

TEXTS IN COMPUTER SCIENCE

Editors
David Gries

Fred B. Schneider

An Integrated Approach to
Software Engineering

Third Edition

Pankaj Jalote
Indian Institute of Technology Kanpur

Springer

Pankaj Jalote
Department of Computer Science

and Engineering
Indian Institute of Technology
Kanpur208016
India

Series Editors
David Gries
Fred B. Schneider
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501

Pankaj Jalote
Indian Institute of Technology Kanpur

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available
From the Library of Congress

ISBN-10: 0-387-20881-X(HB)ISBN-10: 0-387-28132-0 (eBook)
ISBN-13: 978-0387-20881-7 (HB)ISBN-13: 978-0387-28132-2 (eBook)

© 2005 by Springer Science-i-Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science + Business Media, Inc., 233
Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with
reviews or scholarly analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America

9 8 7 6 5 4 3 2 1 SPIN 10949597

springeronline.com

http://springeronline.com

Contents

Preface to the Third Edition xiii

1 Introduction 1
1.1 The Problem Domain 2

1.1.1 Industrial Strength Software 2
1.1.2 Software is Expensive 4
1.1.3 Late and Unreliable 5
1.1.4 Maintenance and Rework 6

1.2 The Software Engineering Challenges 8
1.2.1 Scale 9
1.2.2 Quality and Productivity 11
1.2.3 Consistency and Repeatability 14
1.2.4 Change 15

1.3 The Software Engineering Approach 15
1.3.1 Phased Development Process 16
1.3.2 Managing the Process 20

1.4 Summary 21
Exercises 22

2 Software Processes 25
2.1 Software Process 25

2.1.1 Processes and Process Models 26
2.1.2 Component Software Processes 27
2.1.3 ETVX Approach for Process Specification 29

2.2 Desired Characteristics of Software Process 31
2.2.1 Predictability 31
2.2.2 Support Testability and Maintainability 33
2.2.3 Support Change 34
2.2.4 Early Defect Removal 35

vi CONTENTS

2.2.5 Process Improvement and Feedback 36
2.3 Software Development Process Models 37

2.3.1 Waterfall Model 37
2.3.2 Prototyping 41
2.3.3 Iterative Development 43
2.3.4 Timeboxing Model 46
2.3.5 Comparision of Models 50

2.4 Other Software Processes 50
2.4.1 Project Management Process 52
2.4.2 The Inspection Process 54
2.4.3 Software Configuration Management Process 61
2.4.4 Requirements Change Management Process 67
2.4.5 Process Management Process 69

2.5 Summary 73
Exercises 75

3 Softw^are Requirements Analysis and Specification 79
3.1 Software Requirements 80

3.1.1 Need for SRS 81
3.1.2 Requirement Process 85

3.2 Problem Analysis 89
3.2.1 Informal Approach 90
3.2.2 Data Flow Modeling 91
3.2.3 Object-Oriented Modeling 103
3.2.4 Prototyping 113

3.3 Requirements Specification 117
3.3.1 Characteristics of an SRS 118
3.3.2 Components of an SRS 120
3.3.3 Specification Language 124
3.3.4 Structure of a Requirements Document 125

3.4 Functional Specification with Use Cases 128
3.4.1 Basics 129
3.4.2 Examples 132
3.4.3 Extensions 135
3.4.4 Developing Use Cases 136

3.5 Validation 138
3.6 Metrics 142

3.6.1 Size—Function Points 142
3.6.2 Quality Metrics 147

3.7 Summary 148
Exercises 150

CONTENTS vii

Case Studies 152

4 Software Architecture 159
4.1 Role of Software Architecture 160
4.2 Architecture Views 163
4.3 Component and Connector View 167

4.3.1 Components 167
4.3.2 Connectors 169
4.3.3 An Example 172

4.4 Architecture Styles for C&C View 176
4.4.1 Pipe and Filter 176
4.4.2 Shared-Data Style 178
4.4.3 Client-Server Style 181
4.4.4 Some Other Styles 182

4.5 Discussion 183
4.5.1 Architecture and Design 183
4.5.2 Preserving the Integrity of an Architecture 184
4.5.3 Deployment View and Performance Analysis 188
4.5.4 Documenting Architecture Design 190

4.6 Evaluating Architectures 194
4.6.1 The ATAM Analysis Method 195
4.6.2 An Example 196

4.7 Summary 199
Exercises 201
Case Studies 203

5 Planning a Software Project 207
5.1 Process Planning 208
5.2 Effort Estimation 208

5.2.1 Uncertainties in Effort Estimation 209
5.2.2 Building Effort Estimation Models 211
5.2.3 A Bottom-Up Estimation Approach 213
5.2.4 COCOMO Model 215

5.3 Project Scheduling and Staffing 219
5.3.1 Overall Scheduling 219
5.3.2 Detailed Scheduling 221
5.3.3 An Example 223
5.3.4 Team Structure 224

5.4 Software Configuration Management Plan 225
5.5 Quality Plan 226

5.5.1 Defect Injection and Removal Cycle 227

viii CONTENTS

5.5.2 Approaches to Quality Management 228
5.5.3 Quality Plan 229

5.6 Risk Management 230
5.6.1 Risk Management Concepts 230
5.6.2 Risk Assessment 232
5.6.3 Risk Control 236
5.6.4 A Practical Risk Management Approach 237

5.7 Project Monitoring Plan 237
5.7.1 Measurements 239
5.7.2 Project Monitoring and Tracking 239

5.8 Summary 241
Exercises 243
Case Studies 245

6 Function-Oriented Design 247
6.1 Design Principles 248

6.1.1 Problem Partitioning and Hierarchy 250
6.1.2 Abstraction 251
6.1.3 Modularity 253
6.1.4 Top-Down and Bottom-Up Strategies 254

6.2 Module-Level Concepts 255
6.2.1 Coupling 255
6.2.2 Cohesion 257

6.3 Design Notation and Specification ' 260
6.3.1 Structure Charts 261
6.3.2 Specification 265

6.4 Structured Design Methodology 266
6.4.1 Restate the Problem as a Data Flow Diagram 267
6.4.2 Identify the Most Abstract Input and Output Data

Elements 269
6.4.3 First-Level Factoring 271
6.4.4 Factoring the Input, Output, and Transform Branches 273
6.4.5 Design Heuristics 276
6.4.6 Transaction Analysis 277
6.4.7 Discussion 279

6.5 Verification 281
6.6 Metrics 283

6.6.1 Network Metrics 284
6.6.2 Stability Metrics 285
6.6.3 Information Flow Metrics 288

6.7 Summary 290

CONTENTS ix

Exercises 292
Case Studies 294

7 Object-Oriented Design 303
7.1 GO Analysis and GO Design 304
7.2 GG Concepts 306

7.2.1 Classes and Objects 307
7.2.2 Relationships Among Objects 312
7.2.3 Inheritance and Polymorphism 315

7.3 Design Concepts 323
7.3.1 Coupling 323
7.3.2 Cohesion 325
7.3.3 The Open-Closed Principle 327
7.3.4 Some Design Guidehnes 329

7.4 Unified Modehng Language (UML) 331
7.4.1 Class Diagram 331
7.4.2 Sequence and Collaboration Diagrams 335
7.4.3 Other Diagrams and Capabilities 339

7.5 A Design Methodology 341
7.5.1 Dynamic Modehng 343
7.5.2 Functional Modeling 345
7.5.3 Defining Internal Classes and Operations 346
7.5.4 Optimize and Package 347
7.5.5 Examples 348

7.6 Metrics 356
7.7 Summary 360

Exercises 362
Case Studies 364

8 Detailed Design 371
8.1 Detailed Design and PDL 371

8.1.1 PDL 371
8.1.2 Logic/Algorithm Design 374
8.1.3 State Modeling of Classes 378

8.2 Verification 380
8.2.1 Design Walkthroughs 380
8.2.2 Critical Design Review 381
8.2.3 Consistency Checkers 382

8.3 Metrics 383
8.3.1 Cyclomatic Complexity 383
8.3.2 Data Bindings 386

X CONTENTS

8.3.3 Cohesion Metric 387
8.4 Summary 388

Exercises 389

9 Coding 391
9.1 Programming Principles and Guidelines 392

9.1.1 Common Coding Errors 393
9.1.2 Structured Programming 398
9.1.3 Information Hiding 401
9.1.4 Some Programming Practices 402
9.1.5 Coding Standards 406

9.2 Coding Process 409
9.2.1 An Incremental Coding Process 410
9.2.2 Test Driven Development 411
9.2.3 Pair Programming 413
9.2.4 Source Code Control and Build 414

9.3 Refactoring 416
9.3.1 Basic Concepts 417
9.3.2 An example 419
9.3.3 Bad Smells 422
9.3.4 Common Refactorings 424

9.4 Verification 429
9.4.1 Code Inspections 429
9.4.2 Static Analysis 431
9.4.3 Proving Correctness 437
9.4.4 Unit Testing 444
9.4.5 Combining Different Techniques 449

9.5 Metrics 451
9.5.1 Size Measures 452
9.5.2 Complexity Metrics 453

9.6 Summary 456
Exercises 458
Case Studies 462

10 Testing 465
10.1 Testing Fundamentals 466

10.1.1 Error, Fault, and Failure . 466
10.1.2 Test Oracles 468
10.1.3 Test Cases and Test Criteria 469
10.1.4 Psychology of Testing 471

10.2 Black-Box Testing 472

CONTENTS xi

10.2.1 Equivalence Class Partitioning 473
10.2.2 Boundary Value Analysis 475
10.2.3 Cause-Effect Graphing 477
10.2.4 Pair-wise Testing 480
10.2.5 Special Cases 483
10.2.6 State-Based Testing 484

10.3 White-Box Testing 487
10.3.1 Control Flow-Based Criteria 488
10.3.2 Data Flow-Based Testing 491
10.3.3 An Example 495
10.3.4 Mutation Testing 498
10.3.5 Test Case Generation and Tool Support 502

10.4 Testing Process 504
10.4.1 Levels of Testing 505
10.4.2 Test Plan 507
10.4.3 Test Case Specifications 509
10.4.4 Test Case Execution and Analysis 511
10.4.5 Defect Logging and Tracking 513

10.5 Defect Analysis and Prevention 516
10.5.1 Pareto Analysis 517
10.5.2 Perform Causal Analysis 517
10.5.3 Develop and Implement Solutions 520

10.6 Metrics—Reliability Estimation 521
10.6.1 Basic Concepts and Definitions 522
10.6.2 A Reliability Model 524
10.6.3 Failure Data and Parameter Estimation 529
10.6.4 Translating to Calendar Time 532
10.6.5 An Example 532

10.7 Summary 534
Exercises 536
Case Studies 539

Bibliography 543

Index 553

Preface to the Third Edition

An introductory course in Software Engineering remains one of the hardest
subjects to teach. Much of the difficulty stems from the fact that Software
Engineering is a very wide field which includes a wide range of topics. Con
sequently, what should be the focus of an introductory course remains a
challenge with many possible viewpoints.

This third edition of the book approaches the problem from the perspec
tive of what skills a student should possess after the introductory course,
particularly if it may be the only course on software engineering in the stu
dent's program. The goal of this third edition is to impart to the student
knowledge and skills that are needed to successfully execute a project of
a few person-months by employing proper practices and techniques. Inci-
dently, a vast majority of the projects executed in the industry today are of
this scope—executed by a small team over a few months. Another objective
of the book is to lay the foundation for the student for advanced studies in
Software Engineering.

Executing any software project requires skills in two key dimensions—
engineering and project management. While engineering deals with issues
of architecture, design, coding, testing, etc., project management deals with
planning, monitoring, risk management, etc. Consequently, this book fo
cuses on these two dimensions, and for key tasks in each, discusses concepts
and techniques that can be applied effectively on projects.

The focus of the book remains as the first course in software engineering,
and it retains its character of having a running case study with most of the
outputs available. This edition draws upon my experience during my sab
baticals with two software companies—Infosys Technologies and Microsoft
Corporation—and my practice-oriented book Software Project Management
in Practice (Addison-Wesley, 2002) to bring, in addition to the concepts,
more elements of how these concepts are actually apphed in practice.

In this edition, new material has been added on current practices, out-

xiv PREFACE TO THE THIRD EDITION

dated material has been removed, and discussion has been sharpened. The
following key additions have been made:

• In "Software Process" a discussion on the timeboxing model for itera
tive development and on inspection process

• In "Requirements Analysis and Specification" a description of Use Cases

• A new chapter on "Software Architecture"

• In "Project Planning" some practical techniques for estimation, schedul
ing, tracking, risk management, etc.

• In "Object Oriented Design", discussion on UML and on concepts like
cohesion, coupling, and open-closed principle

• In "Coding" many additions have been made. These include refac-
toring, test driven development, and pair programming, as well as a
discussion on common coding defects, coding standards, and some use
ful coding practices.

• In "Testing" a discussion on pair-wise testing as an approach for func
tional testing, defect tracking, and defect analysis and prevention

In addition to the old case study, a new case study has been added.
Various work products of the case studies, including the SRS, architecture
document, project plan, design document, code, and test plan, have been
made available through the Web site.

A Web site has been created for this edition. In addition to outputs
of the case studies, implementations of some of some of the examples are
also available from the site. The site will soon include presentation slides for
teaching, as well as other instructional material like examples and illustrative
studies. The URL of the website is:

http://www.cse.i itk.ac.in/JaloteSEbook
I would like to express my gratitude to many people who helped me

in preparing the case study. These include Kapil Narula, Ragesh Jaiswal,
Vivek Pandey, Nilesh Lunawat, and Rajneesh Malviya. My special thanks
to Vipindeep Vangala and Raghu Lingampally whose help in manuscript and
Web site preparation allowed me to focus on the contents.

Pankaj Jalote

http://www.cse

Introduction

Ask any student who has had some programming experience the following
question: You are given a problem for which you have to build a software
system that most students feel will be approximately 10,000 lines of (say C
or Java) code. If you are working full time on it, how long will it take you
to build this system?

The answer of students is generally 1 to 3 months. And, given the pro
gramming expertise of the students, there is a good chance that they will
be able to build a system and demo it to the Professor within 2 months.
With 2 months as the completion time, the productivity of the student will
be 5,000 lines of code (LOG) per person-month.

Now let us take an alternative scenario—we act as clients and pose the
same problem to a company that is in the business of developing software
for clients. Though there is no "standard" productivity figure and it varies
a lot, it is fair to say a productivity figure of 1,000 LOG per person-month
is quite respectable (though it can be as low as 100 LOG per person-month
for embedded systems). With this productivity, a team of professionals in
a software organization will take 10 per son-months to build this software
system.

Why this difference in productivity in the two scenarios? Why is it
that the same students who can produce software at a productivity of a
few thousand LOG per month while in college end up producing only about
a thousand LOG per month when working in a company? Why is it that
students seem to be more productive in their student days than when they
become professionals?

The answer, of course, is that two different things are being built in the

2 1. INTRODUCTION

two scenarios. In the first, a student system is being built whose main pur
pose is to demo that it works. In the second scenario, a team of professionals
in an organization is building the system for a client who is paying for it,
and whose business may depend on proper working of the system. As should
be evident, building the latter type of software is a different problem alto
gether. It is this problem in which software engineering is interested. The
difference between the two types of software was recognized early and the
term software engineering was coined at NATO sponsored conferences held
in Europe in the 1960s to discuss the growing software crisis and the need
to focus on software development.

In the rest of the chapter we further define our problem domain. Then
we discuss some of the key factors that drive software engineering. This is
followed by the basic approach followed by software engineering. In the rest
of the book we discuss in more detail the various aspects of the software
engineering approach.

1.1 The Problem Domain

In software engineering we are not dealing with programs that people build
to illustrate something or for hobby (which we are referring to as student
systems). Instead the problem domain is the software that solves some
problem of some users where larger systems or businesses may depend on the
software, and where problems in the software can lead to significant direct
or indirect loss. We refer to this software as industrial strength software.
Let us first discuss the key difference between the student software and the
industrial strength software.

1.1.1 Industrial Strength Software

A student system is primarily meant for demonstration purposes; it is gener
ally not used for solving any real problem of any organization. Consequently,
nothing of significance or importance depends on proper functioning of the
software. Because nothing of significance depends on the software, the pres
ence of "bugs" (or defects or faults) is not a major concern. Hence the
software is generally not designed with quality issues like portabihty, robust
ness, rehability, and usability in mind. Also, the student software system
is generally used by the developer him- or herself, therefore the need for
documentation is nonexistent, and again bugs are not critical issues as the
user can fix them as and when they are found.

1.1. THE PROBLEM DOMAIN 3

An industrial strength software system, on the other hand, is built to solve
some problem of a client and is used by the clients organization for operating
some part of business (we use the term "business" in a very broad sense—it
may be to manage inventories, finances, monitor patients, air traffic control,
etc.) In other words, important activities depend on the correct functioning
of the system. And a malfunction of such a system can have huge impact in
terms of financial or business loss, inconvenience to users, or loss of property
and life. Consequently, the software system needs to be of high quality with
respect to properties hke dependability, reliability, user-friendhness, etc.

This requirement of high quality has many ramifications. First, it re
quires that the software be thoroughly tested before being used. The need
for rigorous testing increases the cost considerably. In an industrial strength
software project, 30% to 50% of the total effort may be spent in testing
(while in a student software even 5% may be too high!)

Second, building high quahty software requires that the development be
broken into phases such that output of each phase is evaluated and reviewed
so bugs can be removed. This desire to partition the overall problem into
phases and identify defects early requires more documentation, standards,
processes, etc. All these increase the effort required to build the software—
hence the productivity of producing industrial strength software is generally
much lower than for producing student software.

Industrial strength software also has other properties which do not exist
in student software systems. Typically, for the same problem, the detailed
requirements of what the software should do increase considerably. Besides
quality requirements, there are requirements of backup and recovery, fault
tolerance, following of standards, portability, etc. These generally have the
effect of making the software system more complex and larger. The size of
the industrial strength software system may be two times or more than the
student system for the same problem.

Overall, if we assume one-fifth productivity, and an increase in size by a
factor of two for the same problem, an industrial strength software system
will take about 10 times as much effort to build as a student software system
for the same problem. The rule of thumb Brooks gives also says that indus
trial strength software may cost about 10 times the student software[25].
The software industry is largely interested in developing industrial strength
software, and the area of software engineering focuses on how to build such
systems. In the rest of the book, when we use the term software, we mean
industrial strength software.

