factor (RF) for each term that matches an index is 0.1, compute the cost of the most
selective access path for retrieving all Employees tuples that satisfy the condition:

(a) sal > 100

(b) age = 25

(c) age > 20

(d) eid = 1, 000

(e) sal > 200 ∧ age > 30

(f) sal > 200 ∧ age = 20

(g) sal > 200 ∧ title = CFO 

(h) sal > 200 ∧ age > 30 ∧ title = CFO 

2. Suppose that, for each of the preceding selection conditions, you want to retrieve the
average salary of qualifying tuples. For each selection condition, describe the least ex-
pensive evaluation method and state its cost.

3. Suppose that, for each of the preceding selection conditions, you want to compute the av-
erage salary for each age group. For each selection condition, describe the least expensive
evaluation method and state its cost.

4. Suppose that, for each of the preceding selection conditions, you want to compute the
average age for each sal level (i.e., group by sal). For each selection condition, describe
the least expensive evaluation method and state its cost.
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5. For each of the following selection conditions, describe the best evaluation method:

(a) sal > 200 ∨ age = 20

(b) sal > 200 ∨ title = CFO 

(c) title = CFO ∧ ename = Joe 

Exercise 15.3 For each of the following SQL queries, for each relation involved, list the
attributes that must be examined to compute the answer. All queries refer to the following
relations:

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))
Dept(did: integer, dname: char(20), floor: integer, budget: real)

1. SELECT COUNT(*) FROM Emp E, Dept D WHERE E.did = D.did

2. SELECT MAX(E.sal) FROM Emp E, Dept D WHERE E.did = D.did

3. SELECT MAX(E.sal) FROM Emp E, Dept D WHERE E.did = D.did AND D.floor = 5

4. SELECT E.did, COUNT(*) FROM Emp E, Dept D WHERE E.did = D.did GROUP BY D.did

5. SELECT D.floor, AVG(D.budget) FROM Dept D GROUP BY D.floor HAVING COUNT(*) > 2

6. SELECT D.floor, AVG(D.budget) FROM Dept D GROUP BY D.floor ORDER BY D.floor

Exercise 15.4 You are given the following information:

Executives has attributes ename, title, dname, and address; all are string fields of
the same length.
The ename attribute is a candidate key.
The relation contains 10,000 pages.
There are 10 buffer pages.

1. Consider the following query:

SELECT E.title, E.ename FROM Executives E WHERE E.title=‘CFO’

Assume that only 10% of Executives tuples meet the selection condition.

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What
is the cost of the best plan? (In this and subsequent questions, be sure to describe
the plan you have in mind.)

(b) Suppose that an unclustered B+ tree index on title is (the only index) available.
What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on ename is (the only index) available.
What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on address is (the only index) available.
What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on  ename, title is (the only index) avail-
able. What is the cost of the best plan?

2. Suppose that the query is as follows:

SELECT E.ename FROM Executives E WHERE E.title=‘CFO’ AND E.dname=‘Toy’
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Assume that only 10% of Executives tuples meet the condition E.title = CFO , only
10% meet E.dname = Toy , and that only 5% meet both conditions.

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What
is the cost of the best plan?

(b) Suppose that a clustered B+ tree index on dname is (the only index) available.
What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on  title, dname is (the only index) avail-
able. What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on  title, ename is (the only index) avail-
able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on  dname, title, ename is (the only index)
available. What is the cost of the best plan?

(f) Suppose that a clustered B+ tree index on  ename, title, dname is (the only index)
available. What is the cost of the best plan?

3. Suppose that the query is as follows:

SELECT E.title, COUNT(*) FROM Executives E GROUP BY E.title

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What
is the cost of the best plan?

(b) Suppose that an unclustered B+ tree index on title is (the only index) available.
What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on ename is (the only index) available.
What is the cost of the best plan?

(d) Suppose that a clustered B+ tree index on  ename, title is (the only index) avail-
able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on  title, ename is (the only index) avail-
able. What is the cost of the best plan?

4. Suppose that the query is as follows:

SELECT E.title, COUNT(*) FROM Executives E
WHERE E.dname > ‘W%’ GROUP BY E.title

Assume that only 10% of Executives tuples meet the selection condition.

(a) Suppose that a clustered B+ tree index on title is (the only index) available. What
is the cost of the best plan? If an additional index (on any search key you want) is
available, would it help produce a better plan?

(b) Suppose that an unclustered B+ tree index on title is (the only index) available.
What is the cost of the best plan?

(c) Suppose that a clustered B+ tree index on dname is (the only index) available.
What is the cost of the best plan? If an additional index (on any search key you
want) is available, would it help to produce a better plan?

(d) Suppose that a clustered B+ tree index on  dname, title is (the only index) avail-
able. What is the cost of the best plan?

(e) Suppose that a clustered B+ tree index on  title, dname is (the only index) avail-
able. What is the cost of the best plan?
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Exercise 15.5 Consider the query πA,B,C,D(R   A=CS). Suppose that the projection routine
is based on sorting and is smart enough to eliminate all but the desired attributes during the
initial pass of the sort and also to toss out duplicate tuples on-the-fly while sorting, thus
eliminating two potential extra passes. Finally, assume that you know the following:

R is 10 pages long, and R tuples are 300 bytes long.
S is 100 pages long, and S tuples are 500 bytes long.
C is a key for S, and A is a key for R.
The page size is 1024 bytes.
Each S tuple joins with exactly one R tuple.
The combined size of attributes A, B, C, and D is 450 bytes.
A and B are in R and have a combined size of 200 bytes; C and D are in S.

1. What is the cost of writing out the final result? (As usual, you should ignore this cost
in answering subsequent questions.)

2. Suppose that three buffer pages are available, and the only join method that is imple-
mented is simple (page-oriented) nested loops.

(a) Compute the cost of doing the projection followed by the join.

(b) Compute the cost of doing the join followed by the projection.

(c) Compute the cost of doing the join first and then the projection on-the-fly.

(d) Would your answers change if 11 buffer pages were available?

Exercise 15.6 Briefly answer the following questions:

1. Explain the role of relational algebra equivalences in the System R optimizer.

2. Consider a relational algebra expression of the form σc(πl(R × S)). Suppose that the
equivalent expression with selections and projections pushed as much as possible, taking
into account only relational algebra equivalences, is in one of the following forms. In
each case give an illustrative example of the selection conditions and the projection lists
(c, l, c1, l1, etc.).

(a) Equivalent maximally pushed form: πl1(σc1(R)× S).

(b) Equivalent maximally pushed form: πl1(σc1(R)× σc2(S)).

(c) Equivalent maximally pushed form: σc(πl1(πl2(R)× S)).

(d) Equivalent maximally pushed form: σc1(πl1(σc2(πl2(R))× S)).

(e) Equivalent maximally pushed form: σc1(πl1(πl2(σc2(R))× S)).

(f) Equivalent maximally pushed form: πl(σc1(πl1(πl2(σc2(R))× S))).

Exercise 15.7 Consider the following relational schema and SQL query. The schema cap-
tures information about employees, departments, and company finances (organized on a per
department basis).

Emp(eid: integer, did: integer, sal: integer, hobby: char(20))
Dept(did: integer, dname: char(20), floor: integer, phone: char(10))
Finance(did: integer, budget: real, sales: real, expenses: real)

Consider the following query:
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SELECT D.dname, F.budget
FROM Emp E, Dept D, Finance F
WHERE E.did=D.did AND D.did=F.did AND D.floor=1

AND E.sal ≥ 59000 AND E.hobby = ‘yodeling’

1. Identify a relational algebra tree (or a relational algebra expression if you prefer) that
reflects the order of operations a decent query optimizer would choose.

2. List the join orders (i.e., orders in which pairs of relations can be joined to compute the
query result) that a relational query optimizer will consider. (Assume that the optimizer
follows the heuristic of never considering plans that require the computation of cross-
products.) Briefly explain how you arrived at your list.

3. Suppose that the following additional information is available: Unclustered B+ tree
indexes exist on Emp.did, Emp.sal, Dept.floor, Dept.did, and Finance.did. The system’s
statistics indicate that employee salaries range from 10,000 to 60,000, employees enjoy
200 different hobbies, and the company owns two floors in the building. There are
a total of 50,000 employees and 5,000 departments (each with corresponding financial
information) in the database. The DBMS used by the company has just one join method
available, index nested loops.

(a) For each of the query’s base relations (Emp, Dept, and Finance) estimate the
number of tuples that would be initially selected from that relation if all of the
non-join predicates on that relation were applied to it before any join processing
begins.

(b) Given your answer to the preceding question, which of the join orders considered
by the optimizer has the lowest estimated cost?

Exercise 15.8 Consider the following relational schema and SQL query:

Suppliers(sid: integer, sname: char(20), city: char(20))
Supply(sid: integer, pid: integer)
Parts(pid: integer, pname: char(20), price: real)

SELECT S.sname, P.pname
FROM Suppliers S, Parts P, Supply Y
WHERE S.sid = Y.sid AND Y.pid = P.pid AND

S.city = ‘Madison’ AND P.price ≤ 1,000

1. What information about these relations does the query optimizer need to select a good
query execution plan for the given query?

2. How many different join orders, assuming that cross-products are disallowed, does a
System R style query optimizer consider when deciding how to process the given query?
List each of these join orders.

3. What indexes might be of help in processing this query? Explain briefly.

4. How does adding DISTINCT to the SELECT clause affect the plans produced?

5. How does adding ORDER BY sname to the query affect the plans produced?

6. How does adding GROUP BY sname to the query affect the plans produced?

Exercise 15.9 Consider the following scenario:
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Emp(eid: integer, sal: integer, age: real, did: integer)
Dept(did: integer, projid: integer, budget: real, status: char(10))
Proj(projid: integer, code: integer, report: varchar)

Assume that each Emp record is 20 bytes long, each Dept record is 40 bytes long, and each
Proj record is 2000 bytes long on average. There are 20,000 tuples in Emp, 5000 tuples in
Dept (note that did is not a key), and 1000 tuples in Proj. Each department, identified by
did, has 10 projects on average. The file system supports 4000 byte pages, and 12 buffer
pages are available. All following questions are based on this information. You can assume
uniform distribution of values. State any additional assumptions. The cost metric to use is
the number of page I/Os. Ignore the cost of writing out the final result.

1. Consider the following two queries: “Find all employees with age = 30” and “Find all
projects with code = 20.” Assume that the number of qualifying tuples is the same
in each case. If you are building indexes on the selected attributes to speed up these
queries, for which query is a clustered index (in comparison to an unclustered index) more
important?

2. Consider the following query: “Find all employees with age > 30.” Assume that there is
an unclustered index on age. Let the number of qualifying tuples be N . For what values
of N is a sequential scan cheaper than using the index?

3. Consider the following query:

SELECT *
FROM Emp E, Dept D
WHERE E.did=D.did

(a) Suppose that there is a clustered hash index on did on Emp. List all the plans that
are considered and identify the plan with the lowest estimated cost.

(b) Assume that both relations are sorted on the join column. List all the plans that
are considered and show the plan with the lowest estimated cost.

(c) Suppose that there is a clustered B+ tree index on did on Emp and Dept is sorted
on did. List all the plans that are considered and identify the plan with the lowest
estimated cost.

4. Consider the following query:

SELECT D.did, COUNT(*)
FROM Dept D, Proj P
WHERE D.projid=P.projid
GROUP BY D.did

(a) Suppose that no indexes are available. Show the plan with the lowest estimated
cost.

(b) If there is a hash index on P.projid what is the plan with lowest estimated cost?

(c) If there is a hash index on D.projid what is the plan with lowest estimated cost?

(d) If there is a hash index on D.projid and P.projid what is the plan with lowest
estimated cost?

(e) Suppose that there is a clustered B+ tree index on D.did and a hash index on
P.projid. Show the plan with the lowest estimated cost.

(f) Suppose that there is a clustered B+ tree index on D.did, a hash index on D.projid,
and a hash index on P.projid. Show the plan with the lowest estimated cost.
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(g) Suppose that there is a clustered B+ tree index on  D.did, D.projid and a hash
index on P.projid. Show the plan with the lowest estimated cost.

(h) Suppose that there is a clustered B+ tree index on  D.projid, D.did and a hash
index on P.projid. Show the plan with the lowest estimated cost.

5. Consider the following query:

SELECT D.did, COUNT(*)
FROM Dept D, Proj P
WHERE D.projid=P.projid AND D.budget>99000
GROUP BY D.did

Assume that department budgets are uniformly distributed in the range 0 to 100,000.

(a) Show the plan with lowest estimated cost if no indexes are available.

(b) If there is a hash index on P.projid show the plan with lowest estimated cost.

(c) If there is a hash index on D.budget show the plan with lowest estimated cost.

(d) If there is a hash index on D.projid and D.budget show the plan with lowest esti-
mated cost.

(e) Suppose that there is a clustered B+ tree index on  D.did,D.budget and a hash
index on P.projid. Show the plan with the lowest estimated cost.

(f) Suppose there is a clustered B+ tree index on D.did, a hash index on D.budget,
and a hash index on P.projid. Show the plan with the lowest estimated cost.

(g) Suppose there is a clustered B+ tree index on  D.did, D.budget, D.projid and a
hash index on P.projid. Show the plan with the lowest estimated cost.

(h) Suppose there is a clustered B+ tree index on  D.did, D.projid, D.budget and a
hash index on P.projid. Show the plan with the lowest estimated cost.

6. Consider the following query:

SELECT E.eid, D.did, P.projid
FROM Emp E, Dept D, Proj P
WHERE E.sal=50,000 AND D.budget>20,000

E.did=D.did AND D.projid=P.projid

Assume that employee salaries are uniformly distributed in the range 10,009 to 110,008
and that project budgets are uniformly distributed in the range 10,000 to 30,000. There
is a clustered index on sal for Emp, a clustered index on did for Dept, and a clustered
index on projid for Proj.

(a) List all the one-relation, two-relation, and three-relation subplans considered in
optimizing this query.

(b) Show the plan with the lowest estimated cost for this query.

(c) If the index on Proj were unclustered, would the cost of the preceding plan change
substantially? What if the index on Emp or on Dept were unclustered?
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BIBLIOGRAPHIC NOTES

Query optimization is critical in a relational DBMS, and it has therefore been extensively
studied. We concentrate in this chapter on the approach taken in System R, as described
in [668], although our discussion incorporates subsequent refinements to the approach. [784]
describes query optimization in Ingres. Good surveys can be found in [410] and [399]. [434]
contains several articles on query processing and optimization.

From a theoretical standpoint, [155] shows that determining whether two conjunctive queries

(queries involving only selections, projections, and cross-products) are equivalent is an NP-
complete problem; if relations are multisets, rather than sets of tuples, it is not known whether
the problem is decidable, although it is Π2

p hard. The equivalence problem is shown to be
decidable for queries involving selections, projections, cross-products, and unions in [643];
surprisingly, this problem is undecidable if relations are multisets [404]. Equivalence of con-
junctive queries in the presence of integrity constraints is studied in [30], and equivalence of
conjunctive queries with inequality selections is studied in [440].

An important problem in query optimization is estimating the size of the result of a query
expression. Approaches based on sampling are explored in [352, 353, 384, 481, 569]. The
use of detailed statistics, in the form of histograms, to estimate size is studied in [405, 558,
598]. Unless care is exercised, errors in size estimation can quickly propagate and make cost
estimates worthless for expressions with several operators. This problem is examined in [400].
[512] surveys several techniques for estimating result sizes and correlations between values in
relations. There are a number of other papers in this area; for example, [26, 170, 594, 725],
and our list is far from complete.

Semantic query optimization is based on transformations that preserve equivalence only when
certain integrity constraints hold. The idea was introduced in [437] and developed further in
[148, 682, 688].

In recent years, there has been increasing interest in complex queries for decision support
applications. Optimization of nested SQL queries is discussed in [298, 426, 430, 557, 760].
The use of the Magic Sets technique for optimizing SQL queries is studied in [553, 554, 555,
670, 673]. Rule-based query optimizers are studied in [287, 326, 490, 539, 596]. Finding a
good join order for queries with a large number of joins is studied in [401, 402, 453, 726].
Optimization of multiple queries for simultaneous execution is considered in [585, 633, 669].
Determining query plans at run-time is discussed in [327, 403]. Re-optimization of running
queries based on statistics gathered during query execution is considered by Kabra and DeWitt
[413]. Probabilistic optimization of queries is proposed in [183, 229].
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OVERVIEW OF TRANSACTION

MANAGEMENT

☛ What four properties of transactions does a DBMS guarantee?

☛ Why does a DBMS interleave transactions?

☛ What is the correctness criterion for interleaved execution?

☛ What kinds of anomalies can interleaving transactions cause?

☛ How does a DBMS use locks to ensure correct interleavings?

☛ What is the impact of locking on performance?

☛ What SQL commands allow programmers to select transaction char-
acteristics and reduce locking overhead?

☛ How does a DBMS guarantee transaction atomicity and recovery from
system crashes?

➽ Key concepts: ACID properties, atomicity, consistency, isolation,
durability; schedules, serializability, recoverability, avoiding cascading
aborts; anomalies, dirty reads, unrepeatable reads, lost updates; lock-
ing protocols, exclusive and shared locks, Strict Two-Phase Locking;
locking performance, thrashing, hot spots; SQL transaction charac-
teristics, savepoints, rollbacks, phantoms, access mode, isolation level;
transaction manager, recovery manager, log, system crash, media fail-
ure; stealing frames, forcing pages; recovery phases, analysis, redo and
undo.

I always say, keep a diary and someday it’ll keep you.

—Mae West
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In this chapter, we cover the concept of a transaction, which is the founda-
tion for concurrent execution and recovery from system failure in a DBMS. A
transaction is defined as any one execution of a user program in a DBMS and
differs from an execution of a program outside the DBMS (e.g., a C program
executing on Unix) in important ways. (Executing the same program several
times generates several transactions.)

For performance reasons, a DBMS has to interleave the actions of several trans-
actions. (We motivate interleaving of transactions in detail in Section 16.3.1.)
However, to give users a simple way to understand the effect of running their
programs, the interleaving is done carefully to ensure that the result of a con-
current execution of transactions is nonetheless equivalent (in its effect on the
database) to some serial, or one-at-a-time, execution of the same set of transac-
tions. How the DBMS handles concurrent executions is an important aspect of
transaction management and the subject of concurrency control. A closely re-
lated issue is how the DBMS handles partial transactions, or transactions that
are interrupted before they run to normal completion. The DBMS ensures that
the changes made by such partial transactions are not seen by other transac-
tions. How this is achieved is the subject of crash recovery. In this chapter,
we provide a broad introduction to concurrency control and crash recovery in
a DBMS. The details are developed further in the next two chapters.

In Section 16.1, we discuss four fundamental properties of database transactions
and how the DBMS ensures these properties. In Section 16.2, we present an ab-
stract way of describing an interleaved execution of several transactions, called
a schedule. In Section 16.3, we discuss various problems that can arise due to
interleaved execution. We introduce lock-based concurrency control, the most
widely used approach, in Section 16.4. We discuss performance issues associ-
ated with lock-based concurrency control in Section 16.5. We consider locking
and transaction properties in the context of SQL in Section 16.6. Finally, in
Section 16.7, we present an overview of how a database system recovers from
crashes and what steps are taken during normal execution to support crash
recovery.

16.1 THE ACID PROPERTIES

We introduced the concept of database transactions in Section 1.7. To reca-
pitulate briefly, a transaction is an execution of a user program, seen by the
DBMS as a series of read and write operations.

A DBMS must ensure four important properties of transactions to maintain
data in the face of concurrent access and system failures:
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1. Users should be able to regard the execution of each transaction as atomic:
Either all actions are carried out or none are. Users should not have to
worry about the effect of incomplete transactions (say, when a system crash
occurs).

2. Each transaction, run by itself with no concurrent execution of other trans-
actions, must preserve the consistency of the database. The DBMS as-
sumes that consistency holds for each transaction. Ensuring this property
of a transaction is the responsibility of the user.

3. Users should be able to understand a transaction without considering the
effect of other concurrently executing transactions, even if the DBMS in-
terleaves the actions of several transactions for performance reasons. This
property is sometimes referred to as isolation: Transactions are isolated,
or protected, from the effects of concurrently scheduling other transactions.

4. Once the DBMS informs the user that a transaction has been successfully
completed, its effects should persist even if the system crashes before all
its changes are reflected on disk. This property is called durability.

The acronym ACID is sometimes used to refer to these four properties of trans-
actions: atomicity, consistency, isolation and durability. We now consider how
each of these properties is ensured in a DBMS.

16.1.1 Consistency and Isolation

Users are responsible for ensuring transaction consistency. That is, the user
who submits a transaction must ensure that, when run to completion by itself
against a ‘consistent’ database instance, the transaction will leave the database
in a ‘consistent’ state. For example, the user may (naturally) have the consis-
tency criterion that fund transfers between bank accounts should not change
the total amount of money in the accounts. To transfer money from one ac-
count to another, a transaction must debit one account, temporarily leaving the
database inconsistent in a global sense, even though the new account balance
may satisfy any integrity constraints with respect to the range of acceptable
account balances. The user’s notion of a consistent database is preserved when
the second account is credited with the transferred amount. If a faulty trans-
fer program always credits the second account with one dollar less than the
amount debited from the first account, the DBMS cannot be expected to de-
tect inconsistencies due to such errors in the user program’s logic.

The isolation property is ensured by guaranteeing that, even though actions
of several transactions might be interleaved, the net effect is identical to ex-
ecuting all transactions one after the other in some serial order. (We discuss
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how the DBMS implements this guarantee in Section 16.4.) For example, if
two transactions T1 and T2 are executed concurrently, the net effect is guar-
anteed to be equivalent to executing (all of) T1 followed by executing T2 or
executing T2 followed by executing T1. (The DBMS provides no guarantees
about which of these orders is effectively chosen.) If each transaction maps a
consistent database instance to another consistent database instance, execut-
ing several transactions one after the other (on a consistent initial database
instance) results in a consistent final database instance.

Database consistency is the property that every transaction sees a consistent
database instance. Database consistency follows from transaction atomicity,
isolation, and transaction consistency. Next, we discuss how atomicity and
durability are guaranteed in a DBMS.

16.1.2 Atomicity and Durability

Transactions can be incomplete for three kinds of reasons. First, a transaction
can be aborted, or terminated unsuccessfully, by the DBMS because some
anomaly arises during execution. If a transaction is aborted by the DBMS for
some internal reason, it is automatically restarted and executed anew. Second,
the system may crash (e.g., because the power supply is interrupted) while one
or more transactions are in progress. Third, a transaction may encounter an
unexpected situation (for example, read an unexpected data value or be unable
to access some disk) and decide to abort (i.e., terminate itself).

Of course, since users think of transactions as being atomic, a transaction that
is interrupted in the middle may leave the database in an inconsistent state.
Therefore, a DBMS must find a way to remove the effects of partial transactions
from the database. That is, it must ensure transaction atomicity: Either all of a
transaction’s actions are carried out or none are. A DBMS ensures transaction
atomicity by undoing the actions of incomplete transactions. This means that
users can ignore incomplete transactions in thinking about how the database is
modified by transactions over time. To be able to do this, the DBMS maintains
a record, called the log, of all writes to the database. The log is also used to
ensure durability: If the system crashes before the changes made by a completed
transaction are written to disk, the log is used to remember and restore these
changes when the system restarts.

The DBMS component that ensures atomicity and durability, called the recov-
ery manager, is discussed further in Section 16.7.
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16.2 TRANSACTIONS AND SCHEDULES

A transaction is seen by the DBMS as a series, or list, of actions. The actions
that can be executed by a transaction include reads and writes of database
objects. To keep our notation simple, we assume that an object O is always
read into a program variable that is also named O. We can therefore denote
the action of a transaction T reading an object O as RT (O); similarly, we can
denote writing as WT (O). When the transaction T is clear from the context,
we omit the subscript.

In addition to reading and writing, each transaction must specify as its final
action either commit (i.e., complete successfully) or abort (i.e., terminate
and undo all the actions carried out thus far). AbortT denotes the action of T
aborting, and CommitT denotes T committing.

We make two important assumptions:

1. Transactions interact with each other only via database read and write
operations; for example, they are not allowed to exchange messages.

2. A database is a fixed collection of independent objects. When objects are
added to or deleted from a database or there are relationships between
database objects that we want to exploit for performance, some additional
issues arise.

If the first assumption is violated, the DBMS has no way to detect or prevent
inconsistencies cause by such external interactions between transactions, and it
is upto the writer of the application to ensure that the program is well-behaved.
We relax the second assumption in Section 16.6.2.

A schedule is a list of actions (reading, writing, aborting, or committing)
from a set of transactions, and the order in which two actions of a transaction
T appear in a schedule must be the same as the order in which they appear in T .
Intuitively, a schedule represents an actual or potential execution sequence. For
example, the schedule in Figure 16.1 shows an execution order for actions of two
transactions T1 and T2. We move forward in time as we go down from one row
to the next. We emphasize that a schedule describes the actions of transactions
as seen by the DBMS. In addition to these actions, a transaction may carry out
other actions, such as reading or writing from operating system files, evaluating
arithmetic expressions, and so on; however, we assume that these actions do
not affect other transactions; that is, the effect of a transaction on another
transaction can be understood solely in terms of the common database objects
that they read and write.
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T1 T2
R(A)
W (A)

R(B)
W (B)

R(C)
W (C)

Figure 16.1 A Schedule Involving Two Transactions

Note that the schedule in Figure 16.1 does not contain an abort or commit ac-
tion for either transaction. A schedule that contains either an abort or a commit
for each transaction whose actions are listed in it is called a complete sched-
ule. A complete schedule must contain all the actions of every transaction
that appears in it. If the actions of different transactions are not interleaved—
that is, transactions are executed from start to finish, one by one—we call the
schedule a serial schedule.

16.3 CONCURRENT EXECUTION OF TRANSACTIONS

Now that we have introduced the concept of a schedule, we have a convenient
way to describe interleaved executions of transactions. The DBMS interleaves
the actions of different transactions to improve performance, but not all inter-
leavings should be allowed. In this section, we consider what interleavings, or
schedules, a DBMS should allow.

16.3.1 Motivation for Concurrent Execution

The schedule shown in Figure 16.1 represents an interleaved execution of the
two transactions. Ensuring transaction isolation while permitting such concur-
rent execution is difficult but necessary for performance reasons. First, while
one transaction is waiting for a page to be read in from disk, the CPU can
process another transaction. This is because I/O activity can be done in par-
allel with CPU activity in a computer. Overlapping I/O and CPU activity
reduces the amount of time disks and processors are idle and increases system
throughput (the average number of transactions completed in a given time).
Second, interleaved execution of a short transaction with a long transaction
usually allows the short transaction to complete quickly. In serial execution,
a short transaction could get stuck behind a long transaction, leading to un-
predictable delays in response time, or average time taken to complete a
transaction.
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16.3.2 Serializability

A serializable schedule over a set S of committed transactions is a schedule
whose effect on any consistent database instance is guaranteed to be identical
to that of some complete serial schedule over S. That is, the database instance
that results from executing the given schedule is identical to the database in-
stance that results from executing the transactions in some serial order.1

As an example, the schedule shown in Figure 16.2 is serializable. Even though
the actions of T1 and T2 are interleaved, the result of this schedule is equivalent
to running T1 (in its entirety) and then running T2. Intuitively, T1’s read and
write of B is not influenced by T2’s actions on A, and the net effect is the same
if these actions are ‘swapped’ to obtain the serial schedule T1;T2.

T1 T2
R(A)
W (A)

R(A)
W (A)

R(B)
W (B)

R(B)
W (B)
Commit

Commit

Figure 16.2 A Serializable Schedule

Executing transactions serially in different orders may produce different results,
but all are presumed to be acceptable; the DBMS makes no guarantees about
which of them will be the outcome of an interleaved execution. To see this,
note that the two example transactions from Figure 16.2 can be interleaved as
shown in Figure 16.3. This schedule, also serializable, is equivalent to the serial
schedule T2;T1. If T1 and T2 are submitted concurrently to a DBMS, either
of these schedules (among others) could be chosen.

The preceding definition of a serializable schedule does not cover the case of
schedules containing aborted transactions. We extend the definition of serial-
izable schedules to cover aborted transactions in Section 16.3.4.

1If a transaction prints a value to the screen, this ‘effect’ is not directly captured in the database.
For simplicity, we assume that such values are also written into the database.



526 Chapter 16

T1 T2
R(A)
W (A)

R(A)
R(B)
W (B)

W (A)
R(B)
W (B)

Commit
Commit

Figure 16.3 Another Serializable Schedule

Finally, we note that a DBMS might sometimes execute transactions in a way
that is not equivalent to any serial execution; that is, using a schedule that is
not serializable. This can happen for two reasons. First, the DBMS might use
a concurrency control method that ensures the executed schedule, though not
itself serializable, is equivalent to some serializable schedule (e.g., see Section
17.6.2). Second, SQL gives application programmers the ability to instruct the
DBMS to choose non-serializable schedules (see Section 16.6).

16.3.3 Anomalies Due to Interleaved Execution

We now illustrate three main ways in which a schedule involving two consistency
preserving, committed transactions could run against a consistent database and
leave it in an inconsistent state. Two actions on the same data object conflict if
at least one of them is a write. The three anomalous situations can be described
in terms of when the actions of two transactions T1 and T2 conflict with each
other: In a write-read (WR) conflict, T2 reads a data object previously
written by T1; we define read-write (RW) and write-write (WW) conflicts
similarly.

Reading Uncommitted Data (WR Conflicts)

The first source of anomalies is that a transaction T2 could read a database
object A that has been modified by another transaction T1, which has not yet
committed. Such a read is called a dirty read. A simple example illustrates
how such a schedule could lead to an inconsistent database state. Consider
two transactions T1 and T2, each of which, run alone, preserves database
consistency: T1 transfers $100 from A to B, and T2 increments both A and
B by 6% (e.g., annual interest is deposited into these two accounts). Suppose
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that the actions are interleaved so that (1) the account transfer program T1
deducts $100 from account A, then (2) the interest deposit program T2 reads
the current values of accounts A and B and adds 6% interest to each, and then
(3) the account transfer program credits $100 to account B. The corresponding
schedule, which is the view the DBMS has of this series of events, is illustrated
in Figure 16.4. The result of this schedule is different from any result that we
would get by running one of the two transactions first and then the other. The
problem can be traced to the fact that the value of A written by T1 is read by
T2 before T1 has completed all its changes.

T1 T2
R(A)
W (A)

R(A)
W (A)
R(B)
W (B)
Commit

R(B)
W (B)
Commit

Figure 16.4 Reading Uncommitted Data

The general problem illustrated here is that T1 may write some value into A
that makes the database inconsistent. As long as T1 overwrites this value with
a ‘correct’ value of A before committing, no harm is done if T1 and T2 run in
some serial order, because T2 would then not see the (temporary) inconsistency.
On the other hand, interleaved execution can expose this inconsistency and lead
to an inconsistent final database state.

Note that although a transaction must leave a database in a consistent state
after it completes, it is not required to keep the database consistent while it is
still in progress. Such a requirement would be too restrictive: To transfer money
from one account to another, a transaction must debit one account, temporarily
leaving the database inconsistent, and then credit the second account, restoring
consistency.
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Unrepeatable Reads (RW Conflicts)

The second way in which anomalous behavior could result is that a transaction
T2 could change the value of an object A that has been read by a transaction
T1, while T1 is still in progress.

If T1 tries to read the value of A again, it will get a different result, even though
it has not modified A in the meantime. This situation could not arise in a serial
execution of two transactions; it is called an unrepeatable read.

To see why this can cause problems, consider the following example. Suppose
that A is the number of available copies for a book. A transaction that places
an order first reads A, checks that it is greater than 0, and then decrements it.
Transaction T1 reads A and sees the value 1. Transaction T2 also reads A and
sees the value 1, decrements A to 0 and commits. Transaction T1 then tries to
decrement A and gets an error (if there is an integrity constraint that prevents
A from becoming negative).

This situation can never arise in a serial execution of T1 and T2; the second
transaction would read A and see 0 and therefore not proceed with the order
(and so would not attempt to decrement A).

Overwriting Uncommitted Data (WW Conflicts)

The third source of anomalous behavior is that a transaction T2 could overwrite
the value of an object A, which has already been modified by a transaction T1,
while T1 is still in progress. Even if T2 does not read the value of A written
by T1, a potential problem exists as the following example illustrates.

Suppose that Harry and Larry are two employees, and their salaries must be
kept equal. Transaction T1 sets their salaries to $2000 and transaction T2 sets
their salaries to $1000. If we execute these in the serial order T1 followed by
T2, both receive the salary $1000; the serial order T2 followed by T1 gives each
the salary $2000. Either of these is acceptable from a consistency standpoint
(although Harry and Larry may prefer a higher salary!). Note that neither
transaction reads a salary value before writing it—such a write is called a
blind write, for obvious reasons.

Now, consider the following interleaving of the actions of T1 and T2: T2 sets
Harry’s salary to $1000, T1 sets Larry’s salary to $2000, T2 sets Larry’s salary
to $1000 and commits, and finally T1 sets Harry’s salary to $2000 and commits.
The result is not identical to the result of either of the two possible serial
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executions, and the interleaved schedule is therefore not serializable. It violates
the desired consistency criterion that the two salaries must be equal.

The problem is that we have a lost update. The first transaction to commit,
T2, overwrote Larry’s salary as set by T1. In the serial order T2 followed by
T1, Larry’s salary should reflect T1’s update rather than T2’s, but T1’s update
is ‘lost’.

16.3.4 Schedules Involving Aborted Transactions

We now extend our definition of serializability to include aborted transactions.2

Intuitively, all actions of aborted transactions are to be undone, and we can
therefore imagine that they were never carried out to begin with. Using this
intuition, we extend the definition of a serializable schedule as follows: A se-
rializable schedule over a set S of transactions is a schedule whose effect on
any consistent database instance is guaranteed to be identical to that of some
complete serial schedule over the set of committed transactions in S.

This definition of serializability relies on the actions of aborted transactions
being undone completely, which may be impossible in some situations. For
example, suppose that (1) an account transfer program T1 deducts $100 from
account A, then (2) an interest deposit program T2 reads the current values of
accounts A and B and adds 6% interest to each, then commits, and then (3)
T1 is aborted. The corresponding schedule is shown in Figure 16.5.

T1 T2
R(A)
W (A)

R(A)
W (A)
R(B)
W (B)
Commit

Abort

Figure 16.5 An Unrecoverable Schedule

2We must also consider incomplete transactions for a rigorous discussion of system failures, because
transactions that are active when the system fails are neither aborted nor committed. However, system
recovery usually begins by aborting all active transactions, and for our informal discussion, considering
schedules involving committed and aborted transactions is sufficient.
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Now, T2 has read a value for A that should never have been there. (Recall
that aborted transactions’ effects are not supposed to be visible to other trans-
actions.) If T2 had not yet committed, we could deal with the situation by
cascading the abort of T1 and also aborting T2; this process recursively aborts
any transaction that read data written by T2, and so on. But T2 has already
committed, and so we cannot undo its actions. We say that such a schedule
is unrecoverable. In a recoverable schedule, transactions commit only after
(and if!) all transactions whose changes they read commit. If transactions read
only the changes of committed transactions, not only is the schedule recover-
able, but also aborting a transaction can be accomplished without cascading
the abort to other transactions. Such a schedule is said to avoid cascading
aborts.

There is another potential problem in undoing the actions of a transaction.
Suppose that a transaction T2 overwrites the value of an object A that has been
modified by a transaction T1, while T1 is still in progress, and T1 subsequently
aborts. All of T1’s changes to database objects are undone by restoring the
value of any object that it modified to the value of the object before T1’s
changes. (We look at the details of how a transaction abort is handled in
Chapter 18.) When T1 is aborted and its changes are undone in this manner,
T2’s changes are lost as well, even if T2 decides to commit. So, for example, if
A originally had the value 5, then was changed by T1 to 6, and by T2 to 7, if
T1 now aborts, the value of A becomes 5 again. Even if T2 commits, its change
to A is inadvertently lost. A concurrency control technique called Strict 2PL,
introduced in Section 16.4, can prevent this problem (as discussed in Section
17.1).

16.4 LOCK-BASED CONCURRENCY CONTROL

A DBMS must be able to ensure that only serializable, recoverable schedules
are allowed and that no actions of committed transactions are lost while undo-
ing aborted transactions. A DBMS typically uses a locking protocol to achieve
this. A lock is a small bookkeeping object associated with a database object.
A locking protocol is a set of rules to be followed by each transaction (and en-
forced by the DBMS) to ensure that, even though actions of several transactions
might be interleaved, the net effect is identical to executing all transactions in
some serial order. Different locking protocols use different types of locks, such
as shared locks or exclusive locks, as we see next, when we discuss the Strict
2PL protocol.
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16.4.1 Strict Two-Phase Locking (Strict 2PL)

The most widely used locking protocol, called Strict Two-Phase Locking, or
Strict 2PL, has two rules. The first rule is

1. If a transaction T wants to read (respectively, modify) an object, it
first requests a shared (respectively, exclusive) lock on the object.

Of course, a transaction that has an exclusive lock can also read the object;
an additional shared lock is not required. A transaction that requests a lock is
suspended until the DBMS is able to grant it the requested lock. The DBMS
keeps track of the locks it has granted and ensures that if a transaction holds
an exclusive lock on an object, no other transaction holds a shared or exclusive
lock on the same object. The second rule in Strict 2PL is

2. All locks held by a transaction are released when the transaction is
completed.

Requests to acquire and release locks can be automatically inserted into trans-
actions by the DBMS; users need not worry about these details. (We discuss
how application programmers can select properties of transactions and control
locking overhead in Section 16.6.3.)

In effect, the locking protocol allows only ‘safe’ interleavings of transactions.
If two transactions access completely independent parts of the database, they
concurrently obtain the locks they need and proceed merrily on their ways. On
the other hand, if two transactions access the same object, and one wants to
modify it, their actions are effectively ordered serially—all actions of one of
these transactions (the one that gets the lock on the common object first) are
completed before (this lock is released and) the other transaction can proceed.

We denote the action of a transaction T requesting a shared (respectively, exclu-
sive) lock on object O as ST (O) (respectively, XT (O)) and omit the subscript
denoting the transaction when it is clear from the context. As an example,
consider the schedule shown in Figure 16.4. This interleaving could result in a
state that cannot result from any serial execution of the three transactions. For
instance, T1 could change A from 10 to 20, then T2 (which reads the value 20
for A) could change B from 100 to 200, and then T1 would read the value 200
for B. If run serially, either T1 or T2 would execute first, and read the values
10 for A and 100 for B: Clearly, the interleaved execution is not equivalent to
either serial execution.

If the Strict 2PL protocol is used, such interleaving is disallowed. Let us see
why. Assuming that the transactions proceed at the same relative speed as
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before, T1 would obtain an exclusive lock on A first and then read and write
A (Figure 16.6). Then, T2 would request a lock on A. However, this request

T1 T2
X(A)
R(A)
W (A)

Figure 16.6 Schedule Illustrating Strict 2PL

cannot be granted until T1 releases its exclusive lock on A, and the DBMS
therefore suspends T2. T1 now proceeds to obtain an exclusive lock on B,
reads and writes B, then finally commits, at which time its locks are released.
T2’s lock request is now granted, and it proceeds. In this example the locking
protocol results in a serial execution of the two transactions, shown in Figure
16.7.

T1 T2
X(A)
R(A)
W (A)
X(B)
R(B)
W (B)
Commit

X(A)
R(A)
W (A)
X(B)
R(B)
W (B)
Commit

Figure 16.7 Schedule Illustrating Strict 2PL with Serial Execution

In general, however, the actions of different transactions could be interleaved.
As an example, consider the interleaving of two transactions shown in Figure
16.8, which is permitted by the Strict 2PL protocol.

It can be shown that the Strict 2PL algorithm allows only serializable sched-
ules. None of the anomalies discussed in Section 16.3.3 can arise if the DBMS
implements Strict 2PL.
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T1 T2
S(A)
R(A)

S(A)
R(A)
X(B)
R(B)
W (B)
Commit

X(C)
R(C)
W (C)
Commit

Figure 16.8 Schedule Following Strict 2PL with Interleaved Actions

16.4.2 Deadlocks

Consider the following example. Transaction T1 sets an exclusive lock on object
A, T2 sets an exclusive lock on B, T1 requests an exclusive lock on B and is
queued, and T2 requests an exclusive lock on A and is queued. Now, T1 is
waiting for T2 to release its lock and T2 is waiting for T1 to release its lock.
Such a cycle of transactions waiting for locks to be released is called a deadlock.
Clearly, these two transactions will make no further progress. Worse, they
hold locks that may be required by other transactions. The DBMS must either
prevent or detect (and resolve) such deadlock situations; the common approach
is to detect and resolve deadlocks.

A simple way to identify deadlocks is to use a timeout mechanism. If a trans-
action has been waiting too long for a lock, we can assume (pessimistically)
that it is in a deadlock cycle and abort it. We discuss deadlocks in more detail
in Section 17.2.

16.5 PERFORMANCE OF LOCKING

Lock-based schemes are designed to resolve conflicts between transactions and
use two basic mechanisms: blocking and aborting. Both mechanisms involve
a performance penalty: Blocked transactions may hold locks that force other
transactions to wait, and aborting and restarting a transaction obviously wastes
the work done thus far by that transaction. A deadlock represents an extreme
instance of blocking in which a set of transactions is forever blocked unless one
of the deadlocked transactions is aborted by the DBMS.
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In practice, fewer than 1% of transactions are involved in a deadlock, and there
are relatively few aborts. Therefore, the overhead of locking comes primarily
from delays due to blocking.3 Consider how blocking delays affect throughput.
The first few transactions are unlikely to conflict, and throughput rises in pro-
portion to the number of active transactions. As more and more transactions
execute concurrently on the same number of database objects, the likelihood of
their blocking each other goes up. Thus, delays due to blocking increase with
the number of active transactions, and throughput increases more slowly than
the number of active transactions. In fact, there comes a point when adding
another active transaction actually reduces throughput; the new transaction is
blocked and effectively competes with (and blocks) existing transactions. We
say that the system thrashes at this point, which is illustrated in Figure 16.9.
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Figure 16.9 Lock Thrashing

If a database system begins to thrash, the database administrator should reduce
the number of transactions allowed to run concurrently. Empirically, thrashing
is seen to occur when 30% of active transactions are blocked, and a DBA should
monitor the fraction of blocked transactions to see if the system is at risk of
thrashing.

Throughput can be increased in three ways (other than buying a faster system):

By locking the smallest sized objects possible (reducing the likelihood that
two transactions need the same lock).

By reducing the time that transaction hold locks (so that other transactions
are blocked for a shorter time).

3Many common deadlocks can be avoided using a technique called lock downgrades, implemented
in most commercial systems (Section 17.3).
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By reducing hot spots. A hot spot is a database object that is frequently
accessed and modified, and causes a lot of blocking delays. Hot spots can
significantly affect performance.

The granularity of locking is largely determined by the database system’s im-
plementation of locking, and application programmers and the DBA have little
control over it. We discuss how to improve performance by minimizing the
duration locks are held and using techniques to deal with hot spots in Section
20.10.

16.6 TRANSACTION SUPPORT IN SQL

We have thus far studied transactions and transaction management using an
abstract model of a transaction as a sequence of read, write, and abort/commit
actions. We now consider what support SQL provides for users to specify
transaction-level behavior.

16.6.1 Creating and Terminating Transactions

A transaction is automatically started when a user executes a statement that
accesses either the database or the catalogs, such as a SELECT query, an UPDATE
command, or a CREATE TABLE statement.4

Once a transaction is started, other statements can be executed as part of this
transaction until the transaction is terminated by either a COMMIT command
or a ROLLBACK (the SQL keyword for abort) command.

In SQL:1999, two new features are provided to support applications that involve
long-running transactions, or that must run several transactions one after the
other. To understand these extensions, recall that all the actions of a given
transaction are executed in order, regardless of how the actions of different
transactions are interleaved. We can think of each transaction as a sequence of
steps.

The first feature, called a savepoint, allows us to identify a point in a trans-
action and selectively roll back operations carried out after this point. This
is especially useful if the transaction carries out what-if kinds of operations,
and wishes to undo or keep the changes based on the results. This can be
accomplished by defining savepoints.

4Some SQL statements—e.g., the CONNECT statement, which connects an application program to a
database server—do not require the creation of a transaction.
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SQL:1999 Nested Transactions: The concept of a transaction as an
atomic sequence of actions has been extended in SQL:1999 through the
introduction of the savepoint feature. This allows parts of a transaction to
be selectively rolled back. The introduction of savepoints represents the
first SQL support for the concept of nested transactions, which have
been extensively studied in the research community. The idea is that a
transaction can have several nested subtransactions, each of which can
be selectively rolled back. Savepoints support a simple form of one-level
nesting.

In a long-running transaction, we may want to define a series of savepoints.
The savepoint command allows us to give each savepoint a name:

SAVEPOINT  savepoint name  

A subsequent rollback command can specify the savepoint to roll back to

ROLLBACK TO SAVEPOINT  savepoint name  

If we define three savepoints A, B, and C in that order, and then rollback to
A, all operations since A are undone, including the creation of savepoints B
and C. Indeed, the savepoint A is itself undone when we roll back to it, and
we must re-establish it (through another savepoint command) if we wish to be
able to roll back to it again. From a locking standpoint, locks obtained after
savepoint A can be released when we roll back to A.

It is instructive to compare the use of savepoints with the alternative of execut-
ing a series of transactions (i.e., treat all operations in between two consecutive
savepoints as a new transaction). The savepoint mechanism offers two ad-
vantages. First, we can roll back over several savepoints. In the alternative
approach, we can roll back only the most recent transaction, which is equiv-
alent to rolling back to the most recent savepoint. Second, the overhead of
initiating several transactions is avoided.

Even with the use of savepoints, certain applications might require us to run
several transactions one after the other. To minimize the overhead in such
situations, SQL:1999 introduces another feature, called chained transactions.
We can commit or roll back a transaction and immediately initiate another
transaction. This is done by using the optional keywords AND CHAIN in the
COMMIT and ROLLBACK statements.
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16.6.2 What Should We Lock?

Until now, we have discussed transactions and concurrency control in terms of
an abstract model in which a database contains a fixed collection of objects, and
each transaction is a series of read and write operations on individual objects.
An important question to consider in the context of SQL is what the DBMS
should treat as an object when setting locks for a given SQL statement (that is
part of a transaction).

Consider the following query:

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.rating = 8

Suppose that this query runs as part of transaction T1 and an SQL statement
that modifies the age of a given sailor, say Joe, with rating=8 runs as part of
transaction T2. What ‘objects’ should the DBMS lock when executing these
transactions? Intuitively, we must detect a conflict between these transactions.

The DBMS could set a shared lock on the entire Sailors table for T1 and set
an exclusive lock on Sailors for T2, which would ensure that the two transac-
tions are executed in a serializable manner. However, this approach yields low
concurrency, and we can do better by locking smaller objects, reflecting what
each transaction actually accesses. Thus, the DBMS could set a shared lock
on every row with rating=8 for transaction T1 and set an exclusive lock on
just the row for the modified tuple for transaction T2. Now, other read-only
transactions that do not involve rating=8 rows can proceed without waiting for
T1 or T2.

As this example illustrates, the DBMS can lock objects at different granular-
ities: We can lock entire tables or set row-level locks. The latter approach is
taken in current systems because it offers much better performance. In practice,
while row-level locking is generally better, the choice of locking granularity is
complicated. For example, a transaction that examines several rows and mod-
ifies those that satisfy some condition might be best served by setting shared
locks on the entire table and setting exclusive locks on those rows it wants to
modify. We discuss this issue further in Section 17.5.3.

A second point to note is that SQL statements conceptually access a collection
of rows described by a selection predicate. In the preceding example, transaction
T1 accesses all rows with rating=8. We suggested that this could be dealt with
by setting shared locks on all rows in Sailors that had rating=8. Unfortunately,
this is a little too simplistic. To see why, consider an SQL statement that inserts
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a new sailor with rating=8 and runs as transaction T3. (Observe that this
example violates our assumption of a fixed number of objects in the database,
but we must obviously deal with such situations in practice.)

Suppose that the DBMS sets shared locks on every existing Sailors row with
rating=8 for T1. This does not prevent transaction T3 from creating a brand
new row with rating=8 and setting an exclusive lock on this row. If this new row
has a smaller age value than existing rows, T1 returns an answer that depends
on when it executed relative to T2. However, our locking scheme imposes no
relative order on these two transactions.

This phenomenon is called the phantom problem: A transaction retrieves
a collection of objects (in SQL terms, a collection of tuples) twice and sees
different results, even though it does not modify any of these tuples itself. To
prevent phantoms, the DBMS must conceptually lock all possible rows with
rating=8 on behalf of T1. One way to do this is to lock the entire table, at
the cost of low concurrency. It is possible to take advantage of indexes to do
better, as we will see in Section 17.5.1, but in general preventing phantoms can
have a significant impact on concurrency.

It may well be that the application invoking T1 can accept the potential inac-
curacy due to phantoms. If so, the approach of setting shared locks on existing
tuples for T1 is adequate, and offers better performance. SQL allows a pro-
grammer to make this choice—and other similar choices—explicitly, as we see
next.

16.6.3 Transaction Characteristics in SQL

In order to give programmers control over the locking overhead incurred by
their transactions, SQL allows them to specify three characteristics of a trans-
action: access mode, diagnostics size, and isolation level. The diagnostics
size determines the number of error conditions that can be recorded; we will
not discuss this feature further.

If the access mode is READ ONLY, the transaction is not allowed to modify
the database. Thus, INSERT, DELETE, UPDATE, and CREATE commands cannot
be executed. If we have to execute one of these commands, the access mode
should be set to READ WRITE. For transactions with READ ONLY access mode,
only shared locks need to be obtained, thereby increasing concurrency.

The isolation level controls the extent to which a given transaction is ex-
posed to the actions of other transactions executing concurrently. By choosing
one of four possible isolation level settings, a user can obtain greater concur-
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rency at the cost of increasing the transaction’s exposure to other transactions’
uncommitted changes.

Isolation level choices are READ UNCOMMITTED, READ COMMITTED, REPEATABLE
READ, and SERIALIZABLE. The effect of these levels is summarized in Figure
16.10. In this context, dirty read and unrepeatable read are defined as usual.

Level Dirty Read Unrepeatable Read Phantom

READ UNCOMMITTED Maybe Maybe Maybe
READ COMMITTED No Maybe Maybe
REPEATABLE READ No No Maybe
SERIALIZABLE No No No

Figure 16.10 Transaction Isolation Levels in SQL-92

The highest degree of isolation from the effects of other transactions is achieved
by setting the isolation level for a transaction T to SERIALIZABLE. This isolation
level ensures that T reads only the changes made by committed transactions,
that no value read or written by T is changed by any other transaction until T
is complete, and that if T reads a set of values based on some search condition,
this set is not changed by other transactions until T is complete (i.e., T avoids
the phantom phenomenon).

In terms of a lock-based implementation, a SERIALIZABLE transaction obtains
locks before reading or writing objects, including locks on sets of objects that
it requires to be unchanged (see Section 17.5.1) and holds them until the end,
according to Strict 2PL.

REPEATABLE READ ensures that T reads only the changes made by commit-
ted transactions and no value read or written by T is changed by any other
transaction until T is complete. However, T could experience the phantom
phenomenon; for example, while T examines all Sailors records with rating=1,
another transaction might add a new such Sailors record, which is missed by
T .

A REPEATABLE READ transaction sets the same locks as a SERIALIZABLE trans-
action, except that it does not do index locking; that is, it locks only individual
objects, not sets of objects. We discuss index locking in detail in Section 17.5.1.

READ COMMITTED ensures that T reads only the changes made by committed
transactions, and that no value written by T is changed by any other transaction
until T is complete. However, a value read by T may well be modified by
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another transaction while T is still in progress, and T is exposed to the phantom
problem.

A READ COMMITTED transaction obtains exclusive locks before writing objects
and holds these locks until the end. It also obtains shared locks before read-
ing objects, but these locks are released immediately; their only effect is to
guarantee that the transaction that last modified the object is complete. (This
guarantee relies on the fact that every SQL transaction obtains exclusive locks
before writing objects and holds exclusive locks until the end.)

A READ UNCOMMITTED transaction T can read changes made to an object by an
ongoing transaction; obviously, the object can be changed further while T is in
progress, and T is also vulnerable to the phantom problem.

A READ UNCOMMITTED transaction does not obtain shared locks before reading
objects. This mode represents the greatest exposure to uncommitted changes
of other transactions; so much so that SQL prohibits such a transaction from
making any changes itself—a READ UNCOMMITTED transaction is required to have
an access mode of READ ONLY. Since such a transaction obtains no locks for
reading objects and it is not allowed to write objects (and therefore never
requests exclusive locks), it never makes any lock requests.

The SERIALIZABLE isolation level is generally the safest and is recommended for
most transactions. Some transactions, however, can run with a lower isolation
level, and the smaller number of locks requested can contribute to improved sys-
tem performance. For example, a statistical query that finds the average sailor
age can be run at the READ COMMITTED level or even the READ UNCOMMITTED

level, because a few incorrect or missing values do not significantly affect the
result if the number of sailors is large.

The isolation level and access mode can be set using the SET TRANSACTION com-
mand. For example, the following command declares the current transaction
to be SERIALIZABLE and READ ONLY:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE READ ONLY

When a transaction is started, the default is SERIALIZABLE and READ WRITE.

16.7 INTRODUCTION TO CRASH RECOVERY

The recovery manager of a DBMS is responsible for ensuring transaction
atomicity and durability. It ensures atomicity by undoing the actions of trans-
actions that do not commit, and durability by making sure that all actions of
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committed transactions survive system crashes, (e.g., a core dump caused by
a bus error) and media failures (e.g., a disk is corrupted).

When a DBMS is restarted after crashes, the recovery manager is given control
and must bring the database to a consistent state. The recovery manager is
also responsible for undoing the actions of an aborted transaction. To see what
it takes to implement a recovery manager, it is necessary to understand what
happens during normal execution.

The transaction manager of a DBMS controls the execution of transactions.
Before reading and writing objects during normal execution, locks must be ac-
quired (and released at some later time) according to a chosen locking protocol.5

For simplicity of exposition, we make the following assumption:

Atomic Writes: Writing a page to disk is an atomic action.

This implies that the system does not crash while a write is in progress and is
unrealistic. In practice, disk writes do not have this property, and steps must
be taken during restart after a crash (Section 18.6) to verify that the most
recent write to a given page was completed successfully, and to deal with the
consequences if not.

16.7.1 Stealing Frames and Forcing Pages

With respect to writing objects, two additional questions arise:

1. Can the changes made to an object O in the buffer pool by a transaction T
be written to disk before T commits? Such writes are executed when an-
other transaction wants to bring in a page and the buffer manager chooses
to replace the frame containing O; of course, this page must have been
unpinned by T . If such writes are allowed, we say that a steal approach
is used. (Informally, the second transaction ‘steals’ a frame from T .)

2. When a transaction commits, must we ensure that all the changes it has
made to objects in the buffer pool are immediately forced to disk? If so,
we say that a force approach is used.

From the standpoint of implementing a recovery manager, it is simplest to use
a buffer manager with a no-steal, force approach. If a no-steal approach is used,
we do not have to undo the changes of an aborted transaction (because these
changes have not been written to disk), and if a force approach is used, we do

5A concurrency control technique that does not involve locking could be used instead, but we
assume that locking is used.
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not have to redo the changes of a committed transaction if there is a subsequent
crash (because all these changes are guaranteed to have been written to disk
at commit time).

However, these policies have important drawbacks. The no-steal approach as-
sumes that all pages modified by ongoing transactions can be accommodated
in the buffer pool, and in the presence of large transactions (typically run in
batch mode, e.g., payroll processing), this assumption is unrealistic. The force
approach results in excessive page I/O costs. If a highly used page is updated
in succession by 20 transactions, it would be written to disk 20 times. With a
no-force approach, on the other hand, the in-memory copy of the page would
be successively modified and written to disk just once, reflecting the effects
of all 20 updates, when the page is eventually replaced in the buffer pool (in
accordance with the buffer manager’s page replacement policy).

For these reasons, most systems use a steal, no-force approach. Thus, if a
frame is dirty and chosen for replacement, the page it contains is written to
disk even if the modifying transaction is still active (steal); in addition, pages in
the buffer pool that are modified by a transaction are not forced to disk when
the transaction commits (no-force).

16.7.2 Recovery-Related Steps during Normal Execution

The recovery manager of a DBMS maintains some information during normal
execution of transactions to enable it to perform its task in the event of a
failure. In particular, a log of all modifications to the database is saved on
stable storage, which is guaranteed6 to survive crashes and media failures.
Stable storage is implemented by maintaining multiple copies of information
(perhaps in different locations) on nonvolatile storage devices such as disks or
tapes.

As discussed earlier in Section 16.7, it is important to ensure that the log
entries describing a change to the database are written to stable storage before
the change is made; otherwise, the system might crash just after the change,
leaving us without a record of the change. (Recall that this is the Write-Ahead
Log, or WAL, property.)

The log enables the recovery manager to undo the actions of aborted and
incomplete transactions and redo the actions of committed transactions. For
example, a transaction that committed before the crash may have made updates

6Nothing in life is really guaranteed except death and taxes. However, we can reduce the chance
of log failure to be vanishingly small by taking steps such as duplexing the log and storing the copies
in different secure locations.
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Tuning the Recovery Subsystem: DBMS performance can be greatly
affected by the overhead imposed by the recovery subsystem. A DBA can
take several steps to tune this subsystem, such as correctly sizing the log
and how it is managed on disk, controlling the rate at which buffer pages
are forced to disk, choosing a good frequency for checkpointing, and so
forth.

to a copy (of a database object) in the buffer pool, and this change may not have
been written to disk before the crash, because of a no-force approach. Such
changes must be identified using the log and written to disk. Further, changes
of transactions that did not commit prior to the crash might have been written
to disk because of a steal approach. Such changes must be identified using the
log and then undone.

The amount of work involved during recovery is proportional to the changes
made by committed transactions that have not been written to disk at the time
of the crash. To reduce the time to recover from a crash, the DBMS period-
ically forces buffer pages to disk during normal execution using a background
process (while making sure that any log entries that describe changes these
pages are written to disk first, i.e., following the WAL protocol). A process
called checkpointing, which saves information about active transactions and
dirty buffer pool pages, also helps reduce the time taken to recover from a
crash. Checkpoints are discussed in Section 18.5.

16.7.3 Overview of ARIES

ARIES is a recovery algorithm that is designed to work with a steal, no-force
approach. When the recovery manager is invoked after a crash, restart proceeds
in three phases. In the Analysis phase, it identifies dirty pages in the buffer
pool (i.e., changes that have not been written to disk) and active transactions
at the time of the crash. In the Redo phase, it repeats all actions, starting
from an appropriate point in the log, and restores the database state to what it
was at the time of the crash. Finally, in the Undo phase, it undoes the actions
of transactions that did not commit, so that the database reflects only the
actions of committed transactions. The ARIES algorithm is discussed further
in Chapter 18.

16.7.4 Atomicity: Implementing Rollback

It is important to recognize that the recovery subsystem is also responsible for
executing the ROLLBACK command, which aborts a single transaction. Indeed,
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the logic (and code) involved in undoing a single transaction is identical to that
used during the Undo phase in recovering from a system crash. All log records
for a given transaction are organized in a linked list and can be efficiently
accessed in reverse order to facilitate transaction rollback.

16.8 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What are the ACID properties? Define atomicity, consistency, isolation,
and durability and illustrate them through examples. (Section 16.1)

Define the terms transaction, schedule, complete schedule, and serial sched-
ule. (Section 16.2)

Why does a DBMS interleave concurrent transactions? (Section 16.3)

When do two actions on the same data object conflict? Define the anoma-
lies that can be caused by conflicting actions (dirty reads, unrepeatable
reads, lost updates). (Section 16.3)

What is a serializable schedule? What is a recoverable schedule? What
is a schedule that avoids cascading aborts? What is a strict schedule?
(Section 16.3)

What is a locking protocol? Describe the Strict Two-Phase Locking (Strict
2PL) protocol. What can you say about the schedules allowed by this
protocol? (Section 16.4)

What overheads are associated with lock-based concurrency control? Dis-
cuss blocking and aborting overheads specifically and explain which is more
important in practice. (Section 16.5)

What is thrashing? What should a DBA do if the system thrashes? (Sec-
tion 16.5)

How can throughput be increased? (Section 16.5)

How are transactions created and terminated in SQL? What are save-
points? What are chained transactions? Explain why savepoints and
chained transactions are useful. (Section 16.6)

What are the considerations in determining the locking granularity when
executing SQL statements? What is the phantom problem? What impact
does it have on performance? (Section 16.6.2)
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What transaction characteristics can a programmer control in SQL? Dis-
cuss the different access modes and isolation levels in particular. What
issues should be considered in selecting an access mode and an isolation
level for a transaction? (Section 16.6.3)

Describe how different isolation levels are implemented in terms of the locks
that are set. What can you say about the corresponding locking overheads?
(Section 16.6.3)

What functionality does the recovery manager of a DBMS provide? What
does the transaction manager do? (Section 16.7)

Describe the steal and force policies in the context of a buffer manager.
What policies are used in practice and how does this affect recovery? (Sec-
tion 16.7.1)

What recovery-related steps are taken during normal execution? What
can a DBA control to reduce the time to recover from a crash? (Sec-
tion 16.7.2)

How is the log used in transaction rollback and crash recovery? (Sec-
tions 16.7.2, 16.7.3, and 16.7.4)

EXERCISES

Exercise 16.1 Give brief answers to the following questions:

1. What is a transaction? In what ways is it different from an ordinary program (in a
language such as C)?

2. Define these terms: atomicity, consistency, isolation, durability, schedule, blind write,

dirty read, unrepeatable read, serializable schedule, recoverable schedule, avoids-cascading-

aborts schedule.

3. Describe Strict 2PL.

4. What is the phantom problem? Can it occur in a database where the set of database
objects is fixed and only the values of objects can be changed?

Exercise 16.2 Consider the following actions taken by transaction T1 on database objects
X and Y :

R(X), W(X), R(Y), W(Y)

1. Give an example of another transaction T2 that, if run concurrently to transaction T

without some form of concurrency control, could interfere with T1.

2. Explain how the use of Strict 2PL would prevent interference between the two transac-
tions.

3. Strict 2PL is used in many database systems. Give two reasons for its popularity.
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Exercise 16.3 Consider a database with objects X and Y and assume that there are two
transactions T1 and T2. Transaction T1 reads objects X and Y and then writes object X.
Transaction T2 reads objects X and Y and then writes objects X and Y .

1. Give an example schedule with actions of transactions T1 and T2 on objects X and Y

that results in a write-read conflict.

2. Give an example schedule with actions of transactions T1 and T2 on objects X and Y

that results in a read-write conflict.

3. Give an example schedule with actions of transactions T1 and T2 on objects X and Y

that results in a write-write conflict.

4. For each of the three schedules, show that Strict 2PL disallows the schedule.

Exercise 16.4 We call a transaction that only reads database object a read-only transac-
tion, otherwise the transaction is called a read-write transaction. Give brief answers to the
following questions:

1. What is lock thrashing and when does it occur?

2. What happens to the database system throughput if the number of read-write transac-
tions is increased?

3. What happens to the datbase system throughput if the number of read-only transactions
is increased?

4. Describe three ways of tuning your system to increase transaction throughput.

Exercise 16.5 Suppose that a DBMS recognizes increment, which increments an integer-
valued object by 1, and decrement as actions, in addition to reads and writes. A transaction
that increments an object need not know the value of the object; increment and decrement
are versions of blind writes. In addition to shared and exclusive locks, two special locks are
supported: An object must be locked in I mode before incrementing it and locked in D mode
before decrementing it. An I lock is compatible with another I or D lock on the same object,
but not with S and X locks.

1. Illustrate how the use of I and D locks can increase concurrency. (Show a schedule
allowed by Strict 2PL that only uses S and X locks. Explain how the use of I and D

locks can allow more actions to be interleaved, while continuing to follow Strict 2PL.)

2. Informally explain how Strict 2PL guarantees serializability even in the presence of I
and D locks. (Identify which pairs of actions conflict, in the sense that their relative
order can affect the result, and show that the use of S, X, I , and D locks according
to Strict 2PL orders all conflicting pairs of actions to be the same as the order in some
serial schedule.)

Exercise 16.6 Answer the following questions: SQL supports four isolation-levels and two
access-modes, for a total of eight combinations of isolation-level and access-mode. Each
combination implicitly defines a class of transactions; the following questions refer to these
eight classes:

1. Consider the four SQL isolation levels. Describe which of the phenomena can occur at
each of these isolation levels: dirty read, unrepeatable read, phantom problem.

2. For each of the four isolation levels, give examples of transactions that could be run
safely at that level.

3. Why does the access mode of a transaction matter?
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Exercise 16.7 Consider the university enrollment database schema:

Student(snum: integer, sname: string, major: string, level: string, age: integer)

Class(name: string, meets at: time, room: string, fid: integer)

Enrolled(snum: integer, cname: string)

Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per
student-class pair such that the student is enrolled in the class.

For each of the following transactions, state the SQL isolation level you would use and explain
why you chose it.

1. Enroll a student identified by her snum into the class named ’Introduction to Database
Systems’.

2. Change enrollment for a student identified by her snum from one class to another class.

3. Assign a new faculty member identified by his fid to the class with the least number of
students.

4. For each class, show the number of students enrolled in the class.

Exercise 16.8 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers.

For each of the following transactions, state the SQL isolation level that you would use and
explain why you chose it.

1. A transaction that adds a new part to a supplier’s catalog.

2. A transaction that increases the price that a supplier charges for a part.

3. A transaction that determines the total number of items for a given supplier.

4. A transaction that shows, for each part, the supplier that supplies the part at the lowest
price.

Exercise 16.9 Consider a database with the following schema:

Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers.

Consider three transactions T1, T2, and T3; T1 always has SQL isolation level SERIALIZABLE.
We first run T1 concurrently with T2 and then we run T1 concurrently with T2 but we change
the isolation level of T2 as specified below. Give a database instance and SQL statements for
T1 and T2 such that result of running T2 with the first SQL isolation level is different from
running T2 with the second SQL isolation level. Also specify the common schedule of T1 and
T2 and explain why the results are different.
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1. SERIALIZABLE versus REPEATABLE READ.

2. REPEATABLE READ versus READ COMMITTED.

3. READ COMMITTED versus READ UNCOMMITTED.
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tion model that generalizes several earlier transaction models is proposed in [182].
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cepts of transactions, phantoms, and predicate locks. Formal treatments of serializability
appear in [92, 581].

Excellent in-depth presentations of transaction processing can be found in [90] and [770]. [338]
is a classic, encyclopedic treatment of the subject.



17
CONCURRENCY CONTROL

☛ How does Strict 2PL ensure serializability and recoverability?

☛ How are locks implemented in a DBMS?

☛ What are lock conversions and why are they important?

☛ How does a DBMS resolve deadlocks?

☛ How do current systems deal with the phantom problem?

☛ Why are specialized locking techniques used on tree indexes?

☛ How does multiple-granularity locking work?

☛ What is Optimistic concurrency control?

☛ What is Timestamp-Based concurrency control?

☛ What is Multiversion concurrency control?

➽ Key concepts: Two-phase locking (2PL), serializability, recoverabil-
ity, precedence graph, strict schedule, view equivalence, view seri-
alizable, lock manager, lock table, transaction table, latch, convoy,
lock upgrade, deadlock, waits-for graph, conservative 2PL, index lock-
ing, predicate locking, multiple-granularity locking, lock escalation,
SQL isolation level, phantom problem, optimistic concurrency con-
trol, Thomas Write Rule, recoverability

Pooh was sitting in his house one day, counting his pots of honey,
when there came a knock on the door.
“Fourteen,” said Pooh. “Come in. Fourteen. Or was it fifteen? Bother.
That’s muddled me.”
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“Hallo, Pooh,” said Rabbit. “Hallo, Rabbit. Fourteen, wasn’t it?”
“What was?” “My pots of honey what I was counting.”
“Fourteen, that’s right.”
“Are you sure?”
“No,” said Rabbit. “Does it matter?”

—A.A. Milne, The House at Pooh Corner

In this chapter, we look at concurrency control in more detail. We begin by
looking at locking protocols and how they guarantee various important proper-
ties of schedules in Section 17.1. Section 17.2 is an introduction to how locking
protocols are implemented in a DBMS. Section 17.3 discusses the issue of lock
conversions, and Section 17.4 covers deadlock handling. Section 17.5 discusses
three specialized locking protocols—for locking sets of objects identified by some
predicate, for locking nodes in tree-structured indexes, and for locking collec-
tions of related objects. Section 17.6 examines some alternatives to the locking
approach.

17.1 2PL, SERIALIZABILITY, AND RECOVERABILITY

In this section, we consider how locking protocols guarantee some important
properties of schedules; namely, serializability and recoverability. Two sched-
ules are said to be conflict equivalent if they involve the (same set of) actions
of the same transactions and they order every pair of conflicting actions of two
committed transactions in the same way.

As we saw in Section 16.3.3, two actions conflict if they operate on the same
data object and at least one of them is a write. The outcome of a schedule
depends only on the order of conflicting operations; we can interchange any
pair of nonconflicting operations without altering the effect of the schedule on
the database. If two schedules are conflict equivalent, it is easy to see that
they have the same effect on a database. Indeed, because they order all pairs
of conflicting operations in the same way, we can obtain one of them from
the other by repeatedly swapping pairs of nonconflicting actions, that is, by
swapping pairs of actions whose relative order does not alter the outcome.

A schedule is conflict serializable if it is conflict equivalent to some serial
schedule. Every conflict serializable schedule is serializable, if we assume that
the set of items in the database does not grow or shrink; that is, values can
be modified but items are not added or deleted. We make this assumption for
now and consider its consequences in Section 17.5.1. However, some serializ-
able schedules are not conflict serializable, as illustrated in Figure 17.1. This
schedule is equivalent to executing the transactions serially in the order T1, T2,
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T1 T2 T3
R(A)

W (A)
Commit

W (A)
Commit

W (A)
Commit

Figure 17.1 Serializable Schedule That Is Not Conflict Serializable

T3, but it is not conflict equivalent to this serial schedule because the writes of
T1 and T2 are ordered differently.

It is useful to capture all potential conflicts between the transactions in a sched-
ule in a precedence graph, also called a serializability graph. The prece-
dence graph for a schedule S contains:

A node for each committed transaction in S.

An arc from T i to Tj if an action of T i precedes and conflicts with one of
Tj’s actions.

The precedence graphs for the schedules shown in Figures 16.7, 16.8, and 17.1
are shown in Figure 17.2 (parts a, b, and c, respectively).

T2 T1

T1

T1 T2

T3

T2

(a) (b)

(c)

Figure 17.2 Examples of Precedence Graphs

The Strict 2PL protocol (introduced in Section 16.4) allows only conflict seri-
alizable schedules, as is seen from the following two results:
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1. A schedule S is conflict serializable if and only if its precedence graph is
acyclic. (An equivalent serial schedule in this case is given by any topolog-
ical sort over the precedence graph.)

2. Strict 2PL ensures that the precedence graph for any schedule that it allows
is acyclic.

A widely studied variant of Strict 2PL, called Two-Phase Locking (2PL),
relaxes the second rule of Strict 2PL to allow transactions to release locks before
the end, that is, before the commit or abort action. For 2PL, the second rule
is replaced by the following rule:

(2PL) (2) A transaction cannot request additional locks once it re-
leases any lock.

Thus, every transaction has a ‘growing’ phase in which it acquires locks, fol-
lowed by a ‘shrinking’ phase in which it releases locks.

It can be shown that even nonstrict 2PL ensures acyclicity of the precedence
graph and therefore allows only conflict serializable schedules. Intuitively, an
equivalent serial order of transactions is given by the order in which transactions
enter their shrinking phase: If T2 reads or writes an object written by T1, T1
must have released its lock on the object before T2 requested a lock on this
object. Thus, T1 precedes T2. (A similar argument shows that T1 precedes
T2 if T2 writes an object previously read by T1. A formal proof of the claim
would have to show that there is no cycle of transactions that ‘precede’ each
other by this argument.)

A schedule is said to be strict if a value written by a transaction T is not
read or overwritten by other transactions until T either aborts or commits.
Strict schedules are recoverable, do not require cascading aborts, and actions of
aborted transactions can be undone by restoring the original values of modified
objects. (See the last example in Section 16.3.4.) Strict 2PL improves on
2PL by guaranteeing that every allowed schedule is strict in addition to being
conflict serializable. The reason is that when a transaction T writes an object
under Strict 2PL, it holds the (exclusive) lock until it commits or aborts. Thus,
no other transaction can see or modify this object until T is complete.

The reader is invited to revisit the examples in Section 16.3.3 to see how the
corresponding schedules are disallowed by Strict 2PL and 2PL. Similarly, it
would be instructive to work out how the schedules for the examples in Section
16.3.4 are disallowed by Strict 2PL but not by 2PL.
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17.1.1 View Serializability

Conflict serializability is sufficient but not necessary for serializability. A more
general sufficient condition is view serializability. Two schedules S1 and S2 over
the same set of transactions—any transaction that appears in either S1 or S2
must also appear in the other—are view equivalent under these conditions:

1. If T i reads the initial value of object A in S1, it must also read the initial
value of A in S2.

2. If T i reads a value of A written by Tj in S1, it must also read the value of
A written by Tj in S2.

3. For each data object A, the transaction (if any) that performs the final
write on A in S1 must also perform the final write on A in S2.

A schedule is view serializable if it is view equivalent to some serial schedule.
Every conflict serializable schedule is view serializable, although the converse
is not true. For example, the schedule shown in Figure 17.1 is view serializable,
although it is not conflict serializable. Incidentally, note that this example
contains blind writes. This is not a coincidence; it can be shown that any view
serializable schedule that is not conflict serializable contains a blind write.

As we saw in Section 17.1, efficient locking protocols allow us to ensure that
only conflict serializable schedules are allowed. Enforcing or testing view seri-
alizability turns out to be much more expensive, and the concept therefore has
little practical use, although it increases our understanding of serializability.

17.2 INTRODUCTION TO LOCKMANAGEMENT

The part of the DBMS that keeps track of the locks issued to transactions is
called the lock manager. The lock manager maintains a lock table, which
is a hash table with the data object identifier as the key. The DBMS also
maintains a descriptive entry for each transaction in a transaction table,
and among other things, the entry contains a pointer to a list of locks held by
the transaction. This list is checked before requesting a lock, to ensure that a
transaction does not request the same lock twice.

A lock table entry for an object—which can be a page, a record, and so
on, depending on the DBMS—contains the following information: the number
of transactions currently holding a lock on the object (this can be more than
one if the object is locked in shared mode), the nature of the lock (shared or
exclusive), and a pointer to a queue of lock requests.
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17.2.1 Implementing Lock and Unlock Requests

According to the Strict 2PL protocol, before a transaction T reads or writes a
database object O, it must obtain a shared or exclusive lock on O and must
hold on to the lock until it commits or aborts. When a transaction needs a
lock on an object, it issues a lock request to the lock manager:

1. If a shared lock is requested, the queue of requests is empty, and the object
is not currently locked in exclusive mode, the lock manager grants the lock
and updates the lock table entry for the object (indicating that the object
is locked in shared mode, and incrementing the number of transactions
holding a lock by one).

2. If an exclusive lock is requested and no transaction currently holds a lock
on the object (which also implies the queue of requests is empty), the lock
manager grants the lock and updates the lock table entry.

3. Otherwise, the requested lock cannot be immediately granted, and the
lock request is added to the queue of lock requests for this object. The
transaction requesting the lock is suspended.

When a transaction aborts or commits, it releases all its locks. When a lock
on an object is released, the lock manager updates the lock table entry for the
object and examines the lock request at the head of the queue for this object.
If this request can now be granted, the transaction that made the request is
woken up and given the lock. Indeed, if several requests for a shared lock on the
object are at the front of the queue, all of these requests can now be granted
together.

Note that if T1 has a shared lock on O and T2 requests an exclusive lock,
T2’s request is queued. Now, if T3 requests a shared lock, its request enters
the queue behind that of T2, even though the requested lock is compatible
with the lock held by T1. This rule ensures that T2 does not starve, that is,
wait indefinitely while a stream of other transactions acquire shared locks and
thereby prevent T2 from getting the exclusive lock for which it is waiting.

Atomicity of Locking and Unlocking

The implementation of lock and unlock commands must ensure that these are
atomic operations. To ensure atomicity of these operations when several in-
stances of the lock manager code can execute concurrently, access to the lock
table has to be guarded by an operating system synchronization mechanism
such as a semaphore.
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To understand why, suppose that a transaction requests an exclusive lock.
The lock manager checks and finds that no other transaction holds a lock on
the object and therefore decides to grant the request. But, in the meantime,
another transaction might have requested and received a conflicting lock. To
prevent this, the entire sequence of actions in a lock request call (checking
to see if the request can be granted, updating the lock table, etc.) must be
implemented as an atomic operation.

Other Issues: Latches, Convoys

In addition to locks, which are held over a long duration, a DBMS also supports
short-duration latches. Setting a latch before reading or writing a page ensures
that the physical read or write operation is atomic; otherwise, two read/write
operations might conflict if the objects being locked do not correspond to disk
pages (the units of I/O). Latches are unset immediately after the physical read
or write operation is completed.

We concentrated thus far on how the DBMS schedules transactions based on
their requests for locks. This interleaving interacts with the operating system’s
scheduling of processes’ access to the CPU and can lead to a situation called
a convoy, where most of the CPU cycles are spent on process switching. The
problem is that a transaction T holding a heavily used lock may be suspended
by the operating system. Until T is resumed, every other transaction that
needs this lock is queued. Such queues, called convoys, can quickly become
very long; a convoy, once formed, tends to be stable. Convoys are one of the
drawbacks of building a DBMS on top of a general-purpose operating system
with preemptive scheduling.

17.3 LOCK CONVERSIONS

A transaction may need to acquire an exclusive lock on an object for which it
already holds a shared lock. For example, a SQL update statement could result
in shared locks being set on each row in a table. If a row satisfies the condition
(in the WHERE clause) for being updated, an exclusive lock must be obtained
for that row.

Such a lock upgrade request must be handled specially by granting the exclu-
sive lock immediately if no other transaction holds a shared lock on the object
and inserting the request at the front of the queue otherwise. The rationale
for favoring the transaction thus is that it already holds a shared lock on the
object and queuing it behind another transaction that wants an exclusive lock
on the same object causes both a deadlock. Unfortunately, while favoring lock
upgrades helps, it does not prevent deadlocks caused by two conflicting upgrade
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requests. For example, if two transactions that hold a shared lock on an object
both request an upgrade to an exclusive lock, this leads to a deadlock.

A better approach is to avoid the need for lock upgrades altogether by obtaining
exclusive locks initially, and downgrading to a shared lock once it is clear that
this is sufficient. In our example of an SQL update statement, rows in a table
are locked in exclusive mode first. If a row does not satisfy the condition for
being updated, the lock on the row is downgraded to a shared lock. Does the
downgrade approach violate the 2PL requirement? On the surface, it does,
because downgrading reduces the locking privileges held by a transaction, and
the transaction may go on to acquire other locks. However, this is a special case,
because the transaction did nothing but read the object that it downgraded,
even though it conservatively obtained an exclusive lock. We can safely expand
our definition of 2PL from Section 17.1 to allow lock downgrades in the growing
phase, provided that the transaction has not modified the object.

The downgrade approach reduces concurrency by obtaining write locks in some
cases where they are not required. On the whole, however, it improves through-
put by reducing deadlocks. This approach is therefore widely used in current
commercial systems. Concurrency can be increased by introducing a new kind
of lock, called an update lock, that is compatible with shared locks but not
other update and exclusive locks. By setting an update lock initially, rather
than exclusive locks, we prevent conflicts with other read operations. Once we
are sure we need not update the object, we can downgrade to a shared lock. If
we need to update the object, we must first upgrade to an exclusive lock. This
upgrade does not lead to a deadlock because no other transaction can have an
upgrade or exclusive lock on the object.

17.4 DEALINGWITH DEADLOCKS

Deadlocks tend to be rare and typically involve very few transactions. In prac-
tice, therefore, database systems periodically check for deadlocks. When a
transaction T i is suspended because a lock that it requests cannot be granted,
it must wait until all transactions Tj that currently hold conflicting locks re-
lease them. The lock manager maintains a structure called a waits-for graph
to detect deadlock cycles. The nodes correspond to active transactions, and
there is an arc from T i to Tj if (and only if) T i is waiting for Tj to release a
lock. The lock manager adds edges to this graph when it queues lock requests
and removes edges when it grants lock requests.

Consider the schedule shown in Figure 17.3. The last step, shown below the
line, creates a cycle in the waits-for graph. Figure 17.4 shows the waits-for
graph before and after this step.
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T1 T2 T3 T4
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Figure 17.3 Schedule Illustrating Deadlock
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T1 T2
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Figure 17.4 Waits-for Graph Before and After Deadlock
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Observe that the waits-for graph describes all active transactions, some of which
eventually abort. If there is an edge from T i to Tj in the waits-for graph, and
both T i and Tj eventually commit, there is an edge in the opposite direc-
tion (from Tj to T i) in the precedence graph (which involves only committed
transactions).

The waits-for graph is periodically checked for cycles, which indicate deadlock.
A deadlock is resolved by aborting a transaction that is on a cycle and releasing
its locks; this action allows some of the waiting transactions to proceed. The
choice of which transaction to abort can be made using several criteria: the
one with the fewest locks, the one that has done the least work, the one that is
farthest from completion, and so on. Further, a transaction might have been
repeatedly restarted; if so, it should eventually be favored during deadlock
detection and allowed to complete.

A simple alternative to maintaining a waits-for graph is to identify deadlocks
through a timeout mechanism: If a transaction has been waiting too long for
a lock, we assume (pessimistically) that it is in a deadlock cycle and abort it.

17.4.1 Deadlock Prevention

Empirical results indicate that deadlocks are relatively infrequent, and detection-
based schemes work well in practice. However, if there is a high level of con-
tention for locks and therefore an increased likelihood of deadlocks, prevention-
based schemes could perform better. We can prevent deadlocks by giving each
transaction a priority and ensuring that lower-priority transactions are not
allowed to wait for higher-priority transactions (or vice versa). One way to
assign priorities is to give each transaction a timestamp when it starts up.
The lower the timestamp, the higher is the transaction’s priority; that is, the
oldest transaction has the highest priority.

If a transaction T i requests a lock and transaction Tj holds a conflicting lock,
the lock manager can use one of the following two policies:

Wait-die: If T i has higher priority, it is allowed to wait; otherwise, it is
aborted.

Wound-wait: If T i has higher priority, abort Tj; otherwise, T i waits.

In the wait-die scheme, lower-priority transactions can never wait for higher-
priority transactions. In the wound-wait scheme, higher-priority transactions
never wait for lower-priority transactions. In either case, no deadlock cycle
develops.
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A subtle point is that we must also ensure that no transaction is perennially
aborted because it never has a sufficiently high priority. (Note that, in both
schemes, the higher-priority transaction is never aborted.) When a transac-
tion is aborted and restarted, it should be given the same timestamp it had
originally. Reissuing timestamps in this way ensures that each transaction
will eventually become the oldest transaction, and therefore the one with the
highest priority, and will get all the locks it requires.

The wait-die scheme is nonpreemptive; only a transaction requesting a lock can
be aborted. As a transaction grows older (and its priority increases), it tends
to wait for more and more younger transactions. A younger transaction that
conflicts with an older transaction may be repeatedly aborted (a disadvantage
with respect to wound-wait), but on the other hand, a transaction that has
all the locks it needs is never aborted for deadlock reasons (an advantage with
respect to wound-wait, which is preemptive).

A variant of 2PL, called Conservative 2PL, can also prevent deadlocks. Un-
der Conservative 2PL, a transaction obtains all the locks it will ever need when
it begins, or blocks waiting for these locks to become available. This scheme
ensures that there will be no deadlocks, and, perhaps more important, that a
transaction that already holds some locks will not block waiting for other locks.
If lock contention is heavy, Conservative 2PL can reduce the time that locks
are held on average, because transactions that hold locks are never blocked.
The trade-off is that a transaction acquires locks earlier, and if lock contention
is low, locks are held longer under Conservative 2PL. From a practical per-
spective, it is hard to know exactly what locks are needed ahead of time, and
this approach leads to setting more locks than necessary. It also has higher
overhead for setting locks because a transaction has to release all locks and try
to obtain them all over if it fails to obtain even one lock that it needs. This
approach is therefore not used in practice.

17.5 SPECIALIZED LOCKING TECHNIQUES

Thus far we have treated a database as a fixed collection of independent data
objects in our presentation of locking protocols. We now relax each of these
restrictions and discuss the consequences.

If the collection of database objects is not fixed, but can grow and shrink
through the insertion and deletion of objects, we must deal with a subtle compli-
cation known as the phantom problem, which was illustrated in Section 16.6.2.
We discuss this problem in Section 17.5.1.
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Although treating a database as an independent collection of objects is ade-
quate for a discussion of serializability and recoverability, much better perfor-
mance can sometimes be obtained using protocols that recognize and exploit
the relationships between objects. We discuss two such cases, namely, locking
in tree-structured indexes (Section 17.5.2) and locking a collection of objects
with containment relationships between them (Section 17.5.3).

17.5.1 Dynamic Databases and the Phantom Problem

Consider the following example: Transaction T1 scans the Sailors relation to
find the oldest sailor for each of the rating levels 1 and 2. First, T1 identifies
and locks all pages (assuming that page-level locks are set) containing sailors
with rating 1 and then finds the age of the oldest sailor, which is, say, 71.
Next, transaction T2 inserts a new sailor with rating 1 and age 96. Observe
that this new Sailors record can be inserted onto a page that does not contain
other sailors with rating 1; thus, an exclusive lock on this page does not conflict
with any of the locks held by T1. T2 also locks the page containing the oldest
sailor with rating 2 and deletes this sailor (whose age is, say, 80). T2 then
commits and releases its locks. Finally, transaction T1 identifies and locks
pages containing (all remaining) sailors with rating 2 and finds the age of the
oldest such sailor, which is, say, 63.

The result of the interleaved execution is that ages 71 and 63 are printed in
response to the query. If T1 had run first, then T2, we would have gotten the
ages 71 and 80; if T2 had run first, then T1, we would have gotten the ages
96 and 63. Thus, the result of the interleaved execution is not identical to any
serial exection of T1 and T2, even though both transactions follow Strict 2PL
and commit. The problem is that T1 assumes that the pages it has locked
include all pages containing Sailors records with rating 1, and this assumption
is violated when T2 inserts a new such sailor on a different page.

The flaw is not in the Strict 2PL protocol. Rather, it is in T1’s implicit as-
sumption that it has locked the set of all Sailors records with rating value 1.
T1’s semantics requires it to identify all such records, but locking pages that
contain such records at a given time does not prevent new “phantom” records
from being added on other pages. T1 has therefore not locked the set of desired
Sailors records.

Strict 2PL guarantees conflict serializability; indeed, there are no cycles in the
precedence graph for this example because conflicts are defined with respect
to objects (in this example, pages) read/written by the transactions. However,
because the set of objects that should have been locked by T1 was altered by
the actions of T2, the outcome of the schedule differed from the outcome of any
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serial execution. This example brings out an important point about conflict
serializability: If new items are added to the database, conflict serializability
does not guarantee serializability.

A closer look at how a transaction identifies pages containing Sailors records
with rating 1 suggests how the problem can be handled:

If there is no index and all pages in the file must be scanned, T1 must
somehow ensure that no new pages are added to the file, in addition to
locking all existing pages.

If there is an index on the rating field, T1 can obtain a lock on the index
page—again, assuming that physical locking is done at the page level—that
contains a data entry with rating=1. If there are no such data entries, that
is, no records with this rating value, the page that would contain a data
entry for rating=1 is locked to prevent such a record from being inserted.
Any transaction that tries to insert a record with rating=1 into the Sailors
relation must insert a data entry pointing to the new record into this index
page and is blocked until T1 releases its locks. This technique is called
index locking.

Both techniques effectively give T1 a lock on the set of Sailors records with rat-

ing=1: Each existing record with rating=1 is protected from changes by other
transactions, and additionally, new records with rating=1 cannot be inserted.

An independent issue is how transaction T1 can efficiently identify and lock
the index page containing rating=1. We discuss this issue for the case of tree-
structured indexes in Section 17.5.2.

We note that index locking is a special case of a more general concept called
predicate locking. In our example, the lock on the index page implicitly
locked all Sailors records that satisfy the logical predicate rating=1. More
generally, we can support implicit locking of all records that match an arbitrary
predicate. General predicate locking is expensive to implement and therefore
not commonly used.

17.5.2 Concurrency Control in B+ Trees

A straightforward approach to concurrency control for B+ trees and ISAM
indexes is to ignore the index structure, treat each page as a data object, and
use some version of 2PL. This simplistic locking strategy would lead to very high
lock contention in the higher levels of the tree, because every tree search begins
at the root and proceeds along some path to a leaf node. Fortunately, much
more efficient locking protocols that exploit the hierarchical structure of a tree
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index are known to reduce the locking overhead while ensuring serializability
and recoverability. We discuss some of these approaches briefly, concentrating
on the search and insert operations.

Two observations provide the necessary insight:

1. The higher levels of the tree only direct searches. All the ‘real’ data is
in the leaf levels (in the format of one of the three alternatives for data
entries).

2. For inserts, a node must be locked (in exclusive mode, of course) only if a
split can propagate up to it from the modified leaf.

Searches should obtain shared locks on nodes, starting at the root and pro-
ceeding along a path to the desired leaf. The first observation suggests that a
lock on a node can be released as soon as a lock on a child node is obtained,
because searches never go back up the tree.

A conservative locking strategy for inserts would be to obtain exclusive locks on
all nodes as we go down from the root to the leaf node to be modified, because
splits can propagate all the way from a leaf to the root. However, once we lock
the child of a node, the lock on the node is required only in the event that a
split propagates back to it. In particular, if the child of this node (on the path
to the modified leaf) is not full when it is locked, any split that propagates up
to the child can be resolved at the child, and does not propagate further to the
current node. Therefore, when we lock a child node, we can release the lock on
the parent if the child is not full. The locks held thus by an insert force any
other transaction following the same path to wait at the earliest point (i.e., the
node nearest the root) that might be affected by the insert. The technique of
locking a child node and (if possible) releasing the lock on the parent is called
lock-coupling, or crabbing (think of how a crab walks, and compare it to
how we proceed down a tree, alternately releasing a lock on a parent and setting
a lock on a child).

We illustrate B+ tree locking using the tree in Figure 17.5. To search for data
entry 38*, a transaction T i must obtain an S lock on node A, read the contents
and determine that it needs to examine node B, obtain an S lock on node B
and release the lock on A, then obtain an S lock on node C and release the
lock on B, then obtain an S lock on node D and release the lock on C.

T i always maintains a lock on one node in the path, to force new transactions
that want to read or modify nodes on the same path to wait until the current
transaction is done. If transaction Tj wants to delete 38*, for example, it must
also traverse the path from the root to node D and is forced to wait until T i
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Figure 17.5 B+ Tree Locking Example

is done. Of course, if some transaction Tk holds a lock on, say, node C before
T i reaches this node, T i is similarly forced to wait for Tk to complete.

To insert data entry 45*, a transaction must obtain an S lock on node A, obtain
an S lock on node B and release the lock on A, then obtain an S lock on node
C (observe that the lock on B is not released, because C is full), then obtain
an X lock on node E and release the locks on C and then B. Because node E
has space for the new entry, the insert is accomplished by modifying this node.

In contrast, consider the insertion of data entry 25*. Proceeding as for the
insert of 45*, we obtain an X lock on node H. Unfortunately, this node is full
and must be split. Splitting H requires that we also modify the parent, node F ,
but the transaction has only an S lock on F . Thus, it must request an upgrade
of this lock to an X lock. If no other transaction holds an S lock on F , the
upgrade is granted, and since F has space, the split does not propagate further
and the insertion of 25* can proceed (by splitting H and locking G to modify
the sibling pointer in I to point to the newly created node). However, if another
transaction holds an S lock on node F , the first transaction is suspended until
this transaction releases its S lock.

Observe that if another transaction holds an S lock on F and also wants to
access node H, we have a deadlock because the first transaction has an X lock
on H. The preceding example also illustrates an interesting point about sibling
pointers: When we split leaf node H, the new node must be added to the left

of H, since otherwise the node whose sibling pointer is to be changed would
be node I, which has a different parent. To modify a sibling pointer on I, we
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would have to lock its parent, node C (and possibly ancestors of C, in order to
lock C).

Except for the locks on intermediate nodes that we indicated could be released
early, some variant of 2PL must be used to govern when locks can be released,
to ensure serializability and recoverability.

This approach improves considerably on the naive use of 2PL, but several ex-
clusive locks are still set unnecessarily and, although they are quickly released,
affect performance substantially. One way to improve performance is for inserts
to obtain shared locks instead of exclusive locks, except for the leaf, which is
locked in exclusive mode. In the vast majority of cases, a split is not required
and this approach works very well. If the leaf is full, however, we must upgrade
from shared locks to exclusive locks for all nodes to which the split propagates.
Note that such lock upgrade requests can also lead to deadlocks.

The tree locking ideas that we describe illustrate the potential for efficient
locking protocols in this very important special case, but they are not the
current state of the art. The interested reader should pursue the leads in the
bibliography.

17.5.3 Multiple-Granularity Locking

Another specialized locking strategy, called multiple-granularity locking,
allows us to efficiently set locks on objects that contain other objects.

For instance, a database contains several files, a file is a collection of pages,
and a page is a collection of records. A transaction that expects to access most
of the pages in a file should probably set a lock on the entire file, rather than
locking individual pages (or records) when it needs them. Doing so reduces
the locking overhead considerably. On the other hand, other transactions that
require access to parts of the file—even parts not needed by this transaction—
are blocked. If a transaction accesses relatively few pages of the file, it is better
to lock only those pages. Similarly, if a transaction accesses several records on
a page, it should lock the entire page, and if it accesses just a few records, it
should lock just those records.

The question to be addressed is how a lock manager can efficiently ensure that
a page, for example, is not locked by a transaction while another transaction
holds a conflicting lock on the file containing the page (and therefore, implicitly,
on the page).
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The idea is to exploit the hierarchical nature of the ‘contains’ relationship. A
database contains a set of files, each file contains a set of pages, and each page
contains a set of records. This containment hierarchy can be thought of as
a tree of objects, where each node contains all its children. (The approach
can easily be extended to cover hierarchies that are not trees, but we do not
discuss this extension.) A lock on a node locks that node and, implicitly, all its
descendants. (Note that this interpretation of a lock is very different from B+
tree locking, where locking a node does not lock any descendants implicitly.)

In addition to shared (S) and exclusive (X) locks, multiple-granularity locking
protocols also use two new kinds of locks, called intention shared (IS) and
intention exclusive (IX) locks. IS locks conflict only with X locks. IX

locks conflict with S and X locks. To lock a node in S (respectively, X) mode,
a transaction must first lock all its ancestors in IS (respectively, IX) mode.
Thus, if a transaction locks a node in S mode, no other transaction can have
locked any ancestor in X mode; similarly, if a transaction locks a node in X
mode, no other transaction can have locked any ancestor in S or X mode. This
ensures that no other transaction holds a lock on an ancestor that conflicts
with the requested S or X lock on the node.

A common situation is that a transaction needs to read an entire file and modify
a few of the records in it; that is, it needs an S lock on the file and an IX lock
so that it can subsequently lock some of the contained objects in X mode. It
is useful to define a new kind of lock, called an SIX lock, that is logically
equivalent to holding an S lock and an IX lock. A transaction can obtain a
single SIX lock (which conflicts with any lock that conflicts with either S or
IX) instead of an S lock and an IX lock.

A subtle point is that locks must be released in leaf-to-root order for this proto-
col to work correctly. To see this, consider what happens when a transaction T i
locks all nodes on a path from the root (corresponding to the entire database)
to the node corresponding to some page p in IS mode, locks p in S mode, and
then releases the lock on the root node. Another transaction Tj could now
obtain an X lock on the root. This lock implicitly gives Tj an X lock on page
p, which conflicts with the S lock currently held by T i.

Multiple-granularity locking must be used with 2PL to ensure serializability.
The 2PL protocol dictates when locks can be released. At that time, locks ob-
tained using multiple-granularity locking can be released and must be released
in leaf-to-root order.

Finally, there is the question of how to decide what granularity of locking is
appropriate for a given transaction. One approach is to begin by obtaining fine
granularity locks (e.g., at the record level) and, after the transaction requests
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Lock Granularity: Some database systems allow programmers to over-
ride the default mechanism for choosing a lock granularity. For example,
Microsoft SQL Server allows users to select page locking instead of table
locking, using the keyword PAGLOCK. IBM’s DB2 UDB allows for explicit
table-level locking.

a certain number of locks at that granularity, to start obtaining locks at the
next higher granularity (e.g., at the page level). This procedure is called lock
escalation.

17.6 CONCURRENCY CONTROLWITHOUT LOCKING

Locking is the most widely used approach to concurrency control in a DBMS,
but it is not the only one. We now consider some alternative approaches.

17.6.1 Optimistic Concurrency Control

Locking protocols take a pessimistic approach to conflicts between transactions
and use either transaction abort or blocking to resolve conflicts. In a system
with relatively light contention for data objects, the overhead of obtaining locks
and following a locking protocol must nonetheless be paid.

In optimistic concurrency control, the basic premise is that most transactions
do not conflict with other transactions, and the idea is to be as permissive
as possible in allowing transactions to execute. Transactions proceed in three
phases:

1. Read: The transaction executes, reading values from the database and
writing to a private workspace.

2. Validation: If the transaction decides that it wants to commit, the DBMS
checks whether the transaction could possibly have conflicted with any
other concurrently executing transaction. If there is a possible conflict, the
transaction is aborted; its private workspace is cleared and it is restarted.

3. Write: If validation determines that there are no possible conflicts, the
changes to data objects made by the transaction in its private workspace
are copied into the database.

If, indeed, there are few conflicts, and validation can be done efficiently, this
approach should lead to better performance than locking. If there are many
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conflicts, the cost of repeatedly restarting transactions (thereby wasting the
work they’ve done) hurts performance significantly.

Each transaction T i is assigned a timestamp TS(T i) at the beginning of its
validation phase, and the validation criterion checks whether the timestamp-
ordering of transactions is an equivalent serial order. For every pair of transac-
tions T i and Tj such that TS(T i) < TS(Tj), one of the following validation
conditions must hold:

1. T i completes (all three phases) before Tj begins.

2. T i completes before Tj starts its Write phase, and T i does not write any
database object read by Tj.

3. T i completes its Read phase before Tj completes its Read phase, and T i
does not write any database object that is either read or written by Tj.

To validate Tj, we must check to see that one of these conditions holds with
respect to each committed transaction T i such that TS(T i) < TS(Tj). Each
of these conditions ensures that Tj’s modifications are not visible to T i.

Further, the first condition allows Tj to see some of T i’s changes, but clearly,
they execute completely in serial order with respect to each other. The second
condition allows Tj to read objects while T i is still modifying objects, but there
is no conflict because Tj does not read any object modified by T i. Although
Tj might overwrite some objects written by T i, all of T i’s writes precede all of
Tj’s writes. The third condition allows T i and Tj to write objects at the same
time and thus have even more overlap in time than the second condition, but
the sets of objects written by the two transactions cannot overlap. Thus, no
RW, WR, or WW conflicts are possible if any of these three conditions is met.

Checking these validation criteria requires us to maintain lists of objects read
and written by each transaction. Further, while one transaction is being vali-
dated, no other transaction can be allowed to commit; otherwise, the validation
of the first transaction might miss conflicts with respect to the newly com-
mitted transaction. The Write phase of a validated transaction must also be
completed (so that its effects are visible outside its private workspace) before
other transactions can be validated.

A synchronization mechanism such as a critical section can be used to ensure
that at most one transaction is in its (combined) Validation/Write phases at
any time. (When a process is executing a critical section in its code, the
system suspends all other processes.) Obviously, it is important to keep these
phases as short as possible in order to minimize the impact on concurrency. If
copies of modified objects have to be copied from the private workspace, this
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can make the Write phase long. An alternative approach (which carries the
penalty of poor physical locality of objects, such as B+ tree leaf pages, that
must be clustered) is to use a level of indirection. In this scheme, every object
is accessed via a logical pointer, and in the Write phase, we simply switch the
logical pointer to point to the version of the object in the private workspace,
instead of copying the object.

Clearly, it is not the case that optimistic concurrency control has no overheads;
rather, the locking overheads of lock-based approaches are replaced with the
overheads of recording read-lists and write-lists for transactions, checking for
conflicts, and copying changes from the private workspace. Similarly, the im-
plicit cost of blocking in a lock-based approach is replaced by the implicit cost
of the work wasted by restarted transactions.

Improved Conflict Resolution1

Optimistic Concurrency Control using the three validation conditions described
earlier is often overly conservative and unnecessarily aborts and restarts trans-
actions. In particular, according to the validation conditions, T i cannot write
any object read by Tj. However, since the validation is aimed at ensuring that
T i logically executes before Tj, there is no harm if T i writes all data items
required by Tj before Tj reads them.

The problem arises because we have no way to tell when T i wrote the object
(relative to Tj’s reading it) at the time we validate Tj, since all we have is the
list of objects written by T i and the list read by Tj. Such false conflicts can be
alleviated by a finer-grain resolution of data conflicts, using mechanisms very
similar to locking.

The basic idea is that each transaction in the Read phase tells the DBMS about
items it is reading, and when a transaction T i is committed (and its writes are
accepted), the DBMS checks whether any of the items written by T i are being
read by any (yet to be validated) transaction Tj. If so, we know that Tj’s
validation must eventually fail. We can either allow Tj to discover this when
it is validated (the die policy) or kill it and restart it immediately (the kill
policy).

The details are as follows. Before reading a data item, a transaction T enters
an access entry in a hash table. The access entry contains the transaction

id, a data object id, and a modified flag (initially set to false), and entries are
hashed on the data object id. A temporary exclusive lock is obtained on the

1We thank Alexander Thomasian for writing this section.
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hash bucket containing the entry, and the lock is held while the read data item
is copied from the database buffer into the private workspace of the transaction.

During validation of T the hash buckets of all data objects accessed by T
are again locked (in exclusive mode) to check if T has encountered any data
conflicts. T has encountered a conflict if the modified flag is set to true in one
of its access entries. (This assumes that the ‘die’ policy is being used; if the
‘kill’ policy is used, T is restarted when the flag is set to true.)

If T is successfully validated, we lock the hash bucket of each object modified
by T , retrieve all access entries for this object, set the modified flag to true,
and release the lock on the bucket. If the ‘kill’ policy is used, the transactions
that entered these access entries are restarted. We then complete T ’s Write
phase.

It seems that the ‘kill’ policy is always better than the ‘die’ policy, because it
reduces the overall response time and wasted processing. However, executing
T to the end has the advantage that all of the data items required for its
execution are prefetched into the database buffer, and restarted executions of
T will not require disk I/O for reads. This assumes that the database buffer
is large enough that prefetched pages are not replaced, and, more important,
that access invariance prevails; that is, successive executions of T require
the same data for execution. When T is restarted its execution time is much
shorter than before because no disk I/O is required, and thus its chances of
validation are higher. (Of course, if a transaction has already completed its
Read phase once, subsequent conflicts should be handled using the ‘kill’ policy
because all its data objects are already in the buffer pool.)

17.6.2 Timestamp-Based Concurrency Control

In lock-based concurrency control, conflicting actions of different transactions
are ordered by the order in which locks are obtained, and the lock protocol ex-
tends this ordering on actions to transactions, thereby ensuring serializability.
In optimistic concurrency control, a timestamp ordering is imposed on trans-
actions and validation checks that all conflicting actions occurred in the same
order.

Timestamps can also be used in another way: Each transaction can be assigned
a timestamp at startup, and we can ensure, at execution time, that if action
ai of transaction T i conflicts with action aj of transaction Tj, ai occurs before
aj if TS(T i) < TS(Tj). If an action violates this ordering, the transaction is
aborted and restarted.
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To implement this concurrency control scheme, every database object O is given
a read timestamp RTS(O) and a write timestampWTS(O). If transaction
T wants to read object O, and TS(T ) < WTS(O), the order of this read
with respect to the most recent write on O would violate the timestamp order
between this transaction and the writer. Therefore, T is aborted and restarted
with a new, larger timestamp. If TS(T ) > WTS(O), T reads O, and RTS(O)
is set to the larger of RTS(O) and TS(T ). (Note that a physical change—the
change to RTS(O)—is written to disk and recorded in the log for recovery
purposes, even on reads. This write operation is a significant overhead.)

Observe that if T is restarted with the same timestamp, it is guaranteed to be
aborted again, due to the same conflict. Contrast this behavior with the use of
timestamps in 2PL for deadlock prevention, where transactions are restarted
with the same timestamp as before to avoid repeated restarts. This shows that
the two uses of timestamps are quite different and should not be confused.

Next, consider what happens when transaction T wants to write object O:

1. If TS(T ) < RTS(O), the write action conflicts with the most recent read
action of O, and T is therefore aborted and restarted.

2. If TS(T ) < WTS(O), a naive approach would be to abort T because
its write action conflicts with the most recent write of O and is out of
timestamp order. However, we can safely ignore such writes and continue.
Ignoring outdated writes is called the Thomas Write Rule.

3. Otherwise, T writes O and WTS(O) is set to TS(T ).

The Thomas Write Rule

We now consider the justification for the Thomas Write Rule. If TS(T ) <
WTS(O), the current write action has, in effect, been made obsolete by the
most recent write of O, which follows the current write according to the times-
tamp ordering. We can think of T ’s write action as if it had occurred immedi-
ately before the most recent write of O and was never read by anyone.

If the Thomas Write Rule is not used, that is, T is aborted in case (2), the
timestamp protocol, like 2PL, allows only conflict serializable schedules. If the
Thomas Write Rule is used, some schedules are permitted that are not conflict
serializable, as illustrated by the schedule in Figure 17.6.2 Because T2’s write
follows T1’s read and precedes T1’s write of the same object, this schedule is
not conflict serializable.

2In the other direction, 2PL permits some schedules that are not allowed by the timestamp algo-

rithm with the Thomas Write Rule; see Exercise 17.7.
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T1 T2
R(A)

W (A)
Commit

W (A)
Commit

Figure 17.6 A Serializable Schedule That Is Not Conflict Serializable

The Thomas Write Rule relies on the observation that T2’s write is never seen
by any transaction and the schedule in Figure 17.6 is therefore equivalent to
the serializable schedule obtained by deleting this write action, which is shown
in Figure 17.7.

T1 T2
R(A)

Commit
W (A)
Commit

Figure 17.7 A Conflict Serializable Schedule

Recoverability

Unfortunately, the timestamp protocol just presented permits schedules that
are not recoverable, as illustrated by the schedule in Figure 17.8. If TS(T1) = 1
and TS(T2) = 2, this schedule is permitted by the timestamp protocol (with
or without the Thomas Write Rule). The timestamp protocol can be modified
to disallow such schedules by buffering all write actions until the transaction
commits. In the example, when T1 wants to write A, WTS(A) is updated to
reflect this action, but the change to A is not carried out immediately; instead,
it is recorded in a private workspace, or buffer. When T2 wants to read A
subsequently, its timestamp is compared with WTS(A), and the read is seen
to be permissible. However, T2 is blocked until T1 completes. If T1 commits,
its change to A is copied from the buffer; otherwise, the changes in the buffer
are discarded. T2 is then allowed to read A.

This blocking of T2 is similar to the effect of T1 obtaining an exclusive lock on
A. Nonetheless, even with this modification, the timestamp protocol permits
some schedules not permitted by 2PL; the two protocols are not quite the same.
(See Exercise 17.7.)
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T1 T2
W (A)

R(A)
W (B)
Commit

Figure 17.8 An Unrecoverable Schedule

Because recoverability is essential, such a modification must be used for the
timestamp protocol to be practical. Given the added overhead this entails, on
top of the (considerable) cost of maintaining read and write timestamps, times-
tamp concurrency control is unlikely to beat lock-based protocols in centralized
systems. Indeed, it has been used mainly in the context of distributed database
systems (Chapter 22).

17.6.3 Multiversion Concurrency Control

This protocol represents yet another way of using timestamps, assigned at
startup time, to achieve serializability. The goal is to ensure that a transac-
tion never has to wait to read a database object, and the idea is to maintain
several versions of each database object, each with a write timestamp, and let
transaction T i read the most recent version whose timestamp precedes TS(T i).

If transaction T i wants to write an object, we must ensure that the object
has not already been read by some other transaction Tj such that TS(T i) <
TS(Tj). If we allow T i to write such an object, its change should be seen by
Tj for serializability, but obviously Tj, which read the object at some time in
the past, will not see T i’s change.

To check this condition, every object also has an associated read timestamp,
and whenever a transaction reads the object, the read timestamp is set to
the maximum of the current read timestamp and the reader’s timestamp. If T i
wants to write an object O and TS(T i) < RTS(O), T i is aborted and restarted
with a new, larger timestamp. Otherwise, T i creates a new version of O and
sets the read and write timestamps of the new version to TS(T i).

The drawbacks of this scheme are similar to those of timestamp concurrency
control, and in addition, there is the cost of maintaining versions. On the
other hand, reads are never blocked, which can be important for workloads
dominated by transactions that only read values from the database.
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What Do Real Systems Do? IBM DB2, Informix, Microsoft SQL
Server, and Sybase ASE use Strict 2PL or variants (if a transaction re-
quests a lower than SERIALIZABLE SQL isolation level; see Section 16.6).
Microsoft SQL Server also supports modification timestamps so that a
transaction can run without setting locks and validate itself (do-it-yourself
Optimistic Concurrency Control!). Oracle 8 uses a multiversion concur-
rency control scheme in which readers never wait; in fact, readers never
get locks and detect conflicts by checking if a block changed since they
read it. All these systems support multiple-granularity locking, with sup-
port for table, page, and row level locks. All deal with deadlocks using
waits-for graphs. Sybase ASIQ supports only table-level locks and aborts
a transaction if a lock request fails—updates (and therefore conflicts) are
rare in a data warehouse, and this simple scheme suffices.

17.7 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

When are two schedules conflict equivalent? What is a conflict serializable

schedule? What is a strict schedule? (Section 17.1)

What is a precedence graph or serializability graph? How is it related to con-
flict serializability? How is it related to two-phase locking? (Section 17.1)

What does the lock manager do? Describe the lock table and transaction

table data structures and their role in lock management. (Section 17.2)

Discuss the relative merits of lock upgrades and lock downgrades. (Sec-
tion 17.3)

Describe and compare deadlock detection and deadlock prevention schemes.
Why are detection schemes more commonly used? (Section 17.4)

If the collection of database objects is not fixed, but can grow and shrink
through insertion and deletion of objects, we must deal with a subtle com-
plication known as the phantom problem. Describe this problem and the
index locking approach to solving the problem. (Section 17.5.1)

In tree index structures, locking higher levels of the tree can become a per-
formance bottleneck. Explain why. Describe specialized locking techniques
that address the problem, and explain why they work correctly despite not
being two-phase. (Section 17.5.2)

Multiple-granularity locking enables us to set locks on objects that contain
other objects, thus implicitly locking all contained objects. Why is this
approach important and how does it work? (Section 17.5.3)
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In optimistic concurrency control, no locks are set and transactions read
and modify data objects in a private workspace. How are conflicts between
transactions detected and resolved in this approach? (Section 17.6.1)

In timestamp-based concurrency control, transactions are assigned a times-
tamp at startup; how is it used to ensure serializability? How does the
Thomas Write Rule improve concurrency? (Section 17.6.2)

Explain why timestamp-based concurrency control allows schedules that
are not recoverable. Describe how it can be modified through buffering to
disallow such schedules. (Section 17.6.2)

Describe multiversion concurrency control. What are its benefits and dis-
advantages in comparison to locking? (Section 17.6.3)

EXERCISES

Exercise 17.1 Answer the following questions:

1. Describe how a typical lock manager is implemented. Why must lock and unlock be
atomic operations? What is the difference between a lock and a latch? What are convoys
and how should a lock manager handle them?

2. Compare lock downgrades with upgrades. Explain why downgrades violate 2PL but
are nonetheless acceptable. Discuss the use of update locks in conjunction with lock
downgrades.

3. Contrast the timestamps assigned to restarted transactions when timestamps are used
for deadlock prevention versus when timestamps are used for concurrency control.

4. State and justify the Thomas Write Rule.

5. Show that, if two schedules are conflict equivalent, then they are view equivalent.

6. Give an example of a serializable schedule that is not strict.

7. Give an example of a strict schedule that is not serialiable.

8. Motivate and describe the use of locks for improved conflict resolution in Optimistic
Concurrency Control.

Exercise 17.2 Consider the following classes of schedules: serializable, conflict-serializable,
view-serializable, recoverable, avoids-cascading-aborts, and strict. For each of the following
schedules, state which of the preceding classes it belongs to. If you cannot decide whether a
schedule belongs in a certain class based on the listed actions, explain briefly.

The actions are listed in the order they are scheduled and prefixed with the transaction name.
If a commit or abort is not shown, the schedule is incomplete; assume that abort or commit
must follow all the listed actions.