IEEE defines software as the collection of computer programs, proce-

4 1. INTRODUCTION

dures, rules, and associated documentation and data [91]. This definition
clearly states that software is not just programs, but includes all the associ
ated documentation and data. This implies that the discipline dealing with
the development of software should not deal only with developing programs,
but with developing all the things that constitute software.

1.1.2 Sof tware is E x p e n s i v e

Industrial strength software is very expensive primarily due to the fact that
software development is extremely labor-intensive. To get an idea of the
costs involved, let us consider the current state of practice in the industry.
Lines of code (LOG) or thousands of lines of code (KLOC) delivered is by
far the most commonly used measure of software size in the industry.
As the main cost of producing software is the manpower employed, the cost
of developing software is generally measured in terms of person-months of
effort spent in development. And productivity is frequently measured in the
industry in terms of LOG (or KLOG) per person-month.

The productivity in the software industry for writing fresh code generally
ranges from 300 to 1,000 LOG per person-month. That is, for developing
software, the average productivity per person, per month, over the entire de
velopment cycle is about 300 to 1,000 LOG. And software companies charge
the client for whom they are developing the software upwards of $100,000 per
person-year or more than $8,000 per person-month (which comes to about
$50 per hour). With the current productivity figures of the industry, this
translates into a cost per line of code of approximately $8 to $25. In other
words, each fine of delivered code costs between $8 and $25 at current costs
and productivity levels! And even small projects can easily end up with
software of 50,000 LOG. With this productivity, such a software project will
cost between $ 0.5 million and $1.25 million!

Given the current compute power of machines, such software can easily
be hosted on a workstation or a small server. This implies that software that
can cost more than a million dollars can run on hardware that costs at most
tens of thousands of dollars, clearly showing that the cost of hardware on
which such an appHcation can run is a fraction of the cost of the application
software! This example clearly shows that not only is software very expen
sive, it indeed forms the major component of the total automated system,
with the hardware forming a very small component. This is shown in the
classic hardware-software cost reversal chart in Figure 1.1 [17].

As Figure 1.1 shows, in the early days, the cost of hardware used to

1.1. THE PROBLEM DOMAIN

1955 1970 1985

Figure 1.1: Hardware-software cost trend.

dominate the system cost. As the cost of hardware has lessened over the
years and continues to dechne, and as the power of hardware doubles every
2 years or so (the Moore's law) enabhng larger software systems to be run
on it, cost of software has now become the dominant factor in systems.

1.1.3 Late and Unrel iable

Despite considerable progress in techniques for developing software, software
development remains a weak area. In a survey of over 600 firms, more than
35% reported having some computer-related development project that they
categorized as a runaway[131]. A runaway is not a project that is somewhat
late or somewhat over budget—it is one where the budget and schedule are
out of control. The problem has become so severe that it has spawned an
industry of its own; there are consultancy companies that advise how to rein
such projects, and one such company had more than $30 milhon in revenues
from more than 20 clients [131].

Similarly, a large number of instances have been quoted regarding the
unreliability of software; the software does not do what it is supposed to do
or does something it is not supposed to do. In one defense survey, it was
reported that more than 70% of all the equipment failures were due to soft
ware! And this is in systems that are loaded with electrical, hydrauhc, and
mechanical systems. This just indicates that all other engineering disciphnes
have advanced far more than software engineering, and a system compris
ing the products of various engineering disciphnes finds that software is the

6 1. INTRODUCTION

weakest component. Failure of an early Apollo flight was also attributed
to software. Similarly, failure of a test firing of a missile in India was at
tributed to software problems. Many banks have lost millions of dollars due
to inaccuracies and other problems in their software [122].

A note about the cause of unreliabihty in software: software failures are
different from failures of, say, mechanical or electrical systems. Products of
these other engineering disciplines fail because of the change in physical or
electrical properties of the system caused by aging. A software product, on
the other hand, never wears out due to age. In software, failures occur due
to bugs or errors that get introduced during the design and development
process. Hence, even though a software system may fail after operating
correctly for some time, the bug that causes that failure was there from the
start! It only got executed at the time of the failure. This is quite different
from other systems, where if a system fails, it generally means that sometime
before the failure the system developed some problem (due to aging) that
did not exist earlier.

1.1.4 Maintenance and Rework

Once the software is delivered and deployed, it enters the maintenance phase.
Why is maintenance needed for software, when software does not age? Soft
ware needs to be maintained not because some of its components wear out
and need to be replaced, but because there are often some residual errors
remaining in the system that must be removed as they are discovered. It
is commonly believed that the state of the art today is such that almost
all software that is developed has residual errors, or bugs, in it. Many of
these surface only after the system has been in operation, sometimes for a
long time. These errors, once discovered, need to be removed, leading to the
software being changed. This is sometimes called corrective maintenance.

Even without bugs, software frequently undergoes change. The main
reason is that software often must be upgraded and enhanced to include
more features and provide more services. This also requires modification of
the software. It has been argued that once a software system is deployed,
the environment in which it operates changes. Hence, the needs that initi
ated the software development also change to reflect the needs of the new
environment. Hence, the software must adapt to the needs of the changed
environment. The changed software then changes the environment, which in
turn requires further change. This phenomenon is sometimes called the law
of software evolution. Maintenance due to this phenomenon is sometimes

1.1. THE PROBLEM DOMAIN 7

called adaptive maintenance.
Though maintenance is not considered a part of software development,

it is an extremely important activity in the life of a software product. If we
consider the total life of software, the cost of maintenance generally exceeds
the cost of developing the software! The maintenance-to-development-cost
ratio has been variously suggested as 80:20, 70:30, or 60:40. Figure 1.1 also
shows how the maintenance costs are increasing.

Maintenance work is based on existing software, as compared to develop
ment work that creates new software. Consequently, maintenance revolves
around understanding existing software and maintainers spend most of their
time trying to understand the software they have to modify. Understanding
the software involves understanding not only the code but also the related
documents. During the modification of the software, the effects of the change
have to be clearly understood by the maintainer because introducing unde-
sired side effects in the system during modification is easy. To test whether
those aspects of the system that are not supposed to be modified are operat
ing as they were before modification, regression testing is done. Regression
testing involves executing old test cases to test that no new errors have been
introduced.

Thus, maintenance involves understanding the existing software (code
and related documents), understanding the effects of change, making the
changes—to both the code and the documents—testing the new parts, and
retesting the old parts that were not changed. Because often during de
velopment, the needs of the maintainers are not kept in mind, few support
documents are produced during development to help the maintainer. The
complexity of the maintenance task, coupled with the neglect of maintenance
concerns during development, makes maintenance the most costly activity
in the life of software product.

Maintenance is one form of change that typically is done after the soft
ware development is completed and the software has been deployed. How
ever, there are other forms of changes that lead to rework during the software
development itself.

One of the biggest problems in software development, particularly for
large and complex systems, is that what is desired from the software (i.e.,
the requirements) is not understood. To completely specify the require
ments, all the functionality, interfaces, and constraints have to be specified
before software development has commenced! In other words, for specifying
the requirements, the clients and the developers have to visualize what the
software behavior should be once it is developed. This is very hard to do,

8 1. INTRODUCTION

particularly for large and complex systems. So, what generally happens is
that the development proceeds when it is believed that the requirements are
generally in good shape. However, as time goes by and the understanding of
the system improves, the clients frequently discover additional requirements
they had not specified earlier. This leads to requirements getting changed.
This change leads to rework, the requirements, the design, the code all have
to be changed to accommodate the new or changed requirements.

Just uncovering requirements that were not understood earlier is not the
only reason for this change and rework. Software development of large and
complex systems can take a few years. And with the passage of time, the
needs of the clients change. After all, the current needs, which initiate the
software product, are a reflection of current times. As times change, so do
the needs. And, obviously, the clients want the system deployed to satisfy
their most current needs. This change of needs while the development is
going on also leads to rework.

In fact, changing requirements and associated rework are a major prob
lem of the software industry. It is estimated that rework costs are 30 to
40% of the development cost [22]. In other words, of the total development
effort, rework due to various changes consume about 30 to 40% of the ef
fort! No wonder change and rework is a major contributor to the software
crisis. However, unlike the issues discussed earlier, the problem of rework
and change is not just a reflection of the state of software development, as
changes are frequently initiated by clients as their needs change.

1.2 The Software Engineering Challenges

Now we have a better understanding of the problem domain that software
engineering deals with, let us orient our discussion to Software Engineering
itself. Software engineering is defined as the systematic approach to the
development, operation, maintenance, and retirement of software [91], In
this book we will primarily focus on development.

The use of the term systematic approach for the development of software
implies that methodologies are used for developing software which are re
peat able. That is, if the methodologies are applied by different groups of
people, similar software will be produced. In essence, the goal of software
engineering is to take software development closer to science and engineering
and away from ad-hoc approaches for development whose outcomes are not
predictable but which have been used heavily in the past and still continue

1.2. THE SOFTWARE ENGINEERING CHALLENGES

satisfies

Figure 1.2: Basic problem.

to be used for developing software.
As mentioned, industrial strength software is meant to solve some prob

lem of the client. (We use the term client in a very general sense meaning
the people whose needs are to be satisfied by the software.) The problem
therefore is to (systematically) develop software to satisfy the needs of some
users or clients. This fundamental problem that software engineering deals
with is shown in Figure 1.2.

Though the basic problem is to systematically develop software to satisfy
the client, there are some factors which affect the approaches selected to solve
the problem. These factors are the primary forces that drive the progress
and development in the field of software engineering. We consider these as
the primary challenges for software engineering and discuss some of the key
ones here.

1.2.1 Scale

A fundamental factor that software engineering must deal with is the issue
of scale; development of a very large system requires a very different set
of methods compared to developing a small system. In other words, the
methods that are used for developing small systems generally do not scale
up to large systems. An example will illustrate this point. Consider the
problem of counting people in a room versus taking a census of a country.
Both are essentially counting problems. But the methods used for counting
people in a room (probably just go row-wise or column-wise) will just not
work when taking a census. Different set of methods will have to be used for

10 1. INTRODUCTION

Formal

Large
Complex
Projects

Informal
Informal Formal

Development Methods

Figure 1.3: The problem of scale.

conducting a census, and the census problem will require considerably more
management, organization, and vahdation, in addition to counting.

Similarly, methods that one can use to develop programs of a few hundred
lines cannot be expected to work when software of a few hundred thousand
lines needs to be developed. A different set of methods must be used for
developing large software. Any large project involves the use of engineering
and project management. For software projects, by engineering we mean the
methods, procedures, and tools that are used. In small projects, informal
methods for development and management can be used. However, for large
projects, both have to be much more formal, as shown in Figure 1.3.

As shown in the figure, when dealing with a small software project, the
engineering capability required is low (all you need to know is how to pro
gram and a bit of testing) and the project management requirement is also
low. However, when the scale changes to large, to solve such problems prop
erly, it is essential that we move in both directions—the engineering methods
used for development need to be more formal, and the project management
for the development project also needs to be more formal. For example, if we
leave 50 bright programmers together (who know how to develop small pro
grams well) without formal management and development procedures and
ask them to develop an on-line inventory control system for an automotive
manufacturer, it is highly unlikely that they will produce anything of use. To
successfully execute the project, a proper method for engineering the system
has to be used and the project has to be tightly managed to make sure that
methods are indeed being followed and that cost, schedule, and quality are

1.2. THE SOFTWARE ENGINEERING CHALLENGES 11

Size (KLOC)

980
320
305
200
200
100
90
65
60
45
38
30,000
40,000

Software

gcc
perl
teTeX
openssl
Python
apache
CVS

sendmail
xfig
gnuplot
openssh
Red Hat Linux
Windows XP

Languages

ansic, cpp, yacc
perl, ansic, sh
ansic, perl
ansic, cpp, perl
python, ansic
ansic, sh
ansic, sh
ansic
ansic
ansic, lisp
ansic
ansic, cpp
ansic, cpp

Table 1.1: Size in KLOC of some well known products.

under control.
There is no universally acceptable definition of what is a "small" project

and what is a "large" project, and the scales are clearly changing with time.
However, informally, we can use the order of magnitudes and say that a
project is small if its size is less than 10 KLOC, medium if the size is less
than 100 KLOC (and more than 10), large if the size is less than one million
LOC, and very large if the size is many million LOC. To get an idea of
the sizes of some real software products, the approximate sizes of some well
known products is given in Table 1.1.

1.2.2 Quality and Product iv i ty

An engineering discipline, almost by definition, is driven by practical param
eters of cost, schedule, and quality. A solution that takes enormous resources
and many years may not be acceptable. Similarly, a poor-quality solution,
even at low cost, may not be of much use. Like all engineering disciplines,
software engineering is driven by the three major factors: cost, schedule, and
quality.

The cost of developing a system is the cost of the resources used for the
system, which, in the case of software, is dominated by the manpower cost, as
development is largely labor-intensive. Hence, the cost of a software project

12 I. INTRODUCTION

1
Functionality Reliability

Software
Quality

1

1
Usability Effeciency Maintainability Portability

Figure 1.4: Software quality attributes.

is often measured in terms of person-months, i.e., the cost is considered to
be the total number of person-months spent in the project. (Person-months
can be converted into a dollar amount by multiplying it with the average
dollar cost, including the cost of overheads like hardware and tools, of one
person-month.)

Schedule is an important factor in many projects. Business trends are
dictating that the time to market of a product should be reduced; that is,
the cycle time from concept to delivery should be small. For software this
means that it needs to be developed faster.

Productivity in terms of output (KLOC) per person-month can ade
quately capture both cost and schedule concerns. If productivity is higher,
it should be clear that the cost in terms of person-months will be lower
(the same work can now be done with fewer person-months.) Similarly, if
productivity is higher, the potential of developing the software in shorter
time improves—a team of higher productivity will finish a job in lesser time
than a same-size team with lower productivity. (The actual time the project
will take, of course, depends also on the number of people allocated to the
project.) In other words, productivity is a key driving factor in all businesses
and desire for high productivity dictates, to a large extent, how things are
done.

The other major factor driving any production discipline is quality. To
day, quality is a main mantra, and business strategies are designed around
quahty. Clearly, developing high-quality software is another fundamental
goal of software engineering. However, while cost is generally well under
stood, the concept of quality in the context of software needs further discus
sion. We use the international standard on software product quality as the
basis of our discussion here [94].

According to the quality model adopted by this standard, software qual
ity comprises of six main attributes (called characteristics) as shown in Fig
ure 1.4 [94]. These six attributes have detailed characteristics which are

1.2. THE SOFTWARE ENGINEERING CHALLENGES 13

considered the basic ones and which can and should be measured using suit
able metrics. At the top level, for a software product, these attributes can
be defined as follows [94]:

• Functionality. The capability to provide functions which meet stated
and implied needs when the software is used

• Reliability. The capability to maintain a specified level of perfor
mance

• Usability. The capability to be understood, learned, and used

• Efficiency. The capability to provide appropriate performance rela
tive to the amount of resources used

• Maintainability. The capability to be modified for purposes of mak
ing corrections, improvements, or adaptation

• Portability. The capability to be adapted for different specified env-
iornments without applying actions or means other than those provided
for this purpose in the product

The characteristics for the different attributes provide further details.
Usability, for example, has characteristics of understandability, learnabil-
ity, operability; maintainability has changeabihty, testability, stabihty, etc.;
while portability has adaptabihty, installability, etc. Functionality includes
suitability (whether appropriate set of functions are provided,) accuracy (the
results are accurate,) and security. Note that in this classification, security is
considered a characteristic of functionality, and is defined as "the capability
to protect information and data so that unauthorized persons or systems
cannot read or modify them, and authorized persons or systems are not
denied access to them."

There are two important consequences of having multiple dimensions to
quality. First, software quality cannot be reduced to a single number (or
a single parameter). And second, the concept of quality is project-specific.
For an ultra-sensitive project, reliability may be of utmost importance but
not usability, while in a commercial package for playing games on a PC,
usability may be of utmost importance and not reliability. Hence, for each
software development project, a quahty objective must be specified before
the development starts, and the goal of the development process should be
to satisfy that quahty objective.

14 i. INTRODUCTION

Despite the fact that there are many quahty factors, rehabihty is gener
ally accepted to be the main quality criterion. As unreliability of software
comes due to presence of defects in the software, one measure of quality is
the number of defects in the dehvered software per unit size (generally taken
to be thousands of Hues of code, or KLOC). With this as the major quality
criterion, the quality objective is to reduce the number of defects per KLOC
as much as possible. Current best practices in software engineering have
been able to reduce the defect density to less than 1 defect per KLOC.

It should be pointed out that to use this definition of quality, what a
defect is must be clearly defined. A defect could be some problem in the
software that causes the software to crash or a problem that causes an output
to be not properly aligned or one that misspells some word, etc. The exact
definition of what is considered a defect will clearly depend on the project
or the standards the organization developing the project uses (typically it is
the latter).

1.2.3 Consistency and Repeatability

There have been many instances of high quality software being developed
with very high productivity. But, there have been many more instances of
software with poor quahty or productivity being developed. A key challenge
that software engineering faces is how to ensure that successful results can
be repeated, and there can be some degree of consistency in quality and
productivity.

We can say that an organization that develops one system with high
quality and reasonable productivity, but is not able to maintain the quality
and productivity levels for other projects, does not know good software engi
neering. A goal of software engineering methods is that system after system
can be produced with high quality and productivity. That is, the methods
that are being used are repeatable across projects leading to consistency in
the quality of software produced.

An organization involved in software development not only wants high
quality and productivity, but it wants these consistently. In other words, a
software development organization would like to produce consistent quality
software with consistent productivity. Consistency of performance is an
important factor for any organization; it allows an organization to predict the
outcome of a project with reasonable accuracy, and to improve its processes
to produce higher-quality products and to improve its productivity. Without
consistency, even estimating cost for a project will become difficult.

1.3, THE SOFTWARE ENGINEERING APPROACH 15

Achieving consistency is an important problem that software engineer
ing has to tackle. As can be imagined, this requirement of consistency will
force some standardized procedures to be followed for developing software.
There are no globally accepted methodologies and different organizations
use different ones. However, within an organization, consistency is achieved
by using its chosen methodologies in a consistent manner. Frameworks like
ISO9001 and the Capability Maturity Model (CMM) encourage organi
zations to standardize methodologies, use them consistently, and improve
them based on experience. We will discuss this issue a bit more in the next
chapter.

1.2.4 C h a n g e

We have discussed above how maintenance and rework are very expensive
and how they are an integral part of the problem domain that software
engineering deals with. In todays world change in business is very rapid.
As businesses change, they require that the software supporting to change.
Overall, as the world changes faster, software has to change faster.

Rapid change has a special impact on software. As software is easy to
change due to its lack of physical properties that may make changing harder,
the expectation is much more from software for change.

Therefore, one challenge for software engineering is to accommodate and
embrace change. As we will see, different approaches are used to handle
change. But change is a major driver today for software engineering. Ap
proaches that can produce high quality software at high productivity but
cannot accept and accommodate change are of httle use today—they can
solve only very few problems that are change resistant.

1.3 The Software Engineering Approach

We now understand the problem domain and the basic factors that drive
software engineering. We can view high quality and productivity (Q&P)
as the basic objective which is to be achieved consistently for large scale
problems and under the dynamics of changes. The Q&P achieved during a
project will clearly depend on many factors, but the three main forces that
govern Q&P are the people, processes, and technology, often called the Iron
Triangle, as shown in Figure 1.5.

So, for high Q&P good technology has to be used, good processes or
methods have to be used, and the people doing the job have to be properly

16 1. INTRODUCTION

Technologyy^ Quality\ ^̂ ^̂ ^̂
&

Productivity

Process

Figure 1.5: The iron triangle.

trained. In software engineering, the focus is primarily on processes, which
were referred to as systematic approach in the definition given earher. As
processes form the heart of software engineering (with tools and technology
providing support to efficiently execute the processes,) in this book we will
focus primarily on processes. Process is what takes us from user needs to
the software that satisfies the needs in Figure 1.2.

The basic approach of software engineering is to separate the process for
developing software from the developed product (i.e., the software). The
premise is that to a large degree the software process determines the qual
ity of the product and productivity achieved. Hence to tackle the problem
domain and successfully face the challenges that software engineering faces,
one must focus on the software process. Design of proper software pro
cesses and their control then becomes a key goal of software engineering
research. It is this focus on process that distinguishes Software Engineering
from most other computing disciplines. Most other computing disciplines
focus on some type of product—algorithms, operating systems, databases,
etc.—while software engineering focuses on the process for producing the
products. It is essentially the software equivalent of "manufacturing engi
neering." Though we will discuss more about processes in the next chapter,
we briefly discuss two key aspects here—the development process and man
aging the development process.

1.3,1 Phased Development Process

A development process consists of various phases, each phase ending with
a defined output. The phases are performed in an order specified by the
process model being followed. The main reason for having a phased pro
cess is that it breaks the problem of developing software into successfully
performing a set of phases, each handling a different concern of software

1,3. THE SOFTWARE ENGINEERING APPROACH 17

development. This ensures that the cost of development is lower than what
it would have been if the whole problem was tackled together. Furthermore,
a phased process allows proper checking for quality and progress at some
defined points during the development (end of phases). Without this, one
would have to wait until the end to see what software has been produced.
Clearly, this will not work for large systems. Hence, for managing the com
plexity, project tracking, and quahty, all the development processes consist
of a set of phases. A phased development process is central to the software
engineering approach for solving the software crisis.

Various process models have been proposed for developing software. In
fact, most organizations that follow a process have their own version. We
will discuss some of the common models in the next chapter. In general,
however, we can say that any problem solving in software must consist of
requirement specification for understanding and clearly stating the problem,
design for deciding a plan for a solution, coding for implementing the planned
solution, and testing for verifying the programs.

For small problems, these activities may not be done explicitly, the start
and end boundaries of these activities may not be clearly defined, and no
written record of the activities may be kept. However, systematic approaches
require that each of these four problem solving activities be done formally.
In fact, for large systems, each activity can itself be extremely complex,
and methodologies and procedures are needed to perform them efficiently
and correctly. Though different process models will perform these phases in
different manner, they exist in all processes. We will discuss different process
models in the next chapter. Here we briefly discuss these basic phases; each
one of them will be discussed in more detail during the course of the book
(there is at least one chapter for each of these phases).

Requirements Analysis

Requirements analysis is done in order to understand the problem the soft
ware system is to solve. The emphasis in requirements analysis is on iden
tifying what is needed from the system, not how the system wifl achieve its
goals. For complex systems, even determining what is needed is a difficult
task. The goal of the requirements activity is to document the requirements
in a software requirements specification document.

There are two major activities in this phase: problem understanding or
analysis and requirement specification. In problem analysis, the aim is to
understand the problem and its context, and the requirements of the new

18 1. INTRODUCTION

system that is to be developed. Understanding the requirements of a system
that does not exist is difficult and requires creative thinking. The problem
becomes more complex because an automated system oflPers possibilities that
do not exist otherwise. Consequently, even the users may not really know
the needs of the system.

Once the problem is analyzed and the essentials understood, the re
quirements must be specified in the requirement specification document.
The requirements document must specify all functional and performance re
quirements; the formats of inputs and outputs; and all design constraints
that exist due to political, economic, environmental, and security reasons.
In other words, besides the functionality required from the system, all the
factors that may effect the design and proper functioning of the system
should be specified in the requirements document. A preliminary user man
ual that describes all the major user interfaces frequently forms a part of the
requirements document.

Software Design

The purpose of the design phase is to plan a solution of the problem specified
by the requirements document. This phase is the first step in moving from
the problem domain to the solution domain. In other words, starting with
what is needed, design takes us toward how to satisfy the needs. The design
of a system is perhaps the most critical factor affecting the quality of the
software; it has a major impact on the later phases, particularly testing and
maintenance.

The design activity often results in three separate outputs^architecture
design, high level design, and detailed design. Architecture focuses on looking
at a system as a combination of many different components, and how they
interact with each other to produce the desired results. The high level design
identifies the modules that should be built for developing the system and the
specifications of these modules. At the end of system design all the major
data structures, file formats, output formats, etc., are also fixed. In detailed
design, the internal logic of each of the modules is specified.

In architecture the focus is on identifying components or subsystems and
how they connect; in high level design the focus is on identifying the modules;
and during detailed design the focus is on designing the logic for each of
the modules. In other words, in architecture the focus is on what major
components are needed, in high level design the attention is on what modules
are needed, while in detailed design how the modules can be implemented

1.3. THE SOFTWARE ENGINEERING APPROACH 19

in software is the issue. A design methodology is a systematic approach to
creating a design by apphcation of a set of techniques and guidehnes. Most
methodologies focus on high level design.

Coding

Once the design is complete, most of the major decisions about the system
have been made. However, many of the details about coding the designs,
which often depend on the programming language chosen, are not specified
during design. The goal of the coding phase is to translate the design of the
system into code in a given programming language. For a given design, the
aim in this phase is to implement the design in the best possible manner.

The coding phase affects both testing and maintenance profoundly. Well-
written code can reduce the testing and maintenance effort. Because the
testing and maintenance costs of software are much higher than the coding
cost, the goal of coding should be to reduce the testing and maintenance
effort. Hence, during coding the focus should be on developing programs that
are easy to read and understand, and not simply on developing programs
that are easy to write. Simplicity and clarity should be strived for during
the coding phase.

Testing

Testing is the major quality control measure used during software develop
ment. Its basic function is to detect defects in the software. During require
ments analysis and design, the output is a document that is usually textual
and nonexecutable. After coding, computer programs are available that can
be executed for testing purposes. This implies that testing not only has to
uncover errors introduced during coding, but also errors introduced during
the previous phases. Thus, the goal of testing is to uncover requirement,
design, and coding errors in the programs.

The starting point of testing is unit testing, where the different mod
ules or components are tested individually. As modules are integrated into
the system, integration testing is performed, which focuses on testing the
interconnection between modules. After the system is put together, system
testing is performed. Here the system is tested against the system require
ments to see if all the requirements are met and if the system performs as
specified by the requirements. Finally, acceptance testing is performed to
demonstrate to the client, on the real-hfe data of the client, the operation of

20 1. INTRODUCTION

the system.
Testing is an extremely critical and time-consuming activity. It requires

proper planning of the overall testing process. Frequently the testing process
starts with a test plan that identifies all the testing-related activities that
must be performed and specifies the schedule, allocates the resources, and
specifies guidelines for testing. The test plan specifies conditions that should
be tested, different units to be tested, and the manner in which the modules
will be integrated. Then for different test units, a test case specification
document is produced, which lists all the different test cases, together with
the expected outputs. During the testing of the unit, the specified test cases
are executed and the actual result compared with the expected output. The
final output of the testing phase is the test report and the error report, or
a set of such reports. Each test report contains the set of test cases and the
result of executing the code with these test cases. The error report describes
the errors encountered and the action taken to remove the errors.

1.3.2 Managing the Process

As stated earlier, a phased development process is central to the software
engineering approach. However, a development process does not specify how
to allocate resources to the different activities in the process. Nor does it
specify things like schedule for the activities, how to divide work within a
phase, how to ensure that each phase is being done properly, or what the risks
for the project are and how to mitigate them. Without properly managing
these issues relating to the process, it is unlikely that the cost and quality
objectives can be met. These issues relating to managing the development
process of a project are handled through project management.

The management activities typically revolve around a plan. A software
plan forms the baseline that is heavily used for monitoring and controlling
the development process of the project. This makes planning the most im
portant project management activity in a project. It can be safely said that
without proper project planning a software project is very unlikely to meet
its objectives. We will devote a complete chapter to project planning.

Managing a process requires information upon which the management
decisions are based. Otherwise, even the essential questions—is the schedule
in a project is being met, what is the extent of cost overrun, are quahty
objectives being met,—cannot be answered. And information that is sub
jective is only marginally better than no information (e.g., Q: how close are
you to finishing? A: We are almost there.) Hence, for effectively managing

1.4. SUMMARY 21

a process, objective data is needed. For this, software metrics are used.
Software metrics are quantifiable measures that could be used to measure

different characteristics of a software system or the software development
process. There are two types of metrics used for software development:
product metrics and process metrics.

Product metrics are used to quantify characteristics of the product being
developed, i.e., the software. Process metrics are used to quantify charac
teristics of the process being used to develop the software. Process metrics
aim to measure such considerations as productivity, cost and resource re
quirements, effectiveness of quality assurance measures, and the effect of
development techniques and tools

Metrics and measurement are necessary aspects of managing a software
development project. For effective monitoring, the management needs to
get information about the project: how far it has progressed, how much
development has taken place, how far behind schedule it is, and the qual
ity of the development so far. Based on this information, decisions can be
made about the project. Without proper metrics to quantify the required
information, subjective opinion would have to be used, which is often unre
liable and goes against the fundamental goals of engineering. Hence, we can
say that metrics-based management is also a key component in the software
engineering strategy to achieve its objectives.

Though we have focused on managing the development process of a
project, there are other aspects of managing a software process. Some of
these will be discussed in the next chapter.

1.4 Summary

Software cost now forms the major component of a computer system's cost.
Software is currently extremely expensive to develop and is often unrehable.
In this chapter, we have discussed a few themes regarding software and
software engineering:

1. The problem domain for software engineering is industrial strength
software.

2. Software engineeringlproblem domain This software is not just a set of
computer programs but comprises programs and associated data and
documentation. Industrial strength software is expensive and difficult

22 1. INTRODUCTION

to build, expensive to maintain due to changes and rework, and has
high quahty requirements.

3. Software engineering is the discipline tha t aims to provide methods
and procedures for systematically developing industrial strength soft
ware. The main driving forces for software engineering are the problem
of scale, quality and productivity (Q&P), consistency, and change.
Achieving high Q&P consistently for problems whose scale may be
large and where changes may happen continuously is the main chal
lenge of software engineering.

4. The fundamental approach of software engineering to achieve the ob
jectives is to separate the development process from the products. Soft
ware engineering focuses on process since the quality of products de
veloped and the productivity achieved are heavily influenced by the
process used. To meet the software engineering challenges, this de
velopment process is a phased process. Another key approach used in
Software Engineering for achieving high Q&P is to manage the process
effectively and proactively using metrics.

Exercises

1. Suppose a program for solving a problem costs C, and an industrial strength
software for solving that problem costs IOC. Where do you think this extra
9C cost is spent? Suggest a possible breakdown of this extra cost.

2. If the primary goal is to make software maintainable, list some of the things
you will do and some of the things you will not do during coding and testing.

3. List some problems that will come up if the methods you currently use for
developing small software are used for developing large software systems.

4. Next time you do a programming project (in some course perhaps), determine
the productivity you achieve. For this, you will have to record the effort you
spent in the work. How does it compare with the illustrative productivity
figures given in the Chapter.

5. Next time you do a programming project, try to predict the time you will
take to do it in terms of hours as well as days. Then in the end, check how
well your actual schedule matched the predicted one.

6. We have said that a commonly used measure for quality is defects per KLOC
in delivered software. For a software product, how can its quality be mea
sured? How can it be estimated before delivering the software?

1.4. SUMMARY 23

7. If you are given extra time to improve the reliability of the final product
developing a software product, where would you spend this extra time?

8. Suggest some ways to detect software errors in the early phases of the project
when code is not yet available.

9. How does a phased process help in achieving high Q&P, when it seems that we
are doing more tasks in a phased process as compared to an ad-hoc approach?

10. If absolutely no metrics are used, can you manage, or even define, a project?
What is the bare minimum set of metrics that you must use for a development
project?

Software Processes

As we saw in the previous chapter, the concept of process is at the heart
of the software engineering approach. According to Webster, the term pro
cess means "a particular method of doing something, generally involving a
number of steps or operations." In software engineering, the phrase software
process refers to the methods of developing software.

A software process is a set of activities, together with ordering constraints
among them, such that if the activities are performed properly and in ac
cordance with the ordering constraints, the desired result is produced. The
basic desired result is, as stated earlier, high quality and productivity. In
this chapter, we will discuss the concept of software processes further, the
component processes of a software process, and some models that have been
proposed.

2.1 Software Process

In an organization whose major business is software development, there are
typically many processes executing simultaneously. Many of these do not
concern software engineering, though they do impact software development.
These could be considered nonsoftware engineering process. Business pro
cesses, social processes, and training processes, are all examples of processes
that come under this. These processes also affect the software development
activity but are beyond the purview of software engineering.

The process that deals with the technical and management issues of soft
ware development is called a software process. Clearly, many different types
of activities need to be performed to develop software. All these activities

26 2. SOFTWARE PROCESSES

together comprise the software process. As different type of activities are
being performed, which are frequently done by different people, it is better
to view the software process as consisting of many component processes,
each consisting of a certain type of activity Each of these component pro
cesses typically has a different objective, though they obviously cooperate
with each other to satisfy the overall software engineering objective. In this
section, we will define the major component processes of a software process
and what their objectives are.

2.1.1 Processes and Process Models

A successful project is the one that satisfies the expectations on all the three
goals of cost, schedule, and quality (we are including functionality or features
as part of quality.) Consequently, when planning and executing a software
project, the decisions are mostly taken with a view to ultimately reduce the
cost or the cycle time, or for improving the quality. Software projects utilize
a process to organize the execution of tasks to achieve the goals on the cost,
schedule, and quality fronts.

A project's process specification defines the tasks the project should per
form, and the order in which they should be done. The actual process exists
when the project is actually executed. Although process specification is dis
tinct from the actual process, we will consider the process specification for a
project and the actual process of the project as one and the same, and will
use the term process to refer to both of them. It should, however, be men
tioned that although we are assuming that there is no difficulty in a project
following a specified process, in reality it is not as simple. Often the actual
process being followed in the project may be very different from the project's
process specification. Reasons for this divergence vary from laziness to lack
of appreciation of importance of process to "old habits die hard." Ensuring
that the project is following the process it planned for itself is an important
issue for organizations in the business of executing projects, and there are
different ways to deal with it—we will not discuss this issue in this book.

A process model specifies a general process, usually as a set of stages
in which a project should be divided, the order in which the stages should
be executed, and any other constraints and conditions on the execution of
stages. The basic premise behind a process model is that, in the situations
for which the model is apphcable, using the process model as the projects
process will lead to low cost, high quality, or reduced cycle time. In other
words, a process is a means to reach the goals of high quality, low cost, and

2.1. SOFTWARE PROCESS 27

low cycle time, and a process model provides generic guidelines for developing
a suitable process for a project.

A project's process may utilize some process model. That is, the project's
process has a general resemblance to the process model with the actual tasks
being specific to the project. However, using a process model is not simply
translating the tasks in the process model to tasks in the project. Typically,
to achieve the project's objectives, a project will require a process that is
somewhat different from the process model. That is, the project's process
is generally a tailored version of a general process model. How the process
model has to be tailored for a particular project, of course, depends on
the project characteristics. What we need to understand is that a project's
process may be obtained from a process model, by tailoring the process model
to suit the project needs. For organizations that use standard processes,
tailoring is an important issue. We will not discuss it further—the reader
can find more about tailoring in [96].

When a process is executed on a project, software products are produced,
one of them being the final software. That is, a process specifies the steps, the
project executes these steps, and during the course of execution products are
produced. A process limits the degrees of freedom for a project by specifying
what types of activities must be undertaken and in what order, such that the
"shortest" (or the most efficient) path is obtained from the user needs to the
software satisfying these needs. It should be clear that it is the process that
drives a project and heavily influences the expected outcomes of a project.
Due to this, the focus of software engineering lies heavily on the process.

2.1.2 Component Software Processes

We have mentioned that the development process is the central process which
specifies the tasks to be done in a project. Planning and scheduling the
tasks and monitoring their execution fall in the domain of project manage
ment process. Hence, there are clearly two major components in a soft
ware process—a development process and a project management process-
corresponding to the two axes in Figure 1.3. The development process
specifies the development and quality assurance activities that need to be
performed, whereas the management process specifies how to plan and con
trol these activities so that cost, schedule, quality, and other objectives are
met.