1. T1:R(X), T2:R(X), T1:W(X), T2:W(X)

2. T1:W(X), T2:R(Y), T1:R(Y), T2:R(X)
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3. T1:R(X), T2:R(Y), T3:W(X), T2:R(X), T1:R(Y)

4. T1:R(X), T1:R(Y), T1:W(X), T2:R(Y), T3:W(Y), T1:W(X), T2:R(Y)

5. T1:R(X), T2:W(X), T1:W(X), T2:Abort, T1:Commit

6. T1:R(X), T2:W(X), T1:W(X), T2:Commit, T1:Commit

7. T1:W(X), T2:R(X), T1:W(X), T2:Abort, T1:Commit

8. T1:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Commit

9. T1:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Abort

10. T2: R(X), T3:W(X), T3:Commit, T1:W(Y), T1:Commit, T2:R(Y),
T2:W(Z), T2:Commit

11. T1:R(X), T2:W(X), T2:Commit, T1:W(X), T1:Commit, T3:R(X), T3:Commit

12. T1:R(X), T2:W(X), T1:W(X), T3:R(X), T1:Commit, T2:Commit, T3:Commit

Exercise 17.3 Consider the following concurrency control protocols: 2PL, Strict 2PL, Con-
servative 2PL, Optimistic, Timestamp without the Thomas Write Rule, Timestamp with the
Thomas Write Rule, and Multiversion. For each of the schedules in Exercise 17.2, state which
of these protocols allows it, that is, allows the actions to occur in exactly the order shown.

For the timestamp-based protocols, assume that the timestamp for transaction T i is i and
that a version of the protocol that ensures recoverability is used. Further, if the Thomas
Write Rule is used, show the equivalent serial schedule.

Exercise 17.4 Consider the following sequences of actions, listed in the order they are sub-
mitted to the DBMS:

Sequence S1: T1:R(X), T2:W(X), T2:W(Y), T3:W(Y), T1:W(Y),
T1:Commit, T2:Commit, T3:Commit

Sequence S2: T1:R(X), T2:W(Y), T2:W(X), T3:W(Y), T1:W(Y),
T1:Commit, T2:Commit, T3:Commit

For each sequence and for each of the following concurrency control mechanisms, describe
how the concurrency control mechanism handles the sequence.

Assume that the timestamp of transaction T i is i. For lock-based concurrency control mech-
anisms, add lock and unlock requests to the previous sequence of actions as per the locking
protocol. The DBMS processes actions in the order shown. If a transaction is blocked, assume
that all its actions are queued until it is resumed; the DBMS continues with the next action
(according to the listed sequence) of an unblocked transaction.

1. Strict 2PL with timestamps used for deadlock prevention.

2. Strict 2PL with deadlock detection. (Show the waits-for graph in case of deadlock.)

3. Conservative (and Strict, i.e., with locks held until end-of-transaction) 2PL.

4. Optimistic concurrency control.

5. Timestamp concurrency control with buffering of reads and writes (to ensure recover-
ability) and the Thomas Write Rule.

6. Multiversion concurrency control.
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S11 S12

All Schedules

View Serializable

Conflict Serializable

Recoverable

Avoid Cascading Abort

Strict

SerialS10

S8 S9
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S3S2

S7

S4
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Figure 17.9 Venn Diagram for Classes of Schedules

Exercise 17.5 For each of the following locking protocols, assuming that every transaction
follows that locking protocol, state which of these desirable properties are ensured: serializ-
ability, conflict-serializability, recoverability, avoidance of cascading aborts.

1. Always obtain an exclusive lock before writing; hold exclusive locks until end-of-transaction.
No shared locks are ever obtained.

2. In addition to (1), obtain a shared lock before reading; shared locks can be released at
any time.

3. As in (2), and in addition, locking is two-phase.

4. As in (2), and in addition, all locks held until end-of-transaction.

Exercise 17.6 The Venn diagram (from [76]) in Figure 17.9 shows the inclusions between
several classes of schedules. Give one example schedule for each of the regions S1 through
S12 in the diagram.

Exercise 17.7 Briefly answer the following questions:

1. Draw a Venn diagram that shows the inclusions between the classes of schedules permit-
ted by the following concurrency control protocols: 2PL, Strict 2PL, Conservative 2PL,
Optimistic, Timestamp without the Thomas Write Rule, Timestamp with the Thomas

Write Rule, and Multiversion.

2. Give one example schedule for each region in the diagram.

3. Extend the Venn diagram to include serializable and conflict-serializable schedules.

Exercise 17.8 Answer each of the following questions briefly. The questions are based on
the following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real, did: integer)

Dept(did: integer, dname: string, floor: integer)

and on the following update command:

replace (salary = 1.1 * EMP.salary) where EMP.ename = ‘Santa’



Concurrency Control 577

1. Give an example of a query that would conflict with this command (in a concurrency
control sense) if both were run at the same time. Explain what could go wrong, and how
locking tuples would solve the problem.

2. Give an example of a query or a command that would conflict with this command, such
that the conflict could not be resolved by just locking individual tuples or pages but
requires index locking.

3. Explain what index locking is and how it resolves the preceding conflict.

Exercise 17.9 SQL supports four isolation-levels and two access-modes, for a total of eight
combinations of isolation-level and access-mode. Each combination implicitly defines a class
of transactions; the following questions refer to these eight classes:

1. For each of the eight classes, describe a locking protocol that allows only transactions in
this class. Does the locking protocol for a given class make any assumptions about the
locking protocols used for other classes? Explain briefly.

2. Consider a schedule generated by the execution of several SQL transactions. Is it guar-
anteed to be conflict-serializable? to be serializable? to be recoverable?

3. Consider a schedule generated by the execution of several SQL transactions, each of
which has READ ONLY access-mode. Is it guaranteed to be conflict-serializable? to be
serializable? to be recoverable?

4. Consider a schedule generated by the execution of several SQL transactions, each of
which has SERIALIZABLE isolation-level. Is it guaranteed to be conflict-serializable? to
be serializable? to be recoverable?

5. Can you think of a timestamp-based concurrency control scheme that can support the
eight classes of SQL transactions?

Exercise 17.10 Consider the tree shown in Figure 19.5. Describe the steps involved in
executing each of the following operations according to the tree-index concurrency control
algorithm discussed in Section 19.3.2, in terms of the order in which nodes are locked, un-
locked, read, and written. Be specific about the kind of lock obtained and answer each part
independently of the others, always starting with the tree shown in Figure 19.5.

1. Search for data entry 40*.

2. Search for all data entries k∗ with k ≤ 40.

3. Insert data entry 62*.

4. Insert data entry 40*.

5. Insert data entries 62* and 75*.

Exercise 17.11 Consider a database organized in terms of the following hierarachy of ob-
jects: The database itself is an object (D), and it contains two files (F1 and F2), each of
which contains 1000 pages (P1 . . . P1000 and P1001 . . . P2000, respectively). Each page con-
tains 100 records, and records are identified as p : i, where p is the page identifier and i is the
slot of the record on that page.

Multiple-granularity locking is used, with S, X, IS, IX and SIX locks, and database-level,
file-level, page-level and record-level locking. For each of the following operations, indicate
the sequence of lock requests that must be generated by a transaction that wants to carry
out (just) these operations:
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1. Read record P1200 : 5.

2. Read records P1200 : 98 through P1205 : 2.

3. Read all (records on all) pages in file F1.

4. Read pages P500 through P520.

5. Read pages P10 through P980.

6. Read all pages in F1 and (based on the values read) modify 10 pages.

7. Delete record P1200 : 98. (This is a blind write.)

8. Delete the first record from each page. (Again, these are blind writes.)

9. Delete all records.

Exercise 17.12 Suppose that we have only two types of transactions, T1 and T2. Transac-
tions preserve database consistency when run individually. We have defined several integrity
constraints such that the DBMS never executes any SQL statement that brings the database
into an inconsistent state. Assume that the DBMS does not perform any concurrency control.
Give an example schedule of two transactions T1 and T2 that satisfies all these conditions,
yet produces a database instance that is not the result of any serial execution of T1 and T2.
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18
CRASH RECOVERY

☛ What steps are taken in the ARIES method to recover from a DBMS
crash?

☛ How is the log maintained during normal operation?

☛ How is the log used to recover from a crash?

☛ What information in addition to the log is used during recovery?

☛ What is a checkpoint and why is it used?

☛ What happens if repeated crashes occur during recovery?

☛ How is media failure handled?

☛ How does the recovery algorithm interact with concurrency control?

➽ Key concepts: steps in recovery, analysis, redo, undo; ARIES,
repeating history; log, LSN, forcing pages, WAL; types of log
records, update, commit, abort, end, compensation; transaction ta-
ble, lastLSN; dirty page table, recLSN; checkpoint, fuzzy checkpoint-
ing, master log record; media recovery; interaction with concurrency
control; shadow paging

Humpty Dumpty sat on a wall.
Humpty Dumpty had a great fall.
All the King’s horses and all the King’s men
Could not put Humpty together again.

—Old nursery rhyme
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The recovery manager of a DBMS is responsible for ensuring two important
properties of transactions: Atomicity and durability. It ensures atomicity by
undoing the actions of transactions that do not commit and durability by mak-
ing sure that all actions of committed transactions survive system crashes
(e.g., a core dump caused by a bus error) and media failures (e.g., a disk is
corrupted).

The recovery manager is one of the hardest components of a DBMS to design
and implement. It must deal with a wide variety of database states because
it is called on during system failures. In this chapter, we present the ARIES
recovery algorithm, which is conceptually simple, works well with a wide range
of concurrency control mechanisms, and is being used in an increasing number
of database sytems.

We begin with an introduction to ARIES in Section 18.1. We discuss the
log, which a central data structure in recovery, in Section 18.2, and other
recovery-related data structures in Section 18.3. We complete our coverage
of recovery-related activity during normal processing by presenting the Write-
Ahead Logging protocol in Section 18.4, and checkpointing in Section 18.5.

We discuss recovery from a crash in Section 18.6. Aborting (or rolling back)
a single transaction is a special case of Undo, discussed in Section 18.6.3. We
discuss media failures in Section 18.7, and conclude in Section 18.8 with a
discussion of the interaction of concurrency control and recovery and other ap-
proaches to recovery. In this chapter, we consider recovery only in a centralized
DBMS; recovery in a distributed DBMS is discussed in Chapter 22.

18.1 INTRODUCTION TO ARIES

ARIES is a recovery algorithm designed to work with a steal, no-force ap-
proach. When the recovery manager is invoked after a crash, restart proceeds
in three phases:

1. Analysis: Identifies dirty pages in the buffer pool (i.e., changes that have
not been written to disk) and active transactions at the time of the crash.

2. Redo: Repeats all actions, starting from an appropriate point in the log,
and restores the database state to what it was at the time of the crash.

3. Undo: Undoes the actions of transactions that did not commit, so that
the database reflects only the actions of committed transactions.

Consider the simple execution history illustrated in Figure 18.1. When the
system is restarted, the Analysis phase identifies T1 and T3 as transactions
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Figure 18.1 Execution History with a Crash

active at the time of the crash and therefore to be undone; T2 as a committed
transaction, and all its actions therefore to be written to disk; and P1, P3, and
P5 as potentially dirty pages. All the updates (including those of T1 and T3)
are reapplied in the order shown during the Redo phase. Finally, the actions
of T1 and T3 are undone in reverse order during the Undo phase; that is, T3’s
write of P3 is undone, T3’s write of P1 is undone, and then T1’s write of P5
is undone.

Three main principles lie behind the ARIES recovery algorithm:

Write-Ahead Logging: Any change to a database object is first recorded
in the log; the record in the log must be written to stable storage before
the change to the database object is written to disk.

Repeating History During Redo: On restart following a crash, ARIES
retraces all actions of the DBMS before the crash and brings the system
back to the exact state that it was in at the time of the crash. Then,
it undoes the actions of transactions still active at the time of the crash
(effectively aborting them).

Logging Changes During Undo: Changes made to the database while
undoing a transaction are logged to ensure such an action is not repeated
in the event of repeated (failures causing) restarts.

The second point distinguishes ARIES from other recovery algorithms and is
the basis for much of its simplicity and flexibility. In particular, ARIES can
support concurrency control protocols that involve locks of finer granularity
than a page (e.g., record-level locks). The second and third points are also
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Crash Recovery: IBM DB2, Informix, Microsoft SQL Server, Oracle 8,
and Sybase ASE all use a WAL scheme for recovery. IBM DB2 uses ARIES,
and the others use schemes that are actually quite similar to ARIES (e.g.,
all changes are re-applied, not just the changes made by transactions that
are ’winners’) although there are several variations.

important in dealing with operations where redoing and undoing the opera-
tion are not exact inverses of each other. We discuss the interaction between
concurrency control and crash recovery in Section 18.8, where we also discuss
other approaches to recovery briefly.

18.2 THE LOG

The log, sometimes called the trail or journal, is a history of actions executed
by the DBMS. Physically, the log is a file of records stored in stable storage,
which is assumed to survive crashes; this durability can be achieved by main-
taining two or more copies of the log on different disks (perhaps in different
locations), so that the chance of all copies of the log being simultaneously lost
is negligibly small.

The most recent portion of the log, called the log tail, is kept in main memory
and is periodically forced to stable storage. This way, log records and data
records are written to disk at the same granularity (pages or sets of pages).

Every log record is given a unique id called the log sequence number
(LSN). As with any record id, we can fetch a log record with one disk access
given the LSN. Further, LSNs should be assigned in monotonically increasing
order; this property is required for the ARIES recovery algorithm. If the log is
a sequential file, in principle growing indefinitely, the LSN can simply be the
address of the first byte of the log record.1

For recovery purposes, every page in the database contains the LSN of the most
recent log record that describes a change to this page. This LSN is called the
pageLSN.

A log record is written for each of the following actions:

1In practice, various techniques are used to identify portions of the log that are ‘too old’ to be

needed again to bound the amount of stable storage used for the log. Given such a bound, the log may

be implemented as a ‘circular’ file, in which case the LSN may be the log record id plus a wrap-count.
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Updating a Page: After modifying the page, an update type record (de-
scribed later in this section) is appended to the log tail. The pageLSN of
the page is then set to the LSN of the update log record. (The page must
be pinned in the buffer pool while these actions are carried out.)

Commit: When a transaction decides to commit, it force-writes a com-

mit type log record containing the transaction id. That is, the log record
is appended to the log, and the log tail is written to stable storage, up to
and including the commit record.2 The transaction is considered to have
committed at the instant that its commit log record is written to stable
storage. (Some additional steps must be taken, e.g., removing the transac-
tion’s entry in the transaction table; these follow the writing of the commit
log record.)

Abort: When a transaction is aborted, an abort type log record containing
the transaction id is appended to the log, and Undo is initiated for this
transaction (Section 18.6.3).

End: As noted above, when a transaction is aborted or committed, some
additional actions must be taken beyond writing the abort or commit log
record. After all these additional steps are completed, an end type log
record containing the transaction id is appended to the log.

Undoing an update: When a transaction is rolled back (because the
transaction is aborted, or during recovery from a crash), its updates are
undone. When the action described by an update log record is undone, a
compensation log record, or CLR, is written.

Every log record has certain fields: prevLSN, transID, and type. The set of
all log records for a given transaction is maintained as a linked list going back
in time, using the prevLSN field; this list must be updated whenever a log
record is added. The transID field is the id of the transaction generating the
log record, and the type field obviously indicates the type of the log record.

Additional fields depend on the type of the log record. We already mentioned
the additional contents of the various log record types, with the exception of
the update and compensation log record types, which we describe next.

Update Log Records

The fields in an update log record are illustrated in Figure 18.2. The pageID
field is the page id of the modified page; the length in bytes and the offset of the

2Note that this step requires the buffer manager to be able to selectively force pages to stable

storage.
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pageIDtransID type length before-image after-imageprevLSN offset

Fields common to all log records Additional fields for update log records

Figure 18.2 Contents of an Update Log Record

change are also included. The before-image is the value of the changed bytes
before the change; the after-image is the value after the change. An update
log record that contains both before- and after-images can be used to redo
the change and undo it. In certain contexts, which we do not discuss further,
we can recognize that the change will never be undone (or, perhaps, redone).
A redo-only update log record contains just the after-image; similarly an
undo-only update record contains just the before-image.

Compensation Log Records

A compensation log record (CLR) is written just before the change recorded
in an update log record U is undone. (Such an undo can happen during nor-
mal system execution when a transaction is aborted or during recovery from a
crash.) A compensation log record C describes the action taken to undo the
actions recorded in the corresponding update log record and is appended to
the log tail just like any other log record. The compensation log record C also
contains a field called undoNextLSN, which is the LSN of the next log record
that is to be undone for the transaction that wrote update record U ; this field
in C is set to the value of prevLSN in U .

As an example, consider the fourth update log record shown in Figure 18.3.
If this update is undone, a CLR would be written, and the information in it
would include the transID, pageID, length, offset, and before-image fields from
the update record. Notice that the CLR records the (undo) action of changing
the affected bytes back to the before-image value; thus, this value and the
location of the affected bytes constitute the redo information for the action
described by the CLR. The undoNextLSN field is set to the LSN of the first
log record in Figure 18.3.

Unlike an update log record, a CLR describes an action that will never be
undone, that is, we never undo an undo action. The reason is simple: An update
log record describes a change made by a transaction during normal execution
and the transaction may subsequently be aborted, whereas a CLR describes
an action taken to rollback a transaction for which the decision to abort has
already been made. Therefore, the transaction must be rolled back, and the



Crash Recovery 585

undo action described by the CLR is definitely required. This observation is
very useful because it bounds the amount of space needed for the log during
restart from a crash: The number of CLRs that can be written during Undo is
no more than the number of update log records for active transactions at the
time of the crash.

A CLR may be written to stable storage (following WAL, of course) but the
undo action it describes may not yet been written to disk when the system
crashes again. In this case, the undo action described in the CLR is reapplied
during the Redo phase, just like the action described in update log records.

For these reasons, a CLR contains the information needed to reapply, or redo,
the change described but not to reverse it.

18.3 OTHER RECOVERY-RELATED STRUCTURES

In addition to the log, the following two tables contain important recovery-
related information:

Transaction Table: This table contains one entry for each active trans-
action. The entry contains (among other things) the transaction id, the
status, and a field called lastLSN, which is the LSN of the most recent log
record for this transaction. The status of a transaction can be that it is in
progress, committed, or aborted. (In the latter two cases, the transaction
will be removed from the table once certain ‘clean up’ steps are completed.)

Dirty page table: This table contains one entry for each dirty page in
the buffer pool, that is, each page with changes not yet reflected on disk.
The entry contains a field recLSN, which is the LSN of the first log record
that caused the page to become dirty. Note that this LSN identifies the
earliest log record that might have to be redone for this page during restart
from a crash.

During normal operation, these are maintained by the transaction manager and
the buffer manager, respectively, and during restart after a crash, these tables
are reconstructed in the Analysis phase of restart.

Consider the following simple example. Transaction T1000 changes the value of
bytes 21 to 23 on page P500 from ‘ABC’ to ‘DEF’, transaction T2000 changes
‘HIJ’ to ‘KLM’ on page P600, transaction T2000 changes bytes 20 through 22
from ‘GDE’ to ‘QRS’ on page P500, then transaction T1000 changes ‘TUV’
to ‘WXY’ on page P505. The dirty page table, the transaction table,3 and

3The status field is not shown in the figure for space reasons; all transactions are in progress.
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Figure 18.3 Instance of Log and Transaction Table

the log at this instant are shown in Figure 18.3. Observe that the log is shown
growing from top to bottom; older records are at the top. Although the records
for each transaction are linked using the prevLSN field, the log as a whole also
has a sequential order that is important—for example, T2000’s change to page
P500 follows T1000’s change to page P500, and in the event of a crash, these
changes must be redone in the same order.

18.4 THE WRITE-AHEAD LOG PROTOCOL

Before writing a page to disk, every update log record that describes a change
to this page must be forced to stable storage. This is accomplished by forcing
all log records up to and including the one with LSN equal to the pageLSN to
stable storage before writing the page to disk.

The importance of the WAL protocol cannot be overemphasized—WAL is the
fundamental rule that ensures that a record of every change to the database
is available while attempting to recover from a crash. If a transaction made a
change and committed, the no-force approach means that some of these changes
may not have been written to disk at the time of a subsequent crash. Without a
record of these changes, there would be no way to ensure that the changes of a
committed transaction survive crashes. Note that the definition of a committed

transaction is effectively ’a transaction all of whose log records, including a
commit record, have been written to stable storage’.

When a transaction is committed, the log tail is forced to stable storage, even
if a no-force approach is being used. It is worth contrasting this operation with
the actions taken under a force approach: If a force approach is used, all the
pages modified by the transaction, rather than a portion of the log that includes
all its records, must be forced to disk when the transaction commits. The set of
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all changed pages is typically much larger than the log tail because the size of
an update log record is close to (twice) the size of the changed bytes, which is
likely to be much smaller than the page size. Further, the log is maintained as a
sequential file, and all writes to the log are sequential writes. Consequently, the
cost of forcing the log tail is much smaller than the cost of writing all changed
pages to disk.

18.5 CHECKPOINTING

A checkpoint is like a snapshot of the DBMS state, and by taking checkpoints
periodically, as we will see, the DBMS can reduce the amount of work to be
done during restart in the event of a subsequent crash.

Checkpointing in ARIES has three steps. First, a begin checkpoint record is
written to indicate when the checkpoint starts. Second, an end checkpoint
record is constructed, including in it the current contents of the transaction
table and the dirty page table, and appended to the log. The third step is
carried out after the end checkpoint record is written to stable storage: A
special master record containing the LSN of the begin checkpoint log record is
written to a known place on stable storage. While the end checkpoint record
is being constructed, the DBMS continues executing transactions and writing
other log records; the only guarantee we have is that the transaction table and
dirty page table are accurate as of the time of the begin checkpoint record.

This kind of checkpoint, called a fuzzy checkpoint, is inexpensive because it
does not require quiescing the system or writing out pages in the buffer pool
(unlike some other forms of checkpointing). On the other hand, the effectiveness
of this checkpointing technique is limited by the earliest recLSN of pages in the
dirty pages table, because during restart we must redo changes starting from
the log record whose LSN is equal to this recLSN. Having a background process
that periodically writes dirty pages to disk helps to limit this problem.

When the system comes back up after a crash, the restart process begins by
locating the most recent checkpoint record. For uniformity, the system always
begins normal execution by taking a checkpoint, in which the transaction table
and dirty page table are both empty.

18.6 RECOVERING FROM A SYSTEM CRASH

When the system is restarted after a crash, the recovery manager proceeds in
three phases, as shown in Figure 18.4.
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Figure 18.4 Three Phases of Restart in ARIES

The Analysis phase begins by examining the most recent begin checkpoint
record, whose LSN is denoted C in Figure 18.4, and proceeds forward in the
log until the last log record. The Redo phase follows Analysis and redoes all
changes to any page that might have been dirty at the time of the crash; this set
of pages and the starting point for Redo (the smallest recLSN of any dirty page)
are determined during Analysis. The Undo phase follows Redo and undoes the
changes of all transactions active at the time of the crash; again, this set of
transactions is identified during the Analysis phase. Note that Redo reapplies
changes in the order in which they were originally carried out; Undo reverses
changes in the opposite order, reversing the most recent change first.

Observe that the relative order of the three points A, B, and C in the log may
differ from that shown in Figure 18.4. The three phases of restart are described
in more detail in the following sections.

18.6.1 Analysis Phase

The Analysis phase performs three tasks:

1. It determines the point in the log at which to start the Redo pass.

2. It determines (a conservative superset of the) pages in the buffer pool that
were dirty at the time of the crash.

3. It identifies transactions that were active at the time of the crash and must
be undone.

Analysis begins by examining the most recent begin checkpoint log record and
initializing the dirty page table and transaction table to the copies of those
structures in the next end checkpoint record. Thus, these tables are initialized
to the set of dirty pages and active transactions at the time of the checkpoint.
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(If additional log records are between the begin checkpoint and end checkpoint
records, the tables must be adjusted to reflect the information in these records,
but we omit the details of this step. See Exercise 18.9.) Analysis then scans
the log in the forward direction until it reaches the end of the log:

If an end log record for a transaction T is encountered, T is removed from
the transaction table because it is no longer active.

If a log record other than an end record for a transaction T is encountered,
an entry for T is added to the transaction table if it is not already there.
Further, the entry for T is modified:

1. The lastLSN field is set to the LSN of this log record.

2. If the log record is a commit record, the status is set to C, otherwise
it is set to U (indicating that it is to be undone).

If a redoable log record affecting page P is encountered, and P is not in
the dirty page table, an entry is inserted into this table with page id P and
recLSN equal to the LSN of this redoable log record. This LSN identifies
the oldest change affecting page P that may not have been written to disk.

At the end of the Analysis phase, the transaction table contains an accurate
list of all transactions that were active at the time of the crash—this is the
set of transactions with status U. The dirty page table includes all pages that
were dirty at the time of the crash but may also contain some pages that were
written to disk. If an end write log record were written at the completion of
each write operation, the dirty page table constructed during Analysis could
be made more accurate, but in ARIES, the additional cost of writing end write
log records is not considered to be worth the gain.

As an example, consider the execution illustrated in Figure 18.3. Let us extend
this execution by assuming that T2000 commits, then T1000 modifies another
page, say, P700, and appends an update record to the log tail, and then the
system crashes (before this update log record is written to stable storage).

The dirty page table and the transaction table, held in memory, are lost in the
crash. The most recent checkpoint was taken at the beginning of the execution,
with an empty transaction table and dirty page table; it is not shown in Figure
18.3. After examining this log record, which we assume is just before the
first log record shown in the figure, Analysis initializes the two tables to be
empty. Scanning forward in the log, T1000 is added to the transaction table;
in addition, P500 is added to the dirty page table with recLSN equal to the
LSN of the first shown log record. Similarly, T2000 is added to the transaction
table and P600 is added to the dirty page table. There is no change based on
the third log record, and the fourth record results in the addition of P505 to



590 Chapter 18

the dirty page table. The commit record for T2000 (not in the figure) is now
encountered, and T2000 is removed from the transaction table.

The Analysis phase is now complete, and it is recognized that the only active
transaction at the time of the crash is T1000, with lastLSN equal to the LSN
of the fourth record in Figure 18.3. The dirty page table reconstructed in the
Analysis phase is identical to that shown in the figure. The update log record
for the change to P700 is lost in the crash and not seen during the Analysis
pass. Thanks to the WAL protocol, however, all is well—the corresponding
change to page P700 cannot have been written to disk either!

Some of the updates may have been written to disk; for concreteness, let us
assume that the change to P600 (and only this update) was written to disk
before the crash. Therefore P600 is not dirty, yet it is included in the dirty
page table. The pageLSN on page P600, however, reflects the write because it
is now equal to the LSN of the second update log record shown in Figure 18.3.

18.6.2 Redo Phase

During the Redo phase, ARIES reapplies the updates of all transactions, com-
mitted or otherwise. Further, if a transaction was aborted before the crash
and its updates were undone, as indicated by CLRs, the actions described in
the CLRs are also reapplied. This repeating history paradigm distinguishes
ARIES from other proposed WAL-based recovery algorithms and causes the
database to be brought to the same state it was in at the time of the crash.

The Redo phase begins with the log record that has the smallest recLSN of all
pages in the dirty page table constructed by the Analysis pass because this log
record identifies the oldest update that may not have been written to disk prior
to the crash. Starting from this log record, Redo scans forward until the end
of the log. For each redoable log record (update or CLR) encountered, Redo
checks whether the logged action must be redone. The action must be redone
unless one of the following conditions holds:

The affected page is not in the dirty page table.

The affected page is in the dirty page table, but the recLSN for the entry
is greater than the LSN of the log record being checked.

The pageLSN (stored on the page, which must be retrieved to check this
condition) is greater than or equal to the LSN of the log record being
checked.

The first condition obviously means that all changes to this page have been
written to disk. Because the recLSN is the first update to this page that may
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not have been written to disk, the second condition means that the update
being checked was indeed propagated to disk. The third condition, which is
checked last because it requires us to retrieve the page, also ensures that the
update being checked was written to disk, because either this update or a later
update to the page was written. (Recall our assumption that a write to a page
is atomic; this assumption is important here!)

If the logged action must be redone:

1. The logged action is reapplied.

2. The pageLSN on the page is set to the LSN of the redone log record. No
additional log record is written at this time.

Let us continue with the example discussed in Section 18.6.1. From the dirty
page table, the smallest recLSN is seen to be the LSN of the first log record
shown in Figure 18.3. Clearly, the changes recorded by earlier log records
(there happen to be none in this example) have been written to disk. Now,
Redo fetches the affected page, P500, and compares the LSN of this log record
with the pageLSN on the page and, because we assumed that this page was not
written to disk before the crash, finds that the pageLSN is less. The update
is therefore reapplied; bytes 21 through 23 are changed to ‘DEF’, and the
pageLSN is set to the LSN of this update log record.

Redo then examines the second log record. Again, the affected page, P600, is
fetched and the pageLSN is compared to the LSN of the update log record. In
this case, because we assumed that P600 was written to disk before the crash,
they are equal, and the update does not have to be redone.

The remaining log records are processed similarly, bringing the system back
to the exact state it was in at the time of the crash. Note that the first two
conditions indicating that a redo is unnecessary never hold in this example.
Intuitively, they come into play when the dirty page table contains a very old
recLSN, going back to before the most recent checkpoint. In this case, as Redo
scans forward from the log record with this LSN, it encounters log records for
pages that were written to disk prior to the checkpoint and therefore not in
the dirty page table in the checkpoint. Some of these pages may be dirtied
again after the checkpoint; nonetheless, the updates to these pages prior to the
checkpoint need not be redone. Although the third condition alone is sufficient
to recognize that these updates need not be redone, it requires us to fetch
the affected page. The first two conditions allow us to recognize this situation
without fetching the page. (The reader is encouraged to construct examples
that illustrate the use of each of these conditions; see Exercise 18.8.)
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At the end of the Redo phase, end type records are written for all transactions
with status C, which are removed from the transaction table.

18.6.3 Undo Phase

The Undo phase, unlike the other two phases, scans backward from the end
of the log. The goal of this phase is to undo the actions of all transactions
active at the time of the crash, that is, to effectively abort them. This set of
transactions is identified in the transaction table constructed by the Analysis
phase.

The Undo Algorithm

Undo begins with the transaction table constructed by the Analysis phase,
which identifies all transactions active at the time of the crash, and includes the
LSN of the most recent log record (the lastLSN field) for each such transaction.
Such transactions are called loser transactions. All actions of losers must be
undone, and further, these actions must be undone in the reverse of the order
in which they appear in the log.

Consider the set of lastLSN values for all loser transactions. Let us call this set
ToUndo. Undo repeatedly chooses the largest (i.e., most recent) LSN value in
this set and processes it, until ToUndo is empty. To process a log record:

1. If it is a CLR and the undoNextLSN value is not null, the undoNextLSN
value is added to the set ToUndo; if the undoNextLSN is null, an end
record is written for the transaction because it is completely undone, and
the CLR is discarded.

2. If it is an update record, a CLR is written and the corresponding action is
undone, as described in Section 18.2, and the prevLSN value in the update
log record is added to the set ToUndo.

When the set ToUndo is empty, the Undo phase is complete. Restart is now
complete, and the system can proceed with normal operations.

Let us continue with the scenario discussed in Sections 18.6.1 and 18.6.2. The
only active transaction at the time of the crash was determined to be T1000.
From the transaction table, we get the LSN of its most recent log record, which
is the fourth update log record in Figure 18.3. The update is undone, and a
CLR is written with undoNextLSN equal to the LSN of the first log record in
the figure. The next record to be undone for transaction T1000 is the first log
record in the figure. After this is undone, a CLR and an end log record for
T1000 are written, and the Undo phase is complete.
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In this example, undoing the action recorded in the first log record causes the
action of the third log record, which is due to a committed transaction, to be
overwritten and thereby lost! This situation arises because T2000 overwrote
a data item written by T1000 while T1000 was still active; if Strict 2PL were
followed, T2000 would not have been allowed to overwrite this data item.

Aborting a Transaction

Aborting a transaction is just a special case of the Undo phase of Restart in
which a single transaction, rather than a set of transactions, is undone. The
example in Figure 18.5, discussed next, illustrates this point.

Crashes during Restart

It is important to understand how the Undo algorithm presented in Section
18.6.3 handles repeated system crashes. Because the details of precisely how
the action described in an update log record is undone are straightforward,
we discuss Undo in the presence of system crashes using an execution history,
shown in Figure 18.5, that abstracts away unnecessary detail. This example
illustrates how aborting a transaction is a special case of Undo and how the use
of CLRs ensures that the Undo action for an update log record is not applied
twice.

10

20

CRASH, RESTART

30

50

60

70

CRASH, RESTART

update: T1 writes P5

update: T2 writes P3

update: T3 writes P1

update: T2 writes P5

CLR: Undo T2 LSN 60

LSN LOG 

begin_checkpoint, end_checkpoint00, 05

CLR: Undo T1 LSN 10, T1 end

T1 abort

40, 45

CLR: Undo T3 LSN 50, T3 end

CLR: Undo T2 LSN 20, T2 end

undonextLSN

prevLSN 

80, 85

90, 95

Figure 18.5 Example of Undo with Repeated Crashes
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The log shows the order in which the DBMS executed various actions; note that
the LSNs are in ascending order, and that each log record for a transaction has
a prevLSN field that points to the previous log record for that transaction. We
have not shown null prevLSNs, that is, some special value used in the prevLSN
field of the first log record for a transaction to indicate that there is no previous
log record. We also compacted the figure by occasionally displaying two log
records (separated by a comma) on a single line.

Log record (with LSN) 30 indicates that T1 aborts. All actions of this trans-
action should be undone in reverse order, and the only action of T1, described
by the update log record 10, is indeed undone as indicated by CLR 40.

After the first crash, Analysis identifies P1 (with recLSN 50), P3 (with recLSN
20), and P5 (with recLSN 10) as dirty pages. Log record 45 shows that T1 is a
completed transaction; hence, the transaction table identifies T2 (with lastLSN
60) and T3 (with lastLSN 50) as active at the time of the crash. The Redo
phase begins with log record 10, which is the minimum recLSN in the dirty
page table, and reapplies all actions (for the update and CLR records), as per
the Redo algorithm presented in Section 18.6.2.

The ToUndo set consists of LSNs 60, for T2, and 50, for T3. The Undo phase
now begins by processing the log record with LSN 60 because 60 is the largest
LSN in the ToUndo set. The update is undone, and a CLR (with LSN 70)
is written to the log. This CLR has undoNextLSN equal to 20, which is the
prevLSN value in log record 60; 20 is the next action to be undone for T2. Now
the largest remaining LSN in the ToUndo set is 50. The write corresponding
to log record 50 is now undone, and a CLR describing the change is written.
This CLR has LSN 80, and its undoNextLSN field is null because 50 is the
only log record for transaction T3. Therefore T3 is completely undone, and an
end record is written. Log records 70, 80, and 85 are written to stable storage
before the system crashes a second time; however, the changes described by
these records may not have been written to disk.

When the system is restarted after the second crash, Analysis determines that
the only active transaction at the time of the crash was T2; in addition, the dirty
page table is identical to what it was during the previous restart. Log records
10 through 85 are processed again during Redo. (If some of the changes made
during the previous Redo were written to disk, the pageLSNs on the affected
pages are used to detect this situation and avoid writing these pages again.)
The Undo phase considers the only LSN in the ToUndo set, 70, and processes it
by adding the undoNextLSN value (20) to the ToUndo set. Next, log record 20
is processed by undoing T2’s write of page P3, and a CLR is written (LSN 90).
Because 20 is the first of T2’s log records—and therefore, the last of its records
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to be undone—the undoNextLSN field in this CLR is null, an end record is
written for T2, and the ToUndo set is now empty.

Recovery is now complete, and normal execution can resume with the writing
of a checkpoint record.

This example illustrated repeated crashes during the Undo phase. For com-
pleteness, let us consider what happens if the system crashes while Restart is
in the Analysis or Redo phase. If a crash occurs during the Analysis phase, all
the work done in this phase is lost, and on restart the Analysis phase starts
afresh with the same information as before. If a crash occurs during the Redo
phase, the only effect that survives the crash is that some of the changes made
during Redo may have been written to disk prior to the crash. Restart starts
again with the Analysis phase and then the Redo phase, and some update log
records that were redone the first time around will not be redone a second time
because the pageLSN is now equal to the update record’s LSN (although the
pages have to be fetched again to detect this).

We can take checkpoints during Restart to minimize repeated work in the event
of a crash, but we do not discuss this point.

18.7 MEDIA RECOVERY

Media recovery is based on periodically making a copy of the database. Be-
cause copying a large database object such as a file can take a long time, and
the DBMS must be allowed to continue with its operations in the meantime,
creating a copy is handled in a manner similar to taking a fuzzy checkpoint.

When a database object such as a file or a page is corrupted, the copy of that
object is brought up-to-date by using the log to identify and reapply the changes
of committed transactions and undo the changes of uncommitted transactions
(as of the time of the media recovery operation).

The begin checkpoint LSN of the most recent complete checkpoint is recorded
along with the copy of the database object to minimize the work in reapplying
changes of committed transactions. Let us compare the smallest recLSN of
a dirty page in the corresponding end checkpoint record with the LSN of the
begin checkpoint record and call the smaller of these two LSNs I. We observe
that the actions recorded in all log records with LSNs less than I must be
reflected in the copy. Thus, only log records with LSNs greater than I need be
reapplied to the copy.
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Finally, the updates of transactions that are incomplete at the time of media
recovery or that were aborted after the fuzzy copy was completed need to be
undone to ensure that the page reflects only the actions of committed transac-
tions. The set of such transactions can be identified as in the Analysis pass,
and we omit the details.

18.8 OTHER APPROACHES AND INTERACTION WITH

CONCURRENCY CONTROL

Like ARIES, the most popular alternative recovery algorithms also maintain a
log of database actions according to the WAL protocol. A major distinction
between ARIES and these variants is that the Redo phase in ARIES repeats

history, that is, redoes the actions of all transactions, not just the non-losers.
Other algorithms redo only the non-losers, and the Redo phase follows the
Undo phase, in which the actions of losers are rolled back.

Thanks to the repeating history paradigm and the use of CLRs, ARIES sup-
ports fine-granularity locks (record-level locks) and logging of logical operations
rather than just byte-level modifications. For example, consider a transaction
T that inserts a data entry 15∗ into a B+ tree index. Between the time this
insert is done and the time that T is eventually aborted, other transactions may
also insert and delete entries from the tree. If record-level locks are set rather
than page-level locks, the entry 15∗ may be on a different physical page when
T aborts from the one that T inserted it into. In this case, the undo operation
for the insert of 15∗ must be recorded in logical terms because the physical
(byte-level) actions involved in undoing this operation are not the inverse of
the physical actions involved in inserting the entry.

Logging logical operations yields considerably higher concurrency, although the
use of fine-granularity locks can lead to increased locking activity (because more
locks must be set). Hence, there is a trade-off between different WAL-based
recovery schemes. We chose to cover ARIES because it has several attractive
properties, in particular, its simplicity and its ability to support fine-granularity
locks and logging of logical operations.

One of the earliest recovery algorithms, used in the System R prototype at
IBM, takes a very different approach. There is no logging and, of course,
no WAL protocol. Instead, the database is treated as a collection of pages
and accessed through a page table, which maps page ids to disk addresses.
When a transaction makes changes to a data page, it actually makes a copy
of the page, called the shadow of the page, and changes the shadow page.
The transaction copies the appropriate part of the page table and changes the
entry for the changed page to point to the shadow, so that it can see the
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changes; however, other transactions continue to see the original page table,
and therefore the original page, until this transaction commits. Aborting a
transaction is simple: Just discard its shadow versions of the page table and
the data pages. Committing a transaction involves making its version of the
page table public and discarding the original data pages that are superseded
by shadow pages.

This scheme suffers from a number of problems. First, data becomes highly
fragmented due to the replacement of pages by shadow versions, which may be
located far from the original page. This phenomenon reduces data clustering
and makes good garbage collection imperative. Second, the scheme does not
yield a sufficiently high degree of concurrency. Third, there is a substantial
storage overhead due to the use of shadow pages. Fourth, the process aborting
a transaction can itself run into deadlocks, and this situation must be specially
handled because the semantics of aborting an abort transaction gets murky.

For these reasons, even in System R, shadow paging was eventually superseded
by WAL-based recovery techniques.

18.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What are the advantages of the ARIES recovery algorithm? (Section 18.1)

Describe the three steps in crash recovery in ARIES? What is the goal of
the Analysis phase? The redo phase? The undo phase? (Section 18.1)

What is the LSN of a log record? (Section 18.2)

What are the different types of log records and when are they written?
(Section 18.2)

What information is maintained in the transaction table and the dirty page
table? (Section 18.3)

What is Write-Ahead Logging? What is forced to disk at the time a trans-
action commits? (Section 18.4)

What is a fuzzy checkpoint? Why is it useful? What is a master log record?
(Section 18.5)

In which direction does the Analysis phase of recovery scan the log? At
which point in the log does it begin and end the scan? (Section 18.6.1)

Describe what information is gathered in the Analysis phase and how.
(Section 18.6.1)



598 Chapter 18

In which direction does the Redo phase of recovery process the log? At
which point in the log does it begin and end? (Section 18.6.2)

What is a redoable log record? Under what conditions is the logged ac-
tion redone? What steps are carried out when a logged action is redone?
(Section 18.6.2)

In which direction does the Undo phase of recovery process the log? At
which point in the log does it begin and end? (Section 18.6.3)

What are loser transactions? How are they processed in the Undo phase
and in what order? (Section 18.6.3)

Explain what happens if there are crashes during the Undo phase of re-
covery. What is the role of CLRs? What if there are crashes during the
Analysis and Redo phases? (Section 18.6.3)

How does a DBMS recover from media failure without reading the complete
log? (Section 18.7)

Record-level logging increases concurrency. What are the potential prob-
lems, and how does ARIES address them? (Section 18.8)

What is shadow paging? (Section 18.8)

EXERCISES

Exercise 18.1 Briefly answer the following questions:

1. How does the recovery manager ensure atomicity of transactions? How does it ensure
durability?

2. What is the difference between stable storage and disk?

3. What is the difference between a system crash and a media failure?

4. Explain the WAL protocol.

5. Describe the steal and no-force policies.

Exercise 18.2 Briefly answer the following questions:

1. What are the properties required of LSNs?

2. What are the fields in an update log record? Explain the use of each field.

3. What are redoable log records?

4. What are the differences between update log records and CLRs?

Exercise 18.3 Briefly answer the following questions:

1. What are the roles of the Analysis, Redo, and Undo phases in ARIES?

2. Consider the execution shown in Figure 18.6.
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Figure 18.6 Execution with a Crash
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T2 abort

T3 commit

Figure 18.7 Aborting a Transaction

(a) What is done during Analysis? (Be precise about the points at which Analysis
begins and ends and describe the contents of any tables constructed in this phase.)

(b) What is done during Redo? (Be precise about the points at which Redo begins and
ends.)

(c) What is done during Undo? (Be precise about the points at which Undo begins
and ends.)

Exercise 18.4 Consider the execution shown in Figure 18.7.

1. Extend the figure to show prevLSN and undonextLSN values.

2. Describe the actions taken to rollback transaction T2.
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Figure 18.8 Execution with Multiple Crashes

3. Show the log after T2 is rolled back, including all prevLSN and undonextLSN values in
log records.

Exercise 18.5 Consider the execution shown in Figure 18.8. In addition, the system crashes
during recovery after writing two log records to stable storage and again after writing another
two log records.

1. What is the value of the LSN stored in the master log record?

2. What is done during Analysis?

3. What is done during Redo?

4. What is done during Undo?

5. Show the log when recovery is complete, including all non-null prevLSN and undonextLSN
values in log records.

Exercise 18.6 Briefly answer the following questions:

1. How is checkpointing done in ARIES?

2. Checkpointing can also be done as follows: Quiesce the system so that only checkpointing
activity can be in progress, write out copies of all dirty pages, and include the dirty page
table and transaction table in the checkpoint record. What are the pros and cons of this
approach versus the checkpointing approach of ARIES?

3. What happens if a second begin checkpoint record is encountered during the Analysis
phase?

4. Can a second end checkpoint record be encountered during the Analysis phase?

5. Why is the use of CLRs important for the use of undo actions that are not the physical
inverse of the original update?
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Figure 18.9 Log Records between Checkpoint Records

6. Give an example that illustrates how the paradigm of repeating history and the use of
CLRs allow ARIES to support locks of finer granularity than a page.

Exercise 18.7 Briefly answer the following questions:

1. If the system fails repeatedly during recovery, what is the maximum number of log
records that can be written (as a function of the number of update and other log records
written before the crash) before restart completes successfully?

2. What is the oldest log record we need to retain?

3. If a bounded amount of stable storage is used for the log, how can we always ensure
enough stable storage to hold all log records written during restart?

Exercise 18.8 Consider the three conditions under which a redo is unnecessary (Section
20.2.2).

1. Why is it cheaper to test the first two conditions?

2. Describe an execution that illustrates the use of the first condition.

3. Describe an execution that illustrates the use of the second condition.

Exercise 18.9 The description in Section 18.6.1 of the Analysis phase made the simplifying
assumption that no log records appeared between the begin checkpoint and end checkpoint
records for the most recent complete checkpoint. The following questions explore how such
records should be handled.

1. Explain why log records could be written between the begin checkpoint and end checkpoint
records.

2. Describe how the Analysis phase could be modified to handle such records.

3. Consider the execution shown in Figure 18.9. Show the contents of the end checkpoint
record.

4. Illustrate your modified Analysis phase on the execution shown in Figure 18.9.
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Exercise 18.10 Answer the following questions briefly:

1. Explain how media recovery is handled in ARIES.

2. What are the pros and cons of using fuzzy dumps for media recovery?

3. What are the similarities and differences between checkpoints and fuzzy dumps?

4. Contrast ARIES with other WAL-based recovery schemes.

5. Contrast ARIES with shadow-page-based recovery.

BIBLIOGRAPHIC NOTES

Our discussion of the ARIES recovery algorithm is based on [544]. [282] is a survey article
that contains a very readable, short description of ARIES. [541, 545] also discuss ARIES.
Fine-granularity locking increases concurrency but at the cost of more locking activity; [542]
suggests a technique based on LSNs for alleviating this problem. [458] presents a formal
verification of ARIES.

[355] is an excellent survey that provides a broader treatment of recovery algorithms than our
coverage, in which we chose to concentrate on one particular algorithm. [17] considers perfor-
mance of concurrency control and recovery algorithms, taking into account their interactions.
The impact of recovery on concurrency control is also discussed in [769]. [625] contains a
performance analysis of various recovery techniques. [236] compares recovery techniques for
main memory database systems, which are optimized for the case that most of the active data
set fits in main memory.

[478] presents a description of a recovery algorithm based on write-ahead logging in which
‘loser’ transactions are first undone and then (only) transactions that committed before the
crash are redone. Shadow paging is described in [493, 337]. A scheme that uses a combination
of shadow paging and in-place updating is described in [624].
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19
SCHEMA REFINEMENT AND

NORMAL FORMS

☛ What problems are caused by redundantly storing information?

☛ What are functional dependencies?

☛ What are normal forms and what is their purpose?

☛ What are the benefits of BCNF and 3NF?

☛ What are the considerations in decomposing relations into appropriate
normal forms?

☛ Where does normalization fit in the process of database design?

☛ Are more general dependencies useful in database design?

➽ Key concepts: redundancy, insert, delete, and update anomalies;
functional dependency, Armstrong’s Axioms; dependency closure, at-
tribute closure; normal forms, BCNF, 3NF; decompositions, lossless-
join, dependency-preservation; multivalued dependencies, join depen-
dencies, inclusion dependencies, 4NF, 5NF

It is a melancholy truth that even great men have their poor relations.

—Charles Dickens

Conceptual database design gives us a set of relation schemas and integrity
constraints (ICs) that can be regarded as a good starting point for the final
database design. This initial design must be refined by taking the ICs into
account more fully than is possible with just the ER model constructs and also
by considering performance criteria and typical workloads. In this chapter,
we discuss how ICs can be used to refine the conceptual schema produced by
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translating an ER model design into a collection of relations. Workload and
performance considerations are discussed in Chapter 20.

We concentrate on an important class of constraints called functional depen-
dencies. Other kinds of ICs, for example, multivalued dependencies and join
dependencies, also provide useful information. They can sometimes reveal re-
dundancies that cannot be detected using functional dependencies alone. We
discuss these other constraints briefly.

This chapter is organized as follows. Section 19.1 is an overview of the schema
refinement approach discussed in this chapter. We introduce functional depen-
dencies in Section 19.2. In Section 19.3, we show how to reason with functional
dependency information to infer additional dependencies from a given set of
dependencies. We introduce normal forms for relations in Section 19.4; the
normal form satisfied by a relation is a measure of the redundancy in the rela-
tion. A relation with redundancy can be refined by decomposing it, or replacing
it with smaller relations that contain the same information but without redun-
dancy. We discuss decompositions and desirable properties of decompositions
in Section 19.5, and we show how relations can be decomposed into smaller
relations in desirable normal forms in Section 19.6.

In Section 19.7, we present several examples that illustrate how relational
schemas obtained by translating an ER model design can nonetheless suffer
from redundancy, and we discuss how to refine such schemas to eliminate the
problems. In Section 19.8, we describe other kinds of dependencies for database
design. We conclude with a discussion of normalization for our case study, the
Internet shop, in Section 19.9.

19.1 INTRODUCTION TO SCHEMA REFINEMENT

We now present an overview of the problems that schema refinement is intended
to address and a refinement approach based on decompositions. Redundant
storage of information is the root cause of these problems. Although decompo-
sition can eliminate redundancy, it can lead to problems of its own and should
be used with caution.

19.1.1 Problems Caused by Redundancy

Storing the same information redundantly, that is, in more than one place
within a database, can lead to several problems:

Redundant Storage: Some information is stored repeatedly.
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Update Anomalies: If one copy of such repeated data is updated, an
inconsistency is created unless all copies are similarly updated.

Insertion Anomalies: It may not be possible to store certain information
unless some other, unrelated, information is stored as well.

Deletion Anomalies: It may not be possible to delete certain information
without losing some other, unrelated, information as well.

Consider a relation obtained by translating a variant of the Hourly Emps entity
set from Chapter 2:

Hourly Emps(ssn, name, lot, rating, hourly wages, hours worked)

In this chapter, we omit attribute type information for brevity, since our focus
is on the grouping of attributes into relations. We often abbreviate an attribute
name to a single letter and refer to a relation schema by a string of letters, one
per attribute. For example, we refer to the Hourly Emps schema as SNLRWH
(W denotes the hourly wages attribute).

The key for Hourly Emps is ssn. In addition, suppose that the hourly wages
attribute is determined by the rating attribute. That is, for a given rating
value, there is only one permissible hourly wages value. This IC is an example
of a functional dependency. It leads to possible redundancy in the relation
Hourly Emps, as illustrated in Figure 19.1.

ssn name lot rating hourly wages hours worked

123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

Figure 19.1 An Instance of the Hourly Emps Relation

If the same value appears in the rating column of two tuples, the IC tells us
that the same value must appear in the hourly wages column as well. This
redundancy has the same negative consequences as before:

Redundant Storage: The rating value 8 corresponds to the hourly wage 10,
and this association is repeated three times.

Update Anomalies: The hourly wages in the first tuple could be updated
without making a similar change in the second tuple.
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Insertion Anomalies: We cannot insert a tuple for an employee unless we
know the hourly wage for the employee’s rating value.

Deletion Anomalies: If we delete all tuples with a given rating value (e.g.,
we delete the tuples for Smethurst and Guldu) we lose the association
between that rating value and its hourly wage value.

Ideally, we want schemas that do not permit redundancy, but at the very least
we want to be able to identify schemas that do allow redundancy. Even if we
choose to accept a schema with some of these drawbacks, perhaps owing to
performance considerations, we want to make an informed decision.

Null Values

It is worth considering whether the use of null values can address some of these
problems. As we will see in the context of our example, they cannot provide a
complete solution, but they can provide some help. In this chapter, we do not
discuss the use of null values beyond this one example.

Consider the example Hourly Emps relation. Clearly, null values cannot help
eliminate redundant storage or update anomalies. It appears that they can
address insertion and deletion anomalies. For instance, to deal with the inser-
tion anomaly example, we can insert an employee tuple with null values in the
hourly wage field. However, null values cannot address all insertion anomalies.
For example, we cannot record the hourly wage for a rating unless there is
an employee with that rating, because we cannot store a null value in the ssn
field, which is a primary key field. Similarly, to deal with the deletion anomaly
example, we might consider storing a tuple with null values in all fields except
rating and hourly wages if the last tuple with a given rating would otherwise
be deleted. However, this solution does not work because it requires the ssn
value to be null, and primary key fields cannot be null. Thus, null values do
not provide a general solution to the problems of redundancy, even though they
can help in some cases.

19.1.2 Decompositions

Intuitively, redundancy arises when a relational schema forces an association
between attributes that is not natural. Functional dependencies (and, for that
matter, other ICs) can be used to identify such situations and suggest refine-
ments to the schema. The essential idea is that many problems arising from re-
dundancy can be addressed by replacing a relation with a collection of ‘smaller’
relations.
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A decomposition of a relation schema R consists of replacing the relation
schema by two (or more) relation schemas that each contain a subset of the
attributes of R and together include all attributes in R. Intuitively, we want
to store the information in any given instance of R by storing projections of
the instance. This section examines the use of decompositions through several
examples.

We can decompose Hourly Emps into two relations:

Hourly Emps2(ssn, name, lot, rating, hours worked)
Wages(rating, hourly wages)

The instances of these relations corresponding to the instance of Hourly Emps
relation in Figure 19.1 is shown in Figure 19.2.

ssn name lot rating hours worked

123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

rating hourly wages

8 10
5 7

Figure 19.2 Instances of Hourly Emps2 and Wages

Note that we can easily record the hourly wage for any rating simply by adding
a tuple to Wages, even if no employee with that rating appears in the cur-
rent instance of Hourly Emps. Changing the wage associated with a rating
involves updating a single Wages tuple. This is more efficient than updating
several tuples (as in the original design), and it eliminates the potential for
inconsistency.

19.1.3 Problems Related to Decomposition

Unless we are careful, decomposing a relation schema can create more problems
than it solves. Two important questions must be asked repeatedly:

1. Do we need to decompose a relation?
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2. What problems (if any) does a given decomposition cause?

To help with the first question, several normal forms have been proposed for
relations. If a relation schema is in one of these normal forms, we know that
certain kinds of problems cannot arise. Considering the normal form of a given
relation schema can help us to decide whether or not to decompose it further. If
we decide that a relation schema must be decomposed further, we must choose
a particular decomposition (i.e., a particular collection of smaller relations to
replace the given relation).

With respect to the second question, two properties of decompositions are
of particular interest. The lossless-join property enables us to recover any
instance of the decomposed relation from corresponding instances of the smaller
relations. The dependency-preservation property enables us to enforce any
constraint on the original relation by simply enforcing some contraints on each
of the smaller relations. That is, we need not perform joins of the smaller
relations to check whether a constraint on the original relation is violated.

From a performance standpoint, queries over the original relation may require
us to join the decomposed relations. If such queries are common, the perfor-
mance penalty of decomposing the relation may not be acceptable. In this
case, we may choose to live with some of the problems of redundancy and not
decompose the relation. It is important to be aware of the potential problems
caused by such residual redundancy in the design and to take steps to avoid
them (e.g., by adding some checks to application code). In some situations,
decomposition could actually improve performance. This happens, for exam-
ple, if most queries and updates examine only one of the decomposed relations,
which is smaller than the original relation. We do not discuss the impact of
decompositions on query performance in this chapter; this issue is covered in
Section 20.8.

Our goal in this chapter is to explain some powerful concepts and design guide-
lines based on the theory of functional dependencies. A good database designer
should have a firm grasp of normal forms and what problems they (do or do
not) alleviate, the technique of decomposition, and potential problems with
decompositions. For example, a designer often asks questions such as these: Is
a relation in a given normal form? Is a decomposition dependency-preserving?
Our objective is to explain when to raise these questions and the significance
of the answers.
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19.2 FUNCTIONAL DEPENDENCIES

A functional dependency (FD) is a kind of IC that generalizes the concept
of a key. Let R be a relation schema and let X and Y be nonempty sets of
attributes in R. We say that an instance r of R satisfies the FD X → Y 1 if the
following holds for every pair of tuples t1 and t2 in r:

If t1.X = t2.X, then t1.Y = t2.Y .

We use the notation t1.X to refer to the projection of tuple t1 onto the at-
tributes in X, in a natural extension of our TRC notation (see Chapter 4) t.a
for referring to attribute a of tuple t. An FD X→ Y essentially says that if two
tuples agree on the values in attributes X, they must also agree on the values
in attributes Y.

Figure 19.3 illustrates the meaning of the FD AB→ C by showing an instance
that satisfies this dependency. The first two tuples show that an FD is not the
same as a key constraint: Although the FD is not violated, AB is clearly not
a key for the relation. The third and fourth tuples illustrate that if two tuples
differ in either the A field or the B field, they can differ in the C field without
violating the FD. On the other hand, if we add a tuple  a1, b1, c2, d1 to the
instance shown in this figure, the resulting instance would violate the FD; to
see this violation, compare the first tuple in the figure with the new tuple.

A B C D

a1 b1 c1 d1
a1 b1 c1 d2
a1 b2 c2 d1
a2 b1 c3 d1

Figure 19.3 An Instance that Satisfies AB → C

Recall that a legal instance of a relation must satisfy all specified ICs, including
all specified FDs. As noted in Section 3.2, ICs must be identified and specified
based on the semantics of the real-world enterprise being modeled. By looking
at an instance of a relation, we might be able to tell that a certain FD does not
hold. However, we can never deduce that an FD does hold by looking at one
or more instances of the relation, because an FD, like other ICs, is a statement
about all possible legal instances of the relation.

1X → Y is read as X functionally determines Y, or simply as X determines Y.
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A primary key constraint is a special case of an FD. The attributes in the key
play the role of X, and the set of all attributes in the relation plays the role of
Y. Note, however, that the definition of an FD does not require that the set X
be minimal; the additional minimality condition must be met for X to be a key.
If X → Y holds, where Y is the set of all attributes, and there is some (strictly
contained) subset V of X such that V → Y holds, then X is a superkey.

In the rest of this chapter, we see several examples of FDs that are not key
constraints.

19.3 REASONING ABOUT FDS

Given a set of FDs over a relation schema R, typically several additional FDs
hold over R whenever all of the given FDs hold. As an example, consider:

Workers(ssn, name, lot, did, since)

We know that ssn → did holds, since ssn is the key, and FD did → lot is given
to hold. Therefore, in any legal instance of Workers, if two tuples have the
same ssn value, they must have the same did value (from the first FD), and
because they have the same did value, they must also have the same lot value
(from the second FD). Therefore, the FD ssn → lot also holds on Workers.

We say that an FD f is implied by a given set F of FDs if f holds on every
relation instance that satisfies all dependencies in F; that is, f holds whenever
all FDs in F hold. Note that it is not sufficient for f to hold on some instance
that satisfies all dependencies in F; rather, f must hold on every instance that
satisfies all dependencies in F.

19.3.1 Closure of a Set of FDs

The set of all FDs implied by a given set F of FDs is called the closure of
F, denoted as F+. An important question is how we can infer, or compute,
the closure of a given set F of FDs. The answer is simple and elegant. The
following three rules, called Armstrong’s Axioms, can be applied repeatedly
to infer all FDs implied by a set F of FDs. We use X, Y, and Z to denote sets
of attributes over a relation schema R:

Reflexivity: If X ⊇ Y, then X → Y.

Augmentation: If X → Y, then XZ → YZ for any Z.

Transitivity: If X → Y and Y → Z, then X → Z.
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Theorem 1 Armstrong’s Axioms are sound, in that they generate only FDs
in F+ when applied to a set F of FDs. They are also complete, in that repeated
application of these rules will generate all FDs in the closure F+.

The soundness of Armstrong’s Axioms is straightforward to prove. Complete-
ness is harder to show; see Exercise 19.17.

It is convenient to use some additional rules while reasoning about F+:

Union: If X → Y and X → Z, then X → YZ.

Decomposition: If X → YZ, then X → Y and X → Z.

These additional rules are not essential; their soundness can be proved using
Armstrong’s Axioms.

To illustrate the use of these inference rules for FDs, consider a relation schema
ABC with FDs A → B and B → C. In a trivial FD, the right side contains
only attributes that also appear on the left side; such dependencies always hold
due to reflexivity. Using reflexivity, we can generate all trivial dependencies,
which are of the form:

X → Y, where Y ⊆ X, X ⊆ ABC, and Y ⊆ ABC.

From transitivity we get A → C. From augmentation we get the nontrivial
dependencies:

AC → BC, AB → AC, AB → CB.

As another example, we use a more elaborate version of Contracts:

Contracts(contractid, supplierid, projectid, deptid, partid, qty, value)

We denote the schema for Contracts as CSJDPQV. The meaning of a tuple is
that the contract with contractid C is an agreement that supplier S (supplierid)
will supply Q items of part P (partid) to project J (projectid) associated with
department D (deptid); the value V of this contract is equal to value.

The following ICs are known to hold:

1. The contract id C is a key: C → CSJDPQV.

2. A project purchases a given part using a single contract: JP → C.
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3. A department purchases at most one part from a supplier: SD → P.

Several additional FDs hold in the closure of the set of given FDs:

From JP → C, C → CSJDPQV, and transitivity, we infer JP → CSJDPQV.

From SD → P and augmentation, we infer SDJ → JP.

From SDJ → JP, JP → CSJDPQV, and transitivity, we infer SDJ → CSJD-
PQV. (Incidentally, while it may appear tempting to do so, we cannot conclude
SD → CSDPQV, canceling J on both sides. FD inference is not like arithmetic
multiplication!)

We can infer several additional FDs that are in the closure by using augmen-
tation or decomposition. For example, from C → CSJDPQV, using decompo-
sition, we can infer:

C → C, C → S, C → J, C → D, and so forth

Finally, we have a number of trivial FDs from the reflexivity rule.

19.3.2 Attribute Closure

If we just want to check whether a given dependency, say, X → Y, is in the
closure of a set F of FDs, we can do so efficiently without computing F+. We
first compute the attribute closure X+ with respect to F, which is the set
of attributes A such that X → A can be inferred using the Armstrong Axioms.
The algorithm for computing the attribute closure of a set X of attributes is
shown in Figure 19.4.

closure = X;

repeat until there is no change: {

if there is an FD U → V in F such that U ⊆ closure,

then set closure = closure ∪ V

}

Figure 19.4 Computing the Attribute Closure of Attribute Set X

Theorem 2 The algorithm shown in Figure 19.4 computes the attribute closure
X+ of the attribute set X with respect to the set of FDs F .
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The proof of this theorem is considered in Exercise 19.15. This algorithm can
be modified to find keys by starting with set X containing a single attribute and
stopping as soon as closure contains all attributes in the relation schema. By
varying the starting attribute and the order in which the algorithm considers
FDs, we can obtain all candidate keys.

19.4 NORMAL FORMS

Given a relation schema, we need to decide whether it is a good design or we
need to decompose it into smaller relations. Such a decision must be guided
by an understanding of what problems, if any, arise from the current schema.
To provide such guidance, several normal forms have been proposed. If a
relation schema is in one of these normal forms, we know that certain kinds of
problems cannot arise.

The normal forms based on FDs are first normal form (1NF), second normal
form (2NF), third normal form (3NF), and Boyce-Codd normal form (BCNF).
These forms have increasingly restrictive requirements: Every relation in BCNF
is also in 3NF, every relation in 3NF is also in 2NF, and every relation in 2NF is
in 1NF. A relation is in first normal form if every field contains only atomic
values, that is, no lists or sets. This requirement is implicit in our definition
of the relational model. Although some of the newer database systems are
relaxing this requirement, in this chapter we assume that it always holds. 2NF
is mainly of historical interest. 3NF and BCNF are important from a database
design standpoint.

While studying normal forms, it is important to appreciate the role played by
FDs. Consider a relation schema R with attributes ABC. In the absence of any
ICs, any set of ternary tuples is a legal instance and there is no potential for
redundancy. On the other hand, suppose that we have the FD A → B. Now if
several tuples have the same A value, they must also have the same B value.
This potential redundancy can be predicted using the FD information. If more
detailed ICs are specified, we may be able to detect more subtle redundancies
as well.

We primarily discuss redundancy revealed by FD information. In Section 19.8,
we discuss more sophisticated ICs called multivalued dependencies and join
dependencies and normal forms based on them.

19.4.1 Boyce-Codd Normal Form

Let R be a relation schema, F be the set of FDs given to hold over R, X be a
subset of the attributes of R, and A be an attribute of R. R is in Boyce-Codd
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normal form if, for every FD X → A in F, one of the following statements is
true:

A ∈ X; that is, it is a trivial FD, or

X is a superkey.

Intuitively, in a BCNF relation, the only nontrivial dependencies are those
in which a key determines some attribute(s). Therefore, each tuple can be
thought of as an entity or relationship, identified by a key and described by
the remaining attributes. Kent (in [425]) puts this colorfully, if a little loosely:
“Each attribute must describe [an entity or relationship identified by] the key,
the whole key, and nothing but the key.” If we use ovals to denote attributes
or sets of attributes and draw arcs to indicate FDs, a relation in BCNF has
the structure illustrated in Figure 19.5, considering just one key for simplicity.
(If there are several candidate keys, each candidate key can play the role of
KEY in the figure, with the other attributes being the ones not in the chosen
candidate key.)

KEY Nonkey attr2 Nonkey attrkNonkey attr1

Figure 19.5 FDs in a BCNF Relation

BCNF ensures that no redundancy can be detected using FD information alone.
It is thus the most desirable normal form (from the point of view of redundancy)
if we take into account only FD information. This point is illustrated in Figure
19.6.

X Y A

x y1 a

x y2 ?

Figure 19.6 Instance Illustrating BCNF

This figure shows (two tuples in) an instance of a relation with three attributes
X, Y, and A. There are two tuples with the same value in the X column. Now
suppose that we know that this instance satisfies an FD X → A. We can see
that one of the tuples has the value a in the A column. What can we infer
about the value in the A column in the second tuple? Using the FD, we can
conclude that the second tuple also has the value a in this column. (Note that
this is really the only kind of inference we can make about values in the fields
of tuples by using FDs.)
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But is this situation not an example of redundancy? We appear to have stored
the value a twice. Can such a situation arise in a BCNF relation? The answer
is No! If this relation is in BCNF, because A is distinct from X, it follows that
X must be a key. (Otherwise, the FD X → A would violate BCNF.) If X is
a key, then y1 = y2, which means that the two tuples are identical. Since a
relation is defined to be a set of tuples, we cannot have two copies of the same
tuple and the situation shown in Figure 19.6 cannot arise.

Therefore, if a relation is in BCNF, every field of every tuple records a piece
of information that cannot be inferred (using only FDs) from the values in all
other fields in (all tuples of) the relation instance.

19.4.2 Third Normal Form

Let R be a relation schema, F be the set of FDs given to hold over R, X be a
subset of the attributes of R, and A be an attribute of R. R is in third normal
form if, for every FD X → A in F, one of the following statements is true:

A ∈ X; that is, it is a trivial FD, or

X is a superkey, or

A is part of some key for R.

The definition of 3NF is similar to that of BCNF, with the only difference being
the third condition. Every BCNF relation is also in 3NF. To understand the
third condition, recall that a key for a relation is a minimal set of attributes
that uniquely determines all other attributes. A must be part of a key (any
key, if there are several). It is not enough for A to be part of a superkey,
because the latter condition is satisfied by every attribute! Finding all keys
of a relation schema is known to be an NP-complete problem, and so is the
problem of determining whether a relation schema is in 3NF.

Suppose that a dependency X → A causes a violation of 3NF. There are two
cases:

X is a proper subset of some key K. Such a dependency is sometimes called
a partial dependency. In this case, we store (X, A) pairs redundantly.
As an example, consider the Reserves relation with attributes SBDC from
Section 19.7.4. The only key is SBD, and we have the FD S→ C. We store
the credit card number for a sailor as many times as there are reservations
for that sailor.

X is not a proper subset of any key. Such a dependency is sometimes
called a transitive dependency, because it means we have a chain of
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dependencies K → X → A. The problem is that we cannot associate an
X value with a K value unless we also associate an A value with an X
value. As an example, consider the Hourly Emps relation with attributes
SNLRWH from Section 19.7.1. The only key is S, but there is an FD R
→ W, which gives rise to the chain S → R → W. The consequence is that
we cannot record the fact that employee S has rating R without knowing
the hourly wage for that rating. This condition leads to insertion, deletion,
and update anomalies.

Partial dependencies are illustrated in Figure 19.7, and transitive dependencies
are illustrated in Figure 19.8. Note that in Figure 19.8, the set X of attributes
may or may not have some attributes in common with KEY; the diagram should
be interpreted as indicating only that X is not a subset of KEY.

Case 1:  A not in KEYKEY Attribute AAttributes X

Figure 19.7 Partial Dependencies

Attribute AKEY Attributes X Case 1:  A not in KEY

Case 2:  A is in KEYKEY Attribute A Attributes X

Figure 19.8 Transitive Dependencies

The motivation for 3NF is rather technical. By making an exception for certain
dependencies involving key attributes, we can ensure that every relation schema
can be decomposed into a collection of 3NF relations using only decompositions
that have certain desirable properties (Section 19.5). Such a guarantee does not
exist for BCNF relations; the 3NF definition weakens the BCNF requirements
just enough to make this guarantee possible. We may therefore compromise by
settling for a 3NF design. As we see in Chapter 20, we may sometimes accept
this compromise (or even settle for a non-3NF schema) for other reasons as
well.

Unlike BCNF, however, some redundancy is possible with 3NF. The problems
associated with partial and transitive dependencies persist if there is a nontriv-
ial dependency X → A and X is not a superkey, even if the relation is in 3NF
because A is part of a key. To understand this point, let us revisit the Reserves
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relation with attributes SBDC and the FD S → C, which states that a sailor
uses a unique credit card to pay for reservations. S is not a key, and C is not
part of a key. (In fact, the only key is SBD.) Hence, this relation is not in 3NF;
(S, C) pairs are stored redundantly. However, if we also know that credit cards
uniquely identify the owner, we have the FD C → S, which means that CBD
is also a key for Reserves. Therefore, the dependency S → C does not violate
3NF, and Reserves is in 3NF. Nonetheless, in all tuples containing the same S
value, the same (S, C) pair is redundantly recorded.

For completeness, we remark that the definition of second normal form is
essentially that partial dependencies are not allowed. Thus, if a relation is in
3NF (which precludes both partial and transitive dependencies), it is also in
2NF.

19.5 PROPERTIES OF DECOMPOSITIONS

Decomposition is a tool that allows us to eliminate redundancy. As noted in
Section 19.1.3, however, it is important to check that a decomposition does not
introduce new problems. In particular, we should check whether a decomposi-
tion allows us to recover the original relation, and whether it allows us to check
integrity constraints efficiently. We discuss these properties next.

19.5.1 Lossless-Join Decomposition

Let R be a relation schema and let F be a set of FDs over R. A decomposition
of R into two schemas with attribute sets X and Y is said to be a lossless-join
decomposition with respect to F if, for every instance r of R that satisfies
the dependencies in F, πX(r)   πY (r) = r. In other words, we can recover
the original relation from the decomposed relations.

This definition can easily be extended to cover a decomposition of R into more
than two relations. It is easy to see that r ⊆ πX(r)   πY (r) always holds.
In general, though, the other direction does not hold. If we take projections
of a relation and recombine them using natural join, we typically obtain some
tuples that were not in the original relation. This situation is illustrated in
Figure 19.9.

By replacing the instance r shown in Figure 19.9 with the instances πSP (r) and
πPD(r), we lose some information. In particular, suppose that the tuples in r
denote relationships. We can no longer tell that the relationships (s1, p1, d3)
and (s3, p1, d1) do not hold. The decomposition of schema SPD into SP and
PD is therefore lossy if the instance r shown in the figure is legal, that is, if this
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S P D

s1 p1 d1
s2 p2 d2
s3 p1 d3

Instance r

S P

s1 p1
s2 p2
s3 p1

πSP (r)

P D

p1 d1
p2 d2
p1 d3

πPD(r)

S P D

s1 p1 d1
s2 p2 d2
s3 p1 d3
s1 p1 d3
s3 p1 d1

πSP (r)   πPD(r)

Figure 19.9 Instances Illustrating Lossy Decompositions

instance could arise in the enterprise being modeled. (Observe the similarities
between this example and the Contracts relationship set in Section 2.5.3.)

All decompositions used to eliminate redundancy must be lossless. The follow-
ing simple test is very useful:

Theorem 3 Let R be a relation and F be a set of FDs that hold over R. The
decomposition of R into relations with attribute sets R1 and R2 is lossless if and
only if F+ contains either the FD R1 ∩R2 → R1 or the FD R1 ∩R2 → R2.

In other words, the attributes common to R1 and R2 must contain a key for
either R1 or R2.

2 If a relation is decomposed into more than two relations,
an efficient (time polynomial in the size of the dependency set) algorithm is
available to test whether or not the decomposition is lossless, but we will not
discuss it.

Consider the Hourly Emps relation again. It has attributes SNLRWH, and
the FD R → W causes a violation of 3NF. We dealt with this violation by
decomposing the relation into SNLRH and RW. Since R is common to both
decomposed relations and R → W holds, this decomposition is lossless-join.

This example illustrates a general observation that follows from Theorem 3:

If an FD X → Y holds over a relation R and X ∩ Y is empty, the
decomposition of R into R− Y and XY is lossless.

X appears in both R − Y (since X ∩ Y is empty) and XY, and it is a key for
XY.

2See Exercise 19.19 for a proof of Theorem 3. Exercise 19.11 illustrates that the ‘only if’ claim

depends on the assumption that only functional dependencies can be specified as integrity constraints.
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Another important observation, which we state without proof, has to do with
repeated decompositions. Suppose that a relation R is decomposed into R1 and
R2 through a lossless-join decomposition, and that R1 is decomposed into R11
and R12 through another lossless-join decomposition. Then, the decomposition
of R into R11, R12, and R2 is lossless-join; by joining R11 and R12, we can
recover R1, and by then joining R1 and R2, we can recover R.

19.5.2 Dependency-Preserving Decomposition

Consider the Contracts relation with attributes CSJDPQV from Section 19.3.1.
The given FDs are C → CSJDPQV, JP → C, and SD → P. Because SD is not
a key the dependency SD → P causes a violation of BCNF.

We can decompose Contracts into two relations with schemas CSJDQV and
SDP to address this violation; the decomposition is lossless-join. There is
one subtle problem, however. We can enforce the integrity constraint JP → C
easily when a tuple is inserted into Contracts by ensuring that no existing tuple
has the same JP values (as the inserted tuple) but different C values. Once
we decompose Contracts into CSJDQV and SDP, enforcing this constraint
requires an expensive join of the two relations whenever a tuple is inserted into
CSJDQV. We say that this decomposition is not dependency-preserving.

Intuitively, a dependency-preserving decomposition allows us to enforce all FDs
by examining a single relation instance on each insertion or modification of a tu-
ple. (Note that deletions cannot cause violation of FDs.) To define dependency-
preserving decompositions precisely, we have to introduce the concept of a pro-
jection of FDs.

Let R be a relation schema that is decomposed into two schemas with attribute
sets X and Y, and let F be a set of FDs over R. The projection of F on X is
the set of FDs in the closure F+ (not just F !) that involve only attributes in X.
We denote the projection of F on attributes X as FX . Note that a dependency
U → V in F+ is in FX only if all the attributes in U and V are in X.

The decomposition of relation schema R with FDs F into schemas with attribute
sets X and Y is dependency-preserving if (FX ∪FY )

+ = F+. That is, if we
take the dependencies in FX and FY and compute the closure of their union, we
get back all dependencies in the closure of F. Therefore, we need to enforce only
the dependencies in FX and FY ; all FDs in F+ are then sure to be satisfied. To
enforce FX , we need to examine only relation X (on inserts to that relation).
To enforce FY , we need to examine only relation Y.
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To appreciate the need to consider the closure F+ while computing the projec-
tion of F, suppose that a relation R with attributes ABC is decomposed into
relations with attributes AB and BC. The set F of FDs over R includes A →
B, B → C, and C → A. Of these, A → B is in FAB and B → C is in FBC .
But is this decomposition dependency-preserving? What about C → A? This
dependency is not implied by the dependencies listed (thus far) for FAB and
FBC .

The closure of F contains all dependencies in F plus A→ C, B→ A, and C→ B.
Consequently, FAB also contains B→ A, and FBC contains C → B. Therefore,
FAB ∪ FBC contains A → B, B → C, B → A, and C → B. The closure of the
dependencies in FAB and FBC now includes C→ A (which follows from C→ B,
B → A, and transitivity). Thus, the decomposition preserves the dependency
C → A.

A direct application of the definition gives us a straightforward algorithm for
testing whether a decomposition is dependency-preserving. (This algorithm
is exponential in the size of the dependency set. A polynomial algorithm is
available; see Exercise 19.9.)

We began this section with an example of a lossless-join decomposition that was
not dependency-preserving. Other decompositions are dependency-preserving,
but not lossless. A simple example consists of a relation ABC with FD A → B
that is decomposed into AB and BC.

19.6 NORMALIZATION

Having covered the concepts needed to understand the role of normal forms
and decompositions in database design, we now consider algorithms for con-
verting relations to BCNF or 3NF. If a relation schema is not in BCNF, it
is possible to obtain a lossless-join decomposition into a collection of BCNF
relation schemas. Unfortunately, there may be no dependency-preserving de-
composition into a collection of BCNF relation schemas. However, there is
always a dependency-preserving, lossless-join decomposition into a collection
of 3NF relation schemas.

19.6.1 Decomposition into BCNF

We now present an algorithm for decomposing a relation schema R with a set
of FDs F into a collection of BCNF relation schemas:
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1. Suppose that R is not in BCNF. Let X ⊂ R, A be a single attribute in R,
and X → A be an FD that causes a violation of BCNF. Decompose R into
R−A and XA.

2. If either R − A or XA is not in BCNF, decompose them further by a
recursive application of this algorithm.

R − A denotes the set of attributes other than A in R, and XA denotes the
union of attributes in X and A. Since X → A violates BCNF, it is not a trivial
dependency; further, A is a single attribute. Therefore, A is not in X; that
is, X ∩ A is empty. Therefore, each decomposition carried out in Step 1 is
lossless-join.

The set of dependencies associated with R − A and XA is the projection of F
onto their attributes. If one of the new relations is not in BCNF, we decompose
it further in Step 2. Since a decomposition results in relations with strictly
fewer attributes, this process terminates, leaving us with a collection of relation
schemas that are all in BCNF. Further, joining instances of the (two or more)
relations obtained through this algorithm yields precisely the corresponding
instance of the original relation (i.e., the decomposition into a collection of
relations each of which in BCNF is a lossless-join decomposition).

Consider the Contracts relation with attributes CSJDPQV and key C. We are
given FDs JP→ C and SD→ P. By using the dependency SD→ P to guide the
decomposition, we get the two schemas SDP and CSJDQV. SDP is in BCNF.
Suppose that we also have the constraint that each project deals with a single
supplier: J → S. This means that the schema CSJDQV is not in BCNF. So we
decompose it further into JS and CJDQV. C→ JDQV holds over CJDQV; the
only other FDs that hold are those obtained from this FD by augmentation, and
therefore all FDs contain a key in the left side. Thus, each of the schemas SDP,
JS, and CJDQV is in BCNF, and this collection of schemas also represents a
lossless-join decomposition of CSJDQV.

The steps in this decomposition process can be visualized as a tree, as shown
in Figure 19.10. The root is the original relation CSJDPQV, and the leaves are
the BCNF relations that result from the decomposition algorithm: SDP, JS,
and CSDQV. Intuitively, each internal node is replaced by its children through
a single decomposition step guided by the FD shown just below the node.

Redundancy in BCNF Revisited

The decomposition of CSJDQV into SDP, JS, and CJDQV is not dependency-
preserving. Intuitively, dependency JP→ C cannot be enforced without a join.
One way to deal with this situation is to add a relation with attributes CJP. In
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SD       P

J       S

CSJDPQV

CSJDQVSDP

JS CJDQV

Figure 19.10 Decomposition of CSJDQV into SDP, JS, and CJDQV

effect, this solution amounts to storing some information redundantly to make
the dependency enforcement cheaper.

This is a subtle point: Each of the schemas CJP, SDP, JS, and CJDQV is in
BCNF, yet some redundancy can be predicted by FD information. In particu-
lar, if we join the relation instances for SDP and CJDQV and project the result
onto the attributes CJP, we must get exactly the instance stored in the relation
with schema CJP. We saw in Section 19.4.1 that there is no such redundancy
within a single BCNF relation. This example shows that redundancy can still
occur across relations, even though there is no redundancy within a relation.

Alternatives in Decomposing to BCNF

Suppose several dependencies violate BCNF. Depending on which of these de-
pendencies we choose to guide the next decomposition step, we may arrive at
quite different collections of BCNF relations. Consider Contracts. We just
decomposed it into SDP, JS, and CJDQV. Suppose we choose to decompose
the original relation CSJDPQV into JS and CJDPQV, based on the FD J →
S. The only dependencies that hold over CJDPQV are JP → C and the key
dependency C→ CJDPQV. Since JP is a key, CJDPQV is in BCNF. Thus, the
schemas JS and CJDPQV represent a lossless-join decomposition of Contracts
into BCNF relations.

The lesson to be learned here is that the theory of dependencies can tell us when
there is redundancy and give us clues about possible decompositions to address
the problem, but it cannot discriminate among decomposition alternatives. A
designer has to consider the alternatives and choose one based on the semantics
of the application.
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BCNF and Dependency-Preservation

Sometimes, there simply is no decomposition into BCNF that is dependency-
preserving. As an example, consider the relation schema SBD, in which a tuple
denotes that sailor S has reserved boat B on date D. If we have the FDs SB
→ D (a sailor can reserve a given boat for at most one day) and D → B (on
any given day at most one boat can be reserved), SBD is not in BCNF because
D is not a key. If we try to decompose it, however, we cannot preserve the
dependency SB → D.

19.6.2 Decomposition into 3NF

Clearly, the approach we outlined for lossless-join decomposition into BCNF
also gives us a lossless-join decomposition into 3NF. (Typically, we can stop
a little earlier if we are satisfied with a collection of 3NF relations.) But this
approach does not ensure dependency-preservation.

A simple modification, however, yields a decomposition into 3NF relations that
is lossless-join and dependency-preserving. Before we describe this modifica-
tion, we need to introduce the concept of a minimal cover for a set of FDs.

Minimal Cover for a Set of FDs

A minimal cover for a set F of FDs is a set G of FDs such that:

1. Every dependency in G is of the form X→ A, where A is a single attribute.

2. The closure F+ is equal to the closure G+.

3. If we obtain a set H of dependencies from G by deleting one or more depen-
dencies or by deleting attributes from a dependency in G, then F+  = H+.

Intuitively, a minimal cover for a set F of FDs is an equivalent set of depen-
dencies that is minimal in two respects: (1) Every dependency is as small as
possible; that is, each attribute on the left side is necessary and the right side
is a single attribute. (2) Every dependency in it is required for the closure to
be equal to F+.

As an example, let F be the set of dependencies:

A → B, ABCD → E, EF → G, EF → H, and ACDF → EG.

First, let us rewrite ACDF → EG so that every right side is a single attribute:
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ACDF → E and ACDF → G.

Next consider ACDF → G. This dependency is implied by the following FDs:

A → B, ABCD → E, and EF → G.

Therefore, we can delete it. Similarly, we can delete ACDF → E. Next con-
sider ABCD → E. Since A → B holds, we can replace it with ACD → E. (At
this point, the reader should verify that each remaining FD is minimal and
required.) Thus, a minimal cover for F is the set:

A → B, ACD → E, EF → G, and EF → H.

The preceding example illustrates a general algorithm for obtaining a minimal
cover of a set F of FDs:

1. Put the FDs in a Standard Form: Obtain a collection G of equivalent
FDs with a single attribute on the right side (using the decomposition
axiom).

2. Minimize the Left Side of Each FD: For each FD in G, check each
attribute in the left side to see if it can be deleted while preserving equiv-
alence to F+.

3. Delete Redundant FDs: Check each remaining FD in G to see if it can
be deleted while preserving equivalence to F+.

Note that the order in which we consider FDs while applying these steps could
produce different minimal covers; there could be several minimal covers for a
given set of FDs.

More important, it is necessary to minimize the left sides of FDs before checking
for redundant FDs. If these two steps are reversed, the final set of FDs could
still contain some redundant FDs (i.e., not be a minimal cover), as the following
example illustrates. Let F be the set of dependencies, each of which is already
in the standard form:

ABCD → E, E → D, A → B, and AC → D.

Observe that none of these FDs is redundant; if we checked for redundant FDs
first, we would get the same set of FDs F. The left side of ABCD → E can be
replaced by AC while preserving equivalence to F+, and we would stop here if
we checked for redundant FDs in F before minimizing the left sides. However,
the set of FDs we have is not a minimal cover:
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AC → E, E → D, A → B, and AC → D.

From transitivity, the first two FDs imply the last FD, which can therefore be
deleted while preserving equivalence to F+. The important point to note is
that AC → D becomes redundant only after we replace ABCD → E with AC
→ E. If we minimize left sides of FDs first and then check for redundant FDs,
we are left with the first three FDs in the preceding list, which is indeed a
minimal cover for F.

Dependency-Preserving Decomposition into 3NF

Returning to the problem of obtaining a lossless-join, dependency-preserving
decomposition into 3NF relations, let R be a relation with a set F of FDs that
is a minimal cover, and let R1, R2, . . . , Rn be a lossless-join decomposition
of R. For 1 ≤ i ≤ n, suppose that each Ri is in 3NF and let Fi denote the
projection of F onto the attributes of Ri. Do the following:

Identify the set N of dependencies in F that is not preserved, that is, not
included in the closure of the union of Fis.

For each FD X → A in N , create a relation schema XA and add it to the
decomposition of R.

Obviously, every dependency in F is preserved if we replace R by the Ris plus
the schemas of the form XA added in this step. The Ris are given to be in
3NF. We can show that each of the schemas XA is in 3NF as follows: Since X
→ A is in the minimal cover F, Y → A does not hold for any Y that is a strict
subset of X. Therefore, X is a key for XA. Further, if any other dependencies
hold over XA, the right side can involve only attributes in X because A is a
single attribute (because X → A is an FD in a minimal cover). Since X is a
key for XA, none of these additional dependencies causes a violation of 3NF
(although they might cause a violation of BCNF).

As an optimization, if the set N contains several FDs with the same left
side, say, X → A1, X → A2, . . . , X → An, we can replace them with
a single equivalent FD X → A1 . . . An. Therefore, we produce one relation
schema XA1 . . . An, instead of several schemas XA1, . . . ,XAn, which is gener-
ally preferable.

Consider the Contracts relation with attributes CSJDPQV and FDs JP → C,
SD → P, and J → S. If we decompose CSJDPQV into SDP and CSJDQV,
then SDP is in BCNF, but CSJDQV is not even in 3NF. So we decompose it
further into JS and CJDQV. The relation schemas SDP, JS, and CJDQV are
in 3NF (in fact, in BCNF), and the decomposition is lossless-join. However,
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the dependency JP → C is not preserved. This problem can be addressed by
adding a relation schema CJP to the decomposition.

3NF Synthesis

We assumed that the design process starts with an ER diagram, and that our
use of FDs is primarily to guide decisions about decomposition. The algo-
rithm for obtaining a lossless-join, dependency-preserving decomposition was
presented in the previous section from this perspective—a lossless-join decom-
position into 3NF is straightforward, and the algorithm addresses dependency-
preservation by adding extra relation schemas.

An alternative approach, called synthesis, is to take all the attributes over the
original relation R and a minimal cover F for the FDs that hold over it and
add a relation schema XA to the decomposition of R for each FD X → A in F.

The resulting collection of relation schemas is in 3NF and preserves all FDs.
If it is not a lossless-join decomposition of R, we can make it so by adding a
relation schema that contains just those attributes that appear in some key.
This algorithm gives us a lossless-join, dependency-preserving decomposition
into 3NF and has polynomial complexity—polynomial algorithms are available
for computing minimal covers, and a key can be found in polynomial time
(even though finding all keys is known to be NP-complete). The existence
of a polynomial algorithm for obtaining a lossless-join, dependency-preserving
decomposition into 3NF is surprising when we consider that testing whether a
given schema is in 3NF is NP-complete.

As an example, consider a relation ABC with FDs F = {A → B, C → B}. The
first step yields the relation schemas AB and BC. This is not a lossless-join
decomposition of ABC; AB ∩ BC is B, and neither B→ A nor B→ C is in F+.
If we add a schema AC, we have the lossless-join property as well. Although
the collection of relations AB, BC, and AC is a dependency-preserving, lossless-
join decomposition of ABC, we obtained it through a process of synthesis,
rather than through a process of repeated decomposition. We note that the
decomposition produced by the synthesis approach heavily dependends on the
minimal cover used.

As another example of the synthesis approach, consider the Contracts relation
with attributes CSJDPQV and the following FDs:

C → CSJDPQV, JP → C, SD → P, and J → S.

This set of FDs is not a minimal cover, and so we must find one. We first
replace C → CSJDPQV with the FDs:
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C → S, C → J, C → D, C → P, C → Q, and C → V.

The FD C → P is implied by C → S, C → D, and SD → P; so we can delete
it. The FD C → S is implied by C → J and J → S; so we can delete it. This
leaves us with a minimal cover:

C → J, C → D, C → Q, C → V, JP → C, SD → P, and J → S.

Using the algorithm for ensuring dependency-preservation, we obtain the re-
lational schema CJ, CD, CQ, CV, CJP, SDP, and JS. We can improve this
schema by combining relations for which C is the key into CDJPQV. In addi-
tion, we have SDP and JS in our decomposition. Since one of these relations
(CDJPQV) is a superkey, we are done.

Comparing this decomposition with that obtained earlier in this section, we
find they are quite close, with the only difference being that one of them has
CDJPQV instead of CJP and CJDQV. In general, however, there could be
significant differences.

19.7 SCHEMA REFINEMENT IN DATABASE DESIGN

We have seen how normalization can eliminate redundancy and discussed sev-
eral approaches to normalizing a relation. We now consider how these ideas
are applied in practice.

Database designers typically use a conceptual design methodology, such as ER
design, to arrive at an initial database design. Given this, the approach of
repeated decompositions to rectify instances of redundancy is likely to be the
most natural use of FDs and normalization techniques.

In this section, we motivate the need for a schema refinement step following
ER design. It is natural to ask whether we even need to decompose relations
produced by translating an ER diagram. Should a good ER design not lead to a
collection of relations free of redundancy problems? Unfortunately, ER design
is a complex, subjective process, and certain constraints are not expressible
in terms of ER diagrams. The examples in this section are intended to illus-
trate why decomposition of relations produced through ER design might be
necessary.
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19.7.1 Constraints on an Entity Set

Consider the Hourly Emps relation again. The constraint that attribute ssn is
a key can be expressed as an FD:

{ssn} → {ssn, name, lot, rating, hourly wages, hours worked}

For brevity, we write this FD as S → SNLRWH, using a single letter to denote
each attribute and omitting the set braces, but the reader should remember
that both sides of an FD contain sets of attributes. In addition, the constraint
that the hourly wages attribute is determined by the rating attribute is an FD:
R → W.

As we saw in Section 19.1.1, this FD led to redundant storage of rating–wage
associations. It cannot be expressed in terms of the ER model. Only FDs
that determine all attributes of a relation (i.e., key constraints) can be ex-
pressed in the ER model. Therefore, we could not detect it when we considered
Hourly Emps as an entity set during ER modeling.

We could argue that the problem with the original design was an artifact of a
poor ER design, which could have been avoided by introducing an entity set
called Wage Table (with attributes rating and hourly wages) and a relationship
set Has Wages associating Hourly Emps and Wage Table. The point, however,
is that we could easily arrive at the original design given the subjective nature of
ER modeling. Having formal techniques to identify the problem with this design
and guide us to a better design is very useful. The value of such techniques
cannot be underestimated when designing large schemas—schemas with more
than a hundred tables are not uncommon.

19.7.2 Constraints on a Relationship Set

The previous example illustrated how FDs can help to refine the subjective
decisions made during ER design, but one could argue that the best possible
ER diagram would have led to the same final set of relations. Our next example
shows how FD information can lead to a set of relations unlikely to be arrived
at solely through ER design.

We revisit an example from Chapter 2. Suppose that we have entity sets Parts,
Suppliers, and Departments, as well as a relationship set Contracts that involves
all of them. We refer to the schema for Contracts as CQPSD. A contract with
contract id C specifies that a supplier S will supply some quantity Q of a part
P to a department D. (We have added the contract id field C to the version of
the Contracts relation discussed in Chapter 2.)
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We might have a policy that a department purchases at most one part from
any given supplier. Therefore, if there are several contracts between the same
supplier and department, we know that the same part must be involved in all
of them. This constraint is an FD, DS → P.

Again we have redundancy and its associated problems. We can address this
situation by decomposing Contracts into two relations with attributes CQSD
and SDP. Intuitively, the relation SDP records the part supplied to a depart-
ment by a supplier, and the relation CQSD records additional information
about a contract. It is unlikely that we would arrive at such a design solely
through ER modeling, since it is hard to formulate an entity or relationship
that corresponds naturally to CQSD.

19.7.3 Identifying Attributes of Entities

This example illustrates how a careful examination of FDs can lead to a better
understanding of the entities and relationships underlying the relational tables;
in particular, it shows that attributes can easily be associated with the ‘wrong’
entity set during ER design. The ER diagram in Figure 19.11 shows a rela-
tionship set called Works In that is similar to the Works In relationship set of
Chapter 2 but with an additional key constraint indicating that an employee
can work in at most one department. (Observe the arrow connecting Employees
to Works In.)

dname

budget

since

name

lot

Departments

did

Employees Works_In

ssn

Figure 19.11 The Works In Relationship Set

Using the key constraint, we can translate this ER diagram into two relations:

Workers(ssn, name, lot, did, since)
Departments(did, dname, budget)

The entity set Employees and the relationship set Works In are mapped to
a single relation, Workers. This translation is based on the second approach
discussed in Section 2.4.1.
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Now suppose employees are assigned parking lots based on their department,
and that all employees in a given department are assigned to the same lot. This
constraint is not expressible with respect to the ER diagram of Figure 19.11.
It is another example of an FD: did → lot. The redundancy in this design can
be eliminated by decomposing the Workers relation into two relations:

Workers2(ssn, name, did, since)
Dept Lots(did, lot)

The new design has much to recommend it. We can change the lots associated
with a department by updating a single tuple in the second relation (i.e., no
update anomalies). We can associate a lot with a department even if it cur-
rently has no employees, without using null values (i.e., no deletion anomalies).
We can add an employee to a department by inserting a tuple to the first rela-
tion even if there is no lot associated with the employee’s department (i.e., no
insertion anomalies).

Examining the two relations Departments and Dept Lots, which have the same
key, we realize that a Departments tuple and a Dept Lots tuple with the same
key value describe the same entity. This observation is reflected in the ER
diagram shown in Figure 19.12.

budget

since

name

lotdname

Departments

didssn

Employees Works_In

Figure 19.12 Refined Works In Relationship Set

Translating this diagram into the relational model would yield:

Workers2(ssn, name, did, since)
Departments(did, dname, budget, lot)

It seems intuitive to associate lots with employees; on the other hand, the ICs
reveal that in this example lots are really associated with departments. The
subjective process of ER modeling could miss this point. The rigorous process
of normalization would not.
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19.7.4 Identifying Entity Sets

Consider a variant of the Reserves schema used in earlier chapters. Let Re-
serves contain attributes S, B, and D as before, indicating that sailor S has
a reservation for boat B on day D. In addition, let there be an attribute C
denoting the credit card to which the reservation is charged. We use this ex-
ample to illustrate how FD information can be used to refine an ER design. In
particular, we discuss how FD information can help decide whether a concept
should be modeled as an entity or as an attribute.

Suppose every sailor uses a unique credit card for reservations. This constraint
is expressed by the FD S → C. This constraint indicates that, in relation Re-
serves, we store the credit card number for a sailor as often as we have reserva-
tions for that sailor, and we have redundancy and potential update anomalies.
A solution is to decompose Reserves into two relations with attributes SBD
and SC. Intuitively, one holds information about reservations, and the other
holds information about credit cards.

It is instructive to think about an ER design that would lead to these rela-
tions. One approach is to introduce an entity set called Credit Cards, with the
sole attribute cardno, and a relationship set Has Card associating Sailors and
Credit Cards. By noting that each credit card belongs to a single sailor, we can
map Has Card and Credit Cards to a single relation with attributes SC. We
would probably not model credit card numbers as entities if our main interest
in card numbers is to indicate how a reservation is to be paid for; it suffices to
use an attribute to model card numbers in this situation.

A second approach is to make cardno an attribute of Sailors. But this approach
is not very natural—a sailor may have several cards, and we are not interested
in all of them. Our interest is in the one card that is used to pay for reservations,
which is best modeled as an attribute of the relationship Reserves.

A helpful way to think about the design problem in this example is that we
first make cardno an attribute of Reserves and then refine the resulting tables
by taking into account the FD information. (Whether we refine the design by
adding cardno to the table obtained from Sailors or by creating a new table
with attributes SC is a separate issue.)

19.8 OTHER KINDS OF DEPENDENCIES

FDs are probably the most common and important kind of constraint from
the point of view of database design. However, there are several other kinds
of dependencies. In particular, there is a well-developed theory for database
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design using multivalued dependencies and join dependencies. By taking such
dependencies into account, we can identify potential redundancy problems that
cannot be detected using FDs alone.

This section illustrates the kinds of redundancy that can be detected using mul-
tivalued dependencies. Our main observation, however, is that simple guidelines
(which can be checked using only FD reasoning) can tell us whether we even
need to worry about complex constraints such as multivalued and join depen-
dencies. We also comment on the role of inclusion dependencies in database
design.

19.8.1 Multivalued Dependencies

Suppose that we have a relation with attributes course, teacher, and book, which
we denote as CTB. The meaning of a tuple is that teacher T can teach course
C, and book B is a recommended text for the course. There are no FDs; the
key is CTB. However, the recommended texts for a course are independent of
the instructor. The instance shown in Figure 19.13 illustrates this situation.

course teacher book

Physics101 Green Mechanics
Physics101 Green Optics
Physics101 Brown Mechanics
Physics101 Brown Optics
Math301 Green Mechanics
Math301 Green Vectors
Math301 Green Geometry

Figure 19.13 BCNF Relation with Redundancy That Is Revealed by MVDs

Note three points here:

The relation schema CTB is in BCNF; therefore we would not consider
decomposing it further if we looked only at the FDs that hold over CTB.

There is redundancy. The fact that Green can teach Physics101 is recorded
once per recommended text for the course. Similarly, the fact that Optics
is a text for Physics101 is recorded once per potential teacher.

The redundancy can be eliminated by decomposing CTB into CT and CB.

The redundancy in this example is due to the constraint that the texts for a
course are independent of the instructors, which cannot be expressed in terms
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of FDs. This constraint is an example of a multivalued dependency, or MVD.
Ideally, we should model this situation using two binary relationship sets, In-
structors with attributes CT and Text with attributes CB. Because these are
two essentially independent relationships, modeling them with a single ternary
relationship set with attributes CTB is inappropriate. (See Section 2.5.3 for a
further discussion of ternary versus binary relationships.) Given the subjectiv-
ity of ER design, however, we might create a ternary relationship. A careful
analysis of the MVD information would then reveal the problem.

Let R be a relation schema and let X and Y be subsets of the attributes of R.
Intuitively, the multivalued dependency X →→ Y is said to hold over R if,
in every legal instance r of R, each X value is associated with a set of Y values
and this set is independent of the values in the other attributes.

Formally, if the MVD X →→ Y holds over R and Z = R −XY , the following
must be true for every legal instance r of R:

If t1 ∈ r, t2 ∈ r and t1.X = t2.X, then there must be some t3 ∈ r such
that t1.XY = t3.XY and t2.Z = t3.Z.

Figure 19.14 illustrates this definition. If we are given the first two tuples and
told that the MVD X →→ Y holds over this relation, we can infer that the
relation instance must also contain the third tuple. Indeed, by interchanging the
roles of the first two tuples—treating the first tuple as t2 and the second tuple
as t1—we can deduce that the tuple t4 must also be in the relation instance.

X Y Z

a b1 c1 — tuple t1
a b2 c2 — tuple t2

a b1 c2 — tuple t3
a b2 c1 — tuple t4

Figure 19.14 Illustration of MVD Definition

This table suggests another way to think about MVDs: If X →→ Y holds
over R, then πY Z(σX=x(R)) = πY (σX=x(R)) × πZ(σX=x(R)) in every legal
instance of R, for any value x that appears in the X column of R. In other
words, consider groups of tuples in R with the same X-value. In each such
group consider the projection onto the attributes YZ. This projection must be
equal to the cross-product of the projections onto Y and Z. That is, for a given
X-value, the Y-values and Z-values are independent. (From this definition it is
easy to see that X →→ Y must hold whenever X → Y holds. If the FD X →
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Y holds, there is exactly one Y-value for a given X-value, and the conditions in
the MVD definition hold trivially. The converse does not hold, as Figure 19.14
illustrates.)

Returning to our CTB example, the constraint that course texts are indepen-
dent of instructors can be expressed as C →→ T. In terms of the definition of
MVDs, this constraint can be read as follows:

If (there is a tuple showing that) C is taught by teacher T,
and (there is a tuple showing that) C has book B as text,
then (there is a tuple showing that) C is taught by T and has text B.

Given a set of FDs and MVDs, in general, we can infer that several additional
FDs and MVDs hold. A sound and complete set of inference rules consists of
the three Armstrong Axioms plus five additional rules. Three of the additional
rules involve only MVDs:

MVD Complementation: If X →→ Y, then X →→ R−XY .

MVD Augmentation: If X →→ Y and W ⊇ Z, then WX →→ YZ.

MVD Transitivity: If X →→ Y and Y →→ Z, then X →→ (Z − Y ).

As an example of the use of these rules, since we have C →→ T over CTB,
MVD complementation allows us to infer that C →→ CTB−CT as well, that
is, C →→ B. The remaining two rules relate FDs and MVDs:

Replication: If X → Y, then X →→ Y.

Coalescence: If X →→ Y and there is a W such that W ∩ Y is empty,
W → Z, and Y ⊇ Z, then X → Z.

Observe that replication states that every FD is also an MVD.

19.8.2 Fourth Normal Form

Fourth normal form is a direct generalization of BCNF. Let R be a relation
schema, X and Y be nonempty subsets of the attributes of R, and F be a set
of dependencies that includes both FDs and MVDs. R is said to be in fourth
normal form (4NF), if, for every MVD X →→ Y that holds over R, one of
the following statements is true:

Y ⊆ X or XY = R, or

X is a superkey.
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In reading this definition, it is important to understand that the definition of a
key has not changed—the key must uniquely determine all attributes through
FDs alone. X →→ Y is a trivial MVD if Y ⊆ X ⊆ R or XY = R; such
MVDs always hold.

The relation CTB is not in 4NF because C →→ T is a nontrivial MVD and C
is not a key. We can eliminate the resulting redundancy by decomposing CTB
into CT and CB; each of these relations is then in 4NF.

To use MVD information fully, we must understand the theory of MVDs. How-
ever, the following result due to Date and Fagin identifies conditions—detected
using only FD information!—under which we can safely ignore MVD informa-
tion. That is, using MVD information in addition to the FD information will
not reveal any redundancy. Therefore, if these conditions hold, we do not even
need to identify all MVDs.

If a relation schema is in BCNF, and at least one of its keys consists
of a single attribute, it is also in 4NF.

An important assumption is implicit in any application of the preceding result:
The set of FDs identified thus far is indeed the set of all FDs that hold over the
relation. This assumption is important because the result relies on the relation
being in BCNF, which in turn depends on the set of FDs that hold over the
relation.

We illustrate this point using an example. Consider a relation schema ABCD
and suppose that the FD A→ BCD and the MVD B→→ C are given. Consid-
ering only these dependencies, this relation schema appears to be a counterex-
ample to the result. The relation has a simple key, appears to be in BCNF, and
yet is not in 4NF because B →→ C causes a violation of the 4NF conditions.
Let us take a closer look.

B C A D

b c1 a1 d1 — tuple t1
b c2 a2 d2 — tuple t2
b c1 a2 d2 — tuple t3

Figure 19.15 Three Tuples from a Legal Instance of ABCD

Figure 19.15 shows three tuples from an instance of ABCD that satisfies the
given MVD B→→ C. From the definition of an MVD, given tuples t1 and t2, it
follows that tuple t3 must also be included in the instance. Consider tuples t2
and t3. From the given FD A → BCD and the fact that these tuples have the
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same A-value, we can deduce that c1 = c2. Therefore, we see that the FD B →
C must hold over ABCD whenever the FD A → BCD and the MVD B →→ C
hold. If B → C holds, the relation ABCD is not in BCNF (unless additional
FDs make B a key)!

Thus, the apparent counterexample is really not a counterexample—rather,
it illustrates the importance of correctly identifying all FDs that hold over a
relation. In this example, A → BCD is not the only FD; the FD B → C
also holds but was not identified initially. Given a set of FDs and MVDs, the
inference rules can be used to infer additional FDs (and MVDs); to apply the
Date-Fagin result without first using the MVD inference rules, we must be
certain that we have identified all the FDs.

In summary, the Date-Fagin result offers a convenient way to check that a
relation is in 4NF (without reasoning about MVDs) if we are confident that
we have identified all FDs. At this point, the reader is invited to go over the
examples we have discussed in this chapter and see if there is a relation that is
not in 4NF.

19.8.3 Join Dependencies

A join dependency is a further generalization of MVDs. A join dependency
(JD)   {R1, . . . , Rn} is said to hold over a relation R if R1, . . . , Rn is a
lossless-join decomposition of R.

An MVD X →→ Y over a relation R can be expressed as the join dependency
  {XY, X(R−Y)}. As an example, in the CTB relation, the MVD C →→ T
can be expressed as the join dependency   {CT, CB}.

Unlike FDs and MVDs, there is no set of sound and complete inference rules
for JDs.

19.8.4 Fifth Normal Form

A relation schema R is said to be in fifth normal form (5NF) if, for every
JD   {R1, . . . , Rn} that holds over R, one of the following statements is
true:

Ri = R for some i, or

The JD is implied by the set of those FDs over R in which the left side is
a key for R.
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The second condition deserves some explanation, since we have not presented
inference rules for FDs and JDs taken together. Intuitively, we must be able to
show that the decomposition of R into {R1, . . . , Rn} is lossless-join whenever
the key dependencies (FDs in which the left side is a key for R) hold. JD
  {R1, . . . , Rn} is a trivial JD if Ri = R for some i; such a JD always
holds.

The following result, also due to Date and Fagin, identifies conditions—again,
detected using only FD information—under which we can safely ignore JD
information:

If a relation schema is in 3NF and each of its keys consists of a single
attribute, it is also in 5NF.

The conditions identified in this result are sufficient for a relation to be in 5NF
but not necessary. The result can be very useful in practice because it allows
us to conclude that a relation is in 5NF without ever identifying the MVDs and
JDs that may hold over the relation.

19.8.5 Inclusion Dependencies

MVDs and JDs can be used to guide database design, as we have seen, although
they are less common than FDs and harder to recognize and reason about. In
contrast, inclusion dependencies are very intuitive and quite common. However,
they typically have little influence on database design (beyond the ER design
stage).

Informally, an inclusion dependency is a statement of the form that some
columns of a relation are contained in other columns (usually of a second re-
lation). A foreign key constraint is an example of an inclusion dependency;
the referring column(s) in one relation must be contained in the primary key
column(s) of the referenced relation. As another example, if R and S are two
relations obtained by translating two entity sets that every R entity is also
an S entity, we would have an inclusion dependency; projecting R on its key
attributes yields a relation contained in the relation obtained by projecting S
on its key attributes.

The main point to bear in mind is that we should not split groups of attributes
that participate in an inclusion dependency. For example, if we have an inclu-
sion dependency AB ⊆ CD, while decomposing the relation schema containing
AB, we should ensure that at least one of the schemas obtained in the de-
composition contains both A and B. Otherwise, we cannot check the inclusion
dependency AB ⊆ CD without reconstructing the relation containing AB.
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Most inclusion dependencies in practice are key-based, that is, involve only keys.
Foreign key constraints are a good example of key-based inclusion dependencies.
An ER diagram that involves ISA hierarchies (see Section 2.4.4) also leads to
key-based inclusion dependencies. If all inclusion dependencies are key-based,
we rarely have to worry about splitting attribute groups that participate in
inclusion dependencies, since decompositions usually do not split the primary
key. Note, however, that going from 3NF to BCNF always involves splitting
some key (ideally not the primary key!), since the dependency guiding the split
is of the form X → A where A is part of a key.

19.9 CASE STUDY: THE INTERNET SHOP

Recall from Section 3.8 that DBDudes settled on the following schema:

Books(isbn: CHAR(10), title: CHAR(8), author: CHAR(80),
qty in stock: INTEGER, price: REAL, year published: INTEGER)

Customers(cid: INTEGER, cname: CHAR(80), address: CHAR(200))
Orders(ordernum: INTEGER, isbn: CHAR(10), cid: INTEGER,

cardnum: CHAR(16), qty: INTEGER, order date: DATE, ship date: DATE)

DBDudes analyzes the set of relations for possible redundancy. The Books
relation has only one key, (isbn), and no other functional dependencies hold
over the table. Thus, Books is in BCNF. The Customers relation also has only
one key, (cid), and no other functional depedencies hold over the table. Thus,
Customers is also in BCNF.

DBDudes has already identified the pair  ordernum, isbn as the key for the
Orders table. In addition, since each order is placed by one customer on one
specific date with one specific credit card number, the following three functional
dependencies hold:

ordernum → cid, ordernum → order date, and ordernum → cardnum

The experts at DBDudes conclude that Orders is not even in 3NF. (Can you
see why?) They decide to decompose Orders into the following two relations:

Orders(ordernum, cid, order date, cardnum, and
Orderlists(ordernum, isbn, qty, ship date)

The resulting two relations, Orders and Orderlists, are both in BCNF, and the
decomposition is lossless-join since ordernum is a key for (the new) Orders. The
reader is invited to check that this decomposition is also dependency-preserving.
For completeness, we give the SQL DDL for the Orders and Orderlists relations
below:



Schema Refinement and Normal Forms 641

address

cname

cardnum
qty_in_stock

CustomersOrdersBooks

qty

year_published

ship_date order_date

isbn

title

author

price

Order_List Place_Order

cid

ordernum

Figure 19.16 ER Diagram Reflecting the Final Design

CREATE TABLE Orders ( ordernum INTEGER,
cid INTEGER,
order date DATE,
cardnum CHAR(16),
PRIMARY KEY (ordernum),
FOREIGN KEY (cid) REFERENCES Customers )

CREATE TABLE Orderlists ( ordernum INTEGER,
isbn CHAR(10),
qty INTEGER,
ship date DATE,
PRIMARY KEY (ordernum, isbn),
FOREIGN KEY (isbn) REFERENCES Books)

Figure 19.16 shows an updated ER diagram that reflects the new design. Note
that DBDudes could have arrived immediately at this diagram if they had made
Orders an entity set instead of a relationship set right at the beginning. But at
that time they did not understand the requirements completely, and it seemed
natural to model Orders as a relationship set. This iterative refinement process
is typical of real-life database design processes. As DBDudes has learned over
time, it is rare to achieve an initial design that is not changed as a project
progresses.

The DBDudes team celebrates the successful completion of logical database
design and schema refinement by opening a bottle of champagne and charging
it to B&N. After recovering from the celebration, they move on to the physical
design phase.
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19.10 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

Illustrate redundancy and the problems that it can cause. Give examples
of insert, delete, and update anomalies. Can null values help address these
problems? Are they a complete solution? (Section 19.1.1)

What is a decomposition and how does it address redundancy? What
problems may be caused by the use of decompositions? (Sections 19.1.2
and 19.1.3)

Define functional dependencies. How are primary keys related to FDs?
(Section 19.2)

When is an FD f implied by a set F of FDs? Define Armstrong’s Axioms,
and explain the statement that “they are a sound and complete set of rules
for FD inference.” (Section 19.3)

What is the dependency closure F+ of a set F of FDs? What is the at-
tribute closure X+ of a set of attributes X with respect to a set of FDs F?
(Section 19.3)

Define 1NF, 2NF, 3NF, and BCNF. What is the motivation for putting a
relation in BCNF? What is the motivation for 3NF? (Section 19.4)

When is the decomposition of a relation schema R into two relation schemas
X and Y said to be a lossless-join decomposition? Why is this property
so important? Give a necessary and sufficient condition to test whether a
decomposition is lossless-join. (Section 19.5.1)

When is a decomposition said to be dependency-preserving? Why is this
property useful? (Section 19.5.2)

Describe how we can obtain a lossless-join decomposition of a relation into
BCNF. Give an example to show that there may not be a dependency-
preserving decomposition into BCNF. Illustrate how a given relation could
be decomposed in different ways to arrive at several alternative decomposi-
tions, and discuss the implications for database design. (Section 19.6.1)

Give an example that illustrates how a collection of relations in BCNF
could have redundancy even though each relation, by itself, is free from
redundancy. (Section 19.6.1)

What is a minimal cover for a set of FDs? Describe an algorithm for
computing the minimal cover of a set of FDs, and illustrate it with an
example. (Section 19.6.2)
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Describe how the algorithm for lossless-join decomposition into BCNF can
be adapted to obtain a lossless-join, dependency-preserving decomposition
into 3NF. Describe the alternative synthesis approach to obtaining such
a decomposition into 3NF. Illustrate both approaches using an example.
(Section 19.6.2)

Discuss how schema refinement through dependency analysis and normal-
ization can improve schemas obtained through ER design. (Section 19.7)

Define multivalued dependencies, join dependencies, and inclusion depen-
dencies. Discuss the use of such dependencies for database design. Define
4NF and 5NF, and explain how they prevent certain kinds of redundancy
that BCNF does not eliminate. Describe tests for 4NF and 5NF that use
only FDs. What key assumption is involved in these tests? (Section 19.8)

EXERCISES

Exercise 19.1 Briefly answer the following questions:

1. Define the term functional dependency.

2. Why are some functional dependencies called trivial?

3. Give a set of FDs for the relation schema R(A,B,C,D) with primary key AB under which
R is in 1NF but not in 2NF.

4. Give a set of FDs for the relation schema R(A,B,C,D) with primary key AB under which
R is in 2NF but not in 3NF.

5. Consider the relation schema R(A,B,C), which has the FD B → C. If A is a candidate
key for R, is it possible for R to be in BCNF? If so, under what conditions? If not,
explain why not.