During the project many products are produced which are typically com
posed of many items (for example, the final source code may be composed

28 2. SOFTWARE PROCESSES

of many source files). These items keep evolving as the project proceeds,
creating many versions on the way. To ensure that the software being pro
duced uses the correct versions of these items requires suitable processes to
control the evolution of these items. As development processes generally do
not focus on evolution and changes, to handle them another process called
software configuration control process, is often used. The objective of this
component process is to primarily deal with managing change, so that the
integrity of the products is not violated despite changes. Sometimes, changes
in requirements may be handled separately by a requirements change man
agement process.

These three constituent processes focus on the projects and the products
and can be considered as comprising the product engineering processes, as
their main objective is to produce the desired product. If the software process
can be viewed as a static entity, then these three component processes will
suffice. However, a software process itself is a dynamic entity, as it must
change to adapt to our increased understanding about software development
and availability of newer technologies and tools. Due to this, a process to
manage the software process is needed.

The basic objective of the process management process is to improve
the software process. By improvement, we mean that the capability of the
process to produce quahty goods at low cost is improved. For this, the
current software process is studied, frequently by studying the projects that
have been done using the process. The whole process of understanding the
current process, analyzing its properties, determining how to improve, and
then affecting the improvement is dealt with by the process management
process.

The relationship between these major component processes is shown in
Figure 2.1. These component processes are distinct not only in the type of
activities performed in them, but typically also in the people who perform
the activities specified by the process. In a typical project, development
activities are performed by programmers, designers, testers, etc.; the project
management process activities are performed by the project management;
configuration control process activities are performed by a group generally
called the configuration controller; and the process management process ac
tivities are performed by the software engineering process group (SEPG).

Later in the chapter we will briefiy discuss each of these processes, as
well as the inspection process which is used for quality control of various
work products. In the rest of the book, however, we will focus primarily

2.1, SOFTWARE PROCESS 29

Software Process

Product
Engineering

Process

Process
Management

Process

Development Project Software
Process Management Configuration

Process Management
Process

Figure 2.1: Software processes.

on processes relating to product engineering, as process management is an
advanced topic beyond the scope of this book. Much of the book discusses
the different phases of a development process and the processes or method
ologies used for executing these phases. For the rest of the book, we will
use the term software process to mean product engineering processes, unless
specified otherwise.

2.1.3 E T V X Approach for Process Specification

A process has a set of phases (or steps), each phase performing a well-defined
task which leads a project towards satisfaction of its goals. To reduce the
cost, a process should aim to detect defects in the phetse in which they are
introduced. This requires that there be some verification at the end of each
step, which in turn requires that there is a clearly defined output of a phase,
which can be verified by some means. In other words, it is not acceptable
to say that the output of a phase is an idea or a thought in the mind of
someone; the output must be a formal and tangible entity. Such outputs of
a development process, which are not the final output, are frequently called
the work products. In software, a work product can be the requirements
document, design document, code, prototype, and the hke.

This restriction that the output of each step be some work product that
can be verified suggests that the process should have a small number of
steps. Having too many steps results in too many work products or docu
ments. Due to this, at the top level, a process typically consists of a few
steps, each satisfying a clear objective and producing a document which can
be verified. How to perform the activity of the particular step or phase

30 2. SOFTWARE PROCESSES

Information to
Control Management Process

Input
(Entry Criteria)

1
Process

Step V&V

A

Output
(Exit Criteria)

Figure 2.2: A step in a development process.

is generally addressed by methodologies for that activity. We will discuss
various methodologies for different activities throughout the book.

As a process typically contains a sequence of steps, the next issue to ad
dress is when a phase should be initiated and terminated. This is frequently
done by specifying the entry criteria and exit criteria for a phase. The entry
criteria of a phase specifies the conditions that the input to the phase should
satisfy to initiate the activities of that phase. The exit criteria specifies the
conditions that the work product of this phase should satisfy to terminate
the activities of the phase. The entry and exit criteria specify constraints of
when to start and stop an activity. It should be clear that the entry criteria
of a phase should be consistent with the exit criteria of the previous phase.
In addition to the entry and exit criteria, the inputs and outputs of a step
also need to be clearly specified. As errors can be introduced in every stage,
a stage should end with some verification of its activities, and these should
also be clearly stated. The specification of a step with its input, output,
and entry and exit criteria is shown in Figure 2.2. This approach for process
specification is called the ETVX (Entry criteria. Task, Verification, and eXit
criteria) approach [128].

Besides the entry and exit criteria for the input and output, a step needs
to produce some information to aid proper management of the process. This
requires that a step produce some information that provides visibility into
the state of the process. This information can then be used to take suitable
actions, where necessary, to keep the process under control. The flow of
information from a step and exercise of control is also shown in Figure 2.2.

2.2, DESIRED CHARACTERISTICS OF SOFTWARE PROCESS 31

2.2 Desired Characteristics of Software Process

We have not yet specified any process. Is any process suitable to use? Here
we discuss some of the desirable characteristics of the software process. As
a process may be used by many projects, it needs characteristics beyond
satisfying the project goals. We will discuss some of the important ones in
this section.

2.2.1 Predictabi l i ty

Predictability of a process determines how accurately the outcome of follow
ing that process in a project can be predicted before the project is completed.
Predictability can be considered a fundamental property of any process. In
fact, if a process is not predictable, it is of limited use. Let us see why.

One way of estimating cost could be to say, "this project A is very similar
to the project B that we did 2 years ago, hence A's cost will be very close to
B's cost." However, even this simple method implies that the process that
will be used to develop project A will be same as the process used for project
B, and that following the process the second time will produce similar results
as the first time. That is, this assumes that the process is predictable. If it
was not predictable, then there is no guarantee that doing a similar project
using the process will incur a similar cost.

The situation with quahty is similar. The fundamental basis for quality
prediction is that quality of the product is determined largely by the process
used to develop it. Using this basis, quality of the product of a project can
be estimated or predicted by seeing the quality of the products that have
been produced in the past by the process being used in the current project.
In fact, effective management of quality control activities largely depends on
the predictability of the process. For example, for effective quality control,
one method is to estimate what types and quantity of errors will be detected
at what stage of the development, and then use them to determine if the
quahty assurance activities are being performed properly. This can only be
done if the process is predictable; based on the past experience of such a
process one can estimate the distribution of errors for the current project.
Otherwise, how can anyone say whether detecting 10 errors per 100 fines of
code (LOG) during testing in the current project is "acceptable"? With a
predictable process, if the process is such that one expects around 10 errors
per 100 LOG during testing, this means that the testing of this project was
probably done properly. But, if past experience with the process shows that

32 2. SOFTWARE PROCESSES

CD

c

0)

Q.

• •

Projects

Figure 2.3: Process under statistical control.

about 2 errors per 100 LOG are detected during testing, then a careful look
at the testing of the current project is necessary.

It should be clear that if we want to use the past experience to control
costs and ensure quality, we must use a process that is predictable. With
low predictabihty, the experience gained through projects is of little value.
A predictable process is also said to be under statistical control [89, 101].
A process is under statistical control if following the same process produces
similar results—results will have some variation, but the variation is mostly
due to random causes and not due to process issues. This is shown in Figure
2.3; the y-axis represents some property of interest (quality, productivity,
etc.), and x-axis represents the projects. The dark line is the expected value
of the property for this process. Statistical control implies that most of the
times the property of interest will be within a bound around the expected
value. (Control charts provide a formal approach for defining these bounds.
For a discussion on control charts and how to define optimal bounds, the
reader is referred to [101].)

It should be clear that if one hopes to consistently develop software of
high quality at low cost, it is necessary to have a process that is under statis
tical control. A predictable process is an essential requirement for ensuring
good quahty and low cost. Note that this does not mean that one can never
produce high-quality software at low cost without following such a process.
It is always possible that a set of bright people can do it. However, what
this means is that without such a process, such things cannot be repeated.

2.2. DESIRED CHARACTERISTICS OF SOFTWARE PROCESS 33

Hence, if one wants quality consistently across many projects, having a pre
dictable process is essential. Because software engineering is interested in
general methods that can be used to develop different software, a predictable
process forms the backbone of the software engineering methods.

2.2.2 Support Testabil i ty and Maintainabil i ty

We have already seen that in the life of software the maintenance costs gen
erally exceed the development costs. Clearly, if we want to reduce the overall
cost of software or achieve "global" optimality in terms of cost rather than
"local" optimahty in terms of development cost only, the goal of development
should be to reduce the maintenance effort. That is, one of the important
objectives of the development project should be to produce software that is
easy to maintain. And the process used should ensure this maintainability.

Even in development, coding is frequently given a great degree of im
portance. We have seen that a process consists of phases, and a process
generally includes requirements, design, coding, and testing phases. Of the
development cost, an example distribution of effort with the different phases
could be:

Requirements 10%
Design 10%
Coding 30%
Testing 50%

The exact numbers will differ with organization and the nature of the
process. However, there are some observations we can make. First is that
coding consumes only about a third of the development effort. This is against
the common naive notion that developing software is largely concerned with
writing programs and that programming is the major activity.

Another way of determining the effort spent in programming is to study
how programmers spend their time in a software organization. A study
conducted in Bell Labs to determine how programmers spend their time, as
reported in [60], found the distribution shown below:

Writing programs 13%
Reading programs and manuals 16%
Job communication 32%
Other (including personal) 39%

34 2. SOFTWARE PROCESSES

This data clearly shows that programming is not the major activity on which
programmers spend their time. Even if we take away the time spent in
"other" activities, the time spent by a programmer writing programs is still
less than 25% of the remaining time. In the study reported by Boehm [20], it
was found that programmers spend less than 20% of their time programming.

The second important observation from the data about effort distribution
with phases is that testing consumes the most resources during development.
This is, again, contrary to the common practice, which considers testing a
side activity that is often not properly planned. Underestimating the testing
effort often causes the planners to allocate insufficient resources for testing,
which, in turn, results in unreliable software or schedule slippage.

Overall, we can say that the goal of the process should not be to reduce
the effort of design and coding, but to reduce the cost of testing and main
tenance. Both testing and maintenance depend heavily on the quality of
design and code, and these costs can be considerably reduced if the software
is designed and coded to make testing and maintenance easier. Hence, dur
ing the early phases of the development process the prime issues should be
"can it be easily tested" and "can it be easily modified".

2.2.3 S u p p o r t C h a n g e

Software changes for a variety of reasons. In Chapter 1, we emphasized the
pervasiveness of change as a basic property of the problem domain. Here we
focus on changes due to requirement changes. Though changes were always
a part of hfe, change in today's world is much more and much faster. As
organizations and businesses change, the software supporting the business
has to change. Hence, any model that builds software and makes change
very hard will not be suitable in many situations.

Besides changing an existing and working software, which one can argue
is beyond the development process, change also takes place while develop
ment is going on. After all, the needs of the customer may change during
the course of the project. And if the project is of any significant duration,
considerable changes can be expected.

Besides the change driven by business need, changes may occur simply
because people may change their minds as they think more about possibilities
and alternatives. So, some part of a software system may be developed and
shown to the users, and the users or customer is likely to use the feedback
to find that what he had requested was not correct, or that he needs more,
or that he needs something different. In other words, change is prevalent,

2.2. DESIRED CHARACTERISTICS OF SOFTWARE PROCESS 35

and a process that can handle change easily is desirable.

2.2.4 Early Defect Removal

The notion that programming is the central activity during software devel
opment is largely due to programming being considered a difficult task and
sometimes an "art." Another consequence of this kind of thinking is the
belief that errors largely occur during programming, as it is the hardest ac
tivity in software development and offers many opportunities for committing
errors. It is now clear that errors can occur at any stage during development.
An example distribution of error occurrences by phase is:

Requirements 20%
Design 30%
Coding 50%

As we can see, errors occur throughout the development process. However,
the cost of correcting errors of different phases is not the same and depends
on when the error is detected and corrected. The relative cost of correcting
requirement errors as a function of where they are detected is shown in
Figure 2.4 [20].

As one would expect, the greater the delay in detecting an error after it
occurs, the more expensive it is to correct it. As the figure shows, an error
that occurs during the requirements phase, if corrected during acceptance
testing, can cost up to 100 times more than correcting the error during the
requirements phase itself.

The reason for this is fairly obvious. If there is an error in the require
ments, then the design and the code will be affected by it. To correct the
error after the coding is done would require both the design and the code to
be changed, thereby increasing the cost of correction.

The main point of this discussion is that we should attempt to detect
errors that occur in a phase during that phase itself and should not wait
until testing to detect errors. Error detection and correction should be a
continuous process that is done throughout software development. In terms
of development phases, this means that we should try to verify the output of
each phase before starting with the next (that is why the ETVX model has
a V!) In other words, a process should have quahty control activities spread
through the process and in each phase. A quahty control (QC) activity is
one whose main purpose is to identify and remove defects.

36 2. SOFTWARE PROCESSES

1000 T

i l
2

100 +

50 +

10 +

5 +

2 +

Requirements Design Code Development Acceptance Operation
Test Test

Phase in Which Error Was Detected

Figure 2.4: Cost of correcting errors.

Having QC tasks through the development is clearly an objective that
should be supported by the process. However, it is even better to provide
support for defect prevention. It is generally agreed that all the QC tech
niques that exist today are limited in their capability and cannot detect all
the defects that are introduced. (Why else are there bugs in most software
that is released that are then fixed in later versions?) Clearly, then, to re
duce the total number of residual defects that exist in a system at the time
of delivery and to reduce the cost of defect removal, an obvious approach is
to prevent defects from being introduced. This requires that the process of
performing the activities should be such that fewer defects are introduced.
The method generally followed to support defect prevention is to use the
development process to learn (from previous projects) so that the methods
of performing activities can be improved. We will discuss this more in a
later chapter.

2.2.5 Process Improvement and Feedback

As mentioned earlier, a process is not a static entity. Improving the quality
and reducing the cost of products are fundamental goals of any engineering

2,3, SOFTWARE DEVELOPMENT PROCESS MODELS 37

discipline. In the context of software, as the productivity (and hence the cost
of a project) and quahty are determined largely by the process, to satisfy the
objectives of quality improvement and cost reduction, the software process
must be improved.

Having process improvement as a fundamental objective requires that
the software process be a closed-loop process. That is, the process must be
improved based on previous experiences, and each project done using the
existing process must feed information back to facilitate this improvement.
As stated earlier, this activity of analyzing and improving the process is
largely done in the process management component of the software process.
However, to support this activity, information from various other processes
will have to flow to the process management process. In other words, to
support this activity, other processes will also have to take an active part.

Process improvement is also an objective in a large project where feed
back from the early parts of the project can be used to improve the execution
of the rest of the project. This type of feedback is eminently suited when the
iterative development process model is used—feedback from one iteration is
used to improve the execution of later iterations.

2,3 Software Development Process Models

In the software development process we focus on the activities directly re
lated to production of the software, for example, design, coding, and testing.
As the development process specifies the major development and quality
control activities that need to be performed in the project, the development
process really forms the core of the software process. The management pro
cess is decided based on the development process. Due to the importance of
the development process, various models have been proposed. In this section
we will discuss some of the major models.

2,3.1 Waterfall Model

The simplest process model is the waterfall model, which states that the
phases are organized in a linear order. The model was originally proposed
by Royce [132], though variations of the model have evolved depending on
the nature of activities and the flow of control between them. In this model,
a project begins with feasibility analysis. Upon successfully demonstrating
the feasibility of a project, the requirements analysis and project planning
begins. The design starts after the requirements analysis is complete, and

38 2. SOFTWARE PROCESSES

coding begins after the design is complete. Once the programming is com
pleted, the code is integrated and testing is done. Upon successful comple
tion of testing, the system is installed. After this, the regular operation and
maintenance of the system takes place. The model is shown in Figure 2.5.

The requirements analysis phase is mentioned as "analysis and planning."
Planning is a critical activity in software development. A good plan is based
on the requirements of the system and should be done before later phases
begin. However, in practice, detailed requirements are not necessary for
planning. Consequently, planning usually overlaps with the requirements
analysis, and a plan is ready before the later phases begin. This plan is an
additional input to all the later phases.

Linear ordering of activities has some important consequences. First,
to clearly identify the end of a phase and the beginning of the next, some
certification mechanism has to be employed at the end of each phase. This
is usually done by some verification and validation means that will ensure
that the output of a phase is consistent with its input (which is the output
of the previous phase), and that the output of the phase is consistent with
the overall requirements of the system.

The consequence of the need for certification is that each phase must
have some defined output that can be evaluated and certified. That is, when
the activities of a phase are completed, there should be some product that is
produced by that phase. The outputs of the earfier phases are often called
work products and are usually in the form of documents like the requirements
document or design document. For the coding phase, the output is the
code. Though the set of documents that should be produced in a project
is dependent on how the process is implemented, the following documents
generally form a reasonable set that should be produced in each project:

• Requirements document

• Project plan

• Design documents (architecture, system, detailed)

• Test plan and test reports

• Final code

• Software manuals (e.g., user, installation, etc.)

In addition to these work products, there are various other documents that
are produced in a typical project. These include review reports, which are

2.3. SOFTWARE DEVELOPMENT PROCESS MODELS 39

System
Feasibility

System
Design

Validation

Coding

Feasibility

Report

Requirements
Analysis and
Project
Planning

Requirements Document

Verification

Verification

and Project Plan

System Design

Document

Detailed
Design

Detailed

Design Document

Programs

Test Plan,
Test Report,

Validation

Verification

Testing and
Integration

Installation

and Manuals

Installation

Report

Operations and
Maintenance

Figure 2.5: The waterfall model.

40 2. SOFTWARE PROCESSES

the outcome of reviews conducted for work products, as well as status re
ports that summarize the status of the project on a regular basis. Many
other reports may be produced for improving the execution of the project
or project reporting.

One of the main advantages of this model is its simplicity. It is conceptu
ally straightforward and divides the large task of building a software system
into a series of cleanly divided phases, each phase deahng with a separate
logical concern. It is also easy to administer in a contractual setup—as each
phase is completed and its work product produced, some amount of money
is given by the customer to the developing organization.

The waterfall model, although widely used, has some strong limitations.
Some of the key limitations are:

1. It assumes that the requirements of a system can be frozen (i.e., base-
lined) before the design begins. This is possible for systems designed
to automate an existing manual system. But for new systems, deter
mining the requirements is difficult as the user does not even know the
requirements. Hence, having unchanging requirements is unrealistic
for such projects.

2. Freezing the requirements usually requires choosing the hardware (be
cause it forms a part of the requirements specification). A large project
might take a few years to complete. If the hardware is selected early,
then due to the speed at which hardware technology is changing, it
is likely that the final software will use a hardware technology on the
verge of becoming obsolete. This is clearly not desirable for such ex
pensive software systems.

3. It follows the "big bang" approach—the entire software is delivered in
one shot at the end. This entails heavy risks, as the user does not know
until the very end what they are getting. Furthermore, if the project
runs out of money in the middle, then there will be no software. That
is, it has the "all or nothing" value proposition.

4. It is a document-driven process that requires formal documents at the
end of each phase.

Despite these limitations, the waterfall model has been the most widely
used process model. It is well suited for routine types of projects where the
requirements are well understood. That is, if the developing organization is

2.3. SOFTWARE DEVELOPMENT PROCESS MODELS 41

quite familiar with the problem domain and the requirements for the software
are quite clear, the waterfall model works well.

2.3.2 Prototyping

The goal of a prototyping-based development process is to counter the first
two limitations of the waterfall model. The basic idea here is that instead of
freezing the requirements before any design or coding can proceed, a throw-
away prototype is built to help understand the requirements. This prototype
is developed based on the currently known requirements. Development of
the prototype obviously undergoes design, coding, and testing, but each of
these phases is not done very formally or thoroughly. By using this proto
type, the client can get an actual feel of the system, because the interactions
with the prototype can enable the client to,better understand the require
ments of the desired system. This results in more stable requirements that
change less frequently.

Prototyping is an attractive idea for complicated and large systems for
which there is no manual process or existing system to help determine the
requirements. In such situations, letting the client "play" with the prototype
provides invaluable and intangible inputs that help determine the require
ments for the system. It is also an effective method of demonstrating the
feasibility of a certain approach. This might be needed for novel systems,
where it is not clear that constraints can be met or that algorithms can be
developed to implement the requirements. In both situations, the risks as
sociated with the projects are being reduced through the use of prototyping.
The process model of the prototyping approach is shown in Figure 2.6.

A development process using throwaway prototyping typically proceeds
as follows [72]. The development of the prototype typically starts when the
preliminary version of the requirements specification document has been de
veloped. At this stage, there is a reasonable understanding of the system and
its needs and which needs are unclear or likely to change. After the prototype
has been developed, the end users and clients are given an opportunity to
use the prototype and play with it. Based on their experience, they provide
feedback to the developers regarding the prototype: what is correct, what
needs to be modified, what is missing, what is not needed, etc. Based on
the feedback, the prototype is modified to incorporate some of the suggested
changes that can be done easily, and then the users and the clients are again
allowed to use the system. This cycle repeats until, in the judgment of the
prototypers and analysts, the benefit from further changing the system and

42 2. SOFTWARE PROCESSES

Requirements
Analysis

Design

Code

Test

-^ Design Code ^ Test

Requirements
Analysis

Figure 2.6: The prototyping model.

obtaining feedback is outweighed by the cost and time involved in making
the changes and obtaining the feedback. Based on the feedback, the initial
requirements are modified to produce the final requirements specification,
which is then used to develop the production quality system.

For prototyping for the purposes of requirement analysis to be feasible,
its cost must be kept low. Consequently, only those features are included in
the prototype that will have a valuable return from the user experience. Ex
ception handling, recovery, and conformance to some standards and formats
are typically not included in prototypes. In prototyping, as the prototype is
to be discarded, there is no point in implementing those parts of the require
ments that are already well understood. Hence, the focus of the development
is to include those features that are not properly understood. And the devel
opment approach is "quick and dirty" with the focus on quick development
rather than quality. Because the prototype is to be thrown away, only mini
mal documentation needs to be produced during prototyping. For example,
design documents, a test plan, and a test case specification are not needed
during the development of the prototype. Another important cost-cutting
measure is to reduce testing. Because testing consumes a major part of
development expenditure during regular software development, this has a
considerable impact in reducing costs. By using these type of cost-cutting
methods, it is possible to keep the cost of the prototype less than a few
percent of the total development cost.

Prototyping is often not used, as it is feared that development costs may
become large. However, in some situations, the cost of software development
without prototyping may be more than with prototyping. There are two ma-

2.3. SOFTWARE DEVELOPMENT PROCESS MODELS 43

jor reasons for this. First, the experience of developing the prototype might
reduce the cost of the later phases when the actual software development
is done. Secondly, in many projects the requirements are constantly chang
ing, particularly when development takes a long time. We saw earlier that
changes in requirements at a late stage of development substantially increase
the cost of the project. By elongating the requirements analysis phase (pro
totype development does take time), the requirements are "frozen" at a later
time, by which time they are likely to be more developed and, consequently,
more stable. In addition, because the client and users get experience with
the system, it is more likely that the requirements specified after the proto
type will be closer to the actual requirements. This again will lead to fewer
changes in the requirements at a later time. Hence, the costs incurred due to
changes in the requirements may be substantially reduced by prototyping.
Hence, the cost of the development after the prototype can be substantially
less than the cost without prototyping; we have already seen how the cost
of developing the prototype itself can be reduced.

Prototyping is well suited for projects where requirements are hard to
determine and the confidence in the stated requirements is low. In such
projects, a waterfall model will have to freeze the requirements in order for
the development to continue, even when the requirements are not stable.
This leads to requirement changes and associated rework while the develop
ment is going on. Requirements frozen after experience with the prototype
are likely to be more stable. Overall, in projects where requirements are not
properly understood in the beginning, using the prototyping process model
can be the most effective method for developing the software. It is an excel
lent technique for reducing some types of risks associated with a project. We
will further discuss prototyping when we discuss requirements specification
and risk management.

2.3.3 Iterative Development

The iterative development process model counters the third limitation of the
waterfall model and tries to combine the benefits of both prototyping and the
waterfall model. The basic idea is that the software should be developed in
increments, each increment adding some functional capabihty to the system
until the full system is implemented. At each step, extensions and design
modifications can be made. An advantage of this approach is that it can
result in better testing because testing each increment is likely to be easier
than testing the entire system as in the waterfall model. Furthermore, as in

44 2. SOFTWARE PROCESSES

Design Q

Implement Q

Analysis g

- 7 Design 1

Implement 1

Analysis -j

• >
- ^ Design n

Implement ^

Analysis p

Figure 2.7: The iterative enhancement model.

prototyping, the increments provide feedback to the chent that is useful for
determining the final requirements of the system.

The iterative enhancement model [7] is an example of this approach.
In the first step of this model, a simple initial implementation is done for a
subset of the overall problem. This subset is one that contains some of the
key aspects of the problem that are easy to understand and implement and
which form a useful and usable system. A project control list is created that
contains, in order, all the tasks that must be performed to obtain the final
implementation. This project control list gives an idea of how far along the
project is at any given step from the final system.

Each step consists of removing the next task from the list, designing the
implementation for the selected task, coding and testing the implementation,
performing an analysis of the partial system obtained after this step, and
updating the list as a result of the analysis. These three phases are called
the design phase, implementation phase, and analysis phase. The process
is iterated until the project control list is empty, at which time the final
implementation of the system will be available. The iterative enhancement
model is shown in Figure 2.7.

The project control list guides the iteration steps and keeps track of all
tasks that must be done. Based on the analysis, one of the tasks in the
list can include redesign of defective components or redesign of the entire
system. However, redesign of the system will generally occur only in the
initial steps. In the later steps, the design would have stabilized and there
is less chance of redesign. Each entry in the list is a task that should be
performed in one step of the iterative enhancement process and should be
simple enough to be completely understood. Selecting tasks in this manner
will minimize the chances of error and reduce the redesign work. The design

2.3. SOFTWARE DEVELOPMENT PROCESS MODELS 45

Cumulative
Cost

Determine objectives,
alternatives, constraints

Review

Plan next phases
Develop, verify
next-level product

Figure 2.8: The spiral model.

and implementation phases of each step can be performed in a top-down
manner or by using some other technique.

The spiral model is another iterative model that has been proposed [18].
As the name suggests, the activities in this model can be organized like a
spiral that has many cycles as shown in Figure 2.8 [18].

Each cycle in the spiral begins with the identification of objectives for
that cycle, the different alternatives that are possible for achieving the ob
jectives, and the constraints that exist. The next step in the cycle is to
evaluate these different alternatives based on the objectives and constraints.
The focus of evaluation in this step is based on the risk perception for the
project. The next step is to develop strategies that resolve the uncertainties

46 2. SOFTWARE PROCESSES

and risks. This step may involve activities such as benchmarking, simula
tion, and prototyping. Next, the software is developed, keeping in mind the
risks. Finally the next stage is planned.

One effective use of the iterative model is often seen in product devel
opment, in which the developers themselves provide the specifications and
therefore have a lot of control on which specifications go in the system and
which stay out. Generally, a version of the product is released that contains
some capability. Based on the feedback from users and experience with this
version, technology changes, business changes, etc., a list of additional de
sirable features and capabilities is generated. These features form the basis
of enhancement of the software, and are included in the next version. In
other words, the first version contains some core capability. And then more
features are added to later versions.

In a customized software development, where the client has to provide
and approve the specifications, this process model is becoming extremely
popular, despite some difficulties in using it in this context. The main reason
is the same—as businesses are changing very rapidly today, they never really
know the "complete" requirements for the software, and there is a need to
constantly add new capabilities to the software to adapt the business to
changing situations. Furthermore, customers do not want to invest too much
for a long time without seeing returns. In the current business scenario, it is
preferable to see returns continuously of the investment made. The iterative
model permits this—after each iteration some working software is delivered.

The iterative approach to software development is now widely used.
Many contemporary development approaches like extreme programming [10]
and Agile approaches [38] consider iterative development as a basic strategy
for developing software for current times. Rational Unified Process (RUP)
[108] also employs an iterative process.

2.3.4 Timeboxing Model

To speed up development, parallehsm between the different iterations can be
employed. That is, a new iteration commences before the system produced
by the current iteration is released, and hence development of a new release
happens in parallel with the development of the current release. By starting
an iteration before the previous iteration has completed, it is possible to
reduce the average delivery time for iterations. However, to support parallel
execution, each iteration has to be structured properly and teams have to be
organized suitably. The timeboxing model proposes an approach for these

2,3. SOFTWARE DEVELOPMENT PROCESS MODELS 47

[100, 99].
In the timeboxing model, the basic unit of development is a time box,

which is of fixed duration. Since the duration is fixed, a key factor in selecting
the requirements or features to be built in a time box is what can be fit into
the time box. This is in contrast to regular iterative approaches where the
functionality is selected and then the time to deliver is determined. Time-
boxing changes the perspective of development and makes the schedule a
non-negotiable and a high priority commitment.

Each time box is divided into a sequence of stages, like in the waterfall
model. Each stage performs some clearly defined task for the iteration and
produces a clearly defined output. The model also requires that the duration
of each stage, that is, the time it takes to complete the task of that stage,
is approximately the same. Furthermore, the model requires that there be a
dedicated team for each stage. That is, the team for a stage performs only
tasks of that stage—tasks for other stages are performed by their respective
teams. This is quite different from other iterative models where the imphcit
assumption is that the same team performs all the diflferent tasks of the
project or the iteration.

Having time boxed iterations with stages of equal duration and having
dedicated teams renders itself to pipelining of different iterations. (Pipelin
ing is a concept from hardware in which different instructions are executed
in parallel, with the execution of a new instruction starting once the first
stage of the previous instruction is finished.) Let us consider a time box
with duration T and consisting of n stages—5i, S'2, ..., Sn, each stage Si
being executed by a dedicated team. The team of each stage has T/n time
available to finish their task for a time box, that is, the duration of each
stage is T/n. When the team of a stage i completes the tasks for that stage
for a time box k, it then passes the output of the time box to the team
executing the stage i + 1, and then starts executing its stage for the next
time box k -\- 1. Using the output given by the team for Si, the team for
Si^i starts its activity for this time box. By the time the first time box is
nearing completion, there are n — 1 different time boxes in different stages of
execution. And though the first output comes after time T, each subsequent
delivery happens after T/n time interval, delivering software that has been
developed in time T.

As an example, consider a time box consisting of three stages: require
ment specification, build, and deployment. The requirement stage is exe
cuted by its team of analysts and ends with a prioritized list of requirements
to be built in in this iteration along with a high level design. The build team

48 2. SOFTWARE PROCESSES

TB1

TB2

TB3

TB4

Requirements Build Deploy

i lH l l

Requirements Build Deploy

Requirements Build Deploy

Requirements Build Deploy

Figure 2.9: Executing the timeboxing process model.

develops the code for implementing the requirements, and performs the test
ing. The tested code is then handed over to the deployment team, which
performs predeployment tests, and then installs the system for production
use. These three stages are such that they can be done in approximately
equal time in an iteration.

With a time box of three stages, the project proceeds as follows. When
the requirement team has finished requirements for timebox-1, the require
ments are given to the build team for building the software. The requirement
team then goes on and starts preparing the requirements for timebox-2.
When the build for the timebox-1 is completed, the code is handed over
to the deployment team, and the build team moves on to build code for
requirements for timebox-2, and the requirements team moves on to do
ing requirements for timebox-3. This pipelined execution of the timeboxing
process is shown in Figure 2.9 [99].

With a three-stage time box, at most three iterations can be concurrently
in progress. If the time box is of size T days, then the first software delivery
will occur after T days. The subsequent deliveries, however, will take place
after every T/3 days. For example, if the time box duration T is 9 weeks
(and each stage duration is 3 weeks), the first delivery is made 9 weeks after
the start of the project. The second delivery is made after 12 weeks, the
third after 15 weeks, and so on. Contrast this with a linear execution of
iterations, in which the first delivery will be made after 9 weeks, the second
will be made after 18 weeks, the third after 27 weeks, and so on.

There are three teams working on the project—the requirements team,

2.3. SOFTWARE DEVELOPMENT PROCESS MODELS 49

Requirements Requirements Requirements Requirements Requirements
T ^ g ^ I Analysis for TB1 | Analysis for TB2 | Analysis for TB3 | Analysis for TB4

Build Team

Deployment
Team

Build for TB1 Build for TB2 Build for TB3 Build for TB4

Deployment for TB1 beployment for TB2peployment for TBa

Figure 2.10: Tasks of different teams.

the build team, and the deployment team. The team-wise activity for the
3-stage pipeline discussed above is shown in Figure 2.10 [99].

It should be clear that the duration of each iteration has not been re
duced. The total work done in a time box and the effort spent in it also
remains the same—the same amount of software is delivered at the end of
each iteration as the time box undergoes the same stages. If the same effort
and time is spent in each iteration also remains the same, then what is the
cost of reducing the delivery time? The real cost of this reduced time is in the
resources used in this model. With timeboxing, there are dedicated teams
for different stages and the total team size for the project is sum of teams of
different stages. This is the main difference from the situation where there
is a single team which performs all the stages and the entire team works on
the same iteration.

For example, consider an iterative development with three stages, as dis
cussed above. Suppose that it takes 2 people 2 weeks to do the requirements
for an iteration, it takes 4 people 2 weeks to do the build for the iteration,
and it takes 3 people 2 weeks to test and deploy. If the iterations are serially
executed, then the team for the project will be 4 people (the maximum size
needed for a stage)—in the first 2 weeks two people will primarily do the
requirements, then all the 4 people will do the task of build, and then 3
people will do the deployment.

If this project is executed using the timeboxing process model, there will
be 3 separate teams—the requirements team of size 2, the build team of
size 4, and the deployment team of size 3. So, the total team size for the
project is (24-4-1-3) = 9 persons. This is more than twice the peak team size
if iterations are executed serially. It is due to this increase in team size that
the throughput increases and the average delivery time decreases.

50 2. SOFTWARE PROCESSES

Hence, the timeboxing provides an approach for utihzing additional man
power to reduce the dehvery time. It is well known that with standard meth
ods of executing projects, we cannot compress the cycle time of a project
substantially by adding more manpower. However, through the timeboxing
model, we can use more manpower in a manner such that by parallel exe
cution of different stages we are able to deliver software quicker. In other
words, it provides a way of shortening delivery times through the use of
additional manpower.

Timeboxing is well suited for projects that require a large number of
features to be developed in a short time around a stable architecture using
stable technologies. These features should be such that there is some flexi
bility in grouping them for building a meaningful system in an iteration that
provides value to the users.

The model is not suitable for projects where it is difficult to partition
the overall development into multiple iterations of approximately equal du
ration. It is also not suitable for projects where different iterations may
require different stages, and for projects whose features are such that there
is no flexibility to combine them into meaningful deliveries. We have only
discussed the basic process model and have not discussed the impact of un
equal stages, exceptions on the execution of this model, project management
issues, etc. For further details about the model, as well as a detailed example
of applying the model on a real commercial project, the reader is referred to
[100, 99].

2.3.5 Comparision of Models

As discussed earlier, each process model is suitable for some context, and
the main reason for studying different models is to develop the ability to
choose the proper model for a given project. Using a model as the basis, the
actual process for the project can be decided, which hopefully is the optimal
process for the project. To help select a model, we summarize the strengths
and weaknesses of the different models, along with the types of projects for
which they are suitable, in Figure 2.11.

2.4 Other Software Processes

Though the development process is the central process in software processes,
other processes are needed to properly execute the development process and

2.4. OTHER SOFTWARE PROCESSES 51

Strengths
Waterfall
Simple
Easy to execute
Intuitive and logical

Prototyping
Helps in requirements
elicitation
Reduces risk
Leads to a better system

Iterative
Regular/quick deliveries
Reduces risk
Accommodates changes
Allows user feedback
Allows reasonable exit
points
Avoids req. bloating
Prioritizes requirements

Timeboxing
All strengths of iterative
Planning and negotiations
somewhat easier
Very short delivery cycle

Weaknesses

All or nothing approach
Requirements frozen early
Disallows changes
Cycle time too long
May choose outdated
hardware technology
User feedback not allowed
Encourages req. bloating

Front heavy process
Possibly higher cost
Disallows later changes

Each iteration can have
planning overhead
Cost may increase as work
done in one iteration may
have to be undone later
System architecture and
structure may suffer as
frequent changes are made

Project management is
complex
Possibly increased cost
Large team size

Types of projects 1

For well understood
problems, short duration
project, automation of
existing manual systems

Systems with novice users
When uncertainities in
requirements
When UI very important

For businesses where time
is of essence
Where risk of a long
project cannot be taken
Where requirements are
not known and will be
known only with time

Where very short delivery
times needed
Flexibility in grouping
features exists

Figure 2.11: Comparison of process models.

to achieve the desired characteristics of software processes. There are pro
cesses for each of the activities in the development process, e.g., design pro
cess, testing process, etc. These processes are often called methodologies
and we will discuss them in their respective chapters. Here we discuss those
processes that span the entire project and are not particular to any task in
the development process. We discuss some of the important processes that

52 2. SOFTWARE PROCESSES

are involved when developing software.