6. Suppose we have a relation schema R(A,B,C) representing a relationship between two
entity sets with keys A and B, respectively, and suppose that R has (among others) the
FDs A → B and B → A. Explain what such a pair of dependencies means (i.e., what
they imply about the relationship that the relation models).

Exercise 19.2 Consider a relation R with five attributes ABCDE. You are given the following
dependencies: A → B, BC → E, and ED → A.

1. List all keys for R.

2. Is R in 3NF?

3. Is R in BCNF?

Exercise 19.3 Consider the relation shown in Figure 19.17.

1. List all the functional dependencies that this relation instance satisfies.

2. Assume that the value of attribute Z of the last record in the relation is changed from
z3 to z2. Now list all the functional dependencies that this relation instance satisfies.

Exercise 19.4 Assume that you are given a relation with attributes ABCD.
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X Y Z

x1 y1 z1
x1 y1 z2
x2 y1 z1
x2 y1 z3

Figure 19.17 Relation for Exercise 19.3.

1. Assume that no record has NULL values. Write an SQL query that checks whether the
functional dependency A → B holds.

2. Assume again that no record has NULL values. Write an SQL assertion that enforces
the functional dependency A → B.

3. Let us now assume that records could have NULL values. Repeat the previous two
questions under this assumption.

Exercise 19.5 Consider the following collection of relations and dependencies. Assume that
each relation is obtained through decomposition from a relation with attributes ABCDEFGHI
and that all the known dependencies over relation ABCDEFGHI are listed for each question.
(The questions are independent of each other, obviously, since the given dependencies over
ABCDEFGHI are different.) For each (sub)relation: (a) State the strongest normal form that
the relation is in. (b) If it is not in BCNF, decompose it into a collection of BCNF relations.

1. R1(A,C,B,D,E), A → B, C → D

2. R2(A,B,F), AC → E, B → F

3. R3(A,D), D → G, G → H

4. R4(D,C,H,G), A → I, I → A

5. R5(A,I,C,E)

Exercise 19.6 Suppose that we have the following three tuples in a legal instance of a relation
schema S with three attributes ABC (listed in order): (1,2,3), (4,2,3), and (5,3,3).

1. Which of the following dependencies can you infer does not hold over schema S?

(a) A → B, (b) BC → A, (c) B → C

2. Can you identify any dependencies that hold over S?

Exercise 19.7 Suppose you are given a relation R with four attributes ABCD. For each of
the following sets of FDs, assuming those are the only dependencies that hold for R, do the
following: (a) Identify the candidate key(s) for R. (b) Identify the best normal form that R
satisfies (1NF, 2NF, 3NF, or BCNF). (c) If R is not in BCNF, decompose it into a set of
BCNF relations that preserve the dependencies.

1. C → D, C → A, B → C

2. B → C, D → A

3. ABC → D, D → A

4. A → B, BC → D, A → C

5. AB → C, AB → D, C → A, D → B
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Exercise 19.8 Consider the attribute set R = ABCDEGH and the FD set F = {AB → C,
AC → B, AD → E, B → D, BC → A, E → G}.

1. For each of the following attribute sets, do the following: (i) Compute the set of depen-
dencies that hold over the set and write down a minimal cover. (ii) Name the strongest
normal form that is not violated by the relation containing these attributes. (iii) De-
compose it into a collection of BCNF relations if it is not in BCNF.

(a) ABC, (b) ABCD, (c) ABCEG, (d) DCEGH, (e) ACEH

2. Which of the following decompositions of R = ABCDEG, with the same set of depen-
dencies F , is (a) dependency-preserving? (b) lossless-join?

(a) {AB, BC, ABDE, EG }

(b) {ABC, ACDE, ADG }

Exercise 19.9 Let R be decomposed into R1, R2, . . ., Rn. Let F be a set of FDs on R.

1. Define what it means for F to be preserved in the set of decomposed relations.

2. Describe a polynomial-time algorithm to test dependency-preservation.

3. Projecting the FDs stated over a set of attributes X onto a subset of attributes Y requires
that we consider the closure of the FDs. Give an example where considering the closure
is important in testing dependency-preservation, that is, considering just the given FDs
gives incorrect results.

Exercise 19.10 Suppose you are given a relation R(A,B,C,D). For each of the following
sets of FDs, assuming they are the only dependencies that hold for R, do the following: (a)
Identify the candidate key(s) for R. (b) State whether or not the proposed decomposition of
R into smaller relations is a good decomposition and briefly explain why or why not.

1. B → C, D → A; decompose into BC and AD.

2. AB → C, C → A, C → D; decompose into ACD and BC.

3. A → BC, C → AD; decompose into ABC and AD.

4. A → B, B → C, C → D; decompose into AB and ACD.

5. A → B, B → C, C → D; decompose into AB, AD and CD.

Exercise 19.11 Consider a relation R that has three attributes ABC. It is decomposed into
relations R1 with attributes AB and R2 with attributes BC.

1. State the definition of a lossless-join decomposition with respect to this example. Answer
this question concisely by writing a relational algebra equation involving R, R1, and R2.

2. Suppose that B→→ C. Is the decomposition of R into R1 and R2 lossless-join? Reconcile
your answer with the observation that neither of the FDs R1∩R2 → R1 nor R1∩R2 → R2
hold, in light of the simple test offering a necessary and sufficient condition for lossless-
join decomposition into two relations in Section 15.6.1.

3. If you are given the following instances of R1 and R2, what can you say about the
instance of R from which these were obtained? Answer this question by listing tuples
that are definitely in R and tuples that are possibly in R.

Instance of R1 = {(5,1), (6,1)}
Instance of R2 = {(1,8), (1,9)}

Can you say that attribute B definitely is or is not a key for R?



646 Chapter 19

Exercise 19.12 Suppose that we have the following four tuples in a relation S with three
attributes ABC: (1,2,3), (4,2,3), (5,3,3), (5,3,4). Which of the following functional (→) and
multivalued (→→) dependencies can you infer does not hold over relation S?

1. A → B

2. A →→ B

3. BC → A

4. BC →→ A

5. B → C

6. B →→ C

Exercise 19.13 Consider a relation R with five attributes ABCDE.

1. For each of the following instances of R, state whether it violates (a) the FD BC → D
and (b) the MVD BC →→ D:

(a) { } (i.e., empty relation)

(b) {(a,2,3,4,5), (2,a,3,5,5)}

(c) {(a,2,3,4,5), (2,a,3,5,5), (a,2,3,4,6)}

(d) {(a,2,3,4,5), (2,a,3,4,5), (a,2,3,6,5)}

(e) {(a,2,3,4,5), (2,a,3,7,5), (a,2,3,4,6)}

(f) {(a,2,3,4,5), (2,a,3,4,5), (a,2,3,6,5), (a,2,3,6,6)}

(g) {(a,2,3,4,5), (a,2,3,6,5), (a,2,3,6,6), (a,2,3,4,6)}

2. If each instance for R listed above is legal, what can you say about the FD A → B?

Exercise 19.14 JDs are motivated by the fact that sometimes a relation that cannot be
decomposed into two smaller relations in a lossless-join manner can be so decomposed into
three or more relations. An example is a relation with attributes supplier, part, and project,
denoted SPJ, with no FDs or MVDs. The JD   {SP, PJ, JS} holds.

From the JD, the set of relation schemes SP, PJ, and JS is a lossless-join decomposition of
SPJ. Construct an instance of SPJ to illustrate that no two of these schemes suffice.

Exercise 19.15 Answer the following questions

1. Prove that the algorithm shown in Figure 19.4 correctly computes the attribute closure
of the input attribute set X.

2. Describe a linear-time (in the size of the set of FDs, where the size of each FD is the
number of attributes involved) algorithm for finding the attribute closure of a set of
attributes with respect to a set of FDs. Prove that your algorithm correctly computes
the attribute closure of the input attribute set.

Exercise 19.16 Let us say that an FD X → Y is simple if Y is a single attribute.

1. Replace the FD AB → CD by the smallest equivalent collection of simple FDs.

2. Prove that every FD X → Y in a set of FDs F can be replaced by a set of simple FDs
such that F+ is equal to the closure of the new set of FDs.
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Exercise 19.17 Prove that Armstrong’s Axioms are sound and complete for FD inference.
That is, show that repeated application of these axioms on a set F of FDs produces exactly
the dependencies in F+.

Exercise 19.18 Consider a relation R with attributes ABCDE. Let the following FDs be
given: A→ BC, BC→ E, and E→ DA. Similarly, let S be a relation with attributes ABCDE
and let the following FDs be given: A → BC, B → E, and E → DA. (Only the second
dependency differs from those that hold over R.) You do not know whether or which other
(join) dependencies hold.

1. Is R in BCNF?

2. Is R in 4NF?

3. Is R in 5NF?

4. Is S in BCNF?

5. Is S in 4NF?

6. Is S in 5NF?

Exercise 19.19 Let R be a relation schema with a set F of FDs. Prove that the decom-
position of R into R1 and R2 is lossless-join if and only if F+ contains R1 ∩ R2 → R1 or
R1 ∩R2 → R2.

Exercise 19.20 Consider a scheme R with FDs F that is decomposed into schemes with
attributes X and Y. Show that this is dependency-preserving if F ⊆ (FX ∪ FY )+.

Exercise 19.21 Prove that the optimization of the algorithm for lossless-join, dependency-
preserving decomposition into 3NF relations (Section 19.6.2) is correct.

Exercise 19.22 Prove that the 3NF synthesis algorithm produces a lossless-join decomposi-
tion of the relation containing all the original attributes.

Exercise 19.23 Prove that an MVD X →→ Y over a relation R can be expressed as the
join dependency   {XY, X(R− Y )}.

Exercise 19.24 Prove that, if R has only one key, it is in BCNF if and only if it is in 3NF.

Exercise 19.25 Prove that, if R is in 3NF and every key is simple, then R is in BCNF.

Exercise 19.26 Prove these statements:

1. If a relation scheme is in BCNF and at least one of its keys consists of a single attribute,
it is also in 4NF.

2. If a relation scheme is in 3NF and each key has a single attribute, it is also in 5NF.

Exercise 19.27 Give an algorithm for testing whether a relation scheme is in BCNF. The
algorithm should be polynomial in the size of the set of given FDs. (The size is the sum over
all FDs of the number of attributes that appear in the FD.) Is there a polynomial algorithm
for testing whether a relation scheme is in 3NF?

Exercise 19.28 Give an algorithm for testing whether a relation scheme is in BCNF. The
algorithm should be polynomial in the size of the set of given FDs. (The ‘size’ is the sum over
all FDs of the number of attributes that appear in the FD.) Is there a polynomial algorithm
for testing whether a relation scheme is in 3NF?

Exercise 19.29 Prove that the algorithm for decomposing a relation schema with a set of
FDs into a collection of BCNS relation schemas as described in Section 19.6.1 is correct (i.e.,
it produces a collection of BCNF relations, and is lossless-join) and terminates.
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PHYSICAL DATABASE

DESIGN AND TUNING

☛ What is physical database design?

☛ What is a query workload?

☛ How do we choose indexes? What tools are available?

☛ What is co-clustering and how is it used?

☛ What are the choices in tuning a database?

☛ How do we tune queries and view?

☛ What is the impact of concurrency on performance?

☛ How can we reduce lock contention and hotspots?

☛ What are popular database benchmarks and how are they used?

➽ Key concepts: Physical database design, database tuning, workload,
co-clustering, index tuning, tuning wizard, index configuration, hot
spot, lock contention, database benchmark, transactions per second

Advice to a client who complained about rain leaking through the roof onto the
dining table: “Move the table.”

—Architect Frank Lloyd Wright

The performance of a DBMS on commonly asked queries and typical update
operations is the ultimate measure of a database design. A DBA can improve
performance by identifying performance bottlenecks and adjusting some DBMS
parameters (e.g., the size of the buffer pool or the frequency of checkpointing)
or adding hardware to eliminate such bottlenecks. The first step in achieving

649
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good performance, however, is to make good database design choices, which is
the focus of this chapter.

After we design the conceptual and external schemas, that is, create a collection
of relations and views along with a set of integrity constraints, we must address
performance goals through physical database design, in which we design the
physical schema. As user requirements evolve, it is usually necessary to tune,
or adjust, all aspects of a database design for good performance.

This chapter is organized as follows. We give an overview of physical database
design and tuning in Section 20.1. The most important physical design deci-
sions concern the choice of indexes. We present guidelines for deciding which
indexes to create in Section 20.2. These guidelines are illustrated through sev-
eral examples and developed further in Sections 20.3. In Section 20.4, we look
closely at the important issue of clustering; we discuss how to choose clustered
indexes and whether to store tuples from different relations near each other (an
option supported by some DBMSs). In Section 20.5, we emphasize how well-
chosen indexes can enable some queries to be answered without ever looking at
the actual data records. Section 20.6 discusses tools that can help the DBA to
automatically select indexes.

In Section 20.7, we survey the main issues of database tuning. In addition
to tuning indexes, we may have to tune the conceptual schema as well as
frequently used query and view definitions. We discuss how to refine the con-
ceptual schema in Section 20.8 and how to refine queries and view definitions
in Section 20.9. We briefly discuss the performance impact of concurrent access
in Section 20.10. We illustrate tuning on our Internet shop example in Section
20.11. We conclude the chapter with a short discussion of DBMS benchmarks in
Section 20.12; benchmarks help evaluate the performance of alternative DBMS
products.

20.1 INTRODUCTION TO PHYSICAL DATABASE

DESIGN

Like all other aspects of database design, physical design must be guided by
the nature of the data and its intended use. In particular, it is important to un-
derstand the typical workload that the database must support; the workload
consists of a mix of queries and updates. Users also have certain requirements
about how fast certain queries or updates must run or how many transactions
must be processed per second. The workload description and users’ perfor-
mance requirements are the basis on which a number of decisions have to be
made during physical database design.
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Identifying Performance Bottlenecks: All commercial systems pro-
vide a suite of tools for monitoring a wide range of system parameters.
These tools, used properly, can help identify performance bottlenecks and
suggest aspects of the database design and application code that need to
be tuned for performance. For example, we can ask the DBMS to monitor
the execution of the database for a certain period of time and report on
the number of clustered scans, open cursors, lock requests, checkpoints,
buffer scans, average wait time for locks, and many such statistics that
give detailed insight into a snapshot of the live system. In Oracle, a report
containing this information can be generated by running a script called
UTLBSTAT.SQL to initiate monitoring and a script UTLBSTAT.SQL to termi-
nate monitoring. The system catalog contains details about the sizes of
tables, the distribution of values in index keys, and the like. The plan gen-
erated by the DBMS for a given query can be viewed in a graphical display
that shows the estimated cost for each plan operator. While the details
are specific to each vendor, all major DBMS products on the market today
provide a suite of such tools.

To create a good physical database design and tune the system for perfor-
mance in response to evolving user requirements, a designer must understand
the workings of a DBMS, especially the indexing and query processing tech-
niques supported by the DBMS. If the database is expected to be accessed
concurrently by many users, or is a distributed database, the task becomes
more complicated and other features of a DBMS come into play. We discuss
the impact of concurrency on database design in Section 20.10 and distributed
databases in Chapter 22.

20.1.1 Database Workloads

The key to good physical design is arriving at an accurate description of the
expected workload. A workload description includes the following:

1. A list of queries (with their frequency, as a ratio of all queries / updates).

2. A list of updates and their frequencies.

3. Performance goals for each type of query and update.

For each query in the workload, we must identify

Which relations are accessed.

Which attributes are retained (in the SELECT clause).
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Which attributes have selection or join conditions expressed on them (in
the WHERE clause) and how selective these conditions are likely to be.

Similarly, for each update in the workload, we must identify

Which attributes have selection or join conditions expressed on them (in
the WHERE clause) and how selective these conditions are likely to be.

The type of update (INSERT, DELETE, or UPDATE) and the updated relation.

For UPDATE commands, the fields that are modified by the update.

Remember that queries and updates typically have parameters, for example, a
debit or credit operation involves a particular account number. The values of
these parameters determine selectivity of selection and join conditions.

Updates have a query component that is used to find the target tuples. This
component can benefit from a good physical design and the presence of indexes.
On the other hand, updates typically require additional work to maintain in-
dexes on the attributes that they modify. Thus, while queries can only benefit
from the presence of an index, an index may either speed up or slow down
a given update. Designers should keep this trade-off in mind when creating
indexes.

20.1.2 Physical Design and Tuning Decisions

Important decisions made during physical database design and database tuning
include the following:

1. Choice of indexes to create:

Which relations to index and which field or combination of fields to
choose as index search keys.

For each index, should it be clustered or unclustered?

2. Tuning the conceptual schema:

Alternative normalized schemas: We usually have more than one way
to decompose a schema into a desired normal form (BCNF or 3NF).
A choice can be made on the basis of performance criteria.

Denormalization: We might want to reconsider schema decomposi-
tions carried out for normalization during the conceptual schema de-
sign process to improve the performance of queries that involve at-
tributes from several previously decomposed relations.
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Vertical partitioning: Under certain circumstances we might want to
further decompose relations to improve the performance of queries
that involve only a few attributes.

Views: We might want to add some views to mask the changes in the
conceptual schema from users.

3. Query and transaction tuning: Frequently executed queries and transac-
tions might be rewritten to run faster.

In parallel or distributed databases, which we discuss in Chapter 22, there are
additional choices to consider, such as whether to partition a relation across
different sites or whether to store copies of a relation at multiple sites.

20.1.3 Need for Database Tuning

Accurate, detailed workload information may be hard to come by while doing
the initial design of the system. Consequently, tuning a database after it has
been designed and deployed is important—we must refine the initial design in
the light of actual usage patterns to obtain the best possible performance.

The distinction between database design and database tuning is somewhat
arbitrary. We could consider the design process to be over once an initial
conceptual schema is designed and a set of indexing and clustering decisions
is made. Any subsequent changes to the conceptual schema or the indexes,
say, would then be regarded as tuning. Alternatively, we could consider some
refinement of the conceptual schema (and physical design decisions affected by
this refinement) to be part of the physical design process.

Where we draw the line between design and tuning is not very important, and
we simply discuss the issues of index selection and database tuning without
regard to when the tuning is carried out.

20.2 GUIDELINES FOR INDEX SELECTION

In considering which indexes to create, we begin with the list of queries (includ-
ing queries that appear as part of update operations). Obviously, only relations
accessed by some query need to be considered as candidates for indexing, and
the choice of attributes to index is guided by the conditions that appear in the
WHERE clauses of the queries in the workload. The presence of suitable indexes
can significantly improve the evaluation plan for a query, as we saw in Chapters
8 and 12.
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One approach to index selection is to consider the most important queries in
turn, and, for each, determine which plan the optimizer would choose given
the indexes currently on our list of (to be created) indexes. Then we consider
whether we can arrive at a substantially better plan by adding more indexes; if
so, these additional indexes are candidates for inclusion in our list of indexes.
In general, range retrievals benefit from a B+ tree index, and exact-match
retrievals benefit from a hash index. Clustering benefits range queries, and it
benefits exact-match queries if several data entries contain the same key value.

Before adding an index to the list, however, we must consider the impact of
having this index on the updates in our workload. As we noted earlier, although
an index can speed up the query component of an update, all indexes on an
updated attribute—on any attribute, in the case of inserts and deletes—must
be updated whenever the value of the attribute is changed. Therefore, we
must sometimes consider the trade-off of slowing some update operations in
the workload in order to speed up some queries.

Clearly, choosing a good set of indexes for a given workload requires an un-
derstanding of the available indexing techniques, and of the workings of the
query optimizer. The following guidelines for index selection summarize our
discussion:

Whether to Index (Guideline 1): The obvious points are often the most
important. Do not build an index unless some query—including the query
components of updates—benefits from it. Whenever possible, choose indexes
that speed up more than one query.

Choice of Search Key (Guideline 2): Attributes mentioned in a WHERE

clause are candidates for indexing.

An exact-match selection condition suggests that we consider an index on
the selected attributes, ideally, a hash index.

A range selection condition suggests that we consider a B+ tree (or ISAM)
index on the selected attributes. A B+ tree index is usually preferable to
an ISAM index. An ISAM index may be worth considering if the relation is
infrequently updated, but we assume that a B+ tree index is always chosen
over an ISAM index, for simplicity.

Multi-Attribute Search Keys (Guideline 3): Indexes with multiple-attribute
search keys should be considered in the following two situations:

A WHERE clause includes conditions on more than one attribute of a rela-
tion.
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They enable index-only evaluation strategies (i.e., accessing the relation can
be avoided) for important queries. (This situation could lead to attributes
being in the search key even if they do not appear in WHERE clauses.)

When creating indexes on search keys with multiple attributes, if range queries
are expected, be careful to order the attributes in the search key to match the
queries.

Whether to Cluster (Guideline 4): At most one index on a given relation
can be clustered, and clustering affects performance greatly; so the choice of
clustered index is important.

As a rule of thumb, range queries are likely to benefit the most from clus-
tering. If several range queries are posed on a relation, involving different
sets of attributes, consider the selectivity of the queries and their relative
frequency in the workload when deciding which index should be clustered.

If an index enables an index-only evaluation strategy for the query it is
intended to speed up, the index need not be clustered. (Clustering matters
only when the index is used to retrieve tuples from the underlying relation.)

Hash versus Tree Index (Guideline 5): A B+ tree index is usually prefer-
able because it supports range queries as well as equality queries. A hash index
is better in the following situations:

The index is intended to support index nested loops join; the indexed
relation is the inner relation, and the search key includes the join columns.
In this case, the slight improvement of a hash index over a B+ tree for
equality selections is magnified, because an equality selection is generated
for each tuple in the outer relation.

There is a very important equality query, and no range queries, involving
the search key attributes.

Balancing the Cost of Index Maintenance (Guideline 6): After drawing
up a ‘wishlist’ of indexes to create, consider the impact of each index on the
updates in the workload.

If maintaining an index slows down frequent update operations, consider
dropping the index.

Keep in mind, however, that adding an index may well speed up a given
update operation. For example, an index on employee IDs could speed up
the operation of increasing the salary of a given employee (specified by ID).
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20.3 BASIC EXAMPLES OF INDEX SELECTION

The following examples illustrate how to choose indexes during database design,
continuing the discussion from Chapter 8, where we focused on index selection
for single-table queries. The schemas used in the examples are not described in
detail; in general, they contain the attributes named in the queries. Additional
information is presented when necessary.

Let us begin with a simple query:

SELECT E.ename, D.mgr
FROM Employees E, Departments D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

The relations mentioned in the query are Employees and Departments, and
both conditions in the WHERE clause involve equalities. Our guidelines suggest
that we should build hash indexes on the attributes involved. It seems clear
that we should build a hash index on the dname attribute of Departments. But
consider the equality E.dno=D.dno. Should we build an index (hash, of course)
on the dno attribute of Departments or Employees (or both)? Intuitively, we
want to retrieve Departments tuples using the index on dname because few
tuples are likely to satisfy the equality selection D.dname=‘Toy’.1 For each
qualifying Departments tuple, we then find matching Employees tuples by using
an index on the dno attribute of Employees. So, we should build an index on the
dno field of Employees. (Note that nothing is gained by building an additional
index on the dno field of Departments because Departments tuples are retrieved
using the dname index.)

Our choice of indexes was guided by the query evaluation plan we wanted
to utilize. This consideration of a potential evaluation plan is common while
making physical design decisions. Understanding query optimization is very
useful for physical design. We show the desired plan for this query in Figure
20.1.

As a variant of this query, suppose that the WHERE clause is modified to be
WHERE D.dname=‘Toy’ AND E.dno=D.dno AND E.age=25. Let us consider al-
ternative evaluation plans. One good plan is to retrieve Departments tuples
that satisfy the selection on dname and retrieve matching Employees tuples by
using an index on the dno field; the selection on age is then applied on-the-fly.
However, unlike the previous variant of this query, we do not really need to
have an index on the dno field of Employees if we have an index on age. In this

1This is only a heuristic. If dname is not the key, and we have no statistics to verify this claim, it
is possible that several tuples satisfy this condition.
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dname=’Toy’
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Department

ename

dno=dno
Index Nested Loops

Figure 20.1 A Desirable Query Evaluation Plan

case we can retrieve Departments tuples that satisfy the selection on dname (by
using the index on dname, as before), retrieve Employees tuples that satisfy the
selection on age by using the index on age, and join these sets of tuples. Since
the sets of tuples we join are small, they fit in memory and the join method is
unimportant. This plan is likely to be somewhat poorer than using an index on
dno, but it is a reasonable alternative. Therefore, if we have an index on age
already (prompted by some other query in the workload), this variant of the
sample query does not justify creating an index on the dno field of Employees.

Our next query involves a range selection:

SELECT E.ename, D.dname
FROM Employees E, Departments D
WHERE E.sal BETWEEN 10000 AND 20000

AND E.hobby=‘Stamps’ AND E.dno=D.dno

This query illustrates the use of the BETWEEN operator for expressing range
selections. It is equivalent to the condition:

10000 ≤ E.sal AND E.sal ≤ 20000

The use of BETWEEN to express range conditions is recommended; it makes it
easier for both the user and the optimizer to recognize both parts of the range
selection.

Returning to the example query, both (nonjoin) selections are on the Employees
relation. Therefore, it is clear that a plan in which Employees is the outer
relation and Departments is the inner relation is the best, as in the previous
query, and we should build a hash index on the dno attribute of Departments.
But which index should we build on Employees? A B+ tree index on the sal
attribute would help with the range selection, especially if it is clustered. A
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hash index on the hobby attribute would help with the equality selection. If
one of these indexes is available, we could retrieve Employees tuples using this
index, retrieve matching Departments tuples using the index on dno, and apply
all remaining selections and projections on-the-fly. If both indexes are available,
the optimizer would choose the more selective index for the given query; that is,
it would consider which selection (the range condition on salary or the equality
on hobby) has fewer qualifying tuples. In general, which index is more selective
depends on the data. If there are very few people with salaries in the given
range and many people collect stamps, the B+ tree index is best. Otherwise,
the hash index on hobby is best.

If the query constants are known (as in our example), the selectivities can be
estimated if statistics on the data are available. Otherwise, as a rule of thumb,
an equality selection is likely to be more selective, and a reasonable decision
would be to create a hash index on hobby. Sometimes, the query constants
are not known—we might obtain a query by expanding a query on a view at
run-time, or we might have a query in Dynamic SQL, which allows constants
to be specified as wild-card variables (e.g., %X) and instantiated at run-time
(see Sections 6.1.3 and 6.2). In this case, if the query is very important, we
might choose to create a B+ tree index on sal and a hash index on hobby and
leave the choice to be made by the optimizer at run-time.

20.4 CLUSTERING AND INDEXING

Clustered indexes can be especially important while accessing the inner relation
in an index nested loops join. To understand the relationship between clustered
indexes and joins, let us revisit our first example:

SELECT E.ename, D.mgr
FROM Employees E, Departments D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

We concluded that a good evaluation plan is to use an index on dname to re-
trieve Departments tuples satisfying the condition on dname and to find match-
ing Employees tuples using an index on dno. Should these indexes be clustered?
Given our assumption that the number of tuples satisfying D.dname=‘Toy’ is
likely to be small, we should build an unclustered index on dname. On the
other hand, Employees is the inner relation in an index nested loops join and
dno is not a candidate key. This situation is a strong argument that the index
on the dno field of Employees should be clustered. In fact, because the join
consists of repeatedly posing equality selections on the dno field of the inner
relation, this type of query is a stronger justification for making the index on
dno clustered than a simple selection query such as the previous selection on
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hobby. (Of course, factors such as selectivities and frequency of queries have to
be taken into account as well.)

The following example, very similar to the previous one, illustrates how clus-
tered indexes can be used for sort-merge joins:

SELECT E.ename, D.mgr
FROM Employees E, Departments D
WHERE E.hobby=‘Stamps’ AND E.dno=D.dno

This query differs from the previous query in that the condition E.hobby=‘Stamps’
replaces D.dname=‘Toy’. Based on the assumption that there are few employ-
ees in the Toy department, we chose indexes that would facilitate an indexed
nested loops join with Departments as the outer relation. Now, let us suppose
that many employees collect stamps. In this case, a block nested loops or sort-
merge join might be more efficient. A sort-merge join can take advantage of a
clustered B+ tree index on the dno attribute in Departments to retrieve tuples
and thereby avoid sorting Departments. Note that an unclustered index is not
useful—since all tuples are retrieved, performing one I/O per tuple is likely to
be prohibitively expensive. If there is no index on the dno field of Employees,
we could retrieve Employees tuples (possibly using an index on hobby, especially
if the index is clustered), apply the selection E.hobby=‘Stamps’ on-the-fly, and
sort the qualifying tuples on dno.

As our discussion has indicated, when we retrieve tuples using an index, the
impact of clustering depends on the number of retrieved tuples, that is, the
number of tuples that satisfy the selection conditions that match the index.
An unclustered index is just as good as a clustered index for a selection that
retrieves a single tuple (e.g., an equality selection on a candidate key). As the
number of retrieved tuples increases, the unclustered index quickly becomes
more expensive than even a sequential scan of the entire relation. Although
the sequential scan retrieves all tuples, each page is retrieved exactly once,
whereas a page may be retrieved as often as the number of tuples it contains
if an unclustered index is used. If blocked I/O is performed (as is common),
the relative advantage of sequential scan versus an unclustered index increases
further. (Blocked I/O also speeds up access using a clustered index, of course.)

We illustrate the relationship between the number of retrieved tuples, viewed
as a percentage of the total number of tuples in the relation, and the cost of
various access methods in Figure 20.2. We assume that the query is a selection
on a single relation, for simplicity. (Note that this figure reflects the cost of
writing out the result; otherwise, the line for sequential scan would be flat.)
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Figure 20.2 The Impact of Clustering

20.4.1 Co-clustering Two Relations

In our description of a typical database system architecture in Chapter 9, we
explained how a relation is stored as a file of records. Although a file usually
contains only the records of some one relation, some systems allow records
from more than one relation to be stored in a single file. The database user
can request that the records from two relations be interleaved physically in this
manner. This data layout is sometimes referred to as co-clustering the two
relations. We now discuss when co-clustering can be beneficial.

As an example, consider two relations with the following schemas:

Parts(pid: integer, pname: string, cost: integer, supplierid: integer)
Assembly(partid: integer, componentid: integer, quantity: integer)

In this schema the componentid field of Assembly is intended to be the pid
of some part that is used as a component in assembling the part with pid
equal to partid. Therefore, the Assembly table represents a 1:N relationship
between parts and their subparts; a part can have many subparts, but each
part is the subpart of at most one part. In the Parts table, pid is the key. For
composite parts (those assembled from other parts, as indicated by the contents
of Assembly), the cost field is taken to be the cost of assembling the part from
its subparts.

Suppose that a frequent query is to find the (immediate) subparts of all parts
supplied by a given supplier:

SELECT P.pid, A.componentid
FROM Parts P, Assembly A
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WHERE P.pid = A.partid AND P.supplierid = ‘Acme’

A good evaluation plan is to apply the selection condition on Parts and then
retrieve matching Assembly tuples through an index on the partid field. Ideally,
the index on partid should be clustered. This plan is reasonably good. However,
if such selections are common and we want to optimize them further, we can
co-cluster the two tables. In this approach, we store records of the two tables
together, with each Parts record P followed by all the Assembly records A such
that P.pid = A.partid. This approach improves on storing the two relations
separately and having a clustered index on partid because it does not need an
index lookup to find the Assembly records that match a given Parts record.
Thus, for each selection query, we save a few (typically two or three) index
page I/Os.

If we are interested in finding the immediate subparts of all parts (i.e., the
preceding query with no selection on supplierid), creating a clustered index on
partid and doing an index nested loops join with Assembly as the inner relation
offers good performance. An even better strategy is to create a clustered index
on the partid field of Assembly and the pid field of Parts, then do a sort-merge
join, using the indexes to retrieve tuples in sorted order. This strategy is
comparable to doing the join using a co-clustered organization, which involves
just one scan of the set of tuples (of Parts and Assembly, which are stored
together in interleaved fashion).

The real benefit of co-clustering is illustrated by the following query:

SELECT P.pid, A.componentid
FROM Parts P, Assembly A
WHERE P.pid = A.partid AND P.cost=10

Suppose that many parts have cost = 10. This query essentially amounts to
a collection of queries in which we are given a Parts record and want to find
matching Assembly records. If we have an index on the cost field of Parts, we
can retrieve qualifying Parts tuples. For each such tuple, we have to use the
index on Assembly to locate records with the given pid. The index access for
Assembly is avoided if we have a co-clustered organization. (Of course, we still
require an index on the cost attribute of Parts tuples.)

Such an optimization is especially important if we want to traverse several
levels of the part-subpart hierarchy. For example, a common query is to find
the total cost of a part, which requires us to repeatedly carry out joins of
Parts and Assembly. Incidentally, if we do not know the number of levels in
the hierarchy in advance, the number of joins varies and the query cannot be
expressed in SQL. The query can be answered by embedding an SQL statement
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for the join inside an iterative host language program. How to express the query
is orthogonal to our main point here, which is that co-clustering is especially
beneficial when the join in question is carried out very frequently (either because
it arises repeatedly in an important query such as finding total cost, or because
the join query itself is asked frequently).

To summarize co-clustering:

It can speed up joins, in particular key–foreign key joins corresponding to
1:N relationships.

A sequential scan of either relation becomes slower. (In our example, since
several Assembly tuples are stored in between consecutive Parts tuples, a
scan of all Parts tuples becomes slower than if Parts tuples were stored sep-
arately. Similarly, a sequential scan of all Assembly tuples is also slower.)

All inserts, deletes, and updates that alter record lengths become slower,
thanks to the overheads involved in maintaining the clustering. (We do
not discuss the implementation issues involved in co-clustering.)

20.5 INDEXES THAT ENABLE INDEX-ONLY PLANS

This section considers a number of queries for which we can find efficient plans
that avoid retrieving tuples from one of the referenced relations; instead, these
plans scan an associated index (which is likely to be much smaller). An index
that is used (only) for index-only scans does not have to be clustered because
tuples from the indexed relation are not retrieved.

This query retrieves the managers of departments with at least one employee:

SELECT D.mgr
FROM Departments D, Employees E
WHERE D.dno=E.dno

Observe that no attributes of Employees are retained. If we have an index on
the dno field of Employees, the optimization of doing an index nested loops join
using an index-only scan for the inner relation is applicable. Given this variant
of the query, the correct decision is to build an unclustered index on the dno
field of Employees, rather than a clustered index.

The next query takes this idea a step further:

SELECT D.mgr, E.eid
FROM Departments D, Employees E
WHERE D.dno=E.dno
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If we have an index on the dno field of Employees, we can use it to retrieve
Employees tuples during the join (with Departments as the outer relation),
but unless the index is clustered, this approach is not be efficient. On the
other hand, suppose that we have a B+ tree index on  dno, eid . Now all the
information we need about an Employees tuple is contained in the data entry
for this tuple in the index. We can use the index to find the first data entry
with a given dno; all data entries with the same dno are stored together in the
index. (Note that a hash index on the composite key  dno, eid cannot be used
to locate an entry with just a given dno!) We can therefore evaluate this query
using an index nested loops join with Departments as the outer relation and
an index-only scan of the inner relation.

20.6 TOOLS TO ASSIST IN INDEX SELECTION

The number of possible indexes to consider building is potentially very large:
For each relation, we can potentially consider all possible subsets of attributes
as an index key; we have to decide on the ordering of the attributes in the index;
and we also have to decide which indexes should be clustered and which un-
clustered. Many large applications—for example enterprise resource planning
systems—create tens of thousands of different relations, and manual tuning of
such a large schema is a daunting endeavor.

The difficulty and importance of the index selection task motivated the devel-
opment of tools that help database administrators select appropriate indexes
for a given workload. The first generation of such index tuning wizards, or
index advisors, were separate tools outside the database engine; they sug-
gested indexes to build, given a workload of SQL queries. The main drawback
of these systems was that they had to replicate the database query optimizer’s
cost model in the tuning tool to make sure that the optimizer would choose the
same query evaluation plans as the design tool. Since query optimizers change
from release to release of a commercial database system, considerable effort was
needed to keep the tuning tool and the database optimizer synchronized. The
most recent generation of tuning tools are integrated with the database engine
and use the database query optimizer to estimate the cost of a workload given
a set of indexes, avoiding duplication of the query optimizer’s cost model into
an external tool.

20.6.1 Automatic Index Selection

We call a set of indexes for a given database schema an index configuration.
We assume that a query workload is a set of queries over a database schema
where each query has a frequency of occurrence assigned to it. Given a database
schema and a workload, the cost of an index configuration is the expected
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cost of running the queries in the workload given the index configuration —
taking the different frequencies of queries in the workload into account. Given
a database schema and a query workload, we can now define the problem of
automatic index selection as finding an index configuration with minimal
cost. As in query optimization, in practice our goal is to find a good index
configuration rather than the true optimal configuration.

Why is automatic index selection a hard problem? Let us calculate the number
of different indexes with c attributes, assuming that the table has n attributes.
For the first attribute in the index, there are n choices, for the second attribute
n−1, and thus for a c attribute index, there are overall n·(n−1) · · · (n−c+1) =

n!
(n−c)! different indexes possible. The total number of different indexes with up

to c attributes is
c�

i=1

n!

(n− i)!
.

For a table with 10 attributes, there are 10 different one-attribute indexes, 90
different two-attribute indexes, and 30240 different five-attribute indexes. For
a complex workload involving hundreds of tables, the number of possible index
configurations is clearly very large.

The efficiency of automatic index selection tools can be separated into two
components: (1) the number of candidate index configurations considered, and
(2) the number of optimizer calls necessary to evaluate the cost for a configura-
tion. Note that reducing the search space of candidate indexes is analogous to
restricting the search space of the query optimizer to left-deep plans. In many
cases, the optimal plan is not left-deep, but among all left-deep plans there is
usually a plan whose cost is close to the optimal plan.

We can easily reduce the time taken for automatic index selection by reducing
the number of candidate index configurations, but the smaller the space of
index configurations considered, the farther away the final index configuration is
from the optimal index configuration. Therefore, different index tuning wizards
prune the search space differently, for example, by considering only one- or two-
attribute indexes.

20.6.2 How Do Index Tuning Wizards Work?

All index tuning wizards search a set of candidate indexes for an index con-
figuration with lowest cost. Tools differ in the space of candidate index con-
figurations they consider and how they search this space. We describe one
representative algorithm; existing tools implement variants of this algorithm,
but their implementations have the same basic structure.
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The DB2 Index Advisor. The DB2 Index Advisor is a tool for auto-
matic index recommendation given a workload. The workload is stored in
the database system in a table called ADVISE WORKLOAD. It is populated ei-
ther (1) by SQL statements from the DB2 dynamic SQL statement cache,
a cache for recently executed SQL statements, (2) with SQL statements
from packages —groups of statically compiled SQL statements, or (3) with
SQL statements from an online monitor called the Query Patroller. The
DB2 Advisor allows the user to specify the maximum amount of disk space
for new indexes and a maximum time for the computation of the recom-
mended index configuration.
The DB2 Index Advisor consists of a program that intelligently searches
a subset of index configurations. Given a candidate configuration, it
calles the query optimizer for each query in the ADVISE WORKLOAD table
first in the RECOMMEND INDEXES mode, where the optimizer recommends
a set of indexes and stores them in the ADVISE INDEXES table. In the
EVALUATE INDEXES mode, the optimizer evaluates the benefit of the index
configuration for each query in the ADVISE-WORKLOAD table. The output of
the index tuning step is are SQL DDL statements whose execution creates
the recommended indexes.

The Microsoft SQL Server 2000 Index Tuning Wizard. Microsoft
pioneered the implementation of a tuning wizard integrated with the
database query optimizer. The Microsoft Tuning Wizard has three tuning
modes that permit the user to trade off running time of the analysis and
number of candidate index configurations examined: fast, medium, and
thorough, with fast having the lowest running time and thorough examin-
ing the largest number of configurations. To further reduce the running
time, the tool has a sampling mode in which the tuning wizard randomly
samples queries from the input workload to speed up analysis. Other pa-
rameters include the maximum space allowed for the recommended indexes,
the maximum number of attributes per index considered, and the tables on
which indexes can be generated. The Microsoft Index Tuning Wizard also
permits table scaling, where the user can specify an anticipated number of
records for the tables involved in the workload. This allows users to plan
for future growth of the tables.
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Before we describe the index tuning algorithm, let us consider the problem of
estimating the cost of a configuration. Note that it is not feasible to actu-
ally create the set of indexes in a candidate configuration and then optimize
the query workload given the physical index configuration. Creation of even a
single candidate configuration with several indexes might take hours for large
databases and put considerable load on the database system itself. Since we
want to examine a large number of possible candidate configurations, this ap-
proach is not feasible.

Therefore index tuning algorithms usually simulate the effect of indexes in
a candidate configuration (unless such indexes already exist). Such what-if

indexes look to the query optimizer like any other index and are taken into
account when calculating the cost of the workload for a given configuration,
but the creation of what-if indexes does not incur the overhead of actual index
creation. Commercial database systems that support index tuning wizards
using the database query optimizer have been extended with a module that
permits the creation and deletion of what-if indexes with the necessary statistics
about the indexes (that are used when estimating the cost of a query plan).

We now describe a representative index tuning algorithm. The algorithm pro-
ceeds in two steps, candidate index selection and configuration enumeration. In
the first step, we select a set of candidate indexes to consider during the second
step as building blocks for index configurations. Let us discuss these two steps
in more detail.

Candidate Index Selection

We saw in the previous section that it is impossible to consider every possible
index, due to the huge number of candidate indexes available for larger database
schemas. One heuristic to prune the large space of possible indexes is to first
tune each query in the workload independently and then select the union of
the indexes selected in this first step as input to the second step.

For a query, let us introduce the notion of an indexable attribute, which is an
attribute whose appearance in an index could change the cost of the query. An
indexable attribute is an attribute on which the WHERE-part of the query has
a condition (e.g., an equality predicate) or the attribute appears in a GROUP BY

or ORDER BY clause of the SQL query. An admissible index for a query is an
index that contains only indexable attributes in the query.

How do we select candidate indexes for an individual query? One approach is
a basic enumeration of all indexes with up to k attributes. We start with all
indexable attributes as single attribute candidate indexes, then add all com-
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binations of two indexable attributes as candidate indexes, and repeat this
procedure until a user-defined size threshold k. This procedure is obviously
very expensive as we add overall n+n · (n− 1)+ · · ·+n · (n− 1) · · · (n− k+1)
candidate indexes, but it guarantees that the best index with up to k attributes
is among the candidate indexes. The references at the end of this chapter con-
tain pointers to faster (but less exhaustive) heuristical search algorithms.

Enumerating Index Configurations

In the second phase, we use the candidate indexes to enumerate index con-
figurations. As in the first phase, we can exhaustively enumerate all index
configurations up to size k, this time combining candidate indexes. As in the
previous phase, more sophisticated search strategies are possible that cut down
the number of configurations considered while still generating a final configu-
ration of high quality (i.e., low execution cost for the final workload).

20.7 OVERVIEW OF DATABASE TUNING

After the initial phase of database design, actual use of the database provides
a valuable source of detailed information that can be used to refine the initial
design. Many of the original assumptions about the expected workload can be
replaced by observed usage patterns; in general, some of the initial workload
specification is validated, and some of it turns out to be wrong. Initial guesses
about the size of data can be replaced with actual statistics from the sys-
tem catalogs (although this information keeps changing as the system evolves).
Careful monitoring of queries can reveal unexpected problems; for example, the
optimizer may not be using some indexes as intended to produce good plans.

Continued database tuning is important to get the best possible performance.
In this section, we introduce three kinds of tuning: tuning indexes, tuning the
conceptual schema, and tuning queries. Our discussion of index selection also
applies to index tuning decisions. Conceptual schema and query tuning are
discussed further in Sections 20.8 and 20.9.

20.7.1 Tuning Indexes

The initial choice of indexes may be refined for one of several reasons. The
simplest reason is that the observed workload reveals that some queries and
updates considered important in the initial workload specification are not very
frequent. The observed workload may also identify some new queries and up-
dates that are important. The initial choice of indexes has to be reviewed in
light of this new information. Some of the original indexes may be dropped and
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new ones added. The reasoning involved is similar to that used in the initial
design.

It may also be discovered that the optimizer in a given system is not finding
some of the plans that it was expected to. For example, consider the following
query, which we discussed earlier:

SELECT D.mgr
FROM Employees E, Departments D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

A good plan here would be to use an index on dname to retrieve Departments
tuples with dname=‘Toy’ and to use an index on the dno field of Employees as
the inner relation, using an index-only scan. Anticipating that the optimizer
would find such a plan, we might have created an unclustered index on the dno
field of Employees.

Now suppose queries of this form take an unexpectedly long time to execute. We
can ask to see the plan produced by the optimizer. (Most commercial systems
provide a simple command to do this.) If the plan indicates that an index-only
scan is not being used, but that Employees tuples are being retrieved, we have
to rethink our initial choice of index, given this revelation about our system’s
(unfortunate) limitations. An alternative to consider here would be to drop the
unclustered index on the dno field of Employees and replace it with a clustered
index.

Some other common limitations of optimizers are that they do not handle
selections involving string expressions, arithmetic, or null values effectively.
We discuss these points further when we consider query tuning in Section 20.9.

In addition to re-examining our choice of indexes, it pays to periodically reor-
ganize some indexes. For example, a static index, such as an ISAM index, may
have developed long overflow chains. Dropping the index and rebuilding it—if
feasible, given the interrupted access to the indexed relation—can substantially
improve access times through this index. Even for a dynamic structure such
as a B+ tree, if the implementation does not merge pages on deletes, space
occupancy can decrease considerably in some situations. This in turn makes
the size of the index (in pages) larger than necessary, and could increase the
height and therefore the access time. Rebuilding the index should be consid-
ered. Extensive updates to a clustered index might also lead to overflow pages
being allocated, thereby decreasing the degree of clustering. Again, rebuilding
the index may be worthwhile.
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Finally, note that the query optimizer relies on statistics maintained in the
system catalogs. These statistics are updated only when a special utility pro-
gram is run; be sure to run the utility frequently enough to keep the statistics
reasonably current.

20.7.2 Tuning the Conceptual Schema

In the course of database design, we may realize that our current choice of
relation schemas does not enable us meet our performance objectives for the
given workload with any (feasible) set of physical design choices. If so, we
may have to redesign our conceptual schema (and re-examine physical design
decisions affected by the changes we make).

We may realize that a redesign is necessary during the initial design process or
later, after the system has been in use for a while. Once a database has been
designed and populated with tuples, changing the conceptual schema requires
a significant effort in terms of mapping the contents of the relations affected.
Nonetheless, it may be necessary to revise the conceptual schema in light of
experience with the system. (Such changes to the schema of an operational
system are sometimes referred to as schema evolution.) We now consider
the issues involved in conceptual schema (re)design from the point of view of
performance.

The main point to understand is that our choice of conceptual schema should
be guided by a consideration of the queries and updates in our workload, in
addition to the issues of redundancy that motivate normalization (which we
discussed in Chapter 19). Several options must be considered while tuning the
conceptual schema:

We may decide to settle for a 3NF design instead of a BCNF design.

If there are two ways to decompose a given schema into 3NF or BCNF, our
choice should be guided by the workload.

Sometimes we might decide to further decompose a relation that is already
in BCNF.

In other situations, we might denormalize. That is, we might choose to
replace a collection of relations obtained by a decomposition from a larger
relation with the original (larger) relation, even though it suffers from some
redundancy problems. Alternatively, we might choose to add some fields
to certain relations to speed up some important queries, even if this leads
to a redundant storage of some information (and, consequently, a schema
that is in neither 3NF nor BCNF).
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This discussion of normalization has concentrated on the technique of de-
composition, which amounts to vertical partitioning of a relation. Another
technique to consider is horizontal partitioning of a relation, which would
lead to having two relations with identical schemas. Note that we are not
talking about physically partitioning the tuples of a single relation; rather,
we want to create two distinct relations (possibly with different constraints
and indexes on each).

Incidentally, when we redesign the conceptual schema, especially if we are tun-
ing an existing database schema, it is worth considering whether we should
create views to mask these changes from users for whom the original schema is
more natural. We discuss the choices involved in tuning the conceptual schema
in Section 20.8.

20.7.3 Tuning Queries and Views

If we notice that a query is running much slower than we expected, we have to
examine the query carefully to find the problem. Some rewriting of the query,
perhaps in conjunction with some index tuning, can often fix the problem. Sim-
ilar tuning may be called for if queries on some view run slower than expected.
We do not discuss view tuning separately; just think of queries on views as
queries in their own right (after all, queries on views are expanded to account
for the view definition before being optimized) and consider how to tune them.

When tuning a query, the first thing to verify is that the system uses the plan
you expect it to use. Perhaps the system is not finding the best plan for a
variety of reasons. Some common situations not handled efficiently by many
optimizers follow:

A selection condition involving null values.

Selection conditions involving arithmetic or string expressions or condi-
tions using the OR connective. For example, if we have a condition E.age
= 2*D.age in the WHERE clause, the optimizer may correctly utilize an
available index on E.age but fail to utilize an available index on D.age.
Replacing the condition by E.age/2 = D.age would reverse the situation.

Inability to recognize a sophisticated plan such as an index-only scan for
an aggregation query involving a GROUP BY clause. Of course, virtually no
optimizer looks for plans outside the plan space described in Chapters 12
and 15, such as nonleft-deep join trees. So a good understanding of what
an optimizer typically does is important. In addition, the more aware you
are of a given system’s strengths and limitations, the better off you are.
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If the optimizer is not smart enough to find the best plan (using access methods
and evaluation strategies supported by the DBMS), some systems allow users
to guide the choice of a plan by providing hints to the optimizer; for example,
users might be able to force the use of a particular index or choose the join
order and join method. A user who wishes to guide optimization in this manner
should have a thorough understanding of both optimization and the capabilities
of the given DBMS. We discuss query tuning further in Section 20.9.

20.8 CHOICES IN TUNING THE CONCEPTUAL

SCHEMA

We now illustrate the choices involved in tuning the conceptual schema through
several examples using the following schemas:

Contracts(cid: integer, supplierid: integer, projectid: integer,
deptid: integer, partid: integer, qty: integer, value: real)

Departments(did: integer, budget: real, annualreport: varchar)
Parts(pid: integer, cost: integer)
Projects(jid: integer, mgr: char(20))
Suppliers(sid: integer, address: char(50))

For brevity, we often use the common convention of denoting attributes by
a single character and denoting relation schemas by a sequence of characters.
Consider the schema for the relation Contracts, which we denote as CSJDPQV,
with each letter denoting an attribute. The meaning of a tuple in this relation
is that the contract with cid C is an agreement that supplier S (with sid equal
to supplierid) will supply Q items of part P (with pid equal to partid) to project
J (with jid equal to projectid) associated with department D (with deptid equal
to did), and that the value V of this contract is equal to value.2

There are two known integrity constraints with respect to Contracts. A project
purchases a given part using a single contract; thus, there cannnot be two
distinct contracts in which the same project buys the same part. This constraint
is represented using the FD JP → C. Also, a department purchases at most
one part from any given supplier. This constraint is represented using the FD
SD → P . In addition, of course, the contract ID C is a key. The meaning
of the other relations should be obvious, and we do not describe them further
because we focus on the Contracts relation.

2If this schema seems complicated, note that real-life situations often call for considerably more

complex schemas!
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20.8.1 Settling for a Weaker Normal Form

Consider the Contracts relation. Should we decompose it into smaller relations?
Let us see what normal form it is in. The candidate keys for this relation are C
and JP. (C is given to be a key, and JP functionally determines C.) The only
nonkey dependency is SD → P , and P is a prime attribute because it is part
of candidate key JP. Thus, the relation is not in BCNF—because there is a
nonkey dependency—but it is in 3NF.

By using the dependency SD → P to guide the decomposition, we get the
two schemas SDP and CSJDQV. This decomposition is lossless, but it is not
dependency-preserving. However, by adding the relation scheme CJP, we ob-
tain a lossless-join, dependency-preserving decomposition into BCNF. Using
the guideline that such a decomposition into BCNF is good, we might decide
to replace Contracts by three relations with schemas CJP, SDP, and CSJDQV.

However, suppose that the following query is very frequently asked: Find the
number of copies Q of part P ordered in contract C. This query requires a join of
the decomposed relations CJP and CSJDQV (or SDP and CSJDQV), whereas
it can be answered directly using the relation Contracts. The added cost for
this query could persuade us to settle for a 3NF design and not decompose
Contracts further.

20.8.2 Denormalization

The reasons motivating us to settle for a weaker normal form may lead us to
take an even more extreme step: deliberately introduce some redundancy. As
an example, consider the Contracts relation, which is in 3NF. Now, suppose
that a frequent query is to check that the value of a contract is less than
the budget of the contracting department. We might decide to add a budget
field B to Contracts. Since did is a key for Departments, we now have the
dependency D → B in Contracts, which means Contracts is not in 3NF any
more. Nonetheless, we might choose to stay with this design if the motivating
query is sufficiently important. Such a decision is clearly subjective and comes
at the cost of significant redundancy.

20.8.3 Choice of Decomposition

Consider the Contracts relation again. Several choices are possible for dealing
with the redundancy in this relation:

We can leave Contracts as it is and accept the redundancy associated with
its being in 3NF rather than BCNF.
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We might decide that we want to avoid the anomalies resulting from this re-
dundancy by decomposing Contracts into BCNF using one of the following
methods:

– We have a lossless-join decomposition into PartInfo with attributes
SDP and ContractInfo with attributes CSJDQV. As noted previously,
this decomposition is not dependency-preserving, and to make it so
would require us to add a third relation CJP, whose sole purpose is to
allow us to check the dependency JP → C.

– We could choose to replace Contracts by just PartInfo and Contract-
Info even though this decomposition is not dependency-preserving.

Replacing Contracts by just PartInfo and ContractInfo does not prevent us
from enforcing the constraint JP → C; it only makes this more expensive. We
could create an assertion in SQL-92 to check this constraint:

CREATE ASSERTION checkDep
CHECK ( NOT EXISTS

( SELECT *
FROM PartInfo PI, ContractInfo CI
WHERE PI.supplierid=CI.supplierid

AND PI.deptid=CI.deptid
GROUP BY CI.projectid, PI.partid
HAVING COUNT (cid) > 1 ) )

This assertion is expensive to evaluate because it involves a join followed by a
sort (to do the grouping). In comparison, the system can check that JP is a
primary key for table CJP by maintaining an index on JP . This difference in
integrity-checking cost is the motivation for dependency-preservation. On the
other hand, if updates are infrequent, this increased cost may be acceptable;
therefore, we might choose not to maintain the table CJP (and quite likely, an
index on it).

As another example illustrating decomposition choices, consider the Contracts
relation again, and suppose that we also have the integrity constraint that a
department uses a given supplier for at most one of its projects: SPQ → V .
Proceeding as before, we have a lossless-join decomposition of Contracts into
SDP and CSJDQV. Alternatively, we could begin by using the dependency
SPQ → V to guide our decomposition, and replace Contracts with SPQV and
CSJDPQ. We can then decompose CSJDPQ, guided by SD → P , to obtain
SDP and CSJDQ.

We now have two alternative lossless-join decompositions of Contracts into
BCNF, neither of which is dependency-preserving. The first alternative is to



674 Chapter 20

replace Contracts with the relations SDP and CSJDQV. The second alternative
is to replace it with SPQV, SDP, and CSJDQ. The addition of CJP makes the
second decomposition (but not the first) dependency-preserving. Again, the
cost of maintaining the three relations CJP, SPQV, and CSJDQ (versus just
CSJDQV) may lead us to choose the first alternative. In this case, enforcing
the given FDs becomes more expensive. We might consider not enforcing them,
but we then risk a violation of the integrity of our data.

20.8.4 Vertical Partitioning of BCNF Relations

Suppose that we have decided to decompose Contracts into SDP and CSJDQV.
These schemas are in BCNF, and there is no reason to decompose them further
from a normalization standpoint. However, suppose that the following queries
are very frequent:

Find the contracts held by supplier S.

Find the contracts placed by department D.

These queries might lead us to decompose CSJDQV into CS, CD, and CJQV.
The decomposition is lossless, of course, and the two important queries can be
answered by examining much smaller relations. Another reason to consider such
a decomposition is concurrency control hot spots. If these queries are common,
and the most common updates involve changing the quantity of products (and
the value) involved in contracts, the decomposition improves performance by
reducing lock contention. Exclusive locks are now set mostly on the CJQV
table, and reads on CS and CD do not conflict with these locks.

Whenever we decompose a relation, we have to consider which queries the
decomposition might adversely affect, especially if the only motivation for the
decomposition is improved performance. For example, if another important
query is to find the total value of contracts held by a supplier, it would involve
a join of the decomposed relations CS and CJQV. In this situation, we might
decide against the decomposition.

20.8.5 Horizontal Decomposition

Thus far, we have essentially considered how to replace a relation with a col-
lection of vertical decompositions. Sometimes, it is worth considering whether
to replace a relation with two relations that have the same attributes as the
original relation, each containing a subset of the tuples in the original. Intu-
itively, this technique is useful when different subsets of tuples are queried in
very distinct ways.
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For example, different rules may govern large contracts, which are defined as
contracts with values greater than 10,000. (Perhaps, such contracts have to be
awarded through a bidding process.) This constraint could lead to a number
of queries in which Contracts tuples are selected using a condition of the form
value > 10, 000. One way to approach this situation is to build a clustered
B+ tree index on the value field of Contracts. Alternatively, we could replace
Contracts with two relations called LargeContracts and SmallContracts, with
the obvious meaning. If this query is the only motivation for the index, hori-
zontal decomposition offers all the benefits of the index without the overhead of
index maintenance. This alternative is especially attractive if other important
queries on Contracts also require clustered indexes (on fields other than value).

If we replace Contracts by two relations LargeContracts and SmallContracts,
we could mask this change by defining a view called Contracts:

CREATE VIEW Contracts(cid, supplierid, projectid, deptid, partid, qty, value)
AS ((SELECT *

FROM LargeContracts)
UNION

(SELECT *
FROM SmallContracts))

However, any query that deals solely with LargeContracts should be expressed
directly on LargeContracts and not on the view. Expressing the query on the
view Contracts with the selection condition value > 10, 000 is equivalent to
expressing the query on LargeContracts but less efficient. This point is quite
general: Although we can mask changes to the conceptual schema by adding
view definitions, users concerned about performance have to be aware of the
change.

As another example, if Contracts had an additional field year and queries typ-
ically dealt with the contracts in some one year, we might choose to partition
Contracts by year. Of course, queries that involved contracts from more than
one year might require us to pose queries against each of the decomposed rela-
tions.

20.9 CHOICES IN TUNING QUERIES AND VIEWS

The first step in tuning a query is to understand the plan used by the DBMS
to evaluate the query. Systems usually provide some facility for identifying
the plan used to evaluate a query. Once we understand the plan selected by
the system, we can consider how to improve performance. We can consider a
different choice of indexes or perhaps co-clustering two relations for join queries,
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guided by our understanding of the old plan and a better plan that we want
the DBMS to use. The details are similar to the initial design process.

One point worth making is that before creating new indexes we should consider
whether rewriting the query achieves acceptable results with existing indexes.
For example, consider the following query with an OR connective:

SELECT E.dno
FROM Employees E
WHERE E.hobby=‘Stamps’ OR E.age=10

If we have indexes on both hobby and age, we can use these indexes to retrieve
the necessary tuples, but an optimizer might fail to recognize this opportunity.
The optimizer might view the conditions in the WHERE clause as a whole as
not matching either index, do a sequential scan of Employees, and apply the
selections on-the-fly. Suppose we rewrite the query as the union of two queries,
one with the clause WHERE E.hobby=‘Stamps’ and the other with the clause
WHERE E.age=10. Now each query is answered efficiently with the aid of the
indexes on hobby and age.

We should also consider rewriting the query to avoid some expensive operations.
For example, including DISTINCT in the SELECT clause leads to duplicate elim-
ination, which can be costly. Thus, we should omit DISTINCT whenever pos-
sible. For example, for a query on a single relation, we can omit DISTINCT

whenever either of the following conditions holds:

We do not care about the presence of duplicates.

The attributes mentioned in the SELECT clause include a candidate key for
the relation.

Sometimes a query with GROUP BY and HAVING can be replaced by a query
without these clauses, thereby eliminating a sort operation. For example, con-
sider:

SELECT MIN (E.age)
FROM Employees E
GROUP BY E.dno
HAVING E.dno=102

This query is equivalent to

SELECT MIN (E.age)
FROM Employees E
WHERE E.dno=102
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Complex queries are often written in steps, using a temporary relation. We
can usually rewrite such queries without the temporary relation to make them
run faster. Consider the following query for computing the average salary of
departments managed by Robinson:

SELECT *
INTO Temp
FROM Employees E, Departments D
WHERE E.dno=D.dno AND D.mgrname=‘Robinson’

SELECT T.dno, AVG (T.sal)
FROM Temp T
GROUP BY T.dno

This query can be rewritten as

SELECT E.dno, AVG (E.sal)
FROM Employees E, Departments D
WHERE E.dno=D.dno AND D.mgrname=‘Robinson’
GROUP BY E.dno

The rewritten query does not materialize the intermediate relation Temp and is
therefore likely to be faster. In fact, the optimizer may even find a very efficient
index-only plan that never retrieves Employees tuples if there is a composite
B+ tree index on  dno, sal . This example illustrates a general observation: By
rewriting queries to avoid unnecessary temporaries, we not only avoid creating
the temporary relations, we also open up more optimization possibilities for the
optimizer to explore.

In some situations, however, if the optimizer is unable to find a good plan for a
complex query (typically a nested query with correlation), it may be worthwhile
to rewrite the query using temporary relations to guide the optimizer toward
a good plan.

In fact, nested queries are a common source of inefficiency because many opti-
mizers deal poorly with them, as discussed in Section 15.5. Whenever possible,
it is better to rewrite a nested query without nesting and a correlated query
without correlation. As already noted, a good reformulation of the query may
require us to introduce new, temporary relations, and techniques to do so sys-
tematically (ideally, to be done by the optimizer) have been widely studied.
Often though, it is possible to rewrite nested queries without nesting or the use
of temporary relations, as illustrated in Section 15.5.
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20.10 IMPACT OF CONCURRENCY

In a system with many concurrent users, several additional points must be
considered. Transactions obtain locks on the pages they access, and other
transactions may be blocked waiting for locks on objects they wish to access.

We observed in Section 16.5 that blocking delays must be minimized for good
performance and identified two specific ways to reduce blocking:

Reducing the time that transactions hold locks.

Reducing hot spots.

We now discuss techniques for achieving these goals.

20.10.1 Reducing Lock Durations

Delay Lock Requests: Tune transactions by writing to local program vari-
ables and deferring changes to the database until the end of the transaction.
This delays the acquisition of the corresponding locks and reduces the time the
locks are held.

Make Transactions Faster: The sooner a transaction completes, the sooner
its locks are released. We have already discussed several ways to speed up
queries and updates (e.g., tuning indexes, rewriting queries). In addition, a
careful partitioning of the tuples in a relation and its associated indexes across
a collection of disks can significantly improve concurrent access. For example,
if we have the relation on one disk and an index on another, accesses to the
index can proceed without interfering with accesses to the relation, at least at
the level of disk reads.

Replace Long Transactions by Short Ones: Sometimes, just too much
work is done within a transaction, and it takes a long time and holds locks a
long time. Consider rewriting the transaction as two or more smaller trans-
actions; holdable cursors (see Section 6.1.2) can be helpful in doing this. The
advantage is that each new transaction completes quicker and releases locks
sooner. The disadvantage is that the original list of operations is no longer ex-
ecuted atomically, and the application code must deal with situations in which
one or more of the new transactions fail.

Build a Warehouse: Complex queries can hold shared locks for a long time.
Often, however, these queries involve statistical analysis of business trends and
it is acceptable to run them on a copy of the data that is a little out of date. This
led to the popularity of data warehouses, which are databases that complement
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the operational database by maintaining a copy of data used in complex queries
(Chapter 25). Running these queries against the warehouse relieves the burden
of long-running queries from the operational database.

Consider a Lower Isolation Level: In many situations, such as queries gen-
erating aggregate information or statistical summaries, we can use a lower SQL
isolation level such as REPEATABLE READ or READ COMMITTED (Section 16.6).
Lower isolation levels incur lower locking overheads, and the application pro-
grammer must make good design trade-offs.

20.10.2 Reducing Hot Spots

Delay Operations on Hot Spots: We already discussed the value of delaying
lock requests. Obviously, this is especially important for requests involving
frequently used objects.

Optimize Access Patterns: The pattern of updates to a relation can also be
significant. For example, if tuples are inserted into the Employees relation in
eid order and we have a B+ tree index on eid, each insert goes to the last leaf
page of the B+ tree. This leads to hot spots along the path from the root to the
rightmost leaf page. Such considerations may lead us to choose a hash index
over a B+ tree index or to index on a different field. Note that this pattern of
access leads to poor performance for ISAM indexes as well, since the last leaf
page becomes a hot spot. This is not a problem for hash indexes because the
hashing process randomizes the bucket into which a record is inserted.

Partition Operations on Hot Spots: Consider a data entry transaction
that appends new records to a file (e.g., inserts into a table stored as a heap
file). Instead of appending records one-per-transaction and obtaining a lock
on the last page for each record, we can replace the transaction by several
other transactions, each of which writes records to a local file and periodically
appends a batch of records to the main file. While we do more work overall,
this reduces the lock contention on the last page of the original file.

As a further illustration of partitioning, suppose we track the number of records
inserted in a counter. Instead of updating this counter once per record, the pre-
ceding approach results in updating several counters and periodically updating
the main counter. This idea can be adapted to many uses of counters, with
varying degrees of effort. For example, consider a counter that tracks the num-
ber of reservations, with the rule that a new reservation is allowed only if the
counter is below a maximum value. We can replace this by three counters, each
with one-third the original maximum threshold, and three transactions that use
these counters rather than the original. We obtain greater concurrency, but
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have to deal with the case where one of the counters is at the maximum value
but some other counter can still be incremented. Thus, the price of greater
concurrency is increased complexity in the logic of the application code.

Choice of Index: If a relation is updated frequently, B+ tree indexes can
become a concurrency control bottleneck, because all accesses through the index
must go through the root. Thus, the root and index pages just below it can
become hot spots. If the DBMS uses specialized locking protocols for tree
indexes, and in particular, sets fine-granularity locks, this problem is greatly
alleviated. Many current systems use such techniques.

Nonetheless, this consideration may lead us to choose an ISAM index in some
situations. Because the index levels of an ISAM index are static, we need not
obtain locks on these pages; only the leaf pages need to be locked. An ISAM
index may be preferable to a B+ tree index, for example, if frequent updates
occur but we expect the relative distribution of records and the number (and
size) of records with a given range of search key values to stay approximately
the same. In this case the ISAM index offers a lower locking overhead (and
reduced contention for locks), and the distribution of records is such that few
overflow pages are created.

Hashed indexes do not create such a concurrency bottleneck, unless the data
distribution is very skewed and many data items are concentrated in a few
buckets. In this case, the directory entries for these buckets can become a hot
spot.

20.11 CASE STUDY: THE INTERNET SHOP

Revisiting our running case study, DBDudes considers the expected workload
for the B&N bookstore. The owner of the bookstore expects most of his cus-
tomers to search for books by ISBN number before placing an order. Placing
an order involves inserting one record into the Orders table and inserting one
or more records into the Orderlists relation. If a sufficient number of books is
available, a shipment is prepared and a value for the ship date in the Orderlists
relation is set. In addition, the available quantities of books in stock changes
all the time, since orders are placed that decrease the quantity available and
new books arrive from suppliers and increase the quantity available.

The DBDudes team begins by considering searches for books by ISBN. Since
isbn is a key, an equality query on isbn returns at most one record. Therefore,
to speed up queries from customers who look for books with a given ISBN,
DBDudes decides to build an unclustered hash index on isbn.
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Next, it considers updates to book quantities. To update the qty in stock value
for a book, we must first search for the book by ISBN; the index on isbn speeds
this up. Since the qty in stock value for a book is updated quite frequently,
DBDudes also considers partitioning the Books relation vertically into the fol-
lowing two relations:

BooksQty(isbn, qty)
BookRest(isbn, title, author, price, year published)

Unfortunately, this vertical partitioning slows down another very popular query:
Equality search on ISBN to retrieve all information about a book now requires
a join between BooksQty and BooksRest. So DBDudes decides not to vertically
partition Books.

DBDudes thinks it is likely that customers will also want to search for books by
title and by author, and decides to add unclustered hash indexes on title and
author—these indexes are inexpensive to maintain because the set of books is
rarely changed even though the quantity in stock for a book changes often.

Next, DBDudes considers the Customers relation. A customer is first identi-
fied by the unique customer identifaction number. So the most common queries
on Customers are equality queries involving the customer identification num-
ber, and DBDudes decides to build a clustered hash index on cid to achieve
maximum speed for this query.

Moving on to the Orders relation, DBDudes sees that it is involved in two
queries: insertion of new orders and retrieval of existing orders. Both queries
involve the ordernum attribute as search key and so DBDudes decides to build
an index on it. What type of index should this be—a B+ tree or a hash index?
Since order numbers are assigned sequentially and correspond to the order date,
sorting by ordernum effectively sorts by order date as well. So DBDudes decides
to build a clustered B+ tree index on ordernum. Although the operational
requirements mentioned until now favor neither a B+ tree nor a hash index,
B&N will probably want to monitor daily activities and the clustered B+ tree
is a better choice for such range queries. Of course, this means that retrieving
all orders for a given customer could be expensive for customers with many
orders, since clustering by ordernum precludes clustering by other attributes,
such as cid.

The Orderlists relation involves mostly insertions, with an occasional update of
a shipment date or a query to list all components of a given order. If Orderlists
is kept sorted on ordernum, all insertions are appends at the end of the relation
and thus very efficient. A clustered B+ tree index on ordernum maintains this
sort order and also speeds up retrieval of all items for a given order. To update
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a shipment date, we need to search for a tuple by ordernum and isbn. The
index on ordernum helps here as well. Although an index on  ordernum, isbn 
would be better for this purpose, insertions would not be as efficient as with
an index on just ordernum; DBDudes therefore decides to index Orderlists on
just ordernum.

20.11.1 Tuning the Database

Several months after the launch of the B&N site, DBDudes is called in and told
that customer enquiries about pending orders are being processed very slowly.
B&N has become very successful, and the Orders and Orderlists tables have
grown huge.

Thinking further about the design, DBDudes realizes that there are two types of
orders: completed orders, for which all books have already shipped, and partially
completed orders, for which some books are yet to be shipped. Most customer
requests to look up an order involve partially completed orders, which are a
small fraction of all orders. DBDudes therefore decides to horizontally partition
both the Orders table and the Orderlists table by ordernum. This results in
four new relations: NewOrders, OldOrders, NewOrderlists, and OldOrderlists.

An order and its components are always in exactly one pair of relations—and
we can determine which pair, old or new, by a simple check on ordernum—and
queries involving that order can always be evaluated using only the relevant
relations. Some queries are now slower, such as those asking for all of a cus-
tomer’s orders, since they require us to search two sets of relations. However,
these queries are infrequent and their performance is acceptable.

20.12 DBMS BENCHMARKING

Thus far, we considered how to improve the design of a database to obtain bet-
ter performance. As the database grows, however, the underlying DBMS may
no longer be able to provide adequate performance, even with the best possi-
ble design, and we have to consider upgrading our system, typically by buying
faster hardware and additional memory. We may also consider migrating our
database to a new DBMS.

When evaluating DBMS products, performance is an important consideration.
A DBMS is a complex piece of software, and different vendors may target
their systems toward different market segments by putting more effort into
optimizing certain parts of the system or choosing different system designs.
For example, some systems are designed to run complex queries efficiently,
while others are designed to run many simple transactions per second. Within
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each category of systems, there are many competing products. To assist users
in choosing a DBMS that is well suited to their needs, several performance
benchmarks have been developed. These include benchmarks for measuring
the performance of a certain class of applications (e.g., the TPC benchmarks)
and benchmarks for measuring how well a DBMS performs various operations
(e.g., the Wisconsin benchmark).

Benchmarks should be portable, easy to understand, and scale naturally to
larger problem instances. They should measure peak performance (e.g., trans-
actions per second, or tps) as well as price/performance ratios (e.g., $/tps) for
typical workloads in a given application domain. The Transaction Processing
Council (TPC) was created to define benchmarks for transaction processing
and database systems. Other well-known benchmarks have been proposed by
academic researchers and industry organizations. Benchmarks that are pro-
prietary to a given vendor are not very useful for comparing different systems
(although they may be useful in determining how well a given system would
handle a particular workload).

20.12.1 Well-Known DBMS Benchmarks

Online Transaction Processing Benchmarks: The TPC-A and TPC-B
benchmarks constitute the standard definitions of the tps and $/tps measures.
TPC-A measures the performance and price of a computer network in addition
to the DBMS, whereas the TPC-B benchmark considers the DBMS by itself.
These benchmarks involve a simple transaction that updates three data records,
from three different tables, and appends a record to a fourth table. A number
of details (e.g., transaction arrival distribution, interconnect method, system
properties) are rigorously specified, ensuring that results for different systems
can be meaningfully compared. The TPC-C benchmark is a more complex
suite of transactional tasks than TPC-A and TPC-B. It models a warehouse
that tracks items supplied to customers and involves five types of transactions.
Each TPC-C transaction is much more expensive than a TPC-A or TPC-B
transaction, and TPC-C exercises a much wider range of system capabilities,
such as use of secondary indexes and transaction aborts. It has more or less
completely replaced TPC-A and TPC-B as the standard transaction processing
benchmark.

Query Benchmarks: The Wisconsin benchmark is widely used for measur-
ing the performance of simple relational queries. The Set Query benchmark
measures the performance of a suite of more complex queries, and the AS3AP
benchmark measures the performance of a mixed workload of transactions, re-
lational queries, and utility functions. The TPC-D benchmark is a suite of
complex SQL queries intended to be representative of the decision-support ap-
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plication domain. The OLAP Council also developed a benchmark for complex
decision-support queries, including some queries that cannot be expressed eas-
ily in SQL; this is intended to measure systems for online analytic processing
(OLAP), which we discuss in Chapter 25, rather than traditional SQL sys-
tems. The Sequoia 2000 benchmark is designed to compare DBMS support for
geographic information systems.

Object-Database Benchmarks: The 001 and 007 benchmarks measure
the performance of object-oriented database systems. The Bucky benchmark
measures the performance of object-relational database systems. (We discuss
object-database systems in Chapter 23.)

20.12.2 Using a Benchmark

Benchmarks should be used with a good understanding of what they are de-
signed to measure and the application environment in which a DBMS is to be
used. When you use benchmarks to guide your choice of a DBMS, keep the
following guidelines in mind:

How Meaningful is a Given Benchmark? Benchmarks that try to
distill performance into a single number can be overly simplistic. A DBMS
is a complex piece of software used in a variety of applications. A good
benchmark should have a suite of tasks that are carefully chosen to cover a
particular application domain and test DBMS features important for that
domain.

How Well Does a Benchmark Reflect Your Workload? Consider
your expected workload and compare it with the benchmark. Give more
weight to the performance of those benchmark tasks (i.e., queries and up-
dates) that are similar to important tasks in your workload. Also consider
how benchmark numbers are measured. For example, elapsed time for in-
dividual queries might be misleading if considered in a multiuser setting:
A system may have higher elapsed times because of slower I/O. On a mul-
tiuser workload, given sufficient disks for parallel I/O, such a system might
outperform a system with a lower elapsed time.

Create Your Own Benchmark: Vendors often tweak their systems
in ad hoc ways to obtain good numbers on important benchmarks. To
counter this, create your own benchmark by modifying standard bench-
marks slightly or by replacing the tasks in a standard benchmark with
similar tasks from your workload.
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20.13 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What are the components of a workload description? (Section 20.1.1)

What decisions need to be made during physical design? (Section 20.1.2)

Describe six high-level guidelines for index selection. (Section 20.2)

When should we create clustered indexes? (Section 20.4)

What is co-clustering, and when should we use it? (Section 20.4.1)

What is an index-only plan, and how do we create indexes for index-only
plans? (Section 20.5)

Why is automatic index tuning a hard problem? Give an example. (Sec-
tion 20.6.1)

Give an example of one algorithm for automatic index tuning. (Section
20.6.2)

Why is database tuning important? (Section 20.7)

How do we tune indexes, the conceptual schema, and queries and views?
(Sections 20.7.1 to 20.7.3)

What are our choices in tuning the conceptual schema? What are the fol-
lowing techniques and when should we apply them: settling for a weaker
normal form, denormalization, and horizontal and vertiacal decomposi-
tions. (Section 20.8)

What choices do we have in tuning queries and views? (Section 20.9)

What is the impact of locking on database performance? How can we
reduce lock contention and hot spots? (Section 20.10)

Why do we have standardized database benchmarks, and what common
metrics are used to evaluate database systems? Can you describe a few
popular database benchmarks? (Section 20.12)

EXERCISES

Exercise 20.1 Consider the following BCNF schema for a portion of a simple corporate
database (type information is not relevant to this question and is omitted):

Emp (eid, ename, addr, sal, age, yrs, deptid)
Dept (did, dname, floor, budget)
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Suppose you know that the following queries are the six most common queries in the workload
for this corporation and that all six are roughly equivalent in frequency and importance:

List the id, name, and address of employees in a user-specified age range.

List the id, name, and address of employees who work in the department with a user-
specified department name.

List the id and address of employees with a user-specified employee name.

List the overall average salary for employees.

List the average salary for employees of each age; that is, for each age in the database,
list the age and the corresponding average salary.

List all the department information, ordered by department floor numbers.

1. Given this information, and assuming that these queries are more important than any
updates, design a physical schema for the corporate database that will give good perfor-
mance for the expected workload. In particular, decide which attributes will be indexed
and whether each index will be a clustered index or an unclustered index. Assume that
B+ tree indexes are the only index type supported by the DBMS and that both single-
and multiple-attribute keys are permitted. Specify your physical design by identifying
the attributes you recommend indexing on via clustered or unclustered B+ trees.

2. Redesign the physical schema assuming that the set of important queries is changed to
be the following:

List the id and address of employees with a user-specified employee name.

List the overall maximum salary for employees.

List the average salary for employees by department; that is, for each deptid value,
list the deptid value and the average salary of employees in that department.

List the sum of the budgets of all departments by floor; that is, for each floor, list
the floor and the sum.

Assume that this workload is to be tuned with an automatic index tuning wizard.
Outline the main steps in the execution of the index tuning algorithm and the set
of candidate configurations that would be considered.

Exercise 20.2 Consider the following BCNF relational schema for a portion of a university
database (type information is not relevant to this question and is omitted):

Prof(ssno, pname, office, age, sex, specialty, dept did)
Dept(did, dname, budget, num majors, chair ssno)

Suppose you know that the following queries are the five most common queries in the workload
for this university and that all five are roughly equivalent in frequency and importance:

List the names, ages, and offices of professors of a user-specified sex (male or female)
who have a user-specified research specialty (e.g., recursive query processing). Assume
that the university has a diverse set of faculty members, making it very uncommon for
more than a few professors to have the same research specialty.

List all the department information for departments with professors in a user-specified
age range.

List the department id, department name, and chairperson name for departments with
a user-specified number of majors.
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List the lowest budget for a department in the university.

List all the information about professors who are department chairpersons.

These queries occur much more frequently than updates, so you should build whatever in-
dexes you need to speed up these queries. However, you should not build any unnecessary
indexes, as updates will occur (and would be slowed down by unnecessary indexes). Given
this information, design a physical schema for the university database that will give good per-
formance for the expected workload. In particular, decide which attributes should be indexed
and whether each index should be a clustered index or an unclustered index. Assume that
both B+ trees and hashed indexes are supported by the DBMS and that both single- and
multiple-attribute index search keys are permitted.

1. Specify your physical design by identifying the attributes you recommend indexing on,
indicating whether each index should be clustered or unclustered and whether it should
be a B+ tree or a hashed index.

2. Assume that this workload is to be tuned with an automatic index tuning wizard. Outline
the main steps in the algorithm and the set of candidate configurations considered.

3. Redesign the physical schema, assuming that the set of important queries is changed to
be the following:

List the number of different specialties covered by professors in each department,
by department.

Find the department with the fewest majors.

Find the youngest professor who is a department chairperson.

Exercise 20.3 Consider the following BCNF relational schema for a portion of a company
database (type information is not relevant to this question and is omitted):

Project(pno, proj name, proj base dept, proj mgr, topic, budget)
Manager(mid, mgr name, mgr dept, salary, age, sex)

Note that each project is based in some department, each manager is employed in some
department, and the manager of a project need not be employed in the same department
(in which the project is based). Suppose you know that the following queries are the five
most common queries in the workload for this university and all five are roughly equivalent
in frequency and importance:

List the names, ages, and salaries of managers of a user-specified sex (male or female)
working in a given department. You can assume that, while there are many departments,
each department contains very few project managers.

List the names of all projects with managers whose ages are in a user-specified range
(e.g., younger than 30).

List the names of all departments such that a manager in this department manages a
project based in this department.

List the name of the project with the lowest budget.

List the names of all managers in the same department as a given project.

These queries occur much more frequently than updates, so you should build whatever in-
dexes you need to speed up these queries. However, you should not build any unnecessary
indexes, as updates will occur (and would be slowed down by unnecessary indexes). Given
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this information, design a physical schema for the company database that will give good per-
formance for the expected workload. In particular, decide which attributes should be indexed
and whether each index should be a clustered index or an unclustered index. Assume that
both B+ trees and hashed indexes are supported by the DBMS, and that both single- and
multiple-attribute index keys are permitted.

1. Specify your physical design by identifying the attributes you recommend indexing on,
indicating whether each index should be clustered or unclustered and whether it should
be a B+ tree or a hashed index.

2. Assume that this workload is to be tuned with an automatic index tuning wizard. Outline
the main steps in the algorithm and the set of candidate configurations considered.

3. Redesign the physical schema assuming the set of important queries is changed to be the
following:

Find the total of the budgets for projects managed by each manager; that is, list
proj mgr and the total of the budgets of projects managed by that manager, for
all values of proj mgr.

Find the total of the budgets for projects managed by each manager but only for
managers who are in a user-specified age range.

Find the number of male managers.

Find the average age of managers.

Exercise 20.4 The Globetrotters Club is organized into chapters. The president of a chapter
can never serve as the president of any other chapter, and each chapter gives its president
some salary. Chapters keep moving to new locations, and a new president is elected when
(and only when) a chapter moves. This data is stored in a relation G(C,S,L,P), where the
attributes are chapters (C), salaries (S), locations (L), and presidents (P ). Queries of the
following form are frequently asked, and you must be able to answer them without computing
a join: “Who was the president of chapter X when it was in location Y ?”

1. List the FDs that are given to hold over G.

2. What are the candidate keys for relation G?

3. What normal form is the schema G in?

4. Design a good database schema for the club. (Remember that your design must satisfy
the stated query requirement!)

5. What normal form is your good schema in? Give an example of a query that is likely to
run slower on this schema than on the relation G.

6. Is there a lossless-join, dependency-preserving decomposition of G into BCNF?

7. Is there ever a good reason to accept something less than 3NF when designing a schema
for a relational database? Use this example, if necessary adding further constraints, to
illustrate your answer.

Exercise 20.5 Consider the following BCNF relation, which lists the ids, types (e.g., nuts
or bolts), and costs of various parts, along with the number available or in stock:

Parts (pid, pname, cost, num avail)

You are told that the following two queries are extremely important:
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Find the total number available by part type, for all types. (That is, the sum of the
num avail value of all nuts, the sum of the num avail value of all bolts, and so forth)

List the pids of parts with the highest cost.

1. Describe the physical design that you would choose for this relation. That is, what kind
of a file structure would you choose for the set of Parts records, and what indexes would
you create?

2. Suppose your customers subsequently complain that performance is still not satisfactory
(given the indexes and file organization you chose for the Parts relation in response to the
previous question). Since you cannot afford to buy new hardware or software, you have
to consider a schema redesign. Explain how you would try to obtain better performance
by describing the schema for the relation(s) that you would use and your choice of file
organizations and indexes on these relations.

3. How would your answers to the two questions change, if at all, if your system did not
support indexes with multiple-attribute search keys?

Exercise 20.6 Consider the following BCNF relations, which describe employees and the
departments they work in:

Emp (eid, sal, did)
Dept (did, location, budget)

You are told that the following queries are extremely important:

Find the location where a user-specified employee works.

Check whether the budget of a department is greater than the salary of each employee
in that department.

1. Describe the physical design you would choose for this relation. That is, what kind of a
file structure would you choose for these relations, and what indexes would you create?

2. Suppose that your customers subsequently complain that performance is still not sat-
isfactory (given the indexes and file organization that you chose for the relations in
response to the previous question). Since you cannot afford to buy new hardware or
software, you have to consider a schema redesign. Explain how you would try to obtain
better performance by describing the schema for the relation(s) that you would use and
your choice of file organizations and indexes on these relations.

3. Suppose that your database system has very inefficient implementations of index struc-
tures. What kind of a design would you try in this case?

Exercise 20.7 Consider the following BCNF relations, which describe departments in a
company and employees:

Dept(did, dname, location, managerid)
Emp(eid, sal)

You are told that the following queries are extremely important:

List the names and ids of managers for each department in a user-specified location, in
alphabetical order by department name.

Find the average salary of employees who manage departments in a user-specified loca-
tion. You can assume that no one manages more than one department.
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1. Describe the file structures and indexes that you would choose.

2. You subsequently realize that updates to these relations are frequent. Because indexes
incur a high overhead, can you think of a way to improve performance on these queries
without using indexes?

Exercise 20.8 For each of the following queries, identify one possible reason why an opti-
mizer might not find a good plan. Rewrite the query so that a good plan is likely to be
found. Any available indexes or known constraints are listed before each query; assume that
the relation schemas are consistent with the attributes referred to in the query.

1. An index is available on the age attribute:

SELECT E.dno
FROM Employee E
WHERE E.age=20 OR E.age=10

2. A B+ tree index is available on the age attribute:

SELECT E.dno
FROM Employee E
WHERE E.age<20 AND E.age>10

3. An index is available on the age attribute:

SELECT E.dno
FROM Employee E
WHERE 2*E.age<20

4. No index is available:

SELECT DISTINCT *
FROM Employee E

5. No index is available:

SELECT AVG (E.sal)
FROM Employee E
GROUP BY E.dno
HAVING E.dno=22

6. The sid in Reserves is a foreign key that refers to Sailors:

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Exercise 20.9 Consider two ways to compute the names of employees who earn more than
$100,000 and whose age is equal to their manager’s age. First, a nested query:

SELECT E1.ename
FROM Emp E1
WHERE E1.sal > 100 AND E1.age = ( SELECT E2.age

FROM Emp E2, Dept D2
WHERE E1.dname = D2.dname

AND D2.mgr = E2.ename )

Second, a query that uses a view definition:
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SELECT E1.ename
FROM Emp E1, MgrAge A
WHERE E1.dname = A.dname AND E1.sal > 100 AND E1.age = A.age

CREATE VIEW MgrAge (dname, age)
AS SELECT D.dname, E.age

FROM Emp E, Dept D
WHERE D.mgr = E.ename

1. Describe a situation in which the first query is likely to outperform the second query.

2. Describe a situation in which the second query is likely to outperform the first query.

3. Can you construct an equivalent query that is likely to beat both these queries when
every employee who earns more than $100,000 is either 35 or 40 years old? Explain
briefly.

BIBLIOGRAPHIC NOTES
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implications of normalization and observes that denormalization may improve performance
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21
SECURITY AND

AUTHORIZATION

☛ What are the main security considerations in designing a database
application?

☛ What mechanisms does a DBMS provide to control a user’s access to
data?

☛ What is discretionary access control and how is it supported in SQL?

☛ What are the weaknesses of discretionary access control? How are
these addressed in mandatory access control?

☛ What are covert channels and how do they compromise mandatory
access control?

☛ What must the DBA do to ensure security?

☛ What is the added security threat when a database is accessed re-
motely?

☛ What is the role of encryption in ensuring secure access? How is it
used for certifying servers and creating digital signatures?

➽ Key concepts: security, integrity, availability; discretionary access
control, privileges, GRANT, REVOKE; mandatory access control, objects,
subjects, security classes, multilevel tables, polyinstantiation; covert
channels, DoD security levels; statistical databases, inferring secure
information; authentication for remote access, securing servers, digital
signatures; encyption, public-key encryption.

I know that’s a secret, for it’s whispered everywhere.

—William Congreve

692
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The data stored in a DBMS is often vital to the business interests of the or-
ganization and is regarded as a corporate asset. In addition to protecting the
intrinsic value of the data, corporations must consider ways to ensure privacy
and control access to data that must not be revealed to certain groups of users
for various reasons.

In this chapter, we discuss the concepts underlying access control and secu-
rity in a DBMS. After introducing database security issues in Section 21.1, we
consider two distinct approaches, called discretionary and mandatory, to spec-
ifying and managing access controls. An access control mechanism is a way
to control the data accessible by a given user. After introducing access controls
in Section 21.2, we cover discretionary access control, which is supported in
SQL, in Section 21.3. We briefly cover mandatory access control, which is not
supported in SQL, in Section 21.4.

In Section 21.6, we discuss some additional aspects of database security, such
as security in a statistical database and the role of the database administrator.
We then consider some of the unique challenges in supporting secure access to
a DBMS over the Internet, which is a central problem in e-commerce and other
Internet database applications, in Section 21.5. We conclude this chapter with
a discussion of security aspects of the Barns and Nobble case study in Section
21.7.

21.1 INTRODUCTION TO DATABASE SECURITY

There are three main objectives when designing a secure database application:

1. Secrecy: Information should not be disclosed to unauthorized users. For
example, a student should not be allowed to examine other students’ grades.

2. Integrity: Only authorized users should be allowed to modify data. For
example, students may be allowed to see their grades, yet not allowed
(obviously) to modify them.

3. Availability: Authorized users should not be denied access. For example,
an instructor who wishes to change a grade should be allowed to do so.

To achieve these objectives, a clear and consistent security policy should be
developed to describe what security measures must be enforced. In particular,
we must determine what part of the data is to be protected and which users
get access to which portions of the data. Next, the security mechanisms of
the underlying DBMS and operating system, as well as external mechanisms,
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such as securing access to buildings, must be utilized to enforce the policy. We
emphasize that security measures must be taken at several levels.

Security leaks in the OS or network connections can circumvent database secu-
rity mechanisms. For example, such leaks could allow an intruder to log on as
the database administrator, with all the attendant DBMS access rights. Human
factors are another source of security leaks. For example, a user may choose a
password that is easy to guess, or a user who is authorized to see sensitive data
may misuse it. Such errors account for a large percentage of security breaches.
We do not discuss these aspects of security despite their importance because
they are not specific to database management systems; our main focus is on
database access control mechanisms to support a security policy.

We observe that views are a valuable tool in enforcing security policies. The
view mechanism can be used to create a ‘window’ on a collection of data that is
appropriate for some group of users. Views allow us to limit access to sensitive
data by providing access to a restricted version (defined through a view) of that
data, rather than to the data itself.

We use the following schemas in our examples:

Sailors(sid: integer, sname: string, rating: integer, age: real)
Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: dates)

Increasingly, as database systems become the backbone of e-commerce appli-
cations requests originate over the Internet. This makes it important to be
able to authenticate a user to the database system. After all, enforcing a
security policy that allows user Sam to read a table and Elmer to write the
table is not of much use if Sam can masquerade as Elmer. Conversely, we must
be able to assure users that they are communicating with a legitimate system
(e.g., the real Amazon.com server, and not a spurious application intended to
steal sensitive information such as a credit card number). While the details
of authentication are outside the scope of our coverage, we discuss the role
of authentication and the basic ideas involved in Section 21.5, after covering
database access control mechanisms.

21.2 ACCESS CONTROL

A database for an enterprise contains a great deal of information and usually
has several groups of users. Most users need to access only a small part of the
database to carry out their tasks. Allowing users unrestricted access to all the



Security and Authorization 695

data can be undesirable, and a DBMS should provide mechanisms to control
access to data.

A DBMS offers two main approaches to access control. Discretionary access
control is based on the concept of access rights, or privileges, and mecha-
nisms for giving users such privileges. A privilege allows a user to access some
data object in a certain manner (e.g., to read or modify). A user who creates
a database object such as a table or a view automatically gets all applicable
privileges on that object. The DBMS subsequently keeps track of how these
privileges are granted to other users, and possibly revoked, and ensures that at
all times only users with the necessary privileges can access an object. SQL sup-
ports discretionary access control through the GRANT and REVOKE commands.
The GRANT command gives privileges to users, and the REVOKE command takes
away privileges. We discuss discretionary access control in Section 21.3.

Discretionary access control mechanisms, while generally effective, have certain
weaknesses. In particular, a devious unauthorized user can trick an authorized
user into disclosing sensitive data. Mandatory access control is based on
systemwide policies that cannot be changed by individual users. In this ap-
proach each database object is assigned a security class, each user is assigned
clearance for a security class, and rules are imposed on reading and writing of
database objects by users. The DBMS determines whether a given user can
read or write a given object based on certain rules that involve the security
level of the object and the clearance of the user. These rules seek to ensure
that sensitive data can never be ‘passed on’ to a user without the necessary
clearance. The SQL standard does not include any support for mandatory
access control. We discuss mandatory access control in Section 21.4.

21.3 DISCRETIONARY ACCESS CONTROL

SQL supports discretionary access control through the GRANT and REVOKE com-
mands. The GRANT command gives users privileges to base tables and views.
The syntax of this command is as follows:

GRANT privileges ON object TO users [ WITH GRANT OPTION ]

For our purposes object is either a base table or a view. SQL recognizes certain
other kinds of objects, but we do not discuss them. Several privileges can be
specified, including these:

SELECT: The right to access (read) all columns of the table specified as the
object, including columns added later through ALTER TABLE commands.
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INSERT(column-name): The right to insert rows with (non-null or non-
default) values in the named column of the table named as object. If
this right is to be granted with respect to all columns, including columns
that might be added later, we can simply use INSERT. The privileges
UPDATE(column-name) and UPDATE are similar.

DELETE: The right to delete rows from the table named as object.

REFERENCES(column-name): The right to define foreign keys (in other ta-
bles) that refer to the specified column of the table object. REFERENCES
without a column name specified denotes this right with respect to all
columns, including any that are added later.

If a user has a privilege with the grant option, he or she can pass it to another
user (with or without the grant option) by using the GRANT command. A user
who creates a base table automatically has all applicable privileges on it, along
with the right to grant these privileges to other users. A user who creates a
view has precisely those privileges on the view that he or she has on every one
of the views or base tables used to define the view. The user creating the view
must have the SELECT privilege on each underlying table, of course, and so is
always granted the SELECT privilege on the view. The creator of the view has
the SELECT privilege with the grant option only if he or she has the SELECT
privilege with the grant option on every underlying table. In addition, if the
view is updatable and the user holds INSERT, DELETE, or UPDATE privileges
(with or without the grant option) on the (single) underlying table, the user
automatically gets the same privileges on the view.

Only the owner of a schema can execute the data definition statements CREATE,
ALTER, and DROP on that schema. The right to execute these statements cannot
be granted or revoked.

In conjunction with the GRANT and REVOKE commands, views are an important
component of the security mechanisms provided by a relational DBMS. By
defining views on the base tables, we can present needed information to a user
while hiding other information that the user should not be given access to. For
example, consider the following view definition:

CREATE VIEW ActiveSailors (name, age, day)
AS SELECT S.sname, S.age, R.day

FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND S.rating > 6

A user who can access ActiveSailors but not Sailors or Reserves knows the
names of sailors who have reservations but cannot find out the bids of boats
reserved by a given sailor.
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Role-Based Authorization in SQL: Privileges are assigned to users
(authorization IDs, to be precise) in SQL-92. In the real world, privileges
are often associated with a user’s job or role within the organization. Many
DBMSs have long supported the concept of a role and allowed privileges
to be assigned to roles. Roles can then be granted to users and other
roles. (Of courses, privileges can also be granted directly to users.) The
SQL:1999 standard includes support for roles. Roles can be created and
destroyed using the CREATE ROLE and DROP ROLE commands. Users can
be granted roles (optionally, with the ability to pass the role on to others).
The standard GRANT and REVOKE commands can assign privileges to (and
revoke from) roles or authorization IDs.
What is the benefit of including a feature that many systems already sup-
port? This ensures that, over time, all vendors who comply with the stan-
dard support this feature. Thus, users can use the feature without worrying
about portability of their application across DBMSs.

Privileges are assigned in SQL to authorization IDs, which can denote a sin-
gle user or a group of users; a user must specify an authorization ID and, in
many systems, a corresponding password before the DBMS accepts any com-
mands from him or her. So, technically, Joe, Michael, and so on are authoriza-
tion IDs rather than user names in the following examples.

Suppose that user Joe has created the tables Boats, Reserves, and Sailors.
Some examples of the GRANT command that Joe can now execute follow:

GRANT INSERT, DELETE ON Reserves TO Yuppy WITH GRANT OPTION

GRANT SELECT ON Reserves TO Michael
GRANT SELECT ON Sailors TO Michael WITH GRANT OPTION

GRANT UPDATE (rating) ON Sailors TO Leah
GRANT REFERENCES (bid) ON Boats TO Bill

Yuppy can insert or delete Reserves rows and authorize someone else to do the
same. Michael can execute SELECT queries on Sailors and Reserves, and he can
pass this privilege to others for Sailors but not for Reserves. With the SELECT
privilege, Michael can create a view that accesses the Sailors and Reserves
tables (for example, the ActiveSailors view), but he cannot grant SELECT on
ActiveSailors to others.

On the other hand, suppose that Michael creates the following view:

CREATE VIEW YoungSailors (sid, age, rating)
AS SELECT S.sid, S.age, S.rating
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FROM Sailors S
WHERE S.age < 18

The only underlying table is Sailors, for which Michael has SELECT with the
grant option. He therefore has SELECT with the grant option on YoungSailors
and can pass on the SELECT privilege on YoungSailors to Eric and Guppy:

GRANT SELECT ON YoungSailors TO Eric, Guppy

Eric and Guppy can now execute SELECT queries on the view YoungSailors—
note, however, that Eric and Guppy do not have the right to execute SELECT
queries directly on the underlying Sailors table.

Michael can also define constraints based on the information in the Sailors and
Reserves tables. For example, Michael can define the following table, which
has an associated table constraint:

CREATE TABLE Sneaky (maxrating INTEGER,
CHECK ( maxrating >=

( SELECT MAX (S.rating )
FROM Sailors S )))

By repeatedly inserting rows with gradually increasing maxrating values into
the Sneaky table until an insertion finally succeeds, Michael can find out the
highest rating value in the Sailors table. This example illustrates why SQL
requires the creator of a table constraint that refers to Sailors to possess the
SELECT privilege on Sailors.

Returning to the privileges granted by Joe, Leah can update only the rating
column of Sailors rows. She can execute the following command, which sets all
ratings to 8:

UPDATE Sailors S
SET S.rating = 8

However, she cannot execute the same command if the SET clause is changed
to be SET S.age = 25, because she is not allowed to update the age field. A
more subtle point is illustrated by the following command, which decrements
the rating of all sailors:

UPDATE Sailors S
SET S.rating = S.rating−1

Leah cannot execute this command because it requires the SELECT privilege on
the S.rating column and Leah does not have this privilege.
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Bill can refer to the bid column of Boats as a foreign key in another table. For
example, Bill can create the Reserves table through the following command:

CREATE TABLE Reserves ( sid INTEGER,
bid INTEGER,
day DATE,
PRIMARY KEY (bid, day),
FOREIGN KEY (sid) REFERENCES Sailors ),
FOREIGN KEY (bid) REFERENCES Boats )

If Bill did not have the REFERENCES privilege on the bid column of Boats, he
would not be able to execute this CREATE statement because the FOREIGN KEY

clause requires this privilege. (A similar point holds with respect to the foreign
key reference to Sailors.)

Specifying just the INSERT privilege (similarly, REFERENCES and other privi-
leges) in a GRANT command is not the same as specifying SELECT(column-name)
for each column currently in the table. Consider the following command over
the Sailors table, which has columns sid, sname, rating, and age:

GRANT INSERT ON Sailors TO Michael

Suppose that this command is executed and then a column is added to the
Sailors table (by executing an ALTER TABLE command). Note that Michael
has the INSERT privilege with respect to the newly added column. If we had
executed the following GRANT command, instead of the previous one, Michael
would not have the INSERT privilege on the new column:

GRANT INSERT ON Sailors(sid), Sailors(sname), Sailors(rating),
Sailors(age), TO Michael

There is a complementary command to GRANT that allows the withdrawal of
privileges. The syntax of the REVOKE command is as follows:

REVOKE [ GRANT OPTION FOR ] privileges
ON object FROM users { RESTRICT | CASCADE }

The command can be used to revoke either a privilege or just the grant option
on a privilege (by using the optional GRANT OPTION FOR clause). One of the
two alternatives, RESTRICT or CASCADE, must be specified; we see what this
choice means shortly.

The intuition behind the GRANT command is clear: The creator of a base table
or a view is given all the appropriate privileges with respect to it and is allowed
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to pass these privileges—including the right to pass along a privilege—to other
users. The REVOKE command is, as expected, intended to achieve the reverse:
A user who has granted a privilege to another user may change his or her mind
and want to withdraw the granted privilege. The intuition behind exactly what
effect a REVOKE command has is complicated by the fact that a user may be
granted the same privilege multiple times, possibly by different users.

When a user executes a REVOKE command with the CASCADE keyword, the effect
is to withdraw the named privileges or grant option from all users who currently
hold these privileges solely through a GRANT command that was previously
executed by the same user who is now executing the REVOKE command. If
these users received the privileges with the grant option and passed it along,
those recipients in turn lose their privileges as a consequence of the REVOKE

command, unless they received these privileges through an additional GRANT
command.

We illustrate the REVOKE command through several examples. First, consider
what happens after the following sequence of commands, where Joe is the
creator of Sailors.

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Art)
REVOKE SELECT ON Sailors FROM Art CASCADE (executed by Joe)

Art loses the SELECT privilege on Sailors, of course. Then Bob, who received
this privilege from Art, and only Art, also loses this privilege. Bob’s privilege
is said to be abandoned when the privilege from which it was derived (Art’s
SELECT privilege with grant option, in this example) is revoked. When the
CASCADE keyword is specified, all abandoned privileges are also revoked (pos-
sibly causing privileges held by other users to become abandoned and thereby
revoked recursively). If the RESTRICT keyword is specified in the REVOKE com-
mand, the command is rejected if revoking the privileges just from the users
specified in the command would result in other privileges becoming abandoned.

Consider the following sequence, as another example:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Joe)
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Art)
REVOKE SELECT ON Sailors FROM Art CASCADE (executed by Joe)

As before, Art loses the SELECT privilege on Sailors. But what about Bob?
Bob received this privilege from Art, but he also received it independently
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(coincidentally, directly from Joe). So Bob retains this privilege. Consider a
third example:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
REVOKE SELECT ON Sailors FROM Art CASCADE (executed by Joe)

Since Joe granted the privilege to Art twice and only revoked it once, does
Art get to keep the privilege? As per the SQL standard, no. Even if Joe
absentmindedly granted the same privilege to Art several times, he can revoke
it with a single REVOKE command.

It is possible to revoke just the grant option on a privilege:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
REVOKE GRANT OPTION FOR SELECT ON Sailors

FROM Art CASCADE (executed by Joe)

This command would leave Art with the SELECT privilege on Sailors, but Art
no longer has the grant option on this privilege and therefore cannot pass it on
to other users.

These examples bring out the intuition behind the REVOKE command, and
they highlight the complex interaction between GRANT and REVOKE commands.
When a GRANT is executed, a privilege descriptor is added to a table of such
descriptors maintained by the DBMS. The privilege descriptor specifies the fol-
lowing: the grantor of the privilege, the grantee who receives the privilege, the
granted privilege (including the name of the object involved), and whether the
grant option is included. When a user creates a table or view and ‘automati-
cally’ gets certain privileges, a privilege descriptor with system as the grantor
is entered into this table.

The effect of a series of GRANT commands can be described in terms of an
authorization graph in which the nodes are users—technically, they are au-
thorization IDs—and the arcs indicate how privileges are passed. There is an
arc from (the node for) user 1 to user 2 if user 1 executed a GRANT command
giving a privilege to user 2; the arc is labeled with the descriptor for the GRANT
command. A GRANT command has no effect if the same privileges have already
been granted to the same grantee by the same grantor. The following sequence
of commands illustrates the semantics of GRANT and REVOKE commands when
there is a cycle in the authorization graph:

GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Joe)
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Art)
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GRANT SELECT ON Sailors TO Art WITH GRANT OPTION (executed by Bob)
GRANT SELECT ON Sailors TO Cal WITH GRANT OPTION (executed by Joe)
GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Cal)
REVOKE SELECT ON Sailors FROM Art CASCADE (executed by Joe)

The authorization graph for this example is shown in Figure 21.1. Note that
we indicate how Joe, the creator of Sailors, acquired the SELECT privilege from
the DBMS by introducing a System node and drawing an arc from this node
to Joe’s node.

Joe Art

BobCal

System

(System, Joe, Select on Sailors, Yes)

(Joe, Cal, Select on Sailors, Yes)

(Art, Bob, Select on Sailors, Yes)

 (Bob, Art, Select on Sailors, Yes)

(Joe, Art, Select on Sailors, Yes)

(Cal, Bob, Select on Sailors, Yes)

Figure 21.1 Example Authorization Graph

As the graph clearly indicates, Bob’s grant to Art and Art’s grant to Bob (of the
same privilege) creates a cycle. Bob is subsequently given the same privilege
by Cal, who received it independently from Joe. At this point Joe decides to
revoke the privilege he granted Art.

Let us trace the effect of this revocation. The arc from Joe to Art is removed
because it corresponds to the granting action that is revoked. All remaining
nodes have the following property: If node N has an outgoing arc labeled with
a privilege, there is a path from the System node to node N in which each arc
label contains the same privilege plus the grant option. That is, any remaining
granting action is justified by a privilege received (directly or indirectly) from
the System. The execution of Joe’s REVOKE command therefore stops at this
point, with everyone continuing to hold the SELECT privilege on Sailors.

This result may seem unintuitive because Art continues to have the privilege
only because he received it from Bob, and at the time that Bob granted the
privilege to Art, he had received it only from Art. Although Bob acquired the
privilege through Cal subsequently, should we not undo the effect of his grant
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to Art when executing Joe’s REVOKE command? The effect of the grant from
Bob to Art is not undone in SQL. In effect, if a user acquires a privilege multiple
times from different grantors, SQL treats each of these grants to the user as
having occurred before that user passed on the privilege to other users. This
implementation of REVOKE is convenient in many real-world situations. For
example, if a manager is fired after passing on some privileges to subordinates
(who may in turn have passed the privileges to others), we can ensure that
only the manager’s privileges are removed by first redoing all of the manager’s
granting actions and then revoking his or her privileges. That is, we need not
recursively redo the subordinates’ granting actions.

To return to the saga of Joe and his friends, let us suppose that Joe decides
to revoke Cal’s SELECT privilege as well. Clearly, the arc from Joe to Cal
corresponding to the grant of this privilege is removed. The arc from Cal to
Bob is removed as well, since there is no longer a path from System to Cal
that gives Cal the right to pass the SELECT privilege on Sailors to Bob. The
authorization graph at this intermediate point is shown in Figure 21.2.

Joe Art

BobCal

System

(Art, Bob, Select on Sailors, Yes)

 (Bob, Art, Select on Sailors, Yes)

(System, Joe, Select on Sailors, Yes)

Figure 21.2 Example Authorization Graph during Revocation

The graph now contains two nodes (Art and Bob) for which there are outgoing
arcs with labels containing the SELECT privilege on Sailors; therefore, these
users have granted this privilege. However, although each node contains an
incoming arc carrying the same privilege, there is no such path from System
to either of these nodes; so these users’ right to grant the privilege has been
abandoned. We therefore remove the outgoing arcs as well. In general, these
nodes might have other arcs incident on them, but in this example, they now
have no incident arcs. Joe is left as the only user with the SELECT privilege on
Sailors; Art and Bob have lost their privileges.
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21.3.1 Grant and Revoke on Views and Integrity Constraints

The privileges held by the creator of a view (with respect to the view) change
over time as he or she gains or loses privileges on the underlying tables. If the
creator loses a privilege held with the grant option, users who were given that
privilege on the view lose it as well. There are some subtle aspects to the GRANT
and REVOKE commands when they involve views or integrity constraints. We
consider some examples that highlight the following important points:

1. A view may be dropped because a SELECT privilege is revoked from the
user who created the view.

2. If the creator of a view gains additional privileges on the underlying tables,
he or she automatically gains additional privileges on the view.

3. The distinction between the REFERENCES and SELECT privileges is impor-
tant.

Suppose that Joe created Sailors and gave Michael the SELECT privilege on it
with the grant option, and Michael then created the view YoungSailors and
gave Eric the SELECT privilege on YoungSailors. Eric now defines a view called
FineYoungSailors:

CREATE VIEW FineYoungSailors (name, age, rating)
AS SELECT S.sname, S.age, S.rating

FROM YoungSailors S
WHERE S.rating > 6

What happens if Joe revokes the SELECT privilege on Sailors from Michael?
Michael no longer has the authority to execute the query used to define Young-
Sailors because the definition refers to Sailors. Therefore, the view YoungSailors
is dropped (i.e., destroyed). In turn, FineYoungSailors is dropped as well. Both
view definitions are removed from the system catalogs; even if a remorseful Joe
decides to give back the SELECT privilege on Sailors to Michael, the views are
gone and must be created afresh if they are required.

On a more happy note, suppose that everything proceeds as just described until
Eric defines FineYoungSailors; then, instead of revoking the SELECT privilege
on Sailors from Michael, Joe decides to also give Michael the INSERT privilege
on Sailors. Michael’s privileges on the view YoungSailors are upgraded to what
he would have if he were to create the view now. He therefore acquires the
INSERT privilege on YoungSailors as well. (Note that this view is updatable.)
What about Eric? His privileges are unchanged.

Whether or not Michael has the INSERT privilege on YoungSailors with the
grant option depends on whether or not Joe gives him the INSERT privilege on
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Sailors with the grant option. To understand this situation, consider Eric again.
If Michael has the INSERT privilege on YoungSailors with the grant option, he
can pass this privilege to Eric. Eric could then insert rows into the Sailors table
because inserts on YoungSailors are effected by modifying the underlying base
table, Sailors. Clearly, we do not want Michael to be able to authorize Eric to
make such changes unless Michael has the INSERT privilege on Sailors with the
grant option.

The REFERENCES privilege is very different from the SELECT privilege, as the
following example illustrates. Suppose that Joe is the creator of Boats. He can
authorize another user, say, Fred, to create Reserves with a foreign key that
refers to the bid column of Boats by giving Fred the REFERENCES privilege with
respect to this column. On the other hand, if Fred has the SELECT privilege on
the bid column of Boats but not the REFERENCES privilege, Fred cannot create
Reserves with a foreign key that refers to Boats. If Fred creates Reserves with
a foreign key column that refers to bid in Boats and later loses the REFERENCES
privilege on the bid column of boats, the foreign key constraint in Reserves is
dropped; however, the Reserves table is not dropped.

To understand why the SQL standard chose to introduce the REFERENCES priv-
ilege rather than to simply allow the SELECT privilege to be used in this sit-
uation, consider what happens if the definition of Reserves specified the NO

ACTION option with the foreign key—Joe, the owner of Boats, may be pre-
vented from deleting a row from Boats because a row in Reserves refers to this
Boats row. Giving Fred, the creator of Reserves, the right to constrain updates
on Boats in this manner goes beyond simply allowing him to read the values
in Boats, which is all that the SELECT privilege authorizes.

21.4 MANDATORY ACCESS CONTROL

Discretionary access control mechanisms, while generally effective, have certain
weaknesses. In particular they are susceptible to Trojan horse schemes whereby
a devious unauthorized user can trick an authorized user into disclosing sensi-
tive data. For example, suppose that student Tricky Dick wants to break into
the grade tables of instructor Trustin Justin. Dick does the following:

He creates a new table called MineAllMine and gives INSERT privileges
on this table to Justin (who is blissfully unaware of all this attention, of
course).

He modifies the code of some DBMS application that Justin uses often to
do a couple of additional things: first, read the Grades table, and next,
write the result into MineAllMine.
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Then he sits back and waits for the grades to be copied into MineAllMine and
later undoes the modifications to the application to ensure that Justin does
not somehow find out later that he has been cheated. Thus, despite the DBMS
enforcing all discretionary access controls—only Justin’s authorized code was
allowed to access Grades—sensitive data is disclosed to an intruder. The fact
that Dick could surreptitiously modify Justin’s code is outside the scope of the
DBMS’s access control mechanism.