2.4.1 Project Management Process

Proper management is an integral part of software development. A large
software development project involves many people working for a long period
of time. We have seen that a development process typically partitions the
problem of developing software into a set of phases. To meet the cost,
quality, and schedule objectives, resources have to be properly allocated to
each activity for the project, and progress of different activities has to be
monitored and corrective actions taken, if needed. All these activities are
part of the project management process.

The project management process specifies all activities that need to be
done by the project management to ensure that cost and quality objectives
are met. Its basic task is to ensure that, once a development process is
chosen, it is implemented optimally. The focus is on issues like planning a
project, estimating resource and schedule, and monitoring and controlling
the project. In other words, the basic task is to plan the detailed implemen
tation of the process for the particular project and then ensure that the plan
is followed. For a large project, a proper management process is essential
for success.

The activities in the management process for a project can be grouped
broadly into three phases: planning, monitoring and control, and termina
tion analysis. Project management begins with planning, which is perhaps
the most critical project management activity. The goal of this phase is
to develop a plan for software development following which the objectives
of the project can be met successfully and efficiently. A software plan is
usually produced before the development activity begins and is updated as
development proceeds and data about progress of the project becomes avail
able. During planning, the major activities are cost estimation, schedule and
milestone determination, project staffing, quality control plans, and control
ling and monitoring plans. Project planning is undoubtedly the single most
important management activity, and it forms the basis for monitoring and
control. We will devote one full chapter later in the book to project planning.

Project monitoring and control phase of the management process is the
longest in terms of duration; it encompasses most of the development process.
It includes all activities the project management has to perform while the
development is going on to ensure that project objectives are met and the
development proceeds according to the developed plan (and update the plan,

2.4. OTHER SOFTWARE PROCESSES 53

Planning

t Metrics
Values

I Management
y Control

Monitoring and Control

f I y I y I T I y I T

Termination
Analysis Management

Process

Development
Process

Time

Figure 2.12: Temporal relationship between development and management
process.

if needed). As cost, schedule, and quality are the major driving forces, most
of the activity of this phase revolves around monitoring factors that affect
these. Monitoring potential risks for the project, which might prevent the
project from meeting its objectives, is another important activity during
this phase. And if the information obtained by monitoring suggests that
objectives may not be met, necessary actions are taken in this phase by
exerting suitable control on the development activities.

Monitoring a development process requires proper information about the
project. Such information is typically obtained by the management process
from the development process. As shown earlier in Figure 2.2, the imple
mentation of a development process model should be such that each step
in the development process produces information that the management pro
cess needs for that step. That is, the development process provides the
information the management process needs. However, interpretation of the
information is part of monitoring and control.

Whereas monitoring and control last the entire duration of the project,
the last phase of the management process—termination analysis—is per
formed when the development process is over. The basic reason for perform
ing termination analysis is to provide information about the development
process and learn from the project in order to improve the process. This
phase is also often called postmortem analysis. In iterative development,
this analysis can be done after each iteration to provide feedback to improve
the execution of further iterations. We will not discuss it further in the book;
for an example of a postmortem report the reader is referred to [96].

54 2. SOFTWARE PROCESSES

The temporal relationship between the management process and the de
velopment process is shown in Figure 2.12. This is an idealized relationship
showing that planning is done before development begins, and termination
analysis is done after development is over. As the figure shows, during the de
velopment, from the various phases of the development process, quantitative
information flows to the monitoring and control phase of the management
process, which uses the information to exert control on the development
process.

2.4.2 The Inspection Process

The main goal of the inspection process is to detect defects in work prod
ucts. Software inspections were first proposed by Fagan [58, 59]. Earlier
inspections were focused on code, but over the years its use has spread to
other work products too. In other words, the inspection process is used
throughout the development process. Software inspections are now a rec
ognized industry best practice with considerable data to support that they
help in improving quality and also improve productivity (e.g., see reports
given in [70, 77, 144]). There are books on the topic which describe in great
detail how inspections should be conducted [70, 68].

An inspection is a review of a software work product by a group of peers
following a clearly defined process. The basic goal of inspections is to improve
the quahty of the work product by finding defects. However, inspections also
improve productivity by finding defects early and in a cost effective manner.
Some of the characteristics of inspections are:

• An inspection is conducted by technical people for technical people

• It is a structured process with defined roles for the participants

• The focus is on identifying problems, not resolving them

• The review data is recorded and used for monitoring the effectiveness
of the inspection process

As inspections are performed by a group of people, they can be applied
to any work product, something that cannot be done with testing. The main
advantage of this is that defects introduced in work products of the early
parts of the life cycle, or in the work products produced by other processes
like the project management process or the CM process, can be detected

2.4. OTHER SOFTWARE PROCESSES 55

in that work product itself, thereby not incurring the much higher cost of
detecting defects in later stages.

Inspections are performed by a team of reviewers (or inspectors) includ
ing the author, with one of them being the moderator. The moderator
has the overall responsibility to ensure that the review is done in a proper
manner and all steps in the review process are followed. Most methods for
inspections are similar with minor variations. Here we discuss the inspection
process employed by a commercial organization [97] The different stages in
this process are: planning, preparation and overview, group review meeting,
and rework and follow-up. These stages are generally executed in a linear
order. We discuss each of these phases now.

Planning

The objective of the planning phase is to prepare for inspection. The author
of the work product ensures that the work product is ready for inspection.
The moderator checks that the entry criteria are satisfied by the work prod
uct. The entry criteria for different work products will be different. For
example, for code an entry criteria is that the code compiles correctly and
the available static analysis tools have been applied. The review (inspection)
team is also formed in this phase.

The package that needs to be distributed to the review team is prepared.
The package includes the work product to be reviewed, the specifications for
that work product, relevant checklists and standards. The specifications for
the work product are frequently the output of the previous phase and are
needed to check the correctness of the current work product. For example,
when a high level design has to be reviewed, then the package must include
the requirement specification also, without which checking the correctness
of design may not be possible.

Overview and Preparation

In this phase the package for review is given to the reviewers. The moderator
may arrange an opening meeting, if needed, in which the author may provide
a brief overview of the product and any special areas that need to be looked
at carefully. The objective and overview of the inspection process might also
be given in this meeting. The meeting is optional and can be omitted. In
that case, the moderator provides a copy of the group review package to the
reviewers.

56 2. SOFTWARE PROCESSES

Project name and code :
Work product name and ID:
Reviewer name:
Effort spent for preparation (hrs):
Defect List:

SI Location Description Criticality / Seriousness

Figure 2.13: Self review log.

The main task in this phase is for each reviewer to do a self-review
of the work product. During the self-review, a reviewer goes through the
entire work product and logs all the potential defects he or she finds in
the self-preparation log. Often the reviewers will mark the defect on the
work product itself. The reviewers also record the time they spent in the
self-review. A standard form may be used for the self-preparation log; an
example form is shown in Figure 2.13 [97].

Relevant checkUsts, guidefines, and standards may be used while review
ing. Checklists specifying the type of defects to look for are particularly
useful. Ideally, the self review should be done in one continuous time span.
The recommended time is less than two hours—that is, the work product
is small enough that it can be fully examined in less than two hours. This
phase of the review process ends when all reviewers have properly performed
their self review and filled the self-review logs.

Group Review Meeting

The basic purpose of the group review meeting is to come up with the final
defect list, based on the initial list of defects reported by the reviewers and
the new ones found during the discussion in the meeting. The entry criterion
for this step is that the moderator is satisfied that all the reviewers are ready
for the meeting. The main outputs of this phase are the defect log and the
defect summary report.

The moderator first checks to see if all the reviewers are prepared. This

2.4. OTHER SOFTWARE PROCESSES 57

Project
Work Product Type
Size of Product
Review Team
Effort (Person Hours)
Preparation
Group Review Meeting
Total Effort
Defects
Number of Critical Defects
Number of Major Defects
Number of Minor Defects
Total Number of defects
Review Status
Recommendations for
next phase
Comments

Xxxxxxxx
Project Plan, V 1.0
14 pages
PI , P2, P3, P4

Total 10 person-hrs.
10 person-hrs.
20 person-hrs.

0
3
16
19
Accepted

The plan has been well
documented and presented

Figure 2.14: Summary report of an inspection.

is done by a brief examination of the effort and defect data in the self-
review logs to confirm that sufficient time and attention has gone into the
preparation. When preparation is not adequate, the group review is deferred
until all participants are fully prepared.

If everything is ready, the group review meeting is held. The moderator
is incharge of the meeting and has to make sure that the meeting stays
focused on its basic purpose of defect identification and does not degenerate
into a general brainstorming session or personal attacks on the author.

The meeting is conducted as follows. A team member (called the reader)
goes over the work product line by hne (or any other convenient small unit),
and paraphrases each line to the team. Sometimes no paraphrasing is done
and the team just goes over the work product line by line. At any line, if any
reviewer has any issue from before, or finds any new issue in the meeting
while listening to others, the reviewer raises the issue. There could be a
discussion on the issue raised. The author accepts the issue as a defect or
clarifies why it is not a defect. After discussion an agreement is reached
and one member of the review team (called the scribe) records the identified

58 2. SOFTWARE PROCESSES

defects in the defect log. At the end of the meeting, the scribe reads out the
defects recorded in the defect log for a final review by the team members.
Note that during the entire process of review, defects are only identified. It
is not the purpose of the group to identify solutions—that is done later by
the author.

The final defect log is the official record of the defects identified in the
inspection and may also be used to track the defects to closure. For analyz
ing the effectiveness of a review, however, only summary level information
is needed, for which a summary report is prepared. The summary report
describes the work product, the total effort spent and its breakup in the
different review process activities, total number of defects found for each
category, and size. If types of defects were also recorded, then the number
of defects in each category can also be recorded in the summary. A partially
filled summary report of review of a project management plan is shown in
Figure 2.14 [97].

The summary report is self-explanatory. Total number of minor defects
found was 19, and the total number of major defects found was 3. That is,
the defect density found is 16/14 = 1.2 minor defects per page, and 3/14 —
0.2 major defects per page. From experience, both of these rates are within
the range seen in the past; hence it can be assumed that the review was
conducted properly. The review team had 4 members, and each had spent
2.5 hours in individual review and the review meeting lasted 2.5 hours. This
means that the coverage rate during preparation and review was 14/2.5 =
5.6 pages per hour, which, from past experience, also seems acceptable.

If the modifications required for fixing the defects and addressing the
issues are few, then the group review status is "accepted." If the mod
ifications required are many, a follow up meeting by the moderator or a
re-review might be necessary to verify whether the changes have been in
corporated correctly. The moderator recommends what is to be done. In
addition, recommendations regarding reviews in the next stages may also be
made (e.g., in a detail design review it may be recommended code of which
modules should undergo inspections.)

Rework and Follow^ Up

In this phase the author corrects all the defects raised during the inspec
tion. The author may redo the work product, if that is what the moderator
recommended. The author reviews the corrections with the moderator or
in a re-review, depending on the decision of the group review meeting. The

2.4. OTHER SOFTWARE PROCESSES 59

scribe ensures that the group review report and minutes of the meetings are
communicated to the group review team.

Roles and Responsibilities

The inspection process is a structured process with different people having
different responsibihties. The key roles in a group review are those of mod
erator, reader, scribe, author, and reviewer. These are logical roles and a
person can be assigned multiple roles, with the restrictions that the author
cannot be the moderator or the reader, and the moderator cannot be the
reader. This implies that the minimum size of the group review team is
three—the author, the moderator, and the reader. These three people are
also reviewers and can assign the role of scribe to someone. The responsi
bilities of these roles should be clear from the inspection process. Here we
briefly summarize the main activities of the moderator and the reviewers.

The moderator perhaps has the most important role during a group
review. He has the overall responsibility of ensuring that the review goes
well. The moderator should undergo formal training on how to conduct
reviews, or should have experience of participating in a few reviews. The
responsibilities of the moderator include:

• Schedule the group review meeting

• At the opening of group review meeting ensure that all participants
are prepared and have submitted self-preparation log, or reschedule
the group review

• Conduct the group review in an orderly and efficient manner

• Ensure that the meeting stays focused on the main task of defect
identification

• Track each problem to resolution or ensure that it is tracked by
someone else

• Ensure that group review reports are completed

During the meeting, the moderator has to make sure that all the par
ticipants contribute effectively, everyone is heard, there is an agreement on
the findings of the review, and that the interest level does not drop. A
key responsibility is to ensure that during the meeting the focus remains on

60 2. SOFTWARE PROCESSES

problem identification and does not drift into problem resolution and that
all reviewers remain focused on finding defects in the work product and do
not get into finding faults with the author. Overall, orderly and amicable
conduct of the meeting is largely the responsibihty of the moderator. Af
ter the meeting, the moderator has to make sure that all participants are
satisfied, the review reports have been filled and follow-up actions taken.

A reviewer is primarily responsible for finding defects. Generally, all
members of the group review team are reviewers. The defects are found
either through individual review or through the group review meeting. The
main issues for a reviewer are:

• Be prepared for group review

• Be objective; focus on issues and not on people

• Concentrate on problems (offer solutions only after the group review)

• If something is not clear do not hesitate to stop progress until it is
understood

• When proved wrong, move on

Guidelines for Work Products

All the work products in a project may not undergo group review as that
may be prohibitively expensive and may not give commensurate returns. For
each project it has to be decided which work products should be inspected,
and the size of the inspection team. As the work products of the early part
of the life cycle are very critical and defects in them have a multiplier effect
in the later stages, it is recommended that early work products like the
requirements document, architecture document, and project management
plan, be inspected. Regarding team size, though a team size of three to
five is often recommended, sometimes where the cost is not justified, an
inspection team of just the author and another reviewer may be suitable
[97]. This is also sometimes called one-person review.

Though the inspection process is same for any work product, the focus
of the inspection is often different for different products. The constitution of
the review team and the checkhsts used in review also depend on the nature
of the work product. Some of the guidehnes regarding the focus of the review
and the composition of the inspection team are given in Table 2.1 [97].

2.4, OTHER SOFTWARE PROCESSES 61

Work
product
Requirement
Specification

High Level
Design

Code

System Test
Cases

Project
Management
Plan

Focus of Inspect ion

Requirements meet customer
needs
Requirements are implementable
Omissions, inconsistencies and
ambiguities in the requirements
High-level design implements
the requirements
The design is implementable
Omissions, and other defects in
the design
Code implements the design
Code is complete and correct
Defects in code

The set of test cases checks all
conditions in the requirements
Test cases are executable

Plan is complete
Project management plans is
implementable
Omissions and ambiguities

Partic ipants

Customer
Designers
Tester
Developer

Requirements
author
Detailed designer
Developer

Designer !
Tester
Developer

Requirements
author
Tester
Project leader
Project leader
SEPG member
Another project
leader

Table 2.1: Guidehnes for inspection of work products.

It is often hard to believe that a human-intensive process like the inspec
tions can improve quahty and productivity. Due to this and other reasons,
inspections are often resisted. One way to find out the utility of inspec
tions is to conduct some experiments and evaluate the benefits. Two simple
experiments for this purpose are described in [98], along with the data of
performing one in a commercial organization.

2.4.3 Software Configuration Management Process

Changes continuously take place in a software project—changes due to the
evolution of work products as the project proceeds, changes due to defects

62 2. SOFTWARE PROCESSES

Configuration Management

Phase
1

A

1 _ Phase
2

A

_ j _ Phase
n

A

1

Figure 2.15: Configuration management and development process.

(bugs) being found and then fixed, and changes due to requirement changes.
All these are reflected as changes in the files containing source, data, or docu
mentation. Configuration management (CM) or software configuration man
agement (SCM) is the discipline for systematically controlling the changes
that take place during development [13, 12, 91]. The IEEE defines SCM as
"the process of identifying and defining the items in the system, controlling
the change of these items throughout their life cycle, recording and reporting
the status of items and change requests, and verifying the completeness and
correctness of items" [91]. Though all three are types of changes, changes
due to product evolution and changes due to bug fixes can be, in some sense,
treated as a natural part of the project itself which have to be dealt with even
if the requirements do not change. Requirements changes, on the other hand,
have a different dynamic. We will discuss the additional steps that need to
be done for requirement changes as a separate process after discussing the
CM process.

Software configuration management is a process independent of the de
velopment process largely because most development models look at the
macro picture and not on changes to individual files. In a way, the devel
opment process is brought under the configuration control process, so that
changes are allowed in a controlled manner, as shown in Figure 2.15 for a
waterfall-type development process model [147]. Note that SCM directly
controls only the products of a process and only indirectly influences the
activities producing the product.

CM is essential to satisfy one of the basic objectives of a project—delivery
of a high-quality software product to the client. What is this "software" that
is delivered? At the least, it contains the various source or object files that
make up the source or object code, scripts to build the working system
from these files, and associated documentation. During the course of the

2.4. OTHER SOFTWARE PROCESSES 63

project, the files change, leading to different versions. In this situation, how
does a program manager ensure that the appropriate versions of sources
are combined without missing any source, and the correct versions of the
documents, which are consistent with the final source, are sent? This is
ensured through proper CM.

CM Functionality

To better understand CM, let us consider some of the functionality that a
project requires from the CM process. Though the requirements of a project
from its CM process depends on the nature of the project, we discuss here
a few functions that are generally needed.

• Give latest version of a program. Suppose that a program has to be
modified. Clearly, the modification has to be carried out in the latest
copy of that program; otherwise, changes made earlier may be lost.
A proper CM process will ensure that latest version of a file can be
obtained easily.

• Undo a change or revert back to a specified version. A change is made
to a program, but later it becomes necessary to undo this change re
quest. Similarly, a change might be made to many programs to imple
ment some change request and later it may be decided that the entire
change should be undone. The CM process must allow this to happen
smoothly.

• Prevent unauthorized changes or deletions. A programmer may decide
to change some programs, only to discover that the change has adverse
side effects. The CM process ensures that unapproved changes are not
permitted.

• Gather all sources, documents, and other information for the current
system. All sources and related files are needed for releasing the prod
uct. The CM process must provide this functionality. All sources
and related files of a working system are also sometimes needed for
reinstallation.

These are some of the basic needs that a CM process must satisfy. There
are other advanced requirements like handling concurrent updates or handle
invariance [96].

64 2. SOFTWARE PROCESSES

C M Mechanisms

The main purpose of CM is to provide various mechanisms that can support
the functionahty needed by a project to handle the types of scenarios dis
cussed above that arise due to changes. The mechanisms commonly used to
provide the necessary functionality include the following

• Configuration identification and baselining

• Version control or version management

• Access control

As discussed above, the software being developed is not a monolith. A
Software configuration item (SCI), or item is a document or an artifact that
is explicitly placed under configuration control and that can be regarded as a
basic unit for modification. As the project proceeds, hundreds of changes are
made to these configuration items. Without periodically combining proper
versions of these items into a state of the system, it will become very hard
to get the system from the different versions of the many SCIs. For this
reason, baselines are established. A baseline, once estabhshed, captures a
logical state of the system, and forms the basis of change thereafter [14]. A
baseline also forms a reference point in the development of a system.

A baseline essentially is an arrangement of a set of SCIs [14]. That is, a
baseline is a set of SCIs and the relationship between them. For example,
a requirements baseline may consist of many requirement SCIs (e.g., each
requirement is an SCI) and how these SCIs are related in the requirements
baseline (e.g., in which order they appear).

It should be noted that the SCIs being managed by SCM are not inde
pendent of one another and there are dependencies between various SCIs.
An SCI X is said to depend on another SCI Y, if a change to Y might require
a change to be made to X for X to remain correct or for the baselines to
remain consistent [147]. A change request, though, might require changes be
made to some SCIs; the dependency of other SCIs on the ones being changed
might require that other SCIs also need to be changed. Clearly, the depen
dency between the SCIs needs to be properly understood and documented.

Version control is a key issue for CM [14, 12, 147], and many tools
are available to help manage the various versions of programs. Without
such a mechanism, many of the required CM functions cannot be sup
ported. Version control helps preserve older versions of the programs when
ever programs are changed. Commonly used CM systems hke SCCS, CVS

2.4. OTHER SOFTWARE PROCESSES 65

Rejected

Developer
Satisfied

Figure 2.16: SCM life cycle of an item.

(www.cvshome.org), VSS (msdn.microsoft.com/vstudio/previous/ssafe), fo
cus heavily on version control.

Most CM systems also provide means for access control. To understand
the need for access control, let us understand the life cycle of an SCI. Typ
ically, while an SCI is under development and is not visible to other SCIs,
it is considered being in the working state. An SCI in the working state is
not under SCM and can be changed freely. Once the developer is satisfied
that the SCI is stable enough for it to be used by others, the SCI is given
for review, and the item enters the state "under review." Once an item is in
this state, it is considered as "frozen," and any changes made to a private
copy that the developer may have made are not recognized. After a success
ful review the SCI is entered into a library, after which the item is formally
under SCM. The basic purpose of this review is to make sure that the item
is of satisfactory quality and is needed by others, though the exact nature of
review will depend on the nature of the SCI and the actual practice of SCM.
For example, the review might entail checking if the item meets its specifi
cations or if it has been properly unit tested. If the item is not approved,
the developer may be given the item back and the SCI enters the working
state again. This "hfe cycle" of an item from the SCM perspective, is shown
in Figure 2.16 [147].

Once an SCI is in the library, any modification should be controlled,
as others may be using that item. Hence, access to items in the library
is controlled. For making an approved change, the SCI is checked out of
the library, the change is made, the modification is reviewed and then the
SCI is checked back into the library. When a new version is checked in,
the old version is not replaced and both old and new versions may exist
in the library—often logically with one file being maintained along with
information about changes to recreate the older version. This aspect of
SCM is sometimes called library management and is done with the aid of

http://www.cvshome.org
http://msdn.microsoft.com/vstudio/previous/ssafe

66 2. SOFTWARE PROCESSES

tools.

C M Process

The CM process defines the set of activities that need to be performed to con
trol change. As with most activities in project management, the first stage
in the CM process is planning. Then the process has to be executed, gener
ally by using some tools. Finally, as any CM plan requires some discipline
from the project personnel in terms of storing items in proper locations, and
making changes properly, monitoring the status of the configuration items
and performing CM audits are therefore other activities in the CM process.

Planning for configuration management involves identifying the config
uration items and specifying the procedures to be used for controlhng and
implementing changes to these configuration items. Identifying configura
tion items is a fundamental activity in any type of CM [12, 89, 147]. Typical
examples of configuration items include requirements specifications, design
documents, source code, test plans, test scripts, test procedures, test data,
standards used in the project (such as coding standards and design stan
dards), the acceptance plan, documents such as the CM plan and the project
plan, user documentation such as the user manual, documents such as the
training material, contract documents (including support tools such as a
compiler or in-house tools), quality records (review records, test records),
and CM records (release records, status tracking records). Any customer-
supplied products or purchased items that will be part of the delivery (called
"included software product") are also configuration items.

As there are typically a lot of items in a project, how they are to be
organized is also decided in the planning phase. Typically, the directory
structure that will be employed to store the different elements is decided in
the plan. To facilitate proper naming of configuration items, the naming
conventions for CM items are decided during the CM planning stages. In
addition to naming standards, version numbering must be planned. When
a configuration item is changed, the old item is not replaced with the new
copy; instead, the old copy is maintained and a new one is created. This
approach results in multiple versions of an item, so policies for version num
ber assignment are needed. If a CM tool is being used, then sometimes the
tool handles the version numbering. Otherwise, it has to be explicitly done
in the project.

The configuration controller or the project manager do the CM plan
ning. It is begun only when the project has been initiated and the operating

2A. OTHER SOFTWARE PROCESSES 67

environment and requirements specifications are clearly documented. The
output of this phase is the CM plan.

The configuration controller (CC) is responsible for the implementation
of the CM plan. Depending on the size of the system under development,
his or her role may be a part-time or full-time job. In certain cases, where
there are large teams or where two or more teams/groups are involved in the
development of the same or different portions of the software or interfacing
systems, it may be necessary to have a configuration control board (CCB).
This board includes representatives from each of the teams. A CCB (or a
CC) is considered essential for CM [89], and the CM plan must clearly define
the roles and responsibihties of the CC/CCB. These duties will also depend
on the type of file system and the nature of CM tools being used.

For a CM process to work well, the people in the project have to use it
as per the CM plan and follow its policies and procedures. However, people
make mistakes. And if by mistake an SCI is misplaced, or access control
policies are violated, then the integrity of the product may be lost. To
minimize mistakes and catch errors early, regular status checking of SCIs may
be done. A configuration audit may also be performed periodically to ensure
that the CM system integrity is not being violated. The audit may also check
that the changes to SCIs due to change requests (discussed next) have been
done properly and that the change requests have been implemented.

In addition to checking the status of the items, the status of change re
quests (discussed below) must be checked. To accomplish this goal, change
requests that have been received since the last CM status monitoring op
eration are examined. For each change request, the state of the item as
mentioned in the change request records is compared with the actual state.
Checks may also be done to ensure that all modified items go through their
full life cycle (that is, the state diagram) before they are incorporated in the
basehne.

2.4.4 Requirements Change Management Process

Requirements change. And changes in requirements can come at any time
during the life of a project (or even after that). The farther down in the life
cycle the requirements change, the more severe the impact on the project.
Instead of wishing that changes will not come, or hoping that somehow the
initial requirements will be "so good" that no changes will be required, it
is better that a project manager prepare to handle change requests as they
come.

68 2. SOFTWARE PROCESSES

Uncontrolled changes to requirements can have a very adverse effect on
the cost, schedule, and quality of the project. Requirement changes can
account for as much as 40% of the total cost [22]. Due to the potentially
large impact of requirement changes on the project, often a separate process
is employed to deal with them.

The change management process defines the set of activities that are
performed when there are some new requirements or changes to existing
requirements (we will call both changes in the requirements). Though we
are focusing on requirement changes, any major changes hke design changes
or major bug fixes to a system in deployment, this process can be used. Here
we discuss a requirement change management process which is based on one
used in a commercial organization [97]. The change management process
has the following steps.

• Log the changes

• Perform impact analysis on the work products

• Estimate impact on effort and schedule

• Review impact with concerned stakeholders

• Rework work products

A change is initiated by a change request. A change request log is main
tained to keep track of the change requests. Each entry in the log contains
a change request number, a brief description of the change, the effect of the
change, the status of the change request, and key dates.

The effect of a change request is assessed by performing impact analysis.
Impact analysis involves identifying work products and configuration items

that need to be changed and evaluating the quantum of change to each;
reassessing the projects risks by revisiting the risk management plan; and
evaluating the overall implications of the changes for the effort and schedule
estimates.

Once a change is reviewed and approved, then it is implemented, i.e.,
changes to all the items are made. The actual tracking of implementation of
a change request may be handled by the configuration management process,
which has been discussed above.

One danger of requirement changes is that, even though each change is
not large in itself, over the life of the project the cumulative impact of the
changes is large. Hence, besides studying the impact of individual changes

2.4. OTHER SOFTWARE PROCESSES 69

and tracking them, the cumulative impact of changes must also be moni
tored. For cumulative changes, the change log is used. To facilitate this
analysis, the log is frequently maintained as a spreadsheet.

2.4.5 Process Management Process

A software process is not a static entity—it has to change to improve so that
the products produced using the process are of higher quality and are less
costly. As we have seen, improving quality and productivity are fundamen
tal goals of engineering. To achieve these goals the software process must
continually be improved, as quality and productivity are determined to a
great extent by the process. As stated earlier, improving the quality and
productivity of the process is the main objective of the process management
process. It should be emphasized that process management is quite different
from project management. In process management the focus is on improving
the process which in turn improves the general quahty and productivity for
the products produced using the process. In project management the focus
is on executing the current project and ensuring that the objectives of the
project are met. The time duration of interest for project management is
typically the duration of the project, while process management works on a
much larger time scale as each project is viewed as providing a data point
for the process.

Process management is an advanced topic beyond the scope of this book.
Interested readers are referred to the book by Humphrey [89]. We will only
briefly discuss some aspects here.

To improve its software process, an organization needs to first understand
the status of the current status and then develop a plan to improve the
process. It is generally agreed that changes to a process are best introduced
in small increments and that it is not feasible to totally revolutionize a
process. The reason is that it takes time to internalize and truly follow any
new methods that may be introduced. And only when the new methods
are properly implemented will their effects be visible. Introducing too many
new methods for the software process will make the task of implementing
the change very hard.

If we agree that changes to a process must be introduced in small incre
ments, the next question is out of a large set of possible enhancements to a
process, in what order should the improvement activities be undertaken? Or
what small change should be introduced first? This depends on the current
state of the process. For example, if the process is very primitive there is

70 2. SOFTWARE PROCESSES

no point in suggesting sophisticated metrics-based project control as an im
provement strategy; incorporating it in a primitive process is not easy. On
the other hand, if the process is aheady using many basic models, such a
step might be the right step to further improve the process. Hence, deciding
what activities to undertake for process improvement is a function of the
current state of the process. Once some process improvement takes place,
the process state may change, and a new set of possibilities may emerge.
This concept of introducing changes in small increments based on the cur
rent state of the process has been captured in the Capability Maturity Model
(CMM) framework. The CMM framework provides a general roadmap for
process improvement. We give a brief description of the CMM framework
here; the reader is referred to [89, 134] for more details. An example of
implementation of CMM in an organization can be found in [96].

Software process capability describes the range of expected results that
can be achieved by following the process [134]. The process capabihty of an
organization determines what can be expected from the organization in terms
of quality and productivity. The goal of process improvement is to improve
the process capability. A maturity level is a well-defined evolutionary plateau
towards achieving a mature software process [134]. Based on the empirical
evidence found by examining the processes of many organizations, the CMM
suggests that there are five well-defined maturity levels for a software process.
These are initial (level 1), repeatable, defined, managed, and optimizing
(level 5). The CMM framework says that as process improvement is best
incorporated in small increments, processes go from their current levels to
the next higher level when they are improved. Hence, during the course of
process improvement, a process moves from level to level until it reaches
level 5. This is shown in Figure 2.17 [134].

The CMM provides characteristics of each level, which can be used to
assess the current level of the process of an organization. As the movement
from one level is to the next level, the characteristics of the levels also suggest
the areas in which the process should be improved so that it can move to the
next higher level. Essentially, for each level it specifies the areas in which
improvement can be absorbed and will bring the maximum benefits. Overall,
this provides a roadmap for continually improving the process.

The initial process (level 1) is essentially an ad hoc process that has no
formalized method for any activity. Basic project controls for ensuring that
activities are being done properly, and that the project plan is being adhered
to, are missing. In crisis the project plans and development processes are
abandoned in favor of a code-and-test type of approach. Success in such or-

2A. OTHER SOFTWARE PROCESSES 71

Continuously
Improving
Process

Optimizing
(5)

Predictable
Process

Managed
(4)

Standard,
Consistent
Process

Defined
(3)

Disciplined
Process

Repeatable
(2) •

Initial
(1)

Figure 2.17: Capability Maturity Model.

ganizations depends solely on the quality and capability of individuals. The
process capability is unpredictable as the process constantly changes. Orga
nizations at this level can benefit most by improving project management,
quality assurance, and change control.

In a repeatable process (level 2), pohcies for managing a software project
and procedures to implement those policies exist. That is, project manage
ment is well developed in a process at this level. Some of the characteristics
of a process at this level are: project commitments are realistic and based
on past experience with similar projects, cost and schedule are tracked and
problems resolved when they arise, formal configuration control mechanisms
are in place, and software project standards are defined and followed. Es
sentially, results obtained by this process can be repeated as the project
planning and tracking is formal.

At the defined level (level 3) the organization has standardized a software
process, which is properly documented. A software process group exists in
the organization that owns and manages the process. In the process each
step is carefully defined with verifiable entry and exit criteria, methodologies
for performing the step, and verification mechanisms for the output of the

72 2. SOFTWARE PROCESSES

LEVEL 5—OPTIMIZING
* Process change management
• Technology change management
»Defect prevention

LEVEL 4 — M A N G A E D
• Software guality management
»Quantitative process management

LEVEL 3—DEFINED
* Organization process definition
• Training program
' Peer reviews
* Integrated software management

LEVEL 2—REPEATABLE
• Software requirements management
»Software configuration management
• Project planning
»Project monitoring and control

Figure 2.18: Some key process areas.

step. In this process both the development and management processes are
formal.

At the managed level (level 4) quantitative goals exist for process and
products. Data is collected from software processes, which is used to build
models to characterize the process. Hence, measurement plays an important
role in a process at this level. Due to the models built, the organization has
a good insight of the process capabihty and its deficiencies. The results of
using such a process can be predicted in quantitative terms.

At the optimizing level (level 5), the focus of the organization is on con
tinuous process improvement. Data is collected and routinely analyzed to
identify areas that can be strengthened to improve quality or productivity.
New technologies and tools are introduced and their effects measured in an
effort to improve the performance of the process. Best software engineering
and management practices are used throughout the organization.

This CMM framework can be used to improve the process. Improvement
requires first assessing the level of the current process. Based on the current
level, the areas in which maximum benefits can be derived are known from

2.5, SUMMARY 73

the framework. For example, for improving a process at level 1 (or for going
from level 1 to level 2), project management and the change control activities
must be made more formal. The complete CMM framework provides more
details about which particular areas need to be strengthened to move up the
maturity framework. This is generally done by specifying the key process
areas of each maturity level, which in turn, can be used to determine which
areas to strengthen to move up. Some of the key process areas of the different
levels are shown in Figure 2.18 [134].

Though the CMM framework specifies the process areas that should be
improved to increase the maturity of the process, it does not specify how
to bring about the improvement. That is, it is essentially a framework
that does not suggest detailed prescriptions for improvement, but guides the
process improvement activity along the maturity levels such that process
improvement is introduced in increments and the improvement activity at
any time is clearly focused. Many organizations have successfully used this
framework to improve their processes. It is a major driving force for process
improvement. A detailed example of how an organization that follows the
CMM executes its project can be found in [96].

2.5 Summary

A software process is the set of activities, together with ordering constraints,
such that if the activities are performed in accordance to the process, the
desired results (of high quality and productivity) will be achieved. A soft
ware process consists of different component processes like the development
process, the project management process, the configuration management
process, and the process management process.

In order to satisfy the basic software engineering objectives, the soft
ware process must have some desirable properties. The process must be
predictable, that is, following the same process produces more or less similar
results. The process must also support testability and maintainabihty, as
testing and maintenance are the activities that consume the most resources.
The process should support defect removal and prevention throughout de
velopment, as the longer a defect stays, the more costly it is to remove it.
And the process must be self-improving.

A process model is a general process specification which has been found
useful in many circumstances. In this chapter, we discussed some process
models for the development process. The waterfall model is conceptually

74 2. SOFTWARE PROCESSES

the simplest model of software development, where the requirement, design,
coding, and testing phases are performed in linear progression. There is a
defined output after each phase, which is certified before the next phase be
gins. It has been very widely used, even though it has limitations. The major
hmitations of this model are that it follows the "ah or nothing" approach,
is document driven, and does not permit changes.

Another major model is the prototyping model, where a prototype is built
before building the final system. The prototype is used to further develop
the requirements leading to more stable requirements. Experience with the
prototype also results in better design and development of the system.

In the iterative development model, software is developed in iterations,
each iteration resulting in a working software system. Iterative development
is now widely used as it allows software to be developed and delivered in
parts, hence the risks are low. Furthermore, it does not require all require
ments to be known in the start, which is usually not possible. The feedback
from software of earher iterations can also be used to improve the software
in later iterations.