Mandatory access control mechanisms are aimed at addressing such loopholes in
discretionary access control. The popular model for mandatory access control,
called the Bell-LaPadula model, is described in terms of objects (e.g., tables,
views, rows, columns), subjects (e.g., users, programs), security classes, and
clearances. Each database object is assigned a security class, and each subject
is assigned clearance for a security class; we denote the class of an object or
subject A as class(A). The security classes in a system are organized according
to a partial order, with a most secure class and a least secure class. For
simplicity, we assume that there are four classes: top secret (TS), secret (S),
confidential (C), and unclassified (U). In this system, TS > S > C > U, where
A > B means that class A data is more sensitive than class B data.

The Bell-LaPadula model imposes two restrictions on all reads and writes of
database objects:

1. Simple Security Property: Subject S is allowed to read object O only
if class(S) ≥ class(O). For example, a user with TS clearance can read a
table with C clearance, but a user with C clearance is not allowed to read
a table with TS classification.

2. *-Property: Subject S is allowed to write object O only if class(S) ≤
class(O). For example, a user with S clearance can write only objects with
S or TS classification.

If discretionary access controls are also specified, these rules represent addi-
tional restrictions. Therefore, to read or write a database object, a user must
have the necessary privileges (obtained via GRANT commands) and the security
classes of the user and the object must satisfy the preceding restrictions. Let
us consider how such a mandatory control mechanism might have foiled Tricky
Dick. The Grades table could be classified as S, Justin could be given clearance
for S, and Tricky Dick could be given a lower clearance (C). Dick can create
objects of only C or lower classification; so the table MineAllMine can have at
most the classification C. When the application program running on behalf of
Justin (and therefore with clearance S) tries to copy Grades into MineAllMine,
it is not allowed to do so because class(MineAllMine) < class(application), and
the *-Property is violated.
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21.4.1 Multilevel Relations and Polyinstantiation

To apply mandatory access control policies in a relational DBMS, a security
class must be assigned to each database object. The objects can be at the
granularity of tables, rows, or even individual column values. Let us assume
that each row is assigned a security class. This situation leads to the concept
of a multilevel table, which is a table with the surprising property that users
with different security clearances see a different collection of rows when they
access the same table.

Consider the instance of the Boats table shown in Figure 21.3. Users with S
and TS clearance get both rows in the answer when they ask to see all rows in
Boats. A user with C clearance gets only the second row, and a user with U
clearance gets no rows.

bid bname color Security Class

101 Salsa Red S
102 Pinto Brown C

Figure 21.3 An Instance B1 of Boats

The Boats table is defined to have bid as the primary key. Suppose that a user
with clearance C wishes to enter the row  101, Picante, Scarlet, C . We have
a dilemma:

If the insertion is permitted, two distinct rows in the table have key 101.

If the insertion is not permitted because the primary key constraint is vio-
lated, the user trying to insert the new row, who has clearance C, can infer
that there is a boat with bid=101 whose security class is higher than C. This
situation compromises the principle that users should not be able to infer
any information about objects that have a higher security classification.

This dilemma is resolved by effectively treating the security classification as part
of the key. Thus, the insertion is allowed to continue, and the table instance is
modified as shown in Figure 21.4.

bid bname color Security Class

101 Salsa Red S
101 Picante Scarlet C
102 Pinto Brown C

Figure 21.4 Instance B1 after Insertion
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Users with clearance C or U see just the rows for Picante and Pinto, but users
with clearance S or TS see all three rows. The two rows with bid=101 can
be interpreted in one of two ways: only the row with the higher classification
(Salsa, with classification S) actually exists, or both exist and their presence is
revealed to users according to their clearance level. The choice of interpretation
is up to application developers and users.

The presence of data objects that appear to have different values to users
with different clearances (for example, the boat with bid 101) is called polyin-
stantiation. If we consider security classifications associated with individual
columns, the intuition underlying polyinstantiation can be generalized in a
straightforward manner, but some additional details must be addressed. We
remark that the main drawback of mandatory access control schemes is their
rigidity; policies are set by system administrators, and the classification mecha-
nisms are not flexible enough. A satisfactory combination of discretionary and
mandatory access controls is yet to be achieved.

21.4.2 Covert Channels, DoD Security Levels

Even if a DBMS enforces the mandatory access control scheme just discussed,
information can flow from a higher classification level to a lower classification
level through indirect means, called covert channels. For example, if a trans-
action accesses data at more than one site in a distributed DBMS, the actions
at the two sites must be coordinated. The process at one site may have a
lower clearance (say, C) than the process at another site (say, S), and both
processes have to agree to commit before the transaction can be committed.
This requirement can be exploited to pass information with an S classification
to the process with a C clearance: The transaction is repeatedly invoked, and
the process with the C clearance always agrees to commit, whereas the process
with the S clearance agrees to commit if it wants to transmit a 1 bit and does
not agree if it wants to transmit a 0 bit.

In this (admittedly tortuous) manner, information with an S clearance can be
sent to a process with a C clearance as a stream of bits. This covert channel is
an indirect violation of the intent behind the *-Property. Additional examples
of covert channels can be found readily in statistical databases, which we discuss
in Section 21.6.2.

DBMS vendors recently started implementing mandatory access control mech-
anisms (although they are not part of the SQL standard) because the United
States Department of Defense (DoD) requires such support for its systems. The
DoD requirements can be described in terms of security levels A, B, C, and
D, of which A is the most secure and D is the least secure.
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Current Systems: Commercial RDBMSs are available that support dis-
cretionary controls at the C2 level and mandatory controls at the B1 level.
IBM DB2, Informix, Microsoft SQL Server, Oracle 8, and Sybase ASE all
support SQL’s features for discretionary access control. In general, they
do not support mandatory access control; Oracle offers a version of their
product with support for mandatory access control.

Level C requires support for discretionary access control. It is divided into
sublevels C1 and C2; C2 also requires some degree of accountability through
procedures such as login verification and audit trails. Level B requires sup-
port for mandatory access control. It is subdivided into levels B1, B2, and
B3. Level B2 additionally requires the identification and elimination of covert
channels. Level B3 additionally requires maintenance of audit trails and the
designation of a security administrator (usually, but not necessarily, the
DBA). Level A, the most secure level, requires a mathematical proof that the
security mechanism enforces the security policy!

21.5 SECURITY FOR INTERNET APPLICATIONS

When a DBMS is accessed from a secure location, we can rely upon a simple
password mechanism for authenticating users. However, suppose our friend
Sam wants to place an order for a book over the Internet. This presents some
unique challenges: Sam is not even a known user (unless he is a repeat cus-
tomer). From Amazon’s point of view, we have an individual asking for a book
and offering to pay with a credit card registered to Sam, but is this individual
really Sam? From Sam’s point of view, he sees a form asking for credit card
information, but is this indeed a legitimate part of Amazon’s site, and not a
rogue application designed to trick him into revealing his credit card number?

This example illustrates the need for a more sophisticated approach to authen-
tication than a simple password mechanism. Encryption techniques provide
the foundation for modern authentication.

21.5.1 Encryption

The basic idea behind encryption is to apply an encryption algorithm to the
data, using a user-specified or DBA-specified encryption key. The output of
the algorithm is the encrypted version of the data. There is also a decryp-
tion algorithm, which takes the encrypted data and a decryption key as
input and then returns the original data. Without the correct decryption key,
the decryption algorithm produces gibberish. The encryption and decryption
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DES and AES: The DES standard, adopted in 1977, has a 56-bit en-
cryption key. Over time, computers have become so fast that, in 1999,
a special-purpose chip and a network of PCs were used to crack DES in
under a day. The system was testing 245 billion keys per second when
the correct key was found! It is estimated that a special-purpose hardware
device can be built for under a million dollars that can crack DES in under
four hours. Despite growing concerns about its vulnerability, DES is still
widely used. In 2000, a successor to DES, called the Advanced Encryp-
tion Standard (AES), was adopted as the new (symmetric) encryption
standard. AES has three possible key sizes: 128, 192, and 256 bits. With
a 128 bit key size, there are over 3 · 1038 possible AES keys, which is on
the order of 1024 more than the number of 56-bit DES keys. Assume that
we could build a computer fast enough to crack DES in 1 second. This
computer would compute for about 149 trillion years to crack a 128-bit
AES key. (Experts think the universe is less than 20 billion years old.)

algorithms themselves are assumed to be publicly known, but one or both keys
are secret (depending upon the encryption scheme).

In symmetric encryption, the encryption key is also used as the decryption
key. The ANSI Data Encryption Standard (DES), which has been in use
since 1977, is a well-known example of symmetric encryption. It uses an en-
cryption algorithm that consists of character substitutions and permutations.
The main weakness of symmetric encryption is that all authorized users must
be told the key, increasing the likelihood of its becoming known to an intruder
(e.g., by simple human error).

Another approach to encryption, called public-key encryption, has become
increasingly popular in recent years. The encryption scheme proposed by
Rivest, Shamir, and Adleman, called RSA, is a well-known example of public-
key encryption. Each authorized user has a public encryption key, known
to everyone, and a private decryption key, known only to him or her. Since
the private decryption keys are known only to their owners, the weakness of
DES is avoided.

A central issue for public-key encryption is how encryption and decryption
keys are chosen. Technically, public-key encryption algorithms rely on the
existence of one-way functions, whose inverses are computationally very hard
to determine. The RSA algorithm, for example, is based on the observation
that, although checking whether a given number is prime is easy, determining
the prime factors of a nonprime number is extremely hard. (Determining the
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Why RSA Works: The essential point of the scheme is that it is easy to
compute d given e, p, and q, but very hard to compute d given just e and
L. In turn, this difficulty depends on the fact that it is hard to determine
the prime factors of L, which happen to be p and q. A caveat: Factoring
is widely believed to be hard, but there is no proof that this is so. Nor
is there a proof that factoring is the only way to crack RSA; that is, to
compute d from e and L.

prime factors of a number with over 100 digits can take years of CPU time on
the fastest available computers today.)

We now sketch the idea behind the RSA algorithm, assuming that the data to
be encrypted is an integer I. To choose an encryption key and a decryption
key for a given user, we first choose a very large integer L, larger than the
largest integer we will ever need to encode.1 We then select a number e as the
encryption key and compute the decryption key d based on e and L; how this
is done is central to the approach, as we see shortly. Both L and e are made
public and used by the encryption algorithm. However, d is kept secret and is
necessary for decryption.

The encryption function is S = Ie mod L.

The decryption function is I = Sd mod L.

We choose L to be the product of two large (e.g., 1024-bit), distinct prime
numbers, p ∗ q. The encryption key e is a randomly chosen number between
1 and L that is relatively prime to (p − 1) ∗ (q − 1). The decryption key d is
computed such that d∗e = 1 mod ((p−1)∗(q−1)). Given these choices, results
in number theory can be used to prove that the decryption function recovers
the original message from its encrypted version.

A very important property of the encryption and decryption algorithms is that
the roles of the encryption and decryption keys can be reversed:

decrypt(d, (encrypt(e, I))) = I = decrypt(e, (encrypt(d, I)))

Since many protocols rely on this property, we henceforth simply refer to pub-
lic and private keys (since both keys can be used for encryption as well as
decryption).

1A message that is to be encrypted is decomposed into blocks such that each block can be treated

as an integer less than L.
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While we introduced encryption in the context of authentication, we note that
it is a fundamental tool for enforcing security. A DBMS can use encryption to
protect information in situations where the normal security mechanisms of the
DBMS are not adequate. For example, an intruder may steal tapes containing
some data or tap a communication line. By storing and transmitting data in
an encrypted form, the DBMS ensures that such stolen data is not intelligible
to the intruder.

21.5.2 Certifying Servers: The SSL Protocol

Suppose we associate a public key and a decryption key with Amazon. Any-
one, say, user Sam, can send Amazon an order by encrypting the order using
Amazon’s public key. Only Amazon can decrypt this secret order because the
decryption algorithm requires Amazon’s private key, known only to Amazon.

This hinges on Sam’s ability to reliably find out Amazon’s public key. A num-
ber of companies serve as certification authorities, e.g., Verisign. Amazon
generates a public encryption key eA (and a private decryption key) and sends
the public key to Verisign. Verisign then issues a certificate to Amazon that
contains the following information:

 Verisign, Amazon, https://www.amazon.com, eA  

The certificate is encrypted using Verisign’s own private key, which is known
to (i.e., stored in) Internet Explorer, Netscape Navigator, and other browsers.

When Sam comes to the Amazon site and wants to place an order, his browser,
running the SSL protocol,2 asks the server for the Verisign certificate. The
browser then validates the certificate by decrypting it (using Verisign’s public
key) and checking that the result is a certificate with the name Verisign, and
that the URL it contains is that of the server it is talking to. (Note that an
attempt to forge a certificate will fail because certificates are encrypted using
Verisign’s private key, which is known only to Verisign.) Next, the browser
generates a random session key, encrypt it using Amazon’s public key (which
it obtained from the validated certificate and therefore trusts), and sends it to
the Amazon server.

From this point on, the Amazon server and the browser can use the session
key (which both know and are confident that only they know) and a symmetric
encryption protocol like AES or DES to exchange securely encrypted messages:
Messages are encrypted by the sender and decrypted by the receiver using the
same session key. The encrypted messages travel over the Internet and may be

2A browser uses the SSL protocol if the target URL begins with https.
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intercepted, but they cannot be decrypted without the session key. It is useful
to consider why we need a session key; after all, the browser could simply have
encrypted Sam’s original request using Amazon’s public key and sent it securely
to the Amazon server. The reason is that, without the session key, the Amazon
server has no way to securely send information back to the browser. A further
advantage of session keys is that symmetric encryption is computationally much
faster than public key encryption. The session key is discarded at the end of
the session.

Thus, Sam can be assured that only Amazon can see the information he types
into the form shown to him by the Amazon server and the information sent
back to him in responses from the server. However, at this point, Amazon
has no assurance that the user running the browser is actually Sam, and not
someone who has stolen Sam’s credit card. Typically, merchants accept this
situation, which also arises when a customer places an order over the phone.

If we want to be sure of the user’s identity, this can be accomplished by addi-
tionally requiring the user to login. In our example, Sam must first establish
an account with Amazon and select a password. (Sam’s identity is originally
established by calling him back on the phone to verify the account information
or by sending email to an email address; in the latter case, all we establish is
that the owner of the account is the individual with the given email address.)
Whenever he visits the site and Amazon needs to verify his identity, Amazon
redirects him to a login form after using SSL to establish a session key. The
password typed in is transmitted securely by encrypting it with the session key.

One remaining drawback in this approach is that Amazon now knows Sam’s
credit card number, and he must trust Amazon not to misuse it. The Secure
Electronic Transaction protocol addresses this limitation. Every customer
must now obtain a certificate, with his or her own private and public keys,
and every transaction involves the Amazon server, the customer’s browser, and
the server of a trusted third party, such as Visa for credit card transactions.
The basic idea is that the browser encodes non-credit card information using
Amazon’s public key and the credit card information using Visa’s public key and
sends these to the Amazon server, which forwards the credit card information
(which it cannot decrypt) to the Visa server. If the Visa server approves the
information, the transaction goes through.

21.5.3 Digital Signatures

Suppose that Elmer, who works for Amazon, and Betsy, who works for McGraw-
Hill, need to communicate with each other about inventory. Public key encryp-
tion can be used to create digital signatures for messages. That is, messages
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can be encoded in such a way that, if Elmer gets a message supposedly from
Betsy, he can verify that it is from Betsy (in addition to being able to decrypt
the message) and, further, prove that it is from Betsy at McGraw-Hill, even if
the message is sent from a Hotmail account when Betsy is traveling. Similarly,
Betsy can authenticate the originator of messages from Elmer.

If Elmer encrypts messages for Betsy using her public key, and vice-versa,
they can exchange information securely but cannot authenticate the sender.
Someone who wishes to impersonate Betsy could use her public key to send a
message to Elmer, pretending to be Betsy.

A clever use of the encryption scheme, however, allows Elmer to verify whether
the message was indeed sent by Betsy. Betsy encrypts the message using her
private key and then encrypts the result using Elmer’s public key. When Elmer
receives such a message, he first decrypts it using his private key and then
decrypts the result using Betsy’s public key. This step yields the original un-
encrypted message. Furthermore, Elmer can be certain that the message was
composed and encrypted by Betsy because a forger could not have known her
private key, and without it the final result would have been nonsensical, rather
than a legible message. Further, because even Elmer does not know Betsy’s
private key, Betsy cannot claim that Elmer forged the message.

If authenticating the sender is the objective and hiding the message is not im-
portant, we can reduce the cost of encryption by using a message signature.
A signature is obtained by applying a one-way function (e.g., a hashing scheme)
to the message and is considerably smaller. We encode the signature as in the
basic digital signature approach, and send the encoded signature together with
the full, unencoded message. The recipient can verify the sender of the signa-
ture as just described, and validate the message itself by applying the one-way
function and comparing the result with the signature.

21.6 ADDITIONAL ISSUES RELATED TO SECURITY

Security is a broad topic, and our coverage is necessarily limited. This section
briefly touches on some additional important issues.

21.6.1 Role of the Database Administrator

The database administrator (DBA) plays an important role in enforcing the
security-related aspects of a database design. In conjunction with the owners
of the data, the DBA also contributes to developing a security policy. The DBA
has a special account, which we call the system account, and is responsible
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for the overall security of the system. In particular, the DBA deals with the
following:

1. Creating New Accounts: Each new user or group of users must be
assigned an authorization ID and a password. Note that application pro-
grams that access the database have the same authorization ID as the user
executing the program.

2. Mandatory Control Issues: If the DBMS supports mandatory control—
some customized systems for applications with very high security require-
ments (for example, military data) provide such support—the DBA must
assign security classes to each database object and assign security clear-
ances to each authorization ID in accordance with the chosen security pol-
icy.

The DBA is also responsible for maintaining the audit trail, which is essen-
tially the log of updates with the authorization ID (of the user executing the
transaction) added to each log entry. This log is just a minor extension of
the log mechanism used to recover from crashes. Additionally, the DBA may
choose to maintain a log of all actions, including reads, performed by a user.
Analyzing such histories of how the DBMS was accessed can help prevent se-
curity violations by identifying suspicious patterns before an intruder finally
succeeds in breaking in, or it can help track down an intruder after a violation
has been detected.

21.6.2 Security in Statistical Databases

A statistical database contains specific information on individuals or events
but is intended to permit only statistical queries. For example, if we maintained
a statistical database of information about sailors, we would allow statistical
queries about average ratings, maximum age, and so on, but not queries about
individual sailors. Security in such databases poses new problems because it is
possible to infer protected information (such as a sailor’s rating) from answers
to permitted statistical queries. Such inference opportunities represent covert
channels that can compromise the security policy of the database.

Suppose that sailor Sneaky Pete wants to know the rating of Admiral Horn-
tooter, the esteemed chairman of the sailing club, and happens to know that
Horntooter is the oldest sailor in the club. Pete repeatedly asks queries of the
form “How many sailors are there whose age is greater than X?” for various
values of X, until the answer is 1. Obviously, this sailor is Horntooter, the
oldest sailor. Note that each of these queries is a valid statistical query and
is permitted. Let the value of X at this point be, say, 65. Pete now asks the
query, “What is the maximum rating of all sailors whose age is greater than
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65?” Again, this query is permitted because it is a statistical query. However,
the answer to this query reveals Horntooter’s rating to Pete, and the security
policy of the database is violated.

One approach to preventing such violations is to require that each query must
involve at least some minimum number, say, N, of rows. With a reasonable
choice of N, Pete would not be able to isolate the information about Horntooter,
because the query about the maximum rating would fail. This restriction,
however, is easy to overcome. By repeatedly asking queries of the form, “How
many sailors are there whose age is greater than X?” until the system rejects
one such query, Pete identifies a set of N sailors, including Horntooter. Let the
value of X at this point be 55. Now, Pete can ask two queries:

“What is the sum of the ratings of all sailors whose age is greater than
55?” Since N sailors have age greater than 55, this query is permitted.

“What is the sum of the ratings of all sailors, other than Horntooter, whose
age is greater than 55, and sailor Pete?” Since the set of sailors whose rat-
ings are added up now includes Pete instead of Horntooter, but is otherwise
the same, the number of sailors involved is still N, and this query is also
permitted.

From the answers to these two queries, say, A1 and A2, Pete, who knows his
rating, can easily calculate Horntooter’s rating as A1 −A2 + Pete’s rating.

Pete succeeded because he was able to ask two queries that involved many of
the same sailors. The number of rows examined in common by two queries
is called their intersection. If a limit were to be placed on the amount of
intersection permitted between any two queries issued by the same user, Pete
could be foiled. Actually, a truly fiendish (and patient) user can generally find
out information about specific individuals even if the system places a minimum
number of rows bound (N) and a maximum intersection bound (M) on queries,
but the number of queries required to do this grows in proportion to N/M . We
can try to additionally limit the total number of queries that a user is allowed
to ask, but two users could still conspire to breach security. By maintaining
a log of all activity (including read-only accesses), such query patterns can be
detected, ideally before a security violation occurs. This discussion should make
it clear, however, that security in statistical databases is difficult to enforce.

21.7 DESIGN CASE STUDY: THE INTERNET STORE

We return to our case study and our friends at DBDudes to consider security
issues. There are three groups of users: customers, employees, and the owner
of the book shop. (Of course, there is also the database administrator, who
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has universal access to all data and is responsible for regular operation of the
database system.)

The owner of the store has full privileges on all tables. Customers can query the
Books table and place orders online, but they should not have access to other
customers’ records nor to other customers’ orders. DBDudes restricts access
in two ways. First, it designs a simple Web page with several forms similar to
the page shown in Figure 7.1 in Chapter 7. This allows customers to submit
a small collection of valid requests without giving them the ability to directly
access the underlying DBMS through an SQL interface. Second, DBDudes uses
the security features of the DBMS to limit access to sensitive data.

The webpage allows customers to query the Books relation by ISBN number,
name of the author, and title of a book. The webpage also has two buttons.
The first button retrieves a list of all of the customer’s orders that are not
completely fulfilled yet. The second button displays a list of all completed
orders for that customer. Note that customers cannot specify actual SQL
queries through theWeb but only fill in some parameters in a form to instantiate
an automatically generated SQL query. All queries generated through form
input have a WHERE clause that includes the cid attribute value of the current
customer, and evaluation of the queries generated by the two buttons requires
knowledge of the customer identification number. Since all users have to log
on to the website before browsing the catalog, the business logic (discussed
in Section 7.7) must maintain state information about a customer (i.e., the
customer identification number) during the customer’s visit to the website.

The second step is to configure the database to limit access according to each
user group’s need to know. DBDudes creates a special customer account that
has the following privileges:

SELECT ON Books, NewOrders, OldOrders, NewOrderlists, OldOrderlists
INSERT ON NewOrders, OldOrders, NewOrderlists, OldOrderlists

Employees should be able to add new books to the catalog, update the quantity
of a book in stock, revise customer orders if necessary, and update all customer
information except the credit card information. In fact, employees should not
even be able to see a customer’s credit card number. Therefore, DBDudes
creates the following view:

CREATE VIEW CustomerInfo (cid,cname,address)
AS SELECT C.cid, C.cname, C.address

FROM Customers C

DBDudes gives the employee account the following privileges:
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SELECT ON CustomerInfo, Books,
NewOrders, OldOrders, NewOrderlists, OldOrderlists

INSERT ON CustomerInfo, Books,
NewOrders, OldOrders, NewOrderlists, OldOrderlists

UPDATE ON CustomerInfo, Books,
NewOrders, OldOrders, NewOrderlists, OldOrderlists

DELETE ON Books, NewOrders, OldOrders, NewOrderlists, OldOrderlists

Observe that employees can modify CustomerInfo and even insert tuples into
it. This is possible because they have the necessary privileges, and further, the
view is updatable and insertable-into. While it seems reasonable that employees
can update a customer’s address, it does seem odd that they can insert a tuple
into CustomerInfo even though they cannot see related information about the
customer (i.e., credit card number) in the Customers table. The reason for
this is that the store wants to be able to take orders from first-time customers
over the phone without asking for credit card information over the phone.
Employees can insert into CustomerInfo, effectively creating a new Customers
record without credit card information, and customers can subsequently provide
the credit card number through a Web interface. (Obviously, the order is not
shipped until they do this.)

In addition, there are security issues when the user first logs on to the website
using the customer identification number. Sending the number unencrypted
over the Internet is a security hazard, and a secure protocol such as SSL should
be used.

Companies such as CyberCash and DigiCash offer electronic commerce pay-
ment solutions, even including electronic cash. Discussion of how to incorporate
such techniques into the website are outside the scope of this book.

21.8 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What are the main objectives in designing a secure database application?
Explain the terms secrecy, integrity, availability, and authentication. (Sec-
tion 21.1)

Explain the terms security policy and security mechanism and how they
are related. (Section 21.1)

What is the main idea behind discretionary access control? What is the
idea behind mandatory access control? What are the relative merits of
these two approaches? (Section 21.2)
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Describe the privileges recognized in SQL? In particular, describe SELECT,
INSERT, UPDATE, DELETE, and REFERENCES. For each privilege, indicate
who acquires it automatically on a given table. (Section 21.3)

How are the owners of privileges identified? In particular, discuss autho-
rization IDs and roles. (Section 21.3)

What is an authorization graph? Explain SQL’s GRANT and REVOKE com-
mands in terms of their effect on this graph. In particular, discuss what
happens when users pass on privileges that they receive from someone else.
(Section 21.3)

Discuss the difference between having a privilege on a table and on a view
defined over the table. In particular, how can a user have a privilege
(say, SELECT) over a view without also having it on all underlying tables?
Who must have appropriate privileges on all underlying tables of the view?
(Section 21.3.1)

What are objects, subjects, security classes, and clearances in mandatory
access control? Discuss the Bell-LaPadula restrictions in terms of these con-
cepts. Specifically, define the simple security property and the *-property.
(Section 21.4)

What is a Trojan horse attack and how can it compromise discretionary
access control? Explain how mandatory access control protects against
Trojan horse attacks. (Section 21.4)

What do the terms multilevel table and polyinstantiation mean? Explain
their relationship, and how they arise in the context of mandatory access
control. (Section 21.4.1)

What are covert channels and how can they arise when both discretionary
and mandatory access controls are in place? (Section 21.4.2)

Discuss the DoD security levels for database systems. (Section 21.4.2)

Explain why a simple password mechanism is insufficient for authentica-
tion of users who access a database remotely, say, over the Internet. (Sec-
tion 21.5)

What is the difference between symmetric and public-key encryption? Give
examples of well-known encryption algorithms of both kinds. What is the
main weakness of symmetric encryption and how is this addressed in public-
key encryption? (Section 21.5.1)

Discuss the choice of encryption and decryption keys in public-key encryp-
tion and how they are used to encrypt and decrypt data. Explain the role
of one-way functions. What assurance do we have that the RSA scheme
cannot be compromised? (Section 21.5.1)
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What are certification authorities and why are they needed? Explain how
certificates are issued to sites and validated by a browser using the SSL
protocol; discuss the role of the session key. (Section 21.5.2)

If a user connects to a site using the SSL protocol, explain why there is still
a need to login the user. Explain the use of SSL to protect passwords and
other sensitive information being exchanged. What is the secure electronic
transaction protocol? What is the added value over SSL? (Section 21.5.2)

A digital signature facilitates secure exchange of messages. Explain what
it is and how it goes beyond simply encrypting messages. Discuss the use
of message signatures to reduce the cost of encryption. (Section 21.5.3)

What is the role of the database administrator with respect to security?
(Section 21.6.1)

Discuss the additional security loopholes introduced in statistical databases.
(Section 21.6.2)

EXERCISES

Exercise 21.1 Briefly answer the following questions:

1. Explain the intuition behind the two rules in the Bell-LaPadula model for mandatory
access control.

2. Give an example of how covert channels can be used to defeat the Bell-LaPadula model.

3. Give an example of polyinstantiation.

4. Describe a scenario in which mandatory access controls prevent a breach of security that
cannot be prevented through discretionary controls.

5. Describe a scenario in which discretionary access controls are required to enforce a secu-
rity policy that cannot be enforced using only mandatory controls.

6. If a DBMS already supports discretionary and mandatory access controls, is there a need
for encryption?

7. Explain the need for each of the following limits in a statistical database system:

(a) A maximum on the number of queries a user can pose.

(b) A minimum on the number of tuples involved in answering a query.

(c) A maximum on the intersection of two queries (i.e., on the number of tuples that
both queries examine).

8. Explain the use of an audit trail, with special reference to a statistical database system.

9. What is the role of the DBA with respect to security?

10. Describe AES and its relationship to DES.

11. What is public-key encryption? How does it differ from the encryption approach taken
in the Data Encryption Standard (DES), and in what ways is it better than DES?
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12. Explain how a company offering services on the Internet could use encryption-based
techniques to make its order-entry process secure. Discuss the role of DES, AES, SSL,
SET, and digital signatures. Search the Web to find out more about related techniques
such as electronic cash.

Exercise 21.2 You are the DBA for the VeryFine Toy Company and create a relation called
Employees with fields ename, dept, and salary. For authorization reasons, you also define
views EmployeeNames (with ename as the only attribute) and DeptInfo with fields dept and
avgsalary. The latter lists the average salary for each department.

1. Show the view definition statements for EmployeeNames and DeptInfo.

2. What privileges should be granted to a user who needs to know only average department
salaries for the Toy and CS departments?

3. You want to authorize your secretary to fire people (you will probably tell him whom to
fire, but you want to be able to delegate this task), to check on who is an employee, and
to check on average department salaries. What privileges should you grant?

4. Continuing with the preceding scenario, you do not want your secretary to be able to
look at the salaries of individuals. Does your answer to the previous question ensure this?
Be specific: Can your secretary possibly find out salaries of some individuals (depending
on the actual set of tuples), or can your secretary always find out the salary of any
individual he wants to?

5. You want to give your secretary the authority to allow other people to read the Employ-
eeNames view. Show the appropriate command.

6. Your secretary defines two new views using the EmployeeNames view. The first is called
AtoRNames and simply selects names that begin with a letter in the range A to R. The
second is called HowManyNames and counts the number of names. You are so pleased
with this achievement that you decide to give your secretary the right to insert tuples into
the EmployeeNames view. Show the appropriate command and describe what privileges
your secretary has after this command is executed.

7. Your secretary allows Todd to read the EmployeeNames relation and later quits. You
then revoke the secretary’s privileges. What happens to Todd’s privileges?

8. Give an example of a view update on the preceding schema that cannot be implemented
through updates to Employees.

9. You decide to go on an extended vacation, and to make sure that emergencies can be
handled, you want to authorize your boss Joe to read and modify the Employees relation
and the EmployeeNames relation (and Joe must be able to delegate authority, of course,
since he is too far up the management hierarchy to actually do any work). Show the
appropriate SQL statements. Can Joe read the DeptInfo view?

10. After returning from your (wonderful) vacation, you see a note from Joe, indicating that
he authorized his secretary Mike to read the Employees relation. You want to revoke
Mike’s SELECT privilege on Employees, but you do not want to revoke the rights you
gave to Joe, even temporarily. Can you do this in SQL?

11. Later you realize that Joe has been quite busy. He has defined a view called AllNames
using the view EmployeeNames, defined another relation called StaffNames that he has
access to (but you cannot access), and given his secretary Mike the right to read from
the AllNames view. Mike has passed this right on to his friend Susan. You decide that,
even at the cost of annoying Joe by revoking some of his privileges, you simply have
to take away Mike and Susan’s rights to see your data. What REVOKE statement would
you execute? What rights does Joe have on Employees after this statement is executed?
What views are dropped as a consequence?
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Exercise 21.3 You are a painter and have an Internet store where you sell your paintings
directly to the public. You would like customers to pay for their purchases with credit cards,
and wish to ensure that these electronic transactions are secure.

Assume that Mary wants to purchase your recent painting of the Cornell Uris Library. Answer
the following questions.

1. How can you ensure that the user who is purchasing the painting is really Mary?

2. Explain how SSL ensures that the communication of the credit card number is secure.
What is the role of a certification authority in this case?

3. Assume that you would like Mary to be able to verify that all your email messages are
really sent from you. How can you authenticate your messages without encrypting the
actual text?

4. Assume that your customers can also negotiate the price of certain paintings and assume
that Mary wants to negotiate the price of your painting of the Madison Terrace. You
would like the text of this communication to be private between you and Mary. Explain
the advantages and disadvantages of different methods of encrypting your communication
with Mary.

Exercise 21.4 Consider Exercises 6.6 to 6.9 from Chapter 6. For each exercise, identify
what data should be accessible to different groups of users, and write the SQL statements to
enforce these access control policies.

Exercise 21.5 Consider Exercises 7.7 to 7.10 from Chapter 7. For each exercise, discuss
where encryption, SSL, and digital signatures are appropriate.

PROJECT-BASED EXERCISES

Exercise 21.6 Is there any support for views or authorization in Minibase?
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The authorization mechanism of System R, which greatly influenced the GRANT and REVOKE
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A classic reference on crytography is the book by Schneier [661]. Diffie and Hellman proposed
the first public key cryptographic technique [227]. The widely-used RSA encryption scheme
was introduced by Rivest, Shamir, and Adleman [629]. AES is based on Daemen and Rijmen’s
Rijndael algorithm [200]. There are many introductory books on SSL, such as [623] and [733].
More information on ditigal signatures can be found in the book by Ford and Baum [276].
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PARALLEL AND

DISTRIBUTED DATABASES

☛ What is the motivation for parallel and distributed DBMSs?

☛ What are the alternative architectures for parallel database systems?

☛ How are pipelining and data partitioning used to gain parallelism?

☛ How are dataflow concepts used to parallelize existing sequential code?

☛ What are alternative architectures for distributed DBMSs?

☛ How is data distributed across sites?

☛ How can we evaluate and optimize queries over distributed data?

☛ What are the merits of synchronous vs. asynchronous replication?

☛ How are transactions managed in a distributed environment?

➽ Key concepts: parallel DBMS architectures; performance, speed-
up and scale-up; pipelined versus data-partitioned parallelism, block-
ing; partitioning strategies; dataflow operators; distributed DBMS
architectures; heterogeneous systems; gateway protocols; data distri-
bution, distributed catalogs; semijoins, data shipping; synchronous
versus asynchronous replication; distributed transactions, lock man-
agement, deadlock detection, two-phase commit, Presumed Abort

No man is an island, entire of itself; every man is a piece of the
continent, a part of the main.

—John Donne
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In this chapter we look at the issues of parallelism and data distribution in a
DBMS. We begin by introducing parallel and distributed database systems in
Section 22.1. In Section 22.2, we discuss alternative hardware configurations for
a parallel DBMS. In Section 22.3, we introduce the concept of data partitioning
and consider its influence on parallel query evaluation. In Section 22.4, we show
how data partitioning can be used to parallelize several relational operations.
In Section 22.5, we conclude our treatment of parallel query processing with a
discussion of parallel query optimization.

The rest of the chapter is devoted to distributed databases. We present an
overview of distributed databases in Section 22.6. We discuss some alterna-
tive architectures for a distributed DBMS in Section 22.7 and describe options
for distributing data in Section 22.8. We describe distributed catalog man-
agement in Section 22.9, then in Section 22.10, we discuss query optimization
and evaluation for distributed databases. In Section 22.11, we discuss updating
distributed data, and finally, in Sections 22.12 to 22.14 we describe distributed
transaction management.

22.1 INTRODUCTION

We have thus far considered centralized database management systems in which
all the data is maintained at a single site and assumed that the processing of
individual transactions is essentially sequential. One of the most important
trends in databases is the increased use of parallel evaluation techniques and
data distribution.

A parallel database system seeks to improve performance through paral-
lelization of various operations, such as loading data, building indexes, and
evaluating queries. Although data may be stored in a distributed fashion in
such a system, the distribution is governed solely by performance considera-
tions.

In a distributed database system, data is physically stored across several
sites, and each site is typically managed by a DBMS capable of running in-
dependent of the other sites. The location of data items and the degree of
autonomy of individual sites have a significant impact on all aspects of the
system, including query optimization and processing, concurrency control, and
recovery. In contrast to parallel databases, the distribution of data is governed
by factors such as local ownership and increased availability, in addition to
performance issues.

While parallelism is motivated by performance considerations, several distinct
issues motivate data distribution:
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Increased Availability: If a site containing a relation goes down, the
relation continues to be available if a copy is maintained at another site.

Distributed Access to Data: An organization may have branches in
several cities. Although analysts may need to access data corresponding to
different sites, we usually find locality in the access patterns (e.g., a bank
manager is likely to look up the accounts of customers at the local branch),
and this locality can be exploited by distributing the data accordingly.

Analysis of Distributed Data: Organizations want to examine all the
data available to them, even when it is stored across multiple sites and
on multiple database systems. Support for such integrated access involves
many issues; even enabling access to widely distributed data can be a
challenge.

22.2 ARCHITECTURES FOR PARALLEL DATABASES

The basic idea behind parallel databases is to carry out evaluation steps in par-
allel whenever possible, and there are many such opportunities in a relational
DBMS; databases represent one of the most successful instances of parallel
computing.

Interconnection Network

Interconnection Network

Interconnection Network

D D D

P P P

D D D

P P P

D D D

P P P

M MM

M MM

Global Shared Memory

SHARED NOTHING SHARED MEMORY SHARED DISK

Figure 22.1 Physical Architectures for Parallel Database Systems

Three main architectures have been proposed for building parallel DBMSs. In
a shared-memory system, multiple CPUs are attached to an interconnection
network and can access a common region of main memory. In a shared-disk
system, each CPU has a private memory and direct access to all disks through
an interconnection network. In a shared-nothing system, each CPU has local
main memory and disk space, but no two CPUs can access the same storage
area; all communication between CPUs is through a network connection. The
three architectures are illustrated in Figure 22.1.
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The shared-memory architecture is closer to a conventional machine, and many
commercial database systems have been ported to shared memory platforms
with relative ease. Communication overhead is low, because main memory can
be used for this purpose, and operating system services can be leveraged to
utilize the additional CPUs. Although this approach is attractive for achieving
moderate parallelism—a few tens of CPUs can be exploited in this fashion—
memory contention becomes a bottleneck as the number of CPUs increases.
The shared-disk architecture faces a similar problem because large amounts of
data are shipped through the interconnection network.

The basic problem with the shared-memory and shared-disk architectures is in-
terference: As more CPUs are added, existing CPUs are slowed down because
of the increased contention for memory accesses and network bandwidth. It has
been noted that even an average 1 percent slowdown per additional CPU means
that the maximum speed-up is a factor of 37, and adding additional CPUs ac-
tually slows down the system; a system with 1000 CPUs is only 4 percent as
effective as a single-CPU system! This observation has motivated the develop-
ment of the shared-nothing architecture, which is now widely considered to be
the best architecture for large parallel database systems.

The shared-nothing architecture requires more extensive reorganization of the
DBMS code, but it has been shown to provide linear speed-up, in that the
time taken for operations decreases in proportion to the increase in the number
of CPUs and disks, and linear scale-up, in that performance is sustained if
the number of CPUs and disks are increased in proportion to the amount of
data. Consequently, ever-more-powerful parallel database systems can be built
by taking advantage of rapidly improving performance for single-CPU systems
and connecting as many CPUs as desired.

Speed-up and scale-up are illustrated in Figure 22.2. The speed-up curves show
how, for a fixed database size, more transactions can be executed per second
by adding CPUs. The scale-up curves show how adding more resources (in the
form of CPUs) enables us to process larger problems. The first scale-up graph
measures the number of transactions executed per second as the database size is
increased and the number of CPUs is correspondingly increased. An alternative
way to measure scale-up is to consider the time taken per transaction as more
CPUs are added to process an increasing number of transactions per second;
the goal here is to sustain the response time per transaction.

22.3 PARALLEL QUERY EVALUATION

In this section, we discuss parallel evaluation of a relational query in a DBMS
with a shared-nothing architecture. While it is possible to consider parallel
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Figure 22.2 Speed-up and Scale-up

execution of multiple queries, it is hard to identify in advance which queries
will run concurrently. So the emphasis has been on parallel execution of a single
query.

A relational query execution plan is a graph of relational algebra operators,
and the operators in a graph can be executed in parallel. If one operator
consumes the output of a second operator, we have pipelined parallelism
(the output of the second operator is worked on by the first operator as soon as
it is generated); if not, the two operators can proceed essentially independently.
An operator is said to block if it produces no output until it has consumed all
its inputs. Pipelined parallelism is limited by the presence of operators (e.g.,
sorting or aggregation) that block.

In addition to evaluating different operators in parallel, we can evaluate each
individual operator in a query plan in a parallel fashion. The key to evaluating
an operator in parallel is to partition the input data; we can then work on
each partition in parallel and combine the results. This approach is called
data-partitioned parallel evaluation. By exercising some care, existing
code for sequentially evaluating relational operators can be ported easily for
data-partitioned parallel evaluation.

An important observation, which explains why shared-nothing parallel database
systems have been very successful, is that database query evaluation is very
amenable to data-partitioned parallel evaluation. The goal is to minimize data
shipping by partitioning the data and structuring the algorithms to do most of
the processing at individual processors. (We use processor to refer to a CPU
together with its local disk.)

We now consider data partitioning and parallelization of existing operator eval-
uation code in more detail.
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22.3.1 Data Partitioning

Partitioning a large dataset horizontally across several disks enables us to ex-
ploit the I/O bandwidth of the disks by reading and writing them in parallel.
There are several ways to horizontally partition a relation. We can assign tuples
to processors in a round-robin fashion, we can use hashing, or we can assign
tuples to processors by ranges of field values. If there are n processors, the ith
tuple is assigned to processor i mod n in round-robin partitioning. Recall
that round-robin partitioning is used in RAID storage systems (see Section 9.2).
In hash partitioning, a hash function is applied to (selected fields of) a tuple
to determine its processor. In range partitioning, tuples are sorted (con-
ceptually), and n ranges are chosen for the sort key values so that each range
contains roughly the same number of tuples; tuples in range i are assigned to
processor i.

Round-robin partitioning is suitable for efficiently evaluating queries that ac-
cess the entire relation. If only a subset of the tuples (e.g., those that satisfy
the selection condition age = 20) is required, hash partitioning and range par-
titioning are better than round-robin partitioning because they enable us to
access only those disks that contain matching tuples. (Of course, this state-
ment assumes that the tuples are partitioned on the attributes in the selection
condition; if age = 20 is specified, the tuples must be partitioned on age.) If
range selections such as 15 < age < 25 are specified, range partitioning is su-
perior to hash partitioning because qualifying tuples are likely to be clustered
together on a few processors. On the other hand, range partitioning can lead
to data skew; that is, partitions with widely varying numbers of tuples across
partitions or disks. Skew causes processors dealing with large partitions to
become performance bottlenecks. Hash partitioning has the additional virtue
that it keeps data evenly distributed even if the data grows and shrinks over
time.

To reduce skew in range partitioning, the main question is how to choose the
ranges by which tuples are distributed. One effective approach is to take sam-
ples from each processor, collect and sort all samples, and divide the sorted set
of samples into equally sized subsets. If tuples are to be partitioned on age,
the age ranges of the sampled subsets of tuples can be used as the basis for
redistributing the entire relation.

22.3.2 Parallelizing Sequential Operator Evaluation Code

An elegant software architecture for parallel DBMSs enables us to readily par-
allelize existing code for sequentially evaluating a relational operator. The
basic idea is to use parallel data streams. Streams (from different disks or
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the output of other operators) are merged as needed to provide the inputs
for a relational operator, and the output of an operator is split as needed to
parallelize subsequent processing.

A parallel evaluation plan consists of a dataflow network of relational, merge,
and split operators. The merge and split operators should be able to buffer
some data and should be able to halt the operators producing their input data.
They can then regulate the speed of the execution according to the execution
speed of the operator that consumes their output.

As we will see, obtaining good parallel versions of algorithms for sequential
operator evaluation requires careful consideration; there is no magic formula
for taking sequential code and producing a parallel version. Good use of split
and merge in a dataflow software architecture, however, can greatly reduce the
effort of implementing parallel query evaluation algorithms, as we illustrate in
Section 22.4.3.

22.4 PARALLELIZING INDIVIDUAL OPERATIONS

This section shows how various operations can be implemented in parallel in
a shared-nothing architecture. We assume that each relation is horizontally
partitioned across several disks, although this partitioning may or may not be
appropriate for a given query. The evaluation of a query must take the initial
partitioning criteria into account and repartition if necessary.

22.4.1 Bulk Loading and Scanning

We begin with two simple operations: scanning a relation and loading a relation.
Pages can be read in parallel while scanning a relation, and the retrieved tuples
can then be merged, if the relation is partitioned across several disks. More
generally, the idea also applies when retrieving all tuples that meet a selection
condition. If hashing or range partitioning is used, selection queries can be
answered by going to just those processors that contain relevant tuples.

A similar observation holds for bulk loading. Further, if a relation has asso-
ciated indexes, any sorting of data entries required for building the indexes
during bulk loading can also be done in parallel (see later).
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22.4.2 Sorting

A simple idea is to let each CPU sort the part of the relation that is on its local
disk and then merge these sorted sets of tuples. The degree of parallelism is
likely to be limited by the merging phase.

A better idea is to first redistribute all tuples in the relation using range par-
titioning. For example, if we want to sort a collection of employee tuples by
salary, salary values range from 10 to 210, and we have 20 processors, we could
send all tuples with salary values in the range 10 to 20 to the first processor,
all in the range 21 to 30 to the second processor, and so on. (Prior to the redis-
tribution, while tuples are distributed across the processors, we cannot assume
that they are distributed according to salary ranges.)

Each processor then sorts the tuples assigned to it, using some sequential sorting
algorithm. For example, a processor can collect tuples until its memory is full,
then sort these tuples and write out a run, until all incoming tuples have been
written to such sorted runs on the local disk. These runs can then be merged
to create the sorted version of the set of tuples assigned to this processor. The
entire sorted relation can be retrieved by visiting the processors in an order
corresponding to the ranges assigned to them and simply scanning the tuples.

The basic challenge in parallel sorting is to do the range partitioning so that
each processor receives roughly the same number of tuples; otherwise, a proces-
sor that receives a disproportionately large number of tuples to sort becomes a
bottleneck and limits the scalability of the parallel sort. One good approach to
range partitioning is to obtain a sample of the entire relation by taking samples
at each processor that initially contains part of the relation. The (relatively
small) sample is sorted and used to identify ranges with equal numbers of tu-
ples. This set of range values, called a splitting vector, is then distributed to
all processors and used to range partition the entire relation.

A particularly important application of parallel sorting is sorting the data en-
tries in tree-structured indexes. Sorting data entries can significantly speed up
the process of bulk-loading an index.

22.4.3 Joins

In this section, we consider how the join operation can be parallelized. We
present the basic idea behind the parallelization and illustrate the use of the
merge and split operators described in Section 22.3.2. We focus on parallel
hash join, which is widely used, and briefly outline how sort-merge join can
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be similarly parallelized. Other join algorithms can be parallelized as well,
although not as effectively as these two algorithms.

Suppose that we want to join two relations, say, A and B, on the age attribute.
We assume that they are initially distributed across several disks in some way
that is not useful for the join operation; that is, the initial partitioning is not
based on the join attribute. The basic idea for joining A and B in parallel is
to decompose the join into a collection of k smaller joins. We can decompose
the join by partitioning both A and B into a collection of k logical buckets
or partitions. By using the same partitioning function for both A and B, we
ensure that the union of the k smaller joins computes the join of A and B; this
idea is similar to intuition behind the partitioning phase of a sequential hash
join, described in Section 14.4.3. Because A and B are initially distributed
across several processors, the partitioning step itself can be done in parallel at
these processors. At each processor, all local tuples are retrieved and hashed
into one of k partitions, with the same hash function used at all sites, of course.

Alternatively, we can partition A and B by dividing the range of the join at-
tribute age into k disjoint subranges and placing A and B tuples into partitions
according to the subrange to which their age values belong. For example, sup-
pose that we have 10 processors, the join attribute is age, with values from 0 to
100. Assuming uniform distribution, A and B tuples with 0 ≤ age < 10 go to
processor 1, 10 ≤ age < 20 go to processor 2, and so on. This approach is likely
to be more susceptible than hash partitioning to data skew (i.e., the number
of tuples to be joined can vary widely across partitions), unless the subranges
are carefully determined; we do not discuss how good subrange boundaries can
be identified.

Having decided on a partitioning strategy, we can assign each partition to a
processor and carry out a local join, using any join algorithm we want, at
each processor. In this case, the number of partitions k is chosen to be equal
to the number of processors n available for carrying out the join, and during
partitioning, each processor sends tuples in the ith partition to processor i.
After partitioning, each processor joins the A and B tuples assigned to it.
Each join process executes sequential join code and receives input A and B
tuples from several processors; a merge operator merges all incoming A tuples,
and another merge operator merges all incoming B tuples. Depending on how
we want to distribute the result of the join of A and B, the output of the join
process may be split into several data streams. The network of operators for
parallel join is shown in Figure 22.3. To simplify the figure, we assume that the
processors doing the join are distinct from the processors that initially contain
tuples of A and B and show only four processors.
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Figure 22.3 Dataflow Network of Operators for Parallel Join

If range partitioning is used, this algorithm leads to a parallel version of a sort-
merge join, with the advantage that the output is available in sorted order. If
hash partitioning is used, we obtain a parallel version of a hash join.

Improved Parallel Hash Join

A hash-based refinement of the approach offers improved performance. The
main observation is that, if A and B are very large and the number of partitions
k is chosen to be equal to the number of processors n, the size of each partition
may still be large, leading to a high cost for each local join at the n processors.

An alternative is to execute the smaller joins Ai   Bi, for i = 1 . . . k, one
after the other, but with each join executed in parallel using all processors.
This approach allows us to utilize the total available main memory at all n
processors in each join Ai   Bi and is described in more detail as follows:

1. At each site, apply a hash function h1 to partition the A and B tuples
at this site into partitions i = 1 . . . k. Let A be the smaller relation. The
number of partitions k is chosen such that each partition of A fits into the
aggregate or combined memory of all n processors.

2. For i = 1 . . . k, process the join of the ith partitions of A and B. To
compute Ai   Bi, do the following at every site:

(a) Apply a second hash function h2 to all Ai tuples to determine where
they should be joined and send tuple t to site h2(t).

(b) As Ai tuples arrive to be joined, add them to an in-memory hash table.
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(c) After all Ai tuples have been distributed, apply h2 to Bi tuples to
determine where they should be joined and send tuple t to site h2(t).

(d) As Bi tuples arrive to be joined, probe the in-memory table of Ai

tuples and output result tuples.

The use of the second hash function h2 ensures that tuples are (more or less)
uniformly distributed across all n processors participating in the join. This
approach greatly reduces the cost for each of the smaller joins and therefore
reduces the overall join cost. Observe that all available processors are fully
utilized, even though the smaller joins are carried out one after the other.

The reader is invited to adapt the network of operators shown in Figure 22.3
to reflect the improved parallel join algorithm.

22.5 PARALLEL QUERY OPTIMIZATION

In addition to parallelizing individual operations, we can obviously execute dif-
ferent operations in a query in parallel and execute multiple queries in parallel.
Optimizing a single query for parallel execution has received more attention;
systems typically optimize queries without regard to other queries that might
be executing at the same time.

Two kinds of interoperation parallelism can be exploited within a query:

The result of one operator can be pipelined into another. For example,
consider a left-deep plan in which all the joins use index nested loops. The
result of the first (i.e., the bottommost) join is the outer relation tuples
for the next join node. As tuples are produced by the first join, they can
be used to probe the inner relation in the second join. The result of the
second join can similarly be pipelined into the next join, and so on.

Multiple independent operations can be executed concurrently. For exam-
ple, consider a (bushy) plan in which relations A and B are joined, relations
C and D are joined, and the results of these two joins are finally joined.
Clearly, the join of A and B can be executed concurrently with the join of
C and D.

An optimizer that seeks to parallelize query evaluation has to consider several
issues, and we only outline the main points. The cost of executing individual
operations in parallel (e.g., parallel sorting) obviously differs from executing
them sequentially, and the optimizer should estimate operation costs accord-
ingly.
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Next, the plan that returns answers quickest may not be the plan with the
least cost. For example, the cost of A   B plus the cost of C   D plus the
cost of joining their results may be more than the cost of the cheapest left-deep
plan. However, the time taken is the time for the more expensive of A   B
and C   D plus the time to join their results. This time may be less than
the time taken by the cheapest left-deep plan. This observation suggests that
a parallelizing optimizer should not restrict itself to left-deep trees and should
also consider bushy trees, which significantly enlarge the space of plans to be
considered.

Finally, a number of parameters, such as available buffer space and the num-
ber of free processors, are known only at run-time. This comment holds in a
multiuser environment even if only sequential plans are considered; a multiuser
environment is a simple instance of interquery parallelism.

22.6 INTRODUCTION TO DISTRIBUTED DATABASES

As we observed earlier, data in a distributed database system is stored across
several sites, and each site is typically managed by a DBMS that can run inde-
pendent of the other sites. The classical view of a distributed database system
is that the system should make the impact of data distribution transparent.
In particular, the following properties are considered desirable:

Distributed Data Independence: Users should be able to ask queries
without specifying where the referenced relations, or copies or fragments
of the relations, are located. This principle is a natural extension of phys-
ical and logical data independence; we discuss it in Section 22.8. Further,
queries that span multiple sites should be optimized systematically in a
cost-based manner, taking into account communication costs and differ-
ences in local computation costs. We discuss distributed query optimiza-
tion in Section 22.10.

Distributed Transaction Atomicity: Users should be able to write
transactions that access and update data at several sites just as they would
write transactions over purely local data. In particular, the effects of a
transaction across sites should continue to be atomic; that is, all changes
persist if the transaction commits and none persist if it aborts. We discuss
this distributed transaction processing in Sections 22.11, 22.13, and 22.14.

Although most people would agree that these properties are in general desir-
able, in certain situations, such as when sites are connected by a slow long-
distance network, these properties are not efficiently achievable. Indeed, it has
been argued that, when sites are globally distributed, these properties are not
even desirable. The argument essentially is that the administrative overhead
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of supporting a system with distributed data independence and transaction
atomicity—in effect, coordinating all activities across all sites to support the
view of the whole as a unified collection of data—is prohibitive, over and above
DBMS performance considerations.

Keep these remarks about distributed databases in mind as we cover the topic
in more detail in the rest of this chapter. There is no real consensus on what the
design objectives of distributed databases should be, and the field is evolving
in response to users’ needs.

22.6.1 Types of Distributed Databases

If data is distributed but all servers run the same DBMS software, we have a
homogeneous distributed database system. If different sites run under
the control of different DBMSs, essentially autonomously, and are connected
somehow to enable access to data from multiple sites, we have a heteroge-
neous distributed database system, also referred to as a multidatabase
system.

The key to building heterogeneous systems is to have well-accepted standards
for gateway protocols. A gateway protocol is an API that exposes DBMS
functionality to external applications. Examples include ODBC and JDBC (see
Section 6.2). By accessing database servers through gateway protocols, their
differences (in capability, data format, etc.) are masked, and the differences
between the different servers in a distributed system are bridged to a large
degree.

Gateways are not a panacea, however. They add a layer of processing that can
be expensive, and they do not completely mask the differences among servers.
For example, a server may not be capable of providing the services required for
distributed transaction management (see Sections 22.13 and 22.14), and even
if it is capable, standardizing gateway protocols all the way down to this level
of interaction poses challenges that have not yet been resolved satisfactorily.

Distributed data management, in the final analysis, comes at a significant cost
in terms of performance, software complexity, and administration difficulty.
This observation is especially true of heterogeneous systems.

22.7 DISTRIBUTED DBMS ARCHITECTURES

Three alternative approaches are used to separate functionality across different
DBMS-related processes; these alternative distributed DBMS architectures are
called Client-Server, Collaborating Server, and Middleware.
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22.7.1 Client-Server Systems

A Client-Server system has one or more client processes and one or more
server processes, and a client process can send a query to any one server process.
Clients are responsible for user-interface issues, and servers manage data and
execute transactions. Thus, a client process could run on a personal computer
and send queries to a server running on a mainframe.

This architecture has become very popular for several reasons. First, it is rel-
atively simple to implement due to its clean separation of functionality and
because the server is centralized. Second, expensive server machines are not
underutilized by dealing with mundane user-interactions, which are now rel-
egated to inexpensive client machines. Third, users can run a graphical user
interface that they are familiar with, rather than the (possibly unfamiliar and
unfriendly) user interface on the server.

While writing Client-Server applications, it is important to remember the
boundary between the client and the server and keep the communication be-
tween them as set-oriented as possible. In particular, opening a cursor and
fetching tuples one at a time generates many messages and should be avoided.
(Even if we fetch several tuples and cache them at the client, messages must
be exchanged when the cursor is advanced to ensure that the current row is
locked.) Techniques to exploit client-side caching to reduce communication
overhead have been studied extensively, although we do not discuss them fur-
ther.

22.7.2 Collaborating Server Systems

The Client-Server architecture does not allow a single query to span multiple
servers because the client process would have to be capable of breaking such
a query into appropriate subqueries to be executed at different sites and then
piecing together the answers to the subqueries. The client process would there-
fore be quite complex, and its capabilities would begin to overlap with the
server; distinguishing between clients and servers becomes harder. Eliminating
this distinction leads us to an alternative to the Client-Server architecture: a
Collaborating Server system. We can have a collection of database servers,
each capable of running transactions against local data, which cooperatively
execute transactions spanning multiple servers.

When a server receives a query that requires access to data at other servers, it
generates appropriate subqueries to be executed by other servers and puts the
results together to compute answers to the original query. Ideally, the decom-
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position of the query should be done using cost-based optimization, taking into
account the cost of network communication as well as local processing costs.

22.7.3 Middleware Systems

The Middleware architecture is designed to allow a single query to span mul-
tiple servers, without requiring all database servers to be capable of managing
such multi-site execution strategies. It is especially attractive when trying to
integrate several legacy systems, whose basic capabilities cannot be extended.

The idea is that we need just one database server capable of managing queries
and transactions spanning multiple servers; the remaining servers need to han-
dle only local queries and transactions. We can think of this special server as
a layer of software that coordinates the execution of queries and transactions
across one or more independent database servers; such software is often called
middleware. The middleware layer is capable of executing joins and other
relational operations on data obtained from the other servers but, typically,
does not itself maintain any data.

22.8 STORING DATA IN A DISTRIBUTED DBMS

In a distributed DBMS, relations are stored across several sites. Accessing a
relation stored at a remote site incurs message-passing costs and, to reduce
this overhead, a single relation may be partitioned or fragmented across several
sites, with fragments stored at the sites where they are most often accessed or
replicated at each site where the relation is in high demand.

22.8.1 Fragmentation

Fragmentation consists of breaking a relation into smaller relations or frag-
ments and storing the fragments (instead of the relation itself), possibly at
different sites. In horizontal fragmentation, each fragment consists of a
subset of rows of the original relation. In vertical fragmentation, each frag-
ment consists of a subset of columns of the original relation. Horizontal and
vertical fragments are illustrated in Figure 22.4.

Typically, the tuples that belong to a given horizontal fragment are identified
by a selection query; for example, employee tuples might be organized into
fragments by city, with all employees in a given city assigned to the same frag-
ment. The horizontal fragment shown in Figure 22.4 corresponds to Chicago.
By storing fragments in the database site at the corresponding city, we achieve
locality of reference—Chicago data is most likely to be updated and queried
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from Chicago, and storing this data in Chicago makes it local (and reduces
communication costs) for most queries. Similarly, the tuples in a given ver-
tical fragment are identified by a projection query. The vertical fragment in
the figure results from projection on the first two columns of the employees
relation.

When a relation is fragmented, we must be able to recover the original relation
from the fragments:

Horizontal Fragmentation: The union of the horizontal fragments must
be equal to the original relation. Fragments are usually also required to be
disjoint.

Vertical Fragmentation: The collection of vertical fragments should be
a lossless-join decomposition, as per the definition in Chapter 19.

To ensure that a vertical fragmentation is lossless-join, systems often assign a
unique tuple id to each tuple in the original relation, as shown in Figure 22.4,
and attach this id to the projection of the tuple in each fragment. If we think of
the original relation as containing an additional tuple-id field that is a key, this
field is added to each vertical fragment. Such a decomposition is guaranteed to
be lossless-join.

In general, a relation can be (horizontally or vertically) fragmented, and each
resulting fragment can be further fragmented. For simplicity of exposition, in
the rest of this chapter, we assume that fragments are not recursively parti-
tioned in this manner.
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22.8.2 Replication

Replication means that we store several copies of a relation or relation frag-
ment. An entire relation can be replicated at one or more sites. Similarly, one
or more fragments of a relation can be replicated at other sites. For example, if
a relation R is fragmented into R1, R2, and R3, there might be just one copy
of R1, whereas R2 is replicated at two other sites and R3 is replicated at all
sites.

The motivation for replication is twofold:

Increased Availability of Data: If a site that contains a replica goes
down, we can find the same data at other sites. Similarly, if local copies of
remote relations are available, we are less vulnerable to failure of commu-
nication links.

Faster Query Evaluation: Queries can execute faster by using a local
copy of a relation instead of going to a remote site.

The two kinds of replication, called synchronous and asynchronous replication,
differ primarily in how replicas are kept current when the relation is modified
(see Section 22.11).

22.9 DISTRIBUTED CATALOG MANAGEMENT

Keeping track of data distributed across several sites can get complicated. We
must keep track of how relations are fragmented and replicated—that is, how
relation fragments are distributed across several sites and where copies of frag-
ments are stored—in addition to the usual schema, authorization, and statisti-
cal information.

22.9.1 Naming Objects

If a relation is fragmented and replicated, we must be able to uniquely identify
each replica of each fragment. Generating such unique names requires some
care. If we use a global name-server to assign globally unique names, local
autonomy is compromised; we want (users at) each site to be able to assign
names to local objects without reference to names systemwide.

The usual solution to the naming problem is to use names consisting of several
fields. For example, we could have:
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A local name field, which is the name assigned locally at the site where the
relation is created. Two objects at different sites could have the same local
name, but two objects at a given site cannot have the same local name.

A birth site field, which identifies the site where the relation was created,
and where information is maintained about all fragments and replicas of
the relation.

These two fields identify a relation uniquely; we call the combination a global
relation name. To identify a replica (of a relation or a relation fragment), we
take the global relation name and add a replica-id field; we call the combination
a global replica name.

22.9.2 Catalog Structure

A centralized system catalog can be used but is vulnerable to failure of the site
containing the catalog. An alternative is to maintain a copy of a global system
catalog, which describes all the data at every site. Although this approach
is not vulnerable to a single-site failure, it compromises site autonomy, just
like the first solution, because every change to a local catalog must now be
broadcast to all sites.

A better approach, which preserves local autonomy and is not vulnerable to a
single-site failure, was developed in the R* distributed database project, which
was a successor to the System R project at IBM. Each site maintains a local
catalog that describes all copies of data stored at that site. In addition, the
catalog at the birth site for a relation is responsible for keeping track of where
replicas of the relation (in general, of fragments of the relation) are stored. In
particular, a precise description of each replica’s contents—a list of columns
for a vertical fragment or a selection condition for a horizontal fragment—is
stored in the birth site catalog. Whenever a new replica is created or a replica
is moved across sites, the information in the birth site catalog for the relation
must be updated.

To locate a relation, the catalog at its birth site must be looked up. This
catalog information can be cached at other sites for quicker access, but the
cached information may become out of date if, for example, a fragment is
moved. We would discover that the locally cached information is out of date
when we use it to access the relation, and at that point, we must update the
cache by looking up the catalog at the birth site of the relation. (The birth site
of a relation is recorded in each local cache that describes the relation, and the
birth site never changes, even if the relation is moved.)
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22.9.3 Distributed Data Independence

Distributed data independence means that users should be able to write queries
without regard to how a relation is fragmented or replicated; it is the respon-
sibility of the DBMS to compute the relation as needed (by locating suitable
copies of fragments, joining the vertical fragments, and taking the union of
horizontal fragments).

In particular, this property implies that users should not have to specify the
full name for the data objects accessed while evaluating a query. Let us see how
users can be enabled to access relations without considering how the relations
are distributed. The local name of a relation in the system catalog (Section
22.9.1) is really a combination of a user name and a user-defined relation name.
Users can give whatever names they wish to their relations, without regard to
the relations created by other users. When a user writes a program or SQL
statement that refers to a relation, he or she simply uses the relation name.
The DBMS adds the user name to the relation name to get a local name, then
adds the user’s site-id as the (default) birth site to obtain a global relation
name. By looking up the global relation name—in the local catalog if it is
cached there or in the catalog at the birth site—the DBMS can locate replicas
of the relation.

A user may want to create objects at several sites or refer to relations created
by other users. To do this, a user can create a synonym for a global relation
name, using an SQL-style command (although such a command is not currently
part of the SQL:1999 standard) and subsequently refer to the relation using
the synonym. For each user known at a site, the DBMS maintains a table of
synonyms as part of the system catalog at that site and uses this table to find
the global relation name. Note that a user’s program runs unchanged even if
replicas of the relation are moved, because the global relation name is never
changed until the relation itself is destroyed.

Users may want to run queries against specific replicas, especially if asyn-
chronous replication is used. To support this, the synonym mechanism can
be adapted to also allow users to create synonyms for global replica names.

22.10 DISTRIBUTED QUERY PROCESSING

We first discuss the issues involved in evaluating relational algebra operations
in a distributed database through examples and then outline distributed query
optimization. Consider the following two relations:
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Sailors(sid: integer, sname: string, rating: integer, age: real)
Reserves(sid: integer, bid: integer, day: date, rname: string)

As in Chapter 14, assume that each tuple of Reserves is 40 bytes long, that a
page can hold 100 Reserves tuples, and that we have 1000 pages of such tuples.
Similarly, assume that each tuple of Sailors is 50 bytes long, that a page can
hold 80 Sailors tuples, and that we have 500 pages of such tuples.

To estimate the cost of an evaluation strategy, in addition to counting the
number of page I/Os, we must count the number of pages sent from one site
to another because communication costs are a significant component of overall
cost in a distributed database. We must also change our cost model to count
the cost of shipping the result tuples to the site where the query is posed from
the site where the result is assembled! In this chapter, we denote the time
taken to read one page from disk (or to write one page to disk) as td and the
time taken to ship one page (from any site to another site) as ts.

22.10.1 Nonjoin Queries in a Distributed DBMS

Even simple operations such as scanning a relation, selection, and projection
are affected by fragmentation and replication. Consider the following query:

SELECT S.age
FROM Sailors S
WHERE S.rating > 3 AND S.rating < 7

Suppose that the Sailors relation is horizontally fragmented, with all tuples
having a rating less than 5 at Shanghai and all tuples having a rating greater
than 5 at Tokyo.

The DBMS must answer this query by evaluating it at both sites and taking
the union of the answers. If the SELECT clause contained AVG (S.age), com-
bining the answers could not be done by simply taking the union—the DBMS
must compute the sum and count of age values at the two sites and use this
information to compute the average age of all sailors.

If the WHERE clause contained just the condition S.rating > 6, on the other
hand, the DBMS should recognize that this query could be answered by just
executing it at Tokyo.

As another example, suppose that the Sailors relation were vertically frag-
mented, with the sid and rating fields at Shanghai and the sname and age
fields at Tokyo. No field is stored at both sites. This vertical fragmentation
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would therefore be a lossy decomposition, except that a field containing the
id of the corresponding Sailors tuple is included by the DBMS in both frag-
ments! Now, the DBMS has to reconstruct the Sailors relation by joining the
two fragments on the common tuple-id field and execute the query over this
reconstructed relation.

Finally, suppose that the entire Sailors relation were stored at both Shanghai
and Tokyo. We could answer any of the previous queries by executing it at
either Shanghai or Tokyo. Where should the query be executed? This depends
on the cost of shipping the answer to the query site (which may be Shanghai,
Tokyo, or some other site) as well as the cost of executing the query at Shanghai
and at Tokyo—the local processing costs may differ depending on what indexes
are available on Sailors at the two sites, for example.

22.10.2 Joins in a Distributed DBMS

Joins of relations at different sites can be very expensive, and we now consider
the evaluation options that must be considered in a distributed environment.
Suppose that the Sailors relation were stored at London, and the Reserves
relation were stored at Paris. We consider the cost of various strategies for
computing Sailors   Reserves.

Fetch As Needed

We could do a page-oriented nested loops join in London with Sailors as the
outer, and for each Sailors page, fetch all Reserves pages from Paris. If we
cache the fetched Reserves pages in London until the join is complete, pages
are fetched only once, but assume that Reserves pages are not cached, just to
see how bad things can get. (The situation can get much worse if we use a
tuple-oriented nested loops join!)

The cost is 500td to scan Sailors plus, for each Sailors page, the cost of scanning
and shipping all of Reserves, which is 1000(td + ts). The total cost is therefore
500td + 500,000(td + ts).

In addition, if the query was not submitted at the London site, we must add
the cost of shipping the result to the query site; this cost depends on the size
of the result. Because sid is a key for Sailors, the number of tuples in the result
is 100,000 (the number of tuples in Reserves) and each tuple is 40 + 50 = 90
bytes long; thus 4000/90 = 44 result tuples fit on a page, and the result size
is 100,000/44=2273 pages. The cost of shipping the answer to another site, if
necessary, is 2273 ts. In the rest of this section, we assume that the query is
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posed at the site where the result is computed; if not, the cost of shipping the
result to the query site must be added to the cost.

In this example, observe that, if the query site is not London or Paris, the
cost of shipping the result is greater than the cost of shipping both Sailors
and Reserves to the query site! Therefore, it would be cheaper to ship both
relations to the query site and compute the join there.

Alternatively, we could do an index nested loops join in London, fetching all
matching Reserves tuples for each Sailors tuple. Suppose we have an unclus-
tered hash index on the sid column of Reserves. Because there are 100,000
Reserves tuples and 40,000 Sailors tuples, each sailor has on average 2.5 reser-
vations. The cost of finding the 2.5 Reservations tuples that match a given
Sailors tuple is (1.2 + 2.5)td, assuming 1.2 I/Os to locate the appropriate
bucket in the index. The total cost is the cost of scanning Sailors plus the
cost of finding and fetching matching Reserves tuples for each Sailors tuple,
500td + 40, 000(3.7td + 2.5ts).

Both algorithms fetch required Reserves tuples from a remote site as needed.
Clearly, this is not a good idea; the cost of shipping tuples dominates the total
cost even for a fast network.

Ship to One Site

We can ship Sailors from London to Paris and carry out the join there, ship
Reserves to London and carry out the join there, or ship both to the site where
the query was posed and compute the join there. Note again that the query
could have been posed in London, Paris, or perhaps a third site, say, Timbuktu!

The cost of scanning and shipping Sailors, saving it at Paris, then doing the
join at Paris is 500(2td + ts) + 4500td, assuming that the version of the sort-
merge join described in Section 14.10 is used and we have an adequate number
of buffer pages. In the rest of this section we assume that sort-merge join is
the join method used when both relations are at the same site.

The cost of shipping Reserves and doing the join at London is 1000(2td + ts)+
4500td.

Semijoins and Bloomjoins

Consider the strategy of shipping Reserves to London and computing the join
at London. Some tuples in (the current instance of) Reserves do not join with
any tuple in (the current instance of) Sailors. If we could somehow identify
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Reserves tuples that are guaranteed not to join with any Sailors tuples, we
could avoid shipping them.

Two techniques, Semijoin and Bloomjoin, have been proposed for reducing
the number of Reserves tuples to be shipped. The first technique is called
Semijoin. The idea is to proceed in three steps:

1. At London, compute the projection of Sailors onto the join columns (in
this case just the sid field) and ship this projection to Paris.

2. At Paris, compute the natural join of the projection received from the
first site with the Reserves relation. The result of this join is called the
reduction of Reserves with respect to Sailors. Clearly, only those Re-
serves tuples in the reduction will join with tuples in the Sailors relation.
Therefore, ship the reduction of Reserves to London, rather than the entire
Reserves relation.

3. At London, compute the join of the reduction of Reserves with Sailors.

Let us compute the cost of using this technique for our example join query.
Suppose we have a straightforward implementation of projection based on first
scanning Sailors and creating a temporary relation with tuples that have only
an sid field, then sorting the temporary and scanning the sorted temporary to
eliminate duplicates. If we assume that the size of the sid field is 10 bytes,
the cost of projection is 500td for scanning Sailors, plus 100td for creating
the temporary, plus 400td for sorting it (in two passes), plus 100td for the final
scan, plus 100td for writing the result into another temporary relation; a total of
1200td. (Because sid is a key, no duplicates need be eliminated; if the optimizer
is good enough to recognize this, the cost of projection is just (500 + 100)td.)

The cost of computing the projection and shipping it to Paris is therefore
1200td + 100ts. The cost of computing the reduction of Reserves is 3 · (100 +
1000) = 3300td, assuming that sort-merge join is used. (The cost does not
reflect that the projection of Sailors is already sorted; the cost would decrease
slightly if the refined sort-merge join exploited this.)

What is the size of the reduction? If every sailor holds at least one reservation,
the reduction includes every tuple of Reserves! The effort invested in shipping
the projection and reducing Reserves is a total waste. Indeed, because of this
observation, we note that Semijoin is especially useful in conjunction with a
selection on one of the relations. For example, if we want to compute the join
of Sailors tuples with a rating greater than 8 with the Reserves relation, the
size of the projection on sid for tuples that satisfy the selection would be just
20 percent of the original projection, that is, 20 pages.
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Let us now continue the example join, with the assumption that we have the
additional selection on rating. (The cost of computing the projection of Sailors
goes down a bit, the cost of shipping it goes down to 20ts, and the cost of the
reduction of Reserves also goes down a little, but we ignore these reductions for
simplicity.) We assume that only 20 percent of the Reserves tuples are included
in the reduction, thanks to the selection. Hence, the reduction contains 200
pages, and the cost of shipping it is 200ts.

Finally, at London, the reduction of Reserves is joined with Sailors, at a cost
of 3 · (200+500) = 21100td. Observe that there are over 6500 page I/Os versus
about 200 pages shipped, using this join technique. In contrast, to ship Reserves
to London and do the join there costs 1000ts plus 4500td. With a high-speed
network, the cost of Semijoin may be more than the cost of shipping Reserves
in its entirety, even though the shipping cost itself is much less (200ts versus
1000ts).

The second technique, called Bloomjoin, is quite similar. The main difference
is that a bit-vector is shipped in the first step, instead of the projection of
Sailors. A bit-vector of (some chosen) size k is computed by hashing each tuple
of Sailors into the range 0 to k−1 and setting bit i to 1 if some tuple hashes to
i, and 0 otherwise. In the second step, the reduction of Reserves is computed
by hashing each tuple of Reserves (using the sid field) into the range 0 to k−1,
using the same hash function used to construct the bit-vector and discarding
tuples whose hash value i corresponds to a 0 bit. Because no Sailors tuples
hash to such an i, no Sailors tuple can join with any Reserves tuple that is not
in the reduction.

The costs of shipping a bit-vector and reducing Reserves using the vector are
less than the corresponding costs in Semijoin. On the other hand, the size of
the reduction of Reserves is likely to be larger than in Semijoin; so, the costs
of shipping the reduction and joining it with Sailors are likely to be higher.

Let us estimate the cost of this approach. The cost of computing the bit-
vector is essentially the cost of scanning Sailors, which is 500td. The cost of
sending the bit-vector depends on the size we choose for the bit-vector, which
is certainly smaller than the size of the projection; we take this cost to be 20ts,
for concreteness. The cost of reducing Reserves is just the cost of scanning
Reserves, 1000td. The size of the reduction of Reserves is likely to be about
the same as or a little larger than the size of the reduction in the Semijoin
approach; instead of 200, we will take this size to be 220 pages. (We assume
that the selection on Sailors is included, to permit a direct comparison with the
cost of Semijoin.) The cost of shipping the reduction is therefore 220ts. The
cost of the final join at London is 3 · (500 + 220) = 2160td.
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Thus, in comparison to Semijoin, the shipping cost of this approach is about
the same, although it could be higher if the bit-vector were not as selective
as the projection of Sailors in terms of reducing Reserves. Typically, though,
the reduction of Reserves is no more than 10 to 20 percent larger than the
size of the reduction in Semijoin. In exchange for this slightly higher shipping
cost, Bloomjoin achieves a significantly lower processing cost: less than 3700td
versus more than 6500td for Semijoin. Indeed, Bloomjoin has a lower I/O
cost and a lower shipping cost than the strategy of shipping all of Reserves to
London! These numbers indicate why Bloomjoin is an attractive distributed
join method; but the sensitivity of the method to the effectiveness of bit-vector
hashing (in reducing Reserves) should be kept in mind.

22.10.3 Cost-Based Query Optimization

We have seen how data distribution can affect the implementation of individual
operations, such as selection, projection, aggregation, and join. In general, of
course, a query involves several operations, and optimizing queries in a dis-
tributed database poses the following additional challenges:

Communication costs must be considered. If we have several copies of a
relation, we must also decide which copy to use.

If individual sites are run under the control of different DBMSs, the au-
tonomy of each site must be respected while doing global query planning.

Query optimization proceeds essentially as in a centralized DBMS, as described
in Chapter 12, with information about relations at remote sites obtained from
the system catalogs. Of course, there are more alternative methods to consider
for each operation (e.g., consider the new options for distributed joins), and
the cost metric must account for communication costs as well, but the overall
planning process is essentially unchanged if we take the cost metric to be the
total cost of all operations. (If we consider response time, the fact that certain
subqueries can be carried out in parallel at different sites would require us to
change the optimizer as per the discussion in Section 22.5.)

In the overall plan, local manipulation of relations at the site where they are
stored (to compute an intermediate relation to be shipped elsewhere) is encap-
sulated into a suggested local plan. The overall plan includes several such local
plans, which we can think of as subqueries executing at different sites. While
generating the global plan, the suggested local plans provide realistic cost es-
timates for the computation of the intermediate relations; the suggested local
plans are constructed by the optimizer mainly to provide these local cost esti-
mates. A site is free to ignore the local plan suggested to it if it is able to find
a cheaper plan by using more current information in the local catalogs. Thus,
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site autonomy is respected in the optimization and evaluation of distributed
queries.

22.11 UPDATING DISTRIBUTED DATA

The classical view of a distributed DBMS is that it should behave just like a
centralized DBMS from the point of view of a user; issues arising from distribu-
tion of data should be transparent to the user, although, of course, they must
be addressed at the implementation level.

With respect to queries, this view of a distributed DBMS means that users
should be able to ask queries without worrying about how and where relations
are stored; we have already seen the implications of this requirement on query
evaluation.

With respect to updates, this view means that transactions should continue
to be atomic actions, regardless of data fragmentation and replication. In
particular, all copies of a modified relation must be updated before the modi-
fying transaction commits. We refer to replication with this semantics as syn-
chronous replication; before an update transaction commits, it synchronizes
all copies of modified data.

An alternative approach to replication, called asynchronous replication, has
come to be widely used in commercial distributed DBMSs. Copies of a modified
relation are updated only periodically in this approach, and a transaction that
reads different copies of the same relation may see different values. Thus,
asynchronous replication compromises distributed data independence, but it
can be implemented more efficiently than synchronous replication.

22.11.1 Synchronous Replication

There are two basic techniques for ensuring that transactions see the same value
regardless of which copy of an object they access. In the first technique, called
voting, a transaction must write a majority of copies to modify an object and
read at least enough copies to make sure that one of the copies is current. For
example, if there are 10 copies and 7 copies are written by update transactions,
then at least 4 copies must be read. Each copy has a version number, and
the copy with the highest version number is current. This technique is not at-
tractive in most situations because reading an object requires reading multiple
copies; in most applications, objects are read much more frequently than they
are updated, and efficient performance on reads is very important.
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In the second technique, called read-any write-all, to read an object, a trans-
action can read any one copy, but to write an object, it must write all copies.
Reads are fast, especially if we have a local copy, but writes are slower, relative
to the first technique. This technique is attractive when reads are much more
frequent than writes, and it is usually adopted for implementing synchronous
replication.

22.11.2 Asynchronous Replication

Synchronous replication comes at a significant cost. Before an update transac-
tion can commit, it must obtain exclusive locks on all copies—assuming that the
read-any write-all technique is used—of modified data. The transaction may
have to send lock requests to remote sites and wait for the locks to be granted,
and during this potentially long period, it continues to hold all its other locks.
If sites or communication links fail, the transaction cannot commit until all the
sites at which it has modified data recover and are reachable. Finally, even if
locks are obtained readily and there are no failures, committing a transaction
requires several additional messages to be sent as part of a commit protocol
(Section 22.14.1).

For these reasons, synchronous replication is undesirable or even unachievable
in many situations. Asynchronous replication is gaining in popularity, even
though it allows different copies of the same object to have different values for
short periods of time. This situation violates the principle of distributed data
independence; users must be aware of which copy they are accessing, recognize
that copies are brought up-to-date only periodically, and live with this reduced
level of data consistency. Nonetheless, this seems to be a practical compromise
that is acceptable in many situations.

Primary Site versus Peer-to-Peer Replication

Asynchronous replication comes in two flavors. In primary site asynchronous
replication, one copy of a relation is designated the primary or master copy.
Replicas of the entire relation or fragments of the relation can be created at
other sites; these are secondary copies, and unlike the primary copy, they can-
not be updated. A common mechanism for setting up primary and secondary
copies is that users first register or publish the relation at the primary site
and subsequently subscribe to a fragment of a registered relation from another
(secondary) site.

In peer-to-peer asynchronous replication, more than one copy (although per-
haps not all) can be designated as updatable, that is, a master copy. In addition
to propagating changes, a conflict resolution strategy must be used to deal
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with conflicting changes made at different sites. For example, Joe’s age may
be changed to 35 at one site and to 38 at another. Which value is ‘correct’?
Many more subtle kinds of conflicts can arise in peer-to-peer replication, and in
general peer-to-peer replication leads to ad hoc conflict resolution. Some spe-
cial situations in which peer-to-peer replication does not lead to conflicts arise
quite often, and in such situations peer-to-peer replication is best utilized. For
example:

Each master is allowed to update only a fragment (typically a horizontal
fragment) of the relation, and any two fragments updatable by different
masters are disjoint. For example, it may be that salaries of German em-
ployees are updated only in Frankfurt, and salaries of Indian employees are
updated only in Madras, even though the entire relation is stored at both
Frankfurt and Madras.

Updating rights are held by only one master at a time. For example, one
site is designated a backup to another site. Changes at the master site
are propagated to other sites and updates are not allowed at other sites
(including the backup). But, if the master site fails, the backup site takes
over and updates are now permitted at (only) the backup site.

We will not discuss peer-to-peer replication further.

Implementing Primary Site Asynchronous Replication

The main issue in implementing primary site replication is determining how
changes to the primary copy are propagated to the secondary copies. Changes
are usually propagated in two steps, called Capture and Apply. Changes made
by committed transactions to the primary copy are somehow identified during
the Capture step and subsequently propagated to secondary copies during the
Apply step.

In contrast to synchronous replication, a transaction that modifies a replicated
relation directly locks and changes only the primary copy. It is typically com-
mitted long before the Apply step is carried out. Systems vary considerably
in their implementation of these steps. We present an overview of some of the
alternatives.

Capture

The Capture step is implemented using one of two approaches. In log-based
Capture, the log maintained for recovery purposes is used to generate a record
of updates. Basically, when the log tail is written to stable storage, all log



Parallel and Distributed Databases 753

records that affect replicated relations are also written to a separate change
data table (CDT). Since the transaction that generated the update log record
may still be active when the record is written to the CDT, it may subsequently
abort. Update log records written by transactions that subsequently abort
must be removed from the CDT to obtain a stream of updates due (only) to
committed transactions. This stream can be obtained as part of the Capture
step or subsequently in the Apply step if commit log records are added to
the CDT; for concreteness, we assume that the committed update stream is
obtained as part of the Capture step and that the CDT sent to the Apply step
contains only update log records of committed transactions.

In procedural Capture, a procedure automatically invoked by the DBMS or
an application program initiates the Capture process, which consists typically
of taking a snapshot of the primary copy. A snapshot is just a copy of the
relation as it existed at some instant in time. (A procedure that is automatically
invoked by the DBMS, such as the one that initiates Capture, is called a trigger.
We covered triggers in Chapter 5.)

Log-based Capture has a smaller overhead than procedural Capture and, be-
cause it is driven by changes to the data, results in a smaller delay between the
time the primary copy is changed and the time that the change is propagated
to the secondary copies. (Of course, this delay also depends on how the Apply
step is implemented.) In particular, only changes are propagated, and related
changes (e.g., updates to two tables with a referential integrity constraint be-
tween them) are propagated together. The disadvantage is that implementing
log-based Capture requires a detailed understanding of the structure of the log,
which is quite system specific. Therefore, a vendor cannot easily implement
a log-based Capture mechanism that will capture changes made to data in
another vendor’s DBMS.

Apply

The Apply step takes the changes collected by the Capture step, which are
in the CDT table or a snapshot, and propagates them to the secondary copies.
This can be done by having the primary site continuously send the CDT or
periodically requesting (the latest portion of) the CDT or a snapshot from
the primary site. Typically, each secondary site runs a copy of the Apply
process and ‘pulls’ the changes in the CDT from the primary site using periodic
requests. The interval between such requests can be controlled by a timer or
a user’s application program. Once the changes are available at the secondary
site, they can be applied directly to the replica.
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In some systems, the replica need not be just a fragment of the original relation—
it can be a view defined using SQL, and the replication mechanism is sufficiently
sophisticated to maintain such a view at a remote site incrementally (by reeval-
uating only the part of the view affected by changes recorded in the CDT).

Log-based Capture in conjunction with continuous Apply minimizes the delay
in propagating changes. It is the best combination in situations where the
primary and secondary copies are both used as part of an operational DBMS
and replicas must be as closely synchronized with the primary copy as possi-
ble. Log-based Capture with continuous Apply is essentially a less expensive
substitute for synchronous replication. Procedural Capture and application-
driven Apply offer the most flexibility in processing source data and changes
before altering the replica; this flexibility is often useful in data warehousing
applications where the ability to ‘clean’ and filter the retrieved data is more
important than the currency of the replica.

Data Warehousing: An Example of Replication

Complex decision support queries that look at data from multiple sites are be-
coming very important. The paradigm of executing queries that span multiple
sites is simply inadequate for performance reasons. One way to provide such
complex query support over data from multiple sources is to create a copy of
all the data at some one location and use the copy rather than going to the in-
dividual sources. Such a copied collection of data is called a data warehouse.
Specialized systems for building, maintaining, and querying data warehouses
have become important tools in the marketplace.

Data warehouses can be seen as one instance of asynchronous replication, in
which copies are updated relatively infrequently. When we talk of replica-
tion, we typically mean copies maintained under the control of a single DBMS,
whereas with data warehousing, the original data may be on different software
platforms (including database systems and OS file systems) and even belong to
different organizations. This distinction, however, is likely to become blurred
as vendors adopt more ‘open’ strategies to replication. For example, some
products already support the maintenance of replicas of relations stored in one
vendor’s DBMS in another vendor’s DBMS.

We note that data warehousing involves more than just replication. We discuss
other aspects of data warehousing in Chapter 25.
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22.12 DISTRIBUTED TRANSACTIONS

In a distributed DBMS, a given transaction is submitted at some one site, but
it can access data at other sites as well. In this chapter we refer to the activity
of a transaction at a given site as a subtransaction. When a transaction
is submitted at some site, the transaction manager at that site breaks it up
into a collection of one or more subtransactions that execute at different sites,
submits them to transaction managers at the other sites, and coordinates their
activity.

We now consider aspects of concurrency control and recovery that require ad-
ditional attention because of data distribution. As we saw in Chapter 16, there
are many concurrency control protocols; in this chapter, for concreteness, we
assume that Strict 2PL with deadlock detection is used. We discuss the follow-
ing issues in subsequent sections:

Distributed Concurrency Control: How can locks for objects stored
across several sites be managed? How can deadlocks be detected in a
distributed database?

Distributed Recovery: Transaction atomicity must be ensured—when a
transaction commits, all its actions, across all the sites at which it executes,
must persist. Similarly, when a transaction aborts, none of its actions must
be allowed to persist.

22.13 DISTRIBUTED CONCURRENCY CONTROL

In Section 22.11.1, we described two techniques for implementing synchronous
replication, and in Section 22.11.2, we discussed various techniques for imple-
menting asynchronous replication. The choice of technique determines which
objects are to be locked. When locks are obtained and released is determined
by the concurrency control protocol. We now consider how lock and unlock
requests are implemented in a distributed environment.

Lock management can be distributed across sites in many ways:

Centralized: A single site is in charge of handling lock and unlock requests
for all objects.

Primary Copy: One copy of each object is designated the primary copy.
All requests to lock or unlock a copy of this object are handled by the lock
manager at the site where the primary copy is stored, regardless of where
the copy itself is stored.
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Fully Distributed: Requests to lock or unlock a copy of an object stored
at a site are handled by the lock manager at the site where the copy is
stored.

The centralized scheme is vulnerable to failure of the single site that controls
locking. The primary copy scheme avoids this problem, but in general, reading
an object requires communication with two sites: the site where the primary
copy resides and the site where the copy to be read resides. This problem
is avoided in the fully distributed scheme, because locking is done at the site
where the copy to be read resides. However, while writing, locks must be set
at all sites where copies are modified in the fully distributed scheme, whereas
locks need be set only at one site in the other two schemes.

Clearly, the fully distributed locking scheme is the most attractive scheme if
reads are much more frequent than writes, as is usually the case.

22.13.1 Distributed Deadlock

One issue that requires special attention when using either primary copy or fully
distributed locking is deadlock detection. (Of course, a deadlock prevention
scheme can be used instead, but we focus on deadlock detection, which is widely
used.) As in a centralized DBMS, deadlocks must be detected and resolved (by
aborting some deadlocked transaction).

Each site maintains a local waits-for graph, and a cycle in a local graph indicates
a deadlock. However, there can be a deadlock even if no local graph contains
a cycle. For example, suppose that two sites, A and B, both contain copies
of objects O1 and O2, and that the read-any write-all technique is used. T1,
which wants to read O1 and write O2, obtains an S lock on O1 and an X lock
on O2 at Site A, then requests an X lock on O2 at Site B. T2, which wants
to read O2 and write O1, meanwhile, obtains an S lock on O2 and an X lock
on O1 at Site B, then requests an X lock on O1 at Site A. As Figure 22.5
illustrates, T2 is waiting for T1 at Site A and T1 is waiting for T2 at Site B;
thus, we have a deadlock, which neither site can detect based solely on its local
waits-for graph.

To detect such deadlocks, a distributed deadlock detection algorithm must
be used. We describe three such algorithms.

The first algorithm, which is centralized, consists of periodically sending all lo-
cal waits-for graphs to one site that is responsible for global deadlock detection.
At this site, the global waits-for graph is generated by combining all the local
graphs; the set of nodes is the union of nodes in the local graphs, and there is
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Figure 22.5 Distributed Deadlock

an edge from one node to another if there is such an edge in any of the local
graphs.

The second algorithm, which is hierarchical, groups sites into a hierarchy. For
instance, sites might be grouped by state, then by country, and finally into a
single group that contains all sites. Every node in this hierarchy constructs
a waits-for graph that reveals deadlocks involving only sites contained in (the
subtree rooted at) this node. All sites periodically (e.g., every 10 seconds) send
their local waits-for graph to the site responsible for constructing the waits-
for graph for their state. The sites constructing waits-for graphs at the state
level periodically (e.g., every minute) send the state waits-for graph to the
site constructing the waits-for graph for their country. The sites constructing
waits-for graphs at the country level periodically (e.g., every 10 minutes) send
the country waits-for graph to the site constructing the global waits-for graph.
This scheme is based on the observation that more deadlocks are likely across
closely related sites than across unrelated sites, and it puts more effort into
detecting deadlocks across related sites. All deadlocks are eventually detected,
but a deadlock involving two different countries may take a while to detect.

The third algorithm is simple: If a transaction waits longer than some chosen
time-out interval, it is aborted. Although this algorithm may cause many
unnecessary restarts, the overhead of deadlock detection is (obviously!) low,
and in a heterogeneous distributed database, if the participating sites cannot
cooperate to the extent of sharing their waits-for graphs, it may be the only
option.

A subtle point to note with respect to distributed deadlock detection is that
delays in propagating local information might cause the deadlock detection
algorithm to identify ‘deadlocks’ that do not really exist. Such situations,
called phantom deadlocks, lead to unnecessary aborts. For concreteness, we
discuss the centralized algorithm, although the hierarchical algorithm suffers
from the same problem.
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Consider a modification of the previous example. As before, the two transac-
tions wait for each other, generating the local waits-for graphs shown in Figure
22.5, and the local waits-for graphs are sent to the global deadlock-detection
site. However, T2 is now aborted for reasons other than deadlock. (For ex-
ample, T2 may also be executing at a third site, where it reads an unexpected
data value and decides to abort.) At this point, the local waits-for graphs have
changed so that there is no cycle in the ‘true’ global waits-for graph. However,
the constructed global waits-for graph will contain a cycle, and T1 may well be
picked as the victim!

22.14 DISTRIBUTED RECOVERY

Recovery in a distributed DBMS is more complicated than in a centralized
DBMS for the following reasons:

New kinds of failure can arise: failure of communication links and failure
of a remote site at which a subtransaction is executing.

Either all subtransactions of a given transaction must commit or none must
commit, and this property must be guaranteed despite any combination of
site and link failures. This guarantee is achieved using a commit proto-
col.

As in a centralized DBMS, certain actions are carried out as part of normal
execution to provide the necessary information to recover from failures. A log is
maintained at each site, and in addition to the kinds of information maintained
in a centralized DBMS, actions taken as part of the commit protocol are also
logged. The most widely used commit protocol is called Two-Phase Commit
(2PC). A variant called 2PC with Presumed Abort, which we discuss next, has
been adopted as an industry standard.

In this section, we first describe the steps taken during normal execution, con-
centrating on the commit protocol, and then discuss recovery from failures.

22.14.1 Normal Execution and Commit Protocols

During normal execution, each site maintains a log, and the actions of a sub-
transaction are logged at the site where it executes. The regular logging activity
described in Chapter 18 is carried out and, in addition, a commit protocol is
followed to ensure that all subtransactions of a given transaction either commit
or abort uniformly. The transaction manager at the site where the transaction
originated is called the coordinator for the transaction; transaction managers
at sites where its subtransactions execute are called subordinates (with re-
spect to the coordination of this transaction).
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We now describe the Two-Phase Commit (2PC) protocol, in terms of the
messages exchanged and the log records written. When the user decides to
commit a transaction, the commit command is sent to the coordinator for the
transaction. This initiates the 2PC protocol:

1. The coordinator sends a prepare message to each subordinate.

2. When a subordinate receives a prepare message, it decides whether to abort
or commit its subtransaction. It force-writes an abort or prepare log
record, and then sends a no or yes message to the coordinator. Note that
a prepare log record is not used in a centralized DBMS; it is unique to the
distributed commit protocol.

3. If the coordinator receives yes messages from all subordinates, it force-
writes a commit log record and then sends a commit message to all sub-
ordinates. If it receives even one no message or receives no response from
some subordinate for a specified time-out interval, it force-writes an abort
log record, and then sends an abort message to all subordinates.1

4. When a subordinate receives an abort message, it force-writes an abort log
record, sends an ack message to the coordinator, and aborts the subtrans-
action. When a subordinate receives a commit message, it force-writes a
commit log record, sends an ack message to the coordinator, and commits
the subtransaction.

5. After the coordinator has received ack messages from all subordinates, it
writes an end log record for the transaction.

The name Two-Phase Commit reflects the fact that two rounds of messages
are exchanged: first a voting phase, then a termination phase, both initiated
by the coordinator. The basic principle is that any of the transaction man-
agers involved (including the coordinator) can unilaterally abort a transaction,
whereas there must be unanimity to commit a transaction. When a message
is sent in 2PC, it signals a decision by the sender. To ensure that this decision
survives a crash at the sender’s site, the log record describing the decision is
always forced to stable storage before the message is sent.

A transaction is officially committed at the time the coordinator’s commit log
record reaches stable storage. Subsequent failures cannot affect the outcome of
the transaction; it is irrevocably committed. Log records written to record the
commit protocol actions contain the type of the record, the transaction id, and
the identity of the coordinator. A coordinator’s commit or abort log record
also contains the identities of the subordinates.

1As an optimization, the coordinator need not send abort messages to subordinates who voted no.



760 Chapter 22

22.14.2 Restart after a Failure

When a site comes back up after a crash, we invoke a recovery process that
reads the log and processes all transactions executing the commit protocol at
the time of the crash. The transaction manager at this site could have been the
coordinator for some of these transactions and a subordinate for others. We do
the following in the recovery process:

If we have a commit or abort log record for transaction T , its status is clear;
we redo or undo T , respectively. If this site is the coordinator, which can
be determined from the commit or abort log record, we must periodically
resend—because there may be other link or site failures in the system—a
commit or abort message to each subordinate until we receive an ack. After
we have received acks from all subordinates, we write an end log record for
T .

If we have a prepare log record for T but no commit or abort log record,
this site is a subordinate, and the coordinator can be determined from
the prepare record. We must repeatedly contact the coordinator site to
determine the status of T . Once the coordinator responds with either
commit or abort, we write a corresponding log record, redo or undo the
transaction, and then write an end log record for T .

If we have no prepare, commit, or abort log record for transaction T ,
T certainly could not have voted to commit before the crash; so we can
unilaterally abort and undo T and write an end log record. In this case,
we have no way to determine whether the current site is the coordinator
or a subordinate for T . However, if this site is the coordinator, it might
have sent a prepare message prior to the crash, and if so, other sites may
have voted yes. If such a subordinate site contacts the recovery process at
the current site, we now know that the current site is the coordinator for
T , and given that there is no commit or abort log record, the response to
the subordinate should be to abort T .

Observe that, if the coordinator site for a transaction T fails, subordinates who
voted yes cannot decide whether to commit or abort T until the coordinator
site recovers; we say that T is blocked. In principle, the active subordinate
sites could communicate among themselves, and if at least one of them contains
an abort or commit log record for T , its status becomes globally known. To
communicate among themselves, all subordinates must be told the identity of
the other subordinates at the time they are sent the prepare message. However,
2PC is still vulnerable to coordinator failure during recovery because even if all
subordinates voted yes, the coordinator (who also has a vote!) may have de-
cided to abort T , and this decision cannot be determined until the coordinator
site recovers.
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We covered how a site recovers from a crash, but what should a site that is
involved in the commit protocol do if a site that it is communicating with fails?
If the current site is the coordinator, it should simply abort the transaction.
If the current site is a subordinate, and it has not yet responded to the coor-
dinator’s prepare message, it can (and should) abort the transaction. If it is a
subordinate and has voted yes, then it cannot unilaterally abort the transac-
tion, and it cannot commit either; it is blocked. It must periodically contact
the coordinator until it receives a reply.

Failures of communication links are seen by active sites as failure of other sites
that they are communicating with, and therefore the solutions just outlined
apply to this case as well.

22.14.3 Two-Phase Commit Revisited

Now that we examined how a site recovers from a failure, and saw the inter-
action between the 2PC protocol and the recovery process, it is instructive to
consider how 2PC can be refined further. In doing so, we arrive at a more ef-
ficient version of 2PC, but equally important perhaps, we understand the role
of the various steps of 2PC more clearly. Consider three basic observations:

1. The ack messages in 2PC are used to determine when a coordinator (or
the recovery process at a coordinator site following a crash) can ‘forget’
about a transaction T . Until the coordinator knows that all subordinates
are aware of the commit or abort decision for T , it must keep information
about T in the transaction table.

2. If the coordinator site fails after sending out prepare messages but before
writing a commit or abort log record, when it comes back up, it has no
information about the transaction’s commit status prior to the crash. How-
ever, it is still free to abort the transaction unilaterally (because it has not
written a commit record, it can still cast a no vote itself). If another site
inquires about the status of the transaction, the recovery process, as we
have seen, responds with an abort message. Therefore, in the absence of
information, a transaction is presumed to have aborted.

3. If a subtransaction does no updates, it has no changes to either redo or
undo; in other words, its commit or abort status is irrelevant.

The first two observations suggest several refinements:

When a coordinator aborts a transaction T , it can undo T and remove it
from the transaction table immediately. After all, removing T from the
table results in a ‘no information’ state with respect to T , and the default
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response (to an enquiry about T ) in this state, which is abort, is the correct
response for an aborted transaction.

By the same token, if a subordinate receives an abort message, it need not
send an ack message. The coordinator is not waiting to hear from subor-
dinates after sending an abort message! If, for some reason, a subordinate
that receives a prepare message (and voted yes) does not receive an abort
or commit message for a specified time-out interval, it contacts the coordi-
nator again. If the coordinator decided to abort, there may no longer be
an entry in the transaction table for this transaction, but the subordinate
receives the default abort message, which is the correct response.

Because the coordinator is not waiting to hear from subordinates after
deciding to abort a transaction, the names of subordinates need not be
recorded in the abort log record for the coordinator.

All abort log records (for the coordinator as well as subordinates) can
simply be appended to the log tail, instead of doing a force-write. After
all, if they are not written to stable storage before a crash, the default
decision is to abort the transaction.

The third basic observation suggests some additional refinements:

If a subtransaction does no updates (which can be easily detected by keep-
ing a count of update log records), the subordinate can respond to a prepare
message from the coordinator with a reader message, instead of yes or no.
The subordinate writes no log records in this case.

When a coordinator receives a reader message, it treats the message as a yes
vote, but with the optimization that it does not send any more messages
to the subordinate, because the subordinate’s commit or abort status is
irrelevant.

If all subtransactions, including the subtransaction at the coordinator site,
send a reader message, we do not need the second phase of the commit pro-
tocol. Indeed, we can simply remove the transaction from the transaction
table, without writing any log records at any site for this transaction.

The Two-Phase Commit protocol with the refinements discussed in this section
is called Two-Phase Commit with Presumed Abort.

22.14.4 Three-Phase Commit

A commit protocol called Three-Phase Commit (3PC) can avoid blocking
even if the coordinator site fails during recovery. The basic idea is that, when
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the coordinator sends out prepare messages and receives yes votes from all sub-
ordinates, it sends all sites a precommit message, rather than a commit message.
When a sufficient number—more than the maximum number of failures that
must be handled—of acks have been received, the coordinator force-writes a
commit log record and sends a commit message to all subordinates. In 3PC,
the coordinator effectively postpones the decision to commit until it is sure
that enough sites know about the decision to commit; if the coordinator sub-
sequently fails, these sites can communicate with each other and detect that
the transaction must be committed—conversely, aborted, if none of them has
received a precommit message—without waiting for the coordinator to recover.

The 3PC protocol imposes a significant additional cost during normal execution
and requires that communication link failures do not lead to a network partition
(wherein some sites cannot reach some other sites through any path) to ensure
freedom from blocking. For these reasons, it is not used in practice.

22.15 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

Discuss the different motivations behind parallel and distributed databases.
(Section 22.1)

Describe the three main architectures for parallel DBMSs. Explain why
the shared-memory and shared-disk approaches suffer from interference.
What can you say about the speed-up and scale-up of the shared-nothing
architecture? (Section 22.2)

Describe and differentiate pipelined parallelism and data-partitioned paral-
lelism. (Section 22.3)

Discuss the following techniques for partitioning data: round-robin, hash,
and range. (Section 22.3.1)

Explain how existing code can be parallelized by introducing split and
merge operators. (Section 22.3.2)

Discuss how each of the following operators can be parallized using data
partitioning: scanning, sorting, join. Compare the use of sorting versus
hashing for partitioning. (Section 22.4)

What do we need to consider in optimizing queries for parallel execution?
Discuss interoperation parallelism, left-deep trees versus bushy trees, and
cost estimation. (Section 22.5)
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Define the terms distributed data independence and distributed transaction
atomicity. Are these concepts supported in current commercial systems?
Why not? What is the difference between homogeneous and heterogeneous
distributed databases? (Section 22.6)

Describe the three main architectures for distributed DBMSs. (Section 22.7)

A relation can be distributed by fragmenting it or replicating it across
several sites. Explain these concepts and how they differ. Also, distinguish
between horizontal and vertical fragmentation. (Section 22.8)

If a relation is fragmented and replicated, each partition needs a globally
unique name called the relation name. Explain how such global names
are created and the motivation behind the described approach to naming.
(Section 22.9.1)

Explain how metadata about such distributed data is maintained in a dis-
tributed catalog. (Section 22.9.2)

Describe a naming scheme that supports distributed data independence.
(Section 22.9.3)

When processing queries in a distributed DBMS, the location of partitions
of the relation needs to be taken into account. Discuss the alternatives
when joining two two relations that reside on different sites. In particular,
explain and describe the motivation behind the Semijoin and Bloomjoin
techniques. (Section 22.10.2)

What issues must be considered in optimizing queries over distributed data,
in addition to where the data is located? (Section 22.10.3)

What is the difference between synchronous asynchronous replication? Why
has asynchronous replication gained in popularity? (Section 22.11)

Describe the voting and read-any write-all approaches to synchronous repli-
cation. (Section 22.11.1)

Summarize the peer-to-peer and primary site approaches to asynchronous
replication. (Section 22.11.2)

In primary site replication, changes to the primary copy must be propa-
gated to secondary copies. What is done in the Capture and Apply steps?
Describe log-based and procedural approaches to Capture and compare
them. What are the variations in scheduling the Apply step? Illustrate the
use of asynchronous replication in a data warehouse. (Section 22.11.2)

What is a subtransaction? (Section 22.12)
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What are the choices for managing locks in a distributed DBMS? (Sec-
tion 22.13)

Discuss deadlock detection in a distributed database. Contrast the central-
ized, hierarchical, and time-out approaches. (Section 22.13.1)

Why is recovery in a distributed DBMS more complicated than in a cen-
tralized system? (Section 22.14)

What is a commit protocol and why is it required in a distributed database?
Describe and compare Two-Phase and Three-Phase Commit. What is
blocking, and how does the Three-Phase protocol prevent it? Why is it
nonetheless not used in practice? (Section 22.14)

EXERCISES

Exercise 22.1 Give brief answers to the following questions:

1. What are the similarities and differences between parallel and distributed database man-
agement systems?

2. Would you expect to see a parallel database built using a wide-area network? Would
you expect to see a distributed database built using a wide-area network? Explain.

3. Define the terms scale-up and speed-up.

4. Why is a shared-nothing architecture attractive for parallel database systems?

5. The idea of building specialized hardware to run parallel database applications received
considerable attention but has fallen out of favor. Comment on this trend.

6. What are the advantages of a distributed DBMS over a centralized DBMS?

7. Briefly describe and compare the Client-Server and Collaborating Servers architectures.

8. In the Collaborating Servers architecture, when a transaction is submitted to the DBMS,
briefly describe how its activities at various sites are coordinated. In particular, describe
the role of transaction managers at the different sites, the concept of subtransactions,
and the concept of distributed transaction atomicity.

Exercise 22.2 Give brief answers to the following questions:

1. Define the terms fragmentation and replication, in terms of where data is stored.

2. What is the difference between synchronous and asynchronous replication?

3. Define the term distributed data independence. What does this mean with respect to
querying and updating data in the presence of data fragmentation and replication?

4. Consider the voting and read-any write-all techniques for implementing synchronous
replication. What are their respective pros and cons?

5. Give an overview of how asynchronous replication can be implemented. In particular,
explain the terms Capture and Apply.

6. What is the difference between log-based and procedural implementations of capture?

7. Why is giving database objects unique names more complicated in a distributed DBMS?
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8. Describe a catalog organization that permits any replica (of an entire relation or a frag-
ment) to be given a unique name and provides the naming infrastructure required for
ensuring distributed data independence.

9. If information from remote catalogs is cached at other sites, what happens if the cached
information becomes outdated? How can this condition be detected and resolved?

Exercise 22.3 Consider a parallel DBMS in which each relation is stored by horizontally
partitioning its tuples across all disks:

Employees(eid: integer, did: integer, sal: real)

Departments(did: integer, mgrid: integer, budget: integer)

The mgrid field of Departments is the eid of the manager. Each relation contains 20-byte
tuples, and the sal and budget fields both contain uniformly distributed values in the range
0 to 1 million. The Employees relation contains 100,000 pages, the Departments relation
contains 5,000 pages, and each processor has 100 buffer pages of 4,000 bytes each. The cost of
one page I/O is td, and the cost of shipping one page is ts; tuples are shipped in units of one
page by waiting for a page to be filled before sending a message from processor i to processor
j. There are no indexes, and all joins that are local to a processor are carried out using
a sort-merge join. Assume that the relations are initially partitioned using a round-robin
algorithm and that there are 10 processors.

For each of the following queries, describe the evaluation plan briefly and give its cost in terms
of td and ts. You should compute the total cost across all sites as well as the ‘elapsed time’
cost (i.e., if several operations are carried out concurrently, the time taken is the maximum
over these operations).

1. Find the highest paid employee.

2. Find the highest paid employee in the department with did 55.

3. Find the highest paid employee over all departments with budget less than 100,000.

4. Find the highest paid employee over all departments with budget less than 300,000.

5. Find the average salary over all departments with budget less than 300,000.

6. Find the salaries of all managers.

7. Find the salaries of all managers who manage a department with a budget less than
300,000 and earn more than 100,000.

8. Print the eids of all employees, ordered by increasing salaries. Each processor is connected
to a separate printer, and the answer can appear as several sorted lists, each printed by
a different processor, as long as we can obtain a fully sorted list by concatenating the
printed lists (in some order).

Exercise 22.4 Consider the same scenario as in Exercise 22.3, except that the relations are
originally partitioned using range partitioning on the sal and budget fields.

Exercise 22.5 Repeat Exercises 22.3 and 22.4 with (i) 1 processor, and (ii) 100 processors.

Exercise 22.6 Consider the Employees and Departments relations described in Exercise
22.3. They are now stored in a distributed DBMS with all of Employees stored at Naples
and all of Departments stored at Berlin. There are no indexes on these relations. The cost of
various operations is as described in Exercise 22.3. Consider the query:
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SELECT *
FROM Employees E, Departments D
WHERE E.eid = D.mgrid

The query is posed at Delhi, and you are told that only 1 percent of employees are managers.
Find the cost of answering this query using each of the following plans:

1. Ship Departments to Naples, compute the query at Naples, then ship the result to Delhi.

2. Ship Employees to Berlin, compute the query at Berlin, then ship the result to Delhi.

3. Compute the query at Delhi by shipping both relations to Delhi.

4. Compute the query at Naples using Bloomjoin; then ship the result to Delhi.

5. Compute the query at Berlin using Bloomjoin; then ship the result to Delhi.

6. Compute the query at Naples using Semijoin; then ship the result to Delhi.

7. Compute the query at Berlin using Semijoin; then ship the result to Delhi.

Exercise 22.7 Consider your answers in Exercise 22.6. Which plan minimizes shipping
costs? Is it necessarily the cheapest plan? Which do you expect to be the cheapest?

Exercise 22.8 Consider the Employees and Departments relations described in Exercise
22.3. They are now stored in a distributed DBMS with 10 sites. The Departments tuples are
horizontally partitioned across the 10 sites by did, with the same number of tuples assigned
to each site and no particular order to how tuples are assigned to sites. The Employees tuples
are similarly partitioned, by sal ranges, with sal ≤ 100,000 assigned to the first site, 100,000 <
sal ≤ 200,000 assigned to the second site, and so on. In addition, the partition sal ≤ 100,000
is frequently accessed and infrequently updated, and it is therefore replicated at every site.
No other Employees partition is replicated.

1. Describe the best plan (unless a plan is specified) and give its cost:

(a) Compute the natural join of Employees and Departments by shipping all fragments
of the smaller relation to every site containing tuples of the larger relation.

(b) Find the highest paid employee.

(c) Find the highest paid employee with salary less than 100,000.

(d) Find the highest paid employee with salary between 400,000 and 500,000.

(e) Find the highest paid employee with salary between 450,000 and 550,000.

(f) Find the highest paid manager for those departments stored at the query site.

(g) Find the highest paid manager.

2. Assuming the same data distribution, describe the sites visited and the locks obtained
for the following update transactions, assuming that synchronous replication is used for
the replication of Employees tuples with sal ≤ 100,000:

(a) Give employees with salary less than 100,000 a 10 percent raise, with a maximum
salary of 100,000 (i.e., the raise cannot increase the salary to more than 100,000).

(b) Give all employees a 10 percent raise. The conditions of the original partitioning
of Employees must still be satisfied after the update.

3. Assuming the same data distribution, describe the sites visited and the locks obtained
for the following update transactions, assuming that asynchronous replication is used for
the replication of Employees tuples with sal ≤ 100,000.
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(a) For all employees with salary less than 100,000 give them a 10 percent raise, with
a maximum salary of 100,000.

(b) Give all employees a 10 percent raise. After the update is completed, the conditions
of the original partitioning of Employees must still be satisfied.

Exercise 22.9 Consider the Employees and Departments tables from Exercise 22.3. You are
a DBA and you need to decide how to distribute these two tables across two sites, Manila and
Nairobi. Your DBMS supports only unclustered B+ tree indexes. You have a choice between
synchronous and asynchronous replication. For each of the following scenarios, describe how
you would distribute them and what indexes you would build at each site. If you feel that
you have insufficient information to make a decision, explain briefly.

1. Half the departments are located in Manila and the other half are in Nairobi. Department
information, including that for employees in the department, is changed only at the site
where the department is located, but such changes are quite frequent. (Although the
location of a department is not included in the Departments schema, this information
can be obtained from another table.)

2. Half the departments are located in Manila and the other half are in Nairobi. Department
information, including that for employees in the department, is changed only at the site
where the department is located, but such changes are infrequent. Finding the average
salary for each department is a frequently asked query.

3. Half the departments are located in Manila and the other half are in Nairobi. Employees
tuples are frequently changed (only) at the site where the corresponding department is lo-
cated, but the Departments relation is almost never changed. Finding a given employee’s
manager is a frequently asked query.

4. Half the employees work in Manila and the other half work in Nairobi. Employees tuples
are frequently changed (only) at the site where they work.

Exercise 22.10 Suppose that the Employees relation is stored in Madison and the tuples
with sal ≤ 100,000 are replicated at New York. Consider the following three options for lock
management: all locks managed at a single site, say, Milwaukee; primary copy with Madison
being the primary for Employees; and fully distributed. For each of the lock management
options, explain what locks are set (and at which site) for the following queries. Also state
from which site the page is read.

1. A query at Austin wants to read a page of Employees tuples with sal ≤ 50,000.

2. A query at Madison wants to read a page of Employees tuples with sal ≤ 50,000.

3. A query at New York wants to read a page of Employees tuples with sal ≤ 50,000.

Exercise 22.11 Briefly answer the following questions:

1. Compare the relative merits of centralized and hierarchical deadlock detection in a dis-
tributed DBMS.

2. What is a phantom deadlock? Give an example.

3. Give an example of a distributed DBMS with three sites such that no two local waits-for
graphs reveal a deadlock, yet there is a global deadlock.

4. Consider the following modification to a local waits-for graph: Add a new node Text, and
for every transaction Ti that is waiting for a lock at another site, add the edge Ti → Text.
Also add an edge Text → Ti if a transaction executing at another site is waiting for Ti

to release a lock at this site.
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(a) If there is a cycle in the modified local waits-for graph that does not involve Text,
what can you conclude? If every cycle involves Text, what can you conclude?

(b) Suppose that every site is assigned a unique integer site-id. Whenever the local
waits-for graph suggests that there might be a global deadlock, send the local waits-
for graph to the site with the next higher site-id. At that site, combine the received
graph with the local waits-for graph. If this combined graph does not indicate a
deadlock, ship it on to the next site, and so on, until either a deadlock is detected
or we are back at the site that originated this round of deadlock detection. Is this
scheme guaranteed to find a global deadlock if one exists?

Exercise 22.12 Timestamp-based concurrency control schemes can be used in a distributed
DBMS, but we must be able to generate globally unique, monotonically increasing timestamps
without a bias in favor of any one site. One approach is to assign timestamps at a single site.
Another is to use the local clock time and to append the site-id. A third scheme is to use a
counter at each site. Compare these three approaches.

Exercise 22.13 Consider the multiple-granularity locking protocol described in Chapter 18.
In a distributed DBMS, the site containing the root object in the hierarchy can become a
bottleneck. You hire a database consultant who tells you to modify your protocol to allow
only intention locks on the root and implicitly grant all possible intention locks to every
transaction.

1. Explain why this modification works correctly, in that transactions continue to be able
to set locks on desired parts of the hierarchy.

2. Explain how it reduces the demand on the root.

3. Why is this idea not included as part of the standard multiple-granularity locking protocol
for a centralized DBMS?

Exercise 22.14 Briefly answer the following questions:

1. Explain the need for a commit protocol in a distributed DBMS.

2. Describe 2PC. Be sure to explain the need for force-writes.

3. Why are ack messages required in 2PC?

4. What are the differences between 2PC and 2PC with Presumed Abort?

5. Give an example execution sequence such that 2PC and 2PC with Presumed Abort
generate an identical sequence of actions.

6. Give an example execution sequence such that 2PC and 2PC with Presumed Abort
generate different sequences of actions.

7. What is the intuition behind 3PC? What are its pros and cons relative to 2PC?

8. Suppose that a site gets no response from another site for a long time. Can the first site
tell whether the connecting link has failed or the other site has failed? How is such a
failure handled?

9. Suppose that the coordinator includes a list of all subordinates in the prepare message. If
the coordinator fails after sending out either an abort or commit message, can you suggest
a way for active sites to terminate this transaction without waiting for the coordinator
to recover? Assume that some but not all of the abort or commit messages from the
coordinator are lost.
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10. Suppose that 2PC with Presumed Abort is used as the commit protocol. Explain how
the system recovers from failure and deals with a particular transaction T in each of the
following cases:

(a) A subordinate site for T fails before receiving a prepare message.

(b) A subordinate site for T fails after receiving a prepare message but before making
a decision.

(c) A subordinate site for T fails after receiving a prepare message and force-writing
an abort log record but before responding to the prepare message.

(d) A subordinate site for T fails after receiving a prepare message and force-writing a
prepare log record but before responding to the prepare message.

(e) A subordinate site for T fails after receiving a prepare message, force-writing an
abort log record, and sending a no vote.

(f) The coordinator site for T fails before sending a prepare message.

(g) The coordinator site for T fails after sending a prepare message but before collecting
all votes.

(h) The coordinator site for T fails after writing an abort log record but before sending
any further messages to its subordinates.

(i) The coordinator site for T fails after writing a commit log record but before sending
any further messages to its subordinates.

(j) The coordinator site for T fails after writing an end log record. Is it possible for the
recovery process to receive an inquiry about the status of T from a subordinate?

Exercise 22.15 Consider a heterogeneous distributed DBMS.

1. Define the terms multidatabase system and gateway.

2. Describe how queries that span multiple sites are executed in a multidatabase system.
Explain the role of the gateway with respect to catalog interfaces, query optimization,
and query execution.

3. Describe how transactions that update data at multiple sites are executed in a multi-
database system. Explain the role of the gateway with respect to lock management,
distributed deadlock detection, Two-Phase Commit, and recovery.

4. Schemas at different sites in a multidatabase system are probably designed independently.
This situation can lead to semantic heterogeneity; that is, units of measure may differ
across sites (e.g., inches versus centimeters), relations containing essentially the same
kind of information (e.g., employee salaries and ages) may have slightly different schemas,
and so on. What impact does this heterogeneity have on the end user? In particular,
comment on the concept of distributed data independence in such a system.
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OBJECT-DATABASE

SYSTEMS

☛ What are object-database systems and what new features do they
support?

☛ What kinds of applications do they benefit?

☛ What kinds of data types can users define?

☛ What are abstract data types and their benefits?

☛ What is type inheritance and why is it useful?

☛ What is the impact of introducing object ids in a database?

☛ How can we utilize the new features in database design?

☛ What are the new implementation challenges?

☛ What differentiates object-relational and object-oriented DBMSs?

➽ Key concepts: user-defined data types, structured types, collection
types; data abstraction, methods, encapsulation; inheritance, early
and late binding of methods, collection hierarchies; object identity,
reference types, shallow and deep equality

with Joseph M. Hellerstein

University of California–Berkeley

You know my methods, Watson. Apply them.

—Arthur Conan Doyle, The Memoirs of Sherlock Holmes
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Relational database systems support a small, fixed collection of data types
(e.g., integers, dates, strings), which has proven adequate for traditional appli-
cation domains such as administrative data processing. In many application
domains, however, much more complex kinds of data must be handled. Typi-
cally this complex data has been stored in OS file systems or specialized data
structures, rather than in a DBMS. Examples of domains with complex data
include computer-aided design and modeling (CAD/CAM), multimedia repos-
itories, and document management.

As the amount of data grows, the many features offered by a DBMS—for exam-
ple, reduced application development time, concurrency control and recovery,
indexing support, and query capabilities—become increasingly attractive and,
ultimately, necessary. To support such applications, a DBMS must support
complex data types. Object-oriented concepts strongly influenced efforts to
enhance database support for complex data and led to the development of
object-database systems, which we discuss in this chapter.

Object-database systems have developed along two distinct paths:

Object-Oriented Database Systems: Object-oriented database sys-
tems are proposed as an alternative to relational systems and are aimed
at application domains where complex objects play a central role. The
approach is heavily influenced by object-oriented programming languages
and can be understood as an attempt to add DBMS functionality to a
programming language environment. The Object Database Management
Group (ODMG) has developed a standard Object Data Model (ODM)
and Object Query Language (OQL), which are the equivalent of the
SQL standard for relational database systems.

Object-Relational Database Systems: Object-relational database sys-
tems can be thought of as an attempt to extend relational database systems
with the functionality necessary to support a broader class of applications
and, in many ways, provide a bridge between the relational and object-
oriented paradigms. The SQL:1999 standard extends SQL to incorporate
support for the object-relational model of data.

We use acronyms for relational, object-oriented, and object-relational database
management systems (RDBMS, OODBMS, ORDBMS). In this chapter,
we focus on ORDBMSs and emphasize how they can be viewed as a develop-
ment of RDBMSs, rather than as an entirely different paradigm, as exemplified
by the evolution of SQL:1999.

We concentrate on developing the fundamental concepts rather than present-
ing SQL:1999; some of the features we discuss are not included in SQL:1999.
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Nonetheless, we have chosen to emphasize concepts relevant to SQL:1999 and
its likely future extensions. We also try to be consistent with SQL:1999 for
notation, although we occasionally diverge slightly for clarity. It is important
to recognize that the main concepts discussed are common to both ORDBMSs
and OODBMSs; we discuss how they are supported in the ODL/OQL standard
proposed for OODBMSs in Section 23.9.

RDBMS vendors, including IBM, Informix, and Oracle, are adding ORDBMS
functionality (to varying degrees) in their products, and it is important to
recognize how the existing body of knowledge about the design and imple-
mentation of relational databases can be leveraged to deal with the ORDBMS
extensions. It is also important to understand the challenges and opportunities
these extensions present to database users, designers, and implementors.

In this chapter, Sections 23.1 through 23.6 introduce object-oriented concepts.
The concepts discussed in these sections are common to both OODBMSs and
ORDBMSs. We begin by presenting an example in Section 23.1 that illustrates
why extensions to the relational model are needed to cope with some new
application domains. This is used as a running example throughout the chapter.
We discuss the use of type constructors to support user-defined structured data
types in Section 23.2. We consider what operations are supported on these new
types of data in Section 23.3. Next, we discuss data encapsulation and abstract
data types in Section 23.4. We cover inheritance and related issues, such as
method binding and collection hierarchies, in Section 23.5. We then consider
objects and object identity in Section 23.6.

We consider how to take advantage of the new object-oriented concepts to do
ORDBMS database design in Section 23.7. In Section 23.8, we discuss some
of the new implementation challenges posed by object-relational systems. We
discuss ODL and OQL, the standards for OODBMSs, in Section 23.9, and then
present a brief comparison of ORDBMSs and OODBMSs in Section 23.10.

23.1 MOTIVATING EXAMPLE

As a specific example of the need for object-relational systems, we focus on a
new business data processing problem that is both harder and (in our view)
more entertaining than the dollars and cents bookkeeping of previous decades.
Today, companies in industries such as entertainment are in the business of
selling bits; their basic corporate assets are not tangible products, but rather
software artifacts such as video and audio.

We consider the fictional Dinky Entertainment Company, a large Hollywood
conglomerate whose main assets are a collection of cartoon characters, espe-
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cially the cuddly and internationally beloved Herbert the Worm. Dinky has
several Herbert the Worm films, many of which are shown in theaters around
the world at any given time. Dinky also makes a good deal of money licensing
Herbert’s image, voice, and video footage for various purposes: action figures,
video games, product endorsements, and so on. Dinky’s database is used to
manage the sales and leasing records for the various Herbert-related products,
as well as the video and audio data that make up Herbert’s many films.

23.1.1 New Data Types

The basic problem confronting Dinky’s database designers is that they need
support for considerably richer data types than is available in a relational
DBMS:

User-defined data types: Dinky’s assets include Herbert’s image, voice,
and video footage, and these must be stored in the database. To handle
these new types, we need to be able to represent richer structure. (See Sec-
tion 23.2.) Further, we need special functions to manipulate these objects.
For example, we may want to write functions that produce a compressed
version of an image or a lower-resolution image. By hiding the details of the
data structure through the functions that capture the behavior, we achieve
data abstraction, leading to cleaner code design. (See Section 23.4.)

Inheritance: As the number of data types grows, it is important to take
advantage of the commonality between different types. For example, both
compressed images and lower-resolution images are, at some level, just
images. It is therefore desirable to inherit some features of image ob-
jects while defining (and later manipulating) compressed image objects
and lower-resolution image objects. (See Section 23.5.)

Object Identity: Given that some of the new data types contain very
large instances (e.g., videos), it is important not to store copies of objects;
instead, we must store references, or pointers, to such objects. In turn,
this underscores the need for giving objects a unique object identity, which
can be used to refer or ‘point’ to them from elsewhere in the data. (See
Section 23.6.)

How might we address these issues in an RDBMS? We could store images,
videos, and so on as BLOBs in current relational systems. A binary large
object (BLOB) is just a long stream of bytes, and the DBMS’s support
consists of storing and retrieving BLOBs in such a manner that a user does not
have to worry about the size of the BLOB; a BLOB can span several pages,
unlike a traditional attribute. All further processing of the BLOB has to be
done by the user’s application program, in the host language in which the
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The SQL/MM Standard: SQL/MM is an emerging standard that builds
upon SQL:1999’s new data types to define extensions of SQL:1999 that
facilitate handling of complex multimedia data types. SQL/MM is a mul-
tipart standard. Part 1, SQL/MM Framework, identifies the SQL:1999
concepts that are the foundation for SQL/MM extensions. Each of the
remaining parts addresses a specific type of complex data: Full Text,
Spatial, Still Image, and Data Mining. SQL/MM anticipates that
these new complex types can be used in columns of tables as field values.

Large Objects: SQL:1999 includes a new data type called LARGE OBJECT

or LOB, with two variants called BLOB (binary large object) and CLOB (char-
acter large object). This standardizes the large object support found in
many current relational DBMSs. LOBs cannot be included in primary
keys, GROUP BY, or ORDER BY clauses. They can be compared using equal-
ity, inequality, and substring operations. A LOB has a locator that is
essentially a unique id and allows LOBs to be manipulated without exten-
sive copying.
LOBs are typically stored separately from the data records in whose fields
they appear. IBM DB2, Informix, Microsoft SQL Server, Oracle 8, and
Sybase ASE all support LOBs.

SQL code is embedded. This solution is not efficient because we are forced to
retrieve all BLOBs in a collection even if most of them could be filtered out
of the answer by applying user-defined functions (within the DBMS). It is not
satisfactory from a data consistency standpoint either, because the semantics
of the data now depends heavily on the host language application code and
cannot be enforced by the DBMS.

As for structured types and inheritance, there is simply no support in the
relational model. We are forced to map data with such complex structure
into a collection of flat tables. (We saw examples of such mappings when we
discussed the translation from ER diagrams with inheritance to relations in
Chapter 2.)

This application clearly requires features not available in the relational model.
As an illustration of these features, Figure 23.1 presents SQL:1999 DDL state-
ments for a portion of Dinky’s ORDBMS schema used in subsequent examples.
Although the DDL is very similar to that of a traditional relational system,
some important distinctions highlight the new data modeling capabilities of
an ORDBMS. A quick glance at the DDL statements is sufficient for now; we
study them in detail in the next section, after presenting some of the basic
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concepts that our sample application suggests are needed in a next-generation
DBMS.

1. CREATE TABLE Frames
(frameno integer, image jpeg image, category integer);

2. CREATE TABLE Categories
(cid integer, name text, lease price float, comments text);

3. CREATE TYPE theater t AS

ROW(tno integer, name text, address text, phone text)
REF IS SYSTEM GENERATED;

4. CREATE TABLE Theaters OF theater t REF is tid SYSTEM GENERATED;
5. CREATE TABLE Nowshowing

(film integer, theater REF(theater t) SCOPE Theaters, start date,
end date);

6. CREATE TABLE Films
(filmno integer, title text, stars VARCHAR(25) ARRAY [10]),
director text, budget float);

7. CREATE TABLE Countries
(name text, boundary polygon, population integer, language text);

Figure 23.1 SQL:1999 DDL Statements for Dinky Schema

23.1.2 Manipulating the New Data

Thus far, we described the new kinds of data that must be stored in the Dinky
database. We have not yet said anything about how to use these new types
in queries, so let us study two queries that Dinky’s database needs to support.
The syntax of the queries is not critical; it is sufficient to understand what they
express. We return to the specifics of the queries’ syntax later.

Our first challenge comes from the Clog breakfast cereal company. Clog pro-
duces a cereal called Delirios and it wants to lease an image of Herbert the
Worm in front of a sunrise to incorporate in the Delirios box design. A query
to present a collection of possible images and their lease prices can be expressed
in SQL-like syntax as in Figure 23.2. Dinky has a number of methods written
in an imperative language like Java and registered with the database system.
These methods can be used in queries in the same way as built-in methods,
such as =,+,−, <,>, are used in a relational language like SQL. The thumb-
nail method in the Select clause produces a small version of its full-size input
image. The is sunrise method is a boolean function that analyzes an image
and returns true if the image contains a sunrise; the is herbert method returns
true if the image contains a picture of Herbert. The query produces the frame
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code number, image thumbnail, and price for all frames that contain Herbert
and a sunrise.

SELECT F.frameno, thumbnail(F.image), C.lease price
FROM Frames F, Categories C
WHERE F.category = C.cid AND is sunrise(F.image) AND is herbert(F.image)

Figure 23.2 Extended SQL to Find Pictures of Herbert at Sunrise

The second challenge comes from Dinky’s executives. They know that Delirios
is exceedingly popular in the tiny country of Andorra, so they want to make
sure that a number of Herbert films are playing at theaters near Andorra when
the cereal hits the shelves. To check on the current state of affairs, the execu-
tives want to find the names of all theaters showing Herbert films within 100
kilometers of Andorra. Figure 23.3 shows this query in an SQL-like syntax.

SELECT N.theater–>name, N.theater–>address, F.title
FROM Nowshowing N, Films F, Countries C
WHERE N.film = F.filmno AND

overlaps(C.boundary, radius(N.theater–>address, 100)) AND

C.name = ‘Andorra’ AND ‘Herbert the Worm’ = F.stars[1]

Figure 23.3 Extended SQL to Find Herbert Films Playing near Andorra

The theater attribute of the Nowshowing table is a reference to an object in
another table, which has attributes name, address, and location. This object
referencing allows for the notation N.theater–>name and N.theater–>address,
each of which refers to attributes of the theater t object referenced in the
Nowshowing row N . The stars attribute of the films table is a set of names of
each film’s stars. The radius method returns a circle centered at its first argu-
ment with radius equal to its second argument. The overlaps method tests
for spatial overlap. Nowshowing and Films are joined by the equijoin clause,
while Nowshowing and Countries are joined by the spatial overlap clause. The
selections to ‘Andorra’ and films containing ‘Herbert the Worm’ complete the
query.

These two object-relational queries are similar to SQL-92 queries but have some
unusual features:

User-Defined Methods: User-defined abstract types are manipulated
via their methods, for example, is herbert (Section 23.2).

Operators for Structured Types: Along with the structured types
available in the data model, ORDBMSs provide the natural methods for
those types. For example, the ARRAY type supports the standard array
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operation of accessing an array element by specifying the index; F.stars[1]
returns the first element of the array in the stars column of film F (Sec-
tion 23.3).

Operators for Reference Types: Reference types are dereferenced via
an arrow (–>) notation (Section 23.6.2).

To summarize the points highlighted by our motivating example, traditional
relational systems offer limited flexibility in the data types available. Data is
stored in tables and the type of each field value is limited to a simple atomic type
(e.g., integer or string), with a small, fixed set of such types to choose from.
This limited type system can be extended in three main ways: user-defined
abstract data types, structured types, and reference types. Collectively, we
refer to these new types as complex types. In the rest of this chapter, we
consider how a DBMS can be extended to provide support for defining new
complex types and manipulating objects of these new types.

23.2 STRUCTURED DATA TYPES

SQL:1999 allows users to define new data types, in addition to the built-in types
(e.g., integers). In Section 5.7.2, we discussed the definition of new distinct
types. Distinct types stay within the standard relational model, since values of
these types must be atomic.

SQL:1999 also introduced two type constructors that allow us to define new
types with internal structure. Types defined using type constructors are called
structured types. This takes us beyond the relational model, since field
values need no longer be atomic:

ROW(n1 t1, ..., nn tn): A type representing a row, or tuple, of n fields with
fields n1, ..., nn of types t1, ..., tn respectively.

base ARRAY [i]): A type representing an array of (up to) i base-type
items.

The theater t type in Figure 23.1 illustrates the new ROW data type. In
SQL:1999, the ROW type has a special role because every table is a collection of
rows—every table is a set of rows or a multiset of rows. Values of other types
can appear only as field values.

The stars field of table Films illustrates the new ARRAY type. It is an array of
upto 10 elements, each of which is of type VARCHAR(25). Note that 10 is the
maximum number of elements in the array; at any time, the array (unlike, say,
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SQL:1999 Structured Data Types: Several commercial systems, in-
cluding IBM DB2, Informix UDS, and Oracle 9i support the ROW and ARRAY

constructors. The listof, bagof, and setof type constructors are not in-
cluded in SQL:1999. Nonetheless, commercial systems support some of
these constructors to varying degrees. Oracle supports nested relations
and arrays, but does not support fully composing these constructors. In-
formix supports the setof, bagof, and listof constructors and allows them
to be composed. Support in this area varies widely across vendors.

in C) can contain fewer elements. Since SQL:1999 does not support multidi-
mensional arrays, vector might have been a more accurate name for the array
constructor.

The power of type constructors comes from the fact that they can be composed.
The following row type contains a field that is an array of at most 10 strings:

ROW(filmno: integer, stars: VARCHAR(25) ARRAY [10])

The row type in SQL:1999 is quite general; its fields can be of any SQL:1999
data type. Unfortunately, the array type is restricted; elements of an array
cannot be arrays themselves. Therefore, the following definition is illegal:

(integer ARRAY [5]) ARRAY [10]

23.2.1 Collection Types

SQL:1999 supports only the ROW and ARRAY type constructors. Other common
type constructors include

listof(base): A type representing a sequence of base-type items.

setof(base): A type representing a set of base-type items. Sets cannot
contain duplicate elements.

bagof(base): A type representing a bag or multiset of base-type items.

Types using listof, ARRAY, bagof, or setof as the outermost type constructor
are sometimes referred to as collection types or bulk data types.
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The lack of support for these collection types is recognized as a weakness of
SQL:1999’s support for complex objects and it is quite possible that some of
these collection types will be added in future revisions of the SQL standard.1

23.3 OPERATIONS ON STRUCTURED DATA

The DBMS provides built-in methods for the types defined using type con-
structors. These methods are analogous to built-in operations such as addition
and multiplication for atomic types such as integers. In this section we present
the methods for various type constructors and illustrate how SQL queries can
create and manipulate values with structured types.

23.3.1 Operations on Rows

Given an item i whose type is ROW(n1 t1, ..., nn tn), the field extraction method
allows us to access an individual field nk using the traditional dot notation
i.nk. If row constructors are nested in a type definition, dots may be nested to
access the fields of the nested row; for example i.nk.ml. If we have a collection
of rows, the dot notation gives us a collection as a result. For example, if i is
a list of rows, i.nk gives us a list of items of type tn; if i is a set of rows, i.nk
gives us a set of items of type tn.

This nested-dot notation is often called a path expression, because it de-
scribes a path through the nested structure.

23.3.2 Operations on Arrays

Array types support an ‘array index’ method to allow users to access array
items at a particular offset. A postfix ‘square bracket’ syntax is usually used.
Since the number of elements can vary, there is an operator (CARDINALITY) that
returns the number of elements in the array. The variable number of elements
also motivates an operator to concatenate two arrays. The following example
illustrates these operations on SQL:1999 arrays.

SELECT F.filmno, (F.stars " [‘Brando’, ‘Pacino’])
FROM Films F
WHERE CARDINALITY(F.stars) < 3 AND F.stars[1]=‘Redford’

1According to Jim Melton, the editor of the SQL:1999 standard, these collection types were con-
sidered for inclusion but omitted because some problems with their specifications were discovered too
late for correction in the SQL:1999 time-frame.
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For each film with Redford as the first star2 and fewer than three stars, the
result of the query contains the film’s array of stars concatenated with the
array containing the two elements ‘Brando’ and ‘Pacino’. Observe how a value
of type array (containing Brando and Pacino) is constructed through the use
of square brackets in the SELECT clause.

23.3.3 Operations on Other Collection Types

Although only arrays are supported in SQL:1999, future versions of SQL are
expected to support other collection types, and we consider what operations are
appropriate over these types of data. provide such operations. Our discussion
is illustrative and not meant to be comprehensive. For example, one could
additionally allow aggregate operators count, sum, avg, max, and min to be
applied to any object of a collection type with an appropriate base type (e.g.,
INTEGER). One could also support operators for type conversions. For example,
one could provide operators to convert a multiset object to a set object by
eliminating duplicates.

Sets and Multisets

Set objects can be compared using the traditional set methods ⊂,⊆,=,⊇,⊃.
An item of type setof(foo) can be compared with an item of type foo using
the ∈ method, as illustrated in Figure 23.3, which contains the comparison
‘Herbert the Worm’ ∈ F.stars. Two set objects (having elements of the same
type) can be combined to form a new object using the ∪, ∩, and − operators.

Each of the methods for sets can be defined for multisets, taking the number of
copies of elements into account. The ∪ operation simply adds up the number
of copies of an element, the ∩ operation counts the lesser number of times a
given element appears in the two input multisets, and − subtracts the number
of times a given element appears in the second multiset from the number of
times it appears in the first multiset. For example, using multiset semantics
∪ ({1,2,2,2}, {2,2,3}) = {1,2,2,2,2,2,3}; ∩ ({1,2,2,2}, {2,2,3}) = {2,2}; and −
({1,2,2,2}, {2,2,3}) = {1,2}.

Lists

Traditional list operations include head, which returns the first element; tail,
which returns the list obtained by removing the first element; prepend, which

2Note that the first element in an SQL array has index value 1 (not 0, as in some languages).
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takes an element and inserts it as the first element in a list; and append, which
appends one list to another.

23.3.4 Queries Over Nested Collections

We now present some examples to illustrate how relations that contain nested
collections can be queried, using SQL syntax. In particular, extensions of the
relational model with nested sets and multisets have been widely studied and
we focus on these collection types.

We consider a variant of the Films relation from Figure 23.1 in this section,
with the stars field defined as a setof (VARCHAR[25]), rather than an array.
Each tuple describes a film, uniquely identified by filmno, and contains a set
(of stars in the film) as a field value.

Our first example illustrates how we can apply an aggregate operator to such a
nested set. It identifies films with more than two stars by counting the number
of stars; the CARDINALITY operator is applied once per Films tuple. 3

SELECT F.filmno
FROM Films F
WHERE CARDINALITY(F.stars) > 2

Our second query illustrates an operation called unnesting. Consider the
instance of Films shown in Figure 23.4; we have omitted the director and budget
fields (included in the Films schema in Figure 23.1) for simplicity. A flat version
of the same information is shown in Figure 23.5; for each film and star in the
film, we have a tuple in Films flat.

filmno title stars

98 Casablanca {Bogart, Bergman}
54 Earth Worms Are Juicy {Herbert, Wanda}

Figure 23.4 A Nested Relation, Films

The following query generates the instance of Films flat from Films:

SELECT F.filmno, F.title, S AS star
FROM Films F, F.stars AS S

3SQL:1999 does not support set or multiset values, as we noted earlier. If it did, it would be natural
to allow the CARDINALITY operator to be applied to a set-value to count the number of elements; we
have used the operator in this spirit.
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filmno title star

98 Casablanca Bogart
98 Casablanca Bergman
54 Earth Worms Are Juicy Herbert
54 Earth Worms Are Juicy Wanda

Figure 23.5 A Flat Version, Films flat

The variable F is successively bound to tuples in Films, and for each value
of F , the variable S is successively bound to the set in the stars field of F .
Conversely, we may want to generate the instance of Films from Films flat. We
can generate the Films instance using a generalized form of SQL’s GROUP BY

construct, as the following query illustrates:

SELECT F.filmno, F.title, set gen(F.star)
FROM Films flat F
GROUP BY F.filmno, F.title

This example introduces a new operator set gen, to be used with GROUP BY,
that requires some explanation. The GROUP BY clause partitions the Films flat
table by sorting on the filmno attribute; all tuples in a given partition have the
same filmno (and therefore the same title). Consider the set of values in the star
column of a given partition. In an SQL-92 query, this set must be summarized
by applying an aggregate operator such as COUNT. Now that we allow relations
to contain sets as field values, however, we can return the set of star values as
a field value in a single answer tuple; the answer tuple also contains the filmno
of the corresponding partition. The set gen operator collects the set of star
values in a partition and creates a set-valued object. This operation is called
nesting. We can imagine similar generator functions for creating multisets,
lists, and so on. However, such generators are not included in SQL:1999.

23.4 ENCAPSULATION AND ADTS

Consider the Frames table of Figure 23.1. It has a column image of type
jpeg image, which stores a compressed image representing a single frame of a
film. The jpeg image type is not one of the DBMS’s built-in types and was
defined by a user for the Dinky application to store image data compressed
using the JPEG standard. As another example, the Countries table defined in
Line 7 of Figure 23.1 has a column boundary of type polygon, which contains
representations of the shapes of countries’ outlines on a world map.
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Allowing users to define arbitrary new data types is a key feature of ORDBMSs.
The DBMS allows users to store and retrieve objects of type jpeg image, just
like an object of any other type, such as integer. New atomic data types
usually need to have type-specific operations defined by the user who creates
them. For example, one might define operations on an image data type such
as compress, rotate, shrink, and crop. The combination of an atomic data
type and its associated methods is called an abstract data type, or ADT.
Traditional SQL comes with built-in ADTs, such as integers (with the associ-
ated arithmetic methods) or strings (with the equality, comparison, and LIKE

methods). Object-relational systems include these ADTs and also allow users
to define their own ADTs.

The label abstract is applied to these data types because the database system
does not need to know how an ADT’s data is stored nor how the ADT’s meth-
ods work. It merely needs to know what methods are available and the input
and output types for the methods. Hiding ADT internals is called encapsu-
lation.4 Note that even in a relational system, atomic types such as integers
have associated methods that encapsulate them. In the case of integers, the
standard methods for the ADT are the usual arithmetic operators and com-
parators. To evaluate the addition operator on integers, the database system
need not understand the laws of addition—it merely needs to know how to
invoke the addition operator’s code and what type of data to expect in return.

In an object-relational system, the simplification due to encapsulation is critical
because it hides any substantive distinctions between data types and allows an
ORDBMS to be implemented without anticipating the types and methods that
users might want to add. For example, adding integers and overlaying images
can be treated uniformly by the system, with the only significant distinctions
being that different code is invoked for the two operations and differently typed
objects are expected to be returned from that code.

23.4.1 Defining Methods

To register a new method for a user-defined data type, users must write the
code for the method and then inform the database system about the method.
The code to be written depends on the languages supported by the DBMS
and, possibly, the operating system in question. For example, the ORDBMS
may handle Java code in the Linux operating system. In this case, the method
code must be written in Java and compiled into a Java bytecode file stored in
a Linux file system. Then an SQL-style method registration command is given
to the ORDBMS so that it recognizes the new method:

4Some ORDBMSs actually refer to ADTs as opaque types because they are encapsulated and
hence one cannot see their details.
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Packaged ORDBMS Extensions: Developing a set of user-defined
types and methods for a particular application—say, image management—
can involve a significant amount of work and domain-specific expertise. As
a result, most ORDBMS vendors partner with third parties to sell prepack-
aged sets of ADTs for particular domains. Informix calls these extensions
DataBlades, Oracle calls them Data Cartridges, IBM calls them DB2 Ex-
tenders, and so on. These packages include the ADT method code, DDL
scripts to automate loading the ADTs into the system, and in some cases
specialized access methods for the data type. Packaged ADT extensions are
analogous to the class libraries available for object-oriented programming
languages: They provide a set of objects that together address a common
task.
SQL:1999 has an extension called SQL/MM that consists of several inde-
pendent parts, each of which specifies a type library for a particular kind
of data. The SQL/MM parts for Full-Text, Spatial, Still Image, and Data
Mining are available, or nearing publication.

CREATE FUNCTION is sunrise(jpeg image) RETURNS boolean

AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

This statement defines the salient aspects of the method: the type of the asso-
ciated ADT, the return type, and the location of the code. Once the method is
registered, the DBMS uses a Java virtual machine to execute the code5. Fig-
ure 23.6 presents a number of method registration commands for our Dinky
database.

1. CREATE FUNCTION thumbnail(jpeg image) RETURNS jpeg image

AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

2. CREATE FUNCTION is sunrise(jpeg image) RETURNS boolean

AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

3. CREATE FUNCTION is herbert(jpeg image) RETURNS boolean

AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

4. CREATE FUNCTION radius(polygon, float) RETURNS polygon

AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

5. CREATE FUNCTION overlaps(polygon, polygon) RETURNS boolean

AS EXTERNAL NAME ‘/a/b/c/dinky.class’ LANGUAGE ’java’;

Figure 23.6 Method Registration Commands for the Dinky Database

5In the case of non-portable compiled code—written, for example, in a language like C++—the
DBMS uses the operating system’s dynamic linking facility to link the method code into the database
system so that it can be invoked.
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Type definition statements for the user-defined atomic data types in the Dinky
schema are given in Figure 23.7.

1. CREATE ABSTRACT DATA TYPE jpeg image

(internallength = VARIABLE, input = jpeg in, output = jpeg out);
2. CREATE ABSTRACT DATA TYPE polygon

(internallength = VARIABLE, input = poly in, output = poly out);

Figure 23.7 Atomic Type Declaration Commands for Dinky Database

23.5 INHERITANCE

We considered the concept of inheritance in the context of the ER model in
Chapter 2 and discussed how ER diagrams with inheritance were translated
into tables. In object-database systems, unlike relational systems, inheritance
is supported directly and allows type definitions to be reused and refined very
easily. It can be very helpful when modeling similar but slightly different classes
of objects. In object-database systems, inheritance can be used in two ways: for
reusing and refining types and for creating hierarchies of collections of similar
but not identical objects.

23.5.1 Defining Types with Inheritance

In the Dinky database, we model movie theaters with the type theater t.
Dinky also wants their database to represent a new marketing technique in the
theater business: the theater-cafe, which serves pizza and other meals while
screening movies. Theater-cafes require additional information to be repre-
sented in the database. In particular, a theater-cafe is just like a theater, but
has an additional attribute representing the theater’s menu. Inheritance allows
us to capture this ‘specialization’ explicitly in the database design with the
following DDL statement:

CREATE TYPE theatercafe t UNDER theater t (menu text);

This statement creates a new type, theatercafe t, which has the same at-
tributes and methods as theater t, plus one additional attribute menu of type
text. Methods defined on theater t apply to objects of type theatercafe t,
but not vice versa. We say that theatercafe t inherits the attributes and
methods of theater t.

Note that the inheritance mechanism is not merely a macro to shorten CREATE

statements. It creates an explicit relationship in the database between the
subtype (theatercafe t) and the supertype (theater t): An object of the
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subtype is also considered to be an object of the supertype. This treatment
means that any operations that apply to the supertype (methods as well as
query operators, such as projection or join) also apply to the subtype. This is
generally expressed in the following principle:

The Substitution Principle: Given a supertype A and a subtype
B, it is always possible to substitute an object of type B into a legal
expression written for objects of type A, without producing type errors.

This principle enables easy code reuse because queries and methods written for
the supertype can be applied to the subtype without modification.

Note that inheritance can also be used for atomic types, in addition to row
types. Given a supertype image t with methods title(), number of colors(),
and display(), we can define a subtype thumbnail image t for small images
that inherits the methods of image t.

23.5.2 Binding Methods

In defining a subtype, it is sometimes useful to replace a method for the su-
pertype with a new version that operates differently on the subtype. Consider
the image t type and the subtype jpeg image t from the Dinky database.
Unfortunately, the display() method for standard images does not work for
JPEG images, which are specially compressed. Therefore, in creating type
jpeg image t, we write a special display() method for JPEG images and reg-
ister it with the database system using the CREATE FUNCTION command:

CREATE FUNCTION display(jpeg image) RETURNS jpeg image

AS EXTERNAL NAME ‘/a/b/c/jpeg.class’ LANGUAGE ’java’;

Registering a new method with the same name as an old method is called
overloading the method name.

Because of overloading, the system must understand which method is intended
in a particular expression. For example, when the system needs to invoke the
display() method on an object of type jpeg image t, it uses the specialized
display method. When it needs to invoke display on an object of type image t

that is not otherwise subtyped, it invokes the standard display method. The
process of deciding which method to invoke is called binding the method to
the object. In certain situations, this binding can be done when an expression is
parsed (early binding), but in other cases the most specific type of an object
cannot be known until run-time, so the method cannot be bound until then
(late binding). Late binding facilties add flexibility but can make it harder
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for the user to reason about the methods that get invoked for a given query
expression.

23.5.3 Collection Hierarchies

Type inheritance was invented for object-oriented programming languages, and
our discussion of inheritance up to this point differs little from the discussion
one might find in a book on an object-oriented language such as C++ or Java.

However, because database systems provide query languages over tabular data
sets, the mechanisms from programming languages are enhanced in object
databases to deal with tables and queries as well. In particular, in object-
relational systems, we can define a table containing objects of a particular
type, such as the Theaters table in the Dinky schema. Given a new subtype,
such as theatercafe t, we would like to create another table Theater cafes to
store the information about theater cafes. But, when writing a query over the
Theaters table, it is sometimes desirable to ask the same query over the The-
ater cafes table; after all, if we project out the additional columns, an instance
of the Theater cafes table can be regarded as an instance of the Theaters table.

Rather than requiring the user to specify a separate query for each such table,
we can inform the system that a new table of the subtype is to be treated as
part of a table of the supertype, with respect to queries over the latter table.
In our example, we can say

CREATE TABLE Theater Cafes OF TYPE theatercafe t UNDER Theaters;

This statement tells the system that queries over the Theaters table should
actually be run over all tuples in both the Theaters and Theater Cafes tables. In
such cases, if the subtype definition involves method overloading, late-binding
is used to ensure that the appropriate methods are called for each tuple.

In general, the UNDER clause can be used to generate an arbitrary tree of ta-
bles, called a collection hierarchy. Queries over a particular table T in the
hierarchy are run over all tuples in T and its descendants. Sometimes, a user
may want the query to run only on T and not on the descendants; additional
syntax, for example, the keyword ONLY, can be used in the query’s FROM clause
to achieve this effect.

23.6 OBJECTS, OIDS, AND REFERENCE TYPES

In object-database systems, data objects can be given an object identifier
(oid), which is some value that is unique in the database across time. The
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OIDs: IBM DB2, Informix UDS, and Oracle 9i support REF types.

DBMS is responsible for generating oids and ensuring that an oid identifies an
object uniquely over its entire lifetime. In some systems, all tuples stored in
any table are objects and automatically assigned unique oids; in other systems,
a user can specify the tables for which the tuples are to be assigned oids. Often,
there are also facilities for generating oids for larger structures (e.g., tables) as
well as smaller structures (e.g., instances of data values such as a copy of the
integer 5 or a JPEG image).

An object’s oid can be used to refer to it from elsewhere in the data. An oid
has a type similar to the type of a pointer in a programming language.

In SQL:1999 every tuple in a table can be given an oid by defining the table
in terms of a structured type and declaring that a REF type is associated with
it, as in the definition of the Theaters table in Line 4 of Figure 23.1. Contrast
this with the definition of the Countries table in Line 7; Countries tuples do
not have associated oids. (SQL:1999 also assigns ‘oids’ to large objects: This
is the locator for the object.)

REF types have values that are unique identifiers or oids. SQL:1999 requires
that a given REF type must be associated with a specific table. For example,
Line 5 of Figure 23.1 defines a column theater of type REF(theater t). The
SCOPE clause specifies that items in this column are references to rows in the
Theaters table, which is defined in Line 4.

23.6.1 Notions of Equality

The distinction between reference types and reference-free structured types
raises another issue: the definition of equality. Two objects having the same
type are defined to be deep equal if and only if

1. The objects are of atomic type and have the same value.

2. The objects are of reference type and the deep equals operator is true for
the two referenced objects.

3. The objects are of structured type and the deep equals operator is true for
all the corresponding subparts of the two objects.

Two objects that have the same reference type are defined to be shallow equal
if both refer to the same object (i.e., both references use the same oid). The
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definition of shallow equality can be extended to objects of arbitrary type by
taking the definition of deep equality and replacing deep equals by shallow equals
in parts (2) and (3).

As an example, consider the complex objects ROW(538, t89, 6-3-97, 8-7-97)
and ROW(538, t33, 6-3-97, 8-7-97), whose type is the type of rows in the table
Nowshowing (Line 5 of Figure 23.1). These two objects are not shallow equal
because they differ in the second attribute value. Nonetheless, they might
be deep equal, if, for instance, the oids t89 and t33 refer to objects of type
theater t that have the same value; for example, tuple(54, ‘Majestic’, ‘115
King’, ‘2556698’).

While two deep equal objects may not be shallow equal, as the example illus-
trates, two shallow equal objects are always deep equal, of course. The default
choice of deep versus shallow equality for reference types is different across
systems, although typically we are given syntax to specify either semantics.

23.6.2 Dereferencing Reference Types

An item of reference type REF(basetype) is not the same as the basetype item
to which it points. To access the referenced basetype item, a built-in deref()

method is provided along with the REF type constructor. For example, given
a tuple from the Nowshowing table, one can access the name field of the ref-
erenced theater t object with the syntax Nowshowing.deref(theater).name.
Since references to tuple types are common, SQL:1999 uses a Java-style arrow
operator, which combines a postfix version of the dereference operator with a
tuple-type dot operator. The name of the referenced theater can be accessed
with the equivalent syntax Nowshowing.theater–>name, as in Figure 23.3.

At this point we have covered all the basic type extensions used in the Dinky
schema in Figure 23.1. The reader is invited to revisit the schema and examine
the structure and content of each table and how the new features are used in
the various sample queries.

23.6.3 URLs and OIDs in SQL:1999

It is instructive to note the differences between Internet URLs and the oids
in object systems. First, oids uniquely identify a single object over all time
(at least, until the object is deleted, when the oid is undefined), whereas the
Web resource pointed at by an URL can change over time. Second, oids are
simply identifiers and carry no physical information about the objects they
identify—this makes it possible to change the storage location of an object
without modifying pointers to the object. In contrast, URLs include network
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addresses and often file-system names as well, meaning that if the resource
identified by the URL has to move to another file or network address, then all
links to that resource are either incorrect or require a ‘forwarding’ mechanism.
Third, oids are automatically generated by the DBMS for each object, whereas
URLs are user-generated. Since users generate URLs, they often embed se-
mantic information into the URL via machine, directory, or file names; this
can become confusing if the object’s properties change over time.

For URLs, deletions can be troublesome: This leads to the notorious ‘404
Page Not Found’ error. For oids, SQL:1999 allows us to say REFERENCES ARE

CHECKED as part of the SCOPE clause and choose one of several actions when a
referenced object is deleted. This is a direct extension of referential integrity
that covers oids.

23.7 DATABASE DESIGN FOR AN ORDBMS

The rich variety of data types in an ORDBMS offers a database designer many
opportunities for a more natural or more efficient design. In this section we illus-
trate the differences between RDBMS and ORDBMS database design through
several examples.

23.7.1 Collection Types and ADTs

Our first example involves several space probes, each of which continuously
records a video. A single video stream is associated with each probe, and while
this stream was collected over a certain time period, we assume that it is now
a complete object associated with the probe. During the time period over
which the video was collected, the probe’s location was periodically recorded
(such information can easily be piggy-backed onto the header portion of a video
stream conforming to the MPEG standard). The information associated with
a probe has three parts: (1) a probe ID that identifies a probe uniquely, (2) a
video stream, and (3) a location sequence of  time, location pairs. What kind
of a database schema should we use to store this information?

An RDBMS Database Design

In an RDBMS, we must store each video stream as a BLOB and each location
sequence as tuples in a table. A possible RDBMS database design follows:

Probes(pid: integer, time: timestamp, lat: real, long: real,
camera: string, video: BLOB)
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There is a single table called Probes and it has several rows for each probe. Each
of these rows has the same pid, camera, and video values, but different time,
lat, and long values. (We have used latitude and longitude to denote location.)
The key for this table can be represented as a functional dependency: PTLN
→ CV, where N stands for longitude. There is another dependency: P → CV.
This relation is therefore not in BCNF; indeed, it is not even in 3NF. We can
decompose Probes to obtain a BCNF schema:

Probes Loc(pid: integer, time: timestamp, lat: real, long: real)
Probes Video(pid: integer, camera: string, video: BLOB)

This design is about the best we can achieve in an RDBMS. However, it suffers
from several drawbacks.

First, representing videos as BLOBs means that we have to write application
code in an external language to manipulate a video object in the database.
Consider this query: “For probe 10, display the video recorded between 1:10
P.M. and 1:15 P.M. on May 10 1996.” We must retrieve the entire video object
associated with probe 10, recorded over several hours, to display a segment
recorded over five minutes.

Next, the fact that each probe has an associated sequence of location readings
is obscured, and the sequence information associated with a probe is dispersed
across several tuples. A third drawback is that we are forced to separate the
video information from the sequence information for a probe. These limitations
are exposed by queries that require us to consider all the information associated
with each probe; for example, “For each probe, print the earliest time at which
it recorded, and the camera type.” This query now involves a join of Probes Loc
and Probes Video on the pid field.

An ORDBMS Database Design

An ORDBMS supports a much better solution. First, we can store the video
as an ADT object and write methods that capture any special manipulation
we wish to perform. Second, because we are allowed to store structured types
such as lists, we can store the location sequence for a probe in a single tuple,
along with the video information. This layout eliminates the need for joins in
queries that involve both the sequence and video information. An ORDBMS
design for our example consists of a single relation called Probes AllInfo:

Probes AllInfo(pid: integer, locseq: location seq, camera: string,
video: mpeg stream)
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This definition involves two new types, location seq and mpeg stream. The
mpeg stream type is defined as an ADT, with a method display() that takes
a start time and an end time and displays the portion of the video recorded
during that interval. This method can be implemented efficiently by looking at
the total recording duration and the total length of the video and interpolating
to extract the segment recorded during the interval specified in the query.

Our first query in extended SQL using this display method follows. We now
retrieve only the required segment of the video rather than the entire video.

SELECT display(P.video, 1:10 P.M. May 10 1996, 1:15 P.M. May 10 1996)
FROM Probes AllInfo P
WHERE P.pid = 10

Now consider the location seq type. We could define it as a list type,
containing a list of ROW type objects:

CREATE TYPE location seq listof

(row (time: timestamp, lat: real, long: real))

Consider the locseq field in a row for a given probe. This field contains a list
of rows, each of which has three fields. If the ORDBMS implements collection
types in their full generality, we should be able to extract the time column
from this list to obtain a list of timestamp values and apply the MIN aggregate
operator to this list to find the earliest time at which the given probe recorded.
Such support for collection types would enable us to express our second query
thus:

SELECT P.pid, MIN(P.locseq.time)
FROM Probes AllInfo P

Current ORDBMSs are not as general and clean as this example query suggests.
For instance, the system may not recognize that projecting the time column
from a list of rows gives us a list of timestamp values; or the system may allow
us to apply an aggregate operator only to a table and not to a nested list value.

Continuing with our example, we may want to do specialized operations on
our location sequences that go beyond the standard aggregate operators. For
instance, we may want to define a method that takes a time interval and com-
putes the distance traveled by the probe during this interval. The code for this
method must understand details of a probe’s trajectory and geospatial coordi-
nate systems. For these reasons, we might choose to define location seq as
an ADT.
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Clearly, an (ideal) ORDBMS gives us many useful design options that are not
available in an RDBMS.

23.7.2 Object Identity

We now discuss some of the consequences of using reference types or oids. The
use of oids is especially significant when the size of the object is large, either
because it is a structured data type or because it is a big object such as an
image.

Although reference types and structured types seem similar, they are actually
quite different. For example, consider a structured type my theater tuple(tno
integer, name text, address text, phone text) and the reference type theater
ref(theater t) of Figure 23.1. There are important differences in the way that
database updates affect these two types:

Deletion: Objects with references can be affected by the deletion of ob-
jects that they reference, while reference-free structured objects are not
affected by deletion of other objects. For example, if the Theaters table
were dropped from the database, an object of type theater might change
value to null, because the theater t object it refers to has been deleted,
while a similar object of type my theater would not change value.

Update: Objects of reference types change value if the referenced object
is updated. Objects of reference-free structured types change value only if
updated directly.

Sharing versus Copying: An identified object can be referenced by
multiple reference-type items, so that each update to the object is reflected
in many places. To get a similar effect in reference-free types requires
updating all ‘copies’ of an object.

There are also important storage distinctions between reference types and non-
reference types, which might affect performance:

Storage Overhead: Storing copies of a large value in multiple structured
type objects may use much more space than storing the value once and
referring to it elsewhere through reference type objects. This additional
storage requirement can affect both disk usage and buffer management (if
many copies are accessed at once).

Clustering: The subparts of a structured object are typically stored to-
gether on disk. Objects with references may point to other objects that are
far away on the disk, and the disk arm may require significant movement
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OIDs and Referential Integrity: In SQL:1999, all the oids that ap-
pear in a column of a relation are required to reference the same target
relation. This ‘scoping’ makes it possible to check oid references for ‘refer-
ential integrity’ just like foreign key references are checked. While current
ORDBMS products supporting oids do not support such checks, it is likely
that they will in future releases. This will make it much safer to use oids.

to assemble the object and its references together. Structured objects can
thus be more efficient than reference types if they are typically accessed in
their entirety.

Many of these issues also arise in traditional programming languages such as C
or Pascal, which distinguish between the notions of referring to objects by value
and by reference. In database design, the choice between using a structured
type or a reference type typically includes consideration of the storage costs,
clustering issues, and the effect of updates.

Object Identity versus Foreign Keys

Using an oid to refer to an object is similar to using a foreign key to refer
to a tuple in another relation but not quite the same: An oid can point to
an object of theater t that is stored anywhere in the database, even in a
field, whereas a foreign key reference is constrained to point to an object in a
particular referenced relation. This restriction makes it possible for the DBMS
to provide much greater support for referential integrity than for arbitrary oid
pointers. In general, if an object is deleted while there are still oid-pointers
to it, the best the DBMS can do is to recognize the situation by maintaining
a reference count. (Even this limited support becomes impossible if oids can
be copied freely.) Therefore, the responsibility for avoiding dangling references
rests largely with the user if oids are used to refer to objects. This burdensome
responsibility suggests that we should use oids with great caution and use
foreign keys instead whenever possible.

23.7.3 Extending the ER Model

The ER model, as described in Chapter 2, is not adequate for ORDBMS design.
We have to use an extended ER model that supports structured attributes
(i.e., sets, lists, arrays as attribute values), distinguishes whether entities have
object ids, and allows us to model entities whose attributes include methods.
We illustrate these comments using an extended ER diagram to describe the
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space probe data in Figure 23.8; our notational conventions are ad hoc and
only for illustrative purposes.

Probes

video

camerapid

display(start, end)listof(row(time, lat, long))

Figure 23.8 The Space Probe Entity Set

The definition of Probes in Figure 23.8 has two new aspects. First, it has a
structured-type attribute listof(row(time, lat, long)); each value assigned to
this attribute in a Probes entity is a list of tuples with three fields. Second,
Probes has an attribute called video that is an abstract data type object, which
is indicated by a dark oval for this attribute with a dark line connecting it to
Probes. Further, this attribute has an ‘attribute’ of its own, which is a method
of the ADT.

Alternatively, we could model each video as an entity by using an entity set
called Videos. The association between Probes entities and Videos entities
could then be captured by defining a relationship set that links them. Since
each video is collected by precisely one probe and every video is collected by
some probe, this relationship can be maintained by simply storing a reference to
a probe object with each Videos entity; this technique is essentially the second
translation approach from ER diagrams to tables discussed in Section 2.4.1.

If we also make Videos a weak entity set in this alternative design, we can add
a referential integrity constraint that causes a Videos entity to be deleted when
the corresponding Probes entity is deleted. More generally, this alternative
design illustrates a strong similarity between storing references to objects and
foreign keys; the foreign key mechanism achieves the same effect as storing oids,
but in a controlled manner. If oids are used, the user must ensure that there
are no dangling references when an object is deleted, with very little support
from the DBMS.

Finally, we note that a significant extension to the ER model is required to
support the design of nested collections. For example, if a location sequence
is modeled as an entity, and we want to define an attribute of Probes that
contains a set of such entities, there is no way to do this without extending the
ER model. We do not discuss this point further at the level of ER diagrams,
but consider an example next that illustrates when to use a nested collection.
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23.7.4 Using Nested Collections

Nested collections offer great modeling power but also raise difficult design
decisions. Consider the following way to model location sequences (other in-
formation about probes is omitted here to simplify the discussion):

Probes1(pid: integer, locseq: location seq)

This is a good choice if the important queries in the workload require us to look
at the location sequence for a particular probe, as in the query “For each probe,
print the earliest time at which it recorded and the camera type.” On the other
hand, consider a query that requires us to look at all location sequences: “Find
the earliest time at which a recording exists for lat=5, long=90.” This query
can be answered more efficiently if the following schema is used:

Probes2(pid: integer, time: timestamp, lat: real, long: real)

The choice of schema must therefore be guided by the expected workload (as
always). As another example, consider the following schema:

Can Teach1(cid: integer, teachers: setof(ssn: string), sal: integer)

If tuples in this table are to be interpreted as “Course cid can be taught by any
of the teachers in the teachers field, at a cost sal.” then we have the option of
using the following schema instead:

Can Teach2(cid: integer, teacher ssn: string, sal: integer)

A choice between these two alternatives can be made based on how we expect
to query this table. On the other hand, suppose that tuples in Can Teach1
are to be interpreted as “Course cid can be taught by the team teachers, at
a combined cost of sal.” Can Teach2 is no longer a viable alternative. If we
wanted to flatten Can Teach1, we would have to use a separate table to encode
teams:

Can Teach2(cid: integer, team id: oid, sal: integer)
Teams(tid: oid, ssn: string)

As these examples illustrate, nested collections are appropriate in certain situa-
tions, but this feature can easily be misused; nested collections should therefore
be used with care.
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23.8 ORDBMS IMPLEMENTATION CHALLENGES

The enhanced functionality of ORDBMSs raises several implementation chal-
lenges. Some of these are well understood and solutions have been implemented
in products; others are subjects of current research. In this section we examine
a few of the key challenges that arise in implementing an efficient, fully func-
tional ORDBMS. Many more issues are involved than those discussed here; the
interested reader is encouraged to revisit the previous chapters in this book and
consider whether the implementation techniques described there apply natu-
rally to ORDBMSs or not.

23.8.1 Storage and Access Methods

Since object-relational databases store new types of data, ORDBMS imple-
mentors need to revisit some of the storage and indexing issues discussed in
earlier chapters. In particular, the system must efficiently store ADT objects
and structured objects and provide efficient indexed access to both.

Storing Large ADT and Structured Type Objects

Large ADT objects and structured objects complicate the layout of data on
disk. This problem is well understood and has been solved in essentially all
ORDBMSs and OODBMSs. We present some of the main issues here.

User-defined ADTs can be quite large. In particular, they can be bigger than
a single disk page. Large ADTs, like BLOBs, require special storage, typically
in a different location on disk from the tuples that contain them. Disk-based
pointers are maintained from the tuples to the objects they contain.

Structured objects can also be large, but unlike ADT objects, they often vary in
size during the lifetime of a database. For example, consider the stars attribute
of the films table in Figure 23.1. As the years pass, some of the ‘bit actors’ in
an old movie may become famous.6 When a bit actor becomes famous, Dinky
might want to advertise his or her presence in the earlier films. This involves
an insertion into the stars attribute of an individual tuple in films. Because
these bulk attributes can grow arbitrarily, flexible disk layout mechanisms are
required.

6A famous example is Marilyn Monroe, who had a bit part in the Bette Davis classic All About

Eve.
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An additional complication arises with array types. Traditionally, array ele-
ments are stored sequentially on disk in a row-by-row fashion; for example

A11, . . . , A1n, A21, . . . , A2n, . . . , Am1, . . . , Amn

However, queries may often request subarrays that are not stored contiguously
on disk (e.g., A11, A21, . . . , Am1). Such requests can result in a very high I/O
cost for retrieving the subarray. To reduce the number of I/Os required, arrays
are often broken into contiguous chunks, which are then stored in some order
on disk. Although each chunk is some contiguous region of the array, chunks
need not be row-by-row or column-by-column. For example, a chunk of size 4
might be A11, A12, A21, A22, which is a square region if we think of the array
as being arranged row-by-row in two dimensions.

Indexing New Types

One important reason for users to place their data in a database is to allow
for efficient access via indexes. Unfortunately, the standard RDBMS index
structures support only equality conditions (B+ trees and hash indexes) and
range conditions (B+ trees). An important issue for ORDBMSs is to provide
efficient indexes for ADT methods and operators on structured objects.

Many specialized index structures have been proposed by researchers for par-
ticular applications such as cartography, genome research, multimedia reposito-
ries, Web search, and so on. An ORDBMS company cannot possibly implement
every index that has been invented. Instead, the set of index structures in an
ORDBMS should be user-extensible. Extensibility would allow an expert in
cartography, for example, to not only register an ADT for points on a map
(i.e., latitude–longitude pairs) but also implement an index structure that sup-
ports natural map queries (e.g., the R-tree, which matches conditions such as
“Find me all theaters within 100 miles of Andorra”). (See Chapter 28 for more
on R-trees and other spatial indexes.)

One way to make the set of index structures extensible is to publish an ac-
cess method interface that lets users implement an index structure outside the
DBMS. The index and data can be stored in a file system and the DBMS simply
issues the open, next, and close iterator requests to the user’s external index
code. Such functionality makes it possible for a user to connect a DBMS to
a Web search engine, for example. A main drawback of this approach is that
data in an external index is not protected by the DBMS’s support for concur-
rency and recovery. An alternative is for the ORDBMS to provide a generic
‘template’ index structure that is sufficiently general to encompass most index
structures that users might invent. Because such a structure is implemented
within the DBMS, it can support high concurrency and recovery. The Gener-
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alized Search Tree (GiST) is such a structure. It is a template index structure
based on B+ trees, which allows most of the tree index structures invented so
far to be implemented with only a few lines of user-defined ADT code.

23.8.2 Query Processing

ADTs and structured types call for new functionality in processing queries
in ORDBMSs. They also change a number of assumptions that affect the
efficiency of queries. In this section we look at two functionality issues (user-
defined aggregates and security) and two efficiency issues (method caching and
pointer swizzling).

User-Defined Aggregation Functions

Since users are allowed to define new methods for their ADTs, it is not unrea-
sonable to expect them to want to define new aggregation functions for their
ADTs as well. For example, the usual SQL aggregates—COUNT, SUM, MIN,

MAX, AVG—are not particularly appropriate for the image type in the Dinky
schema.

Most ORDBMSs allow users to register new aggregation functions with the
system. To register an aggregation function, a user must implement three
methods, which we call initialize, iterate, and terminate. The initialize method
initializes the internal state for the aggregation. The iterate method updates
that state for every tuple seen, while the terminate method computes the ag-
gregation result based on the final state and then cleans up. As an example,
consider an aggregation function to compute the second-highest value in a field.
The initialize call would allocate storage for the top two values, the iterate call
would compare the current tuple’s value with the top two and update the top
two as necessary, and the terminate call would delete the storage for the top
two values, returning a copy of the second-highest value.

Method Security

ADTs give users the power to add code to the DBMS; this power can be
abused. A buggy or malicious ADT method can bring down the database
server or even corrupt the database. The DBMS must have mechanisms to
prevent buggy or malicious user code from causing problems. It may make
sense to override these mechanisms for efficiency in production environments
with vendor-supplied methods. However, it is important for the mechanisms to
exist, if only to support debugging of ADT methods; otherwise method writers
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would have to write bug-free code before registering their methods with the
DBMS—not a very forgiving programming environment.

One mechanism to prevent problems is to have the user methods be interpreted
rather than compiled. The DBMS can check that the method is well behaved
either by restricting the power of the interpreted language or by ensuring that
each step taken by a method is safe before executing it. Typical interpreted lan-
guages for this purpose include Java and the procedural portions of SQL:1999.

An alternative mechanism is to allow user methods to be compiled from a
general-purpose programming language, such as C++, but to run those meth-
ods in a different address space than the DBMS. In this case, the DBMS sends
explicit interprocess communications (IPCs) to the user method, which sends
IPCs back in return. This approach prevents bugs in the user methods (e.g.,
stray pointers) from corrupting the state of the DBMS or database and prevents
malicious methods from reading or modifying the DBMS state or database as
well. Note that the user writing the method need not know that the DBMS is
running the method in a separate process: The user code can be linked with a
‘wrapper’ that turns method invocations and return values into IPCs.

Method Caching

User-defined ADT methods can be very expensive to execute and can account
for the bulk of the time spent in processing a query. During query processing,
it may make sense to cache the results of methods, in case they are invoked
multiple times with the same argument. Within the scope of a single query,
one can avoid calling a method twice on duplicate values in a column by either
sorting the table on that column or using a hash-based scheme much like that
used for aggregation (see Section 14.6). An alternative is to maintain a cache
of method inputs and matching outputs as a table in the database. Then, to
find the value of a method on particular inputs, we essentially join the input
tuples with the cache table. These two approaches can also be combined.

Pointer Swizzling

In some applications, objects are retrieved into memory and accessed frequently
through their oids; dereferencing must be implemented very efficiently. Some
systems maintain a table of oids of objects that are (currently) in memory.
When an object O is brought into memory, they check each oid contained
in O and replace oids of in-memory objects by in-memory pointers to those
objects. This technique, called pointer swizzling, makes references to in-
memory objects very fast. The downside is that when an object is paged out,
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Optimizer Extensibility: As an example, consider the Oracle 9i opti-
mizer, which is extensible and supports user-defined ‘domain’ indexes and
methods. The support includes user-defined statistics and cost functions
that the optimizer uses in tandem with system statistics. Suppose that
there is a domain index for text on the resume column and a regular Or-
acle B-tree index on hiringdate. A query with a selection on both these
fields can be evaluated by converting the rids from the two indexes into
bitmaps, performing a bitmap AND, and converting the resulting bitmap
to rids before accessing the table. Of course, the optimizer also considers
using the two indexes individually, as well as a full table scan.

in-memory references to it must somehow be invalidated and replaced with its
oid.

23.8.3 Query Optimization

New indexes and query processing techniques widen the choices available to a
query optimizer. To handle the new query processing functionality, an opti-
mizer must know about the new functionality and use it appropriately. In this
section, we discuss two issues in exposing information to the optimizer (new
indexes and ADT method estimation) and an issue in query planning that was
ignored in relational systems (expensive selection optimization).

Registering Indexes with the Optimizer

As new index structures are added to a system—either via external interfaces
or built-in template structures like GiSTs—the optimizer must be informed of
their existence and their costs of access. In particular, for a given index struc-
ture, the optimizer must know (1) what WHERE-clause conditions are matched
by that index, and (2) what the cost of fetching a tuple is for that index. Given
this information, the optimizer can use any index structure in constructing a
query plan. Different ORDBMSs vary in the syntax for registering new index
structures. Most systems require users to state a number representing the cost
of access, but an alternative is for the DBMS to measure the structure as it is
used and maintain running statistics on cost.

Reduction Factor and Cost Estimation for ADT Methods

In Section 15.2.1, we discussed how to estimate the reduction factor of vari-
ous selection and join conditions including =, <, and so on. For user-defined
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conditions such as is herbert(), the optimizer also needs to be able to estimate
reduction factors. Estimating reduction factors for user-defined conditions is
a difficult problem and actively studied. The currently popular approach is
to leave it up to the user—a user who registers a method can also register an
auxiliary function to estimate the method’s reduction factor. If such a function
is not registered, the optimizer uses an arbitrary value such as 1

10 .

ADT methods can be quite expensive and it is important for the optimizer to
know just how much these methods cost to execute. Again, estimating method
costs is open research. In current systems, users who register a method can
specify the method’s cost as a number, typically in units of the cost of an
I/O in the system. Such estimation is hard for users to do accurately. An
attractive alternative is for the ORDBMS to run the method on objects of
various sizes and attempt to estimate the method’s cost automatically, but
this approach has not been investigated in detail and is not implemented in
commercial ORDBMSs.

Expensive Selection Optimization

In relational systems, selection is expected to be a zero-time operation. For
example, it requires no I/Os and few CPU cycles to test if emp.salary < 10.
However, conditions such as is herbert(Frames.image) can be quite expensive
because they may fetch large objects off the disk and process them in memory
in complicated ways.

ORDBMS optimizers must consider carefully how to order selection conditions.
For example, consider a selection query that tests tuples in the Frames table
with two conditions: Frames.frameno < 100 ∧ is herbert(Frame.image). It is
probably preferable to check the frameno condition before testing is herbert.
The first condition is quick and may often return false, saving the trouble of
checking the second condition. In general, the best ordering among selections is
a function of their costs and reduction factors. It can be shown that selections
should be ordered by increasing rank, where rank = (reduction factor−1)/cost.
If a selection with very high rank appears in a multitable query, it may even
make sense to postpone the selection until after performing joins. Note that
this approach is the opposite of the heuristic for pushing selections presented
in Section 15.3. The details of optimally placing expensive selections among
joins are somewhat complicated, adding to the complexity of optimization in
ORDBMSs.
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23.9 OODBMS

In the introduction of this chapter, we defined an OODBMS as a programming
language with support for persistent objects. While this definition reflects the
origins of OODBMSs accurately, and to a certain extent the implementation
focus of OODBMSs, the fact that OODBMSs support collection types (see
Section 23.2.1) makes it possible to provide a query language over collections.
Indeed, a standard has been developed by the Object Database Management
Group and is called Object Query Language.

OQL is similar to SQL, with a SELECT–FROM–WHERE–style syntax (even GROUP

BY, HAVING, and ORDER BY are supported) and many of the proposed SQL:1999
extensions. Notably, OQL supports structured types, including sets, bags,
arrays, and lists. The OQL treatment of collections is more uniform than
SQL:1999 in that it does not give special treatment to collections of rows;
for example, OQL allows the aggregate operation COUNT to be applied to a
list to compute the length of the list. OQL also supports reference types,
path expressions, ADTs and inheritance, type extents, and SQL-style nested
queries. There is also a standard Data Definition Language for OODBMSs
(Object Data Language, or ODL) that is similar to the DDL subset of
SQL but supports the additional features found in OODBMSs, such as ADT
definitions.

23.9.1 The ODMG Data Model and ODL

The ODMG data model is the basis for an OODBMS, just like the relational
data model is the basis for an RDBMS. A database contains a collection of ob-
jects, which are similar to entities in the ER model. Every object has a unique
oid, and a database contains collections of objects with similar properties; such
a collection is called a class.

The properties of a class are specified using ODL and are of three kinds: at-
tributes, relationships, and methods. Attributes have an atomic type or a
structured type. ODL supports the set, bag, list, array, and struct type
constructors; these are just setof, bagof, listof, ARRAY, and ROW in the ter-
minology of Section 23.2.1.

Relationships have a type that is either a reference to an object or a collection
of such references. A relationship captures how an object is related to one
or more objects of the same class or of a different class. A relationship in
the ODMG model is really just a binary relationship in the sense of the ER
model. A relationship has a corresponding inverse relationship; intuitively,
it is the relationship ‘in the other direction.’ For example, if a movie is being
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Class = Interface + Implementation: Properly speaking, a class con-
sists of an interface together with an implementation of the interface. An
ODL interface definition is implemented in an OODBMS by translating it
into declarations of the object-oriented language (e.g., C++, Smalltalk or
Java) supported by the OODBMS. If we consider C++, for instance, there
is a library of classes that implement the ODL constructs. There is also an
Object Manipulation Language (OML) specific to the programming
language (in our example, C++), which specifies how database objects
are manipulated in the programming language. The goal is to seamlessly
integrate the programming language and the database features.

shown at several theaters and each theater shows several movies, we have two
relationships that are inverses of each other: shownAt is associated with the
class of movies and is the set of theaters at which the given movie is being
shown, and nowShowing is associated with the class of theaters and is the set
of movies being shown at that theater.

Methods are functions that can be applied to objects of the class. There is
no analog to methods in the ER or relational models.

The keyword interface is used to define a class. For each interface, we can
declare an extent, which is the name for the current set of objects of that
class. The extent is analogous to the instance of a relation and the interface
is analogous to the schema. If the user does not anticipate the need to work
with the set of objects of a given class—it is sufficient to manipulate individual
objects—the extent declaration can be omitted.

The following ODL definitions of the Movie and Theater classes illustrate these
concepts. (While these classes bear some resemblance to the Dinky database
schema, the reader should not look for an exact parallel, since we have modified
the example to highlight ODL features.)

interface Movie
(extent Movies key movieName)
{ attribute date start;
attribute date end;
attribute string moviename;
relationship Set Theater shownAt inverse Theater::nowShowing;
}

The collection of database objects whose class is Movie is called Movies. No
two objects in Movies have the same movieName value, as the key declaration
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indicates. Each movie is shown at a set of theaters and is shown during the
specified period. (It would be more realistic to associate a different period with
each theater, since a movie is typically played at different theaters over different
periods. While we can define a class that captures this detail, we have chosen
a simpler definition for our discussion.) A theater is an object of class Theater,
defined as:

interface Theater
(extent Theaters key theaterName)
{ attribute string theaterName;
attribute string address;
attribute integer ticketPrice;
relationship Set Movie nowShowing inverse Movie::shownAt;
float numshowing() raises(errorCountingMovies);
}

Each theater shows several movies and charges the same ticket price for every
movie. Observe that the shownAt relationship of Movie and the nowShowing
relationship of Theater are declared to be inverses of each other. Theater also
has a method numshowing() that can be applied to a theater object to find the
number of movies being shown at that theater.

ODL also allows us to specify inheritance hierarchies, as the following class
definition illustrates:

interface SpecialShow extends Movie
(extent SpecialShows)
{ attribute integer maximumAttendees;
attribute string benefitCharity;
}

An object of class SpecialShow is an object of class Movie, with some additional
properties, as discussed in Section 23.5.

23.9.2 OQL

The ODMG query language OQL was deliberately designed to have syntax
similar to SQL to make it easy for users familiar with SQL to learn OQL. Let
us begin with a query that finds pairs of movies and theaters such that the
movie is shown at the theater and the theater is showing more than one movie:

SELECT mname: M.movieName, tname: T.theaterName
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FROM Movies M, M.shownAt T
WHERE T.numshowing() > 1

The SELECT clause indicates how we can give names to fields in the result:
The two result fields are called mname and tname. The part of this query that
differs from SQL is the FROM clause. The variable M is bound in turn to each
movie in the extent Movies. For a given movie M , we bind the variable T in
turn to each theater in the collection M.shownAt. Thus, the use of the path
expression M.shownAt allows us to easily express a nested query. The following
query illustrates the grouping construct in OQL:

SELECT T.ticketPrice,
avgNum: AVG(SELECT P.T.numshowing() FROM partition P)

FROM Theaters T
GROUP BY T.ticketPrice

For each ticket price, we create a group of theaters with that ticket price.
This group of theaters is the partition for that ticket price, referred to using
the OQL keyword partition. In the SELECT clause, for each ticket price,
we compute the average number of movies shown at theaters in the partition
for that ticketPrice. OQL supports an interesting variation of the grouping
operation that is missing in SQL:

SELECT low, high,
avgNum: AVG(SELECT P.T.numshowing() FROM partition P)

FROM Theaters T
GROUP BY low: T.ticketPrice < 5, high: T.ticketPrice >= 5

The GROUP BY clause now creates just two partitions called low and high. Each
theater object T is placed in one of these partitions based on its ticket price. In
the SELECT clause, low and high are boolean variables, exactly one of which is
true in any given output tuple; partition is instantiated to the corresponding
partition of theater objects. In our example, we get two result tuples. One of
them has low equal to true and avgNum equal to the average number of movies
shown at theaters with a low ticket price. The second tuple has high equal to
true and avgNum equal to the average number of movies shown at theaters
with a high ticket price.

The next query illustrates OQL support for queries that return collections other
than set and multiset:

(SELECT T.theaterName
FROM Theaters T
ORDER BY T.ticketPrice DESC) [0:4]
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The ORDER BY clause makes the result a list of theater names ordered by ticket
price. The elements of a list can be referred to by position, starting with
position 0. Therefore, the expression [0:4] extracts a list containing the names
of the five theaters with the highest ticket prices.

OQL also supports DISTINCT, HAVING, explicit nesting of subqueries, view def-
initions, and other SQL features.

23.10 COMPARING RDBMS, OODBMS, AND ORDBMS

Now that we have covered the main object-oriented DBMS extensions, it is
time to consider the two main variants of object-databases, OODBMSs and
ORDBMSs, and compare them with RDBMSs. Although we presented the con-
cepts underlying object-databases, we still need to define the terms OODBMS
and ORDBMS.

An ORDBMS is a relational DBMS with the extensions discussed in this
chapter. (Not all ORDBMS systems support all the extensions in the gen-
eral form that we have discussed them, but our concern in this section is the
paradigm itself rather than specific systems.) An OODBMS is a program-
ming language with a type system that supports the features discussed in this
chapter and allows any data object to be persistent; that is, to survive across
different program executions. Many current systems conform to neither defi-
nition entirely but are much closer to one or the other and can be classified
accordingly.

23.10.1 RDBMS versus ORDBMS

Comparing an RDBMS with an ORDBMS is straightforward. An RDBMS does
not support the extensions discussed in this chapter. The resulting simplicity
of the data model makes it easier to optimize queries for efficient execution,
for example. A relational system is also easier to use because there are fewer
features to master. On the other hand, it is less versatile than an ORDBMS.

23.10.2 OODBMS versus ORDBMS: Similarities

OODBMSs and ORDBMSs both support user-defined ADTs, structured types,
object identity and reference types, and inheritance. Both support a query
language for manipulating collection types. ORDBMSs support an extended
form of SQL, and OODBMSs support ODL/OQL. The similarities are by no
means accidental: ORDBMSs consciously try to add OODBMS features to an
RDBMS, and OODBMSs in turn have developed query languages based on
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relational query languages. Both OODBMSs and ORDBMSs provide DBMS
functionality such as concurrency control and recovery.

23.10.3 OODBMS versus ORDBMS: Differences

The fundamental difference is really a philosophy that is carried all the way
through: OODBMSs try to add DBMS functionality to a programming lan-
guage, whereas ORDBMSs try to add richer data types to a relational DBMS.
Although the two kinds of object-databases are converging in terms of func-
tionality, this difference in their underlying philosophy (and for most systems,
their implementation approach) has important consequences in terms of the
issues emphasized in the design of these DBMSs and the efficiency with which
various features are supported, as the following comparison indicates:

OODBMSs aim to achieve seamless integration with a programming lan-
guage such as C++, Java, or Smalltalk. Such integration is not an im-
portant goal for an ORDBMS. SQL:1999, like SQL-92, allows us to embed
SQL commands in a host language, but the interface is very evident to the
SQL programer. (SQL:1999 also provides extended programming language
constructs of its own, as we saw in Chapter 6.)

An OODBMS is aimed at applications where an object-centric viewpoint
is appropriate; that is, typical user sessions consist of retrieving a few
objects and working on them for long periods, with related objects (e.g.,
objects referenced by the original objects) fetched occasionally. Objects
may be extremely large and may have to be fetched in pieces; therefore,
attention must be paid to buffering parts of objects. It is expected that
most applications can cache the objects they require in memory, once the
objects are retrieved from disk. Therefore, considerable attention is paid to
making references to in-memory objects efficient. Transactions are likely to
be of very long duration and holding locks until the end of a transaction may
lead to poor performance; therefore, alternatives to Two-Phase Locking
must be used.

An ORDBMS is optimized for applications in which large data collections
are the focus, even though objects may have rich structure and be fairly
large. It is expected that applications will retrieve data from disk ex-
tensively and optimizing disk access is still the main concern for efficient
execution. Transactions are assumed to be relatively short and traditional
RDBMS techniques are typically used for concurrency control and recovery.

The query facilities of OQL are not supported efficiently in most OODBMSs,
whereas the query facilities are the centerpiece of an ORDBMS. To some
extent, this situation is the result of different concentrations of effort in
the development of these systems. To a significant extent, it is also a
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consequence of the systems’ being optimized for very different kinds of
applications.

23.11 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

Consider the extended Dinky example from Section 23.1. Explain how
it motivates the need for each of the following object-database features:
user-defined structured types, abstract data types (ADTs), inheritance, and
object identity. (Section 23.1)

What are structured data types? What are collection types, in particular?
Discuss the extent to which these concepts are supported in SQL:1999.
What important type constructors are missing? What are the limitations
on the ROW and ARRAY constructors? (Section 23.2)

What kinds of operations should be provided for each of the structured
data types? To what extent is such support included in SQL:1999? (Sec-
tion 23.3)

What is an abstract data type? How are methods of an abstract data type
defined in an external programming language? (Section 23.4)

Explain inheritance and how new types (called subtypes) extend existing
types (called supertypes). What are method overloading and late binding?
What is a collection hierarchy? Contrast this with inheritance in program-
ming languages. (Section 23.5)

How is an object identifier (oid) different from a record id in a relational
DBMS? How is it different from a URL? What is a reference type? De-
fine deep and shallow equality and illustrate them through an example.
(Section 23.6)

The multitude of data types in an ORDBMS allows us to design a more nat-
ural and efficient database schema but introduces some new design choices.
Discuss ORDBMS database design issues and illustrate your discussion us-
ing an example application. (Section 23.7)

Implementing an ORDBMS brings new challenges. The system must store
large ADTs and structured types that might be very large. Efficient and
extensible index mechanisms must be provided. Examples of new func-
tionality include user-defined aggregation functions (we can define new
aggregation functions for our ADTs) and method security (the system
has to prevent user-defined methods from compromising the security of
the DBMS). Examples of new techniques to increase performance include
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method caching and pointer swizzling. The optimizer must know about
the new functionality and use it appropriately. Illustrate each of these
challenges through an example. (Section 23.8)

Compare OODBMSs with ORDBMSs. In particular, compare OQL and
SQL:1999 and discuss the underlying data model. (Sections 23.9 and
23.10)

EXERCISES

Exercise 23.1 Briefly answer the following questions:

1. What are the new kinds of data types supported in object-database systems? Give an
example of each and discuss how the example situation would be handled if only an
RDBMS were available.

2. What must a user do to define a new ADT?

3. Allowing users to define methods can lead to efficiency gains. Give an example.

4. What is late binding of methods? Give an example of inheritance that illustrates the
need for dynamic binding.

5. What are collection hierarchies? Give an example that illustrates how collection hierar-
chies facilitate querying.

6. Discuss how a DBMS exploits encapsulation in implementing support for ADTs.

7. Give an example illustrating the nesting and unnesting operations.

8. Describe two objects that are deep equal but not shallow equal or explain why this is
not possible.

9. Describe two objects that are shallow equal but not deep equal or explain why this is
not possible.

10. Compare RDBMSs with ORDBMSs. Describe an application scenario for which you
would choose an RDBMS and explain why. Similarly, describe an application scenario
for which you would choose an ORDBMS and explain why.

Exercise 23.2 Consider the Dinky schema shown in Figure 23.1 and all related methods
defined in the chapter. Write the following queries in SQL:1999:

1. How many films were shown at theater tno = 5 between January 1 and February 1 of
2002?

2. What is the lowest budget for a film with at least two stars?

3. Consider theaters at which a film directed by Steven Spielberg started showing on Jan-
uary 1, 2002. For each such theater, print the names of all countries within a 100-mile
radius. (You can use the overlap and radius methods illustrated in Figure 23.2.)

Exercise 23.3 In a company database, you need to store information about employees, de-
partments, and children of employees. For each employee, identified by ssn, you must record
years (the number of years that the employee has worked for the company), phone, and photo
information. There are two subclasses of employees: contract and regular. Salary is com-
puted by invoking a method that takes years as a parameter; this method has a different
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implementation for each subclass. Further, for each regular employee, you must record the
name and age of every child. The most common queries involving children are similar to
“Find the average age of Bob’s children” and “Print the names of all of Bob’s children.”

A photo is a large image object and can be stored in one of several image formats (e.g.,
gif, jpeg). You want to define a display method for image objects; display must be defined
differently for each image format. For each department, identified by dno, you must record
dname, budget, and workers information. Workers is the set of employees who work in a
given department. Typical queries involving workers include, “Find the average salary of all
workers (across all departments).”

1. Using extended SQL, design an ORDBMS schema for the company database. Show all
type definitions, including method definitions.

2. If you have to store this information in an RDBMS, what is the best possible design?

3. Compare the ORDBMS and RDBMS designs.

4. If you are told that a common request is to display the images of all employees in a given
department, how would you use this information for physical database design?

5. If you are told that an employee’s image must be displayed whenever any information
about the employee is retrieved, would this affect your schema design?

6. If you are told that a common query is to find all employees who look similar to a given
image and given code that lets you create an index over all images to support retrieval
of similar images, what would you do to utilize this code in an ORDBMS?

Exercise 23.4 ORDBMSs need to support efficient access over collection hierarchies. Con-
sider the collection hierarchy of Theaters and Theater cafes presented in the Dinky example.
In your role as a DBMS implementor (not a DBA), you must evaluate three storage alterna-
tives for these tuples:

All tuples for all kinds of theaters are stored together on disk in an arbitrary order.

All tuples for all kinds of theaters are stored together on disk, with the tuples that are
from Theater cafes stored directly after the last of the non-cafe tuples.

Tuples from Theater cafes are stored separately from the rest of the (non-cafe) theater
tuples.

1. For each storage option, describe a mechanism for distinguishing plain theater tuples
from Theater cafe tuples.

2. For each storage option, describe how to handle the insertion of a new non-cafe tuple.

3. Which storage option is most efficient for queries over all theaters? Over just The-
ater cafes? In terms of the number of I/Os, how much more efficient is the best technique
for each type of query compared to the other two techniques?

Exercise 23.5 Different ORDBMSs use different techniques for building indexes to evaluate
queries over collection hierarchies. For our Dinky example, to index theaters by name there
are two common options:

Build one B+ tree index over Theaters.name and another B+ tree index over The-
ater cafes.name.

Build one B+ tree index over the union of Theaters.name and Theater cafes.name.
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1. Describe how to efficiently evaluate the following query using each indexing option (this
query is over all kinds of theater tuples):

SELECT * FROM Theaters T WHERE T.name = ‘Majestic’

Give an estimate of the number of I/Os required in the two different scenarios, assuming
there are 1 million standard theaters and 1000 theater-cafes. Which option is more
efficient?

2. Perform the same analysis over the following query:

SELECT * FROM Theater cafes T WHERE T.name = ‘Majestic’

3. For clustered indexes, does the choice of indexing technique interact with the choice of
storage options? For unclustered indexes?

Exercise 23.6 Consider the following query:

SELECT thumbnail(I.image)
FROM Images I

Given that the I.image column may contain duplicate values, describe how to use hashing to
avoid computing the thumbnail function more than once per distinct value in processing this
query.

Exercise 23.7 You are given a two-dimensional, n × n array of objects. Assume that you
can fit 100 objects on a disk page. Describe a way to lay out (chunk) the array onto pages so
that retrievals of square m×m subregions of the array are efficient. (Different queries request
subregions of different sizes, i.e., different m values, and your arrangement of the array onto
pages should provide good performance, on average, for all such queries.)

Exercise 23.8 An ORDBMS optimizer is given a single-table query with n expensive selec-
tion conditions, σn(...(σ1(T ))). For each condition σi, the optimizer can estimate the cost ci
of evaluating the condition on a tuple and the reduction factor of the condition ri. Assume
that there are t tuples in T .

1. How many tuples appear in the output of this query?

2. Assuming that the query is evaluated as shown (without reordering selections), what
is the total cost of the query? Be sure to include the cost of scanning the table and
applying the selections.

3. In Section 23.8.2, it was asserted that the optimizer should reorder selections so that
they are applied to the table in order of increasing rank, where ranki = (ri − 1)/ci.
Prove that this assertion is optimal. That is, show that no other ordering could result in
a query of lower cost. (Hint: It may be easiest to consider the special case where n = 2
first and generalize from there.)

Exercise 23.9 ORDBMSs support references as a data type. It is often claimed that using
references instead of key–foreign key relationships will give much higher performance for joins.
This question asks you to explore this issue.

Consider the following SQL:1999 DDL which only uses straight relational constructs:

CREATE TABLE R(rkey integer, rdata text);
CREATE TABLE S(skey integer, rfkey integer);
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Assume that we have the following straightforward join query:

SELECT S.skey, R.rdata
FROM S, R
WHERE S.rfkey = R.rkey

Now consider the following SQL:1999 ORDBMS schema:

CREATE TYPE r t AS ROW(rkey integer, rdata text);
CREATE TABLE R OF r t REF is SYSTEM GENERATED;
CREATE TABLE S (skey integer, r REF(r t) SCOPE R);

Assume we have the following query:

SELECT S.skey, S.r.rkey
FROM S

What algorithm would you suggest to evaluate the pointer join in the ORDBMS schema?
How do you think it will perform versus a relational join on the previous schema?

Exercise 23.10 Many object-relational systems support set-valued attributes using some
variant of the setof constructor. For example, assuming we have a type person t, we could
have created the table Films in the Dinky Schema in Figure 23.1 as follows:

CREATE TABLE Films(filmno integer, title text, stars setof Person);

1. Describe two ways of implementing set-valued attributes. One way requires variable-
length records, even if the set elements are all fixed-length.

2. Discuss the impact of the two strategies on optimizing queries with set-valued attributes.

3. Suppose you would like to create an index on the column stars in order to look up films
by the name of the star that has starred in the film. For both implementation strategies,
discuss alternative index structures that could help speed up this query.

4. What types of statistics should the query optimizer maintain for set-valued attributes?
How do we obtain these statistics?
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DEDUCTIVE DATABASES

☛ What is the motivation for extending SQL with recursive queries?

☛ What important properties must recursive programs satisfy to be
practical?

☛ What are least models and least fixpoints and how do they provide a
theoretical foundation for recursive queries?

☛ What complications are introduced by negation and aggregate opera-
tions? How are they addressed?

☛ What are the challenges in efficient evaluation of recursive queries?

➽ Key concepts: Datalog, deductive databases, recursion, rules, in-
ferences, safety, range-restriction; least model, declarative seman-
tics; least fixpoint, operational semantics, fixpoint operator; negation,
stratified programs; aggregate operators, multiset generation, group-
ing; efficient evaluation, avoiding repeated inferences, Seminaive fix-
point evaluation; pushing query selections, Magic Sets rewriting

For ‘Is’ and ‘Is-Not’ though with Rule and Line,
And ‘Up-and-Down’ by Logic I define,
Of all that one should care to fathom, I
Was never deep in anything but—Wine.

—Rubaiyat of Omar Khayyam, Translated by Edward Fitzgerald

Relational database management systems have been enormously successful for
administrative data processing. In recent years, however, as people have tried to
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use database systems in increasingly complex applications, some important lim-
itations of these systems have been exposed. For some applications, the query
language and constraint definition capabilities have been found inadequate. As
an example, some companies maintain a huge parts inventory database and
frequently want to ask questions such as, “Are we running low on any parts
needed to build a ZX600 sports car?” or “What is the total component and
assembly cost to build a ZX600 at today’s part prices?” These queries cannot
be expressed in SQL-92.

We begin this chapter by discussing queries that cannot be expressed in rela-
tional algebra or SQL and present a more powerful relational language called
Datalog. Queries and views in SQL can be understood as if–then rules: “If
some tuples exist in tables mentioned in the FROM clause that satisfy the condi-
tions listed in the WHERE clause, then the tuple described in the SELECT clause
is included in the answer.” Datalog definitions retain this if–then reading, with
the significant new feature that definitions can be recursive, that is, a table
can be defined in terms of itself. The SQL:1999 standard, the successor to
the SQL-92 standard, requires support for recursive queries, and a large subset
some systems, notably IBM’s DB2 DBMS, already support them.

Evaluating Datalog queries poses some additional challenges, beyond those en-
countered in evaluating relational algebra queries, and we discuss some impor-
tant implementation and optimization techniques developed to address these
challenges. Interestingly, some of these techniques have been found to improve
performance of even nonrecursive SQL queries and have therefore been imple-
mented in several current relational DBMS products.

In Section 24.1, we introduce recursive queries and Datalog notation through
an example. We present the theoretical foundations for recursive queries, least
fixpoints and least models, in Section 24.2. We discuss queries that involve the
use of negation or set-difference in Section 24.3. Finally, we consider techniques
for evaluating recursive queries efficiently in Section 24.5.

24.1 INTRODUCTION TO RECURSIVE QUERIES

We begin with a simple example that illustrates the limits of SQL-92 queries
and the power of recursive definitions. Let Assembly be a relation with three
fields part, subpart, and qty. An example instance of Assembly is shown in
Figure 24.1. Each tuple in Assembly indicates how many copies of a particular
subpart are contained in a given part. The first tuple indicates, for example,
that a trike contains three wheels. The Assembly relation can be visualized as
a tree, as shown in Figure 24.2. A tuple is shown as an edge going from the
part to the subpart, with the qty value as the edge label.
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part subpart qty

trike wheel 3
trike frame 1
frame seat 1
frame pedal 1
wheel spoke 2
wheel tire 1
tire rim 1
tire tube 1

Figure 24.1 An Instance of Assembly
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Figure 24.2 Assembly Instance Seen as a Tree

A natural question to ask is, “What are the components of a trike?” Rather
surprisingly, this query is impossible to write in SQL-92. Of course, if we
look at a given instance of the Assembly relation, we can write a ‘query’ that
takes the union of the parts that are used in a trike. But such a query is
not interesting—we want a query that identifies all components of a trike for
any instance of Assembly, and such a query cannot be written in relational
algebra or in SQL-92. Intuitively, the problem is that we are forced to join the
Assembly relation with itself to recognize that trike contains spoke and tire,
that is, to go one level down the Assembly tree. For each additional level, we
need an additional join; two joins are needed to recognize that trike contains
rim, which is a subpart of tire. Thus, the number of joins needed to identify
all subparts of trike depends on the height of the Assembly tree, that is, on
the given instance of the Assembly relation. No relational algebra query works
for all instances; given any query, we can construct an instance whose height is
greater than the number of joins in the query.

24.1.1 Datalog

We now define a relation called Components that identifies the components of
every part. Consider the following program, or collection of rules:

Components(Part, Subpart) :- Assembly(Part, Subpart, Qty).

Components(Part, Subpart) :- Assembly(Part, Part2, Qty),

Components(Part2, Subpart).

These are rules in Datalog, a relational query language inspired by Prolog, the
well-known logic programming language; indeed, the notation follows Prolog.
The first rule should be read as follows:

For all values of Part, Subpart, and Qty,
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if there is a tuple  Part, Subpart, Qty in Assembly,
then there must be a tuple  Part, Subpart in Components.

The second rule should be read as follows:

For all values of Part, Part2, Subpart, and Qty,
if there is a tuple  Part, Part2, Qty in Assembly and

a tuple  Part2, Subpart in Components,
then there must be a tuple  Part, Subpart in Components.

The part to the right of the :- symbol is called the body of the rule, and
the part to the left is called the head of the rule. The symbol :- denotes
logical implication; if the tuples mentioned in the body exist in the database,
it is implied that the tuple mentioned in the head of the rule must also be
in the database. (Note that the body could be empty; in this case, the tuple
mentioned in the head of the rule must be included in the database.) Therefore,
if we are given a set of Assembly and Components tuples, each rule can be
used to infer, or deduce, some new tuples that belong in Components. This
is why database systems that support Datalog rules are often called deductive
database systems.

By assigning constants to the variables that appear in a rule, we can infer a spe-
cific Components tuple. For example, by setting Part=trike, Subpart=wheel,
and Qty=3, we can infer that  trike, wheel is in Components. Each rule is
really a template for making inferences: An inference is the use of a rule to
generate a new tuple (for the relation in the head of the rule) by substituting
constants for variables in such a way that every tuple in the rule body (after
the substitution) is in the corresponding relation instance.

By considering each tuple in Assembly in turn, the first rule allows us to infer
that the set of tuples obtained by taking the projection of Assembly onto its
first two fields is in Components.

The second rule then allows us to combine previously discovered Components
tuples with Assembly tuples to infer new Components tuples. We can apply
the second rule by considering the cross-product of Assembly and (the current
instance of) Components and assigning values to the variables in the rule for
each row of the cross-product, one row at a time. Observe how the repeated
use of the variable Part2 prevents certain rows of the cross-product from con-
tributing any new tuples; in effect, it specifies an equality join condition on
Assembly and Components. The tuples obtained by one application of this
rule are shown in Figure 24.3. (In addition, Components contains the tuples
obtained by applying the first rule; these are not shown.)
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part subpart

trike spoke
trike tire
trike seat
trike pedal
wheel rim
wheel tube

Figure 24.3 Components Tuples Obtained
by Applying the Second Rule Once

part subpart

trike spoke
trike tire
trike seat
trike pedal
wheel rim
wheel tube
trike rim
trike tube

Figure 24.4 Components Tuples Obtained by
Applying the Second Rule Twice

The tuples obtained by a second application of this rule are shown in Figure
24.4. Note that each tuple shown in Figure 24.3 is reinferred. Only the last
two tuples are new.

Applying the second rule a third time does not generate additional tuples. The
set of Components tuples shown in Figure 24.4 includes all the tuples that can
be inferred using the two Datalog rules defining Components and the given
instance of Assembly. The components of a trike can now be obtained by
selecting all Components tuples with the value trike in the first field.

Each application of a Datalog rule can be understood in terms of relational
algebra. The first rule in our example program simply applies projection to the
Assembly relation and adds the resulting tuples to the Components relation,
which is initially empty. The second rule joins Assembly with Components and
then does a projection. The result of each rule application is combined with
the existing set of Components tuples using union.

The only Datalog operation that goes beyond relational algebra is the repeated

application of the rules defining Components until no new tuples are generated.
This repeated application of a set of rules is called the fixpoint operation, and
we develop this idea further in the next section.

We conclude this section by rewriting the Datalog definition of Components
using SQL:1999 syntax:

WITH RECURSIVE Components(Part, Subpart) AS
(SELECTA1.Part, A1.Subpart FROM Assembly A1)
UNION

(SELECTA2.Part, C1.Subpart
FROM Assembly A2, Components C1
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WHERE A2.Subpart = C1.Part)

SELECT * FROM Components C2

The WITH clause introduces a relation that is part of a query definition; this
relation is similar to a view, but the scope of a relation introduced using WITH
is local to the query definition. The RECURSIVE keyword signals that the table
(in our example, Components) is recursively defined. The structure of the
definition closely parallels the Datalog rules. Incidentally, if we wanted to find
the components of a particular part, for example, trike, we can simply replace
the last line with the following:

SELECT * FROM Components C2
WHERE C2.Part = ‘trike’

24.2 THEORETICAL FOUNDATIONS

We classify the relations in a Datalog program as either output relations or in-
put relations. Output relations are defined by rules (e.g., Components), and
input relations have a set of tuples explicitly listed (e.g., Assembly). Given
instances of the input relations, we must compute instances for the output re-
lations. The meaning of a Datalog program is usually defined in two different
ways, both of which essentially describe the relation instances for the output
relations. Technically, a query is a selection over one of the output relations
(e.g., all Components tuples C with C.part = trike). However, the meaning of
a query is clear once we understand how relation instances are associated with
the output relations in a Datalog program.

The first approach to defining the semantics of a Datalog program, called the
least model semantics, gives users a way to understand the program without
thinking about how the program is to be executed. That is, the semantics is
declarative, like the semantics of relational calculus, and not operational like
relational algebra semantics. This is important because recursive rules make it
difficult to understand a program in terms of an evaluation strategy.

The second approach, called the least fixpoint semantics, gives a conceptual
evaluation strategy to compute the desired relation instances. This serves as
the basis for recursive query evaluation in a DBMS. More efficient evaluation
strategies are used in an actual implementation, but their correctness is shown
by demonstrating their equivalence to the least fixpoint approach. The fixpoint
semantics is thus operational and plays a role analogous to that of relational
algebra semantics for nonrecursive queries.



Deductive Databases 823

24.2.1 Least Model Semantics

We want users to be able to understand a Datalog program by understanding
each rule independent of other rules, with the meaning: If the body is true, the

head is also true. This intuitive reading of a rule suggests that, given certain
relation instances for the relation names that appear in the body of a rule,
the relation instance for the relation mentioned in the head of the rule must
contain a certain set of tuples. If a relation name R appears in the heads of
several rules, the relation instance for R must satisfy the intuitive reading of
all these rules. However, we do not want tuples to be included in the instance
for R unless they are necessary to satisfy one of the rules defining R. That is,
we want to compute only tuples for R that are supported by some rule for R.

To make these ideas precise, we need to introduce the concepts of models and
least models. Amodel is a collection of relation instances, one instance for each
relation in the program, that satisfies the following condition. For every rule in
the program, whenever we replace each variable in the rule by a corresponding
constant, the following holds:

If every tuple in the body (obtained by our replacement of variables
with constants) is in the corresponding relation instance,

Then the tuple generated for the head (by the assignment of constants
to variables that appear in the head) is also in the corresponding rela-
tion instance.

Observe that the instances for the input relations are given, and the definition
of a model essentially restricts the instances for the output relations.

Consider the rule

Components(Part, Subpart) :- Assembly(Part, Part2, Qty),

Components(Part2, Subpart).

Suppose we replace the variable Part by the constant wheel, Part2 by tire, Qty
by 1, and Subpart by rim:

Components(wheel, rim) :- Assembly(wheel, tire, 1),

Components(tire, rim).

Let A be an instance of Assembly and C be an instance of Components. If A
contains the tuple  wheel, tire, 1 and C contains the tuple  tire, rim , then
C must also contain the tuple  wheel, rim for the pair of instances A and C
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to be a model. Of course, the instances A and C must satisfy the inclusion
requirement just illustrated for every assignment of constants to the variables
in the rule: If the tuples in the rule body are in A and C, the tuple in the head
must be in C.

As an example, the instances of Assembly shown in Figure 24.1 and Compo-
nents shown in Figure 24.4 together form a model for the Components program.

Given the instance of Assembly shown in Figure 24.1, there is no justification
for including the tuple  spoke, pedal to the Components instance. Indeed,
if we add this tuple to the components instance in Figure 24.4, we no longer
have a model for our program, as the following instance of the recursive rule
demonstrates, since  wheel, pedal is not in the Components instance:

Components(wheel, pedal) :- Assembly(wheel, spoke, 2),

Components(spoke, pedal).

However, by also adding the tuple  wheel, pedal to the Components instance,
we obtain another model of the Components program. Intuitively, this is un-
satisfactory since there is no justification for adding the tuple  spoke, pedal 
in the first place, given the tuples in the Assembly instance and the rules in
the program.

We address this problem by using the concept of a least model. A least model
of a program is a model M such that for every other model M2 of the same
program, for each relation R in the program, the instance for R in M is contained
in the instance of R in M2. The model formed by the instances of Assembly
and Components shown in Figures 24.1 and 24.4 is the least model for the
Components program with the given Assembly instance.

24.2.2 The Fixpoint Operator

A fixpoint of a function f is a value v such that the function applied to the
value returns the same value, that is, f(v) = v. Consider a function applied
to a set of values that also returns a set of values. For example, we can define
double to be a function that multiplies every element of the input set by two
and double+ to be double ∪ identity. Thus, double( {1,2,5} ) = {2,4,10}, and
double+( {1,2,5} ) = {1,2,4,5,10}. The set of all even integers—which happens
to be an infinite set—is a fixpoint of the function double+. Another fixpoint
of the function double+ is the set of all integers. The first fixpoint (the set of
all even integers) is smaller than the second fixpoint (the set of all integers)
because it is contained in the latter.
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The least fixpoint of a function is the fixpoint that is smaller than every other
fixpoint of that function. In general, it is not guaranteed that a function has
a least fixpoint. For example, there may be two fixpoints, neither of which is
smaller than the other. (Does double have a least fixpoint? What is it?)

Now let us turn to functions over sets of tuples, in particular, functions defined
using relational algebra expressions. The Components relation can be defined
by an equation of the form

Components = π1,5(Assembly   2=1 Components) ∪ π1,2(Assembly)

This equation has the form

Components = f(Components,Assembly)

where the function f is defined using a relational algebra expression. For a
given instance of the input relation Assembly, this can be simplified to

Components = f(Components)

The least fixpoint of f is an instance of Components that satisfies this equa-
tion. Clearly the projection of the first two fields of the tuples in the given
instance of the input relation Assembly must be included in the (instance that
is the) least fixpoint of Components. In addition, any tuple obtained by joining
Components with Assembly and projecting the appropriate fields must also be
in Components.

A little thought shows that the instance of Components that is the least fixpoint
of f can be computed using repeated applications of the Datalog rules shown
in the previous section. Indeed, applying the two Datalog rules is identical to
evaluating the relational expression used in defining Components. If an appli-
cation generates Components tuples that are not in the current instance of the
Components relation, the current instance cannot be the fixpoint. Therefore,
we add the new tuples to Components and evaluate the relational expression
(equivalently, the two Datalog rules) again. This process is repeated until ev-
ery tuple generated is already in the current instance of Components. When
applying the rules to the current set of tuples does not produce any new tuples,
we have reached a fixpoint. If Components is initialized to the empty set of
tuples, intuitively we infer only tuples that are necessary by the definition of a
fixpoint, and the fixpoint computed is the least fixpoint.

24.2.3 Safe Datalog Programs

Consider the following program:

Complex Parts(Part) :- Assembly(Part, Subpart, Qty), Qty > 2.
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According to this rule, a complex part is defined to be any part that has more
than two copies of any one subpart. For each part mentioned in the Assembly
relation, we can easily check whether it is a complex part. In contrast, consider
the following program:

Price Parts(Part,Price) :-

Assembly(Part, Subpart, Qty), Qty > 2.

This variation seeks to associate a price with each complex part. However, the
variable Price does not appear in the body of the rule. This means that an
infinite number of tuples must be included in any model of this program. To
see this, suppose we replace the variable Part by the constant trike, SubPart by
wheel, and Qty by 3. This gives us a version of the rule with the only remaining
variable being Price:

Price Parts(trike,Price) :- Assembly(trike, wheel, 3), 3 > 2.

Now, any assignment of a constant to Price gives us a tuple to be included in
the output relation Price Parts. For example, replacing Price by 100 gives us
the tuple Price Parts(trike,100). If the least model of a program is not finite,
for even one instance of its input relations, then we say the program is unsafe.

Database systems disallow unsafe programs by requiring that every variable
in the head of a rule also appear in the body. Such programs are said to
be range-restricted, and every range-restricted Datalog program has a finite
least model if the input relation instances are finite. In the rest of this chapter,
we assume that programs are range-restricted.

24.2.4 Least Model = Least Fixpoint

Does a Datalog program always have a least model? Or is it possible that
there are two models, neither of which is contained in the other? Similarly,
does every Datalog program have a least fixpoint? What is the relationship
between the least model and the least fixpoint of a Datalog program?

As we noted earlier, not every function has a least fixpoint. Fortunately, every
function defined in terms of relational algebra expressions that do not contain
set-difference is guaranteed to have a least fixpoint, and the least fixpoint can
be computed by repeatedly evaluating the function. This tells us that every
Datalog program has a least fixpoint and that it can be computed by repeatedly
applying the rules of the program on the given instances of the input relations.

Further, every Datalog program is guaranteed to have a least model and the
least model is equal to the least fixpoint of the program. These results (whose
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proofs we do not discuss) provide the basis for Datalog query processing. Users
can understand a program in terms of ‘If the body is true, the head is also true,’
thanks to the least model semantics. The DBMS can compute the answer by
repeatedly applying the program rules, thanks to the least fixpoint semantics
and the fact that the least model and the least fixpoint are identical.

24.3 RECURSIVE QUERIES WITH NEGATION

Unfortunately, once set-difference is allowed in the body of a rule, there may
be no least model or least fixpoint for a program. Consider the following rules:

Big(Part) :- Assembly(Part, Subpart, Qty), Qty > 2,

NOT Small(Part).

Small(Part) :- Assembly(Part, Subpart, Qty), NOT Big(Part).

These two rules can be thought of as an attempt to divide parts (those that
are mentioned in the first column of the Assembly table) into two classes, Big
and Small. The first rule defines Big to be the set of parts that use at least
three copies of some subpart and are not classified as small parts. The second
rule defines Small as the set of parts not classified as big parts.

If we apply these rules to the instance of Assembly shown in Figure 24.1, trike is
the only part that uses at least three copies of some subpart. Should the tuple
 trike be in Big or Small? If we apply the first rule and then the second rule,
this tuple is in Big. To apply the first rule, we consider the tuples in Assembly,
choose those with Qty > 2 (which is just  trike ), discard those in the current
instance of Small (both Big and Small are initially empty), and add the tuples
that are left to Big. Therefore, an application of the first rule adds  trike to
Big. Proceeding similarly, we can see that if the second rule is applied before
the first,  trike is added to Small instead of Big.

This program has two fixpoints, neither of which is smaller than the other, as
shown in Figure 24.5. The first fixpoint has a Big tuple that does not appear in
the second fixpoint; therefore, it is not smaller than the second fixpoint. The
second fixpoint has a Small tuple that does not appear in the first fixpoint;
therefore, it is not smaller than the first fixpoint. The order in which we
apply the rules determines which fixpoint is computed; this situation is very
unsatisfactory. We want users to be able to understand their queries without
thinking about exactly how the evaluation proceeds.

The root of the problem is the use of NOT. When we apply the first rule, some
inferences are disallowed because of the presence of tuples in Small. Parts
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Figure 24.5 Two Fixpoints for the Big/Small Program

that satisfy the other conditions in the body of the rule are candidates for
addition to Big; we remove the parts in Small from this set of candidates.
Thus, some inferences that are possible if Small is empty (as it is before the
second rule is applied) are disallowed if Small contains tuples (generated by
applying the second rule before the first rule). Here is the difficulty: If NOT
is used, the addition of tuples to a relation can disallow the inference of other
tuples. Without NOT, this situation can never arise; the addition of tuples to a
relation can never disallow the inference of other tuples.

Range-Restriction and Negation

If rules are allowed to contain NOT in the body, the definition of range-restriction
must be extended ensure that all range-restricted programs are safe. If a re-
lation appears in the body of a rule preceded by NOT, we call this a negated
occurrence. Relation occurrences in the body that are not negated are called
positive occurrences. A program is range-restricted if every variable in
the head of the rule appears in some positive relation occurrence in the body.

24.3.1 Stratification

A widely used solution to the problem caused by negation, or the use of NOT,
is to impose certain syntactic restrictions on programs. These restrictions can
be easily checked and programs that satisfy them have a natural meaning.

We say that a table T depends on a table S if some rule with T in the head
contains S, or (recursively) contains a predicate that depends on S, in the
body. A recursively defined predicate always depends on itself. For example,
Big depends on Small (and on itself). Indeed, the tables Big and Small are
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mutually recursive, that is, the definition of Big depends on Small and vice
versa. We say that a table T depends negatively on a table S if some rule
with T in the head contains NOT S, or (recursively) contains a predicate that
depends negatively on S, in the body.

Suppose we classify the tables in a program into strata or layers as follows.
The tables that do not depend on any other tables are in stratum 0. In our
Big/Small example, Assembly is the only table in stratum 0. Next, we identify
tables in stratum 1; these are tables that depend only on tables in stratum 0
or stratum 1 and depend negatively only on tables in stratum 0. Higher strata
are similarly defined: The tables in stratum i are those that do not belong to
lower strata, depend only on tables in stratum i or lower strata, and depend
negatively only on tables in lower strata. A stratified program is one whose
tables can be classified into strata according to the above algorithm.

The Big/Small program is not stratified. Since Big and Small depend on each
other, they must be in the same stratum. However, they depend negatively
on each other, violating the requirement that a table can depend negatively
only on tables in lower strata. Consider the following variant of the Big/Small
program, in which the first rule has been modified:

Big2(Part) :- Assembly(Part, Subpart, Qty), Qty > 2.

Small2(Part) :- Assembly(Part, Subpart, Qty), NOT Big2(Part).

This program is stratified. Small2 depends on Big2 but Big2 does not depend
on Small2. Assembly is in stratum 0, Big is in stratum 1, and Small2 is in
stratum 2.

A stratified program is evaluated stratum-by-stratum, starting with stratum
0. To evaluate a stratum, we compute the fixpoint of all rules defining tables
in this stratum. When evaluating a stratum, any occurrence of NOT involves
a table from a lower stratum, which has therefore been completely evaluated
by now. The tuples in the negated table still disallow some inferences, but the
effect is completely deterministic, given the stratum-by-stratum evaluation. In
the example, Big2 is computed before Small2 because it is in a lower stratum
than Small2;  trike is added to Big2. Next, when we compute Small2, we
recognize that  trike is not in Small2 because it is already in Big2.

Incidentally, note that the stratified Big/Small program is not even recursive. If
we replace Assembly by Components, we obtain a recursive, stratified program:
Assembly is in stratum 0, Components is in stratum 1, Big2 is also in stratum
1, and Small2 is in stratum 2.
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Intuition behind Stratification

Consider the stratified version of the Big/Small program. The rule defining
Big2 forces us to add  trike to Big2 and it is natural to assume that  trike is
the only tuple in Big2, because we have no supporting evidence for any other
tuple being in Big2. The minimal fixpoint computed by stratified fixpoint
evaluation is consistent with this intuition. However, there is another minimal
fixpoint: We can place every part in Big2 and make Small2 be empty. While
this assignment of tuples to relations seems unintuitive, it is nonetheless a
minimal fixpoint.

The requirement that programs be stratified gives us a natural order for eval-
uating rules. When the rules are evaluated in this order, the result is a unique
fixpoint that is one of the minimal fixpoints of the program. The fixpoint
computed by the stratified fixpoint evaluation usually corresponds well to our
intuitive reading of a stratified program, even if the program has more than
one minimal fixpoint.

For nonstratified Datalog programs, it is harder to identify a natural model
from among the alternative minimal models, especially when we consider that
the meaning of a program must be clear even to users who lack expertise in
mathematical logic. Although considerable research has been done on identi-
fying natural models for nonstratified programs, practical implementations of
Datalog have concentrated on stratified programs.

Relational Algebra and Stratified Datalog

Every relational algebra query can be written as a range-restricted, stratified
Datalog program. (Of course, not all Datalog programs can be expressed in
relational algebra; for example, the Components program.) We sketch the
translation from algebra to stratified Datalog by writing a Datalog program for
each of the basic algebra operations, in terms of two example tables R and S,
each with two fields:

Selection: Result(Y) :- R(X,Y), X=c.
Projection: Result(Y) :- R(X,Y).
Cross-product: Result(X,Y,U,V) :- R(X,Y), S(U,V).
Set-difference: Result(X,Y) :- R(X,Y), NOT S(U,V).
Union: Result(X,Y) :- R(X,Y).

Result(X,Y) :- S(X,Y).

We conclude our discussion of stratification by noting that SQL:1999 requires
programs to be stratified. The stratified Big/Small program is shown below in
SQL:1999 notation, with a final additional selection on Big2:
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SQL:1999 and Datalog Queries: A Datalog rule is linear recursive
if the body contains at most one occurrence of any table that depends on
the table in the head of the rule. A linear recursive program contains
only linear recursive rules. All linear recursive Datalog programs can be
expressed using the recursive features of SQL:1999. However, these features
are not in Core SQL.

WITH

Big2(Part) AS
(SELECT A1.Part FROM Assembly A1 WHERE Qty > 2)

Small2(Part) AS
((SELECT A2.Part FROM Assembly A2)
EXCEPT

(SELECT B1.Part from Big2 B1))

SELECT * FROM Big2 B2

24.4 FROM DATALOG TO SQL

To support recursive queries in SQL, we must take into account the features
of SQL that are not found in Datalog. Two central SQL features missing in
Datalog are (1) SQL treats tables as multisets of tuples, rather than sets, and
(2) SQL permits grouping and aggregate operations.

The multiset semantics of SQL queries can be preserved if we do not check for
duplicates after applying rules. Every relation instance, including instances of
the recursively defined tables, is a multiset. The number of occurrences of a
tuple in a relation is equal to the number of distinct inferences that generate
this tuple.

The second point can be addressed by extending Datalog with grouping and
aggregation operations. This must be done with multiset semantics in mind,
as we now illustrate. Consider the following program:

NumParts(Part, SUM( Qty )) :- Assembly(Part, Subpart, Qty).

This program is equivalent to the SQL query

SELECT A.Part, SUM (A.Qty)
FROM Assembly A
GROUP BY A.Part
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The angular brackets  . . . notation was introduced in the LDL deductive sys-
tem, one of the pioneering deductive database prototypes developed at MCC
in the late 1980s. We use it to denote multiset generation, or the creation of
multiset-values. In principle, the rule defining NumParts is evaluated by first
creating the temporary relation shown in Figure 24.6. We create the temporary
relation by sorting on the part attribute (which appears on the left side of the
rule, along with the  . . . term) and collecting the multiset of qty values for
each part value. We then apply the SUM aggregate to each multiset-value in the
second column to obtain the answer, which is shown in Figure 24.7.

part  qty 

trike {3,1}
frame {1,1}
wheel {2,1}
tire {1,1}

Figure 24.6 Temporary Relation

part SUM( qty )

trike 4
frame 2
wheel 3
tire 2

Figure 24.7 The Tuples in NumParts

The temporary relation shown in Figure 24.6 need not be materialized to com-
pute NumParts; for example, SUM can be applied on-the-fly or Assembly can
simply be sorted and aggregated as described in Section 14.6.

The use of grouping and aggregation, like negation, causes complications when
applied to a partially computed relation. The difficulty is overcome by adopt-
ing the same solution used for negation, stratification. Consider the following
program:1

TotParts(Part, Subpart, SUM( Qty )) :- BOM(Part, Subpart, Qty).

BOM(Part, Subpart, Qty) :- Assembly(Part, Subpart, Qty).

BOM(Part, Subpart, Qty) :- Assembly(Part, Part2, Qty2),

BOM(Part2, Subpart, Qty3), Qty=Qty2*Qty3.

The idea is to count the number of copies of Subpart for each Part. By aggre-
gating over BOM rather than Assembly, we count subparts at any level in the
hierarchy instead of just immediate subparts. This program is a version of a
well-known problem called Bill-of-Materials and variants of it are probably the
most widely used recursive queries in practice.

The important point to note in this example is that we must wait until the
relation BOM has been completely evaluated before we apply the TotParts
rule. Otherwise, we obtain incomplete counts. This situation is analogous to
the problem we faced with negation; we have to evaluate the negated relation

1The reader should write this in SQL:1999 syntax, as a simple exercise.
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SQL:1999 Cycle Detection: Safe Datalog queries that do not use arith-
metic operations have finite answers and the fixpoint evaluation is guaran-
teed to halt. Unfortunately, recursive SQL queries may have infinite answer
sets and query evaluation may not halt. There are two independent rea-
sons for this: (1) the use of arithmetic operations to generate data values
that are not stored in input tables of a query, and (2) multiset semantics
for rule applications; intuitively, problems arise from cycles in the data.
(To see this, consider the Components program on the Assembly instance
shown in Figure 24.1 plus the tuple  tube, wheel, 1 .) SQL:1999 provides
special constructs to check for such cycles.

completely before applying a rule that involves the use of NOT. If a program is
stratified with respect to uses of  . . . as well as NOT, stratified fixpoint evalua-
tion gives us meaningful results.

There are two further aspects to this example. First, we must understand the
cardinality of each tuple in BOM, based on the multiset semantics for rule
application. Second, we must understand the cardinality of the multiset of Qty

values for each  Part, Subpart group in TotParts.

part subpart qty

trike frame 1
trike seat 1
frame seat 1
frame pedal 2
seat cover 1

Figure 24.8 Another Instance of Assembly

rim tube

seat pedal

frame

  trike

wheel

spoke tire

3 1

2 1 1 1

11

Figure 24.9 Assembly Instance Seen as a Graph

We illustrate these two points using the instance of Assembly shown in Figures
24.8 and 24.9. Applying the first BOM rule, we add (one copy of) every tuple in
Assembly to BOM. Applying the second BOM rule, we add the following four
tuples to BOM:  trike, seat, 1 ,  trike, pedal, 2 ,  trike, cover, 1 , and  frame,

cover, 1 . Observe that the tuple  trike, seat, 1 was already in BOM because
it was generated by applying the first rule; therefore, multiset semantics for
rule application gives us two copies of this tuple. Applying the second BOM
rule on the new tuples, we generate the tuple  trike, cover, 1 (using the tuple
 frame, cover, 1 for BOM in the body of the rule); this is our second copy of
the tuple. Applying the second rule again on this tuple does not generate any
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tuples, and the computation of the BOM relation is now complete. The BOM
instance at this stage is shown in Figure 24.10.

part subpart qty

trike frame 1
trike seat 1
frame seat 1
frame pedal 2
seat cover 1
trike seat 1
trike pedal 2
trike cover 1
frame cover 1
trike cover 1

Figure 24.10 Instance of BOM Table

part subpart qty

trike frame {1}
trike seat {1,1}
trike cover {1,1}
trike pedal {2}
frame seat {1}
frame pedal {2}
seat cover {1}
frame cover {1}

Figure 24.11 Temporary Relation

Multiset grouping on this instance yields the temporary relation instance shown
in Figure 24.11. (This step is only conceptual; the aggregation can be done on
the fly without materializing this temporary relation.) Applying SUM to the
multisets in the third column of this temporary relation gives us the instance
for TotParts.

24.5 EVALUATING RECURSIVE QUERIES

The evaluation of recursive queries has been widely studied. While all the
problems of evaluating nonrecursive queries continue to be present, the newly
introduced fixpoint operation creates additional difficulties. A straightforward
approach to evaluating recursive queries is to compute the fixpoint by repeat-
edly applying the rules as illustrated in Section 24.1.1. One application of all
the program rules is called an iteration; we perform as many iterations as nec-
essary to reach the least fixpoint. This approach has two main disadvantages:

Repeated Inferences: As Figures 24.3 and 24.4 illustrate, inferences are
repeated across iterations. That is, the same tuple is inferred repeatedly
in the same way, using the same rule and the same tuples for tables in the
body of the rule.

Unnecessary Inferences: Suppose we want to find the components of
only a wheel. Computing the entire Components table is wasteful and does
not take advantage of information in the query.
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In this section, we discuss how each of these difficulties can be overcome. We
consider only Datalog programs without negation.

24.5.1 Fixpoint Evaluation without Repeated Inferences

Computing the fixpoint by repeatedly applying all rules is called Naive fix-
point evaluation. Naive evaluation is guaranteed to compute the least fix-
point, but every application of a rule repeats all inferences made by earlier
applications of this rule. We illustrate this point using the following rule:

Components(Part, Subpart) :- Assembly(Part, Part2, Qty),

Components(Part2, Subpart).

When this rule is applied for the first time, after applying the first rule defining
Components, the Components table contains the projection of Assembly on
the first two fields. Using these Components tuples in the body of the rule, we
generate the tuples shown in Figure 24.3. For example, the tuple  wheel, rim 
is generated through the following inference:

Components(wheel, rim) :- Assembly(wheel, tire, 1),

Components(tire, rim).

When this rule is applied a second time, the Components table contains the
tuples shown in Figure 24.3 in addition to the tuples that it contained before
the first application. Using the Components tuples shown in Figure 24.3 leads
to new inferences; for example,

Components(trike, rim) :- Assembly(trike, wheel, 3),

Components(wheel, rim).

However, every inference carried out in the first application of this rule is also
repeated in the second application of the rule, since all the Assembly and
Components tuples used in the first rule application are considered again. For
example, the inference of  wheel, rim shown above is repeated in the second
application of this rule.

The solution to this repetition of inferences consists of remembering which
inferences were carried out in earlier rule applications and not carrying them
out again. We can ‘remember’ previously executed inferences efficiently by
simply keeping track of which Components tuples were generated for the first
time in the most recent application of the recursive rule. Suppose we keep
track by introducing a new relation called delta Components and storing just
the newly generated Components tuples in it. Now, we can use only the tuples
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in delta Components in the next application of the recursive rule; any inference
using other Components tuples should have been carried out in earlier rule
applications.

This refinement of fixpoint evaluation is called Seminaive fixpoint evalua-
tion. Let us trace Seminaive fixpoint evaluation on our example program. The
first application of the recursive rule produces the Components tuples shown in
Figure 24.3, just like Naive fixpoint evaluation, and these tuples are placed in
delta Components. In the second application, however, only delta Components

tuples are considered, which means that only the following inferences are carried
out in the second application of the recursive rule:

Components(trike, rim) :- Assembly(trike, wheel, 3),

delta Components(wheel, rim).

Components(trike, tube) :-Assembly(trike, wheel, 3),

delta Components(wheel, tube).

Next, the bookkeeping relation delta Components is updated to contain just
these two Components tuples. In the third application of the recursive rule, only
these two delta Components tuples are considered and therefore no additional
inferences can be made. The fixpoint of Components has been reached.

To implement Seminaive fixpoint evaluation for general Datalog programs, we
apply all the recursive rules in a program together in an iteration. Iterative
application of all recursive rules is repeated until no new tuples are generated in
some iteration. To summarize how Seminaive fixpoint evaluation is carried out,
there are two important differences with respect to Naive fixpoint evaluation:

We maintain a delta version of every recursive predicate to keep track of the
tuples generated for this predicate in the most recent iteration; for example,
delta Components for Components. The delta versions are updated at the
end of each iteration.

The original program rules are rewritten to ensure that every inference uses
at least one delta tuple; that is, one tuple that was not known before the
previous iteration. This property guarantees that the inference could not
have been carried out in earlier iterations.

We do not discuss details of Seminaive fixpoint evaluation (such as the algo-
rithm for rewriting program rules to ensure the use of a delta tuple in each
inference).
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24.5.2 Pushing Selections to Avoid Irrelevant Inferences

Consider a nonrecursive view definition. If we want only those tuples in the
view that satisfy an additional selection condition, the selection can be added
to the plan as a final operation, and the relational algebra transformations
for commuting selections with other relational operators allow us to ‘push’
the selection ahead of more expensive operations such as cross-products and
joins. In effect, we restrict the computation by utilizing selections in the query
specification. The problem is more complicated for recursively defined queries.

We use the following program as an example in this section:

SameLevel(S1, S2) :- Assembly(P1, S1, Q1),

Assembly(P1, S2, Q2).

SameLevel(S1, S2) :- Assembly(P1, S1, Q1),

SameLevel(P1, P2), Assembly(P2, S2, Q2).

Consider the tree representation of Assembly tuples illustrated in Figure 24.2.
There is a tuple  S1, S2 in SameLevel if there is a path from S1 to S2 that
goes up a certain number of edges in the tree and then comes down the same
number of edges.

Suppose we want to find all SameLevel tuples with the first field equal to
spoke. Since SameLevel tuples can be used to compute other SameLevel tuples,
we cannot just compute those tuples with spoke in the first field. For example,
the tuple  wheel, frame in SameLevel allows us to infer a SameLevel tuple
with spoke in the first field:

SameLevel(spoke, seat) :- Assembly(wheel, spoke, 2),

SameLevel(wheel, frame),

Assembly(frame, seat, 1).

Intuitively, we have to compute all SameLevel tuples whose first field contains
a value on the path from spoke to the root in Figure 24.2. Each such tuple has
the potential to contribute to answers for the given query. On the other hand,
computing the entire SameLevel table is wasteful; for example, the SameLevel
tuple  tire, seat cannot be used to infer any answer to the given query (or,
indeed, to infer any tuple that can in turn be used to infer an answer tuple).
We define a new table, which we call Magic SameLevel, such that each tuple
in this table identifies a value m for which we have to compute all SameLevel
tuples with m in the first column to answer the given query:

Magic SameLevel(P1) :- Magic SameLevel(S1), Assembly(P1, S1, Q1).

Magic SameLevel(spoke) :- .
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Consider the tuples in Magic SameLevel. Obviously we have  spoke . Us-
ing this Magic SameLevel tuple and the Assembly tuple  wheel, spoke, 2 , we
can infer that the tuple  wheel is in Magic SameLevel. Using this tuple and
the Assembly tuple  trike,wheel, 3 , we can infer that the tuple  trike is in
Magic SameLevel. Thus, Magic SameLevel contains each node that is on the
path from spoke to the root in Figure 24.2. The Magic SameLevel table can be
used as a filter to restrict the computation:

SameLevel(S1, S2) :- Magic SameLevel(S1),

Assembly(P1, S1, Q1), Assembly(P2, S2, Q2).

SameLevel(S1, S2) :- Magic SameLevel(S1), Assembly(P1, S1, Q1),

SameLevel(P1, P2), Assembly(P2, S2, Q2).

These rules together with the rules defining Magic SameLevel give us a pro-
gram for computing all SameLevel tuples with spoke in the first column. Notice
that the new program depends on the query constant spoke only in the sec-
ond rule defining Magic SameLevel. Therefore, the program for computing all
SameLevel tuples with seat in the first column, for instance, is identical except
that the second Magic SameLevel rule is

Magic SameLevel(seat) :- .

The number of inferences made using the Magic program can be far fewer than
the number of inferences made using the original program, depending on just
how much the selection in the query restricts the computation.

24.5.3 The Magic Sets Algorithm

We illustrated the intuition behind theMagic Sets algorithm on the SameLevel
program, which contains just one output relation and one recursive rule.

The intuition behind the rewriting is that the rows in the Magic tables cor-
respond to the subqueries whose answers are relevant to the original query.
By evaluating the rewritten program instead of the original program, we can
restrict computation by intuitively pushing the selection condition in the query
into the recursion.

The algorithm, however, can be applied to any Datalog program. The input to
the algorithm consists of the program and a query pattern, which is a relation
we want to query plus the fields for which a query will provide constants. The
output of the algorithm is a rewritten program.

The Magic Sets program rewriting algorithm can be summarized as follows:
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1. Generate the Adorned Program: In this step, the program is rewritten
to make the pattern of queries and subqueries explicit.

2. Add Magic Filters: Modify each rule in the Adorned Program by adding
a Magic condition to the body that acts as a filter on the set of tuples
generated by this rule.

3. Define the Magic Tables: We create new rules to define the Magic
tables. Intuitively, from each occurrence of a table R in the body of an
Adorned Program rule, we obtain a rule defining the table Magic R.

When a query is posed, we add the corresponding Magic tuple to the rewrit-
ten program and evaluate the least fixpoint of the program (using Seminaive
evaluation).

We remark that the Magic Sets algorithm has turned out to be quite effective
for computing correlated nested SQL queries, even if there is no recursion, and
is used for this purpose in many commercial DBMSs, even systems that do not
currently support recursive queries.

We now describe the three steps in the Magic Sets algorithm using the SameLevel
program as a running example.

Adorned Program

We consider the query pattern SameLevelbf . Thus, given a value c, we want
to compute all rows in SameLevel in which c appears in the first column. We
generate the Adorned Program P ad from the given program P by repeatedly
generating adorned versions of rules in P for every reachable query pattern,
with the given query pattern as the only reachable pattern to begin with;
additional reachable patterns are identified during the course of generating the
Adorned Program as described next.

Consider a rule in P whose head contains the same table as some reachable
pattern. The adorned version of the rule depends on the order in which we
consider the predicates in the body of the rule. To simplify our discussion, we
assume that this is always left-to-right. First, we replace the head of the rule
with the matching query pattern. After this step, the recursive SameLevel rule
looks like this:

SameLevelbf(S1, S2) :- Assembly(P1, S1, Q1),

SameLevel(P1, P2), Assembly(P2, S2, Q2).

Next, we proceed left-to-right in the body of the rule until we encounter the
first recursive predicate. All columns that contain a constant or a variable that
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appears to the left are marked b (for bound) and the rest are marked f (for free)
in the query pattern for this occurrence of the predicate. We add this pattern
to the set of reachable patterns and modify the rule accordingly:

SameLevelbf(S1, S2) :- Assembly(P1, S1, Q1),

SameLevelbf(P1, P2), Assembly(P2, S2, Q2).

If there are additional occurrences of recursive predicates in the body of the
recursive rule, we continue (adding the query patterns to the reachable set and
modifying the rule). (Of course, in linear recursive programs, there is at most
one occurrence of a recursive predicate in a rule body.)

We repeat this until we have generated the adorned version of every rule in P

for every reachable query pattern that contains the same table as the head of
the rule. The result is the Adorned Program P ad, which, in our example, is

SameLevelbf(S1, S2) :- Assembly(P1, S1, Q1),

Assembly(P1, S2, Q2).

SameLevelbf(S1, S2) :- Assembly(P1, S1, Q1),

SameLevelbf(P1, P2), Assembly(P2, S2, Q2).

In our example, there is only one reachable query pattern. In general, there
can be several.2

Adding Magic Filters

Every rule in the Adorned Program is modified by adding a ‘magic filter’ pred-
icate to obtain the rewritten program:

SameLevelbf(S1, S2) :- Magic SameLevelbf(S1),

Assembly(P1, S1, Q1), Assembly(P2, S2, Q2).

SameLevelbf(S1, S2) :- Magic SameLevelbf(S1),

Assembly(P1, S1, Q1), SameLevelbf(P1, P2),

Assembly(P2, S2, Q2).

The filter predicate is a copy of the head of the rule, with ‘Magic’ as a prefix
for the table name and the variables in columns corresponding to free deleted,
as illustrated in these two rules.

2As an example, consider a variant of the SameLevel program in which the variables P1 and P2
are interchanged in the body of the recursive rule (Exercise 24.5)
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Defining Magic Filter Tables

Consider the Adorned Program after every rule has been modified as described.
From each occurrence O of a recursive predicate in the body of a rule in this
modified program, we generate a rule that defines a Magic predicate. The
algorithm for generating this rule is as follows: (1) Delete everything to the
right of occurrence O in the body of the modified rule. (2) Add the prefix
‘Magic’ and delete the free columns of O. (3) Move O, with these changes, into
the head of the rule.

From the recursive rule in our example, after steps (1) and (2) we get:

SameLevelbf(S1, S2) :- Magic SameLevelbf(S1),

Assembly(P1, S1, Q1), Magic SameLevelbf(P1).

After step (3), we get:

Magic SameLevelbf(P1) :- Magic SameLevelbf(S1),

Assembly(P1, S1, Q1).

The query itself generates a row in the corresponding Magic table, for example,
Magic SameLevelbf (seat).

24.6 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

Describe Datalog programs. Use an example Datalog program to explain
why it is not possible to write recursive rules in SQL-92. (Section 24.1)

Define the terms model and least model. What can you say about least
models for Datalog programs? Why is this approach to defining the mean-
ing of a Datalog program called declarative? (Section 24.2.1)

Define the terms fixpoint and least fixpoint. What can you say about least
fixpoints for Datalog programs? Why is this approach to defining the
meaning of a Datalog program said to be operational? (Section 24.2.2)

What is a safe program? Why is this property important? What is range-

restriction and how does it ensure safety? (Section 24.2.3)

What is the connection between least models and least fixpoints for Datalog
programs? (Section 24.2.4)
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Explain why programs with negation may not have a least model or least
fixpoint. Extend the definition of range-restriction to programs with nega-
tion. (Section 24.3)

What is a stratified program? How does stratification address the problem
of identifying a desired fixpoint? Show how every relational algebra query
can be written as a stratified Datalog program. (Section 24.3.1)

Two important aspects of SQL, multiset tables and aggregation with group-

ing, are missing in Datalog. How can we extend Datalog to support these
features? Discuss the interaction of these two new features and the need
for stratification of aggregation. (Section 24.4)

Define the terms inference and iteration. What are the two main challenges
in efficient evaluation of recursive Datalog programs? (Section 24.5)

Describe Seminaive fixpoint evaluation and explain how it avoids repeated
inferences. (Section 24.5.1)

Describe the Magic Sets program transformation and explain how it avoids
unnecessary inferences. (Sections 24.5.2 and 24.5.3)

EXERCISES

Exercise 24.1 Consider the Flights relation:

Flights(flno: integer, from: string, to: string, distance: integer,

departs: time, arrives: time)

Write the following queries in Datalog and SQL:1999 syntax:

1. Find the flno of all flights that depart from Madison.

2. Find the flno of all flights that leave Chicago after Flight 101 arrives in Chicago and no
later than 1 hour after.

3. Find the flno of all flights that do not depart from Madison.

4. Find all cities reachable from Madison through a series of one or more connecting flights.

5. Find all cities reachable from Madison through a chain of one or more connecting flights,
with no more than 1 hour spent on any connection. (That is, every connecting flight
must depart within an hour of the arrival of the previous flight in the chain.)

6. Find the shortest time to fly from Madison to Madras, using a chain of one or more
connecting flights.

7. Find the flno of all flights that do not depart from Madison or a city that is reachable
from Madison through a chain of flights.

Exercise 24.2 Consider the definition of Components in Section 24.1.1. Suppose that the
second rule is replaced by
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Components(Part, Subpart) :-Components(Part, Part2),

Components(Part2, Subpart).

1. If the modified program is evaluated on the Assembly relation in Figure 24.1, how many
iterations does Naive fixpoint evaluation take and what Components facts are generated
in each iteration?

2. Extend the given instance of Assembly so that Naive fixpoint iteration takes two more
iterations.

3. Write this program in SQL:1999 syntax, using the WITH clause.

4. Write a program in Datalog syntax to find the part with the most distinct subparts; if
several parts have the same maximum number of subparts, your query should return all
these parts.

5. How would your answer to the previous part be changed if you also wanted to list the
number of subparts for the part with the most distinct subparts?

6. Rewrite your answers to the previous two parts in SQL:1999 syntax.

7. Suppose that you want to find the part with the most subparts, taking into account
the quantity of each subpart used in a part, how would you modify the Components
program? (Hint: To write such a query you reason about the number of inferences of
a fact. For this, you have to rely on SQL’s maintaining as many copies of each fact as
the number of inferences of that fact and take into account the properties of Seminaive
evaluation.)

Exercise 24.3 Consider the definition of Components in Exercise 24.2. Suppose that the
recursive rule is rewritten as follows for Seminaive fixpoint evaluation:

Components(Part, Subpart) :- delta Components(Part, Part2, Qty),

delta Components(Part2, Subpart).

1. At the end of an iteration, what steps must be taken to update delta Components to
contain just the new tuples generated in this iteration? Can you suggest an index on
Components that might help to make this faster?

2. Even if the delta relation is correctly updated, fixpoint evaluation using the preceding
rule does not always produce all answers. Show an instance of Assembly that illustrates
the problem.

3. Can you suggest a way to rewrite the recursive rule in terms of delta Components so
that Seminaive fixpoint evaluation always produces all answers and no inferences are
repeated across iterations?

4. Show how your version of the rewritten program performs on the example instance of
Assembly that you used to illustrate the problem with the given rewriting of the recursive
rule.

Exercise 24.4 Consider the definition of SameLevel in Section 24.5.2 and the Assembly
instance shown in Figure 24.1.

1. Rewrite the recursive rule for Seminaive fixpoint evaluation and show how Seminaive
evaluation proceeds.

2. Consider the rules defining the relation Magic, with spoke as the query constant. For
Seminaive evaluation of the ‘Magic’ version of the SameLevel program, all tuples in Magic
are computed first. Show how Seminaive evaluation of the Magic relation proceeds.
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3. After the Magic relation is computed, it can be treated as a fixed database relation, just
like Assembly, in the Seminaive fixpoint evaluation of the rules defining SameLevel in
the ‘Magic’ version of the program. Rewrite the recursive rule for Seminaive evaluation
and show how Seminaive evaluation of these rules proceeds.

Exercise 24.5 Consider the definition of SameLevel in Section 24.5.2 and a query in which
the first argument is bound. Suppose that the recursive rule is rewritten as follows, leading
to multiple binding patterns in the adorned program:

SameLevel(S1, S2) :- Assembly(P1, S1, Q1),

Assembly(P1, S2, Q2).

SameLevel(S1, S2) :- Assembly(P1, S1, Q1),

SameLevel(P2, P1), Assembly(P2, S2, Q2).

1. Show the adorned program.

2. Show the Magic program.

3. Show the Magic program after applying Seminaive rewriting.

4. Construct an example instance of Assembly such that the evaluating the optimized pro-
gram generates less than 1% of the facts generated by evaluating the original program
(and finally selecting the query result).

Exercise 24.6 Again, consider the definition of SameLevel in Section 24.5.2 and a query in
which the first argument is bound. Suppose that the recursive rule is rewritten as follows:

SameLevel(S1, S2) :- Assembly(P1, S1, Q1),

Assembly(P1, S2, Q2).

SameLevel(S1, S2) :- Assembly(P1, S1, Q1),

SameLevel(P1, R1), SameLevel(R1, P2), Assembly(P2, S2, Q2).

1. Show the adorned program.

2. Show the Magic program.

3. Show the Magic program after applying Seminaive rewriting.

4. Construct an example instance of Assembly such that the evaluating the optimized pro-
gram generates less than 1% of the facts generated by evaluating the original program
(and finally selecting the query result).

BIBLIOGRAPHIC NOTES
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[642] develops a program rewriting technique related to Magic Sets called Magic Counting.
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25
DATA WAREHOUSING AND

DECISION SUPPORT

☛ Why are traditional DBMSs inadequate for decision support?

☛ What is the multidimensional data model and what kinds of analysis
does it facilitate?

☛ What SQL:1999 features support multidimensional queries?

☛ How does SQL:1999 support analysis of sequences and trends?

☛ How are DBMSs being optimized to deliver early answers for interac-
tive analysis?

☛ What kinds of index and file organizations do OLAP systems require?

☛ What is data warehousing and why is it important for decision sup-
port?

☛ Why have materialized views become important?

☛ How can we efficiently maintain materialized views?

➽ Key concepts: OLAP, multimensional model, dimensions, measures;
roll-up, drill-down, pivoting, cross-tabulation, CUBE; WINDOW queries,
frames, order; top N queries, online aggregation; bitmap indexes, join
indexes; data warehouses, extract, refresh, purge; materialized views,
incremental maintenance, maintaining warehouse views

Nothing is more difficult, and therefore more precious, than to be
able to decide.

—Napoleon Bonaparte

846
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Database management systems are widely used by organizations for maintain-
ing data that documents their everyday operations. In applications that update
such operational data, transactions typically make small changes (for example,
adding a reservation or depositing a check) and a large number of transactions
must be reliably and efficiently processed. Such online transaction process-
ing (OLTP) applications have driven the growth of the DBMS industry in the
past three decades and will doubtless continue to be important. DBMSs have
traditionally been optimized extensively to perform well in such applications.

Recently, however, organizations have increasingly emphasized applications in
which current and historical data is comprehensively analyzed and explored,
identifying useful trends and creating summaries of the data, in order to support
high-level decision making. Such applications are referred to as decision sup-
port. Mainstream relational DBMS vendors have recognized the importance
of this market segment and are adding features to their products to support it.
In particular, SQL has been extended with new constructs and novel indexing
and query optimization techniques are being added to support complex queries.

The use of views has gained rapidly in popularity because of their utility in
applications involving complex data analysis. While queries on views can be
answered by evaluating the view definition when the query is submitted, pre-
computing the view definition can make queries run much faster. Carrying
the motivation for precomputed views one step further, organizations can con-
solidate information from several databases into a data warehouse by copying
tables from many sources into one location or materializing a view defined over
tables from several sources. Data warehousing has become widespread, and
many specialized products are now available to create and manage warehouses
of data from multiple databases.

We begin this chapter with an overview of decision support in Section 25.1.
We introduce the multimensional model of data in Section 25.2 and consider
database design issues in 25.2.1. We discuss the rich class of queries that it
naturally supports in Section 25.3. We discuss how new SQL:1999 constructs
allow us to express multidimensional queries in 25.3.1. In Section 25.4, we
discuss SQL:1999 extensions that support queries over relations as ordered
collections. We consider how to optimize for fast generation of initial answers
in Section 25.5. The many query language extensions required in the OLAP
environment prompted the development of new implementation techniques; we
discuss these in Section 25.6. In Section 25.7, we examine the issues involved
in creating and maintaining a data warehouse. From a technical standpoint, a
key issue is how to maintain warehouse information (replicated tables or views)
when the underlying source information changes. After covering the important
role played by views in OLAP and warehousing in Section 25.8, we consider
maintenance of materialized views in Sections 25.9 and 25.10.
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25.1 INTRODUCTION TO DECISION SUPPORT

Organizational decision making requires a comprehensive view of all aspects of
an enterprise, so many organizations created consolidated data warehouses
that contain data drawn from several databases maintained by different busi-
ness units together with historical and summary information.

The trend toward data warehousing is complemented by an increased emphasis
on powerful analysis tools. Many characteristics of decision support queries
make traditional SQL systems inadequate:

The WHERE clause often contains many AND and OR conditions. As we saw
in Section 14.2.3, OR conditions, in particular, are poorly handled in many
relational DBMSs.

Applications require extensive use of statistical functions, such as standard
deviation, that are not supported in SQL-92. Therefore, SQL queries must
frequently be embedded in a host language program.

Many queries involve conditions over time or require aggregating over time
periods. SQL-92 provides poor support for such time-series analysis.

Users often need to pose several related queries. Since there is no conve-
nient way to express these commonly occurring families of queries, users
have to write them as a collection of independent queries, which can be
tedious. Further, the DBMS has no way to recognize and exploit optimiza-
tion opportunities arising from executing many related queries together.

Three broad classes of analysis tools are available. First, some systems support
a class of stylized queries that typically involve group-by and aggregation oper-
ators and provide excellent support for complex boolean conditions, statistical
functions, and features for time-series analysis. Applications dominated by
such queries are called online analytic processing (OLAP). These systems
support a querying style in which the data is best thought of as a multidi-
mensional array and are influenced by end-user tools, such as spreadsheets, in
addition to database query languages.

Second, some DBMSs support traditional SQL-style queries but are designed
to also support OLAP queries efficiently. Such systems can be regarded as
relational DBMSs optimized for decision support applications. Many vendors of
relational DBMSs are currently enhancing their products in this direction and,
over time, the distinction between specialized OLAP systems and relational
DBMSs enhanced to support OLAP queries is likely to diminish.

The third class of analysis tools is motivated by the desire to find interesting
or unexpected trends and patterns in large data sets rather than the complex
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SQL:1999 and OLAP: In this chapter, we discuss a number of features
introduced in SQL:1999 to support OLAP. In order not to delay publica-
tion of the SQL:1999 standard, these features were actually added to the
standard through an amendment called SQL/OLAP.

query characteristics just listed. In exploratory data analysis, although an
analyst can recognize an ‘interesting pattern’ when shown such a pattern, it is
very difficult to formulate a query that captures the essence of an interesting
pattern. For example, an analyst looking at credit-card usage histories may
want to detect unusual activity indicating misuse of a lost or stolen card. A
catalog merchant may want to look at customer records to identify promising
customers for a new promotion; this identification would depend on income
level, buying patterns, demonstrated interest areas, and so on. The amount
of data in many applications is too large to permit manual analysis or even
traditional statistical analysis, and the goal of data mining is to support
exploratory analysis over very large data sets. We discuss data mining further
in Chapter 26.

Clearly, evaluating OLAP or data mining queries over globally distributed data
is likely to be excruciatingly slow. Further, for such complex analysis, often
statistical in nature, it is not essential that the most current version of the data
be used. The natural solution is to create a centralized repository of all the
data; that is, a data warehouse. Thus, the availability of a warehouse facilitates
the application of OLAP and data mining tools and, conversely, the desire to
apply such analysis tools is a strong motivation for building a data warehouse.

25.2 OLAP: MULTIDIMENSIONAL DATA MODEL

OLAP applications are dominated by ad hoc, complex queries. In SQL terms,
these are queries that involve group-by and aggregation operators. The natural
way to think about typical OLAP queries, however, is in terms of a multidimen-
sional data model. In this section, we present the multidimensional data model
and compare it with a relational representation of data. In subsequent sec-
tions, we describe OLAP queries in terms of the multidimensional data model
and consider some new implementation techniques designed to support such
queries.

In the multidimensional data model, the focus is on a collection of numeric
measures. Each measure depends on a set of dimensions. We use a running
example based on sales data. The measure attribute in our example is sales.
The dimensions are Product, Location, and Time. Given a product, a location,
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and a time, we have at most one associated sales value. If we identify a product
by a unique identifier pid and, similarly, identify location by locid and time
by timeid, we can think of sales information as being arranged in a three-
dimensional array Sales. This array is shown in Figure 25.1; for clarity, we
show only the values for a single locid value, locid= 1, which can be thought of
as a slice orthogonal to the locid axis.

timeid
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1
1

1
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id
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Figure 25.1 Sales: A Multidimensional Dataset

This view of data as a multidimensional array is readily generalized to more
than three dimensions. In OLAP applications, the bulk of the data can be
represented in such a multidimensional array. Indeed, some OLAP systems
actually store data in a multidimensional array (of course, implemented with-
out the usual programming language assumption that the entire array fits in
memory). OLAP systems that use arrays to store multidimensional datasets
are called multidimensional OLAP (MOLAP) systems.

The data in a multidimensional array can also be represented as a relation,
as illustrated in Figure 25.2, which shows the same data as in Figure 25.1,
with additional rows corresponding to the ‘slice’ locid= 2. This relation, which
relates the dimensions to the measure of interest, is called the fact table.

Now let us turn to dimensions. Each dimension can have a set of associated
attributes. For example, the Location dimension is identified by the locid at-
tribute, which we used to identify a location in the Sales table. We assume
that it also has attributes country, state, and city. We further assume that
the Product dimension has attributes pname, category, and price in addition
to the identifier pid. The category of a product indicates its general nature;
for example, a product pant could have category value apparel. We assume
that the Time dimension has attributes date, week, month, quarter, year, and
holiday flag in addition to the identifier timeid.
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  pid locidtimeid sales

1 25

Sales 

1

11 2 1 8

11 3 1 15

12 1 1 30

12 2 1 20

12 3 1 50

13 1 1

13 2 1 10

13 3 1 10

11 1 2 35

11 2 2 22

11 3 2 10

12 1 2 26

12 2 2 45

12 3 2 20

13 1 2 20

13 2 40

13 3 2 5

2

8

11

Stationery

  pid pname

Lee Jeans

Zord

Biro Pen

price

25

category

Apparel

Toys

2

18

Products

5

2

1

Fresno CA

USA

  locid city state country

Locations 

11

12

13

India

USA

TN

WIMadison

Chennai

Figure 25.2 Locations, Products, and Sales Represented as Relations
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For each dimension, the set of associated values can be structured as a hierar-
chy. For example, cities belong to states, and states belong to countries. Dates
belong to weeks and months, both weeks and months are contained in quar-
ters, and quarters are contained in years. (Note that a week could span two
months; therefore, weeks are not contained in months.) Some of the attributes
of a dimension describe the position of a dimension value with respect to this
underlying hierarchy of dimension values. The hierarchies for the Product, Lo-
cation, and Time hierarchies in our example are shown at the attribute level in
Figure 25.3.

category

pname city

state

 country

month

quarter

year

date

week

LOCATIONTIMEPRODUCT

Figure 25.3 Dimension Hierarchies

Information about dimensions can also be represented as a collection of rela-
tions:

Locations(locid: integer, city: string, state: string, country: string)
Products(pid: integer, pname: string, category: string, price: real)
Times(timeid: integer, date: string, week: integer, month: integer,

quarter: integer, year: integer, holiday flag: boolean )

These relations are much smaller than the fact table in a typical OLAP appli-
cation; they are called the dimension tables. OLAP systems that store all
information, including fact tables, as relations are called relational OLAP
(ROLAP) systems.

The Times table illustrates the attention paid to the Time dimension in typical
OLAP applications. SQL’s date and timestamp data types are not adequate;
to support summarizations that reflect business operations, information such
as fiscal quarters, holiday status, and so on is maintained for each time value.
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25.2.1 Multidimensional Database Design

Figure 25.4 shows the tables in our running sales example. It suggests a star,
centered at the fact table Sales; such a combination of a fact table and di-
mension tables is called a star schema. This schema pattern is very common
in databases designed for OLAP. The bulk of the data is typically in the fact
table, which has no redundancy; it is usually in BCNF. In fact, to minimize
the size of the fact table, dimension identifiers (such as pid and timeid) are
system-generated identifiers.

LOCATIONSPRODUCTS

SALES

TIMES

timeid year holiday_flag

timeid saleslocid

pid pname category price city countrystatelocid

pid

date week month quarter

Figure 25.4 An Example of a Star Schema

Information about dimension values is maintained in the dimension tables. Di-
mension tables are usually not normalized. The rationale is that the dimension
tables in a database used for OLAP are static and update, insertion, and dele-
tion anomalies are not important. Further, because the size of the database is
dominated by the fact table, the space saved by normalizing dimension tables
is negligible. Therefore, minimizing the computation time for combining facts
in the fact table with dimension information is the main design criterion, which
suggests that we avoid breaking a dimension table into smaller tables (which
might lead to additional joins).

Small response times for interactive querying are important in OLAP, and most
systems support the materialization of summary tables (typically generated
through queries using grouping). Ad hoc queries posed by users are answered
using the original tables along with precomputed summaries. A very important
design issue is which summary tables should be materialized to achieve the
best use of available memory and answer commonly asked ad hoc queries with
interactive response times. In current OLAP systems, deciding which summary
tables to materialize may well be the most important design decision.

Finally, new storage structures and indexing techniques have been developed to
support OLAP and they present the database designer with additional physical
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design choices. We cover some of these implementation techniques in Section
25.6.

25.3 MULTIDIMENSIONAL AGGREGATION QUERIES

Now that we have seen the multidimensional model of data, let us consider how
such data can be queried and manipulated. The operations supported by this
model are strongly influenced by end user tools such as spreadsheets. The goal
is to give end users who are not SQL experts an intuitive and powerful interface
for common business-oriented analysis tasks. Users are expected to pose ad hoc
queries directly, without relying on database application programmers.

In this section, we assume that the user is working with a multidimensional
dataset and that each operation returns either a different presentation or a
summary; the underlying dataset is always available for the user to manipulate,
regardless of the level of detail at which it is currently viewed. In Section 25.3.1,
we discuss how SQL:1999 provides constructs to express the kinds of queries
presented in this section over tabular, relational data.

A very common operation is aggregating a measure over one or more dimen-
sions. The following queries are typical:

Find the total sales.

Find total sales for each city.

Find total sales for each state.

These queries can be expressed as SQL queries over the fact and dimension
tables. When we aggregate a measure on one or more dimensions, the aggre-
gated measure depends on fewer dimensions than the original measure. For
example, when we compute the total sales by city, the aggregated measure is
total sales and it depends only on the Location dimension, whereas the original
sales measure depended on the Location, Time, and Product dimensions.

Another use of aggregation is to summarize at different levels of a dimension
hierarchy. If we are given total sales per city, we can aggregate on the Location
dimension to obtain sales per state. This operation is called roll-up in the
OLAP literature. The inverse of roll-up is drill-down: Given total sales by
state, we can ask for a more detailed presentation by drilling down on Location.
We can ask for sales by city or just sales by city for a selected state (with sales
presented on a per-state basis for the remaining states, as before). We can
also drill down on a dimension other than Location. For example, we can ask
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for total sales for each product for each state, drilling down on the Product
dimension.

Another common operation is pivoting. Consider a tabular presentation of
the Sales table. If we pivot it on the Location and Time dimensions, we obtain
a table of total sales for each location for each time value. This information
can be presented as a two-dimensional chart in which the axes are labeled
with location and time values; the entries in the chart correspond to the total
sales for that location and time. Therefore, values that appear in columns
of the original presentation become labels of axes in the result presentation.
The result of pivoting, called a cross-tabulation, is illustrated in Figure 25.5.
Observe that in spreadsheet style, in addition to the total sales by year and
state (taken together), we also have additional summaries of sales by year and
sales by state.

WI CA

63

107

223

144

145

110

399

38

75

176

35

81

Total

1997

Total

1996

1995

Figure 25.5 Cross-Tabulation of Sales by Year and State

Pivoting can also be used to change the dimensions of the cross-tabulation;
from a presentation of sales by year and state, we can obtain a presentation of
sales by product and year.

Clearly, the OLAP framework makes it convenient to pose a broad class of
queries. It also gives catchy names to some familiar operations: Slicing a
dataset amounts to an equality selection on one or more dimensions, possibly
also with some dimensions projected out. Dicing a dataset amounts to a range
selection. These terms come from visualizing the effect of these operations on
a cube or cross-tabulated representation of the data.

A Note on Statistical Databases

Many OLAP concepts are present in earlier work on statistical databases
(SDBs), which are database systems designed to support statistical applica-
tions, although this connection has not been sufficiently recognized because
of differences in application domains and terminology. The multidimensional
data model, with the notions of a measure associated with dimensions and
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classification hierarchies for dimension values, is also used in SDBs. OLAP
operations such as roll-up and drill-down have counterparts in SDBs. Indeed,
some implementation techniques developed for OLAP are also applied to SDBs.

Nonetheless, some differences arise from the different domains OLAP and SDBs
were developed to support. For example, SDBs are used in socioeconomic appli-
cations, where classification hierarchies and privacy issues are very important.
This is reflected in the greater complexity of classification hierarchies in SDBs,
along with issues such as potential breaches of privacy. (The privacy issue
concerns whether a user with access to summarized data can reconstruct the
original, unsummarized data.) In contrast, OLAP has been aimed at business
applications with large volumes of data and efficient handling of very large
datasets has received more attention than in the SDB literature.

25.3.1 ROLLUP and CUBE in SQL:1999

In this section, we discuss how many of the query capabilities of the multidi-
mensional model are supported in SQL:1999. Typically, a single OLAP opera-
tion leads to several closely related SQL queries with aggregation and grouping.
For example, consider the cross-tabulation shown in Figure 25.5, which was ob-
tained by pivoting the Sales table. To obtain the same information, we would
issue the following queries:

SELECT T.year, L.state, SUM (S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
GROUP BY T.year, L.state

This query generates the entries in the body of the chart (outlined by the dark
lines). The summary column on the right is generated by the query:

SELECT T.year, SUM (S.sales)
FROM Sales S, Times T
WHERE S.timeid=T.timeid
GROUP BY T.year

The summary row at the bottom is generated by the query:

SELECT L.state, SUM (S.sales)
FROM Sales S, Locations L
WHERE S.locid=L.locid
GROUP BY L.state

The cumulative sum in the bottom-right corner of the chart is produced by the
query:
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SELECT SUM (S.sales)
FROM Sales S, Locations L
WHERE S.locid=L.locid

The example cross-tabulation can be thought of as roll-up on the entire dataset
(i.e., treating everything as one big group), on the Location dimension, on the
Time dimension, and on the Location and Time dimensions together. Each
roll-up corresponds to a single SQL query with grouping. In general, given a
measure with k associated dimensions, we can roll up on any subset of these k
dimensions; so we have a total of 2k such SQL queries.

Through high-level operations such as pivoting, users can generate many of
these 2k SQL queries. Recognizing the commonalities between these queries
enables more efficient, coordinated computation of the set of queries.

SQL:1999 extends the GROUP BY construct to provide better support for roll-up
and cross-tabulation queries. The GROUP BY clause with the CUBE keyword is
equivalent to a collection of GROUP BY statements, with one GROUP BY state-
ment for each subset of the k dimensions.

Consider the following query:

SELECT T.year, L.state, SUM (S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
GROUP BY CUBE (T.year, L.state)

The result of this query, shown in Figure 25.6, is just a tabular representation
of the cross-tabulation in Figure 25.5.

SQL:1999 also provides variants of GROUP BY that enable computation of sub-
sets of the cross-tabulation computed using GROUP BY CUBE. For example, we
can replace the grouping clause in the previous query with

GROUP BY ROLLUP (T.year, L.state)

In contrast to GROUP BY CUBE, we aggregate by all pairs of year and state values
and by each year, and compute an overall sum for the entire dataset (the last
row in Figure 25.6), but we do not aggregate for each state value. The result
is identical to that shown in Figure 25.6, except that the rows with null in the
T.year column and non-null values in the L.state column are not computed.

CUBE pid, locid, timeid BY SUM Sales
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T.year L.state SUM(S.sales)

1995 WI 63
1995 CA 81
1995 null 144
1996 WI 38
1996 CA 107
1996 null 145
1997 WI 75
1997 CA 35
1997 null 110
null WI 176
null CA 223
null null 399

Figure 25.6 The Result of GROUP BY CUBE on Sales

This query rolls up the table Sales on all eight subsets of the set {pid, locid,
timeid} (including the empty subset). It is equivalent to eight queries of the
form

SELECT SUM (S.sales)
FROM Sales S
GROUP BY grouping-list

The queries differ only in the grouping-list, which is some subset of the set {pid,
locid, timeid}. We can think of these eight queries as being arranged in a lattice,
as shown in Figure 25.7. The result tuples at a node can be aggregated further
to compute the result for any child of the node. This relationship between the
queries arising in a CUBE can be exploited for efficient evaluation.

{pid, locid, timeid}

{pid, locid} {pid, timeid} {locid, timeid}

{timeid}{pid}

{  }

{locid}

Figure 25.7 The Lattice of GROUP BY Queries in a CUBE Query
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25.4 WINDOW QUERIES IN SQL:1999

The time dimension is very important in decision support and queries involving
trend analysis have traditionally been difficult to express in SQL. To address
this, SQL:1999 introduced a fundamental extension called a query window.
Examples of queries that can be written using this extension, but are either
difficult or impossible to write in SQL without it, include

1. Find total sales by month.

2. Find total sales by month for each city.

3. Find the percentage change in the total monthly sales for each product.

4. Find the top five products ranked by total sales.

5. Find the trailing n day moving average of sales. (For each day, we must
compute the average daily sales over the preceding n days.)

6. Find the top five products ranked by cumulative sales, for every month
over the past year.

7. Rank all products by total sales over the past year, and, for each product,
print the difference in total sales relative to the product ranked behind it.

The first two queries can be expressed as SQL queries using GROUP BY over the
fact and dimension tables. The next two queries can be expressed too, but are
quite complicated in SQL-92. The fifth query cannot be expressed in SQL-92
if n is to be a parameter of the query. The last query cannot be expressed in
SQL-92.

In this section, we discuss the features of SQL:1999 that allow us to express all
these queries and, obviously, a rich class of similar queries.

The main extension is the WINDOW clause, which intuitively identifies an ordered
‘window’ of rows ‘around’ each tuple in a table. This allows us to apply a rich
collection of aggregate functions to the window of a row and extend the row
with the results. For example, we can associate the average sales over the past
3 days with every Sales tuple (each of which records 1 day’s sales). This gives
us a 3-day moving average of sales.

While there is some similarity to the GROUP BY and CUBE clauses, there are
important differences as well. For example, like the WINDOW operator, GROUP
BY allows us to create partitions of rows and apply aggregate functions such as
SUM to the rows in a partition. However, unlike WINDOW, there is a single output
row per partition, rather than one output row for each row, and each partition
is an unordered collection of rows.
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We now illustrate the window concept through an example:

SELECT L.state, T.month, AVG (S.sales) OVER W AS movavg
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
WINDOW W AS (PARTITION BY L.state

ORDER BY T.month
RANGE BETWEEN INTERVAL ‘1’ MONTH PRECEDING

AND INTERVAL ‘1’ MONTH FOLLOWING)

The FROM and WHERE clauses are processed as usual to (conceptually) generate
an intermediate table, which we refer to as Temp. Windows are created over
the Temp relation.

There are three steps in defining a window. First, we define partitions of the
table, using the PARTITION BY clause. In the example, partitions are based on
the L.state column. Partitions are similar to groups created with GROUP BY, but
there is a very important difference in how they are processed. To understand
the difference, observe that the SELECT clause contains a column, T.month,
which is not used to define the partitions; different rows in a given partition
could have different values in this column. Such a column cannot appear in the
SELECT clause in conjunction with grouping, but it is allowed for partitions.
The reason is that there is one answer row for each row in a partition of Temp,
rather than just one answer row per partition. The window around a given row
is used to compute the aggregate functions in the corresponding answer row.

The second step in defining a window is to specify the ordering of rows within
a partition. We do this using the ORDER BY clause; in the example, the rows
within each partition are ordered by T.month.

The third step in window definition is to frame windows; that is, to establish
the boundaries of the window associated with each row in terms of the ordering
of rows within partitions. In the example, the window for a row includes the
row itself plus all rows whose month value is within a month before or after;
therefore, a row whose month value is June 2002 has a window containing all
rows with month equal to May, June, or July 2002.

The answer row corresponding to a given row is constructed by first identifying
its window. Then, for each answer column defined using a window aggregate
function, we compute the aggregate using the rows in the window.

In our example, each row of Temp is essentially a row of Sales, tagged with
extra details (about the location and time dimensions). There is one partition
for each state and every row of Temp belongs to exactly one partition. Consider
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a row for a store in Wisconsin. The row states the sales for a given product, in
that store, at a certain time. The window for this row includes all rows that
describe sales in Wisconsin within the previous or next month and movavg is
the average of sales (over all products) in Wisconsin within this period.

We note that the ordering of rows within a partition for the purposes of window
definition does not extend to the table of answer rows. The ordering of answer
rows is nondeterministic, unless, of course, we fetch them through a cursor and
use ORDER BY to order the cursor’s output.

25.4.1 Framing a Window

There are two distinct ways to frame a window in SQL:1999. The example
query illustrated the RANGE construct, which defines a window based on the
values in some column (month in our example). The ordering column has to
be a numeric type, a datetime type, or an interval type since these are the only
types for which addition and subtraction are defined.

The second approach is based on using the ordering directly and specifying how
many rows before and after the given row are in its window. Thus, we could
say

SELECT L.state, T.month, AVG (S.sales) OVER W AS movavg
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
WINDOW W AS (PARTITION BY L.state

ORDER BY T.month
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)

If there is exactly one row in Temp for each month, this is equivalent to the
previous query. However, if a given month has no rows or multiple rows, the
two queries produce different results. In this case, the result of the second query
is hard to understand because the windows for different rows do not align in a
natural way.

The second approach is appropriate if, in terms of our example, there is exactly
one row per month. Generalizing from this, it is also appropriate if there is
exactly one row for every value in the sequence of ordering column values.
Unlike the first approach, where the ordering has to be specified over a single
(numeric, datetime, or interval type) column, the ordering can be based on a
composite key.
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We can also define windows that include all rows that are before a given row
(UNBOUNDED PRECEDING) or all rows after a given row (UNBOUNDED FOLLOWING)
within the row’s partition.

25.4.2 New Aggregate Functions

While the standard aggregate functions that apply to multisets of values (e.g.,
SUM, AVG) can be used in conjunction with windowing, there is a need for a
new class of functions that operate on a list of values.

The RANK function returns the position of a row within its partition. If a
partition has 15 rows, the first row (according to the ordering of rows in the
window definition over this partition) has rank 1 and the last row has rank 15.
The rank of intermediate rows depends on whether there are multiple (or no)
rows for a given value of the ordering column.

Consider our running example. If the first row in the Wisconsin partition has
the month January 2002, and the second and third rows both have the month
February 2002, then their ranks are 1, 2, and 2, respectively. If the next row
has month March 2002 its rank is 4.

In contrast, the DENSE RANK function generates ranks without gaps. In our
example, the four rows are given ranks 1, 2, 2, and 3. The only change is in
the fourth row, whose rank is now 3 rather than 4.

The PERCENT RANK function gives a measure of the relative position of a row
within a partition. It is defined as (RANK-1) divided by the number of rows
in the partition. CUME DIST is similar but based on actual position within the
ordered partition rather than rank.

25.5 FINDING ANSWERS QUICKLY

A recent trend, fueled in part by the popularity of the Internet, is an emphasis
on queries for which a user wants only the first few, or the ‘best’ few, answers
quickly. When users pose queries to a search engine such as AltaVista, they
rarely look beyond the first or second page of results. If they do not find
what they are looking for, they refine their query and resubmit it. The same
phenomenon occurs in decision support applications and some DBMS products
(e.g., DB2) already support extended SQL constructs to specify such queries. A
related trend is that, for complex queries, users would like to see an approximate
answer quickly and then have it be continually refined, rather than wait until
the exact answer is available. We now discuss these two trends briefly.
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25.5.1 Top N Queries

An analyst often wants to identify the top-selling handful of products, for ex-
ample. We can sort by sales for each product and return answers in this order.
If we have a million products and the analyst is interested only in the top 10,
this straightforward evaluation strategy is clearly wasteful. It is desirable for
users to be able to explicitly indicate how many answers they want, making
it possible for the DBMS to optimize execution. The following example query
asks for the top 10 products ordered by sales in a given location and time:

SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3
ORDER BY S.sales DESC
OPTIMIZE FOR 10 ROWS

The OPTIMIZE FOR N ROWS construct is not in SQL-92 (or even SQL:1999), but
it is supported in IBM’s DB2 product, and other products (e.g., Oracle 9i) have
similar constructs. In the absence of a cue such as OPTIMIZE FOR 10 ROWS, the
DBMS computes sales for all products and returns them in descending order
by sales. The application can close the result cursor (i.e., terminate the query
execution) after consuming 10 rows, but considerable effort has already been
expended in computing sales for all products and sorting them.

Now let us consider how a DBMS can use the OPTIMIZE FOR cue to execute the
query efficiently. The key is to somehow compute sales only for products that
are likely to be in the top 10 by sales. Suppose that we know the distribution
of sales values because we maintain a histogram on the sales column of the
Sales relation. We can then choose a value of sales, say, c, such that only
10 products have a larger sales value. For those Sales tuples that meet this
condition, we can apply the location and time conditions as well and sort the
result. Evaluating the following query is equivalent to this approach:

SELECT P.pid, P.pname, S.sales
FROM Sales S, Products P
WHERE S.pid=P.pid AND S.locid=1 AND S.timeid=3 AND S.sales > c
ORDER BY S.sales DESC

This approach is, of course, much faster than the alternative of computing all
product sales and sorting them, but there are some important problems to
resolve:

1. How do we choose the sales cutoff value c? Histograms and other system
statistics can be used for this purpose, but this can be a tricky issue. For
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one thing, the statistics maintained by a DBMS are only approximate.
For another, even if we choose the cutoff to reflect the top 10 sales values
accurately, other conditions in the query may eliminate some of the selected
tuples, leaving us with fewer than 10 tuples in the result.

2. What if we have more than 10 tuples in the result? Since the choice of
the cutoff c is approximate, we could get more than the desired number
of tuples in the result. This is easily handled by returning just the top
10 to the user. We still save considerably with respect to the approach
of computing sales for all products, thanks to the conservative pruning of
irrelevant sales information, using the cutoff c.

3. What if we have fewer than 10 tuples in the result? Even if we choose the
sales cutoff c conservatively, we could still compute fewer than 10 result
tuples. In this case, we can re-execute the query with a smaller cutoff value
c2 or simply re-execute the original query with no cutoff.

The effectiveness of the approach depends on how well we can estimate the
cutoff and, in particular, on minimizing the number of times we obtain fewer
than the desired number of result tuples.

25.5.2 Online Aggregation

Consider the following query, which asks for the average sales amount by state:

SELECT L.state, AVG (S.sales)
FROM Sales S, Locations L
WHERE S.locid=L.locid
GROUP BY L.state

This can be an expensive query if Sales and Locations are large relations. We
cannot achieve fast response times with the traditional approach of computing
the anwer in its entirety when the query is presented. One alternative, as we
have seen, is to use precomputation. Another alternative is to compute the
answer to the query when the query is presented but return an approximate
answer to the user as soon as possible. As the computation progresses, the
answer quality is continually refined. This approach is called online aggrega-
tion. It is very attractive for queries involving aggregation, because efficient
techniques for computing and refining approximate answers are available.

Online aggregation is illustrated in Figure 25.8: For each state—the grouping
criterion for our example query—the current value for average sales is displayed,
together with a confidence interval. The entry for Alaska tells us that the
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Figure 25.8 Online Aggregation

current estimate of average per-store sales in Alaska is $2,832.50, and that this
is within the range $2,700.30 to $2,964.70 with 93% probability. The status
bar in the first column indicates how close we are to arriving at an exact value
for the average sales and the second column indicates whether calculating the
average sales for this state is a priority. Estimating average sales for Alaska
is not a priority, but estimating it for Arizona is a priority. As the figure
indicates, the DBMS devotes more system resources to estimating the average
sales for high-priority states; the estimate for Arizona is much tighter than that
for Alaska and holds with a higher probability. Users can set the priority for
a state by clicking on the Prioritize button at any time during the execution.
This degree of interactivity, together with the continuous feedback provided by
the visual display, makes online aggregation an attractive technique.

To implement online aggregation, a DBMS must incorporate statistical tech-
niques to provide confidence intervals for approximate answers and use non-
blocking algorithms for the relational operators. An algorithm is said to
block if it does not produce output tuples until it has consumed all its input
tuples. For example, the sort-merge join algorithm blocks because sorting re-
quires all input tuples before determining the first output tuple. Nested loops
join and hash join are therefore preferable to sort-merge join for online aggrega-
tion. Similarly, hash-based aggregation is better than sort-based aggregation.

25.6 IMPLEMENTATION TECHNIQUES FOR OLAP

In this section we survey some implementation techniques motivated by the
OLAP environment. The goal is to provide a feel for how OLAP systems differ
from more traditional SQL systems; our discussion is far from comprehensive.
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Beyond B+ Trees: Complex queries have motivated the addition of
powerful indexing techniques to DBMSs. In addition to B+ tree indexes,
Oracle 9i supports bitmap and join indexes and maintains these dynami-
cally as the indexed relations are updated. Oracle 9i also supports indexes
on expressions over attribute values, such as 10 ∗ sal + bonus. Microsoft
SQL Server uses bitmap indexes. Sybase IQ supports several kinds of
bitmap indexes, and may shortly add support for a linear hashing based
index. Informix UDS supports R trees and Informix XPS supports bitmap
indexes.

The mostly-read environment of OLAP systems makes the CPU overhead of
maintaining indexes negligible and the requirement of interactive response times
for queries over very large datasets makes the availability of suitable indexes
very important. This combination of factors has led to the development of new
indexing techniques. We discuss several of these techniques. We then consider
file organizations and other OLAP implementation issues briefly.

We note that the emphasis on query processing and decision support appli-
cations in OLAP systems is being complemented by a greater emphasis on
evaluating complex SQL queries in traditional SQL systems. Traditional SQL
systems are evolving to support OLAP-style queries more efficiently, supporting
constructs (e.g., CUBE and window functions) and incorporating implementation
techniques previously found only in specialized OLAP systems.

25.6.1 Bitmap Indexes

Consider a table that describes customers:

Customers(custid: integer, name: string, gender: boolean, rating: integer)

The rating value is an integer in the range 1 to 5, and only two values are
recorded for gender. Columns with few possible values are called sparse. We
can exploit sparsity to construct a new kind of index that greatly speeds up
queries on these columns.

The idea is to record values for sparse columns as a sequence of bits, one for
each possible value. For example, a gender value is either 10 or 01; a 1 in
the first position denotes male, and 1 in the second position denotes female.
Similarly, 10000 denotes the rating value 1, and 00001 denotes the rating value
5.
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If we consider the gender values for all rows in the Customers table, we can
treat this as a collection of two bit vectors, one of which has the associated
value M(ale) and the other the associated value F(emale). Each bit vector has
one bit per row in the Customers table, indicating whether the value in that
row is the value associated with the bit vector. The collection of bit vectors for
a column is called a bitmap index for that column.

An example instance of the Customers table, together with the bitmap indexes
for gender and rating, is shown in Figure 25.9.

M F

1 0
1 0
0 1
1 0

custid name gender rating

112 Joe M 3
115 Ram M 5
119 Sue F 5
112 Woo M 4

1 2 3 4 5

0 0 1 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 1 0

Figure 25.9 Bitmap Indexes on the Customers Relation

Bitmap indexes offer two important advantages over conventional hash and tree
indexes. First, they allow the use of efficient bit operations to answer queries.
For example, consider the query, “How many male customers have a rating
of 5?” We can take the first bit vector for gender and do a bitwise AND with
the fifth bit vector for rating to obtain a bit vector that has 1 for every male
customer with rating 5. We can then count the number of 1s in this bit vector
to answer the query. Second, bitmap indexes can be much more compact than
a traditional B+ tree index and are very amenable to the use of compression
techniques.

Bit vectors correspond closely to the rid-lists used to represent data entries in
Alternative (3) for a traditional B+ tree index (see Section 8.2). In fact, we can
think of a bit vector for a given age value, say, as an alternative representation
of the rid-list for that value.

This suggests a way to combine bit vectors (and their advantages of bitwise
processing) with B+ tree indexes: We can use Alternative (3) for data entries,
using a bit vector representation of rid-lists. A caveat is that, if an rid-list is
very small, the bit vector representation may be much larger than a list of rid
values, even if the bit vector is compressed. Further, the use of compression
leads to decompression costs, offsetting some of the computational advantages
of the bit vector representation.

A more flexible approach is to use a standard list representation of the rid-list
for some key values (intuitively, those that contain few elements) and a bit
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vector representation for other key values (those that contain many elements,
and therefore lend themselves to a compact bit vector representation).

This hybrid approach, which can easily be adapted to work with hash indexes
as well as B+ tree indexes, has both advantages and disadvantages relative to
a standard list of rids approach:

1. It can be applied even to columns that are not sparse; that is, in which are
many possible values can appear. The index levels (or the hashing scheme)
allow us to quickly find the ‘list’ of rids, in a standard list or bit vector
representation, for a given key value.

2. Overall, the index is more compact because we can use a bit vector rep-
resentation for long rid lists. We also have the benefits of fast bit vector
processing.

3. On the other hand, the bit vector representation of an rid list relies on
a mapping from a position in the vector to an rid. (This is true of any
bit vector representation, not just the hybrid approach.) If the set of
rows is static, and we do not worry about inserts and deletes of rows, it
is straightforward to ensure this by assigning contiguous rids for rows in
a table. If inserts and deletes must be supported, additional steps are
required. For example, we can continue to assign rids contiguously on a
per-table basis and simply keep track of which rids correspond to deleted
rows. Bit vectors can now be longer than the current number of rows, and
periodic reorganization is required to compact the ‘holes’ in the assignment
of rids.

25.6.2 Join Indexes

Computing joins with small response times is extremely hard for very large
relations. One approach to this problem is to create an index designed to speed
up specific join queries. Suppose that the Customers table is to be joined with
a table called Purchases (recording purchases made by customers) on the custid
field. We can create a collection of  c, p pairs, where p is the rid of a Purchases
record that joins with a Customers record with custid c.

This idea can be generalized to support joins over more than two relations. We
discuss the special case of a star schema, in which the fact table is likely to
be joined with several dimension tables. Consider a join query that joins fact
table F with dimension tables D1 and D2 and includes selection conditions on
column C1 of table D1 and column C2 of table D2. We store a tuple  r1, r2, r 
in the join index if r1 is the rid of a tuple in table D1 with value c1 in column
C1, r2 is the rid of a tuple in table D2 with value c2 in column C2, and r is the
rid of a tuple in the fact table F, and these three tuples join with each other.
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Complex Queries: The IBM DB2 optimizer recognizes star join queries
and performs rid-based semijoins (using Bloom filters) to filter the fact
table. Then fact table rows are rejoined to the dimension tables. Complex
(multitable) dimension queries (called snowflake queries) are supported.
DB2 also supports CUBE using smart algorithms that minimize sorts. Mi-
crosoft SQL Server optimizes star join queries extensively. It considers
taking the cross-product of small dimension tables before joining with the
fact table, the use of join indexes, and rid-based semijoins. Oracle 9i also
allows users to create dimensions to declare hierarchies and functional de-
pendencies. It supports the CUBE operator and optimizes star join queries
by eliminating joins when no column of a dimension table is part of the
query result. DBMS products have also been developed specifically for
decision support applications, such as Sybase IQ.

The drawback of a join index is that the number of indexes can grow rapidly
if several columns in each dimension table are involved in selections and joins
with the fact table. An alternative kind of join index avoids this problem.
Consider our example involving fact table F and dimension tables D1 and D2.
Let C1 be a column of D1 on which a selection is expressed in some query that
joins D1 with F. Conceptually, we now join F with D1 to extend the fields of F
with the fields of D1, and index F on the ‘virtual field’ C1: If a tuple of D1 with
value c1 in column C1 joins with a tuple of F with rid r, we add a tuple  c1, r 
to the join index. We create one such join index for each column of either D1
or D2 that involves a selection in some join with F; C1 is an example of such a
column.

The price paid with respect to the previous version of join indexes is that join
indexes created in this way have to be combined (rid intersection) to deal with
the join queries of interest to us. This can be done efficiently if we make the
new indexes bitmap indexes; the result is called a bitmapped join index.
The idea works especially well if columns such as C1 are sparse, and therefore
well suited to bitmap indexing.

25.6.3 File Organizations

Since many OLAP queries involve just a few columns of a large relation, vertical
partitioning becomes attractive. However, storing a relation column-wise can
degrade performance for queries that involve several columns. An alternative
in a mostly-read environment is to store the relation row-wise, but also store
each column separately.



870 Chapter 25

A more radical file organization is to regard the fact table as a large multidi-
mensional array and store it and index it as such. This approach is taken in
MOLAP systems. Since the array is much larger than available main memory,
it is broken up into contiguous chunks, as discussed in Section 23.8. In addition,
traditional B+ tree indexes are created to enable quick retrieval of chunks that
contain tuples with values in a given range for one or more dimensions.

25.7 DATA WAREHOUSING

Data warehouses contain consolidated data from many sources, augmented with
summary information and covering a long time period. Warehouses are much
larger than other kinds of databases; sizes ranging from several gigabytes to ter-
abytes are common. Typical workloads involve ad hoc, fairly complex queries
and fast response times are important. These characteristics differentiate ware-
house applications from OLTP applications, and different DBMS design and
implementation techniques must be used to achieve satisfactory results. A dis-
tributed DBMS with good scalability and high availability (achieved by storing
tables redundantly at more than one site) is required for very large warehouses.

OLAP

Data Warehouse

TRANSFORM

EXTRACT 

CLEAN

LOAD

REFRESH

SERVES

External Data Sources

Operational Databases Data Mining

Visualization

Metadata Repository

Figure 25.10 A Typical Data Warehousing Architecture

A typical data warehousing architecture is illustrated in Figure 25.10. An orga-
nization’s daily operations access and modify operational databases. Data
from these operational databases and other external sources (e.g., customer
profiles supplied by external consultants) are extracted by using interfaces
such as JDBC (see Section 6.2).
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25.7.1 Creating and Maintaining a Warehouse

Many challenges must be met in creating and maintaining a large data ware-
house. A good database schema must be designed to hold an integrated collec-
tion of data copied from diverse sources. For example, a company warehouse
might include the inventory and personnel departments’ databases, together
with sales databases maintained by offices in different countries. Since the
source databases are often created and maintained by different groups, there
are a number of semantic mismatches across these databases, such as different
currency units, different names for the same attribute, and differences in how
tables are normalized or structured; these differences must be reconciled when
data is brought into the warehouse. After the warehouse schema is designed,
the warehouse must be populated, and over time, it must be kept consistent
with the source databases.

Data is extracted from operational databases and external sources, cleaned
to minimize errors and fill in missing information when possible, and trans-
formed to reconcile semantic mismatches. Transforming data is typically ac-
complished by defining a relational view over the tables in the data sources
(the operational databases and other external sources). Loading data consists
of materializing such views and storing them in the warehouse. Unlike a stan-
dard view in a relational DBMS, therefore, the view is stored in a database
(the warehouse) that is different from the database(s) containing the tables it
is defined over.

The cleaned and transformed data is finally loaded into the warehouse. Ad-
ditional preprocessing such as sorting and generation of summary information
is carried out at this stage. Data is partitioned and indexes are built for effi-
ciency. Due to the large volume of data, loading is a slow process. Loading a
terabyte of data sequentially can take weeks, and loading even a gigabyte can
take hours. Parallelism is therefore important for loading warehouses.

After data is loaded into a warehouse, additional measures must be taken to
ensure that the data in the warehouse is periodically refreshed to reflect
updates to the data sources and periodically purge old data (perhaps onto
archival media). Observe the connection between the problem of refreshing
warehouse tables and asynchronously maintaining replicas of tables in a dis-
tributed DBMS. Maintaining replicas of source relations is an essential part of
warehousing, and this application domain is an important factor in the popu-
larity of asynchronous replication (Section 22.11.2), even though asynchronous
replication violates the principle of distributed data independence. The prob-
lem of refreshing warehouse tables (which are materialized views over tables in
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the source databases) has also renewed interest in incremental maintenance of
materialized views. (We discuss materialized views in Section 25.8.)

An important task in maintaining a warehouse is keeping track of the data
currently stored in it; this bookkeeping is done by storing information about
the warehouse data in the system catalogs. The system catalogs associated with
a warehouse are very large and often stored and managed in a separate database
called a metadata repository. The size and complexity of the catalogs is in
part due to the size and complexity of the warehouse itself and in part because
a lot of administrative information must be maintained. For example, we must
keep track of the source of each warehouse table and when it was last refreshed,
in addition to describing its fields.

The value of a warehouse is ultimately in the analysis it enables. The data in a
warehouse is typically accessed and analyzed using a variety of tools, including
OLAP query engines, data mining algorithms, information visualization tools,
statistical packages, and report generators.

25.8 VIEWS AND DECISION SUPPORT

Views are widely used in decision support applications. Different groups of
analysts within an organization are typically concerned with different aspects
of the business, and it is convenient to define views that give each group insight
into the business details that concern it. Once a view is defined, we can write
queries or new view definitions that use it, as we saw in Section 3.6; in this
respect a view is just like a base table. Evaluating queries posed against views
is very important for decision support applications. In this section, we consider
how such queries can be evaluated efficiently after placing views within the
context of decision support applications.

25.8.1 Views, OLAP, and Warehousing

Views are closely related to OLAP and data warehousing.

OLAP queries are typically aggregate queries. Analysts want fast answers to
these queries over very large datasets, and it is natural to consider precomputing
views (see Sections 25.9 and 25.10). In particular, the CUBE operator—discussed
in Section 25.3—gives rise to several aggregate queries that are closely related.
The relationships that exist between the many aggregate queries that arise from
a single CUBE operation can be exploited to develop very effective precompu-
tation strategies. The idea is to choose a subset of the aggregate queries for
materialization in such a way that typical CUBE queries can be quickly answered
by using the materialized views and doing some additional computation. The
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choice of views to materialize is influenced by how many queries they can po-
tentially speed up and by the amount of space required to store the materialized
view (since we have to work with a given amount of storage space).

A data warehouse is just a collection of asynchronously replicated tables and
periodically synchronized views. A warehouse is characterized by its size, the
number of tables involved, and the fact that most of the underlying tables
are from external, independently maintained databases. Nonetheless, the fun-
damental problem in warehouse maintenance is asynchronous maintenance of
replicated tables and materialized views (see Section 25.10).

25.8.2 Queries over Views

Consider the following view, RegionalSales, which computes sales of products
by category and state:

CREATE VIEW RegionalSales (category, sales, state)
AS SELECT P.category, S.sales, L.state

FROM Products P, Sales S, Locations L
WHERE P.pid = S.pid AND S.locid = L.locid

The following query computes the total sales for each category by state:

SELECT R.category, R.state, SUM (R.sales)
FROM RegionalSales R
GROUP BY R.category, R.state

While the SQL standard does not specify how to evaluate queries on views, it
is useful to think in terms of a process called query modification. The idea is
to replace the occurrence of RegionalSales in the query by the view definition.
The result on this query is

SELECT R.category, R.state, SUM (R.sales)
FROM ( SELECT P.category, S.sales, L.state

FROM Products P, Sales S, Locations L
WHERE P.pid = S.pid AND S.locid = L.locid ) AS R

GROUP BY R.category, R.state

25.9 VIEW MATERIALIZATION

We can answer a query on a view by using the query modification technique
just described. Often, however, queries against complex view definitions must
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be answered very fast because users engaged in decision support activities re-
quire interactive response times. Even with sophisticated optimization and
evaluation techniques, there is a limit to how fast we can answer such queries.
Also, if the underlying tables are in a remote database, the query modifica-
tion approach may not even be feasible because of issues like connectivity and
availability.

An alternative to query modification is to precompute the view definition and
store the result. When a query is posed on the view, the (unmodified) query is
executed directly on the precomputed result. This approach, called view ma-
terialization, is likely to be much faster than the query modification approach
because the complex view need not be evaluated when the query is computed.
Materialized views can be used during query processing in the same way as
regular relations; for example, we can create indexes on materialized views to
further speed up query processing. The drawback, of course, is that we must
maintain the consistency of the precomputed (or materialized) view whenever
the underlying tables are updated.

25.9.1 Issues in View Materialization

Three questions must be considered with regard to view materialization:

1. What views should we materialize and what indexes should we build on
the materialized views?

2. Given a query on a view and a set of materialized views, can we exploit
the materialized views to answer the query?

3. How should we synchronize materialized views with changes to the under-
lying tables? The choice of synchronization technique depends on several
factors, such as whether the underlying tables are in a remote database.
We discuss this issue in Section 25.10.

The answers to the first two questions are related. The choice of views to
materialize and index is governed by the expected workload, and the discussion
of indexing in Chapter 20 is relevant to this question as well. The choice of
views to materialize is more complex than just choosing indexes on a set of
database tables, however, because the range of alternative views to materialize
is wider. The goal is to materialize a small, carefully chosen set of views that
can be utilized to quickly answer most of the important queries. Conversely,
once we have chosen a set of views to materialize, we have to consider how they
can be used to answer a given query.

Consider the RegionalSales view. It involves a join of Sales, Products, and
Locations and is likely to be expensive to compute. On the other hand, if it
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is materialized and stored with a clustered B+ tree index on the search key
 category, state, sales , we can answer the example query by an index-only
scan.

Given the materialized view and this index, we can also answer queries of the
following form efficiently:

SELECT R.state, SUM (R.sales)
FROM RegionalSales R
WHERE R.category = ‘Laptop’
GROUP BY R.state

To answer such a query, we can use the index on the materialized view to locate
the first index leaf entry with category = ‘Laptop’ and then scan the leaf level
until we come to the first entry with category not equal to Laptop.

The given index is less effective on the following query, for which we are forced
to scan the entire leaf level:

SELECT R.state, SUM (R.sales)
FROM RegionalSales R
WHERE R.state = ‘Wisconsin’
GROUP BY R.category

This example indicates how the choice of views to materialize and the indexes
to create are affected by the expected workload. This point is illustrated further
by our next example.

Consider the following two queries:

SELECT P.category, SUM (S.sales)
FROM Products P, Sales S
WHERE P.pid = S.pid
GROUP BY P.category

SELECT L.state, SUM (S.sales)
FROM Locations L, Sales S
WHERE L.locid = S.locid
GROUP BY L.state

These two queries require us to join the Sales table (which is likely to be very
large) with another table and aggregate the result. How can we use materializa-
tion to speed up these queries? The straightforward approach is to precompute
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each of the joins involved (Products with Sales and Locations with Sales) or to
precompute each query in its entirety. An alternative approach is to define the
following view:

CREATE VIEW TotalSales (pid, locid, total)
AS SELECT S.pid, S.locid, SUM (S.sales)

FROM Sales S
GROUP BY S.pid, S.locid

The view TotalSales can be materialized and used instead of Sales in our two
example queries:

SELECT P.category, SUM (T.total)
FROM Products P, TotalSales T
WHERE P.pid = T.pid
GROUP BY P.category

SELECT L.state, SUM (T.total)
FROM Locations L, TotalSales T
WHERE L.locid = T.locid
GROUP BY L.state

25.10 MAINTAINING MATERIALIZED VIEWS

A materialized view is said to be refreshed when we make it consistent with
changes to its underlying tables. The process of refreshing a view to keep it
consistent with changes to the underlying table is often referred to as view
maintenance. Two questions to consider are

1. How do we refresh a view when an underlying table is modified? Two issues
of particular interest are how to maintain views incrementally, that is,
without recomputing from scratch when there is a change to an underlying
table; and how to maintain views in a distributed environment such as a
data warehouse.

2. When should we refresh a view in response to a change to an underlying
table?

25.10.1 Incremental View Maintenance

A straightforward approach to refreshing a view is to simply recompute the
view when an underlying table is modified. This may, in fact, be a reason-
able strategy in some cases. For example, if the underlying tables are in a
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remote database, the view can be periodically recomputed and sent to the data
warehouse where the view is materialized. This has the advantage that the
underlying tables need not be replicated at the warehouse.

Whenever possible, however, algorithms for refreshing a view should be incre-
mental, in that the cost is proportional to the extent of the change rather than
the cost of recomputing the view from scratch.

To understand the intuition behind incremental view maintenance algorithms,
observe that a given row in the materialized view can appear several times,
depending on how often it was derived. (Recall that duplicates are not elimi-
nated from the result of an SQL query unless the DISTINCT clause is used. In
this section, we discuss multiset semantics, even when relational algebra nota-
tion is used.) The main idea behind incremental maintenance algorithms is to
efficiently compute changes to the rows of the view, either new rows or changes
to the count associated with a row; if the count of a row becomes 0, the row is
deleted from the view.

We present an incremental maintenance algorithm for views defined using pro-
jection, binary join, and aggregation; we cover these operations because they
illustrate the main ideas. The approach can be extended to other operations
such as selection, union, intersection, and (multiset) difference, as well as ex-
pressions containing several operators. The key idea is still to maintain the
number of derivations for each view row, but the details of how to efficiently
compute the changes in view rows and associated counts differ.

Projection Views

Consider a view V defined in terms of a projection on a table R; that is,
V = π(R). Every row v in V has an associated count, corresponding to the
number of times it can be derived, which is the number of rows in R that yield v
when the projection is applied. Suppose we modify R by inserting a collection
of rows Ri and deleting a collection of existing rows Rd.

1 We compute π(Ri)
and add it to V . If the multiset π(Ri) contains a row r with count c and r
does not appear in V , we add it to V with count c. If r is in V , we add c to
its count. We also compute π(Rd) and subtract it from V . Observe that if r
appears in π(Rd) with count c, it must also appear in V with a higher count;2

we subtract c from r’s count in V .

1These collections can be multisets of rows. We can treat a row modification as an insert followed

by a delete, for simplicity.
2As a simple exercise, consider why this must be so.
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As an example, consider the view πsales(Sales) and the instance of Sales shown
in Figure 25.2. Each row in the view has a single column; the (row with) value
25 appears with count 1, and the value 10 appears with count 3. If we delete
one of the rows in Sales with sales 10, the count of the (row with) value 10 in
the view becomes 2. If we insert a new row into Sales with sales 99, the view
now has a row with value 99.

An important point is that we have to maintain the counts associated with rows
even if the view definition uses the DISTINCT clause, meaning that duplicates
are eliminated from the view. Consider the same view with set semantics—
the DISTINCT clause is used in the SQL view definition—and suppose that we
delete one of the rows in Sales with sales 10. Does the view now contain a
row with value 10? To determine that the answer is yes, we need to maintain
the row counts, even though each row (with a nonzero count) is displayed only
once in the materialized view.

Join Views

Next, consider a view V defined as a join of two tables, R   S. Suppose we
modify R by inserting a collection of rows Ri and deleting a collection of rows
Rd. We compute Ri   S and add the result to V . We also compute Rd   S
and subtract the result from V . Observe that if r appears in Rd   S with
count c, it must also appear in V with a higher count.3

Views with Aggregation

Consider a view V defined over R using GROUP BY on column G and an ag-
gregate operation on column A. Each row v in the view summarizes a group
of tuples in R and is of the form  g, summary , where g is the value of the
grouping column G and the summary information depends on the aggregate
operation. To maintain such a view incrementally, in general, we have to keep
a more detailed summary than just the information included in the view. If
the aggregate operation is COUNT, we need to maintain only a count c for each
row v in the view. If a row r is inserted into R, and there is no row v in V
with v.G = r.G, we add a new row  r.G, 1 . If there is a row v with v.G = r.G,
we increment its count. If a row r is deleted from R, we decrement the count
for the row v with v.G = r.G; v can be deleted if its count becomes 0, because
then the last row in this group has been deleted from R.

If the aggregate operation is SUM, we have to maintain a sum s and also a count
c. If a row r is inserted into R and there is no row v in V with v.G = r.G,

3As another simple exercise, consider why this must be so.
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we add a new row  r.G, a, 1 . If there is a row  r.G, s, c , we replace it by
 r.G, s + a, c + 1 . If a row r is deleted from R, we replace the row  r.G, s, c 
with  r.G, s − a, c − 1 ; v can be deleted if its count becomes 0. Observe that
without the count, we do not know when to delete v, since the sum for a group
could be 0 even if the group contains some rows.

If the aggregate operation is AVG, we have to maintain a sum s, a count c,
and the average for each row in the view. The sum and count are maintained
incrementally as already described, and the average is computed as s/c.

The aggregate operations MIN and MAX are potentially expensive to maintain.
Consider MIN. For each group in R, we maintain  g,m, c , where m is the
minimum value for column A in the group g, and c is the count of the number
of rows r in R with r.G = g and r.A = m. If a row r is inserted into R and
r.G = g, if r.A is greater than the minimum m for group g, we can ignore r. If
r.A is equal to the minimum m for r’s group, we replace the summary row for
the group with  g,m, c+1 . If r.A is less than the minimum m for r’s group, we
replace the summary for the group with  g, r.A, 1 . If a row r is deleted from
R and r.A is equal to the minimum m for r’s group, then we must decrement
the count for the group. If the count is greater than 0, we simply replace the
summary for the group with  g,m, c−1 . However, if the count becomes 0, this
means the last row with the recorded minimum A value has been deleted from
R and we have to retrieve the smallest A value among the remaining rows in
R with group value r.G—and this might require retrieval of all rows in R with
group value r.G.

25.10.2 Maintaining Warehouse Views

The views materialized in a data warehouse can be based on source tables
in remote databases. The asynchronous replication techniques discussed in
Section 22.11.2 allow us to communicate changes at the source to the warehouse,
but refreshing views incrementally in a distributed setting presents some unique
challenges. To illustrate this, we consider a simple view that identifies suppliers
of Toys.

CREATE VIEW ToySuppliers (sid)
AS SELECT S.sid

FROM Suppliers S, Products P
WHERE S.pid = P.pid AND P.category = ‘Toys’

Suppliers is a new table introduced for this example; let us assume that it
has just two fields, sid and pid, indicating that supplier sid supplies part pid.
The location of the tables Products and Suppliers and the view ToySuppliers
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influences how we maintain the view. Suppose that all three are maintained
at a single site. We can maintain the view incrementally using the techniques
discussed in Section 25.10.1. If a replica of the view is created at another site,
we can monitor changes to the materialized view and apply them at the second
site using the asynchronous replication techniques from Section 22.11.2.

But, what if Products and Suppliers are at one site and the view is materialized
(only) at a second site? To motivate this scenario, we observe that, if the first
site is used for operational data and the second site supports complex analysis,
the two sites may well be administered by different groups. The option of
materializing ToySuppliers (a view of interest to the second group) at the first
site (run by a different group) is not attractive and may not even be possible; the
administrators of the first site may not want to deal with someone else’s views,
and the administrators of the second site may not want to coordinate with
someone else whenever they modify view definitions. As another motivation
for materializing views at a different location from source tables, observe that
Products and Suppliers may be at two different sites. Even if we materialize
ToySuppliers at one of these sites, one of the two source tables is remote.

Now that we have presented motivation for maintaining ToySuppliers at a loca-
tion (say, Warehouse) different from the one (say, Source) that contains Prod-
ucts and Suppliers, let us consider the difficulties posed by data distribution.
Suppose that a new Products record (with category = ‘Toys’) is inserted. We
could try to maintain the view incrementally as follows:

1. The Warehouse site sends this update to the Source site.

2. To refresh the view, we need to check the Suppliers table to find suppli-
ers of the item, and so the Warehouse site asks the Source site for this
information.

3. The Source site returns the set of suppliers for the sold item, and the
Warehouse site incrementally refreshes the view.

This works when there are no additional changes at the Source site in between
steps (1) and (3). If there are changes, however, the materialized view can
become incorrect—reflecting a state that can never arise except for anomalies
introduced by the preceding, naive, incremental refresh algorithm. To see this,
suppose that Products is empty and Suppliers contains just the row  s1, 5 
initially, and consider the following sequence of events:

1. Product pid = 5 is inserted with category = ‘Toys’; Source notifies Ware-
house.

2. Warehouse asks Source for suppliers of product pid = 5. (The only such
supplier at this instant is s1.)
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3. The row  s2, 5 is inserted into Suppliers; Source notifies Warehouse.

4. To decide whether s2 should be added to the view, we need to know the
category of product pid = 5, and Warehouse asks Source. (Warehouse has
not received an answer to its previous question.)

5. Source now processes the first query from Warehouse, finds two suppliers
for part 5, and returns this information to Warehouse.

6. Warehouse gets the answer to its first question: suppliers s1 and s2, and
adds these to the view, each with count 1.

7. Source processes the second query from Warehouse and responds with the
information that part 5 is a toy.

8. Warehouse gets the answer to its second question and accordingly incre-
ments the count for supplier s2 in the view.

9. Product pid = 5 is now deleted; Source notifies Warehouse.

10. Since the deleted part is a toy, Warehouse decrements the counts of match-
ing view tuples; s1 has count 0 and is removed, but s2 has count 1 and is
retained.

Clearly, s2 should not remain in the view after part 5 is deleted. This example
illustrates the added subtleties of incremental view maintenance in a distributed
environment, and this is a topic of ongoing research.

25.10.3 When Should We Synchronize Views?

A view maintenance policy is a decision about when a view is refreshed,
independent of whether the refresh is incremental or not. A view can be re-
freshed within the same transaction that updates the underlying tables. This
is called immediate view maintenance. The update transaction is slowed
by the refresh step, and the impact of refresh increases with the number of
materialized views that depend on the updated table.

Alternatively, we can defer refreshing the view. Updates are captured in a log
and applied subsequently to the materialized views. There are several deferred
view maintenance policies:

1. Lazy: The materialized view V is refreshed at the time a query is evaluated
using V , if V is not already consistent with its underlying base tables. This
approach slows down queries rather than updates, in contrast to immediate
view maintenance.
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Views for Decision Support: DBMS vendors are enhancing their main
relational products to support decision support queries. IBM DB2 sup-
ports materialized views with transaction-consistent or user-invoked main-
tenance. Microsoft SQL Server supports partition views, which are
unions of (many) horizontal partitions of a table. These are aimed at
a warehousing environment where each partition could be, for example, a
monthly update. Queries on partition views are optimized so that only rel-
evant partitions are accessed. Oracle 9i supports materialized views with
transaction-consistent, user-invoked, or time-scheduled maintenance.

2. Periodic: The materialized view is refreshed periodically, say, once a day.
The discussion of the Capture and Apply steps in asynchronous replication
(see Section 22.11.2) should be reviewed at this point, since it is very rel-
evant to periodic view maintenance. In fact, many vendors are extending
their asynchronous replication features to support materialized views. Ma-
terialized views that are refreshed periodically are also called snapshots.

3. Forced: The materialized view is refreshed after a certain number of
changes have been made to the underlying tables.

In periodic and forced view maintenance, queries may see an instance of the
materialized view that is not consistent with the current state of the underlying
tables. That is, the queries would see a different set of rows if the view definition
was recomputed. This is the price paid for fast updates and queries, and the
trade-off is similar to the trade-off made in using asynchronous replication.

25.11 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What are decision support applications? Discuss the relationship of complex
SQL queries, OLAP, data mining, and data warehousing. (Section 25.1)

Describe the multidimensional data model. Explain the distinction between
measures and dimensions and between fact tables and dimension tables.
What is a star schema? (Sections 25.2 and 25.2.1)

Common OLAP operations have received special names: roll-up, drill-
down, pivoting, slicing, and dicing. Describe each of these operations and
illustrate them using examples. (Section 25.3)

Describe the SQL:1999 ROLLUP and CUBE features and their relationship to
the OLAP operations. (Section 25.3.1)
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Describe the SQL:1999 WINDOW feature, in particular, framing and ordering
of windows. How does it support queries over ordered data? Give examples
of queries that are hard to express without this feature. (Section 25.4)

New query paradigms include top N queries and online aggregation. Ex-
plain the motivation behind these concepts and illustrate them through
examples. (Section 25.5)

Index structures that are especially suitable for OLAP systems include
bitmap indexes and join indexes. Describe these structures. How are
bitmap indexes related to B+ trees? (Section 25.6)

Information about daily operations of an organization is stored in opera-
tional databases. Why is a data warehouse used to store data from oper-
ational databases? What issues arise in data warehousing? Discuss data
extraction, cleaning, transformation, and loading. Discuss the challenges in
efficiently refreshing and purging data. (Section 25.7)

Why are views important in decision support environments? How are views
related to data warehousing and OLAP? Explain the query modification
technique for answering queries over views and discuss why this is not
adequate in decision support environments. (Section 25.8)

What are the main issues to consider in maintaining materialized views?
Discuss how to select views to materialize and how to use materialized
views to answer a query. (Section 25.9)

How can views be maintained incrementally? Discuss all the relational
algebra operators and aggregation. (Section 25.10.1)

Use an example to illustrate the added complications for incremental view
maintenance introduced by data distribution. (Section 25.10.2)

Discuss the choice of an appropriate maintenance policy for when to refresh
a view. (Section 25.10.3)

EXERCISES

Exercise 25.1 Briefly answer the following questions:

1. How do warehousing, OLAP, and data mining complement each other?

2. What is the relationship between data warehousing and data replication? Which form of
replication (synchronous or asynchronous) is better suited for data warehousing? Why?

3. What is the role of the metadata repository in a data warehouse? How does it differ
from a catalog in a relational DBMS?

4. What considerations are involved in designing a data warehouse?
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5. Once a warehouse is designed and loaded, how is it kept current with respect to changes
to the source databases?

6. One of the advantages of a warehouse is that we can use it to track how the contents of
a relation change over time; in contrast, we have only the current snapshot of a relation
in a regular DBMS. Discuss how you would maintain the history of a relation R, taking
into account that ‘old’ information must somehow be purged to make space for new
information.

7. Describe dimensions and measures in the multidimensional data model.

8. What is a fact table, and why is it so important from a performance standpoint?

9. What is the fundamental difference between MOLAP and ROLAP systems?

10. What is a star schema? Is it typically in BCNF? Why or why not?

11. How is data mining different from OLAP?

Exercise 25.2 Consider the instance of the Sales relation shown in Figure 25.2.

1. Show the result of pivoting the relation on pid and timeid.

2. Write a collection of SQL queries to obtain the same result as in the previous part.

3. Show the result of pivoting the relation on pid and locid.

Exercise 25.3 Consider the cross-tabulation of the Sales relation shown in Figure 25.5.

1. Show the result of roll-up on locid (i.e., state).

2. Write a collection of SQL queries to obtain the same result as in the previous part.

3. Show the result of roll-up on locid followed by drill-down on pid.

4. Write a collection of SQL queries to obtain the same result as in the previous part,
starting with the cross-tabulation shown in Figure 25.5.

Exercise 25.4 Briefly answer the following questions:

1. What is the differences between the WINDOW clause and the GROUP BY clause?

2. Give an example query that cannot be expressed in SQL without the WINDOW clause but
that can be expressed with the WINDOW clause.

3. What is the frame of a window in SQL:1999?

4. Consider the following simple GROUP BY query.

SELECT T.year, SUM (S.sales)
FROM Sales S, Times T
WHERE S.timeid=T.timeid
GROUP BY T.year

Can you write this query in SQL:1999 without using a GROUP BY clause? (Hint: Use the
SQL:1999 WINDOW clause.)

Exercise 25.5 Consider the Locations, Products, and Sales relations shown in Figure 25.2.
Write the following queries in SQL:1999 using the WINDOW clause whenever you need it.

1. Find the percentage change in the total monthly sales for each location.

2. Find the percentage change in the total quarterly sales for each product.
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3. Find the average daily sales over the preceding 30 days for each product.

4. For each week, find the maximum moving average of sales over the preceding four weeks.

5. Find the top three locations ranked by total sales.

6. Find the top three locations ranked by cumulative sales, for every month over the past
year.

7. Rank all locations by total sales over the past year, and for each location print the
difference in total sales relative to the location behind it.

Exercise 25.6 Consider the Customers relation and the bitmap indexes shown in Figure
25.9.

1. For the same data, if the underlying set of rating values is assumed to range from 1 to
10, show how the bitmap indexes would change.

2. How would you use the bitmap indexes to answer the following queries? If the bitmap
indexes are not useful, explain why.

(a) How many customers with a rating less than 3 are male?

(b) What percentage of customers are male?

(c) How many customers are there?

(d) How many customers are named Woo?

(e) Find the rating value with the greatest number of customers and also find the num-
ber of customers with that rating value; if several rating values have the maximum
number of customers, list the requested information for all of them. (Assume that
very few rating values have the same number of customers.)

Exercise 25.7 In addition to the Customers table of Figure 25.9 with bitmap indexes on
gender and rating, assume that you have a table called Prospects, with fields rating and
prospectid. This table is used to identify potential customers.

1. Suppose that you also have a bitmap index on the rating field of Prospects. Discuss
whether or not the bitmap indexes would help in computing the join of Customers and
Prospects on rating.

2. Suppose you have no bitmap index on the rating field of Prospects. Discuss whether or
not the bitmap indexes on Customers would help in computing the join of Customers
and Prospects on rating.

3. Describe the use of a join index to support the join of these two relations with the join
condition custid=prospectid.

Exercise 25.8 Consider the instances of the Locations, Products, and Sales relations shown
in Figure 25.2.

1. Consider the basic join indexes described in Section 25.6.2. Suppose you want to optimize
for the following two kinds of queries: Query 1 finds sales in a given city, and Query 2
finds sales in a given state. Show the indexes you would create on the example instances
shown in Figure 25.2.

2. Consider the bitmapped join indexes described in Section 25.6.2. Suppose you want to
optimize for the following two kinds of queries: Query 1 finds sales in a given city, and
Query 2 finds sales in a given state. Show the indexes that you would create on the
example instances shown in Figure 25.2.
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3. Consider the basic join indexes described in Section 25.6.2. Suppose you want to optimize
for these two kinds of queries: Query 1 finds sales in a given city for a given product
name, and Query 2 finds sales in a given state for a given product category. Show the
indexes that you would create on the example instances shown in Figure 25.2.

4. Consider the bitmapped join indexes described in Section 25.6.2. Suppose you want to
optimize for these two kinds of queries: Query 1 finds sales in a given city for a given
product name, and Query 2 finds sales in a given state for a given product category.
Show the indexes that you would create on the example instances shown in Figure 25.2.

Exercise 25.9 Consider the view NumReservations defined as:

CREATE VIEW NumReservations (sid, sname, numres)
AS SELECT S.sid, S.sname, COUNT (*)

FROM Sailors S, Reserves R
WHERE S.sid = R.sid
GROUP BY S.sid, S.sname

1. How is the following query, which is intended to find the highest number of reservations
made by some one sailor, rewritten using query modification?

SELECT MAX (N.numres)
FROM NumReservations N

2. Consider the alternatives of computing on demand and view materialization for the
preceding query. Discuss the pros and cons of materialization.

3. Discuss the pros and cons of materialization for the following query:

SELECT N.sname, MAX (N.numres)
FROM NumReservations N
GROUP BY N.sname

Exercise 25.10 Consider the Locations, Products, and Sales relations in Figure 25.2.

1. To decide whether to materialize a view, what factors do we need to consider?

2. Assume that we have defined the following materialized view:

SELECT L.state, S.sales
FROM Locations L, Sales S
WHERE S.locid=L.locid

(a) Describe what auxiliary information the algorithm for incremental view mainte-
nance from Section 25.10.1 maintains and how this data helps in maintaining the
view incrementally.

(b) Discuss the pros and cons of materializing this view.

3. Consider the materialized view in the previous question. Assume that the relations
Locations and Sales are stored at one site, but the view is materialized on a second site.
Why would we ever want to maintain the view at a second site? Give a concrete example
where the view could become inconsistent.

4. Assume that we have defined the following materialized view:

SELECT T.year, L.state, SUM (S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
GROUP BY T.year, L.state
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(a) Describe what auxiliary information the algorithm for incremental view mainte-
nance from Section 25.10.1 maintains, and how this data helps in maintaining the
view incrementally.

(b) Discuss the pros and cons of materializing this view.

BIBLIOGRAPHIC NOTES

A good survey of data warehousing and OLAP is presented in [161], which is the source of
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The windowing extensions are very similar to SQL extension for querying sequence data,
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ment for data streams. A recent survey of data management for data streams and algorithms
for data stream processing can be found in [49]. Examples include quantile and order-statistics
computation [340, 506], estimating frequency moments and join sizes [34, 35], estimating
correlated aggregates [310], multidimensional regression analysis [173], and computing one-
dimensional (i.e., single-attribute) histograms and Haar wavelet decompositions [319, 345].
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as well as general, high-level architectures for stream database systems [50]. Zdonik et al. de-
scribe the architecture of a database system for monitoring data streams [795]. A language
infrastructure for developing data stream applications is described by Cortes et al. [199].

Carey and Kossmann discuss how to evaluate queries for which only the first few answers are
desired [135, 136]. Donjerkovic and Ramakrishnan consider how a probabilistic approach to
query optimization can be applied to this problem [229]. [120] compares several strategies
for evaluating Top N queries. Hellerstein et al. discuss how to return approximate answers
to aggregate queries and to refine them ‘online.’ [47, 374]. This work has been extended to
online computation of joins [354], online reordering [617] and to adaptive query processing
[48].

There has been recent interest in approximate query answering, where a small synopsis data
structure is used to give fast approximate query answers with provable performance guarantees
[7, 8, 61, 159, 167, 314, 759].
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DATA MINING

☛ What is data mining?

☛ What is market basket analysis? What algorithms are efficient for
counting co-occurrences?

☛ What is the a priori property and why is it important?

☛ What is a Bayesian network?

☛ What is a classification rule? What is a regression rule?

☛ What is a decision tree? How are decision trees constructed?

☛ What is clustering? What is a sample clustering algorithm?

☛ What is a similarity search over sequences? How is it implemented?

☛ How can data mining models be constructed incrementally?

☛ What are the new mining challenges presented by data streams?

➽ Key concepts: data mining, KDD process; market basket analysis,
co-occurrence counting, association rule, generalized association rule;
decision tree, classification tree; clustering; sequence similarity search;
incremental model maintenance, data streams, block evolution

The secret of success is to know something nobody else knows.

—Aristotle Onassis

Data mining consists of finding interesting trends or patterns in large datasets
to guide decisions about future activities. There is a general expectation that

889
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data mining tools should be able to identify these patterns in the data with
minimal user input. The patterns identified by such tools can give a data
analyst useful and unexpected insight that can be more carefully investigated
subsequently, perhaps using other decision support tools. In this chapter, we
discuss several widely studied data mining tasks. Commercial tools are avail-
able for each of these tasks from major vendors, and the area is rapidly growing
in importance as these tools gain acceptance in the user community.

We start in Section 26.1 by giving a short introduction to data mining. In
Section 26.2, we discuss the important task of counting co-occurring items. In
Section 26.3, we discuss how this task arises in data mining algorithms that
discover rules from the data. In Section 26.4, we discuss patterns that represent
rules in the form of a tree. In Section 26.5, we introduce a different data mining
task, called clustering, and describe how to find clusters in large datasets. In
Section 26.6, we describe how to perform similarity search over sequences. We
discuss the challenges in mining evolving data and data streams in Section 26.7.
We conclude with a short overview of other data mining tasks in Section 26.8.

26.1 INTRODUCTION TO DATA MINING

Data mining is related to the subarea of statistics called exploratory data anal-
ysis, which has similar goals and relies on statistical measures. It is also closely
related to the subareas of artificial intelligence called knowledge discovery and
machine learning. The important distinguishing characteristic of data mining
is that the volume of data is very large; although ideas from these related areas
of study are applicable to data mining problems, scalability with respect to data
size is an important new criterion. An algorithm is scalable if the running
time grows (linearly) in proportion to the dataset size, holding the available
system resources (e.g., amount of main memory and CPU processing speed)
constant. Old algorithms must be adapted or new algorithms developed to
ensure scalability when discovering patterns from data.

Finding useful trends in datasets is a rather loose definition of data mining: In a
certain sense, all database queries can be thought of as doing just this. Indeed,
we have a continuum of analysis and exploration tools with SQL queries at one
end, OLAP queries in the middle, and data mining techniques at the other end.
SQL queries are constructed using relational algebra (with some extensions),
OLAP provides higher-level querying idioms based on the multidimensional
data model, and data mining provides the most abstract analysis operations.
We can think of different data mining tasks as complex ‘queries’ specified at
a high level, with a few parameters that are user-definable, and for which
specialized algorithms are implemented.
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SQL/MM: Data Mining SQL/MM: The SQL/MM: Data Mining ex-
tension of the SQL:1999 standard supports four kinds of data mining
models: frequent itemsets and association rules, clusters of records, re-
gression trees, and classification trees. Several new data types are intro-
duced. These data types play several roles. Some represent a particular
class of model (e.g., DM RegressionModel, DM ClusteringModel); some
specify the input parameters for a mining algorithm (e.g., DM RegTask,
DM ClusTask); some describe the input data (e.g., DM LogicalDataSpec,
DM MiningData); and some represent the result of executing a mining algo-
rithm (e.g., DM RegResult, DM ClusResult). Taken together, these classes
and their methods provide a standard interface to data mining algorithms
that can be invoked from any SQL:1999 database system. The data min-
ing models can be exported in a standard XML format called Predictive
Model Markup Language (PMML); models represented using PMML
can be imported as well.

In the real world, data mining is much more than simply applying one of these
algorithms. Data is often noisy or incomplete, and unless this is understood and
corrected for, it is likely that many interesting patterns will be missed and the
reliability of detected patterns will be low. Further, the analyst must decide
what kinds of mining algorithms are called for, apply them to a well-chosen
subset of data samples and variables (i.e., tuples and attributes), digest the
results, apply other decision support and mining tools, and iterate the process.

26.1.1 The Knowledge Discovery Process

The knowledge discovery and data mining (KDD) process can roughly
be separated into four steps.

1. Data Selection: The target subset of data and the attributes of interest
are identified by examining the entire raw dataset.

2. Data Cleaning: Noise and outliers are removed, field values are trans-
formed to common units and some new fields are created by combining
existing fields to facilitate analysis. The data is typically put into a rela-
tional format, and several tables might be combined in a denormalization
step.

3. Data Mining: We apply data mining algorithms to extract interesting
patterns.

4. Evaluation: The patterns are presented to end-users in an understandable
form, for example, through visualization.
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The results of any step in the KDD process might lead us back to an earlier step
to redo the process with the new knowledge gained. In this chapter, however,
we limit ourselves to looking at algorithms for some specific data mining tasks.
We do not discuss other aspects of the KDD process.

26.2 COUNTING CO-OCCURRENCES

We begin by considering the problem of counting co-occurring items, which is
motivated by problems such as market basket analysis. A market basket is a
collection of items purchased by a customer in a single customer transaction.
A customer transaction consists of a single visit to a store, a single order through
a mail-order catalog, or an order at a store on the Web. (In this chapter, we
often abbreviate customer transaction to transaction when there is no confusion
with the usual meaning of transaction in a DBMS context, which is an execution
of a user program.) A common goal for retailers is to identify items that are
purchased together. This information can be used to improve the layout of
goods in a store or the layout of catalog pages.

transid custid date item qty

111 201 5/1/99 pen 2
111 201 5/1/99 ink 1
111 201 5/1/99 milk 3
111 201 5/1/99 juice 6

112 105 6/3/99 pen 1
112 105 6/3/99 ink 1
112 105 6/3/99 milk 1

113 106 5/10/99 pen 1
113 106 5/10/99 milk 1

114 201 6/1/99 pen 2
114 201 6/1/99 ink 2
114 201 6/1/99 juice 4
114 201 6/1/99 water 1

Figure 26.1 The Purchases Relation

26.2.1 Frequent Itemsets

We use the Purchases relation shown in Figure 26.1 to illustrate frequent item-
sets. The records are shown sorted into groups by transaction. All tuples in
a group have the same transid, and together they describe a customer trans-
action, which involves purchases of one or more items. A transaction occurs
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on a given date, and the name of each purchased item is recorded, along with
the purchased quantity. Observe that there is redundancy in Purchases: It can
be decomposed by storing transid–custid–date triples in a separate table and
dropping custid and date from Purchases; this may be how the data is actually
stored. However, it is convenient to consider the Purchases relation, as shown
in Figure 26.1, to compute frequent itemsets. Creating such ‘denormalized’
tables for ease of data mining is commonly done in the data cleaning step of
the KDD process.

By examining the set of transaction groups in Purchases, we can make obser-
vations of the form: “In 75% of the transactions a pen and ink are purchased
together.” This statement describes the transactions in the database. Ex-
trapolation to future transactions should be done with caution, as discussed in
Section 26.3.6. Let us begin by introducing the terminology of market basket
analysis. An itemset is a set of items. The support of an itemset is the frac-
tion of transactions in the database that contain all the items in the itemset.
In our example, the itemset {pen, ink} has 75% support in Purchases. We can
therefore conclude that pens and ink are frequently purchased together. If we
consider the itemset {milk, juice}, its support is only 25%; milk and juice are
not purchased together frequently.

Usually the number of sets of items frequently purchased together is relatively
small, especially as the size of the itemsets increases. We are interested in
all itemsets whose support is higher than a user-specified minimum support
called minsup; we call such itemsets frequent itemsets. For example, if the
minimum support is set to 70%, then the frequent itemsets in our example
are {pen}, {ink}, {milk}, {pen, ink}, and {pen, milk}. Note that we are
also interested in itemsets that contain only a single item since they identify
frequently purchased items.

We show an algorithm for identifying frequent itemsets in Figure 26.2. This
algorithm relies on a simple yet fundamental property of frequent itemsets:

The a Priori Property: Every subset of a frequent itemset is also a
frequent itemset.

The algorithm proceeds iteratively, first identifying frequent itemsets with just
one item. In each subsequent iteration, frequent itemsets identified in the
previous iteration are extended with another item to generate larger candidate
itemsets. By considering only itemsets obtained by enlarging frequent itemsets,
we greatly reduce the number of candidate frequent itemsets; this optimization
is crucial for efficient execution. The a priori property guarantees that this
optimization is correct; that is, we do not miss any frequent itemsets. A single
scan of all transactions (the Purchases relation in our example) suffices to
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foreach item, // Level 1

check if it is a frequent itemset // appears in > minsup transactions

k = 1

repeat // Iterative, level-wise identification of frequent itemsets

foreach new frequent itemset Ik with k items // Level k + 1

generate all itemsets Ik+1 with k + 1 items, Ik ⊂ Ik+1
Scan all transactions once and check if

the generated k + 1-itemsets are frequent

k = k + 1

until no new frequent itemsets are identified

Figure 26.2 An Algorithm for Finding Frequent Itemsets

determine which candidate itemsets generated in an iteration are frequent.
The algorithm terminates when no new frequent itemsets are identified in an
iteration.

We illustrate the algorithm on the Purchases relation in Figure 26.1, with
minsup set to 70%. In the first iteration (Level 1), we scan the Purchases
relation and determine that each of these one-item sets is a frequent itemset:
{pen} (appears in all four transactions), {ink} (appears in three out of four
transactions), and {milk} (appears in three out of four transactions).

In the second iteration (Level 2), we extend each frequent itemset with an
additional item and generate the following candidate itemsets: {pen, ink}, {pen,
milk}, {pen, juice}, {ink, milk}, {ink, juice}, and {milk, juice}. By scanning the
Purchases relation again, we determine that the following are frequent itemsets:
{pen, ink} (appears in three out of four transactions), and {pen, milk} (appears
in three out of four transactions).

In the third iteration (Level 3), we extend these itemsets with an additional
item and generate the following candidate itemsets: {pen, ink, milk}, {pen,
ink, juice}, and {pen, milk, juice}. (Observe that {ink, milk, juice} is not
generated.) A third scan of the Purchases relation allows us to determine that
none of these is a frequent itemset.

The simple algorithm presented here for finding frequent itemsets illustrates the
principal feature of more sophisticated algorithms, namely, the iterative gener-
ation and testing of candidate itemsets. We consider one important refinement
of this simple algorithm. Generating candidate itemsets by adding an item
to a known frequent itemset is an attempt to limit the number of candidate
itemsets using the a priori property. The a priori property implies that a can-
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didate itemset can be frequent only if all its subsets are frequent. Thus, we can
reduce the number of candidate itemsets further—a priori, or before scanning
the Purchases database—by checking whether all subsets of a newly generated
candidate itemset are frequent. Only if all subsets of a candidate itemset are
frequent do we compute its support in the subsequent database scan. Com-
pared to the simple algorithm, this refined algorithm generates fewer candidate
itemsets at each level and thus reduces the amount of computation performed
during the database scan of Purchases.

Consider the refined algorithm on the Purchases table in Figure 26.1 with
minsup= 70%. In the first iteration (Level 1), we determine the frequent item-
sets of size one: {pen}, {ink}, and {milk}. In the second iteration (Level 2),
only the following candidate itemsets remain when scanning the Purchases ta-
ble: {pen, ink}, {pen, milk}, and {ink, milk}. Since {juice} is not frequent, the
itemsets {pen, juice}, {ink, juice}, and {milk, juice} cannot be frequent as well
and we can eliminate those itemsets a priori, that is, without considering them
during the subsequent scan of the Purchases relation. In the third iteration
(Level 3), no further candidate itemsets are generated. The itemset {pen, ink,
milk} cannot be frequent since its subset {ink, milk} is not frequent. Thus, the
improved version of the algorithm does not need a third scan of Purchases.

26.2.2 Iceberg Queries

We introduce iceberg queries through an example. Consider again the Pur-
chases relation shown in Figure 26.1. Assume that we want to find pairs of
customers and items such that the customer has purchased the item more than
five times. We can express this query in SQL as follows:

SELECT P.custid, P.item, SUM (P.qty)
FROM Purchases P
GROUP BY P.custid, P.item
HAVING SUM (P.qty) > 5

Think about how this query would be evaluated by a relational DBMS. Con-
ceptually, for each (custid, item) pair, we need to check whether the sum of the
qty field is greater than 5. One approach is to make a scan over the Purchases
relation and maintain running sums for each (custid, item) pair. This is a fea-
sible execution strategy as long as the number of pairs is small enough to fit
into main memory. If the number of pairs is larger than main memory, more
expensive query evaluation plans, which involve either sorting or hashing, have
to be used.

The query has an important property not exploited by the preceding execution
strategy: Even though the Purchases relation is potentially very large and the
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number of (custid, item) groups can be huge, the output of the query is likely to
be relatively small because of the condition in the HAVING clause. Only groups
where the customer has purchased the item more than five times appear in the
output. For example, there are nine groups in the query over the Purchases
relation shown in Figure 26.1, although the output contains only three records.
The number of groups is very large, but the answer to the query—the tip of
the iceberg—is usually very small. Therefore, we call such a query an iceberg
query. In general, given a relational schema R with attributes A1, A2, . . . ,
Ak, and B and an aggregation function aggr, an iceberg query has the following
structure:

SELECT R.A1, R.A2, ..., R.Ak, aggr(R.B)
FROM Relation R
GROUP BY R.A1, ..., R.Ak
HAVING aggr(R.B) >= constant

Traditional query plans for this query that use sorting or hashing first compute
the value of the aggregation function for all groups and then eliminate groups
that do not satisfy the condition in the HAVING clause.

Comparing the query with the problem of finding frequent itemsets discussed in
the previous section, there is a striking similarity. Consider again the Purchases
relation shown in Figure 26.1 and the iceberg query from the beginning of this
section. We are interested in (custid, item) pairs that have SUM (P.qty) > 5.
Using a variation of the a priori property, we can argue that we only have to
consider values of the custid field where the customer has purchased at least
five items. We can generate such items through the following query:

SELECT P.custid
FROM Purchases P
GROUP BY P.custid
HAVING SUM (P.qty) > 5

Similarly, we can restrict the candidate values for the item field through the
following query:

SELECT P.item
FROM Purchases P
GROUP BY P.item
HAVING SUM (P.qty) > 5

If we restrict the computation of the original iceberg query to (custid, item)
groups where the field values are in the output of the previous two queries,
we eliminate a large number of (custid, item) pairs a priori. So, a possible
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evaluation strategy is to first compute candidate values for the custid and item
fields, and use combinations of only these values in the evaluation of the original
iceberg query. We first generate candidate field values for individual fields and
use only those values that survive the a priori pruning step as expressed in
the two previous queries. Thus, the iceberg query is amenable to the same
bottom-up evaluation strategy used to find frequent itemsets. In particular, we
can use the a priori property as follows: We keep a counter for a group only if
each individual component of the group satisfies the condition expressed in the
HAVING clause. The performance improvements of this alternative evaluation
strategy over traditional query plans can be very significant in practice.

Even though the bottom-up query processing strategy eliminates many groups
a priori, the number of (custid, item) pairs can still be very large in practice;
even larger than main memory. Efficient strategies that use sampling and more
sophisticated hashing techniques have been developed; the bibliographic notes
at the end of the chapter provide pointers to the relevant literature.

26.3 MINING FOR RULES

Many algorithms have been proposed for discovering various forms of rules that
succinctly describe the data. We now look at some widely discussed forms of
rules and algorithms for discovering them.

26.3.1 Association Rules

We use the Purchases relation shown in Figure 26.1 to illustrate association
rules. By examining the set of transactions in Purchases, we can identify rules
of the form:

{pen} ⇒ {ink}

This rule should be read as follows: “If a pen is purchased in a transaction, it is
likely that ink is also be purchased in that transaction.” It is a statement that
describes the transactions in the database; extrapolation to future transactions
should be done with caution, as discussed in Section 26.3.6. More generally,
an association rule has the form LHS ⇒ RHS, where both LHS and RHS
are sets of items. The interpretation of such a rule is that if every item in
LHS is purchased in a transaction, then it is likely that the items in RHS are
purchased as well.

There are two important measures for an association rule:

Support: The support for a set of items is the percentage of transactions
that contain all these items. The support for a rule LHS ⇒ RHS is the
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support for the set of items LHS ∪ RHS. For example, consider the rule
{pen} ⇒ {ink}. The support of this rule is the support of the itemset {pen,
ink}, which is 75%.

Confidence: Consider transactions that contain all items in LHS. The
confidence for a rule LHS ⇒ RHS is the percentage of such transactions
that also contain all items in RHS. More precisely, let sup(LHS) be the
percentage of transactions that contain LHS and let sup(LHS ∪ RHS) be
the percentage of transactions that contain both LHS and RHS. Then the
confidence of the rule LHS ⇒ RHS is sup(LHS ∪RHS) / sup(LHS). The
confidence of a rule is an indication of the strength of the rule. As an
example, consider again the rule {pen} ⇒ {ink}. The confidence of this
rule is 75%; 75% of the transactions that contain the itemset {pen} also
contain the itemset {ink}.

26.3.2 An Algorithm for Finding Association Rules

A user can ask for all association rules that have a specified minimum support
(minsup) and minimum confidence (minconf), and various algorithms have
been developed for finding such rules efficiently. These algorithms proceed
in two steps. In the first step, all frequent itemsets with the user-specified
minimum support are computed. In the second step, rules are generated using
the frequent itemsets as input. We discussed an algorithm for finding frequent
itemsets in Section 26.2; we concentrate here on the rule generation part.

Once frequent itemsets are identified, the generation of all possible candidate
rules with the user-specified minimum support is straightforward. Consider a
frequent itemset X with support sX identified in the first step of the algorithm.
To generate a rule from X, we divide X into two itemsets, LHS and RHS. The
confidence of the rule LHS ⇒ RHS is sX/sLHS , the ratio of the support of X
and the support of LHS. From the a priori property, we know that the support
of LHS is larger than minsup, and thus we have computed the support of LHS
during the first step of the algorithm. We can compute the confidence values
for the candidate rule by calculating the ratio support(X)/support(LHS) and
then check how the ratio compares to minconf.

In general, the expensive step of the algorithm is the computation of the fre-
quent itemsets, and many different algorithms have been developed to perform
this step efficiently. Rule generation—given that all frequent itemsets have
been identified—is straightforward.

In the rest of this section, we discuss some generalizations of the problem.
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26.3.3 Association Rules and ISA Hierarchies

In many cases, an ISA hierarchy or category hierarchy is imposed on the
set of items. In the presence of a hierarchy, a transaction contains, for each
of its items, implicitly all the item’s ancestors in the hierarchy. For example,
consider the category hierarchy shown in Figure 26.3. Given this hierarchy,
the Purchases relation is conceptually enlarged by the eight records shown in
Figure 26.4. That is, the Purchases relation has all tuples shown in Figure 26.1
in addition to the tuples shown in Figure 26.4.

The hierarchy allows us to detect relationships between items at different levels
of the hierarchy. As an example, the support of the itemset {ink, juice} is 50%,
but if we replace juice with the more general category beverage, the support of
the resulting itemset {ink, beverage} increases to 75%. In general, the support
of an itemset can increase only if an item is replaced by one of its ancestors in
the ISA hierarchy.

Assuming that we actually physically add the eight records shown in Figure
26.4 to the Purchases relation, we can use any algorithm for computing frequent
itemsets on the augmented database. Assuming that the hierarchy fits into
main memory, we can also perform the addition on-the-fly while we scan the
database, as an optimization.

Stationery Beverage

Pen Ink Juice Milk

Figure 26.3 An ISA Category Taxonomy

transid custid date item qty

111 201 5/1/99 stationery 3
111 201 5/1/99 beverage 9

112 105 6/3/99 stationery 2
112 105 6/3/99 beverage 1

113 106 5/10/99 stationery 1
113 106 5/10/99 beverage 1

114 201 6/1/99 stationery 4
114 201 6/1/99 beverage 5

Figure 26.4 Conceptual Additions to the Purchases Relation with ISA Hierarchy
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26.3.4 Generalized Association Rules

Although association rules have been most widely studied in the context of
market basket analysis, or analysis of customer transactions, the concept is
more general. Consider the Purchases relation as shown in Figure 26.5, grouped
by custid. By examining the set of customer groups, we can identify association
rules such as {pen} ⇒ {milk}. This rule should now be read as follows: “If a
pen is purchased by a customer, it is likely that milk is also be purchased by
that customer.” In the Purchases relation shown in Figure 26.5, this rule has
both support and confidence of 100%.

transid custid date item qty

112 105 6/3/99 pen 1
112 105 6/3/99 ink 1
112 105 6/3/99 milk 1

113 106 5/10/99 pen 1
113 106 5/10/99 milk 1

114 201 5/15/99 pen 2
114 201 5/15/99 ink 2
114 201 5/15/99 juice 4
114 201 6/1/99 water 1
111 201 5/1/99 pen 2
111 201 5/1/99 ink 1
111 201 5/1/99 milk 3
111 201 5/1/99 juice 6

Figure 26.5 The Purchases Relation Sorted on Customer ID

Similarly, we can group tuples by date and identify association rules that de-
scribe purchase behavior on the same day. As an example consider again the
Purchases relation. In this case, the rule {pen} ⇒ {milk} is now interpreted
as follows: “On a day when a pen is purchased, it is likely that milk is also be
purchased.”

If we use the date field as grouping attribute, we can consider a more general
problem called calendric market basket analysis. In calendric market bas-
ket analysis, the user specifies a collection of calendars. A calendar is any
group of dates, such as every Sunday in the year 1999, or every first of the
month. A rule holds if it holds on every day in the calendar. Given a calendar,
we can compute association rules over the set of tuples whose date field falls
within the calendar.
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By specifying interesting calendars, we can identify rules that might not have
enough support and confidence with respect to the entire database but have
enough support and confidence on the subset of tuples that fall within the
calendar. On the other hand, even though a rule might have enough support
and confidence with respect to the complete database, it might gain its support
only from tuples that fall within a calendar. In this case, the support of the
rule over the tuples within the calendar is significantly higher than its support
with respect to the entire database.

As an example, consider the Purchases relation with the calendar every first of
the month. Within this calendar, the association rule pen ⇒ juice has support
and confidence of 100%, whereas over the entire Purchases relation, this rule
only has 50% support. On the other hand, within the calendar, the rule pen
⇒ milk has support of confidence of 50%, whereas over the entire Purchases
relation it has support and confidence of 75%.

More general specifications of the conditions that must be true within a group
for a rule to hold (for that group) have also been proposed. We might want to
say that all items in the LHS have to be purchased in a quantity of less than
two items, and all items in the RHS must be purchased in a quantity of more
than three.

Using different choices for the grouping attribute and sophisticated conditions
as in the preceding examples, we can identify rules more complex than the
basic association rules discussed earlier. These more complex rules, nonetheless,
retain the essential structure of an association rule as a condition over a group
of tuples, with support and confidence measures defined as usual.

26.3.5 Sequential Patterns

Consider the Purchases relation shown in Figure 26.1. Each group of tuples,
having the same custid value, can be thought of as a sequence of transactions
ordered by date. This allows us to identify frequently arising buying patterns
over time.

We begin by introducing the concept of a sequence of itemsets. Each transac-
tion is represented by a set of tuples, and by looking at the values in the item
column, we get a set of items purchased in that transaction. Therefore, the
sequence of transactions associated with a customer corresponds naturally to
a sequence of itemsets purchased by the customer. For example, the sequence
of purchases for customer 201 is  {pen, ink, milk, juice}, {pen, ink, juice} .
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A subsequence of a sequence of itemsets is obtained by deleting one or more
itemsets, and is also a sequence of itemsets. We say that a sequence  a1, . . . , am 
is contained in another sequence S if S has a subsequence  b1, . . . , bm such that
ai ⊆ bi, for 1 ≤ i ≤ m. Thus, the sequence  {pen}, {ink, milk}, {pen, juice} is
contained in  {pen, ink}, {shirt}, {juice, ink, milk}, {juice, pen, milk} . Note
that the order of items within each itemset does not matter. However, the
order of itemsets does matter: the sequence  {pen}, {ink, milk}, {pen, juice} 
is not contained in  {pen, ink}, {shirt}, {juice, pen, milk}, {juice, milk, ink} .

The support for a sequence S of itemsets is the percentage of customer se-
quences of which S is a subsequence. The problem of identifying sequential
patterns is to find all sequences that have a user-specified minimum support.
A sequence  a1, a2, a3, . . . , am with minimum support tells us that customers
often purchase the items in set a1 in a transaction, then in some subsequent
transaction buy the items in set a2, then the items in set a3 in a later transac-
tion, and so on.

Like association rules, sequential patterns are statements about groups of tuples
in the current database. Computationally, algorithms for finding frequently
occurring sequential patterns resemble algorithms for finding frequent itemsets.
Longer and longer sequences with the required minimum support are identified
iteratively in a manner very similar to the iterative identification of frequent
itemsets.

26.3.6 The Use of Association Rules for Prediction

Association rules are widely used for prediction, but it is important to rec-
ognize that such predictive use is not justified without additional analysis or
domain knowledge. Association rules describe existing data accurately but can
be misleading when used naively for prediction. For example, consider the rule

{pen} ⇒ {ink}

The confidence associated with this rule is the conditional probability of an ink
purchase given a pen purchase over the given database; that is, it is a descriptive
measure. We might use this rule to guide future sales promotions. For example,
we might offer a discount on pens to increase the sales of pens and, therefore,
also increase sales of ink.

However, such a promotion assumes that pen purchases are good indicators
of ink purchases in future customer transactions (in addition to transactions
in the current database). This assumption is justified if there is a causal link
between pen purchases and ink purchases; that is, if buying pens causes the
buyer to also buy ink. However, we can infer association rules with high support
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and confidence in some situations where there is no causal link between LHS
and RHS. For example, suppose that pens are always purchased together with
pencils, perhaps because of customers’ tendency to order writing instruments
together. We would then infer the rule

{pencil} ⇒ {ink}

with the same support and confidence as the rule

{pen} ⇒ {ink}

However, there is no causal link between pencils and ink. If we promote pencils,
a customer who purchases several pencils due to the promotion has no reason
to buy more ink. Therefore, a sales promotion that discounted pencils in order
to increase the sales of ink would fail.

In practice, one would expect that, by examining a large database of past
transactions (collected over a long time and a variety of circumstances) and
restricting attention to rules that occur often (i.e., that have high support),
we minimize inferring misleading rules. However, we should bear in mind that
misleading, noncausal rules might still be generated. Therefore, we should
treat the generated rules as possibly, rather than conclusively, identifying causal
relationships. Although association rules do not indicate causal relationships
between the LHS and RHS, we emphasize that they provide a useful starting
point for identifying such relationships, using either further analysis or a domain
expert’s judgment; this is the reason for their popularity.

26.3.7 Bayesian Networks

Finding causal relationships is a challenging task, as we saw in Section 26.3.6.
In general, if certain events are highly correlated, there are many possible
explanations. For example, suppose that pens, pencils, and ink are purchased
together frequently. It might be that the purchase of one of these items (e.g.,
ink) depends causally on the purchase of another item (e.g., pen). Or it might
be that the purchase of one of these items (e.g., pen) is strongly correlated with
the purchase of another (e.g., pencil) because of some underlying phenomenon
(e.g., users’ tendency to think about writing instruments together) that causally
influences both purchases. How can we identify the true causal relationships
that hold between these events in the real world?

One approach is to consider each possible combination of causal relationships
among the variables or events of interest to us and evaluate the likelihood of
each combination on the basis of the data available to us. If we think of each
combination of causal relationships as a model of the real world underlying the
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collected data, we can assign a score to each model by considering how consis-
tent it is (in terms of probabilities, with some simplifying assumptions) with
the observed data. Bayesian networks are graphs that can be used to describe
a class of such models, with one node per variable or event, and arcs between
nodes to indicate causality. For example, a good model for our running exam-
ple of pens, pencils, and ink is shown in Figure 26.6. In general, the number of
possible models is exponential in the number of variables, and considering all
models is expensive, so some subset of all possible models is evaluated.

Think of

writing instruments

Buy pens

Buy pencils

Buy ink

Figure 26.6 Bayesian Network Showing Causality

26.3.8 Classification and Regression Rules

Consider the following view that contains information from a mailing campaign
performed by an insurance company:

InsuranceInfo(age: integer, cartype: string, highrisk: boolean)

The InsuranceInfo view has information about current customers. Each record
contains a customer’s age and type of car as well as a flag indicating whether
the person is considered a high-risk customer. If the flag is true, the customer
is considered high-risk. We would like to use this information to identify rules
that predict the insurance risk of new insurance applicants whose age and car
type are known. For example, one such rule could be: “If age is between 16
and 25 and cartype is either Sports or Truck, then the risk is high.”

Note that the rules we want to find have a specific structure. We are not inter-
ested in rules that predict the age or type of car of a person; we are interested
only in rules that predict the insurance risk. Thus, there is one designated
attribute whose value we wish to predict, and we call this attribute the de-
pendent attribute. The other attributes are called predictor attributes. In
our example, the dependent attribute in the InsuranceInfo view is the highrisk
attribute and the predictor attributes are age and cartype. The general form
of the types of rules we want to discover is

P1(X1) ∧ P2(X2) . . . ∧ Pk(Xk) ⇒ Y = c
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The predictor attributes X1, . . . ,Xk are used to predict the value of the depen-
dent attribute Y . Both sides of a rule can be interpreted as conditions on fields
of a tuple. The Pi(Xi) are predicates that involve attribute Xi. The form of
the predicate depends on the type of the predictor attribute. We distinguish
two types of attributes: numerical and categorical. For numerical attributes,
we can perform numerical computations, such as computing the average of two
values; whereas for categorical attributes, the only allowed operation is test-
ing whether two values are equal. In the InsuranceInfo view, age is a numerical
attribute whereas cartype and highrisk are categorical attributes. Returning to
the form of the predicates, if Xi is a numerical attribute, its predicate Pi is
of the form li ≤ Xi ≤ hi; if Xi is a categorical attribute, Pi is of the form
Xi ∈ {v1, . . . , vj}.

If the dependent attribute is categorical, we call such rules classification rules.
If the dependent attribute is numerical, we call such rules regression rules.

For example, consider again our example rule: “If age is between 16 and 25
and cartype is either Sports or Truck, then highrisk is true.” Since highrisk is a
categorical attribute, this rule is a classification rule. We can express this rule
formally as follows:

(16 ≤ age ≤ 25) ∧ (cartype ∈ {Sports, Truck}) ⇒ highrisk = true

We can define support and confidence for classification and regression rules, as
for association rules:

Support: The support for a condition C is the percentage of tuples that
satisfy C. The support for a rule C1 ⇒ C2 is the support for the condition
C1 ∧ C2.

Confidence: Consider those tuples that satisfy condition C1. The confi-
dence for a rule C1 ⇒ C2 is the percentage of such tuples that also satisfy
condition C2.

As a further generalization, consider the right-hand side of a classification or
regression rule: Y = c. Each rule predicts a value of Y for a given tuple based
on the values of predictor attributes X1, . . . ,Xk. We can consider rules of the
form

P1(X1) ∧ . . . ∧ Pk(Xk) ⇒ Y = f(X1, . . . ,Xk)

where f is some function. We do not discuss such rules further.

Classification and regression rules differ from association rules by considering
continuous and categorical fields, rather than only one field that is set-valued.
Identifying such rules efficiently presents a new set of challenges; we do not
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discuss the general case of discovering such rules. We discuss a special type of
such rules in Section 26.4.

Classification and regression rules have many applications. Examples include
classification of results of scientific experiments, where the type of object to
be recognized depends on the measurements taken; direct mail prospecting,
where the response of a given customer to a promotion is a function of his or
her income level and age; and car insurance risk assessment, where a customer
could be classified as risky depending on age, profession, and car type. Example
applications of regression rules include financial forecasting, where the price of
coffee futures could be some function of the rainfall in Colombia a month ago,
and medical prognosis, where the likelihood of a tumor being cancerous is a
function of measured attributes of the tumor.

26.4 TREE-STRUCTURED RULES

In this section, we discuss the problem of discovering classification and regres-
sion rules from a relation, but we consider only rules that have a very special
structure. The type of rules we discuss can be represented by a tree, and
typically the tree itself is the output of the data mining activity. Trees that
represent classification rules are called classification trees or decision trees
and trees that represent regression rules are called regression trees

Age

Car Type

>25

Sports, TruckSedan

NO

YESNO

<= 25

Figure 26.7 Insurance Risk Example Decision Tree

As an example, consider the decision tree shown in Figure 26.7. Each path from
the root node to a leaf node represents one classification rule. For example, the
path from the root to the leftmost leaf node represents the classification rule:
“If a person is 25 years or younger and drives a sedan, then he or she is likely
to have a low insurance risk.” The path from the root to the right-most leaf
node represents the classification rule: “If a person is older than 25 years, then
he or she is likely to have a low insurance risk.”
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Tree-structured rules are very popular since they are easy to interpret. Ease of
understanding is very important because the result of any data mining activity
needs to be comprehensible by nonspecialists. In addition, studies have shown
that, despite limitations in structure, tree-structured rules are very accurate.
There exist efficient algorithms to construct tree-structured rules from large
databases. We discuss a sample algorithm for decision tree construction in the
remainder of this section.

26.4.1 Decision Trees

A decision tree is a graphical representation of a collection of classification
rules. Given a data record, the tree directs the record from the root to a
leaf. Each internal node of the tree is labeled with a predictor attribute. This
attribute is often called a splitting attribute, because the data is ‘split’ based
on conditions over this attribute. The outgoing edges of an internal node are
labeled with predicates that involve the splitting attribute of the node; every
data record entering the node must satisfy the predicate labeling exactly one
outgoing edge. The combined information about the splitting attribute and
the predicates on the outgoing edges is called the splitting criterion of the
node. A node with no outgoing edges is called a leaf node. Each leaf node of
the tree is labeled with a value of the dependent attribute. We consider only
binary trees where internal nodes have two outgoing edges, although trees of
higher degree are possible.

Consider the decision tree shown in Figure 26.7. The splitting attribute of the
root node is age, the splitting attribute of the left child of the root node is
cartype. The predicate on the left outgoing edge of the root node is age ≤ 25,
the predicate on the right outgoing edge is age > 25.

We can now associate a classification rule with each leaf node in the tree as
follows. Consider the path from the root of the tree to the leaf node. Each edge
on that path is labeled with a predicate. The conjunction of all these predicates
makes up the left-hand side of the rule. The value of the dependent attribute
at the leaf node makes up the right-hand side of the rule. Thus, the decision
tree represents a collection of classification rules, one for each leaf node.

A decision tree is usually constructed in two phases. In phase one, the growth
phase, an overly large tree is constructed. This tree represents the records
in the input database very accurately; for example, the tree might contain
leaf nodes for individual records from the input database. In phase two, the
pruning phase, the final size of the tree is determined. The rules represented
by the tree constructed in phase one are usually overspecialized. By reducing
the size of the tree, we generate a smaller number of more general rules that



908 Chapter 26

are better than a very large number of very specialized rules. Algorithms for
tree pruning are beyond our scope of discussion here.

Classification tree algorithms build the tree greedily top-down in the following
way. At the root node, the database is examined and the locally ‘best’ splitting
criterion is computed. The database is then partitioned, according to the root
node’s splitting criterion, into two parts, one partition for the left child and one
partition for the right child. The algorithm then recurses on each child. This
schema is depicted in Figure 26.8.

Input: node n, partition D, split selection method S

Output: decision tree for D rooted at node n

Top-Down Decision Tree Induction Schema:

BuildTree(Node n, data partition D, split selection method S)
(1) Apply S to D to find the splitting criterion
(2) if (a good splitting criterion is found)
(3) Create two children nodes n1 and n2 of n
(4) Partition D into D1 and D2

(5) BuildTree(n1, D1, S)
(6) BuildTree(n2, D2, S)
(7) endif

Figure 26.8 Decision Tree Induction Schema

The splitting criterion at a node is found through application of a split selec-
tion method. A split selection method is an algorithm that takes as input
(part of) a relation and outputs the locally ‘best’ splitting criterion. In our
example, the split selection method examines the attributes cartype and age,
selects one of them as splitting attribute, and then selects the splitting pred-
icates. Many different, very sophisticated split selection methods have been
developed; the references provide pointers to the relevant literature.

26.4.2 An Algorithm to Build Decision Trees

If the input database fits into main memory, we can directly follow the clas-
sification tree induction schema shown in Figure 26.8. How can we construct
decision trees when the input relation is larger than main memory? In this case,
step (1) in Figure 26.8 fails, since the input database does not fit in memory.
But we can make one important observation about split selection methods that
helps us to reduce the main memory requirements.

Consider a node of the decision tree. The split selection method has to make
two decisions after examining the partition at that node: It has to select the
splitting attribute, and it has to select the splitting predicates for the outgo-



Data Mining 909

age cartype highrisk

23 Sedan false
30 Sports false
36 Sedan false
25 Truck true
30 Sedan false
23 Truck true
30 Truck false
25 Sports true
18 Sedan false

Figure 26.9 The InsuranceInfo Relation

ing edges. After selecting the splitting criterion at a node, the algorithm is
recursively applied to each of the children of the node. Does a split selection
method actually need the complete database partition as input? Fortunately,
the answer is no.

Split selection methods that compute splitting criteria that involve a single
predictor attribute at each node evaluate each predictor attribute individually.
Since each attribute is examined separately, we can provide the split selection
method with aggregated information about the database instead of loading
the complete database into main memory. Chosen correctly, this aggregated
information enables us to compute the same splitting criterion as we would
obtain by examining the complete database.

Since the split selection method examines all predictor attributes, we need
aggregated information about each predictor attribute. We call this aggregated
information theAVC set of the predictor attribute. The AVC set of a predictor
attribute X at node n is the projection of n’s database partition onto X and
the dependent attribute where counts of the individual values in the domain
of the dependent attribute are aggregated. (AVC stands for Attribute-Value,
Class label, because the values of the dependent attribute are often called class
labels.) For example, consider the InsuranceInfo relation as shown in Figure
26.9. The AVC set of the root node of the tree for predictor attribute age is
the result of the following database query:

SELECT R.age, R.highrisk, COUNT (*)
FROM InsuranceInfo R
GROUP BY R.age, R.highrisk

The AVC set for the left child of the root node for predictor attribute cartype
is the result of the following query:
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SELECT R.cartype, R.highrisk, COUNT (*)
FROM InsuranceInfo R
WHERE R.age <= 25
GROUP BY R.cartype, R.highrisk

The two AVC sets of the root node of the tree are shown in Figure 26.10.

highrisk
Car type

true false

Sedan 0 4
Sports 1 1
Truck 2 1

highrisk
Age

true false

18 0 1
23 1 1
25 2 0
30 0 3
36 0 1

Figure 26.10 AVC Group of the Root Node for the InsuranceInfo Relation

We define the AVC group of a node n to be the set of the AVC sets of all
predictor attributes at node n. Our example of the InsuranceInfo relation has
two predictor attributes; therefore, the AVC group of any node consists of two
AVC sets.

How large are AVC sets? Note that the size of the AVC set of a predictor
attribute X at node n depends only on the number of distinct attribute values
of X and the size of the domain of the dependent attribute. For example,
consider the AVC sets shown in Figure 26.10. The AVC set for the predictor
attribute cartype has three entries, and the AVC set for predictor attribute age
has five entries, although the InsuranceInfo relation as shown in Figure 26.9
has nine records. For large databases, the size of the AVC sets is independent
of the number of tuples in the database, except if there are attributes with very
large domains, for example, a real-valued field recorded at a very high precision
with many digits after the decimal point.

If we make the simplifying assumption that all the AVC sets of the root node
together fit into main memory, then we can construct decision trees from very
large databases as follows: We make a scan over the database and construct
the AVC group of the root node in memory. Then we run the split selection
method of our choice with the AVC group as input. After the split selection
method computes the splitting attribute and the splitting predicates on the
outgoing nodes, we partition the database and recurse. Note that this algo-
rithm is very similar to the original algorithm shown in Figure 26.8; the only
modification necessary is shown in Figure 26.11. In addition, this algorithm is
still independent of the actual split selection method involved.
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Input: node n, partition D, split selection method S

Output: decision tree for D rooted at node n

Top-Down Decision Tree Induction Schema:

BuildTree(Node n, data partition D, split selection method S)
(1a) Make a scan over D and construct the AVC group of n in-memory
(1b) Apply S to the AVC group to find the splitting criterion

Figure 26.11 Classification Tree Induction Refinement with AVC Groups

26.5 CLUSTERING

In this section we discuss the clustering problem. The goal is to partition
a set of records into groups such that records within a group are similar to
each other and records that belong to two different groups are dissimilar. Each
such group is called a cluster and each record belongs to exactly one cluster.1

Similarity between records is measured computationally by a distance func-
tion. A distance function takes two input records and returns a value that is
a measure of their similarity. Different applications have different notions of
similarity, and no one measure works for all domains.

As an example, consider the schema of the CustomerInfo view:

CustomerInfo(age: int, salary: real)

We can plot the records in the view on a two-dimensional plane as shown in
Figure 26.12. The two coordinates of a record are the values of the record’s
salary and age fields. We can visually identify three clusters: Young customers
who have low salaries, young customers with high salaries, and older customers
with high salaries.

Usually, the output of a clustering algorithm consists of a summarized rep-
resentation of each cluster. The type of summarized representation depends
strongly on the type and shape of clusters the algorithm computes. For ex-
ample, assume that we have spherical clusters as in the example shown in
Figure 26.12. We can summarize each cluster by its center (often also called
the mean) and its radius, which are defined as follows. Given a collection of
records r1, . . . , rn, their center C and radius R are defined as follows:

C =
1

n

n�
i=1

ri, and R =

��n
i=1(ri − C)

n

1There are clustering algorithms that allow overlapping clusters, where a record could belong to

several clusters.
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Age

30k

60k

Salary

604020

C

A

B

Figure 26.12 Records in CustomerInfo

There are two types of clustering algorithms. A partitional clustering algo-
rithm partitions the data into k groups such that some criterion that evaluates
the clustering quality is optimized. The number of clusters k is a parameter
whose value is specified by the user. A hierarchical clustering algorithm gen-
erates a sequence of partitions of the records. Starting with a partition in which
each cluster consists of one single record, the algorithm merges two partitions
in each step until only one single partition remains in the end.

26.5.1 A Clustering Algorithm

Clustering is a very old problem, and numerous algorithms have been developed
to cluster a collection of records. Traditionally, the number of records in the
input database was assumed to be relatively small and the complete database
was assumed to fit into main memory. In this section, we describe a clustering
algorithm called BIRCH that handles very large databases. The design of
BIRCH reflects the following two assumptions:

The number of records is potentially very large, and therefore we want to
make only one scan over the database.

Only a limited amount of main memory is available.

A user can set two parameters to control the BIRCH algorithm. The first
is a threshold on the amount of main memory available. This main memory
threshold translates into a maximum number of cluster summaries k that can
be maintained in memory. The second parameter ? is an initial threshold for
the radius of any cluster. The value of ? is an upper bound on the radius of
any cluster and controls the number of clusters that the algorithm discovers.
If ? is small, we discover many small clusters; if ? is large, we discover very few
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clusters, each of which is relatively large. We say that a cluster is compact if
its radius is smaller than ?.

BIRCH always maintains k or fewer cluster summaries (Ci, Ri) in main memory,
where Ci is the center of cluster i and Ri is the radius of cluster i. The algorithm
always maintains compact clusters; that is, the radius of each cluster is less
than ?. If this invariant cannot be maintained with the given amount of main
memory, ? is increased as described next.

The algorithm reads records from the database sequentially and processes them
as follows:

1. Compute the distance between record r and each of the existing cluster
centers. Let i be the cluster index such that the distance between r and
Ci is the smallest.

2. Compute the value of the new radius R 

i of the ith cluster under the as-
sumption that r is inserted into it. If R 

i ≤ ?, then the ith cluster remains
compact, and we assign r to the ith cluster by updating its center and
setting its radius to R 

i. If R 

i > ?, then the ith cluster would no longer be
compact if we insert r into it. Therefore, we start a new cluster containing
only the record r.

The second step presents a problem if we already have the maximum number
of cluster summaries, k. If we now read a record that requires us to create a
new cluster, we lack the main memory required to hold its summary. In this
case, we increase the radius threshold ?—using some heuristic to determine
the increase—in order to merge existing clusters: An increase of ? has two
consequences. First, existing clusters can accommodate more records, since
their maximum radius has increased. Second, it might be possible to merge
existing clusters such that the resulting cluster is still compact. Thus, an
increase in ? usually reduces the number of existing clusters.

The complete BIRCH algorithm uses a balanced in-memory tree, which is sim-
ilar to a B+ tree in structure, to quickly identify the closest cluster center for
a new record. A description of this data structure is beyond the scope of our
discussion.

26.6 SIMILARITY SEARCH OVER SEQUENCES

A lot of information stored in databases consists of sequences. In this section,
we introduce the problem of similarity search over a collection of sequences.
Our query model is very simple: We assume that the user specifies a query
sequence and wants to retrieve all data sequences that are similar to the
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Commercial Data Mining Systems: There are a number of data
mining products on the market today, such as SAS Enterprise Miner,
SPSS Clementine, CART from Salford Systems, Megaputer PolyAnalyst,
ANGOSS KnowledgeStudio. We highlight two that have strong database
ties.

IBM’s Intelligent Miner offers a wide range of algorithms, including
association rules, regression, classification, and clustering. The emphasis
of Intelligent Miner is on scalability—the product contains versions of all
algorithms for parallel computers and is tightly integrated with IBM’s
DB2 database system. DB2’s object-relational capabilities can be used to
define the data mining classes of SQL/MM. Of course, other data mining
vendors can use these capabilities to add their own data mining models
and algorithms to DB2.

Microsoft’s SQL Server 2000 has a component called the Analysis Server
that makes it possible to create, apply, and manage data mining models
within the DBMS. (SQL Server’s OLAP capabilities are also packaged in
the Analysis Server component.) The basic approach taken is to represent
a mining model as a table; clustering and decision tree models are
currently supported. The table conceptually has one row for each possible
combination of input (predictor) attribute values. The model is created
using a statement analogous to SQL’s CREATE TABLE that describes the
input on which the model is to be trained and the algorithm to use in
constructing the model. An interesting feature is that the input table
can be defined, using a specialized view mechanism, to be a nested table.
For example, we can define an input table with one row per customer,
where one of the fields is a nested table that describes the customer’s
purchases. The SQL/MM extensions for data mining do not provide this
capability because SQL:1999 does not currently support nested tables
(Section 23.2.1). Several properties of attributes, such as whether they
are discrete or continuous, can also be specified.

A model is trained by inserting rows into it, using the INSERT command.
It is applied to a new dataset to make predictions using a new kind of
join called PREDICTION JOIN; in principle, each input tuple is matched
with the corresponding tuple in the mining model to determine the value
of the predicted attribute. Thus, end users can create, train, and apply
decision trees and clustering using extended SQL. There are also commands
to browse models. Unfortunately, users cannot add new models or new
algorithms for models, a capability that is supported in the SQL/MM
proposal.
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query sequence. Similarity search is different from ‘normal’ queries in that we
are interested not only in sequences that match the query sequence exactly but
also those that differ only slightly from the query sequence.

We begin by describing sequences and similarity between sequences. A data
sequence X is a series of numbers X =  x1, . . . , xk . Sometimes X is also
called a time series. We call k the length of the sequence. A subsequence
Z =  z1, . . . , zj is obtained from another sequence X =  x1, . . . , xk by deleting
numbers from the front and back of the sequence X. Formally, Z is a subse-
quence of X if z1 = xi, z2 = xi+1, . . . , zj = zi+j−1 for some i ∈ {1, . . . , k−j+1}.
Given two sequences X =  x1, . . . , xk and Y =  y1, . . . , yk , we can define the
Euclidean norm as the distance between the two sequences as follows:

"X − Y " =
k�

i=1

(xi − yi)
2

Given a user-specified query sequence and a threshold parameter ?, our goal is
to retrieve all data sequences that are within ?-distance of the query sequence.

Similarity queries over sequences can be classified into two types.

Complete Sequence Matching: The query sequence and the sequences
in the database have the same length. Given a user-specified threshold
parameter ?, our goal is to retrieve all sequences in the database that are
within ?-distance to the query sequence.

Subsequence Matching: The query sequence is shorter than the se-
quences in the database. In this case, we want to find all subsequences of
sequences in the database such that the subsequence is within distance ?
of the query sequence. We do not discuss subsequence matching.

26.6.1 An Algorithm to Find Similar Sequences

Given a collection of data sequences, a query sequence, and a distance thresh-
old ?, how can we efficiently find all sequences within ?-distance of the query
sequence?

One possibility is to scan the database, retrieve each data sequence, and com-
pute its distance to the query sequence. While this algorithm has the merit of
being simple, it always retrieves every data sequence.

Because we consider the complete sequence matching problem, all data se-
quences and the query sequence have the same length. We can think of this
similarity search as a high-dimensional indexing problem. Each data sequence
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and the query sequence can be represented as a point in a k-dimensional space.
Therefore, if we insert all data sequences into a multidimensional index, we can
retrieve data sequences that exactly match the query sequence by querying the
index. But since we want to retrieve not only data sequences that match the
query exactly but also all sequences within ?-distance of the query sequence, we
do not use a point query as defined by the query sequence. Instead, we query
the index with a hyper-rectangle that has side-length 2? and the query sequence
as center, and we retrieve all sequences that fall within this hyper-rectangle.
We then discard sequences that are actually further than ? away from the query
sequence.

Using the index allows us to greatly reduce the number of sequences we con-
sider and decreases the time to evaluate the similarity query significantly. The
bibliographic notes at the end of the chapter provide pointers to further im-
provements.

26.7 INCREMENTAL MINING AND DATA STREAMS

Real-life data is not static, but is constantly evolving through additions or
deletions of records. In some applications, such as network monitoring, data
arrives in such high-speed streams that it is infeasible to store the data for
offline analysis. We describe both evolving and streaming data in terms of
a framework called block evolution. In block evolution, the input dataset
to the data mining process is not static but periodically updated with a new
block of tuples, for example, every day at midnight or in a continuous stream.
A block is a set of tuples added simultaneously to the database. For large
blocks, this model captures common practice in many of today’s data warehouse
installations, where updates from operational databases are batched together
and performed in a block update. For small blocks of data—at the extreme,
each block consists of a single record—this model captures streaming data.

In the block evolution model, the database consists of a (conceptually infinite)
sequence of data blocks D1,D2, . . . that arrive at times 1, 2, . . ., where each
block Di consists of a set of records.2 We call i the block identifier of block Bi.
Therefore, at any time t, the database consists of a finite sequence of blocks of
data  D1, . . . ,Dt that arrived at times {1, 2, . . . , t}. The database at time t,
which we denote by D[1, t], is the union of the database at time t − 1 and the
block that arrives at time t, Dt.

For evolving data, two classes of problems are of particular interest: model
maintenance and change detection. The goal of model maintenance is to

2In general, a block specifies records to change or delete, in addition to records to insert. We only

consider inserts.
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maintain a data mining model under insertion and deletions of blocks of data.
To incrementally compute the data mining model at time t, which we denote by
M(D[1, t]), we must consider only M(D[1, t − 1]) and Dt; we cannot consider
the data that arrived prior to time t. Further, a data analyst might specify
time-dependent subsets of D[1, t], such as a window of interest (e.g., all the data
seen thus far or last week’s data). More general selections are also possible,
for example, all weekend data over the past year. Given such selections, we
must incrementally compute the model on the appropriate subset of D[1, t] by
considering only Dt and the model on the appropriate subset of D[1, t − 1].
‘Almost’ incremental algorithms that occasionally examine older data might
be acceptable in warehouse applications, where incrementality is motivated by
efficiency considerations and older data is available to us if necessary. This
option is not available for high-speed data streams, where older data may not
be available at all.

The goal of change detection is to quantify the difference, in terms of their
data characteristics, between two sets of data and determine whether the change
is meaningful (i.e., statistically significant). In particular, we must quantify
the difference between the models of the data as it existed at some time t1
and the evolved version at a subsequent time t2; that is, we must quantify the
difference between M(D[1, t1]) and M(D[1, t2]). We can also measure changes
with respect to selected subsets of data. Several natural variants of the problem
exist; for example, the difference between M(D[1, t − 1]) and M(Dt) indicates
whether the latest block differs substantially from previously existing data. In
the rest of this chapter, we focus on model maintenance and do not discuss
change detection.

Incremental model maintenance has received much attention. Since the quality
of the data mining model is of utmost importance, incremental model main-
tenance algorithms have concentrated on computing exactly the same model
as computed by running the basic model construction algorithm on the union
of old and new data. One widely used scalability technique is localization of
changes due to new blocks. For example, for density-based clustering algo-
rithms, the insertion of a new record affects only clusters in the neighborhood
of the record, and thus efficient algorithms can localize the change to a few
clusters and avoid recomputing all clusters. As another example, in decision
tree construction, we might be able to show that the split criterion at a node of
the tree changes only within acceptably small confidence intervals when records
are inserted, if we assume that the underlying distribution of training records
is static.

One-pass model construction over data streams has received particular atten-
tion, since data arrives and must be processed continuously in several emerg-
ing application domains. For example, network installations of large Telecom
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and Internet service providers have detailed usage information (e.g., call-detail-
records, router packet-flow and trace data) from different parts of the underly-
ing network that needs to be continuously analyzed to detect interesting trends.
Other examples include webserver logs, streams of transactional data from large
retail chains, and financial stock tickers.

When working with high-speed data streams, algorithms must be designed to
construct data mining models while looking at the relevant data items only
once and in a fixed order (determined by the stream-arrival pattern), with a
limited amount of main memory. Data-stream computation has given rise to
several recent (theoretical and practical) studies of online or one-pass algo-
rithms with bounded memory. Algorithms have been developed for one-pass
computation of quantiles and order-statistics, estimation of frequency moments
and join sizes, clustering and decision tree construction, estimating correlated
aggregates, and computing one-dimensional (i.e., single-attribute) histograms
and Haar wavelet decompositions. Next, we discuss one such algorithm, for
incremental maintenance of frequent itemsets.

26.7.1 Incremental Maintenance of Frequent Itemsets

Consider the Purchases Relation shown in Figure 26.1 and assume that the
minimum support threshold is 60%. It can be easily seen that the set of frequent
itemsets of size 1 consists of {pen }, {ink}, and {milk} with supports of 100%,
75%, and 75%, respectively. The set of frequent itemsets of size 2 consists of
{pen, ink} and {pen, milk}, both with supports of 75%. The Purchases relation
is our first block of data. Our goal is to develop an algorithm that maintains
the set of frequent itemsets under insertion of new blocks of data.

As a first example, let us consider the addition of the block of data shown
in Figure 26.13 to our original database (Figure 26.1). Under this addition,
the set of frequent itemsets does not change, although their support values do:
{pen}, {ink}, and {milk} now have support values of 100%, 60%, and 60%,
respectively, and {pen, ink} and {pen, milk} now have 60% support. Note that
we could detect this case of ‘no change’ simply by maintaining the number of
market baskets in which each itemset occured. In this example, we update the
(absolute) support of itemset {pen} by 1.

transid custid date item qty

115 201 7/1/99 pen 2

Figure 26.13 The Purchases Relation Block 2
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transid custid date item qty

115 201 7/1/99 water 1
115 201 7/1/99 milk 1

Figure 26.14 The Purchases Relation Block 2a

In general, the set of frequent itemsets may change. As an example, consider
the addition of the block shown in Figure 26.14 to the original database shown
in Figure 26.1. We see a transaction containing the item water, but we do
not know the support of the itemset {water}, since water was not above the
minimum support in our original database. A simple solution in this case is to
make an additional scan over the original database and compute the support of
the itemset {water}. But can we do better? Another immediate solution is to
keep counters for all possible itemsets, but the number of all possible itemsets
is exponential in the number of items—and most of these counters would be 0
anyway. Can we design an intelligent strategy that tells us which counters to
maintain?

We introduce the notion of the negative border of a set of itemsets to help
decide which counters to keep. The negative border of a set of frequent itemsets
consists of all itemsets X such that X itself is not frequent, but all subsets of
X are frequent. For example, in the case of the database shown in Figure 26.1,
the following itemsets make up the negative border: {juice}, {water}, and {ink,
milk}. Now we can design a more efficient algorithm for maintaining frequent
itemsets by keeping counters for all currently frequent itemsets and all itemsets
currently in the negative border. Only if an itemset in the negative border
becomes frequent do we need to read the original dataset again, to find the
support for new candidate itemsets that might be frequent.

We illustrate this point through the following two examples. If we add Block
2a shown in Figure 26.14 to the original database shown in Figure 26.1, we
increase the support of the frequent itemset {milk} by one, and we increase the
support of the itemset {water}, which is in the negative border, by one as well.
But since no itemset in the negative border became frequent, we do not have
to re-scan the original database.

In contrast, consider the addition of Block 2b shown in Figure 26.15 to the
original database shown in Figure 26.1. In this case, the itemset {juice}, which
was originally in the negative border, becomes frequent with a support of 60%.
This means that now the following itemsets of size two enter the negative
border: {juice, pen}, {juice, ink}, and {juice, milk}. (We know that {juice,
water} cannot be frequent since the itemset {water} is not frequent.)
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transid custid date item qty

115 201 7/1/99 juice 2
115 201 7/1/99 water 2

Figure 26.15 The Purchases Relation Block 2b

26.8 ADDITIONAL DATA MINING TASKS

We focused on the problem of discovering patterns from a database, but there
are several other equally important data mining tasks. We now discuss some
of these briefly. The bibliographic references at the end of the chapter provide
many pointers for further study.

Dataset and Feature Selection: It is often important to select the
‘right’ dataset to mine. Dataset selection is the process of finding which
datasets to mine. Feature selection is the process of deciding which at-
tributes to include in the mining process.

Sampling: One way to explore a large dataset is to obtain one or more
samples and analyze them. The advantage of sampling is that we can
carry out detailed analysis on a sample that would be infeasible on the en-
tire dataset, for very large datasets. The disadvantage of sampling is that
obtaining a representative sample for a given task is difficult; we might miss
important trends or patterns because they are not reflected in the sample.
Current database systems also provide poor support for efficiently obtain-
ing samples. Improving database support for obtaining samples with var-
ious desirable statistical properties is relatively straightforward and likely
to be available in future DBMSs. Applying sampling for data mining is an
area for further research.

Visualization: Visualization techniques can significantly assist in under-
standing complex datasets and detecting interesting patterns, and the im-
portance of visualization in data mining is widely recognized.

26.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What is the role of data mining in the KDD process? (Section 26.1)

What is the a priori property? Describe an algorithm for finding frequent
itemsets. (Section 26.2.1)
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How are iceberg queries related to frequent itemsets? (Section 26.2.2)

Give the definition of an association rule. What is the difference between
support and confidence of a rule? (Setion 26.3.1)

Can you explain extensions of association rules to ISA hierarchies? What
other extensions of association rules are you familiar with? (Sections
26.3.3 and 26.3.4)

What is a sequential pattern? How can we compute sequential patterns?
(Section 26.3.5)

Can we use association rules for prediction? (Section 26.3.6)

What is the difference between Bayesian Networks and association rules?
(Section 26.3.7)

Can you give examples of classification and regression rules? How is sup-
port and confidence for such rules defined? (Section 26.3.8)

What are the components of a decision tree? How are decision trees con-
structed? (Sections 26.4.1 and 26.4.2)

What is a cluster? What information do we usually output for a cluster?
(Section 26.5)

How can we define the distance between two sequences? Describe an algo-
rithm to find all sequences similar to a query sequence. (Section 26.6)

Describe the block evolution model and define the problems of incremental
model maintenance and change detection. What is the added challenge in
mining data streams? (Section 26.7)

Describe an incremental algorithm for computing frequent itemsets. (Sec-
tion 26.7.1)

Give examples of other tasks related to data mining. (Section 26.8)

EXERCISES

Exercise 26.1 Briefly answer the following questions:

1. Define support and confidence for an association rule.

2. Explain why association rules cannot be used directly for prediction, without further
analysis or domain knowledge.

3. What are the differences between association rules, classification rules, and regression

rules?

4. What is the difference between classification and clustering?
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transid custid date item qty

111 201 5/1/2002 ink 1
111 201 5/1/2002 milk 2
111 201 5/1/2002 juice 1

112 105 6/3/2002 pen 1
112 105 6/3/2002 ink 1
112 105 6/3/2002 water 1

113 106 5/10/2002 pen 1
113 106 5/10/2002 water 2
113 106 5/10/2002 milk 1

114 201 6/1/2002 pen 2
114 201 6/1/2002 ink 2
114 201 6/1/2002 juice 4
114 201 6/1/2002 water 1
114 201 6/1/2002 milk 1

Figure 26.16 The Purchases2 Relation

5. What is the role of information visualization in data mining?

6. Give examples of queries over a database of stock price quotes, stored as sequences, one
per stock, that cannot be expressed in SQL.

Exercise 26.2 Consider the Purchases table shown in Figure 26.1.

1. Simulate the algorithm for finding frequent itemsets on the table in Figure 26.1 with
minsup=90 percent, and then find association rules with minconf=90 percent.

2. Can you modify the table so that the same frequent itemsets are obtained withminsup=90
percent as with minsup=70 percent on the table shown in Figure 26.1?

3. Simulate the algorithm for finding frequent itemsets on the table in Figure 26.1 with
minsup=10 percent and then find association rules with minconf=90 percent.

4. Can you modify the table so that the same frequent itemsets are obtained withminsup=10
percent as with minsup=70 percent on the table shown in Figure 26.1?

Exercise 26.3 Assume we are given a dataset D of market baskets and have computed the
set of frequent itemsets X in D for a given support threshold minsup. Assume that we would
like to add another dataset D to D, and maintain the set of frequent itemsets with support
threshold minsup in D ∪ D

 . Consider the following algorithm for incremental maintenance
of a set of frequent itemsets:

1. We run the a priori algorithm on D and find all frequent itemsets in D and their
support. The result is a set of itemsets X  . We also compute the support of all itemsets
X ∈ X in D .

2. We then make a scan over D to compute the support of all itemsets in X  .

Answer the following questions about the algorithm:
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The last step of the algorithm is missing; that is, what should the algorithm output?

Is this algorithm more efficient than the algorithm described in Section 26.7.1?

Exercise 26.4 Consider the Purchases2 table shown in Figure 26.16.

List all itemsets in the negative border of the dataset.

List all frequent itemsets for a support threshold of 50%.

Give an example of a database in which the addition of this database does not change
the negative border.

Give an example of a database in which the addition of this database would change the
negative border.

Exercise 26.5 Consider the Purchases table shown in Figure 26.1. Find all (generalized)
association rules that indicate the likelihood of items being purchased on the same date by
the same customer, with minsup set to 10% and minconf set to 70%.

Exercise 26.6 Let us develop a new algorithm for the computation of all large itemsets.
Assume that we are given a relation D similar to the Purchases table shown in Figure 26.1.
We partition the table horizontally into k parts D1, . . . ,Dk.

1. Show that, if itemset X is frequent in D, then it is frequent in at least one of the k parts.

2. Use this observation to develop an algorithm that computes all frequent itemsets in two
scans over D. (Hint: In the first scan, compute the locally frequent itemsets for each
part Di, i ∈ {1, . . . , k}.)

3. Illustrate your algorithm using the Purchases table shown in Figure 26.1. The first
partition consists of the two transactions with transid 111 and 112, the second partition
consists of the two transactions with transid 113 and 114. Assume that the minimum
support is 70 percent.

Exercise 26.7 Consider the Purchases table shown in Figure 26.1. Find all sequential pat-
terns with minsup set to 60%. (The text only sketches the algorithm for discovering sequential
patterns, so use brute force or read one of the references for a complete algorithm.)

Exercise 26.8 Consider the SubscriberInfo Relation shown in Figure 26.17. It contains
information about the marketing campaign of the DB Aficionado magazine. The first two
columns show the age and salary of a potential customer and the subscription column shows
whether the person subscribes to the magazine. We want to use this data to construct a
decision tree that helps predict whether a person will subscribe to the magazine.

1. Construct the AVC-group of the root node of the tree.

2. Assume that the spliting predicate at the root node is age ≤ 50. Construct the AVC-
groups of the two children nodes of the root node.

Exercise 26.9 Assume you are given the following set of six records:  7, 55 ,  21, 202 ,
 25, 220 ,  12, 73 ,  8, 61 , and  22, 249 .

1. Assuming that all six records belong to a single cluster, compute its center and radius.

2. Assume that the first three records belong to one cluster and the second three records
belong to a different cluster. Compute the center and radius of the two clusters.

3. Which of the two clusterings is ‘better’ in your opinion and why?

Exercise 26.10 Assume you are given the three sequences  1, 3, 4 ,  2, 3, 2 ,  3, 3, 7 . Com-
pute the Euclidian norm between all pairs of sequences.
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age salary subscription

37 45k No

39 70k Yes

56 50k Yes

52 43k Yes

35 90k Yes

32 54k No

40 58k No

55 85k Yes

43 68k Yes

Figure 26.17 The SubscriberInfo Relation
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INFORMATION RETRIEVAL

AND XML DATA

☛ How are DBMSs evolving in response to the growing amounts of text
data?

☛ What is the vector space model and how does it support text search?

☛ How are text collections indexed?

☛ Compared to IR systems, what is new in Web search?

☛ How is XML data different from plain text and relational tables?

☛ What are the main features of XQuery?

☛ What are the implementation challenges posed by XML data?

➽ Key concepts: information retrieval, boolean and ranked queries;
relevance, precision, recall; vector space model, TF/IDF term weight-
ing, document similarity; inverted index, signature file; Web crawler,
hubs and authorities, Pigeon Rank of a webpage; semistructured data
model, XML; XQuery, path expressions, FLWR queries; XML storage
and indexing

with Raghav Kaushik
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A memex is a device in which an individual stores all his books,
records, and communications, and which is mechanized so that it may
be consulted with exceeding speed and flexibility.

—Vannevar Bush, As We May Think, 1945
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The field of information retrieval (IR) has studied the problem of searching
collections of text documents since the 1950s and developed largely indepen-
dently of database systems. The proliferation of text documents on the Web
made document search an everyday operation for most people and led to re-
newed research on the topic.

The database field’s desire to expand the kinds of data that can be managed in
a DBMS is well-established and reflected in developments like object-relational
extensions (Chapter 23). Documents on the Web represent one of the most
rapidly growing sources of data, and the challenge of managing such documents
in a DBMS has naturally become a focal point for database research.

The Web, therefore, brought the two fields of database management systems
and information retrieval closer together than ever before, and, as we will see,
XML sits squarely in the middle ground between them. We introduce IR sys-
tems as well as a data model and query language for XML data and discuss
the relationship with (object-)relational database systems.

In this chapter, we present an overview of information retrieval, Web search,
and the emerging XML data model and query language standards. We begin
in Section 27.1 with a discussion of how these text-oriented trends fit within
the context of current object-relational database systems. We introduce in-
formation retrieval concepts in Section 27.2 and discuss specialized indexing
techniques for text in Section 27.3. We discuss Web search engines in Section
27.4. In Section 27.5, we briefly outline current trends in extending database
systems to support text data and identify some of the important issues in-
volved. In Section 27.6, we present the XML data model, building on the XML
concepts introduced in Chapter 7. We describe the XQuery language in Section
27.7. In Section 27.8, we consider efficient evaluation of XQuery queries.

27.1 COLLIDINGWORLDS: DATABASES, IR, AND XML

The Web is the most widely used document collection today, and search on the
Web differs from traditional IR-style document retrieval in important ways.
First, there is great emphasis on scalability to very large document collections.
IR systems typically dealt with tens of thousands of documents, whereas the
Web contains billions of pages.

Second, theWeb has significantly changed how document collections are created
and used. Traditionally, IR systems were aimed at professionals like librarians
and legal researchers, who were trained in using sophisticated retrieval engines.
Documents were carefully prepared, and documents in a given collection were
typically on related topics. On the Web, documents are created by an infinite
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variety of individuals for equally many purposes, and reflect this diversity in
size and content. Searches are carried out by ordinary people with no training
in using retrieval software.

The emergence of XML has added a third interesting dimension to text search:
Every document can now be marked up to reflect additional information of
interest, such as authorship, source, and even details about the intrinsic content.
This has changed the nature of a “document” from free text to textual objects
with associated fields containing metadata (data about data) or descriptive
information. Links to other documents are a particularly important kind of
metadata, and they can have great value in searching document collections on
the Web.

The Web also changed the notion of what constitutes a document. Documents
on the Web may be multimedia objects such as images or video clips, with
text appearing only in descriptive tags. We must be able to manage such
heterogeneous data collections and support searches over them.

Database management systems traditionally dealt with simple tabular data. In
recent years, object-relational database systems (ORDBMSs) were designed to
support complex data types. Images, videos, and textual objects have been
explicitly mentioned as examples of the data types ORDBMSs are intended to
support. Nonetheless, current database systems have a long way to go before
they can support such complex data types satisfactorily. In the context of text
and XML data, challenges include efficient support for searches over textual
content and support for searches that exploit the loose structure of XML data.

27.1.1 DBMS versus IR Systems

Database and IR systems have the common objective of supporting searches
over collections of data. However, many important differences have influenced
their development.

Searches versus Queries: IR systems are designed to support a special-
ized class of queries that we also call searches. Searches are specified in
terms of a few search terms, and the underlying data is usually a collec-
tion of unstructured text documents. In addition, an important feature of
IR searches is that search results may be ranked, or ordered, in terms of
how ‘well’ the search results match the search terms. In contrast, database
systems support a very general class of queries, and the underlying data is
rigidly structured. Unlike IR systems, database systems have traditionally
returned unranked sets of results. (Even the recent SQL/OLAP extensions
that support early results and searches over ordered data (see Chapter 25)
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do not order results in terms of how well they match the query. Relational
queries are precise in that a row is either in the answer or it is not ; there
is no notion of ‘how well a row matches’ the query.) In other words, a
relational query only assigns two ranks to a row, indicating whether the
row is in the answer or not.

Updates and Transactions: IR systems are optimized for a read-mostly
workload and do not support the notion of a transaction. In traditional
IR systems, new documents are added to the document collection from
time to time, and index structures that speed up searches are periodically
rebuilt or updated. Therefore, documents that are highly relevant for a
search might exist in the IR system, but not be retrievable yet because of
outdated index structures. In contrast, database systems are designed to
handle a wide range of workloads, including update-intensive transaction
processing workloads.

These differences in design objectives have led, not surprisingly, to very dif-
ferent research emphases and system designs. Research in IR studied ranking
functions extensively. For example, among other topics, research in IR investi-
gated how to incorporate feedback from a user’s behavior to modify a ranking
function and how to apply linguistic processing techniques to improve searches.
Database research concentrated on query processing, concurrency control and
recovery, and other topics, as covered in this book.

The differences between a DBMS and an IR system from a design and imple-
mentation standpoint should become clear as we introduce IR systems in the
next few sections.

27.2 INTRODUCTION TO INFORMATION RETRIEVAL

There are two common types of searches, or queries, over text collections:
boolean queries and ranked queries. In a boolean query, the user speci-
fies an expression constructed using terms and boolean operators (And, Or,

Not). For example,

database And (Microsoft Or IBM)

This query asks for all documents that contain the term database and in addi-
tion, either Microsoft or IBM.

In a ranked query the user specifies one or more terms, and the result of the
query is a list of documents ranked by their relevance to the query. Intuitively,
documents at the top of the result list are expected to ‘match’ the search
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docid Document

1 agent James Bond good agent
2 agent mobile computer
3 James Madison movie
4 James Bond movie

Figure 27.1 A Text Database with Four Records

condition more closely, or be ‘more relevant’, than documents lower in the result
list. While a document that contains Microsoft satisfies the search ‘Microsoft,
IBM,’ a document that also contains IBM is considered to be a better match.
Similarly, a document that contains several occurrences of Microsoft might be
a better match than a document that contains a single occurence. Ranking the
documents that satisfy the boolean search condition is an important aspect of
an IR search engine, and we discuss how this is done in Sections 27.2.3 and
27.4.2.

An important extension of ranked queries is to ask for documents that are most
relevant to a given natural language sentence. Since a sentence has linguistic
structure (e.g., subject-verb-object relationships), it provides more informa-
tion than just the list of words that it contains. We do not discuss natural
language search.

27.2.1 Vector Space Model

We now describe a widely-used framework for representing documents and
searching over document collections. Consider the set of all terms that ap-
pear in a given collection of documents. We can represent each document as a
vector with one entry per term. In the simplest form of document vectors, if
term j appears k times in document i, the document vector for document i
contains value k in position j. The document vector for i contains the value 0
in positions corresponding to terms that do not appear in i.

Consider the example collection of four documents shown in Figure 27.1. The
document vector representation is illustrated in Figure 27.2; each row represents
a document. This representation of documents as term vectors is called the
vector space model.
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docid agent Bond computer good James Madison mobile movie

1 2 1 0 1 1 0 0 0
2 1 0 1 0 0 0 1 0
3 0 0 0 0 1 1 0 1
4 0 1 0 0 1 0 0 1

Figure 27.2 Document Vectors for the Example Collection

27.2.2 TF/IDF Weighting of Terms

We described the value for a term in a document vector as simply the term
frequency (TF), or number of occurrences of that term in the given document.
This reflects the intuition that a term which appears often is more important
in characterizing the document than a term that appears only once (or a term
that does not appear at all).

However, some terms appear very frequently in the document collection, and
others are relatively rare. The frequency of terms is empirically observed to
follow a Zipfian distribution, as illustrated in Figure 27.3. In this figure, each
position on the X-axis corresponds to a term and the Y-axis corresponds to
the number of occurrences of the term. Terms are arranged on the X-axis in
decreasing order by the number of times they occur (in the document collection
as a whole).

As might be expected, it turns out that extremely common terms are not very
useful in searches. Examples of such common terms include a, an, the etc.
Terms that occur extremely often are called stop words, and documents are
pre-processed to eliminate stop words.

Even after eliminating stop words, we have the phenomenon that some words
appear much more often than others in the document collection. Consider the
words Linux and kernel in the context of a collection of documents about the
Linux operating system. While neither is common enough to be a stop word,
Linux is likely to appear much more often. Given a search that contains both
these keywords, we are likely to get better results if we give more importance
to documents that contain kernel than documents that contain Linux.

We can capture this intuition by refining the document vector representation as
follows. The value associated with term j in the document vector for document
i, denoted as wij , is obtained by multiplying the term frequency tij (the number
of times term j appears in document i) by the inverse document frequency
(IDF) of term j in the document collection. IDF of a term j is defined as
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log(N/nj), where N is the total number of documents, and nj is the number of
documents that term j appears in. This effectively increases the weight given
to rare terms. As an example, in a collection of 10,000 documents, a term that
appears in half the documents has an IDF of 0.3, and a term that occurs in
just one document has an IDF of 4.

Length Normalization

Consider a documentD. Suppose that we modify it by adding a large number of
new terms. Should a the weight of a term t that appears inD be the same in the
document vectors for D and the modified document? Although the TF/IDF
weight for t is indeed the same in the two document vector, our intuition
suggests that the weight should be less in the modified document. Longer
documents tend to have more terms, and more occurrences of any given term.
Thus, if two documents contain the same number of occurrences of a given
term, the importance of the term in characterizing the document also depends
on the length of the document.

Several approaches to length normalization have been proposed. Intuitively,
all of them reduce the importance given to how often a term occurs as the fre-
quency grows. In traditional IR systems, a popular way to refine the similarity
metric is cosine length normalization:

w∗

ij =
wij��t
k=1w

2
ik

In this formula, t is the number of terms in the document collection, wij is the
TF/IDF weight without length normalization, and w∗

ij is the length adjusted
TF/IDF weight.

Terms that occur frequently in a document are particularly problematic on
the Web because webpages are often deliberately modified by adding many
copies of certain words—for example, sale, free, sex —to increase the likelihood
of their being returned in response to queries. For this reason, Web search
engines typically normalize for length by imposing a maximum value (usually
2 or 3) for term frequencies.

27.2.3 Ranking Document Similarity

We now consider how the vector space representation allows us to rank docu-
ments in the result of a ranked query. A key observation is that a ranked query
can itself be thought of as a document, since it is just a collection of terms.
This allows us to use document similarity as the basis for ranking query
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results—the document that is most similar to the query is ranked highest, and
the one that is least similar is ranked lowest.

If a total of t terms appear in the collection of documents (t is 8 in the example
shown in Figure 27.2), we can visualize document vectors in a t-dimensional
space in which each axis is labeled with a term. This is illustrated in Figure
27.4, for a two-dimensional space. The figure shows document vectors for two
documents, D1 and D2, as well as a query Q.
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Figure 27.4 Document Similarity

The traditional measure of closeness between two vectors, their dot product,
is used as a measure of document similarity. The similarity of query Q to a
document Di is measured by their dot product:

sim(Q,Di) =
t�

j=1

q∗j .w
∗

ij

In the example shown in Figure 27.4, sim(Q,D1) = (0.4 ∗ 0.8) + (0.8 ∗
0.3) = 0.56, and sim(Q,D2) = (0.4 ∗ 0.2) + (0.8 ∗ 0.7) = 0.64. Accordingly,
D2 is ranked higher than D1 in the search result.

In the context of the Web, document similarity is one of several measures
that can be used to rank results, but should not be used exclusively. First,
it is questionable whether users want documents that are similar to the query
(which typically consists of one or two words) or documens that contain useful
information related to the query terms. Intuitively, we want to give importance
to the quality of a Web page while ranking it, in addition to reflecting the
similarity of the page to a given query. Links between pages provide valuable
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additional information that can be used to obtain high-quality results. We
discuss this issue in Section 27.4.2.

27.2.4 Measuring Success: Precision and Recall

Two criteria are commonly used to evaluate information retrieval systems. Pre-
cision is the percentage of retrieved documents that are relevant to the query.
Recall is the percentage of relevant documents in the database that are re-
trieved in response to a query.

Retrieving all documents in response to a query trivially guarantees perfect
recall, but results in very poor precision. The challenge is to achieve good
recall together with high precision.

In the context of search over the Web, the size of the underlying collection is
on the order of billions of documents. Given this, it is questionable whether
the traditional measure of recall is very useful. Since users typically don’t look
beyond the first screen of results, the quality of a Web search engine is largely
determined by the results shown on the first page. The following adapted
definitions of precision and recall might be more appropriate for Web search
engines:

Web Search Precision: The percentage of results on the first page that
are relevant to the query.

Web Search Recall: The fraction N/M , expressed as a percentage, where
M is the number of results displayed on the front page, and of the M most
relevant documents, N is the number displayed on the front page.

27.3 INDEXING FOR TEXT SEARCH

In this section, we introduce two indexing techniques that support the evalu-
ation of boolean and ranked queries. The inverted index structure discussed
in Section 27.3.1 is widely used due to its simplicity and good performance.
Its main disadvantage is that it imposes a significant space overhead: The size
can be up to 300 percent the size of the original file. The signature file index
discussed in Section 27.3.2 has a small space overhead and offers a quick filter
that eliminates most nonqualifying documents. However, does not scale as well
to larger database sizes because the index has to be sequentially scanned.

Before a document is indexed, it is typically pre-processed to eliminate stop
words. Since the size of the indexes is very sensitive to the number of terms
in the document collection, eliminating stop words can greatly reduce index
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size. IR systems also do certain other kinds of pre-processing. For instance,
they apply stemming to reduce related terms to a canonical form. This step
also reduces the number of terms to be indexed, but equally importantly, it
allows us to retrieve documents that may not contain the exact query term but
contain some variant. As an example, the terms run, running, and runner all
stem to run. The term run is indexed, and every occurrence of a variant of this
term is treated as an occurrence of run. A query that specifies runner finds
documents that contain any word that stems to run.

27.3.1 Inverted Indexes

An inverted index is a data structure that enables fast retrieval of all doc-
uments that contain a query term. For each term, the index maintains a list
(called the inverted list) of entries describing occurrences of the term, with
one entry per document that contains the term.

Consider the inverted index for our running example shown in Figure 27.5. The
term ‘James’ has an inverted list with one entry each for documents 1, 3, and
4; the term ‘agent’ has entries for documents 1 and 2.

The entry for document d in the inverted list for term t contains details about
the occurrences of term t in document d. In Figure 27.5, this information
consists of a list of locations within the document that contain term t. Thus,
the entry for document 1 in the inverted list for term ‘agent’ lists the locations
1 and 5, since ‘agent’ is the first and fifth word of document 1. In general,
we can store additional information about each occurrence (e.g., in an HTML
document, is the occurrence in the TITLE tag?) in the inverted list. We can
also store the length of the document if this is used for length normalization
(see below).

The collection of inverted lists is called the postings file. Inverted lists can be
very large for large document collections. In fact, Web search engines typically
store each inverted list on a separate page, and most lists span multiple pages
(and if so, are maintained as a linked list of pages). In order to quickly find
the inverted list for a query term, all possible query terms are organized in a
second index structure such as a B+ tree or a hash index.

The second index, called the lexicon, is much smaller than the postings file
since it only contains one entry per term, and further, only contains entries for
the set of terms that are retained after eliminating stop words, and applying
stemming rules. An entry consists of the term, some summary information
about its inverted list, and the address (on disk) of the inverted list. In Figure
27.5, the summary information consists of the number of entries in the inverted
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Figure 27.5 Inverted Index for Example Collection

list (i.e., the number of documents that the term appears in). In general, it
could contain additional information such as the IDF for the term, but it is
important to keep the entry’s size as small as possible.

The lexicon is maintained in-memory, and enables fast retrieval of the inverted
list for a query term. The lexicon in Figure 27.5 uses a hash index, and is
sketched by showing the hash value for the term; entries for terms are grouped
into hash buckets by their hash value.

Using an Inverted Index

A query containing a single term is evaluated by first searching the lexicon
to find the address of the inverted list for the term. Then the inverted list
is retrieved, the docids in it are mapped to physical document addresses, and
the corresponding documents are retrieved. If the results are to be ranked, the
relevance of each document in the inverted list to the query term is computed,
and documents are then retrieved in order of their relevance rank. Observe that
the information needed to compute the relevance measure described in Section
27.2—the frequency of the query term in the document, the IDF of the term in
the document collection, and the length of the document if it is used for length
normalization—are all available in either the lexicon or the inverted list.

When inverted lists are very long, as in Web search engines, it is useful to
consider whether we should precompute the relevance of each document in the
inverted list for a term (with respect to that term) and sort the list by relevance
rather than document id. This would speed up querying because we can just
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look at a prefix of the inverted list, since users rarely look at more than the
first few results. However, maintaining lists in sorted order by relevance can
be expensive. (Sorting by document id is convenient because new documents
are assigned increasing ids, and we can therefore simply append entries for new
documents at the end of the inverted list. Further, if the similarity function is
changed, we do not have to rebuild the index.)

A query with a conjunction of several terms is evaluated by retrieving the
inverted lists of the query terms one at a time and intersecting them. In order
to minimize memory usage, the inverted lists should be retrieved in order of
increasing length. A query with a disjunction of several terms is evaluated by
merging all relevant inverted lists.

Consider the example inverted index shown in Figure 27.5. To evaluate the
query ‘James’, we probe the lexicon to find the address of the inverted list for
‘James’, fetch it from disk and then retrieve document 1. To evaluate the query
‘James’ AND ‘Bond’, we first retrieve the inverted list for the term ‘Bond’ and
intersect it with the inverted list for the term ‘James.’ (The inverted list of
the term ‘Bond’ has length two, whereas the inverted list of the term ‘James’
has length three.) The result of the intersection of the list  1, 4 with the list
 1, 3, 4 is the list  1, 4 and documents 1 and 4 are therefore retrieved. To
evaluate the query ‘James’ OR ‘Bond,’ we retrieve the two inverted lists in any
order and merge the results.

For ranked queries with multiple terms, we must fetch the inverted lists for
all terms, compute the relevance of every document that appears in one of
these lists with respect to the given collection of query terms, and then sort
the document ids by their relevance before fetching the documents in relevance
rank order. Again, if the inverted lists are sorted by the relevance measure,
we can support ranked queries by typically processing only small prefixes of
the the inverted lists. (Observe that the relevance of a document with respect
to the query is easily computed from its relevance with respect to each query
term.)

27.3.2 Signature Files

A signature file is another index structure for text database systems that
supports efficient evaluation of boolean queries. A signature file contains an
index record for each document in the database. This index record is called
the signature of the document. Each signature has a fixed size of b bits; b is
called the signature width. The bits that are set depend on the words that
appear in the document. We map words to bits by applying a hash function
to each word in the document and we set the bits that appear in the result of
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docid Document Signature

1 agent James Bond good agent 1100
2 agent mobile computer 1101
3 James Madison movie 1011
4 James Bond movie 1110

Figure 27.6 Signature File for Example Collection

the hash function. Note that unless we have a bit for each possible word in the
vocabulary, the same bit could be set twice by different words because the hash
function maps both words to the same bit. We say that a signature S1 matches
another signature S2 if all the bits that are set in signature S2 are also set in
signature S1. If signature S1 matches signature S2, then signature S1 has at
least as many bits set as signature S2.

For a query consisting of a conjunction of terms, we first generate the query
signature by applying the hash function to each word in the query. We then scan
the signature file and retrieve all documents whose signatures match the query
signature, because every such document is a potential result to the query. Since
the signature does not uniquely identify the words that a document contains,
we have to retrieve each potential match and check whether the document
actually contains the query terms. A document whose signature matches the
query signature but that does not contain all terms in the query is called a false
positive. A false positive is an expensive mistake since the document has to
be retrieved from disk, parsed, stemmed, and checked to determine whether it
contains the query terms.

For a query consisting of a disjunction of terms, we generate a list of query
signatures, one for each term in the query. The query is evaluated by scanning
the signature file to find documents whose signatures match any signature in
the list of query signatures.

As an example, consider the signature file of width 4 for our running example
shown in Figure 27.6. The bits set by the hashed values of all query terms are
shown in the figure. To evaluate the query ‘James,’ we first compute the hash
value of the term; this is 1000. Then we scan the signature file and find match-
ing index records. As we can see from Figure 27.6, the signatures of all records
have the first bit set. We retrieve all documents and check for false positives;
the only false positive for this query is document with rid 2. (Unfortunately,
the hashed value of the term ‘agent’ also happened to set the very first bit in
the signature.) Consider the query ‘James’ And ‘Bond.’ The query signature
is 1100 and three document signatures match the query signature. Again, we
retrieve one false positive. As another example of a conjunctive query, con-
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sider the query ‘movie’ And ‘Madison.’ The query signature is 0011, and only
one document signature matches the query signature. No false positives are
retrieved.

Note that for each query we have to scan the complete signature file, and there
are as many records in the signature file as there are documents in the database.
To reduce the amount of data that has to be retrieved for each query, we can
vertically partition a signature file into a set of bit slices, and we call such an
index a bit-sliced signature file. The length of each bit slice is still equal to
the number of documents in the database, but for a query with q bits set in
the query signature we need only to retrieve q bit slices. The reader is invited
to construct a bit-sliced signature file and to evaluate the example queries in
this paragraph using the bit slices.

27.4 WEB SEARCH ENGINES

Web search engines must contend with extremely large numbers of documents,
and have to be highly scalable. Documents are also linked to each other, and
this link information turns out to be very valuable in finding pages relevant
to a given search. These factors have caused search engines to differ from
traditional IR systems in important ways. Nonetheless, they rely on some form
of inverted indexes as the basic indexing mechanism. In this section, we discuss
Web search engines, using Google as a typical example.

27.4.1 Search Engine Architecture

Web search engines crawl the web to collect documents to index. The crawling
algorithm is simple, but crawler software can be complex because of the details
of connecting to millions of sites, minimizing network latencies, parallelizing
the crawling, dealing with timeouts and other connection failures, ensuring
that crawled sites are not unduly stressed by the crawler, and other practical
concerns.

The search algorithm used by a crawler is a graph traversal. Starting at a
collection of pages with many links (e.g., Yahoo directory pages), all links on
crawled pages are followed to identify new pages. This step is iterated, keeping
track of which pages have been visited in order to avoid re-visiting them.

The collection of pages retrieved through crawling can be enormous, on the
order of billions of pages. Indexing them is a very expensive task. Fortunately,
the task is highly parallelizable: Each document is independently analyzed
to create inverted lists for the terms that appear in the document. These
per-document lists are then sorted by term and merged to create complete per-
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term inverted lists that span all documents. Term statistics such as IDF can
be computed during the merge phase.

Supporting searches over such vast indexes is another mammoth undertaking.
Fortunately, again, the task is readily parallelized using a cluster of inexpensive
machines: We can deal with the amount of data by partitioning the index across
several machines. Each machine contains the inverted index for those terms
that are mapped to that machine (e.g., by hashing the term). Queries may
have to be sent to multiple machines if the terms they contain are handled by
different machines, but given that Web queries rarely contain more than two
terms, this is not a serious problem in practice.

We must also deal with a huge volume of queries; Google supports over 150
million searches each day, and the number is growing. This is accomplished
by replicating the data across several machines. We already described how the
data is partitioned across machines. For each partition, we now assign several
machines, each of which contains an exact copy of the data for that partition.
Queries on this partition can be handled by any machine in the partition.
Queries can be distributed across machines on the basis of load, by hashing on
IP addresses, etc. Replication also addresses the problem of high-availability,
since the failure of a machine only increases the load on the remaining machines
in the partition, and if partitions contain several machines the impact is small.
Failures can be made transparent to users by routing queries to other machines
through the load balancer.

27.4.2 Using Link Information

webpages are created by a variety of users for a variety of purposes, and their
content does not always lend itself to effective retrieval. The most relevant
pages for a search may not contain the search terms at all and are therefore
not returned by a boolean keyword search! For example, consider the query
term ‘Web browser.’ A boolean text query using the terms does not return the
relevant pages of Netscape Corporation or Microsoft, because these pages do
not contain the term ‘Web browser’ at all. Similarly, the home page of Yahoo
does not contain the term ‘search engine.’ The problem is that relevant sites
do not necessarily describe their contents in a way that is useful for boolean
text queries.

Until now, we only considered information within a single webpage to estimate
its relevance to a query. But webpages are connected through hyperlinks, and
it is quite likely that there is a webpage containing the term ‘search engine’
that has a link to Yahoo’s home page. Can we use the information hidden in
such links?
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Building on research in the sociology literature, an interesting analogy between
links and bibliographic citations suggests a way to exploit link information: Just
as influential authors and pubications are cited often, good webpages are likely
to be often linked to. It is useful to distinguish between two types of pages,
authorities and hubs. An authority is a page that is very relevant to a certain
topic and that is recognized by other pages as authoritative on the subject.
These other pages, called hubs, usually have a significant number of hyperlinks
to authorities, although they themselves are not very well known and do not
necessarily carry a lot of content relevant to the given query. Hub pages could
be compilations of resources about a topic on a site for professionals, lists of
recommended sites for the hobbies of an individual user, or even a part of the
bookmarks of an individual user that are relevant to one of the user’s interests;
their main property is that they have many outgoing links to relevant pages.
Good hub pages are often not well known and there may be few links pointing
to a good hub. In contrast, good authorities are ‘endorsed’ by many good hubs
and thus have many links from good hub pages.

This symbiotic relationship between hubs and authorities is the basis for the
HITS algorithm, a link-based search algorithm that discovers high-quality pages
that are relevant to a user’s query terms. The HITS algorithm models Web as a
directed graph. Each webpage represents a node in the graph, and a hyperlink
from page A to page B is represented as an edge between the two corresponding
nodes.

Assume that we are given a user query with several terms. The algorithm
proceeds in two steps. In the first step, the sampling step, we collect a set of
pages called the base set. The base set most likely includes very relevant pages
to the user’s query, but the base set can still be quite large. In the second step,
the iteration step, we find good authorities and good hubs among the pages in
the base set.

The sampling step retrieves a set of webpages that contain the query terms,
using some traditional technique. For example, we can evaluate the query as
a boolean keyword search and retrieve all webpages that contain the query
terms. We call the resulting set of pages the root set. The root set might not
contain all relevant pages because some authoritative pages might not include
the user query words. But we expect that at least some of the pages in the root
set contain hyperlinks to the most relevant authoritative pages or that some
authoritative pages link to pages in the root set. This motivates our notion of
a link page. We call a page a link page if it has a hyperlink to some page in
the root set or if a page in the root set has a hyperlink to it. In order not to
miss potentially relevant pages, we augment the root set by all link pages and
we call the resulting set of pages the base set. Thus, the base set includes all
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root pages and all link pages; we refer to a webpage in the base set as a base
page.

Our goal in the second step of the algorithm is to find out which base pages are
good hubs and good authorities and to return the best authorities and hubs
as the answers to the query. To quantify the quality of a base page as a hub
and as an authority, we associate with each base page in the base set a hub
weight and an authority weight. The hub weight of the page indicates the
quality of the page as a hub, and the authority weight of the page indicates
the quality of the page as an authority. We compute the weights of each page
according to the intuition that a page is a good authority if many good hubs
have hyperlinks to it, and that a page is a good hub if it has many outgoing
hyperlinks to good authorities. Since we do not have any a priori knowledge
about which pages are good hubs and authorities, we initialize all weights to
one. We then update the authority and hub weights of base pages iteratively
as described below.

Consider a base page p with hub weight hp and with authority weight ap. In
one iteration, we update ap to be the sum of the hub weights of all pages that
have a hyperlink to p. Formally:

ap =
�

All base pages q that have a link to p

hq

Analogously, we update hp to be the sum of the weights of all pages that p
points to:

hp =
�

All base pages q such that p has a link to q

aq

Comparing the algorithm with the other approaches to querying text that
we discussed in this chapter, we note that the iteration step of the HITS
algorithm—the distribution of the weights—does not take into account the
words on the base pages. In the iteration step, we are only concerned about
the relationship between the base pages as represented by hyperlinks.

The HITS algorithm usually produces very good results. For example, the five
highest ranked results from Google (which uses a variant of the HITS algorithm)
for the query ‘Raghu Ramakrishnan’ are the following webpages:

www.cs.wisc.edu/~raghu/raghu.html

www.cs.wisc.edu/~dbbook/dbbook.html

www.informatik.uni-trier.de/

~ley/db/indices/a-tree/r/Ramakrishnan:Raghu.html

www.informatik.uni-trier.de/
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Computing hub and authority weights: We can use matrix notation
to write the updates for all hub and authority weights in one step. Assume
that we number all pages in the base set {1, 2, ..., n}. The adjacency matrix
B of the base set is an n × n matrix whose entries are either 0 or 1. The
matrix entry (i, j) is set to 1 if page i has a hyperlink to page j; it is set
to 0 otherwise. We can also write the hub weights h and authority weights
a in vector notation: h =  h1, . . . , hn and a =  a1, . . . , an . We can now
rewrite our update rules as follows:

h = B · a, and a = BT · h .

Unfolding this equation once, corresponding to the first iteration, we ob-
tain:

h = BBTh = (BBT )h, and a = BTBa = (BTB)a .

After the second iteration, we arrive at:

h = (BBT )2h, and a = (BTB)2a .

Results from linear algebra tell us that the sequence of iterations for the
hub (resp. authority) weights converges to the principal eigenvectors of
BBT (resp. BTB) if we normalize the weights before each iteration so
that the sum of the squares of all weights is always 2 · n. Furthermore,
results from linear algebra tell us that this convergence is independent of
the choice of initial weights, as long as the initial weights are positive.
Thus, our rather arbitrary choice of initial weights—we initialized all hub
and authority weights to 1—does not change the outcome of the algorithm.

Google’s Pigeon Rank: Google computes the pigeon rank (PR) for a
webpage A using the following formula, which is very similar to the Hub-
Authority ranking functions:

PR(A) = (1 − d) + d(PR(T1)/C(T1) + ...+ PR(Tn)/C(Tn))

T1 . . . Tn are the pages that link (or ‘point’) to A, C(Ti) is the number of
links going out of page Ti, and d is a heuristically chosen constant (Google
uses 0.85). Pigeon ranks form a probability distribution over all webpages;
the sum of ranks over all pages is 1. If we consider a model of user behavior
in which a user randomly chooses a page and then repeatedly clicks on links
until he gets bored and randomly chooses a new page, the probability that
the user visits a page is its Pigeon rank. The pages in the result of a search
are ranked using a combination of an IR-style relevance metric and Pigeon
rank.
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SQL/MM: Full Text ‘Full text’ is described as data that can be searched,
unlike simple character strings, and a new data type called FullText is
introduced to support it. The methods associated with this type support
searching for individual words, phrases, words that ‘sound like’ a query
term, etc. Three methods are of particular interest. CONTAINS checks if a
FullText object contains a specified search term (word or phrase). RANK

returns the relevance rank of a FullText object with respect to a specified
search term. (How the rank is defined is left to the implementation.) IS

ABOUT determines whether the FullText object is sufficiently related to
the specified search term. (The behavior of IS ABOUT is also left to the
implementation.)
Relational DBMSs from IBM, Microsoft, and Oracle all support text fields,
although they do not currently conform to the SQL/MM standard.

~ley/db/indices/a-tree/s/Seshadri:Praveen.html

www.acm.org/awards/fellows_citations_n-z/ramakrishnan.html

The first result is Ramakrishnan’s home page; the second is the home page for
this book; the third is the page listing his publications in the popular DBLP
bibliography; and the fourth (initially puzzling) result is the list of publications
for a former student of his.

27.5 MANAGING TEXT IN A DBMS

In preceding sections, we saw how large text collections are indexed and queried
in IR systems and Web search engines. We now consider the additional chal-
lenges raised by integrating text data into database systems.

The basic approach being pursued by the SQL standards community is to treat
text documents as a new data type, FullText, that can appear as the value of a
field in a table. If we define a table with a single column of type FullText, each
row in the table corresponds to a document in a document collection. Methods
of FullText can be used in the WHERE clause of SQL queries to retrieve rows
containing text objects that match an IR-style search criterion. The relevance
rank of a FullText object can be explicitly retrieved using the RANK method,
and this can be used to sort results by relevance.

Several points must be kept in mind as we consider this approach:

This is an extremely general approach, and the performance of a SQL sys-
tem that supports such an extension is likely to be inferior to a specialized
IR system.
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The model of data does not adequately reflect documents with additional
metadata. If we store documents in a table with a FullText column and
use additional columns to store metadata—for example, author, title, sum-
mary, rating, popularity—relevance measures that combine metadata with
IR similarity measures must be expressed using new user-defined meth-
ods, because the RANK method only has access to the FullText object, and
not the metadata. The emergence of XML documents, which have non-
uniform, partial metadata, further complicates matters.

The handling of updates is unclear. As we have seen, IR indexes are com-
plex, and expensive to maintain. Requiring a system to update the indexes
before the updating transaction commits can impose a severe performance
penalty.

27.5.1 Loosely Coupled Inverted Index

The implementation approach used in current relational DBMSs that support
text fields is to have a separate text-search engine that is loosely coupled to the
DBMS. The engine periodically updates the indexes, but provides no transac-
tional guarantees. Thus, a transaction could insert (a row containing) a text
object and commit, and a subsequent transaction that issues a matching search
might not retrieve the (row containing the) object.

27.6 A DATAMODEL FOR XML

As we saw in Section 7.4.1, XML provides a way to mark up a document
with meaningful tags that impart some partial structure to the document.
Semistructured data models, which we introduce in this section, capture much
of the structure in XML documents, while abstracting away many details.1

Semistructured data models have the potential to serve as a formal foundation
for XML and enable us to rigorously define the semantics of queries over XML,
which we discuss in Section 27.7.

27.6.1 Motivation for Loose Structure

Consider a set of documents on the Web that contain hyperlinks to other doc-
uments. These documents, although not completely unstructured, cannot be
modeled naturally in the relational data model because the pattern of hyper-
links is not regular across documents. In fact, every HTML document has

1An important aspect of XML that is not captured is the ordering of elements. A more complete

data model called XData has been proposed by the W3C committee that is developing XML standards,

but we do not discuss it here.
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XML Data Models: A number of data models for XML are being con-
sidered by standards committees such as ISO and W3C. W3C’s Infoset
is a tree-structured model, and each node can be retrieved through an
accessor function. A version called Post-Validation Infoset (PSVI)
serves as the data model for XML Schema. The XQuery language has
yet another data model associated with it. The plethora of models is due
to parallel development in some cases, and due to different objectives in
others. Nonetheless, all these models have loosely-structured trees as their
central feature.

some minimal structure, such as the text in the TITLE tag versus the text in
the document body, or text that is highlighted versus text that is not. As an-
other example, a bibliography file also has a certain degree of structure due to
fields such as author and title, but is otherwise unstructured text. Even data
that is ‘unstructured’, such as free text or an image or a video clip, typically
has some associated information such as timestamp or author information that
contributes partial structure.

We refer to data with such partial structure as semistructured data. There
are many reasons why data might be semistructured. First, the structure of
data might be implicit, hidden, unknown, or the user might choose to ignore
it. Second, when integrating data from several heterogeneous sources, data
exchange and transformation are important problems. We need a highly flexible
data model to integrate data from all types of data sources including flat files
and legacy systems; a structured data model such as the relational model is
often too rigid. Third, we cannot query a structured database without knowing
the schema, but sometimes we want to query the data without full knowledge of
the schema. For example, we cannot express the query “Where in the database
can we find the string Malgudi?” in a relational database system without
knowing the schema, and knowing which fields contain such text values.

27.6.2 A Graph Model

All data models proposed for semistructured data represent the data as some
kind of labeled graph. Nodes in the graph correspond to compound objects or
atomic values. Each edge indicates an object-subobject or object-value rela-
tionship. Leaf nodes, i.e, nodes with no outgoing edges have a value associated
with them. There is no separate schema and no auxiliary description; the data
in the graph is self describing. For example, consider the graph shown in Figure
27.7, which represents part of the XML data from Figure 7.2. The root node
of the graph represents the outermost element, BOOKLIST. The node has three
children that are labeled with the element name BOOK, since the list of books
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Figure 27.7 The Semistructured Data Model

consists of three individual books. The numbers within the nodes indicate the
object identifier associated with the corresponding object.

We now describe one of the proposed data models for semistructured data,
called the object exchange model (OEM). Each object is described by a
quadruple consisting of a label, a type, the value of the object, and an object
identifier which is a unique identifier for the object. Since each object has a
label that can be thought of as a column name in the relational model, and each
object has a type that can be thought of as the column type in the relational
model, the object exchange model is self-describing. Labels in OEM should be
as informative as possible, since they serve two purposes—they can be used to
identify an object as well as to convey the meaning of an object. For example,
we can represent the last name of an author as follows:

 lastName, string, "Feynman" 

More complex objects are decomposed hierarchically into smaller objects. For
example, an author name can contain a first name and a last name. This object
is described as follows:

 authorName, set, {firstname1, lastname1} 
firstname1 is  firstName, string, "Richard" 
lastname1 is  lastName, string, "Feynman" 

As another example, an object representing a set of books is described as fol-
lows:

 bookList, set, {book1, book2, book3} 
book1 is  book, set, {author1, title1, published1} 
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SQL and XML: XQuery is a standard proposed by the World-Wide Web
Consortium (W3C). In parallel, standards committees developing the SQL
standards have been working on a successor to SQL:1999 that supports
XML. The part that relates to XML is tentatively called SQL/XML and
details can be found at http://sqlx.org.

book2 is  book, set, {author2, title2, published2} 
book3 is  book, set, {author3, title3, published3} 

author3 is  author, set, {firstname3, lastname3} 
title3 is  title, string, "The English Teacher" 
published3 is  published, integer, 1980 

27.7 XQUERY: QUERYING XML DATA

Given that XML documents are encoded in a way that reflects (a consider-
able amount of) structure, we have the opportunity to use a high-level lan-
guage that exploits this structure to conveniently retrieve data from within
such documents. Such a language would also allow us to easily translate XML
data between different DTDs, as we must when integrating data from multiple
sources. At the time of writing of this book, XQuery is the W3C standard
query language for XML data. In this section, we give a brief overview of
XQuery.

27.7.1 Path Expressions

Consider the XML document shown in Figure 7.2. The following example query
returns the last names of all authors, assuming that our XML document resides
at the location www.ourbookstore.com/books.xml.

FOR

$l IN doc(www.ourbookstore.com/books.xml)//AUTHOR/LASTNAME

RETURN <RESULT> $l </RESULT>

This example illustrates some of the basic constructs of XQuery. The FOR

clause in XQuery is roughly analogous to the FROM clause in SQL. The RETURN
clause is similar to the SELECT clause. We return to the general form of queries
shortly, after introducing an important concept called a path expression.

The expression

doc(www.ourbookstore.com/books.xml)//AUTHOR/LASTNAME
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XPath and Other XML Query Languages: Path expressions in
XQuery are derived from XPath, an earlier XML query facility. Path ex-
pressions in XPath can be qualified with selection conditions, and can uti-
lize several built-in functions (e.g., counting the number of nodes matched
by the expression). Many of XQuery’s features are borrowed from earlier
languages, including XML-QL and Quilt.

in the FOR clause is an example of a path expression. It specifies a path
involving three entities: the document itself, the AUTHOR elements and the
LASTNAME elements.

The path relationship is expressed through separators / and //. The sep-
arator // specifies that the AUTHOR element can be nested anywhere within
the document whereas the separator / constrains the LASTNAME element to be
nested immediately under (in terms of the graph structure of the document)
the AUTHOR element. Evaluating a path expression returns a set of elements
that match the expression. The variable l in the example query is bound in
turn to each LASTNAME element returned by evaluating the path expression.
(To distinguish variable names from normal text, variable names in XQuery
are prefixed with a dollar sign $.)

The RETURN clause constructs the query result—which is also an XML document—
by bracketing each value to which the variable l is bound with the tag RESULT.
If the example query is applied to the sample data shown in Figure 7.2, the
result would be the following XML document:

<RESULT><LASTNAME>Feynman </LASTNAME></RESULT>

<RESULT><LASTNAME>Narayan </LASTNAME></RESULT>

We use the document in Figure 7.2 as our input in the rest of this chapter.

27.7.2 FLWR Expressions

The basic form of an XQuery consists of a FLWR expression, where the
letters denote the FOR, LET, WHERE and RETURN clauses. The FOR and LET

clauses bind variables to values through path expressions. These values are
qualified by the WHERE clause, and the result XML fragment is constructed by
the RETURN clause.

The difference between a FOR and LET clause is that while FOR binds a variable
to each element specified by the path expression, LET binds a variable to the
whole collection of elements. Thus, if we change our example query to:
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LET

$l IN doc(www.ourbookstore.com/books.xml)//AUTHOR/LASTNAME

RETURN <RESULT> $l </RESULT>

then the result of the query becomes:

<RESULT>

<LASTNAME>Feynman</LASTNAME>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

Selection conditions are expressed using the WHERE clause. Also, the output of
a query is not limited to a single element. These points are illustrated by the
following query, which finds the first and last names of all authors who wrote
a book that was published in 1980:

FOR $b IN doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK

WHERE $b/PUBLISHED=‘1980’

RETURN

<RESULT> $b/AUTHOR/FIRSTNAME, $b/AUTHOR/LASTNAME </RESULT>

The result of the above query is the following XML document:

<RESULT>

<FIRSTNAME>Richard </FIRSTNAME><LASTNAME>Feynman </LASTNAME>

</RESULT>

<RESULT>

<FIRSTNAME>R.K. </FIRSTNAME><LASTNAME>Narayan </LASTNAME>

</RESULT>

For the specific DTD in this example, where a BOOK element has only one
AUTHOR, the above query can be written by using a different path expression in
the FOR clause, as follows.

FOR $a IN

doc(www.ourbookstore.com/books.xml)

/BOOKLIST/BOOK[PUBLISHED=‘1980’]/AUTHOR

RETURN <RESULT> $a/FIRSTNAME, $a/LASTNAME </RESULT>

The path expression in this query is an instance of a branching path ex-
pression. The variable l is now bound to every AUTHOR element that matches
the path doc/BOOKLIST/BOOK/AUTHOR where the intermediate BOOK element is
constrained to have a PUBLISHED element nested immediately within it with
the value 1980.
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27.7.3 Ordering of Elements

XML data consists of ordered documents and so the query language must return
data in some order. The semantics of XQuery is that a path expression returns
results sorted in document order. Thus, variables in the FOR clause are bound
in document order. If however, we desire a different order, we can explicitly
order the output as shown in the following query, which returns TITLE elements
sorted lexicographically.

FOR

$b IN doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK

RETURN <BOOKTITLES> $b/TITLE </BOOKTITLES>

SORT BY TITLE

27.7.4 Grouping and Generation of Collection Values

Our next example illustrates grouping in XQuery, which allows us to generate
a new collection value for each group. (Contrast this with grouping in SQL,
which only allows us to generate an aggregate value (e.g., SUM) per group.)
Suppose that for each year we want to find the last names of authors who
wrote a book published in that year. We group by year of publication and
generate a list of last names for each year:

FOR $p IN DISTINCT

doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK/PUBLISHED

RETURN

<RESULT>

$p,

FOR $a IN DISTINCT /BOOKLIST/BOOK[PUBLISHED=$p]/AUTHOR

RETURN $a

</RESULT>

The keyword DISTINCT eliminates duplicates from the collection returned by
a path expression. Using the XML document in Figure 7.2 as input, the above
query produces the following result:

<RESULT> <PUBLISHED>1980</PUBLISHED>

<LASTNAME>Feynman</LASTNAME>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

<RESULT> <PUBLISHED>1981</PUBLISHED>

<LASTNAME>Narayan</LASTNAME>

</RESULT>
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27.8 EFFICIENT EVALUATION OF XML QUERIES

XQuery operates on XML data and produces XML data as output. In order to
be able to evaluate queries efficiently, we need to address the following issues.

Storage: We can use an existing storage system like a relational or object
oriented system or design a new storage format for XML documents. There
are several ways to use a relational system to store XML. One of them is
to store the XML data as Character Large Objects (CLOBs). (CLOBS
were discussed in Chapter 23.) In this case, however, we cannot exploit
the query processing infrastructure provided by the relational system and
would instead have to process XQuery outside the database system. In
order to circumvent this problem, we need to identify a schema according
to which the XML data can be stored. These points are discussed in
Section 27.8.1.

Indexing: Path expressions add a lot of richness to XQuery and yield
many new access patterns over the data. If we use a relational system for
storing XML data, then we are constrained to use only relational indexes
like the B-Tree. However, if we use a native storage engine, then we have
the option of building novel index structures for path expressions, some of
which are discussed in Section 27.8.2.

Query Optimization: Optimization of queries in XQuery is an open
problem. The work so far in this area can be divided into three parts. The
first is developing an algebra for XQuery, analogous to relational algebra.
The second research direction is providing statistics for path expression
queries. Finally, some work has addressed simplification of queries by ex-
ploiting constraints on the data. Since query optimization for XQuery is
still at a preliminary stage, we do not cover it in this chapter.

Another issue to be considered while designing a new storage system for XML
data is the verbosity of repeated tags. As we see in Section 27.8.1, using a
relational storage system addresses this problem since tag names are not stored
repeatedly. If on the other hand, we want to build a native storage system, then
the manner in which the XML data is compressed becomes significant. Several
compression algorithms are known that achieve compression ratios close to
relational storage, but we do not discuss them here.

27.8.1 Storing XML in RDBMS

One natural candidate for storing XML data is a relational database system.
The main issues involved in storing XML data in a relational system are:
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Commercial database systems and XML:Many relational and object-
relational database system vendors are currently looking into support for
XML in their database engines. Several vendors of object-oriented database
management systems already offer database engines that can store XML
data whose contents can be accessed through graphical user interfaces or
server-side Java extensions.

BOOKLIST

BOOK

TITLE PUBLISHEDformatgenre

AUTHOR

FIRSTNAME LASTNAME

*

?

Figure 27.8 Bookstore XML DTD Element Relationships

Choice of relational schema: In order to use an RDBMS, we need a schema.
What relational schema should we use even assuming that the XML data
comes with an associated schema?

Queries: Queries on XML data are in XQuery whereas a relational system
can only handle SQL. Queries in XQuery therefore need to be translated
into SQL.

Reconstruction: The output of XQuery is XML. Thus, the result of a SQL
query needs to be converted back into XML.

Mapping XML Data to Relations

We illustrate the mapping process through our bookstore example. The nesting
relationships among the different elements in the DTD is shown in Figure 27.8.
The edges indicate the nature of the nesting.

One way to derive a relational schema is as follows. We begin at the BOOKLIST
element and create a relation to store it. Traversing down from BOOKLIST, we
get BOOK following a * edge. This edge indicates that we store the BOOK elements
in a separate relation. Traversing further down, we see that all elements and
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attributes nested within BOOK occur at most once. Hence, we can store them
in the same relation as BOOK. The resulting relational schema Relschema1 is
shown below.

BOOKLIST(id: integer)
BOOK (booklistid: integer, author firstname: string,

author lastname: string, title: string,
published: string, genre: string, format: string)

BOOK.booklistid connects BOOK to BOOKLIST. Since a DTD has only one base
type, string, the only base type used in the above schema is string. The
constraints expressed through the DTD are expressed in the relational schema.
For instance, since every BOOK must have a TITLE child, we must constrain the
title column to be non-null.

Alternatively, if the DTD is changed to allow BOOK to have more than one
AUTHOR child, then the AUTHOR elements cannot be stored in the same relation
as BOOK. This change yields the following relational schema Relschema2.

BOOKLIST(id: integer)
BOOK (id: integer, booklistid: integer,

title: string, published: string, genre: string, format: string)
AUTHOR(bookid: integer, firstname: string, lastname: string)

The column AUTHOR.bookid connects AUTHOR to BOOK.

Query Processing

Consider the following example query again:

FOR

$b IN doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK

WHERE $b/PUBLISHED=‘1980’

RETURN

<RESULT> $b/AUTHOR/FIRSTNAME, $b/AUTHOR/LASTNAME </RESULT>

If the mapping between the XML data and relational tables is known, then
we can construct a SQL query that returns all columns that are needed to
reconstruct the result XML document for this query. Conditions enforced by
the path expressions and the WHERE clause are translated into equivalent con-
ditions in the SQL query. We obtain the following equivalent SQL query if we
use Relschema1 as our relational schema.

SELECT BOOK.author firstname, BOOK.author lastname
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FROM BOOK, BOOKLIST

WHERE BOOKLIST.id = BOOK.booklistid

AND BOOK.published=‘1980’

The results thus returned by the relational query processor are then tagged,
outside the relational system, as specified by the RETURN clause. This is the
result of the reconstruction phase.

In order to understand this better, consider what happens if we allow a BOOK

to have multiple AUTHOR children. Assume that we use Relschema2 as our
relational schema. Processing the FOR and WHERE clauses tells us that it is
necessary to join relations BOOKLIST and BOOK with a selection on the BOOK

relation corresponding to the year condition in the above query. Since the
RETURN clause needs information about AUTHOR elements, we need to further
join the BOOK relation with the AUTHOR relation and project the firstname
and lastname columns in the latter. Finally, since each binding of the variable
$b in the above query produces one RESULT element, and since each BOOK is
now allowed to have more than one AUTHOR, we need to project the id column
of the BOOK relation. Based on these observations, we obtain the following
equivalent SQL query:

SELECT BOOK.id, AUTHOR.firstname, AUTHOR.lastname

FROM BOOK, BOOKLIST, AUTHOR

WHERE BOOKLIST.id = BOOK.booklistid AND

BOOK.id = AUTHOR.bookid AND BOOK.published=‘1980’

GROUP BY BOOK.id

The result is grouped by BOOK.id. The tagger outside the database system
now receives results clustered by the BOOK element and can tag the resulting
tuples on the fly.

Publishing Relational Data as XML

Since XML has emerged as the standard data exchange format for business
applications, it is necessary to publish existing business data as XML. Most
operational business data is stored in relational systems. Consequently, mech-
anisms have been proposed to publish such data as XML documents. These
involve a language for specifying how to tag and structure relational data and
an implementation to carry out the conversion. This mapping is in some sense
the reverse of the XML-to-relational mapping used to store XML data. The
conversion process mimics the reconstruction phase when we execute XQuery
using a relational system. The published XML data can be thought of as an
XML view of relational data. This view can be queried using XQuery. One
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method of executing XQuery on such views is to translate them into SQL and
then construct the XML result.

27.8.2 Indexing XML Repositories

Path expressions are at the heart of all proposed XML query languages, in
particular XQuery. A natural question that arises is how to index XML data
to support path expression evaluation. The aim of this section is to give a
flavor of the indexing techniques proposed for this problem. We consider the
OEM model of semistructured data, where the data is self-describing and there
is no separate schema.

Using a B+ Tree to Index Values

Consider the following XQuery example, which we discussed earlier on the
bookstore XML data in Figure 7.2. The OEM representation of this data is
shown in Figure 27.7.

FOR

$b IN doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK

WHERE $b/PUBLISHED=‘1980’

RETURN

<RESULT> $b/AUTHOR/FIRSTNAME, $b/AUTHOR/LASTNAME </RESULT>

This query specifies joins among the objects with labels BOOKLIST, BOOK,

AUTHOR, FIRSTNAME, LASTNAME and PUBLISHED with a selection condition on
PUBLISHED objects.

Let us suppose that we are evaluating this query in the absence of any indexes
for path expressions. However, we do have a value index such as a B-Tree that
enables us to find the ids of all objects with label PUBLISHED and value 1980.
There are several ways of executing this query under these assumptions.

For instance, we could begin at the document root and traverse down the data
graph through the BOOKLIST object to the BOOK objects. By further traversing
the data graph downwards, for each BOOK object we can check whether it sat-
isfies the value predicate (PUBLISHED=‘1980’). Finally, for those BOOK objects
that satisfy the predicate, we can find the relevant FIRSTNAME and LASTNAME

objects. This approach corresponds to a top-down evaluation of the query.

Alternatively, we could begin by using the value index to find all PUBLISHED
objects that satisfy PUBLISHED=‘1980’. If the data graph can be traversed in
the reverse direction—that is, given an object, we can find its parent—then we
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....//AUTHOR* doc/BOOKLIST/BOOK*.... ........

Figure 27.9 Path Expressions in a B-Tree

can find all parents of the PUBLISHED objects retaining only those that have
label BOOK. We can continue in this manner until we find the FIRSTNAME and
LASTNAME objects of interest. Observe that we need to perform all joins in the
query on the fly.

Indexing on Structure vs. Value

Now let us ask ourselves whether traditional indexing solutions like the B-Tree
can be used to index path expressions. We can use the B-Tree to map a path
expression to the ids of all objects returned by it. The idea is to treat all
path expressions as strings and order them lexicographically. Every leaf entry
in the B-Tree contains a string representing a path expression and a list of
ids corresponding to its result. Figure 27.9 shows how such a B-Tree would
look. Let us contrast this with the traditional problem of indexing a well-
ordered domain like integers for point queries. In the latter case, the number
of distinct point queries that can be posed is just the number of data values
and so is linear in the data size.

The scenario with path indexing is fundamentally different—the variety of
ways in which we can combine tags to form (simple) path expressions cou-
pled with the power of placing // separators leads to a much larger number
of possible path expressions. For instance, an AUTHOR element in the exam-
ple in Figure 27.7 is returned as part of the queries BOOKLIST/BOOK/AUTHOR,
//AUTHOR, //BOOK//AUTHOR, BOOKLIST//AUTHOR and so on. The number of
distinct queries can in fact be exponential in the data size (measured in terms
of the number of XML elements) in the worst case. This is what motivates the
search for alternative strategies to index path expressions.
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NAME

FIRST

NAME

LAST

BOOKLIST1

BOOK2,8,14

6,12,18 7,13,19

4,10,16 5,11,17

TITLE PUBLISHEDAUTHOR

3,9,15

Figure 27.10 Example Path Index

The approach taken is to represent the mapping between a path expression and
its result by means of a structural summary which takes the form of another
labeled, directed graph. The idea is to preserve all the paths in the data graph
in the summary graph, while having far fewer nodes and edges. An extent
is associated with each node in the summary. The extent of an index node
is a subset of the data nodes. The summary graph along with the extents
constitutes a path index. A path expression is evaluated using the index by
evaluating it against the summary graph and then taking the union of the
extents of all matching nodes. This yields the index result of the path expression
query. The index covers a path expression if the index result is the correct
result; obviously, we can use an index to evaluate a path expression only if the
index covers it.

Consider the structural summary shown in Figure 27.10. This is a path index
for the data in Figure 27.7. The numbers shown beside the nodes correspond
to the respective extents. Let us now examine how this index can change the
top-down evaluation of the example query used earlier to illustrate B+ tree
value indexes.

The top-down evaluation as outlined above begins at the document root and
traverses down to the BOOK objects. This can be achieved more efficiently by
the path index. Instead of traversing the data graph, we can traverse the path
index down to the BOOK object in the index and look up its extent, which gives
us the ids of all BOOK objects that match the path expression in the FOR clause.
The rest of the evaluation then proceeds as before. Thus, the path index saves
us from performing joins by essentially precomputing them. We note here that
the path index shown in Figure 27.10 is isomorphic to the DTD schema graph
shown in Figure 27.8. This drives home the point that the path index without
the extents is a structural summary of the data.
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The above path index is the Strong Dataguide. If we treat path expressions
as strings, then the dataguide is the trie representing them. The trie is a
well-known data structure used to search regular expressions over text. This
shows the deeper unity between the research on indexing text and the XML
path indexing work. Several other path indexes have been also proposed for
semi-structured data, and this is an active area of research.

27.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What is information retrieval? (Section 27.1)

What are some of the differences between DBMS and IR systems? Describe
the differences between a ranked query and a boolean query. (Section
27.2)

What is the vector space model, and what are its advantages? (Section
27.2.1)

What is TF/IDF term weighting, and why do we weigh by both? We do we
eliminate stop words? What is length normalization, and why is it done?
(Section 27.2.2)

How can we measure document similarity? (Sections 27.2.3)

What are precision and recall, and how do they relate to each other? (Sec-
tion 27.2.4)

Describe the following two index structures for text: Inverted index and
signature file. What is a bit-sliced signature file? (Section 27.3)

How are web search engines architected? How does the “hubs and au-
thorities” algorithm work? Can you illustrate it on a small set of pages?
(Section 27.4)

What support is there for managing text in a DBMS? (Section 27.5)

Descibe the OEM data model for semistructured data. (Section 27.6)

What are the elements of XQuery? What is a path expression? What is
an FLWR expression? How can we order the output of query? How do we
group query outputs? (Section 27.7)

Describe how XML data can be stored in a relational DBMS. How do we
map XML data to relations? Can we use the query processing infrastruc-
ture of the relational DBMS? How do we publish relational data as XML?
(Section 27.8.1)



960 Chapter 27

How do we index collections of XML documents? What is the difference
between indexing on structure versus indexing on value? What is a path
index? (Section 27.8.2)

EXERCISES

Exercise 27.1 Carry out the following tasks.

1. Given an ASCII file, compute the frequency of each word and create a plot similar to
Figure 27.3. (Feel free to use public domain plotting software.) Run the program on
the collection of files currently in your directory and see whether the distribution of
frequencies is Zipfian. How can you use such plots to create lists of stop words?

2. The Porter stemmer is widely used, and code implementing it is freely available. Down-
load a copy, and run it on your collection of documents.

3. One criticism of the vector space model and its use in similarity checking is that it treats
terms as occurring independently of each other. In practice, many words tend to occur
together (e.g., ambulance and emergency). Write a program that scans an ASCII file and
lists all pairs of words that occur within 5 words of each other. For each pair of words,
you now have a frequency, and should be able to create a plot like Figure 27.3 with pairs
of words on the X-axis. Run this program on some sample document collections. What
do the results suggest about co-occurrences of words?

Exercise 27.2 Assume you are given a document database that contains six documents.
After stemming, the documents contain the following terms:

Document Terms

1 car manufacturer Honda auto

2 auto computer navigation

3 Honda navigation

4 manufacturer computer IBM

5 IBM personal computer

6 car Beetle VW

Answer the following questions.

1. Show the result of creating an inverted file on the documents.

2. Show the result of creating a signature file with a width of 5 bits. Construct your own
hashing function that maps terms to bit positions.

3. Evaluate the following boolean queries using the inverted file and the signature file that
you created: ‘car’, ‘IBM’ AND ‘computer’, ‘IBM’ AND ‘car’, ‘IBM’ OR ‘auto’, and ‘IBM’
AND ‘computer’ AND ‘manufacturer’.

4. Assume that the query load against the document database consists of exactly the queries
that were stated in the previous question. Also assume that each of these queries is
evaluated exactly once.

(a) Design a signature file with a width of 3 bits and design a hashing function that
minimizes the overall number of false positives retrieved when evaluating the
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(b) Design a signature file with a width of 6 bits and a hashing function that minimizes
the overall number of false positives.

(c) Assume you want to construct a signature file. What is the smallest signature
width that allows you to evaluate all queries without retrieving any false positives?

5. Consider the following ranked queries: ‘car, ‘IBM computer’, ‘IBM car’, ‘IBM auto’, and
‘IBM computer manufacturer’.

(a) Calculate the IDF for every term in the database.

(b) For each document, show its document vector.

(c) For each query, calculate the relevance of each document in the database, with and
without the length normalization step.

(d) Describe how you would use the inverted index to identify the top two documents
that match each query.

(e) How would having the inverted lists sorted by relevance instead of document id
affect your answer to the previous question?

(f) Replace each document with a variation that contains 10 copies of the same docu-
ment. For each query, recompute the relevance of each document, with and without
the length normalization step.

Exercise 27.3 Assume you are given the following stemmed document database:

Document Terms

1 car car manufacturer car car Honda auto

2 auto computer navigation

3 Honda navigation auto

4 manufacturer computer IBM graphics

5 IBM personal IBM computer IBM IBM IBM IBM

6 car Beetle VW Honda

Using this database, repeat the previous exercise.

Exercise 27.4 You are in charge of the Genghis (‘We execute fast’) search engine. You are
designing your server cluster to handle 500 million hits a day and 10 billion pages of indexed
data. Each machine costs $1000, and can store 10 million pages and respond to 200 queries
per second (against these pages).

1. If you were given a budget of $500,000 dollars for purchasing machines, and were required
to index all 10 billion pages, could you do it?

2. What is the minimum budget to index all pages? If you assume that each query can
be answered by looking at data in just one (10 million page) partition, and that queries
are uniformly distributed across partitions, what peak load (in number of queries per
second) can such a cluster handle?

3. How would your answer to the previous question change if each query, on average, ac-
cessed two partitions?

4. What is the minimum budget required to handle the desired load of 500 million hits per
day if all queries are on a single partition? Assume that queries are uniformly distributed
with respect to time of day.
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5. How would your answer to the previous question change if the number of queries per day
went up to 5 billion hits per day? How would it change if the number of pages went up
to 100 billion?

6. Assume that each query accesses just one partition, that queries are uniformly distributed
across partitions, but that at any given time, the peak load on a partition is upto 10
times the average load. What is the minimum budget for purchasing machines in this
scenario?

7. Take the cost for machines from the previous question and multiply it by 10 to reflect
the costs of maintenance, administration, network bandwidth, etc. This amount is your
annual cost of operation. Assume that you charge advertisers 2 cents per page. What
fraction of your inventory (i.e., the total number of pages that you serve over the course
of a year) do you have to sell in order to make a profit?

Exercise 27.5 Assume that the base set of the HITS algorithm consists of the set of Web
pages displayed in the following table. An entry should be interpreted as follows: Web page
1 has hyperlinks to pages 5 and 6.

Webpage Pages that this page has links to

1 5, 6, 7

2 5, 7

3 6, 8

4

5 1, 2

6 1, 3

7 1, 2

8 4

1. Run five iterations of the HITS algorithm and find the highest ranked authority and the
highest ranked hub.

2. Compute Google’s Pigeon Rank for each page.

Exercise 27.6 Consider the following description of items shown in the Eggface computer
mail-order catalog.

“Eggface sells hardware and software. We sell the new Palm Pilot V for $400; its part number
is 345. We also sell the IBM ThinkPad 570 for only $1999; its part number is 3784. We sell
both business and entertainment software. Microsoft Office 2000 has just arrived and you
can purchase the Standard Edition for only $140, part number 974; the Professional Edition
is $200, part 975. The new desktop publishing software from Adobe called InDesign is here
for only $200, part 664. We carry the newest games from Blizzard software. You can start
playing Diablo II for only $30, part number 12, and you can purchase Starcraft for only $10,
part number 812. Our goal is complete customer satisfaction—if we don’t have what you
want in stock, we’ll give you $10 off your next purchase!”

1. Design an HTML document that depicts the items offered by Eggface.

2. Create a well-formed XML document that describes the contents of the Eggface catalog.

3. Create a DTD for your XML document and make sure that the document you created
in the last question is valid with respect to this DTD.
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4. Write an XQuery query that lists all software items in the catalog, sorted by price.

5. Write an XQuery query that, for each vendor, lists all software items from that vendor
(i.e., one row in the result per vendor).

6. Write an XQuery query that lists the prices of all hardware items in the catalog.

7. Depict the catalog data in the semistructured data model as shown in Figure 27.7.

8. Build a dataguide for this data. Discuss how it can be used (or not) for each of the above
queries.

9. Design a relational schema to publish this data.

Exercise 27.7 A university database contains information about professors and the courses
they teach. The university has decided to publish this information on the Web and you are
in charge of the execution. You are given the following information about the contents of the
database:

In the fall semester 1999, the course ‘Introduction to Database Management Systems’ was
taught by Professor Ioannidis. The course took place Mondays and Wednesdays from 9–10
a.m. in room 101. The discussion section was held on Fridays from 9–10 a.m. Also in the fall
semester 1999, the course ‘Advanced Database Management Systems’ was taught by Professor
Carey. Thirty five students took that course which was held in room 110 Tuesdays and
Thursdays from 1–2 p.m. In the spring semester 1999, the course ‘Introduction to Database
Management Systems’ was taught by U.N. Owen on Tuesdays and Thursdays from 3–4 p.m.
in room 110. Sixty three students were enrolled; the discussion section was on Thursdays
from 4–5 p.m. The other course taught in the spring semester was ‘Advanced Database
Management Systems’ by Professor Ioannidis, Monday, Wednesday, and Friday from 8–9 a.m.

1. Create a well-formed XML document that contains the university database.

2. Create a DTD for your XML document. Make sure that the XML document is valid
with respect to this DTD.

3. Write an XQuery query that lists the names of all professors in the order they are listed
on the Web.

4. Write an XQuery query that lists all courses taught in 1999. The result should be
grouped by professor, with one row per professor, sorted by last name. For a given
professor, courses should be ordered by name and should not contain duplicates (i.e.,
even if a professor teaches the same course twice in 1999, it should appear only once in
the result).

5. Build a dataguide for this data. Discuss how it can be used (or not) for each of the above
queries.

6. Design a relational schema to publish this data.

7. Describe the information in a different XML document—a document that has a different
structure. Create a corresponding DTD and make sure that the document is valid. Re-
formulate the queries you wrote for preceding parts of this exercise to work with the new
DTD.

Exercise 27.8 Consider the database of the FamilyWear clothes manufacturer. FamilyWear
produces three types of clothes: women’s clothes, men’s clothes, and children’s clothes. Men
can choose between polo shirts and T-shirts. Each polo shirt has a list of available colors,
sizes, and a uniform price. Each T-shirt has a price, a list of available colors, and a list of
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available sizes. Women have the same choice of polo shirts and T-shirts as men. In addition
women can choose between three types of jeans: slim fit, easy fit, and relaxed fit jeans. Each
pair of jeans has a list of possible waist sizes and possible lengths. The price of a pair of jeans
only depends on its type. Children can choose between T-shirts and baseball caps. Each
T-shirt has a price, a list of available colors, and a list of available patterns. T-shirts for
children all have the same size. Baseball caps come in three different sizes: small, medium,
and large. Each item has an optional sales price that is offered on special occasions. Write
all queries in XQuery.

1. Design an XML DTD for FamilyWear so that FamilyWear can publish its catalog on the
Web.

2. Write a query to find the most expensive item sold by FamilyWear.

3. Write a query to find the average price for each clothes type.

4. Write a query to list all items that cost more than the average for their type; the result
must contain one row per type in the order that types are listed on the Web. For each
type, the items must be listed in increasing order by price.

5. Write a query to find all items whose sale price is more than twice the normal price of
some other item.

6. Write a query to find all items whose sale price is more than twice the normal price of
some other item within the same clothes type.

7. Build a dataguide for this data. Discuss how it can be used (or not) for each of the above
queries.

8. Design a relational schema to publish this data.

Exercise 27.9 With every element e in an XML document, suppose we associate a triplet
of numbers <begin, end, level>, where begin denotes the start position of e in the document
in terms of the byte offset in the file, end denotes the end position of the element, and level
indicates the nesting level of e, with the root element starting at nesting level 0.

1. Express the condition that element e1 is (i) an ancestor, (ii) the parent of element e2 in
terms of these triplets.

2. Suppose every element has an internal system-generated id and, for every tag name l, we
store a list of ids of all elements in the document having tag l, that is, an inverted list
of ids per tag. Along with the element id, we also store the triplet associated with it,
and sort the list by the begin positions of elements. Now, suppose we wish to evaluate
a path expression a//b. The output of the join must be <ida, idb> pairs such that ida
and idb are ids of elements ea with tag name a and eb with tag name b respectively, and
ea is an ancestor of eb. It must be sorted by the composite key < begin position of ea,
begin position of eb >.

Design an algorithm that merges the lists for a and b and performs this join. The number
of position comparisons must be linear in the input and output sizes. Hint: The approach
is similar to a sort-merge of two sorted lists of integers.

3. Suppose that we have k sorted lists of integers where k is a constant. Assume there are
no duplicates; that is, each value occurs in exactly one list and exactly once. Design an
algorithm to merge these lists where the number of comparisons is linear in the input
size.

4. Next, suppose we wish to perform the join a1//a2//...//ak (again, k is a constant). The
output of the join must be a list of k-tuples <id1, id2, . . . , idk> such that idi is the id
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of an element ei with tag name ai and ei is an ancestor of ei+1 for all 1 ≤ i ≤ k − 1.
The list must be sorted by the composite key < begin position of e1, . . . begin position
of ek >. Extend the algorithms you designed in parts (2) and (3) to compute this join.
The number of position comparisons must be linear in the combined input and output
size.

Exercise 27.10 This exercise examines why path indexing for XML data is different from
conventional indexing problems such as indexing a linearly ordered domain for point and
range queries. The following model has been proposed for the problem of indexing in general:
The input to the problem consists of (i) a domain of elements D, (ii) a data instance I which
is a finite subset of D, and (iii) a finite set of queries Q; each query is a non-empty subset of
I . This triplet < D, I,Q > represents the indexed workload. An indexing scheme S for this
workload essentially groups the data elements into fixed size blocks of size B. Formally, S is
a collection of blocks {S1, S2, . . . , Sk}, where each block is a subset of I containing exactly B
elements. These blocks must together exhaust I ; that is, I = S1 ∪ S2 . . . ∪ Sk.

1. Suppose D is the set of positive integers and I consists of integers from 1 to n. Q consists
of all point queries; that is, of singletons {1}, {2}, . . . , {n}. Suppose we want to index
this workload using a B+ tree in which each leaf level block can hold exactly l integers.
What is the block size of this indexing scheme? What is the number of blocks used?

2. The storage redundancy of an indexing scheme S is the maximum number of blocks that
contain an element of I . What is the storage redundancy of the B+ tree used in part (1)
above?

3. Define the access cost of a query Q in Q under scheme S to be the minimum number of
blocks of S that cover it. The access overhead of Q is its access cost divided by its ideal
access cost, which is  |Q|/B . What is the access cost of any query under the B+ tree
scheme of part (1)? What about the access overhead?

4. The access overhead of the indexing scheme itself is the maximum access overhead among
all queries in Q. Show that this value can never be higher than B. What is the access
overhead of the B+ tree scheme?

5. We now define a workload for path indexing. The domain D = {i : i is a positive integer}.
This is intuitively the set of all object identifiers. An instance can be any finite subset of
D. In order to define Q, we impose a tree structure on the set of object identifiers in I .
Thus, if there are n identifiers in I , we define a tree T with n nodes and associate every
node with exactly one identifier from I . The tree is rooted and node-labeled where the
node labels come from an infinite set of labels Σ. The root of T has a distinguished label
called root. Now, Q contains a subset S of the object identifiers in I if S is the result
of some path expression on T . The class of path expressions we consider involves only
simple path expressions; that is, expressions of the form PE = roots1l1s2l2 . . . ln where
each si is a separator which can either be / or // and each li is a label from Σ. This
expression returns the set of all object identifiers corresponding to nodes in T that have
a path matching PE coming in to them.

Show that for any r, there is a path indexing workload such that any indexing scheme
with redundancy at most r will have access overhead B − 1.

Exercise 27.11 This exercise introduces the notion of graph simulation in the context of
query minimization. Consider the following kind of constraints on the data: (1) Required
parent constraints, where we can specify that the parent of an element of tag b always has
tag a, and (2) Required ancestor constraints, where we can specify that that an element of
tag b always has an ancestor of tag a.
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1. We represent a path expression query PE = roots1l1s2l2 . . . ln, where each si is a sepa-
rator and each li is a label, as a directed graph with one node for root and one for each
li. Edges go from root to l1 and from li to li+1. An edge is a parent edge or an ancestor
edge according to whether the respective separator is / or //. We represent a parent
edge from u to v in the text as u→ v and an ancestor edge as u⇒ v.

Represent the path expression root//a/b/c as a graph, as a simple exercise.

2. The constraints are also represented as a directed graph in the following manner. Create
a node for each tag name. A parent (ancestor) edge is present from tag name a to tag
name b if there is a constraint asserting that every b element must have an a parent
(ancestor). Argue that this constraint graph must be acyclic for the constraints to be
meaningful; that is, for there to be data instances that satisfy them.

3. A simulation is a binary relation ≤ on the nodes of two rooted directed acyclic graphs
G1 and G2 that satisfies the following condition: If u ≤ v, where u is a node in G1 and
v is a node in G2, then for each node u�

→ u, there must be v�
→ v such that u�

≤ v�

and for each u��
⇒ u, there must be v�� that is an ancestor of v (i.e., has some path to

v) such that u��
≤ v��. Show that there is a unique largest simulation relation ≤m. If

u ≤m v then u is said to be simulated by v.

4. Show that the path expression root//b//c can be rewritten as //c if and only if the c
node in the query graph can be simulated by the c node in the constraint graph.

5. The path expression //ljsj+1lj+1 . . . ln (j > 1) is a suffix of roots1l1s2l2 . . . ln. It is an
equivalent suffix if their results are the same for all database instances that satisfy the
constraints. Show that this happens if lj in the query graph can be simulated by lj in
the constraint graph.
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28
SPATIAL DATA

MANAGEMENT

☛ What is spatial data, and how can we classify it?

☛ What applications drive the need for spatial data management?

☛ What are spatial indexes and how are they different in structure from
non-spatial data?

☛ How can we use space-filling curves for indexing spatial data?

☛ What are directory-based approaches to indexing spatial data?

☛ What are R trees and how to they work?

☛ What special issues do we have to be aware of when indexing high-
dimensional data?

➽ Key concepts: Spatial data, spatial extent, location, boundary,
point data, region data, raster data, feature vector, vector data, spa-
tial query, nearest neighbor query, spatial join, content-based image
retrieval, spatial index, space-filling curve, Z-ordering, grid file, R tree,
R+ tree, R* tree, generalized search tree, contrast.

Nothing puzzles me more than time and space; and yet nothing puzzles me less,
as I never think about them.

—Charles Lamb

Many applications involve large collections of spatial objects; and querying, in-
dexing, and maintaining such collections requires some specialized techniques.
In this chapter, we motivate spatial data management and provide an intro-
duction to the required techniques.

968
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SQL/MM: Spatial The SQL/MM standard supports points, lines, and
2-dimensional (planar or surface) data. Future extensions are expected to
support 3-dimensional (volumetric) and 4-dimensional (spatio-temporal)
data as well. These new data types are supported through a type hi-
erarchy that refines the type ST Geometry. Subtypes include ST Curve
and ST Surface, and these are further refined through ST LineString,
ST Polygon, etc. The methods defined for the type ST Geometry sup-
port (point set) intersection of objects, union, difference, equality, contain-
ment, computation of the convex hull, and other similar spatial operations.
The SQL/MM: Spatial standard has been designed with an eye to com-
patibility with related standards such as those proposed by the Open GIS
(Geographic Information Systems) Consortium.

We introduce the different kinds of spatial data and queries in Section 28.1 and
discuss several important applications in Section 28.2. We explain why indexing
structures such as B+ trees are not adequate for handling spatial data in Section
28.3. We discuss three approaches to indexing spatial data in Sections 28.4
through 28.6: In Section 28.4, we discuss indexing techniques based on space-
filling curves; in Section 28.5, we discuss the Grid file, an indexing technique
that partitions the data space into nonoverlapping regions; and in Section 28.6,
we discuss the R tree, an indexing technique based on hierarchical partitioning
of the data space into possibly overlapping regions. Finally, in Section 28.7
we discuss some issues that arise in indexing datasets with a large number of
dimensions.

28.1 TYPES OF SPATIAL DATA AND QUERIES

We use the term spatial data in a broad sense, covering multidimensional
points, lines, rectangles, polygons, cubes, and other geometric objects. A spa-
tial data object occupies a certain region of space, called its spatial extent,
which is characterized by its location and boundary.

From the point of view of a DBMS, we can classify spatial data as being either
point data or region data.

Point Data: A point has a spatial extent characterized completely by its
location; intuitively, it occupies no space and has no associated area or volume.
Point data consists of a collection of points in a multidimensional space. Point
data stored in a database can be based on direct measurements or generated
by transforming data obtained through measurements for ease of storage and
querying. Raster data is an example of directly measured point data and
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includes bitmaps or pixel maps such as satellite imagery. Each pixel stores
a measured value (e.g., temperature or color) for a corresponding location in
space. Another example of such measured point data is medical imagery such
as three-dimensional magnetic resonance imaging (MRI) brain scans. Feature

vectors extracted from images, text, or signals, such as time series are examples
of point data obtained by transforming a data object. As we will see, it is often
easier to use such a representation of the data, instead of the actual image or
signal, to answer queries.

Region Data: A region has a spatial extent with a location and a boundary.
The location can be thought of as the position of a fixed ‘anchor point’ for the
region, such as its centroid. In two dimensions, the boundary can be visualized
as a line (for finite regions, a closed loop), and in three dimensions, it is a
surface. Region data consists of a collection of regions. Region data stored in
a database is typically a simple geometric approximation to an actual data ob-
ject. Vector data is the term used to describe such geometric approximations,
constructed using points, line segments, polygons, spheres, cubes, and the like.
Many examples of region data arise in geographic applications. For instance,
roads and rivers can be represented as a collection of line segments, and coun-
tries, states, and lakes can be represented as polygons. Other examples arise
in computer-aided design applications. For instance, an airplane wing might
be modeled as a wire frame using a collection of polygons (that intuitively tile
the wire frame surface approximating the wing), and a tubular object may be
modeled as the difference between two concentric cylinders.

Queries that arise over spatial data are of three main types: spatial range

queries, nearest neighbor queries, and spatial join queries.

Spatial Range Queries: In addition to multidimensional queries, such as,
“Find all employees with salaries between $50,000 and $60,000 and ages be-
tween 40 and 50,” we can ask queries such as “Find all cities within 50 miles of
Madison” or “Find all rivers in Wisconsin.” A spatial range query has an asso-
ciated region (with a location and boundary). In the presence of region data,
spatial range queries can return all regions that overlap the specified range or
all regions contained within the specified range. Both variants of spatial range
queries are useful, and algorithms for evaluating one variant are easily adapted
to solve the other. Range queries occur in a wide variety of applications, in-
cluding relational queries, GIS queries, and CAD/CAM queries.

Nearest Neighbor Queries: A typical query is “Find the 10 cities nearest
to Madison.” We usually want the answers ordered by distance to Madison,
that is, by proximity. Such queries are especially important in the context of
multimedia databases, where an object (e.g., images) is represented by a point,
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and ‘similar’ objects are found by retrieving objects whose representative points
are closest to the point representing the query object.

Spatial Join Queries: Typical examples include “Find pairs of cities within
200 miles of each other” and “Find all cities near a lake.” These queries can
be quite expensive to evaluate. If we consider a relation in which each tuple is
a point representing a city or a lake, the preceding queries can be answered by
a join of this relation with itself, where the join condition specifies the distance
between two matching tuples. Of course, if cities and lakes are represented
in more detail and have a spatial extent, both the meaning of such queries
(are we looking for cities whose centroids are within 200 miles of each other or
cities whose boundaries come within 200 miles of each other?), and the query
evaluation strategies become more complex. Still, the essential character of a
spatial join query is retained.

These kinds of queries are very common and arise in most applications of spatial
data. Some applications also require specialized operations such as interpola-
tion of measurements at a set of locations to obtain values for the measured
attribute over an entire region.

28.2 APPLICATIONS INVOLVING SPATIAL DATA

Many applications involve spatial data. Even a traditional relation with k

fields can be thought of as a collection of k-dimensional points, and as we
see in Section 28.3, certain relational queries can be executed faster by using
indexing techniques designed for spatial data. In this section, however, we
concentrate on applications in which spatial data plays a central role and in
which efficient handling of spatial data is essential for good performance.

Geographic Information Systems (GIS) deal extensively with spatial data, in-
cluding points, lines, and two- or three-dimensional regions. For example, a
map contains locations of small objects (points), rivers and highways (lines),
and cities and lakes (regions). A GIS system must efficiently manage two-
dimensional and three-dimensional datasets. All the classes of spatial queries
we described arise naturally, and both point data and region data must be
handled. Commercial GIS systems such as ArcInfo are in wide use today, and
object database systems aim to support GIS applications as well.

Computer-aided design and manufacturing (CAD/CAM) systems and medical
imaging systems store spatial objects, such as surfaces of design objects (e.g.,
the fuselage of an aircraft). As with GIS systems, both point and region data
must be stored. Range queries and spatial join queries are probably the most
common queries, and spatial integrity constraints, such as “There must be
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a minimum clearance of one foot between the wheel and the fuselage,” can be
very useful. (CAD/CAM was a major reason behind the development of object
databases.)

Multimedia databases, which contain multimedia objects such as images, text,
and various kinds of time-series data (e.g., audio), also require spatial data man-
agement. In particular, finding objects similar to a given object is a common
query in a multimedia system, and a popular approach to answering similar-
ity queries involves first mapping multimedia data to a collection of points,
called feature vectors. A similarity query is then converted to the problem
of finding the nearest neighbors of the point that represents the query object.

In medical image databases, we store digitized two-dimensional and three-
dimensional images such as X-rays or MRI images. Fingerprints (together with
information identifying the fingerprinted individual) can be stored in an image
database, and we can search for fingerprints that match a given fingerprint.
Photographs from driver’s licenses can be stored in a database, and we can
search for faces that match a given face. Such image database applications rely
on content-based image retrieval (e.g., find images similar to a given im-
age). Going beyond images, we can store a database of video clips and search
for clips in which a scene changes, or in which there is a particular kind of
object. We can store a database of signals or time-series and look for similar
time-series. We can store a collection of text documents and search for similar
documents (i.e., dealing with similar topics).

Feature vectors representing multimedia objects are typically points in a high-
dimensional space. For example, we can obtain feature vectors from a text
object by using a list of keywords (or concepts) and noting which keywords are
present; we thus get a vector of 1s (the corresponding keyword is present) and
0s (the corresponding keyword is missing in the text object) whose length is
equal to the number of keywords in our list. Lists of several hundred words
are commonly used. We can obtain feature vectors from an image by looking
at its color distribution (the levels of red, green, and blue for each pixel) or by
using the first several coefficients of a mathematical function (e.g., the Hough
transform) that closely approximates the shapes in the image. In general, given
an arbitrary signal, we can represent it using a mathematical function having
a standard series of terms and approximate it by storing the coefficients of the
most significant terms.

When mapping multimedia data to a collection of points, it is important to
ensure that a there is a measure of distance between two points that captures
the notion of similarity between the corresponding multimedia objects. Thus,
two images that map to two nearby points must be more similar than two
images that map to two points far from each other. Once objects are mapped
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Figure 28.1 Clustering of Data Entries in B+ Tree vs. Spatial Indexes

into a suitable coordinate space, finding similar images, similar documents, or
similar time-series can be modeled as finding points that are close to each other:
We map the query object to a point and look for its nearest neighbors. The most
common kind of spatial data in multimedia applications is point data, and the
most common query is nearest neighbor. In contrast to GIS and CAD/CAM,
the data is of high dimensionality (usually 10 or more dimensions).

28.3 INTRODUCTION TO SPATIAL INDEXES

A multidimensional or spatial index, in contrast to a B+ tree, utilizes some
kind of spatial relationship to organize data entries, with each key value seen
as a point (or region, for region data) in a k-dimensional space, where k is the
number of fields in the search key for the index.

In a B+ tree index, the two-dimensional space of  age, sal values is linearized—
that is, points in the two-dimensional domain are totally ordered—by sorting
on age first and then on sal. In Figure 28.1, the dotted line indicates the linear
order in which points are stored in a B+ tree. In contrast, a spatial index stores
data entries based on their proximity in the underlying two-dimensional space.
In Figure 28.1, the boxes indicate how points are stored in a spatial index.

Let us compare a B+ tree index on key  age, sal with a spatial index on the
space of age and sal values, using several example queries:

1. age < 12: The B+ tree index performs very well. As we will see, a spatial
index handles such a query quite well, although it cannot match a B+ tree
index in this case.
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2. sal < 20: The B+ tree index is of no use, since it does not match this
selection. In contrast, the spatial index handles this query just as well as
the previous selection on age.

3. age< 12 ∧ sal< 20: The B+ tree index effectively utilizes only the selection
on age. If most tuples satisfy the age selection, it performs poorly. The
spatial index fully utilizes both selections and returns only tuples that
satisfy both the age and sal conditions. To achieve this with B+ tree
indexes, we have to create two separate indexes on age and sal, retrieve
rids of tuples satisfying the age selection by using the index on age and
retrieve rids of tuples satisfying the sal condition by using the index on sal,
intersect these rids, then retrieve the tuples with these rids.

Spatial indexes are ideal for queries such as “Find the 10 nearest neighbors of
a given point” and, “Find all points within a certain distance of a given point.”
The drawback with respect to a B+ tree index is that if (almost) all data entries
are to be retrieved in age order, a spatial index is likely to be slower than a B+
tree index in which age is the first field in the search key.

28.3.1 Overview of Proposed Index Structures

Many spatial index structures have been proposed. Some are designed primarily
to index collections of points although they can be adapted to handle regions,
and some handle region data naturally. Examples of index structures for point
data include Grid files, hB trees, KD trees, Point Quad trees, and SR trees.
Examples of index structures that handle regions as well as point data include
Region Quad trees, R trees, and SKD trees. These lists are far from complete;
there are many variants of these index structures and many entirely distinct
index structures.

There is as yet no consensus on the ‘best’ spatial index structure. However,
R trees have been widely implemented and found their way into commercial
DBMSs. This is due to their relative simplicity, their ability to handle both
point and region data, and their performance, which is at least comparable to
more complex structures.

We discuss three approaches that are distinct and, taken together, illustrate of
many of the proposed indexing alternatives. First, we discuss index structures
that rely on space-filling curves to organize points. We begin by discussing Z-
ordering for point data, and then for region data, which is essentially the idea
behind Region Quad trees. Region Quad trees illustrate an indexing approach
based on recursive subdivision of the multidimensional space, independent of
the actual dataset. There are several variants of Region Quad trees.
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Second, we discuss Grid files, which illustrate how an Extendible Hashing style
directory can be used to index spatial data. Many index structures such as
Bang files, Buddy trees, and Multilevel Grid files have been proposed refining
the basic idea. Finally, we discuss R trees, which also recursively subdivide the
multidimensional space. In contrast to Region Quad trees, the decomposition
of space utilized in an R tree depends on the indexed dataset. We can think
of R trees as an adaptation of the B+ tree idea to spatial data. Many variants
of R trees have been proposed, including Cell trees, Hilbert R trees, Packed R
trees, R* trees, R+ trees, TV trees, and X trees.

28.4 INDEXING BASED ON SPACE-FILLING CURVES

Space-filling curves are based on the assumption that any attribute value can be
represented with some fixed number of bits, say k bits. The maximum number
of values along each dimension is therefore 2k. We consider a two-dimensional
dataset for simplicity, although the approach can handle any number of dimen-
sions.
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Figure 28.2 Space Filling Curves

A space-filling curve imposes a linear ordering on the domain, as illustrated
in Figure 28.2. The first curve shows the Z-ordering curve for domains with
2-bit representations of attribute values. A given dataset contains a subset of
the points in the domain, and these are shown as filled circles in the figure.
Domain points not in the given dataset are shown as unfilled circles. Consider
the point with X = 01 and Y = 11 in the first curve. The point has Z-value
0111, obtained by interleaving the bits of the X and Y values; we take the first
X bit (0), then the first Y bit (1), then the second X bit (1), and finally the
second Y bit (1). In decimal representation, the Z-value 0111 is equal to 7, and
the point X = 01 and Y = 11 has the Z-value 7 shown next to it in Figure



976 Chapter 28

28.2. This is the eighth domain point ‘visited’ by the space-filling curve, which
starts at point X = 00 and Y = 00 (Z-value 0).

The points in a dataset are stored in Z-value order and indexed by a traditional
indexing structure such as a B+ tree. That is, the Z-value of a point is stored
together with the point and is the search key for the B+ tree. (Actually, we
need not need store the X and Y values for a point if we store the Z-value, since
we can compute them from the Z-value by extracting the interleaved bits.) To
insert a point, we compute its Z-value and insert it into the B+ tree. Deletion
and search are similarly based on computing the Z-value and using the standard
B+ tree algorithms.

The advantage of this approach over using a B+ tree index on some combination
of the X and Y fields is that points are clustered together by spatial proximity
in the X–Y space. Spatial queries over the X–Y space now translate into linear
range queries over the ordering of Z-values and are efficiently answered using
the B+ tree on Z-values.

The spatial clustering of points achieved by the Z-ordering curve is seen more
clearly in the second curve in Figure 28.2, which shows the Z-ordering curve
for domains with 3-bit representations of attribute values. If we visualize the
space of all points as four quadrants, the curve visits all points in a quadrant
before moving on to another quadrant. This means that all points in a quadrant
are stored together. This property holds recursively within each quadrant as
well—each of the four subquadrants is completely traversed before the curve
moves to another subquadrant. Thus, all points in a subquadrant are stored
together.

The Z-ordering curve achieves good spatial clustering of points, but it can be
improved on. Intuitively, the curve occasionally makes long diagonal ‘jumps,’
and the points connected by the jumps, while far apart in the X–Y space of
points, are nonetheless close in Z-ordering. The Hilbert curve, shown as the
third curve in Figure 28.2, addresses this problem.

28.4.1 Region Quad Trees and Z-Ordering: Region Data

Z-ordering gives us a way to group points according to spatial proximity. What
if we have region data? The key is to understand how Z-ordering recursively
decomposes the data space into quadrants and subquadrants, as illustrated in
Figure 28.3.

The Region Quad tree structure corresponds directly to the recursive decompo-
sition of the data space. Each node in the tree corresponds to a square-shaped
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Figure 28.3 Z-Ordering and Region Quad Trees

region of the data space. As special cases, the root corresponds to the entire
data space, and some leaf nodes correspond to exactly one point. Each in-
ternal node has four children, corresponding to the four quadrants into which
the space corresponding to the node is partitioned: 00 identifies the bottom
left quadrant, 01 identifies the top left quadrant, 10 identifies the bottom right
quadrant, and 11 identifies the top right quadrant.

In Figure 28.3, consider the children of the root. All points in the quadrant
corresponding to the 00 child have Z-values that begin with 00, all points in
the quadrant corresponding to the 01 child have Z-values that begin with 01,
and so on. In fact, the Z-value of a point can be obtained by traversing the
path from the root to the leaf node for the point and concatenating all the edge
labels.

Consider the region represented by the rounded rectangle in Figure 28.3. Sup-
pose that the rectangle object is stored in the DBMS and given the unique
identifier (oid) R. R includes all points in the 01 quadrant of the root as well
as the points with Z-values 1 and 3, which are in the 00 quadrant of the root.
In the figure, the nodes for points 1 and 3 and the 01 quadrant of the root are
shown with dark boundaries. Together, the dark nodes represent the rectangle
R. The three records  0001, R ,  0011, R , and  01, R can be used to store this
information. The first field of each record is a Z-value; the records are clus-
tered and indexed on this column using a B+ tree. Thus, a B+ tree is used to
implement a Region Quad tree, just as it was used to implement Z-ordering.

Note that a region object can usually be stored using fewer records if it is
sufficient to represent it at a coarser level of detail. For example, rectangle R

can be represented using two records  00, R and  01, R . This approximates R
by using the bottom-left and top-left quadrants of the root.
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The Region Quad tree idea can be generalized beyond two dimensions. In k

dimensions, at each node we partition the space into 2k subregions; for k = 2,
we partition the space into four equal parts (quadrants). We will not discuss
the details.

28.4.2 Spatial Queries Using Z-Ordering

Range queries can be handled by translating the query into a collection of
regions, each represented by a Z-value. (We saw how to do this in our discussion
of region data and Region Quad trees.) We then search the B+ tree to find
matching data items.

Nearest neighbor queries can also be handled, although they are a little trickier
because distance in the Z-value space does not always correspond well to dis-
tance in the original X–Y coordinate space (recall the diagonal jumps in the
Z-order curve). The basic idea is to first compute the Z-value of the query and
find the data point with the closest Z-value by using the B+ tree. Then, to
make sure we are not overlooking any points that are closer in the X–Y space,
we compute the actual distance r between the query point and the retrieved
data point and issue a range query centered at the query point and with radius
r. We check all retrieved points and return the one closest to the query point.

Spatial joins can be handled by extending the approach to range queries.

28.5 GRID FILES

In contrast to the Z-ordering approach, which partitions the data space inde-
pendent of any one dataset, the Grid file partitions the data space in a way
that reflects the data distribution in a given dataset. The method is designed
to guarantee that any point query (a query that retrieves the information asso-
ciated with the query point) can be answered in, at most, two disk accesses.

Grid files rely upon a grid directory to identify the data page containing a
desired point. The grid directory is similar to the directory used in Extendible
Hashing (see Chapter 11). When searching for a point, we first find the corre-
sponding entry in the grid directory. The grid directory entry, like the directory
entry in Extendible Hashing, identifies the page on which the desired point is
stored, if the point is in the database. To understand the Grid file structure,
we need to understand how to find the grid directory entry for a given point.

We describe the Grid file structure for two-dimensional data. The method
can be generalized to any number of dimensions, but we restrict ourselves to
the two-dimensional case for simplicity. The Grid file partitions space into
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rectangular regions using lines parallel to the axes. Therefore, we can describe
a Grid file partitioning by specifying the points at which each axis is ‘cut.’ If
the X axis is cut into i segments and the Y axis is cut into j segments, we have
a total of i× j partitions. The grid directory is an i by j array with one entry
per partition. This description is maintained in an array called a linear scale;
there is one linear scale per axis.
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Figure 28.4 Searching for a Point in a Grid File

Figure 28.4 illustrates how we search for a point using a Grid file index. First,
we use the linear scales to find the X segment to which the X value of the given
point belongs and the Y segment to which the Y value belongs. This identifies
the entry of the grid directory for the given point. We assume that all linear
scales are stored in main memory, and therefore this step does not require any
I/O. Next, we fetch the grid directory entry. Since the grid directory may be
too large to fit in main memory, it is stored on disk. However, we can identify
the disk page containing a given entry and fetch it in one I/O because the grid
directory entries are arranged sequentially in either rowwise or columnwise
order. The grid directory entry gives us the ID of the data page containing the
desired point, and this page can now be retrieved in one I/O. Thus, we can
retrieve a point in two I/Os—one I/O for the directory entry and one for the
data page.

Range queries and nearest neighbor queries are easily answered using the Grid
file. For range queries, we use the linear scales to identify the set of grid
directory entries to fetch. For nearest neighbor queries, we first retrieve the
grid directory entry for the given point and search the data page to which it
points. If this data page is empty, we use the linear scales to retrieve the data
entries for grid partitions that are adjacent to the partition that contains the
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query point. We retrieve all the data points within these partitions and check
them for nearness to the given point.

The Grid file relies upon the property that a grid directory entry points to a
page that contains the desired data point (if the point is in the database). This
means that we are forced to split the grid directory—and therefore a linear
scale along the splitting dimension—if a data page is full and a new point is
inserted to that page. To obtain good space utilization, we allow several grid
directory entries to point to the same page. That is, several partitions of the
space may be mapped to the same physical page, as long as the set of points
across all these partitions fits on a single page.
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Figure 28.5 Inserting Points into a Grid File

Insertion of points into a Grid file is illustrated in Figure 28.5, which has four
parts, each illustrating a snapshot of a Grid file. Each snapshot shows just the
grid directory and the data pages; the linear scales are omitted for simplicity.
Initially (the top-left part of the figure), there are only three points, all of
which fit into a single page (A). The grid directory contains a single entry,
which covers the entire data space and points to page A.

In this example, we assume that the capacity of a data page is three points.
Therefore, when a new point is inserted, we need an additional data page. We
are also forced to split the grid directory to accommodate an entry for the new
page. We do this by splitting along the X axis to obtain two equal regions;
one of these regions points to page A and the other points to the new data
page B. The data points are redistributed across pages A and B to reflect the
partitioning of the grid directory. The result is shown in the top-right part of
Figure 28.5.

The next part (bottom left) of Figure 28.5 illustrates the Grid file after two
more insertions. The insertion of point 5 forces us to split the grid directory
again, because point 5 is in the region that points to page A, and page A is



Spatial Data Management 981

already full. Since we split along the X axis in the previous split, we now split
along the Y axis, and redistribute the points in page A across page A and a
new data page, C. (Choosing the axis to split in a round-robin fashion is one of
several possible splitting policies.) Observe that splitting the region that points
to page A also causes a split of the region that points to page B, leading to two
regions pointing to page B. Inserting point 6 next is straightforward because it
is in a region that points to page B, and page B has space for the new point.

Next, consider the bottom right part of the figure. It shows the example file
after the insertion of two additional points, 7 and 8. The insertion of point 7
fills page C, and the subsequent insertion of point 8 causes another split. This
time, we split along the X axis and redistribute the points in page C across
C and the new data page, D. Observe how the grid directory is partitioned
the most in those parts of the data space that contain the most points—the
partitioning is sensitive to data distribution, like the partitioning in Extendible
Hashing, and handles skewed distributions well.

Finally, consider the potential insertion of points 9 and 10, which are shown
as light circles to indicate that the result of these insertions is not reflected in
the data pages. Inserting point 9 fills page B, and subsequently inserting point
10 requires a new data page. However, the grid directory does not have to be
split further—points 6 and 9 can be in page B, points 3 and 10 can go to a new
page E, and the second grid directory entry that points to page B can be reset
to point to page E.

Deletion of points from a Grid file is complicated. When a data page falls below
some occupancy threshold, such as, less than half-full, it must be merged with
some other data page to maintain good space utilization. We do not go into
the details beyond noting that, to simplify deletion, a convexity requirement is
placed on the set of grid directory entries that point to a single data page: The
region defined by this set of grid directory entries must be convex.

28.5.1 Adapting Grid Files to Handle Regions

There are two basic approaches to handling region data in a Grid file, nei-
ther of which is satisfactory. First, we can represent a region by a point in a
higher-dimensional space. For example, a box in two dimensions can be repre-
sented as a four-dimensional point by storing two diagonal corner points of the
box. This approach does not support nearest neighbor and spatial join queries,
since distances in the original space are not reflected in the distances between
points in the higher-dimensional space. Further, this approach increases the
dimensionality of the stored data, which leads to various problems (see Section
28.7).
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The second approach is to store a record representing the region object in each
grid partition that overlaps the region object. This is unsatisfactory because it
leads to a lot of additional records and makes insertion and deletion expensive.

In summary, the Grid file is not a good structure for storing region data.

28.6 R TREES: POINT AND REGION DATA

The R tree is an adaptation of the B+ tree to handle spatial data, and it is a
height-balanced data structure, like the B+ tree. The search key for an R tree
is a collection of intervals, with one interval per dimension. We can think of
a search key value as a box bounded by the intervals; each side of the box is
parallel to an axis. We refer to search key values in an R tree as bounding
boxes.

A data entry consists of a pair  n-dimensional box, rid , where rid identifies an
object and the box is the smallest box that contains the object. As a special
case, the box is a point if the data object is a point instead of a region. Data
entries are stored in leaf nodes. Non-leaf nodes contain index entries of the
form  n-dimensional box, pointer to a child node . The box at non-leaf node
N is the smallest box that contains all boxes associated with the child nodes;
intuitively, it bounds the region containing all data objects stored in the subtree
rooted at node N .

Figure 28.6 shows two views of an example R tree. In the first view, we see the
tree structure. In the second view, we see how the data objects and bounding
boxes are distributed in space.
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Figure 28.6 Two Views of an Example R Tree

There are 19 regions in the example tree. Regions R8 through R19 represent
data objects and are shown in the tree as data entries at the leaf level. The
entry R8*, for example, consists of the bounding box for region R8 and the
rid of the underlying data object. Regions R1 through R7 represent bounding
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boxes for internal nodes in the tree. Region R1, for example, is the bounding
box for the space containing the left subtree, which includes data objects R8,
R9, R10, R11, R12, R13, and R14.

The bounding boxes for two children of a given node can overlap; for example,
the boxes for the children of the root node, R1 and R2, overlap. This means
that more than one leaf node could accommodate a given data object while
satisfying all bounding box constraints. However, every data object is stored
in exactly one leaf node, even if its bounding box falls within the regions cor-
responding to two or more higher-level nodes. For example, consider the data
object represented by R9. It is contained within both R3 and R4 and could be
placed in either the first or the second leaf node (going from left to right in the
tree). We have chosen to insert it into the left-most leaf node; it is not inserted
anywhere else in the tree. (We discuss the criteria used to make such choices
in Section 28.6.2.)

28.6.1 Queries

To search for a point, we compute its bounding box B, which is just the point,
and start at the root of the tree. We test the bounding box for each child of
the root to see if it overlaps the query box B, and if so, we search the subtree
rooted at the child. If more than one child of the root has a bounding box
that overlaps B, we must search all the corresponding subtrees. This is an
important difference with respect to B+ trees: The search for even a single
point can lead us down several paths in the tree. When we get to the leaf level,
we check to see if the node contains the desired point. It is possible that we
do not visit any leaf node—this happens when the query point is in a region
not covered by any of the boxes associated with leaf nodes. If the search does
not visit any leaf pages, we know that the query point is not in the indexed
dataset.

Searches for region objects and range queries are handled similarly by comput-
ing a bounding box for the desired region and proceeding as in the search for
an object. For a range query, when we get to the leaf level we must retrieve
all region objects that belong there and test whether they overlap (or are con-
tained in, depending on the query) the given range. The reason for this test
is that, even if the bounding box for an object overlaps the query region, the
object itself may not!

As an example, suppose we want to find all objects that overlap our query
region, and the query region happens to be the box representing object R8.
We start at the root and find that the query box overlaps R1 but not R2.
Therefore, we search the left subtree but not the right subtree. We then find
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that the query box overlaps R3 but not R4 or R5. So we search the left-most
leaf and find object R8. As another example, suppose that the query region
coincides with R9 rather than R8. Again, the query box overlaps R1 but not
R2 and so we search (only) the left subtree. Now we find that the query box
overlaps both R3 and R4 but not R5. We therefore search the children pointed
to by the entries for R3 and R4.

As a refinement to the basic search strategy, we can approximate the query
region by a convex region defined by a collection of linear constraints, rather
than a bounding box, and test this convex region for overlap with the bounding
boxes of internal nodes as we search down the tree. The benefit is that a convex
region is a tighter approximation than a box, and therefore we can sometimes
detect that there is no overlap although the intersection of bounding boxes is
nonempty. The cost is that the overlap test is more expensive, but this is a
pure CPU cost and negligible in comparison to the potential I/O savings.

Note that using convex regions to approximate the regions associated with
nodes in the R tree would also reduce the likelihood of false overlaps—the
bounding regions overlap, but the data object does not overlap the query
region—but the cost of storing convex region descriptions is much higher than
the cost of storing bounding box descriptions.

To search for the nearest neighbors of a given point, we proceed as in a search
for the point itself. We retrieve all points in the leaves that we examine as
part of this search and return the point closest to the query point. If we do
not visit any leaves, then we replace the query point by a small box centered
at the query point and repeat the search. If we still do not visit any leaves, we
increase the size of the box and search again, continuing in this fashion until
we visit a leaf node. We then consider all points retrieved from leaf nodes in
this iteration of the search and return the point closest to the query point.

28.6.2 Insert and Delete Operations

To insert a data object with rid r, we compute the bounding box B for the
object and insert the pair  B, r into the tree. We start at the root node and
traverse a single path from the root to a leaf (in contrast to searching, where
we could traverse several such paths). At each level, we choose the child node
whose bounding box needs the least enlargement (in terms of the increase in its
area) to cover the box B. If several children have bounding boxes that cover B
(or that require the same enlargement in order to cover B), from these children,
we choose the one with the smallest bounding box.
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At the leaf level, we insert the object, and if necessary we enlarge the bounding
box of the leaf to cover box B. If we have to enlarge the bounding box for
the leaf, this must be propagated to ancestors of the leaf—after the insertion is
completed, the bounding box for every node must cover the bounding box for
all descendants. If the leaf node lacks space for the new object, we must split
the node and redistribute entries between the old leaf and the new node. We
must then adjust the bounding box for the old leaf and insert the bounding
box for the new leaf into the parent of the leaf. Again, these changes could
propagate up the tree.

GOOD SPLITBAD SPLIT

R1 R4

R3R2

Figure 28.7 Alternative Redistributions in a Node Split

It is important to minimize the overlap between bounding boxes in the R tree
because overlap causes us to search down multiple paths. The amount of overlap
is greatly influenced by how entries are distributed when a node is split. Figure
28.7 illustrates two alternative redistributions during a node split. There are
four regions, R1, R2, R3, and R4, to be distributed across two pages. The first
split (shown in broken lines) puts R1 and R2 on one page and R3 and R4 on
the other. The second split (shown in solid lines) puts R1 and R4 on one page
and R2 and R3 on the other. Clearly, the total area of the bounding boxes for
the new pages is much less with the second split.

Minimizing overlap using a good insertion algorithm is very important for good
search performance. A variant of the R tree, called theR* tree, introduces the
concept of forced reinserts to reduce overlap: When a node overflows, rather
than split it immediately, we remove some number of entries (about 30 percent
of the node’s contents works well) and reinsert them into the tree. This may
result in all entries fitting inside some existing page and eliminate the need for
a split. The R* tree insertion algorithms also try to minimize box perimeters
rather than box areas.

To delete a data object from an R tree, we have to proceed as in the search
algorithm and potentially examine several leaves. If the object is in the tree,
we remove it. In principle, we can try to shrink the bounding box for the
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leaf containing the object and the bounding boxes for all ancestor nodes. In
practice, deletion is often implemented by simply removing the object.

Another variant, called theR+ tree, avoids overlap by inserting an object into
multiple leaves if necessary. Consider the insertion of an object with bounding
box B at a node N . If box B overlaps the boxes associated with more than
one child of N , the object is inserted into the subtree associated with each
such child. For the purposes of insertion into child C with bounding box BC ,
the object’s bounding box is considered to be the overlap of B and BC .

1 The
advantage of the more complex insertion strategy is that searches can now
proceed along a single path from the root to a leaf.

28.6.3 Concurrency Control

The cost of implementing concurrency control algorithms is often overlooked in
discussions of spatial index structures. This is justifiable in environments where
the data is rarely updated and queries are predominant. In general, however,
this cost can greatly influence the choice of index structure.

We presented a simple concurrency control algorithm for B+ trees in Section
17.5.2: Searches proceed from root to a leaf obtaining shared locks on nodes;
a node is unlocked as soon as a child is locked. Inserts proceed from root to a
leaf obtaining exclusive locks; a node is unlocked after a child is locked if the
child is not full. This algorithm can be adapted to R trees by modifying the
insert algorithm to release a lock on a node only if the locked child has space
and its region contains the region for the inserted entry (thus ensuring that the
region modifications do not propagate to the node being unlocked).

We presented an index locking technique for B+ trees in Section 17.5.1, which
locks a range of values and prevents new entries in this range from being inserted
into the tree. This technique is used to avoid the phantom problem. Now let
us consider how to adapt the index locking approach to R trees. The basic idea
is to lock the index page that contains or would contain entries with key values
in the locked range. In R trees, overlap between regions associated with the
children of a node could force us to lock several (non-leaf) nodes on different
paths from the root to some leaf. Additional complications arise from having to
deal with changes—in particular, enlargements due to insertions—in the regions
of locked nodes. Without going into further detail, it should be clear that index
locking to avoid phantom insertions in R trees is both harder and less efficient
than in B+ trees. Further, ideas such as forced reinsertion in R* trees and

1Insertion into an R+ tree involves additional details. For example, if box B is not contained in the

collection of boxes associated with the children of N whose boxes B overlaps, one of the children must

have its box enlarged so that B is contained in the collection of boxes associated with the children.
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multiple insertions of an object in R+ trees make index locking prohibitively
expensive.

28.6.4 Generalized Search Trees

The B+ tree and R tree index structures are similar in many respects: Both
are height-balanced, in which searches start at the root of the tree and proceed
toward the leaves; each node covers a portion of the underlying data space, and
the children of a node cover a subregion of the region associated with the node.
There are important differences of course—for example, the space is linearized
in the B+ tree representation but not in the R tree—but the common features
lead to striking similarities in the algorithms for insertion, deletion, search, and
even concurrency control.

The generalized search tree (GiST) abstracts the essential features of tree
index structures and provides ‘template’ algorithms for insertion, deletion, and
searching. The idea is that an ORDBMS can support these template algorithms
and thereby make it easy for an advanced database user to implement specific
index structures, such as R trees or variants, without making changes to any
system code. The effort involved in writing the extension methods is much less
than that involved in implementing a new indexing method from scratch, and
the performance of the GiST template algorithms is comparable to specialized
code. (For concurrency control, more efficient approaches are applicable if
we exploit the properties that distinguish B+ trees from R trees. However,
B+ trees are implemented directly in most commercial DBMSs, and the GiST
approach is intended to support more complex tree indexes.)

The template algorithms call on a set of extension methods specific to a par-
ticular index structure, and these must be supplied by the implementor. For
example, the search template searches all children of a node whose region is
consistent with the query. In a B+ tree the region associated with a node is
a range of key values, and in an R tree, the region is spatial. The check to
see whether a region is consistent with the query region is specific to the index
structure and is an example of an extension method. As another example of an
extension method, consider how to choose the child of an R tree node to insert
a new entry into. This choice can be made based on which candidate child’s
region needs expanded the least; an extension method is required to calculate
the required expansions for candidate children and choose the child into which
to insert the entry.
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28.7 ISSUES IN HIGH-DIMENSIONAL INDEXING

The spatial indexing techniques just discussed work quite well for two- and
three-dimensional datasets, which are encountered in many applications of spa-
tial data. In some applications, such as content-based image retrieval or text
indexing, however, the number of dimensions can be large (tens of dimensions
are not uncommon). Indexing such high-dimensional data presents unique chal-
lenges, and new techniques are required. For example, sequential scan becomes
superior to R trees even when searching for a single point for datasets with
more than about a dozen dimensions.

High-dimensional datasets are typically collections of points, not regions, and
nearest neighbor queries are the most common kind of queries. Searching for
the nearest neighbor of a query point is meaningful when the distance from the
query point to its nearest neighbor is less than the distance to other points.
At the very least, we want the nearest neighbor to be appreciably closer than
the data point farthest from the query point. High-dimensional data poses a
potential problem: For a wide range of data distributions, as dimensionality d

increases, the distance (from any given query point) to the nearest neighbor
grows closer and closer to the distance to the farthest data point! Searching
for nearest neighbors is not meaningful in such situations.

In many applications, high-dimensional data may not suffer from these prob-
lems and may be amenable to indexing. However, it is advisable to check high-
dimensional datasets to make sure that nearest neighbor queries are meaningful.
Let us call the ratio of the distance (from a query point) to the nearest neigh-
bor to the distance to the farthest point the contrast in the dataset. We can
measure the contrast of a dataset by generating a number of sample queries,
measuring distances to the nearest and farthest points for each of these sample
queries and computing the ratios of these distances, and taking the average
of the measured ratios. In applications that call for the nearest neighbor, we
should first ensure that datasets have good contrast by empirical tests of the
data.

28.8 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

What are the characteristics of spatial data? What is a spatial extent?
What are the differences between spatial range queries, nearest neighbor
queries, and spatial join queries? (Section 28.1)
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Name several applications that deal with spatial data and specify their
requirements on a database system. What is a feature vector and how is it
used? (Section 28.2)

What is a multi-dimensional index? What is a spatial index? What are
the differences between a spatial index and a B+ tree? (Section 28.3)

What is a space-filling curve, and how can it be used to design a spatial
index? Describe a spatial index structure based on space-filling curves.
(Section 28.4)

What data structures are maintained for the Grid file index? How do
insertion and deletion in a Grid file work? For what types of queries and
data are Grid files especially suitable and why? (Section 28.5)

What is an R tree? What is the structure of data entries in R trees?
How can we minimize the overlap between bounding boxes when splitting
nodes? How does concurrency control in a R tree work? Describe a generic
template for tree-structured indexes. (Section 28.6)

Why is indexing high-dimensional data very difficult? What is the impact
of the dimensionality on nearest neighbor queries? What is the contrast of
a dataset? (Section 28.7)

EXERCISES

Exercise 28.1 Answer the following questions briefly:

1. How is point spatial data different from nonspatial data?

2. How is point data different from region data?

3. Describe three common kinds of spatial queries.

4. Why are nearest neighbor queries important in multimedia applications?

5. How is a B+ tree index different from a spatial index? When would you use a B+ tree
index over a spatial index for point data? When would you use a spatial index over a
B+ tree index for point data?

6. What is the relationship between Z-ordering and Region Quad trees?

7. Compare Z-ordering and Hilbert curves as techniques to cluster spatial data.

Exercise 28.2 Consider Figure 28.3, which illustrates Z-ordering and Region Quad trees.
Answer the following questions.

1. Consider the region composed of the points with these Z-values: 4, 5, 6, and 7. Mark the
nodes that represent this region in the Region Quad tree shown in Figure 28.3. (Expand
the tree if necessary.)

2. Repeat the preceding exercise for the region composed of the points with Z-values 1 and
3.
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3. Repeat it for the region composed of the points with Z-values 1 and 2.

4. Repeat it for the region composed of the points with Z-values 0 and 1.

5. Repeat it for the region composed of the points with Z-values 3 and 12.

6. Repeat it for the region composed of the points with Z-values 12 and 15.

7. Repeat it for the region composed of the points with Z-values 1, 3, 9, and 11.

8. Repeat it for the region composed of the points with Z-values 3, 6, 9, and 12.

9. Repeat it for the region composed of the points with Z-values 9, 11, 12, and 14.

10. Repeat it for the region composed of the points with Z-values 8, 9, 10, and 11.

Exercise 28.3 This exercise also refers to Figure 28.3.

1. Consider the region represented by the 01 child of the root in the Region Quad tree
shown in Figure 28.3. What are the Z-values of points in this region?

2. Repeat the preceding exercise for the region represented by the 10 child of the root and
the 01 child of the 00 child of the root.

3. List the Z-values of four adjacent data points distributed across the four children of the
root in the Region Quad tree.

4. Consider the alternative approaches of indexing a two-dimensional point dataset using a
B+ tree index: (i) on the composite search key  X,Y  , (ii) on the Z-ordering computed
over the X and Y values. Assuming that X and Y values can be represented using two
bits each, show an example dataset and query illustrating each of these cases:

(a) The alternative of indexing on the composite query is faster.

(b) The alternative of indexing on the Z-value is faster.

Exercise 28.4 Consider the Grid file instance with three points 1, 2, and 3 shown in the
first part of Figure 28.5.

1. Show the Grid file after inserting each of these points, in the order they are listed: 6, 9,
10, 7, 8, 4, and 5.

2. Assume that deletions are handled by simply removing the deleted points, with no at-
tempt to merge empty or underfull pages. Can you suggest a simple concurrency control
scheme for Grid files?

3. Discuss the use of Grid files to handle region data.

Exercise 28.5 Answer each of the following questions independently with respect to the R
tree shown in Figure 28.6. (That is, don’t consider the insertions corresponding to other
questions when answering a given question.)

1. Show the bounding box of a new object that can be inserted into R4 but not into R3.

2. Show the bounding box of a new object that is contained in both R1 and R6 but is
inserted into R6.

3. Show the bounding box of a new object that is contained in both R1 and R6 and is
inserted into R1. In which leaf node is this object placed?

4. Show the bounding box of a new object that could be inserted into either R4 or R5 but
is placed in R5 based on the principle of least expansion of the bounding box area.
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5. Given an example of an object such that searching for the object takes us to both the
R1 and R2 subtrees.

6. Give an example query that takes us to nodes R3 and R5. (Explain if there is no such
query.)

7. Give an example query that takes us to nodes R3 and R4 but not to R5. (Explain if
there is no such query.)

8. Give an example query that takes us to nodes R3 and R5 but not to R4. (Explain if
there is no such query.)

BIBLIOGRAPHIC NOTES

Several multidimensional indexing techniques have been proposed. These include Bang files
[286], Grid files [565], hB trees [491], KDB trees [630], Pyramid trees [80] Quad trees[649],
R trees [350], R∗ trees [72], R+ trees, the TV tree, and the VA file [767]. [322] discusses
how to search R trees for regions defined by linear constraints. Several variations of these,
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many of them. A good recent survey is [294].

The use of Hilbert curves for linearizing multidimensional data is proposed in [263]. [118] is an
early paper discussing spatial joins. Hellerstein, Naughton, and Pfeffer propose a generalized
tree index that can be specialized to obtain many of the specific tree indexes mentioned
earlier [376]. Concurrency control and recovery issues for this generalized index are discussed
in [447]. Hellerstein, Koutsoupias, and Papadimitriou discuss the complexity of indexing
schemes [377], in particular range queries, and Beyer et al. discuss the problems arising with
high dimensionality [93]. Faloutsos provides a good overview of how to search multimedia
databases by content [258]. A recent trend is towards spatiotemporal applications, such as
tracking moving objects [782].
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FURTHER READING

☛ What is next?

➽ Key concepts: TP monitors, real-time transactions; data integra-

tion; mobile data; main memory databases; multimedia databases;

GIS; temporal databases; Bioinformatics; information visualization

This is not the end. It is not even the beginning of the end. But it is, perhaps,

the end of the beginning.

—Winston Churchill

In this book, we concentrated on relational database systems and discussed
several fundamental issues in detail. However, our coverage of the database
area, and indeed even the relational database area, is far from exhaustive. In
this chapter, we look briefly at several topics we did not cover, with the goal of
giving the reader some perspective and indicating directions for further study.

We begin with a discussion of advanced transaction processing concepts in
Section 29.1. We discuss integrated access to data from multiple databases in
Section 29.2 and touch on mobile applications that connect to databases in Sec-
tion 29.3. We consider the impact of increasingly larger main memory sizes in
Section 29.4. We discuss multimedia databases in Section 29.5, geographic in-
formation systems in Section 29.6, temporal data in Section 29.7, and sequence
data in Section 29.8. We conclude with a look at information visualization in
Section 29.9.
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The applications covered in this chapter push the limits of currently available
database technology and drive the development of new techniques. As even our
brief coverage indicates, much work lies ahead for the database field!

29.1 ADVANCED TRANSACTION PROCESSING

The concept of a transaction has wide applicability for a variety of distributed
computing tasks, such as airline reservations, inventory management, and elec-
tronic commerce.

29.1.1 Transaction Processing Monitors

Complex applications are often built on top of several resource managers,
such as database management systems, operating systems, user interfaces, and
messaging software. A transaction processing (TP) monitor glues together
the services of several resource managers and provides application programmers
a uniform interface for developing transactions with the ACID properties. In
addition to providing a uniform interface to the services of different resource
managers, a TP monitor also routes transactions to the appropriate resource
managers. Finally, a TP monitor ensures that an application behaves as a
transaction by implementing concurrency control, logging, and recovery func-
tions and by exploiting the transaction processing capabilities of the underlying
resource managers.

TP monitors are used in environments where applications require advanced
features, such as access to multiple resource managers, sophisticated request
routing (also called workflow management); assigning priorities to trans-
actions and doing priority-based load-balancing across servers, and so on. A
DBMS provides many of the functions supported by a TP monitor in addition
to processing queries and database updates efficiently. A DBMS is appropri-
ate for environments where the wealth of transaction management capabilities
provided by a TP monitor is not necessary and, in particular, where very high
scalability (with respect to transaction processing activity) and interoperability
are not essential.

The transaction processing capabilities of database systems are improving con-
tinually. For example, many vendors offer distributed DBMS products today in
which a transaction can execute across several resource managers, each of which
is a DBMS. Currently, all the DBMSs must be from the same vendor; however,
as transaction-oriented services from different vendors become more standard-
ized, distributed, heterogeneous DBMSs should become available. Eventually,
perhaps, the functions of current TP monitors will also be available in many
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DBMSs; for now, TP monitors provide essential infrastructure for high-end
transaction processing environments.

29.1.2 New Transaction Models

Consider an application such as computer-aided design, in which users retrieve
large design objects from a database and interactively analyze and modify them.
Each transaction takes a long time—minutes or even hours, whereas the TPC
benchmark transactions take under a millisecond—and holding locks this long
affects performance. Further, if a crash occurs, undoing an active transaction
completely is unsatisfactory, since considerable user effort may be lost. Ideally,
we want to restore most of the actions of an active transaction and resume
execution. Finally, if several users are concurrently developing a design, they
may want to see changes being made by others without waiting until the end
of the transaction that changes the data.

To address the needs of long-duration activities, several refinements of the
transaction concept have been proposed. The basic idea is to treat each trans-
action as a collection of related subtransactions. Subtransactions can acquire
locks, and the changes made by a subtransaction become visible to other trans-
actions after the subtransaction ends (and before the main transaction of which
it is a part commits). In multilevel transactions, locks held by a subtrans-
action are released when the subtransaction ends. In nested transactions,
locks held by a subtransaction are assigned to the parent (sub)transaction when
the subtransaction ends. These refinements to the transaction concept have a
significant effect on concurrency control and recovery algorithms.

29.1.3 Real-Time DBMSs

Some transactions must be executed within a user-specified deadline. A hard
deadline means the value of the transaction is zero after the deadline. For
example, in a DBMS designed to record bets on horse races, a transaction
placing a bet is worthless once the race begins. Such a transaction should
not be executed; the bet should not be placed. A soft deadline means the
value of the transaction decreases after the deadline, eventually going to zero.
For example, in a DBMS designed to monitor some activity (e.g., a complex
reactor), a transaction that looks up the current reading of a sensor must be
executed within a short time, say, one second. The longer it takes to execute
the transaction, the less useful the reading becomes. In a real-time DBMS, the
goal is to maximize the value of executed transactions, and the DBMS must
prioritize transactions, taking their deadlines into account.
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29.2 DATA INTEGRATION

As databases proliferate, users want to access data from more than one source.
For example, if several travel agents market their travel packages through the
Web, customers would like to compare packages from different agents. A more
traditional example is that large organizations typically have several databases,
created (and maintained) by different divisions, such as Sales, Production, and
Purchasing. While these databases contain much common information, deter-
mining the exact relationship between tables in different databases can be a
complicated problem. For example, prices in one database might be in dol-
lars per dozen items, while prices in another database might be in dollars per
item. The development of XML DTDs (see Section 7.4.3) offers the promise
that such semantic mismatches can be avoided if all parties conform to a single
standard DTD. However, there are many legacy databases and most domains
still do not have agreed-upon DTDs; the problem of semantic mismatches will
be encountered frequently for the foreseeable future.

Semantic mismatches can be resolved and hidden from users by defining rela-
tional views over the tables from the two databases. Defining a collection of
views to give a group of users a uniform presentation of relevant data from
multiple databases is called semantic integration. Creating views that mask
semantic mismatches in a natural manner is a difficult task and has been widely
studied. In practice, the task is made harder because the schemas of existing
databases are often poorly documented; hence, it is difficult to even understand
the meaning of rows in existing tables, let alone define unifying views across
several tables from different databases.

If the underlying databases are managed using different DBMSs, as is often
the case, some kind of ‘middleware’ must be used to evaluate queries over the
integrating views, retrieving data at query execution time by using protocols
such as Open Database Connectivity (ODBC) to give each underlying database
a uniform interface, as discussed in Chapter 6. Alternatively, the integrating
views can be materialized and stored in a data warehouse, as discussed in
Chapter 25. Queries can then be executed over the warehoused data without
accessing the source DBMSs at run-time.

29.3 MOBILE DATABASES

The availability of portable computers and wireless communications has created
a new breed of nomadic database users. At one level, these users are simply
accessing a database through a network, which is similar to distributed DBMSs.
At another level, the network as well as data and user characteristics now have
several novel properties, which affect basic assumptions in many components
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of a DBMS, including the query engine, transaction manager, and recovery
manager:

Users are connected through a wireless link whose bandwidth is 10 times
less than Ethernet and 100 times less than ATM networks. Communication
costs are therefore significantly higher in proportion to I/O and CPU costs.

Users’ locations constantly change, and mobile computers have a limited
battery life. Therefore, the true communication costs reflect connection
time and battery usage in addition to bytes transferred and change con-
stantly depending on location. Data is frequently replicated to minimize
the cost of accessing it from different locations.

As a user moves around, data could be accessed from multiple database
servers within a single transaction. The likelihood of losing connections
is also much greater than in a traditional network. Centralized transac-
tion management may therefore be impractical, especially if some data is
resident at the mobile computers. We may in fact have to give up on
ACID transactions and develop alternative notions of consistency for user
programs.

29.4 MAIN MEMORY DATABASES

The price of main memory is now low enough that we can buy enough main
memory to hold the entire database for many applications; with 64-bit ad-
dressing, modern CPUs also have very large address spaces. Some commercial
systems now have several gigabytes of main memory. This shift prompts a reex-
amination of some basic DBMS design decisions, since disk accesses no longer
dominate processing time for a memory-resident database:

Main memory does not survive system crashes, and so we still have to
implement logging and recovery to ensure transaction atomicity and dura-
bility. Log records must be written to stable storage at commit time, and
this process could become a bottleneck. To minimize this problem, rather
than commit each transaction as it completes, we can collect completed
transactions and commit them in batches; this is called group commit.
Recovery algorithms can also be optimized, since pages rarely have to be
written out to make room for other pages.

The implementation of in-memory operations has to be optimized carefully,
since disk accesses are no longer the limiting factor for performance.

A new criterion must be considered while optimizing queries, the amount
of space required to execute a plan. It is important to minimize the space
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overhead because exceeding available physical memory would lead to swap-
ping pages to disk (through the operating system’s virtual memory mech-
anisms), greatly slowing down execution.

Page-oriented data structures become less important (since pages are no
longer the unit of data retrieval), and clustering is not important (since
the cost of accessing any region of main memory is uniform).

29.5 MULTIMEDIA DATABASES

In an object-relational DBMS, users can define ADTs with appropriate meth-
ods, which is an improvement over an RDBMS. Nonetheless, supporting just
ADTs falls short of what is required to deal with very large collections of
multimedia objects, including audio, images, free text, text marked up in
HTML or variants, sequence data, and videos. Illustrative applications include
NASA’s EOS project, which aims to create a repository of satellite imagery;
the Human Genome project, which is creating databases of genetic information
such as GenBank; and NSF/DARPA’s Digital Libraries project, which aims to
put entire libraries into database systems and make them accessible through
computer networks. Industrial applications, such as collaborative development
of engineering designs, also require multimedia database management and are
being addressed by several vendors.

We outline some applications and challenges in this area:

Content-Based Retrieval: Users must be able to specify selection condi-
tions based on the contents of multimedia objects. For example, users may
search for images using queries such as “Find all images that are similar to
this image” and “Find all images that contain at least three airplanes.” As
images are inserted into the database, the DBMS must analyze them and
automatically extract features that help answer such content-based queries.
This information can then be used to search for images that satisfy a given
query, as discussed in Chapter 28. As another example, users would like to
search for documents of interest using information retrieval techniques and
keyword searches. Vendors are moving toward incorporating such tech-
niques into DBMS products. It is still not clear how these domain-specific
retrieval and search techniques can be combined effectively with traditional
DBMS queries. Research into abstract data types and ORDBMS query
processing has provided a starting point, but more work is needed.

Managing Repositories of Large Objects: Traditionally, DBMSs have
concentrated on tables that contain a large number of tuples, each of which
is relatively small. Once multimedia objects such as images, sound clips,
and videos are stored in a database, individual objects of very large size
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have to be handled efficiently. For example, compression techniques must
be carefully integrated into the DBMS environment. As another example,
distributed DBMSs must develop techniques to efficiently retrieve such
objects. Retrieval of multimedia objects in a distributed system has been
addressed in limited contexts, such as client-server systems, but in general
remains a difficult problem.

Video-On-Demand: Many companies want to provide video-on-demand
services that enable users to dial into a server and request a particular
video. The video must then be delivered to the user’s computer in real time,
reliably and inexpensively. Ideally, users must be able to perform familiar
VCR functions such as fast-forward and reverse. From a database perspec-
tive, the server has to contend with specialized real-time constraints; video
delivery rates must be synchronized at the server and at the client, taking
into account the characteristics of the communication network.

29.6 GEOGRAPHIC INFORMATION SYSTEMS

Geographic Information Systems (GIS) contain spatial information about
cities, states, countries, streets, highways, lakes, rivers, and other geographical
features and support applications to combine such spatial information with
non-spatial data. As discussed in Chapter 28, spatial data is stored in either
raster or vector formats. In addition, there is often a temporal dimension, as
when we measure rainfall at several locations over time. An important issue
with spatial datasets is how to integrate data from multiple sources, since each
source may record data using a different coordinate system to identify locations.

Now let us consider how spatial data in a GIS is analyzed. Spatial informa-
tion is most naturally thought of as being overlaid on maps. Typical queries
include “What cities lie on I-94 between Madison and Chicago?” and “What
is the shortest route from Madison to St. Louis?” These kinds of queries can
be addressed using the techniques discussed in Chapter 28. An emerging ap-
plication is in-vehicle navigation aids. With Global Positioning System (GPS)
technology, a car’s location can be pinpointed, and by accessing a database of
local maps, a driver can receive directions from his or her current location to a
desired destination; this application also involves mobile database access!

In addition, many applications involve interpolating measurements at certain
locations across an entire region to obtain a model and combining overlapping
models. For example, if we have measured rainfall at certain locations, we can
use the Triangulated Irregular Network (TIN) approach to triangulate
the region, with the locations at which we have measurements being the ver-
tices of the triangles. Then, we use some form of interpolation to estimate
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the rainfall at points within triangles. Interpolation, triangulation, map over-
lays, visualization of spatial data, and many other domain-specific operations
are supported in GIS products such as ESRI Systems’ ARC-Info. Therefore,
while spatial query processing techniques as discussed in Chapter 28 are an
important part of a GIS product, considerable additional functionality must be
incorporated as well. How best to extend ORDBMS systems with this addi-
tional functionality is an important problem yet to be resolved. Agreeing on
standards for data representation formats and coordinate systems is another
major challenge facing the field.

29.7 TEMPORAL DATABASES

Consider the following query: “Find the longest interval in which the same
person managed two different departments.” Many issues are associated with
representing temporal data and supporting such queries. We need to be able to
distinguish the times during which something is true in the real world (valid
time) from the times it is true in the database (transaction time). The
period during which a given person managed a department can be indicated by
two fields from and to, and queries must reason about time intervals. Further,
temporal queries require the DBMS to be aware of the anomalies associated
with calendars (such as leap years).

29.8 BIOLOGICAL DATABASES

BioInformatics is an emerging field at the intersection of Biology and Computer
Science. From a database standpoint, the rapidly growing data in this area has
(at least) two interesting characteristics. First, a lot of loosely structured data

is widely exchanged, leading to interest in integration of such data. This has
motivated some of the research in the area of XML repositories.

The second interesting feature is sequence data. DNA sequences are being
generated at a rapid pace by the biological community. The field of biological
information management and analysis has become very popular in recent years,
called bioinformatics. Biological data, such as DNA sequence data, charac-
terized by complex structure and numerous relationships among data elements,
many overlapping and incomplete or erroneous data fragments (because experi-
mentally collected data from several groups, often working on related problems,
is stored in the databases), a need to frequently change the database schema

itself as new kinds of relationships in the data are discovered, and the need to
maintain several versions of data for archival and reference.
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29.9 INFORMATION VISUALIZATION

As computers become faster and main memory cheaper, it becomes increas-
ingly feasible to create visual presentations of data, rather than just text-based
reports. Data visualization makes it easier for users to understand the infor-
mation in large complex datasets. The challenge here is to make it easy for
users to develop visual presentations of their data and interactively query such
presentations. Although a number of data visualization tools are available,
efficient visualization of large datasets presents many challenges.

The need for visualization is especially important in the context of decision
support; when confronted with large quantities of high-dimensional data and
various kinds of data summaries produced by using analysis tools such as SQL,
OLAP, and data mining algorithms, the information can be overwhelming.
Visualizing the data, together with the generated summaries, can be a powerful
way to sift through this information and spot interesting trends or patterns.
The human eye, after all, is very good at finding patterns. A good framework
for data mining must combine analytic tools to process data and bring out
latent anomalies or trends with a visualization environment in which a user
can notice these patterns and interactively drill down to the original data for
further analysis.

29.10 SUMMARY

The database area continues to grow vigorously, in terms of both technology
and applications. The fundamental reason for this growth is that the amount
of information stored and processed using computers is growing rapidly. Re-
gardless of the nature of the data and the intended applications, users need
database management systems and their services (concurrent access, crash re-
covery, easy and efficient querying, etc.) as the volume of data increases. As
the range of applications is broadened, however, some shortcomings of current
DBMSs become serious limitations. These problems are being actively studied
in the database research community.

The coverage in this book provides an introduction, but is not intended to cover
all aspects of database systems. Ample material is available for further study,
as this chapter illustrates, and we hope that the reader is motivated to pursue
the leads in the bibliography. Bon voyage!
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BIBLIOGRAPHIC NOTES

[338] contains a comprehensive treatment of all aspects of transaction processing. See [241]
for several papers that describe new transaction models for nontraditional applications such
as CAD/CAM. [1, 577, 696, 711, 761] are some of the many papers on real-time databases.

Determining which entities are the same across different databases is a difficult problem;
it is an example of a semantic mismatch. Resolving such mismatches has been addressed
in many papers, including [424, 476, 641, 663]. [389] is an overview of theoretical work in
this area. Also see the bibliographic notes for Chapter 22 for references to related work on
multidatabases, and see the notes for Chapter 2 for references to work on view integration.

[304] is an early paper on main memory databases. [102, 406] describe the Dali main memory
storage manager. [421] surveys visualization idioms designed for large databases, and [342]
discusses visualization for data mining.

Visualization systems for databases include DataSpace [592], DEVise [489], IVEE [27], the
Mineset suite from SGI, Tioga [31], and VisDB [420]. In addition, a number of general tools
are available for data visualization.

Querying text repositories has been studied extensively in information retrieval; see [626] for
a recent survey. This topic has generated considerable interest in the database community
recently because of the widespread use of the Web, which contains many text sources. In
particular, HTML documents have some structure if we interpret links as edges in a graph.
Such documents are examples of semistructured data; see [2] for a good overview. Recent
papers on queries over the Web include [2, 445, 527, 564].

See [576] for a survey of multimedia issues in database management. There has been much
recent interest in database issues in a mobile computing environment; for example, [387, 398].
See [395] for a collection of articles on this subject. [728] contains several articles that cover
all aspects of temporal databases. The use of constraints in databases has been actively
investigated in recent years; [416] is a good overview. Geographic Information Systems have
also been studied extensively; [586] describes the Paradise system, which is notable for its
scalability.

The book [794] contains detailed discussions of temporal databases (including the TSQL2
language, which is influencing the SQL standard), spatial and multimedia databases, and
uncertainty in databases.
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THE MINIBASE SOFTWARE

Practice is the best of all instructors.

—Publius Syrus, 42 B.C.

Minibase is a small relational DBMS, together with a suite of visualization
tools, that has been developed for use with this book. While the book makes
no direct reference to the software and can be used independently, Minibase
offers instructors an opportunity to design a variety of hands-on assignments,
with or without programming. To see an online description of the software,
visit this URL:

http://www.cs.wisc.edu/˜dbbook/minibase.html

The software is available freely through ftp. By registering themselves as users
at the URL for the book, instructors can receive prompt notification of any
major bug reports and fixes. Sample project assignments, which elaborate on
some of the briefly sketched ideas in the project-based exercises at the end of
chapters, can be seen at

http://www.cs.wisc.edu/˜dbbook/minihwk.html

Instructors should consider making small modifications to each assignment
to discourage undesirable ‘code reuse’ by students; assignment handouts for-
matted using Latex are available by ftp. Instructors can also obtain solu-
tions to these assignments by contacting the authors (raghu@cs.wisc.edu,
johannes@cs.cornell.edu).

30.1 WHAT IS AVAILABLE

Minibase is intended to supplement the use of a commercial DBMS such as
Oracle or Sybase in course projects, not to replace them. While a commercial
DBMS is ideal for SQL assignments, it does not help students understand how
the DBMS works. Minibase is intended to address the latter issue; the subset
of SQL that it supports is intentionally kept small, and students should also
be asked to use a commercial DBMS for writing SQL queries and programs.
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Minibase is provided on an as-is basis with no warranties or restrictions for
educational or personal use. It includes the following:

Code for a small single-user relational DBMS, including a parser and query
optimizer for a subset of SQL, and components designed to be (re)written
by students as project assignments: heap files, buffer manager, B+ trees,

sorting, and joins.

30.2 OVERVIEW OF MINIBASE ASSIGNMENTS

Several assignments involving the use of Minibase are described here. Each of
these has been tested in a course already, but the details of how Minibase is
set up might vary at your school, so you may have to modify the assignments
accordingly. If you plan to use these assignments, you are advised to download
and try them at your site well in advance of handing them to students. We
have done our best to test and document these assignments and the Minibase
software, but bugs undoubtedly persist. Please report bugs at this URL:

http://www.cs.wisc.edu/˜dbbook/minibase.comments.html

We hope users will contribute bug fixes, additional project assignments, and
extensions to Minibase. These will be made publicly available through the
Minibase site, together with pointers to the authors.

In several assignments, students are asked to rewrite a component of Minibase.
The book provides the necessary background for all these assignments, and
the assignment handout provides additional system-level details. The online
HTML documentation provides an overview of the software, in particular the
component interfaces, and can be downloaded and installed at each school that
uses Minibase. The projects that follow should be assigned after covering the
relevant material from the indicated chapter:

Buffer Manager (Chapter 9): Students are given code for the layer
that manages space on disk and supports the concept of pages with page
ids. They are asked to implement a buffer manager that brings requested
pages into memory if they are not already there. One variation of this
assignment could use different replacement policies. Students are asked to
assume a single-user environment, with no concurrency control or recovery
management.

HF Page (Chapter 9): Students must write code that manages records
on a page using a slot-directory page format to keep track of the records.
Possible variants include fixed-length versus variable-length records and
other ways to keep track of records on a page.
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Heap Files (Chapter 9): Using the HF page and buffer manager code,
students are asked to implement a layer that supports the abstraction of
files of unordered pages, that is, heap files.

B+ Trees (Chapter 10): This is one of the more complex assignments.
Students have to implement a page class that maintains records in sorted
order within a page and implement the B+ tree index structure to impose a
sort order across several leaf-level pages. Indexes store  key, record-pointer 
pairs in leaf pages, and data records are stored separately (in heap files).
Similar assignments can easily be created for Linear Hashing or Extendible
Hashing index structures.

External sorting (Chapter 13): Building on the buffer manager and
heap file layers, students are asked to implement external merge-sort. The
emphasis is on minimizing I/O rather than on the in-memory sort used to
create sorted runs.

Sort-Merge Join (Chapter 14): Building upon the code for external
sorting, students are asked to implement the sort-merge join algorithm.
This assignment can be easily modified to create assignments that involve
other join algorithms.

Index Nested-Loop Join (Chapter 14): This assignment is similar to
the sort-merge join assignment, but relies on B+ tree (or other indexing)
code, instead of sorting code.

30.3 ACKNOWLEDGMENTS

The Minibase software was inpired by Minirel, a small relational DBMS de-
veloped by David DeWitt for instructional use. Minibase was developed by a
large number of dedicated students over a long time, and the design was guided
by Mike Carey and R. Ramakrishnan. See the online documentation for more
on Minibase’s history.
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Closure of FDs, 612
CLRs, 584, 592, 596
Clustered file, 277
Clustered files, 287
Clustering, 277, 293, 660, 911
CODASYL, D.B.T.G., 1014
Collations in SQL, 140
Collection hierarchies, 789
Collection hierarchy, 789

Collection types, 780
Collisions, 379
Column, 59
Commit, 523, 535, 583, 759
Commit protocols, 751, 758
2PC, 759, 761
3PC, 762

Communication costs, 739, 744,
749

Communication protocol, 223
Compensation log records, 584,

592, 596
Complete axioms, 613
Complex types, 779, 795
vs. reference types, 795

Composite search keys, 295,
297

Compressed histogram, 487
Compression in B+ trees, 358
Computer aided design and

manufacturing, 971
Concatenated search keys, 295,

297
Conceptual design, 13, 27
tuning, 669

Conceptual evaluation strategy,
133

Conceptual schema, 13
Concurrency, 9, 17
Concurrency control
multiversion, 572
optimistic, 566
timestamp, 569

Concurrent execution, 524
Conflict equivalence, 550
Conflict resolution, 751
Conflict serializability vs.

serializability, 561
Conflict serializable schedule,

550
Conflicting actions, 526
Conjunct, 445
primary, 399

Conjunctive normal form
(CNF), 398, 445

Connection pooling, 200
Connections in JDBC, 198
Conservative 2PL, 559
Consistency, 521
Content types in XML, 232
Content-based queries, 972, 988
Convoy phenomenon, 555
Cookie, 259
Cookies, 253
Coordinator site, 758
Correlated queries, 147, 504,

506
Cosine normalization, 932
Cost estimation, 482–483

for ADT methods, 803
real systems, 485

Cost model, 440
COUNT, 151
Covering constraints, 38
Covert channel, 708
Crabbing, 562
Crash recovery, 9, 18, 22, 541,

580, 583–584, 587–588,
590, 592, 595–596

Crawler, 939
CREATE DOMAIN, 166
CREATE statement
SQL, 696

CREATE TABLE, 62
CREATE TRIGGER, 169
CREATE TYPE, 167
CREATE VIEW, 86
Creating a relation in SQL, 62
Critical section, 567
Cross-product operation, 105
Cross-tabulation, 855
CS564 at Wisconsin, xxviii
CSS, 249
CUBE operator, 857, 869, 887
Cursors in SQL, 189, 191
Cylinders in disks, 306
Dali, 1001
Data definition language, 12
Data Definition Language

(DDL), 12, 62, 131
Data dictionary, 395
Data Encryption Standard, 710
Data Encryption Standard

(DES), 710
Data entries in an index, 276
Data independence, 9, 15, 743
distributed, 736
logical, 15, 87, 736
physical, 15, 736

Data integration, 995
Data Manipulation Language,

16
Data Manipulation Language

(DML), 131
Data mining, 7, 849, 889
Data model, 10
multidimensional, 849
semantic, 10, 27

Data partitioning, 730
skew, 730

Data reduction, 747
Data skew, 730, 733
Data source, 195
Data streams, 916
Data striping in RAID, 309–310
Data sublanguage, 16
Data warehouse, 7, 678, 754,

848, 870–871
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clean, 871
extract, 870
load, 871
metadata, 872
purge, 871
refresh, 871
transform, 871

Database administrators, 21–22
Database architecture
Client-Server vs.

Collaborating Servers, 738
Database design
conceptual design, 13, 27
for an ORDBMS, 793
for OLAP, 853
impact of concurrent access,

678
normal forms, 615
null values, 608
physical, 291
physical design, 14, 28, 650
requirements analysis step, 26
role of expected workload, 650
role of inclusion dependencies,

639
schema refinement, 28, 605
tools, 27
tuning, 22, 28, 650, 667, 670

Database management system,
4

Database tuning, 22, 28, 650,
652, 667

Databases, 4
Dataflow for parallelism, 731,

733
Dataguides, 959
Datalog, 818–819, 822
aggregation, 831
comparison with relational

algebra, 830
input and output, 822
least fixpoint, 825–826
least model, 824, 826
model, 823
multiset generation, 832
negation, 827–828
range-restriction and

negation, 828
rules, 819
safety and range-restriction,

826
stratification, 829

DataSpace, 1001
Dates and times in SQL, 140
DB2
Index Advisor, 665

DBA, 22
DBI library, 252
DBMS, 4

DBMS architecture, 19
DBMS vs. OS, 322
DDL, 12
Deadlines
hard vs. soft, 994

Deadlock, 533
detection, 556
distributed, 756
global vs. local, 756
phantom, 757
prevention, 558

Decision support, 847
Decision trees, 906
pruning, 907
splitting attributes, 907

Decompositions, 609
dependency-preservation, 621
horizontal, 674
in the absence of redundancy,

674
into 3NF, 625
into BCNF, 622
lossless-join, 619

Decorrelation, 506
Decryption, 709
Deductions, 820
Deductive databases, 820
aggregation, 831
fixpoint semantics, 824
least fixpoint, 826
least model, 826
least model semantics, 823
Magic sets rewriting, 838
negation, 827–828
optimization, 834
repeated inferences, 834
Seminaive evaluation, 836
unnecessary inferences, 834

Deep equality, 790
Denormalization, 652, 669, 672
Dependency-preserving

decomposition, 621
Dependent attribute, 904
DES, 710
Deskstar disk, 308
DEVise, 1001
Difference operation, 105, 141
Digital Libraries project, 997
Digital signatures, 713
Dimensions, 849
Directory
of pages, 326
of slots, 329

Directory doubling, 375
Dirty bit, 318
Dirty page table, 585, 589
Dirty read, 526
Discretionary access control,

695

Disjunctive selection condition,
445

Disk array, 309
Disk space manager, 21, 304,

316
Disk tracks, 306
Disks, 305
access times, 284, 308
blocks, 306
controller, 307
cylinders, tracks, sectors, 306
head, 307
physical structure, 306
platters, 306

Distance function, 911
Distinct type in SQL, 167
Distributed data independence,

736, 743
Distributed databases, 726
catalogs, 741
commit protocols, 758
concurrency control, 755
data independence, 743
deadlock, 756
fragmentation, 739
global object names, 742
heterogeneous, 737
join, 745
lock management, 755
naming, 741
optimization, 749
project, 744
query processing, 743
recovery, 755, 758
replication, 741
scan, 744
select, 744
Semijoin and Bloomjoin, 747
synchronous vs. asynchronous

replication, 750
transaction management, 755
transparency, 736
updates, 750

Distributed deadlock, 756
Distributed query processing,

743
Distributed transaction

management, 755
Distributed transactions, 736
Division, 109
in SQL, 150

Division operation, 109
DML, 16
Document type declarations

(DTDs), 231
Document vector, 930
DoD security levels, 708
Domain, 29, 59
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Domain constraints, 29, 61, 73,
166

Domain relational calculus, 122
Domain-key normal form, 648
Double buffering, 432
Drill-down, 854
Driver, 195–196
manager, 195–196
types, 196

DROP, 696
Dropping tables in SQL, 91
DTDs, 231
Duplicates in an index, 278
Duplicates in SQL, 136
Durability, 521–522
Dynamic databases, 560
Dynamic hashing, 373, 379
Dynamic indexes, 344, 373, 379
Dynamic linking, 786
Dynamic SQL, 194
Early binding, 788
Electronic commerce, 221
Elements in XML, 228
Embedded SQL, 187
Encapsulation, 785
Encryption, 709, 712
Enforcing integrity constraints,

70
Entities, 4, 13
Entity references in XML, 229
Entity sets in the ER model, 28
Enumerating alternative plans,

492
Equality
deep vs. shallow, 790

Equality selection, 292
Equidepth histogram, 487
Equijoin, 108
Equivalence of relational

algebra expressions, 414
Equiwidth histogram, 487
ER model
aggregation, 39, 84
attribute domains, 29
attributes, 29
class hierarchies, 37, 83
descriptive attributes, 30
entities and entity sets, 28
key constraints, 32–33
keys, 29
overlap and covering, 38
participation constraints, 34,

79
ER model
relationships
and relationship sets, 29
many-to-many, 33
many-to-one, 33
one-to-many, 33

roles, 32
weak entities, 35, 82

ERP, 7
Event handler, 247
Events activating triggers, 168
Example queries
Q1, 110, 120, 123, 137, 145,

147, 154
Q2, 112, 120, 123, 139, 146
Q3, 113, 139
Q4, 113, 139
Q5, 113, 141
Q6, 114, 142, 149
Q7, 115, 121, 123
Q8, 115
Q9, 116, 121, 124, 150
Q10, 116
Q11, 117, 123, 135
Q12, 119
Q13, 120
Q14, 121, 124
Q15, 134
Q16, 138
Q17, 140
Q18, 140
Q19, 143
Q20, 144
Q21, 146
Q22, 148
Q23, 148
Q24, 149
Q25, 151
Q26, 151
Q27, 152
Q28, 152
Q29, 153
Q30, 153
Q31, 154
Q32, 155
Q33, 158
Q34, 159
Q35, 160
Q36, 160
Q37, 161

Exclusive locks, 531
EXEC SQL, 187
Execution plan, 19
Expensive predicates, 804
Exploratory data analysis, 849,

890
Expressions in SQL, 139, 163
Expressive power
algebra vs. calculus, 124

Extendible hashing, 373
directory doubling, 375
global depth, 376
local depth, 377

Extensibility
in an optimizer, 803

indexing new types, 800
Extensible Markup Language

(XML), 228, 231–232
Extensible Style Language

(XSL), 228
External schema, 14
External sorting, 422, 424, 428,

430, 432, 732
Failure
media, 541, 580
system crash, 541, 580

False positives, 938
Fan-out, 282, 345, 358–359
Feature vectors, 970, 972
Field, 59
FIFO, 322
Fifth normal form, 638
File, 20
of records, 275

File organization, 274
clustered, 287
hashed, 279
indexed, 276
random, 284
sorted, 285
tree, 280

First in first out (FIFO) policy,
321

First normal form, 615
Fixed-length records, 327
Fixpoint, 824
Naive evaluation, 835
Seminaive evaluation, 836

Fixpoint evaluation
iterations, 834

Force vs. no-force, 586
Force-write, 583, 759
Forced reinserts, 985
Forcing pages, 323, 541, 583
Foreign key constraints, 66
Foreign keys, 76
versus oids, 796

Formulas, 118
Fourth normal form, 636
Fragmentation, 739–740
Frequent itemsets, 893
a priori property, 893

Fully distributed lock
management, 756

Functional dependencies, 611
Armstrong’s Axioms, 612
attribute closure, 614
closure, 612
minimal cover, 625
projection, 621

Fuzzy checkpoint, 587
Gateways, 737
GenBank, 997
Generalization, 38
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Generalized Search Trees, 987
Geographic Information

Systems (GIS), 971, 998
Get next tuple, 408
GiST, 801, 987
Global deadlock detection, 756
Global depth in extendible

hashing, 376
GRANT OPTION, 696
GRANT statement
SQL, 695, 699

Granting privileges in SQL, 699
Grid directory, 978
Grid files, 978
convex regions, 981

Group commit, 996
Grouping in SQL, 154
Hash functions, 279, 372, 379,

735
Hash indexes, 279
Hash join, 463
parallel databases, 733–734

Hash partitioning, 730
Hashed files, 279
Heap files, 20, 276, 284, 324
Height of a tree, 282, 345
Heterogeneous databases, 737
gateways, 737

Hierarchical clustering, 912
Hierarchical data model, 6
Hierarchical deadlock

detection, 757
Histograms, 485–486
compressed, 487
equidepth, 487
equiwidth, 487
real systems, 485

Horizontal decomposition, 674
Horizontal fragmentation,

739–740
Host language, 16, 187
Hot spots, 535, 674, 678, 680
HTML, 226, 228, 1001
tags, 226

HTML Forms, 242
HTTP
absence of state, 258
request, 224
response, 224

HTTP protocol, 223
Hubs, 941
Human Genome project, 997
Hybrid hash join, 465
HyperText Markup Language

(HTML), 226, 228
IBM DB2, 167, 322–323, 327,

331, 333, 357, 359, 422,
446, 452–453, 485, 496,
500, 506, 573, 582, 709,

776, 780, 790, 818, 869,
882

Iceberg queries, 896
Identifying owner, 36
IDS, 6
Implementation
aggregation, 469
joins, 455, 457–458, 465
hash, 463
nested loops, 454

projections, 447–449
hashing, 449
sorting, 448

selections, 401, 441–442,
444–446

with disjunction, 446
B+ tree, 442
hash index, 444
no disjunction, 445
no index, 401, 441–442

set-operations, 468
IMS, 6
Inclusion dependencies, 639
Incremental algorithms, 403
Index, 14, 276
duplicate data entries, 278
alternatives for data entries,

276
B+ tree, 344
bitmap, 866
clustered vs. unclustered, 277
composite key, 295
concatenated key, 295
data entry, 276
dynamic, 344, 373, 379
equality query, 295
equality vs. range selection,

292
extendible hashing, 373
fan-out, 282
hash, 279, 371
buckets, 371
hash functions, 372
primary and overflow pages,
371

in SQL, 299
ISAM, 341
linear hashing, 379
matching a selection, 296, 398
multidimensional, 973
primary vs. secondary, 277
range queries and composite

key indexes, 295
spatial, 973
static, 341
static hashing, 371
tree, 280
unclustered, 288–289
unique, 278

Index advisor, 663
Index configuration, 663
Index entries, 339
Index locking, 561
Index nested loops join, 402,

457
Index selection, 653
Index tuning, 667
Index-only evaluation, 293, 402
Index-only plans, 662
Index-only scan, 452, 471, 495
Indexes
choice, 291

Indexing new data types, 800
Inference and security, 715
Inferences, 820
Information retrieval, 927
Informix, 322–323, 327, 331,

333, 359, 422, 446,
452–453, 485, 500, 506,
573, 582, 709, 776, 780,
866, 869

Informix UDS, 167, 790
Inheritance hierarchies, 37, 83
Inheritance in object

databases, 787
Inheritance of attributes, 37
Insertable-into views, 89
Instance of a relation, 59
Instance of a relationship set,

30
Integration, 995
Integrity constraints, 9, 12, 32,

34, 38, 63, 79
in SQL, 167
spatial, 971
domain, 61, 73
foreign key, 66
in SQL, 165–166
key, 64
transactions in SQL, 72

Intelligent Miner, 914
Interface for a class, 806
Interference, 728
Internet databases, 7
Interprocess communication

(IPC), 802
Intersection operation, 104, 141
Inverse document frequency

(IDF), 931
Inverted indexes, 935
ISA hierarchies, 37, 899
ISAM, 292, 341
ISO, 6, 58
Isolation, 521
Isolation level, 199
Isolation level in SQL, 538
READ UNCOMMITTED,

539
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REPEATABLE READ, 539
SERIALIZABLE, 539

Itemset, 893
a priori property, 893
frequent, 893
support, 893

Iterations, 834
Iterator interface, 408
IVEE, 1001
Java
servlet, 254

Java Database Connectivity
(JDBC), 195, 219, 737,
870

Java virtual machine, 786
JavaScript, 245
JDBC, 195, 198, 219, 737, 870
architecture, 196
autocommit, 198
connection, 198
data source, 196
DatabaseMetaData class, 205
driver management, 198
driver manager, 195–196
Exceptions, 203
PreparedStatement class, 200
ResultSet class, 201
Warnings, 203

JDBC URL, 198
JDs, 638
Join dependencies, 638
Joins, 107
Bloomjoin, 748
definition, 107
distributed databases, 745
equijoin, 108
implementation, 454, 463
block nested loops, 455
hybrid hash, 465
index nested loops, 457
sort-merge, 458

natural join, 108
outer, 164
parallel databases, 732, 734
Semijoin, 747

KDD, 891
Key, 29, 611
Key compression, 358
Key constraints, 32–33
Keys
candidate, 64, 76
candidate vs. search, 280
composite search, 295
foreign, 76
foreign key, 66
primary, 65

Keys constraints, 64–65
Knowledge discovery, 890
Large object, 776

LastLSN, 585
Latch, 555
Late binding, 788
Least fixpoints, 822, 825
Least model = least fixpoint,

826
Least models, 822, 824
Least recently used (LRU)

policy, 321
Left-deep trees, 415
Legal relation instance, 63
Level counter in linear hashing,

379
Levels of abstraction, 12
Lexicon, 935
Linear hashing, 379
family of hash functions, 379
level counter, 379

Linear recursion, 831
Linear scales, 979
LOB, 776
Local deadlock detection, 756
Local depth in extendible

hashing, 377
Locators, 776
Lock downgrades, 556
Lock escalation, 566
Lock manager, 21, 554
distributed databases, 755

Lock upgrade, 555
Lock-coupling, 562
Locking, 18
downgrading, 556
B+ trees, 561
concurrency, 678
Conservative 2PL, 559
distributed databases, 755
exclusive locks, 531
lock escalation, 566
lock upgrade, 555
multiple-granularity, 564
performance implications, 678
shared locks, 531
Strict 2PL, 531
update locks, 556

Locking protocol, 18, 530
Log, 18, 522, 542, 582
abort record, 583
commit record, 583
compensation record (CLR),

583
end record, 583
force-write, 583
lastLSN, 585
pageLSN, 582
sequence number (LSN), 582
tail, 582
update record format, 583
WAL, 18

Log record
prevLSN field, 583
transID field, 583
type field, 583

Log-based Capture, 752
Logical data independence, 15,

87, 736
views, 15

Logical schema, 13, 27
Lossless-join decomposition,

619
Lost update, 529
LRU, 322
Machine learning, 890
Magic Sets, 506
Magic sets, 837–838
Main memory databases, 996
Mandatory access control, 695
objects and subjects, 706

Many-to-many relationship, 33
Many-to-one relationship, 33
Market basket, 892
Markup languages, 226
Master copy, 751
Master log record, 587
Matching index, 398
Matching phase in hash join,

463
Materialization of intermediate

tables, 407
Materialization of views, 874
Materialized views
refresh, 876

MathML, 235
MAX, 151
Mean-time-to-failure, 311
Measures, 849
Media failure, 541, 580, 595
Media recovery, 595
Medical imaging, 971
Melton
J., 781

Memory hierarchy, 305
Merge operator, 731
Merge sort, 424
Metadata, 394, 872
Methods
caching, 802
interpreted vs. compiled, 802
security, 801

Microsoft SQL Server, 322–323,
327, 331, 333, 357, 359,
422, 446–447, 452–453,
485, 496, 500, 506, 573,
582, 665, 709, 776, 866,
869, 882

MIN, 151
Mineset, 1001
Minibase software, 1002
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Minimal cover, 625
Mirroring in RAID, 313
Mobile databases, 995
Model, 823
Model maintenance, 916
Modifying a table in SQL, 62
MOLAP, 850
Most recently used (MRU)

policy, 321
MRP, 7
MRU, 322
Multidatabase system, 737
Multidimensional data model,

849
Multilevel relations, 707
Multilevel transactions, 994
Multimedia databases, 972, 997
Multiple-granularity locking,

564
Multiple-query optimization,

507
Multisets, 135, 780, 782
Multivalued dependencies, 634
Multiversion concurrency

control, 572
MVDs, 634
Naive fixpoint evaluation, 835
Named constraints in SQL, 66
Naming in distributed systems,

741
Natural join, 108
Natural language searches, 930
Nearest neighbor queries, 970
Negation in Datalog, 828
Negative border, 919
Nested collections, 783, 798
Nested loops join, 454
Nested queries, 145
implementation, 504

Nested relations
nesting, 784
unnesting, 783

Nested transactions, 535, 994
Nesting operation, 784
Network data model, 6
NO ACTION in foreign keys,

71
Non-preemptive deadlock

prevention, 559
Nonblocking algorithms, 865
Nonblocking commit protocol,

763
Nonvolatile storage, 306
Normal forms, 615
1NF, 615
BCNF, 616
2NF, 619
3NF, 617
Synthesis, 628

4NF, 636
5NF, 638
DKNF, 648
normalization, 622
PJNF, 648
tuning, 669

Normalization, 622, 652
Null values, 608
implementation, 332
in SQL, 67, 69, 71, 162

Numerical attribute, 905
Object databases, 12
Object exchange model

(OEM), 947
Object identifiers, 789
Object manipulation language,

806
Object-oriented DBMS, 773,

805, 809
Object-relational DBMS, 773,

809
ODBC, 195, 219, 737, 995
ODL, 805
ODMG data model
attribute, 805
class, 805
inverse relationship, 805
method, 806
objects, 805
relationship, 805

OEM, 947
Oids, 789–790
referential integrity, 796
versus foreign keys, 796
versus URLs, 792

OLAP, 684, 848–849, 887
cross-tabulation, 855
database design, 853
dimension table, 852
fact table, 850
pivoting, 855
roll-up and drill-down, 854
SQL window queries, 859

OLTP, 847
OML, 806
On-the-fly evaluation, 407
One-to-many relationship, 33
One-to-one relationship, 34
One-way functions, 710
Online aggregation, 864
Online analytic processing

(OLAP), 848
Online transaction processing

(OLTP), 847
OODBMS vs. ORDBMS, 809
Opaque types, 785
Open an iterator, 408
Open Database Connectivity

(ODBC), 195, 219, 737,

995
Optimistic concurrency control,

566
validation, 567

Optimizers
cost estimation, 482
real systems, 485

decomposing a query into
blocks, 479

extensibility, 803
for ORDBMSs, 803
handling expensive

predicates, 804
histograms, 485
nested queries, 504
overview, 479
real systems, 485, 496, 500,

506
relational algebra

equivalences, 488
rule-based, 507

OQL, 805, 807
Oracle, 27, 322–323, 327, 331,

333, 357, 359, 422,
446–447, 452–453, 485,
500, 506, 573, 582, 709,
776, 780, 790, 803, 866,
869, 882

ORDBMS database design, 793
ORDBMS implementation, 799
ORDBMS vs. OODBMS, 809
ORDBMS vs. RDBMS, 809
Order of a B+ tree, 345
Outer joins, 164
Overflow in hash join, 464
Overlap constraints, 38
Overloading, 788
Owner of a weak entity, 36
Packages in SQL:1999, 131
Page abstraction, 274, 316
Page formats, 326
fixed-length records, 327
variable-length records, 328

Page replacement policy,
318–319, 321

PageLSN, 582
Paradise, 1001
Parallel database architecture
shared-memory vs.

shared-nothing, 727
Parallel databases, 726–727
blocking, 729
bulk loading, 731
data partitioning, 729–730
interference, 728
join, 732, 734
merge and split, 731
optimization, 735
pipelining, 729
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scan, 731
sorting, 732
speed-up vs. scale-up, 728

Parameteric query
optimization, 507

Parity, 311
Partial dependencies, 617
Partial participation, 34
Participation constraints, 34,

79
Partition views, 882
Partitional clustering, 912
Partitioned parallelism, 729
Partitioning, 739
hash vs. range, 734

Partitioning data, 730
Partitioning phase in hash join,

463
Path expressions, 781, 948
Peer-to-peer replication, 751
Perl modules, 252
Phantom deadlocks, 757
Phantom problem, 560, 986
Phantoms, 538, 559
SQL, 538–539

Physical data independence,
15, 736

Physical database design, 14,
28, 291, 650

Physical design
choices, 652
clustered indexes, 293
co-clustering, 660
index selection, 653
index-only plans, 662
multiple-attribute indexes,

297
nested queries, 677
query tuning, 670, 675
reducing hot spots, 679
role of expected workload, 650
tuning queries, 670
tuning the choice of indexes,

667
tuning the conceptual

schema, 669
tuning wizard, 663, 665

Physical schema, 14
Pin count, 318
Pinning pages, 319
Pipelined evaluation, 407, 416,

496
Pipelined parallelism, 729
Pivoting, 855
Platters on disks, 306
PMML, 891
Point data, 969
Pointer swizzling, 802
Polyinstantiation, 708

Postings file, 935
Precedence graph, 551
Precision, 934
Precommit, 763
Predicate locking, 561
Predictor attribute, 904
categorical, 905
numerical, 905

Preemptive deadlock
prevention, 559

Prefetching
real systems, 323

Prefetching pages, 322
Prepare messages, 759
Presumed Abort, 762
PrevLSN, 583
Primary conjunct in a

selection, 399
Primary copy lock

management, 755
Primary index, 277
PRIMARY KEY constraint in

SQL, 66
Primary keys, 29, 65
in SQL, 66

Primary page for a bucket, 279
Primary site replication, 751
Primary storage, 305
Primary vs. overflow pages, 371
Privilege descriptor, 701
Probing phase in hash join, 463
Procedural Capture, 753
Process of knowledge discovery,

891
Project-join normal form, 648
Projections, 744
definition, 103
implementation, 447

Prolog, 819
Pruning, 907
Public-key encryption, 710
Publish and subscribe, 751
Pushing selections, 409
Quantifiers, 118
Query, 16
Query block, 479
Query evaluation plan, 405
Query language, 16, 73, 100
Datalog, 818–819
domain relational calculus,

122
OQL, 807
relational algebra, 102
relational completeness, 126
SQL, 130
tuple relational calculus, 117
XQuery, 948

Query modification, 873
Query optimization, 404, 507

bushy trees, 415
deductive databases, 834
distributed databases, 749
enumeration of alternative

plans, 492
left-deep trees, 415
overview, 405, 479
parallel databases, 735
pushing selections, 409
reduction factors, 483, 485
relational algebra

equivalences, 488
rule-based, 507
SQL query block, 479
statistics, 395

Query optimizer, 19
Query pattern, 838
Query processing
distributed databases, 743

Query tuning, 670
R trees, 982
bounding box, 982

R+ trees, 986
RAID, 309–310
levels, 310
mirroring, 313
parity, 311
redundancy schemes, 311
reliability groups, 312
striping unit, 310

Randomized plan generation,
507

Range partitioning, 730
Range queries, 295, 970
Range selection, 292
Range-restriction, 826, 828
Ranked queries, 929
Raster data, 969
RDBMS vs. ORDBMS, 809
Real-time databases, 994
Recall, 934
Record formats, 330
fixed-length records, 331
real systems, 331, 333
variable-length records, 331

Record id, 275, 327
Record ids
real systems, 327

Records, 11, 60
Recoverability, 530
Recoverable schedule, 530, 571
Recovery, 9, 22, 543, 580
Analysis phase, 588
ARIES, 580
checkpointing, 587
compensation log record, 584
distributed databases, 755,

758
fuzzy checkpoint, 587
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log, 18, 522
loser transactions, 592
media failure, 595
Redo phase, 590
shadow pages, 596
three phases of restart, 587
Undo phase, 592
update log record, 583

Recovery manager, 21, 540, 580
Recursive rules, 818
Redo phase of recovery, 580,

590
Reduction factor, 400
Reduction factors, 483, 485
Redundancy and anomalies,

607
Redundancy in RAID, 309
Redundancy schemes, 311
Reference types, 795
Reference types in SQL:1999,

790
Referential integrity, 70
in SQL, 70
oids, 796
violation options, 70

Refreshing materialized views,
876

Region data, 970
Regression rules, 905
Regression trees, 906
Relation, 11, 59
cardinality, 61
degree, 61
instance, 60
legal instance, 63
schema, 59

Relational algebra, 103
comparison with Datalog, 830
division, 109
equivalences, 488
expression, 102
expressive power, 124
join, 107
projection, 103
renaming, 106
selection, 103
set-operations, 104, 468

Relational calculus
domain, 122
expressive power, 124
safety, 125
tuple, 117

Relational completeness, 126
Relational data model, 6
Relational database
instance, 61
schema, 61

Relational model, 10, 57
Relationships, 4, 13, 29, 33

Renaming in relational algebra,
106

Repeating history, 581, 596
Replacement policy, 318–319
Replacement sort, 428
Replication, 739, 741
asynchronous, 741, 750–751,

871
master copy, 751
publish and subscribe, 751
synchronous, 741, 750

Resource managers, 993
Response time, 524
Restart after crash, 587
Result size estimation, 483
REVOKE statement
SQL, 699–700

Revoking privileges in SQL, 700
Rid, 275, 327
Rids
real systems, 327

ROLAP, 852
Role-based authorization, 697
Roles in the ER model, 32
Roll-up, 854
ROLLUP, 857
Root of an XML document, 231
Rotational delay for disks, 308
Round-robin partitioning, 730
Row-level triggers, 170
RSA encryption, 710
Rule-based query optimization,

507
Rules in Datalog, 819
Running information for

aggregation, 470
Runs in sorting, 423
R* trees, 985
SABRE, 6
Safe queries, 125
in Datalog, 826

Safety, 826
Sampling
real systems, 485

Savepoints, 535
Scalability, 890
Scale-up, 728
Scan, 744
Schedule, 523
avoid cascading abort, 530
conflict equivalence, 550
conflict serializable, 550
recoverable, 530, 571
serial, 524
serializable, 525, 529
strict, 552
view serializable, 553

Schema, 11, 59, 61
Schema decomposition, 609

Schema evolution, 669
Schema refinement, 28, 605
denormalization, 672

Schema tuning, 669
Search key, 276
Search space of plans, 492
Search term, 928
Second normal form, 619
Secondary index, 277
Secondary storage, 305
Secure Electronic Transaction,

713
Secure Sockets Layer, 712
Secure Sockets Layer (SSL),

223
Security, 22, 694, 696
authentication, 694
classes, 695, 706
discretionary access control,

695
encryption, 712
inference, 715
mandatory access control, 695
mechanisms, 693
policy, 693
privileges, 695
statistical databases, 715
using views, 704

Security administrator, 709
Security levels, 708
Security of methods, 801
Seek time for disks, 284, 308
Selection condition
conjunct, 445
conjunctive normal form, 445
term, 444

Selection pushing, 409
Selections, 744
definition, 103

Selectivity
of an access path, 399

Semantic data model, 10, 27
Semantic integration, 995
Semijoin, 747
Semijoin reduction, 747
Seminaive fixpoint evaluation,

836
Semistructured data, 946, 1001
Sequence data, 913
Sequence of itemsets, 902
Sequence set in a B+ tree, 345
Sequential flooding, 321, 472
Sequential patterns, 901
Serial schedule, 524
Serializability, 525, 529, 550,

553, 561
Serializability graph, 551
Serializable schedule, 529
Server-side processing, 254
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Servlet, 254
request, 255
response, 255

Servlet interface, 255
Session key, 712
Session management, 253
Set comparisons in SQL, 148
SET DEFAULT in foreign keys,

71
Set operators
implementation, 468
in relational algebra, 104
in SQL, 141

SET protocol, 713
Set-difference operation, 105
SGML, 228
Shadow page recovery, 596
Shallow equality, 790
Shared locks, 531
Shared-disk architecture, 727
Shared-memory architecture,

727
Shared-nothing architecture,

727
Signature files, 937
Single-tier architecture, 236
Skew, 730, 733
Slot directories, 329
Snapshots, 753, 882
Snowflake queries, 869
SOAP, 222
Sort-merge join, 403, 458
Sorted files, 285
Sorted runs, 423
Sorting, 732
applications, 422
blocked I/O, 430
double buffering, 432
external merge sort

algorithm, 424
replacement sort, 428
using B+ trees, 433

Sound axioms, 613
Space-filling curves, 975
Sparse columns, 866
Spatial data, 969
boundary, 969
location, 969

Spatial extent, 969
Spatial join queries, 971
Spatial range queries, 970
Specialization, 38
Speed-up, 728
Split operator, 731
Split selection, 908
Splitting attributes, 907
Splitting vector, 732
SQL
chained transactions, 536

access mode, 538
aggregate operations, 164
definition, 151
implementation, 469

ALL, 148, 154
ALTER, 696
ALTER TABLE, 91
ANY, 148, 154
AS, 139
authorization ID, 697
AVG, 151
BETWEEN, 657
CARDINALITY, 781
CASCADE, 71
collations, 140
COMMIT, 535
conformance packages, 131
correlated queries, 147
COUNT, 151
CREATE, 696
CREATE DOMAIN, 166
CREATE TABLE, 62
creating views, 86
CUBE, 857
cursors, 189
holdability, 192
ordering rows, 193
sensitivity, 192
updatability, 191

Data Definition Language
(DDL), 62, 131

Data Manipulation Language
(DML), 131

DATE values, 140
DELETE, 69
DISTINCT, 133, 136
DISTINCT for aggregation,

151
distinct types, 167
DROP, 696
DROP TABLE, 91
dynamic, 194
embedded language

programming, 187
EXCEPT, 141, 149
EXEC, 187
EXISTS, 141, 163
expressing division, 150
expressions, 139, 163
giving names to constraints,

66
GRANT, 695, 699
GRANT OPTION, 696

GROUP BY, 154
HAVING, 154
IN, 141
indexing, 299
INSERT, 62, 69
insertable-into views, 89

SQL
integrity constraints
assertions, 69, 167
CHECK, 165
deferred checking, 72
domain constraints, 166
effect on modifications, 69
PRIMARY KEY, 66
table constraints, 69, 165
UNIQUE, 66

INTERSECT, 141, 149
IS NULL, 163
isolation level, 538
MAX, 151
MIN, 151
multisets, 135

SQL
nested subqueries
definition, 145
implementation, 504

NO ACTION, 71
NOT, 136
null values, 67, 69, 71, 162
ORDER BY, 193
outer joins, 164
phantoms, 538–539
privileges, 695
DELETE, 696
INSERT, 696
REFERENCES, 696
SELECT, 695
UPDATE, 696

query block, 479
READ UNCOMMITTED,

539
SQL
referential integrity
enforcement, 70

REPEATABLE READ, 539
REVOKE, 699–700
CASCADE, 700

ROLLBACK, 535
ROLLUP, 857
savepoints, 535
security, 696
SELECT-FROM-WHERE,

133
SERIALIZABLE, 539
SOME, 148
SQLCODE, 191
SQLERROR, 189
SQLSTATE, 189
standardization, 58
standards, 180
strings, 139
SUM, 151
transaction support, 535
transactions and constraints,

72
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UNION, 141
UNIQUE, 163
updatable views, 88
UPDATE, 63, 69
view updates, 88
views, 90

SQL Server
data mining, 914

SQL/MM
Data Mining, 891
Framework, 776
Full Text, 944
Spatial, 969

SQL/PSM, 212
SQL/XML, 948
SQL:1999, 58, 180, 816, 805
array type constructor, 780
reference types and oids, 790
role-based authorization, 697
row type constructor, 780
structured types, 780
structured user-defined types,

779
triggers, 168

SQL:2003, 180
SQLCODE, 191
SQLERROR, 189
SQLJ, 206
iterators, 208

SQLSTATE, 189
SRQL, 887
SSL protocol, 712
Stable storage, 542, 582
Standard Generalized Markup

Language (SGML), 228
Standardization, 58
Star join queries, 869
Star schema, 853
Starvation, 554
Stateless communication

protocols, 225
Statement-level triggers, 170
Static hashing, 371
Static indexes, 341
Statistical databases, 715, 855
Statistics maintained by

DBMS, 395
Stealing frames, 541
Stop words, 931
Storage
nonvolatile, 306
primary, secondary, and

tertiary, 305
stable, 542

Stored procedures, 209
Storing ADTs and structured

types, 799
Stratification, 829

comparison to relational
algebra, 830

Streaming data, 916
Strict 2PL, 530–531, 551, 560
Strict schedule, 552
Strings in SQL, 139
Striping unit, 310
Structured types, 780
storage issues, 799

Structured user-defined types,
779

Style sheets, 247
Subclass, 38
Substitution principle, 788
Subtransaction, 755
SUM, 151
Superclass, 38
Superkey, 65, 612
Support, 893
association rule, 897
classification and regression,

905
frequent itemset, 893
itemset sequence, 902

Swizzling, 802
Sybase, 27
Sybase ASE, 322–323, 327, 331,

333, 357, 359, 422,
446–447, 452–453, 485,
500, 506, 573, 582, 709,
776

Sybase ASIQ, 446, 452–453
Sybase IQ, 447, 866, 869
Symmetric encryption, 710
Synchronous replication, 741,

750
read-any write-all technique,

751
voting technique, 750

System catalog, 394
System catalogs, 12, 330, 395,

480, 483, 741
System R, 6
System response time, 524
System throughput, 524
Table, 60
Tags in HTML, 226
Temporal queries, 999
Term frequency, 931
Tertiary storage, 305
Thin clients, 237
Third normal form, 617, 625,

628
Thomas Write Rule, 570
Thrashing, 534
Three-Phase Commit, 762
Three-tier architecture, 239
middle tier, 240
presentation tier, 240

Throughput, 524
Time-out for deadlock

detection, 757
Timestamp
concurrency control, 569–570
buffered writes, 571
recoverability, 571

deadlock prevention in 2PL,
558

Tioga, 1001
Total participation, 34
TP monitor, 993
TPC-D, 506
Tracks in disks, 306
Trail, 582
Transaction, 520–521
abort, 523
blind write, 528
commit, 523
conflicting actions, 526
constraints in SQL, 72
customer, 892
distributed, 736
in SQL, 535
locks and performance, 678
management in a distributed

DBMS, 755
multilevel and nested, 994
properties, 17, 521
read, 523
schedule, 523
write, 523

Transaction manager, 21, 541
Transaction processing

monitor, 993
Transaction table, 553, 585, 589
Transactions
nested, 536
savepoints, 535

Transactions and JDBC, 199
Transfer time for disks, 308
TransID, 583
Transitive dependencies, 617
Transparent data distribution,

736
Travelocity, 6
Tree-based indexing, 280
Trees
R trees, 982
B+ tree, 344
classification and regression,

906
height, 282
ISAM, 341
node format for B+ tree, 346
Region Quad trees, 976

Triggers, 132, 168
activation, 168
row vs. statement level, 170
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use in replication, 753
Trivial FD, 613
TSQL, 1001
Tuning, 28, 650, 652, 667
Tuning for concurrency, 678
Tuning wizard, 663, 665
Tuple, 60
Tuple relational calculus, 117
Turing award, 6
Two-Phase Commit, 759, 761
Presumed Abort, 762

Two-phase locking, 552
Two-tier architecture, 237
Type constructor, 779
Type extents, 789
Types
complex vs. reference, 795
object equality, 790

UDDI, 222
UML, 47
class diagrams, 48
component diagrams, 49
database diagrams, 48

Undo phase of recovery, 580,
592

Unicode, 230
Unified Modeling Language, 47
Uniform resource identifier

(URI), 221
Union compatibility, 104
Union operation, 104, 141
UNIQUE constraint in SQL, 66
Unique index, 278
Universal resource locator

(URL), 223
Unnesting operation, 783

Unpinning pages, 319
Unrepeatable read, 528
Updatable cursors, 191
Updatable views, 88
Update locks, 556
Update log record, 583
Updates in distributed

databases, 750
Upgrading locks, 555
URI, 221
URL, 223
URLs
versus oids, 792

User-defined aggregates, 801
User-defined types, 784
Valid XML documents, 231
Validation in optimistic CC,

567
Variable-length fields, 332
Variable-length records, 328
Vector data, 970
Vector space model, 930
Vertical fragmentation, 739–740
Vertical partitioning, 653
View maintenance, 876, 881
incremental, 877

View materialization, 874
View serializability, 553
View serializable schedule, 553
Views, 14, 86, 90, 653
for security, 704
GRANT, 704
query modification, 873
REVOKE, 704
updatable, 88
updates on, 88

VisDB, 1001
Visualization, 1000
Wait-die policy, 558
Waits-for graph, 556, 756
WAL, 18, 320, 581, 586
Warehouse, 754, 848, 870
Weak entities, 35, 82
Weak entity set, 36
Web crawler, 939
Web services, 222
Well-formed XML document,

231
Window queries, 859
Wizard
index tuning, 663

Workflow management, 993
Workload, 291
Workloads and database

design, 650
Wound-wait policy, 558
Write-ahead logging, 18, 320,

581, 586
WSDL, 222
XML, 228
entity references, 229
root, 231

XML content, 232
XML DTDs, 231
XML Schema, 234
XPath, 250
XQuery, 948
path expressions, 948

XSL, 228, 250
XSLT, 250
Z-order curve, 975