The timeboxing model is also an iterative model, but the different iter
ations are of equal time duration. Each iteration is also divided into equal
length stages. There is a committed team for each stage of an iteration.
The different iterations are then executed in a pipelined manner, with each
dedicated team working on its stage but for different iterations. As multiple
iterations are concurrently active, this model reduces the average completion
time of each iteration and hence is useful in situations where short cycle time
is highly desirable.

Besides the development process, there are other component processes
of the software process. The project management process consists of three
major phases—planning, monitoring and control, and termination analysis.
Much of project management revolves around the project plan, which is pro
duced during the planing phase. The monitoring and control phase requires
accurate data about the project to reach project management, which uses
this data to determine the state of the project and exercise any control it
requires. For this purpose, metrics play an essential role in providing the
project management quantified data about the state of development and of
the products produced. In the end, a postmortem analysis is done to learn
from the experience.

The inspection process is used for finding defects in a work product. In
inspections, a work product is closely examined by a group of peer experts,
who examine it for defects. There is a structured process, in which first the

2.5. SUMMARY 75

material to be inspected is examined individually by each of the reviewers.
Once the reviewers have logged the defects they have found, a group review
meeting is held in which the product is examined line by line. At any point,
if a reviewer has an issue, it is discussed and, if needed, recorded as a defect.
By the end of the process, all the defects found are recorded, and a summary
of defects and effort spent prepared that can be used to judge if the review
has been performed properly. Inspections are used heavily in practice and
are recognized as an industry best practice.

The software configuration management (CM) process deals with man
aging the changes that take place during the project. The CM process typ
ically focuses on controlling the changes to the individual CM items, such
that latest copy of each item is easily available, and changes can be un
done, if needed. Along with the CM process, there is a requirements change
management process that focuses on handling changes in requirements. The
purpose is to evaluate change requests for their impact, and then implement
the changes of approved changes.

The process management process is frequently performed by the software
engineering process group. The basic objective of this process is to improve
the process such that the quality and productivity improves. A key aspect
of this process is to understand the capability of the current process and
characterize it so that the expected outcomes are known. The other major
activity of this process is to improve the process so that the cost and quality
of future products are improved. Frameworks like the CMM help in the
process management process.

In the rest of the book we will focus on the important activities that
are generally performed during a software development project, and discuss
each one of them in more detail. The activities covered include project
management as well as development process activities. A knowledge of these
activities will enable a person to successfully execute a software project.

Exercises

1. What is the relationship between a process model, process specification, and
process for a project?

2. What are the key outputs in a development project that follows the proto
typing model? Write a ETVX specification for this process.

3. For the next project, the project manager wants to predict the number of
defects she is likely to find in each of the quality control tasks in the process.

76 2. SOFTWARE PROCESSES

How will you do this? Assume that all the past data you need is available.
Also make suitable assumptions on process predictability.

4. You have to design a process for a project using the iterative development
model. If the main objective of this project is high quality, what are the
quality control tasks you will have in the process?

5. It is reasonable to assume that if software is easy to test, it will be easy to
maintain. Suppose that by putting extra effort in design and coding you
increase the cost of these phases by 15%, but you reduce the cost of testing
and maintenance by 5%. Will you put in the extra effort?

6. Which of the development process models discussed in this chapter would
you follow for the following projects? Give justifications.

(a) A simple data processing project.

(b) A data entry system for office staff that has never used computers before.
The user interface and user-friendliness are extremely important.

(c) A new system for comparing fingerprints. It is not clear if the cur
rent algorithms can compare fingerprints in the given response time
constraints.

(d) A spreadsheet system that has some basic features and many other
desirable features that use these basic features.

(e) A new missile tracking system. It is not known if the current hard
ware/software technology is mature enough to achieve the goals.

(f) An on-line inventory management system for an automobile industry.

(g) A flight control system with extremely high reliability. There are many
potential hazards with such a system.

(h) A Web site for an on-line store which always has a list of desired features
it wants to add and add them quickly.

7. Suppose that the stages in a time box in the timeboxing model are unequal.
What will be the impact on delivery time and resource utilization?

8. A project uses the timeboxing process model with three stages in each time
box (as discussed in the chapter), but with unequal length. Suppose the
requirement specification stage takes 2 weeks with a team of 2 people, the
build stage takes 3 weeks with a team of 4 people, and deployment takes
1 week with a team of 2 people. Design the process for this project that
maximizes resource utilization. Assume that each resource can do any task.
(Hint: Exploit the fact that the sum of durations of the first and the third
stage is equal to the duration of the second stage.)

9. In the timeboxing process model, what will happen if one stage in an iteration
takes longer or shorter than its allocated time?

2.5. SUMMARY 77

10. Why is the CM process needed in addition to the development process?

11. What types of effect will the project monitoring activity of the project man
agement process have on the development process? Explain with examples.

12. Suppose the SEPG undertakes some initiatives to improve the existing pro
cess. How will you verify that the initiatives are indeed improving the process?

Software Requireraents
Analysis and Specification

The complexity and size of software systems are continuously increasing.
As the scale changes to more complex and larger software systems, new
problems occur that did not exist in smaller systems (or were of minor sig
nificance) , which leads to a redefining of priorities of the activities that go
into developing software. Software requirements is one such area, to which
little importance was attached in the early days of software development, as
the emphasis was on coding and design. The tacit assumption was that the
developers understood the problem clearly when it was explained to them,
generally informally.

As systems grew more complex, it became evident that the goals of the
entire system could not be easily comprehended. Hence the need for more
rigorous requirements analysis arose. Now, for large software systems, re
quirements analysis is perhaps the most difficult and intractable activity; it is
also very error-prone. Many believe that the software engineering discipline
is weakest in this critical area.

Some of the difficulty is due to the scope of this activity. The software
project is initiated by the client's needs. In the beginning, these needs are
in the minds of various people in the client organization. The requirements
analyst has to identify the requirements by talking to these people and un
derstanding their needs. In situations where the software is to automate a
currently manual process, many of the needs can be understood by observ
ing the current practice. But no such methods exist for systems for which
manual processes do not exist or for "new features," which are frequently

80 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

added when automating an existing manual process. For such systems, the
requirements problem is complicated by the fact that the needs and require
ments of the system many not be known even to the user—they have to be
visualized and created.

Hence, identifying requirements necessarily involves specifying what some
people have in their minds (or what wih come to their minds when they visu
alize it). As the information in their minds is, by nature, not formally stated
or organized, the input to the software requirements specification phase is
inherently informal and imprecise, and it is likely to be incomplete. When
inputs from multiple people are to be gathered, these inputs are likely to be
inconsistent as well.

The requirements phase translates the ideas in the minds of the clients
(the input), into a formal document (the output of the requirements phase).
Thus, the output of the phase is a set of precisely specified requirements,
which hopefully are complete and consistent, while the input has none of
these properties. Clearly, the process of specifying requirements cannot be
totally formal; any formal translation process producing a formal output
must have a precise and unambiguous input. This is why the software re
quirements activity cannot be fully automated, and any method for identi
fying requirements can be at best a set of guidelines.

In this chapter we will discuss what requirements are, why requirement
specification is important, how requirements are analyzed and specified, how
requirements are validated, and some metrics that can be applied to require
ments. It ends with a discussion of the SRS of the case studies used in the
book.

3.1 Software Requirements

IEEE defines a requirement as "(1) A condition of capability needed by a user
to solve a problem or achieve an objective; (2) A condition or a capability
that must be met or possessed by a system ... to satisfy a contract, standard,
specification, or other formally imposed document." [91]. Note that in
software requirements we are deahng with the requirements of the proposed
system, that is, the capabihties that the system, which is yet to be developed,
should have. It is because we are dealing with specifying a system that
does not exist that the problem of requirements becomes complicated. The
goal of the requirements activity is to produce the Software Requirements
Specification (SRS), that describes what the proposed software should do

3.1. SOFTWARE REQUIREMENTS 81

without describing how the software will do it.
Producing the SRS is easier said than done. A basic hmitation for this is

that the user needs keep changing as the environment in which the system is
to function changes with time. Even while accepting that some requirement
change requests are inevitable, there are still pressing reasons why a thorough
job should be done in the requirements phase to produce a high-quality and
relatively stable SRS. Let us first look at some of these reasons.

3.1.1 Need for SRS

The origin of most software systems is in the needs of some clients. The
software system itself is created by some developers. Finally, the completed
system will be used by the end users. Thus, there are three major parties
interested in a new system: the client, the developer, and the users. Some
how the requirements for the system that will satisfy the needs of the clients
and the concerns of the users have to be communicated to the developer.
The problem is that the client usually does not understand software or the
software development process, and the developer often does not understand
the client's problem and application area. This causes a communication gap
between the parties involved in the development project. A basic purpose
of software requirements specification is to bridge this communication gap.
SRS is the medium through which the client and user needs are accurately
specified to the developer. Hence one of the main advantages is:

• An SRS establishes the basis for agreement between the client and the
supplier on what the software product will do.

This basis for agreement is frequently formalized into a legal contract be
tween the client (or the customer) and the developer (the supplier). So,
through SRS, the client clearly describes what it expects from the suppher,
and the developer clearly understands what capabilities to build in the soft
ware. Without such an agreement, it is almost guaranteed that once the
development is over, the project wih have an unhappy client, which almost
always leads to unhappy developers. (The classic situation is, client: "Hey!
there is a bug"; Developer: "No, it is a software feature.") Actually, the
reality of the situation is that even with such an agreement, the client is
frequently not satisfied! A related, but important, advantage is:

• An SRS provides a reference for validation of the final product.

82 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

That is, the SRS helps the chent determine if the software meets the re
quirements. Without a proper SRS, there is no way a cHent can determine
if the software being deUvered is what was ordered, and there is no way
the developer can convince the chent that aU the requirements have been
fulfilled.

Providing the basis of agreement and validation should be strong enough
reasons for both the client and the developer to do a thorough and rigorous
job of requirement understanding and specification, but there are other very
practical and pressing reasons for having a good SRS.

We have seen that the primary forces driving a project are cost, schedule,
and quality. Consequently, anything that has a favorable effect on these fac
tors should be considered desirable. Boehm found (as reported in [45]) that
in some projects 54% of all the detected errors were detected after coding
and unit testing was done and that 45% of these errors actually originated
during requirement and early design stages. That is, a total of approximately
25% errors occur during requirement and early design stages. A report on
errors in the A-7 project shows that about 80 errors were detected in the
requirements document over a period of few months that resulted in change
requests [8]. Another report indicates that more than 500 errors were found
in an SRS that was earlier approved (as reported in [45]). Similarly, another
project reported that more than 250 errors were found in a previously re
viewed SRS by stating the requirements in a structured manner and using
tools to analyze the document [47].

It is clear that many errors are made during the requirements phase.
And an error in the SRS wih most likely manifest itself as an error in the
final system implementing the SRS; after ah, if the SRS document specifies
a wrong system (i.e., one that will not satisfy the client's objectives), then
even a correct implementation of the SRS will lead to a system that will not
satisfy the chent. Clearly, if we want a high-quahty end product that has
few errors, we must begin with a high-quality SRS. In other words, we can
conclude that:

• A high-quahty SRS is a prerequisite to high-quahty software.

Finally, we show that the quality of SRS has an impact on cost (and schedule)
of the project. We have already seen that errors can exist in the SRS. We
saw earher that the cost of fixing an error increases almost exponentially
as time progresses. That is, a requirement error, if detected and removed
after the system has been developed, can cost up to 100 times more than

3.1. SOFTWARE REQUIREMENTS 83

Phase
Requirements
Design
Coding
Acceptance test
Operation and maint.

Cost (person-hours)
2
5
15
50
150

Table 3.1: Cost of fixing requirement errors.

removing it during the requirements phase itself. Based on the data given in
[8], which reported that on average it took about 2.4 person-hours to make
a change to the requirements to correct an error (this average was without
considering the outliers; with the outliers the average was about 5,0 person-
hours) , we assume that the average cost of fixing a requirement error in the
requirement phase is about 2 person-hours. Prom this and the relative cost
of fixing errors as reported in a multicompany study in [17, 20] (these costs
were reflected graphically in Pigure 1.1), the approximate average cost of
fixing requirement errors (in person-hours) depending on the phase is shown
in Table 3.1.

Clearly, we can have a tremendous reduction in the project cost by re
ducing the errors in the SRS. A simphfied example will illustrate this point.
Using the costs given earlier, by investing an additional 100 person-hours in
the requirements phase, an average of about 50 new requirements errors will
be detected and removed. (This oversimplification is likely to hold only for
the errors detected early in the phase. As the number of remaining errors is
reduced, the effort required to detect each error is likely to increase.) If these
errors are not detected in the requirements phase, they will be detected in
some later phase. In the A-7 project the following distribution was found
[8]: of the requirements errors that remain after the requirements phase,
about 65% are detected during design, 2% during coding, 30% during test
ing, and 3% during operation and maintenance. This type of distribution
can be expected in general, as most of the requirements errors are likely to
be caught in the design phases and the acceptance test phase, while the rest
will be caught in other phases. Assume that these 50 requirement errors, if
not removed, would have been detected (and fixed) in the later phases with
the distribution given earlier. The total cost of fixing the errors in this case
will be

32.5 * 5 + 1 * 15 + 15 * 50 + 1.5 * 150 = 1152 person - hours!

84 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

In other words, by investing additional 100 person-hours in the require
ments phase in this example, the development cost could be reduced by
1152 person-hours—a net reduction in cost of 1052 person-hours!

This can be viewed in another manner. An error that remains in the
requirements will be detected in the later phases with the following prob
abilities: 0.4 in design, 0.1 in coding and unit testing, 0.4 in acceptance
testing, 0.1 during operation and maintenance. The cost of fixing a require
ment error in these phases was given earlier. Hence, the expected cost of
fixing a requirement error that is not removed during the requirements phase
is 0.4* 5 + 0.1* 15 +0.4* 50 + 0 . 1 * 150 = 38.5 person-hours. Therefore, if the
expected effort required to detect and remove an error during the require
ments phase is less than this, it makes economic sense to spend the extra
eflfort in the requirements phase and remove the error.

This is not the complete story. We know that requirements frequently
change. As mentioned earlier, though some of the changes are inevitable due
to the changing needs and perceptions, many changes come as the require
ments were not properly analyzed and not enough effort was expended to
validate the requirements. With a high-quality SRS, requirement changes
that come about due to improperly analyzed requirements should be re
duced considerably. And as changes tend to escalate the cost and throw the
project schedule haywire, a reduction in the requirement change traffic will
reduce the project cost, in addition to improving its chances of finishing on
schedule.

Let us illustrate this with another simplified example. It is estimated
that 20% to 40% of the total development effort in a software project is
due to rework, much of which occurs due to change in requirements [22].
The cost of the requirement phase is typically about 6% of the total project
cost, according to the COCOMO model [20] (the model is discussed in more
detail in Chapter 4). Consider a project whose total effort requirement is
estimated to be 50 person-months. For this project, the requirements phase
consumes about 3 person-months. If by spending an additional 33% effort
in the requirements phase we reduce the total requirement change requests
by 33%, then the total effort due to rework (assuming all rework is due to
requirement change requests) will reduce from 10 to 20 person-months to 6
to 12 person-months, resulting in a total saving of 5 to 11 person-months,
i.e., a saving of 10% to 22% of the total cost! Prom these, we can conclude
that

• A high quality SRS reduces the development cost.

3.1. SOFTWARE REQUIREMENTS 85

Hence, the quality of the SRS impacts customer (and developer) satisfaction,
system validation, quality of the final software, and the software development
cost. The critical role the SRS plays in a software development project should
be evident from these.

3.1.2 Requirement Process

The requirement process is the sequence of activities that need to be per
formed in the requirements phase and that culminate in producing a high-
quality document containing the software requirements specification (SRS).
The requirements process typically consists of three basic tasks: problem
or requirement analysis, requirement specification, and requirements valida
tion.

Problem analysis often starts with a high-level "problem statement."
During analysis the problem domain and the environment are modeled

in an effort to understand the system behavior, constraints on the system,
its inputs and outputs, etc. The basic purpose of this activity is to ob
tain a thorough understanding of what the software needs to provide. The
understanding obtained by problem analysis forms the basis of requirements
specification, in which the focus is on clearly specifying the requirements in a
document. Issues such as representation, specification languages, and tools,
are addressed during this activity. As analysis produces large amounts of
information and knowledge with possible redundancies; properly organizing
and describing the requirements is an important goal of this activity. Re
quirements validation focuses on ensuring that what has been specified in
the SRS are indeed all the requirements of the software and making sure
that the SRS is of good quahty. The requirements process terminates with
the production of the validated SRS.

Though it seems that the requirements process is a linear sequence of
these three activities, in reality it is not so for anything other than trivial
systems. In most real systems, there is considerable overlap and feedback
between these activities. So, some parts of the system are analyzed and then
specified while the analysis of the other parts is going on. Furthermore, if
the validation activities reveal problems in the SRS, it is likely to lead to
further analysis and specification. However, in general, for a part of the
system, analysis precedes specification and specification precedes validation.
This requirement process is shown in Figure 3.1.

As shown in the figure, from the specification activity we may go back to
the analysis activity. This happens as frequently some parts of the problem

86 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

1 — • Problem
Analysis

f
Product

Description

f

Validation

"^—1

^

Validated SRS

Figure 3.1: The requirement process.

are analyzed and then specified before other parts are analyzed and specified.
Furthermore, the process of specification frequently shows shortcomings in
the knowledge of the problem, thereby necessitating further analysis. Once
the specification is "complete" it goes through the validation activity. This
activity may reveal problems in the specifications itself, which requires going
back to the specification step, or may reveal shortcomings in the understand
ing of the problem, which requires going back to the analysis activity.

During requirements analysis the focus is on understanding the system
and its requirements. For a complex system, this is a hard task, and the
time-tested method of "divide-and-conquer," i.e., decomposing the problem
or system into smaller parts and then understanding the parts and their rela
tionships, is inevitably applied to manage the complexity. Also, for managing
the complexity and the large volume of information that becomes available
during analysis, various structures are used during analysis to represent the
information to help view the system as a series of abstractions. Examples
of these structures are data fiow diagrams and object diagrams (more about
these in the next section). For a portion of the system, analysis typically pre
cedes specification. Once the analysis is complete and the structures built,
the system part has to be specified.

The transition from analysis to specification, though, seems as if it should

3.1. SOFTWARE REQUIREMENTS 87

be simple; this is not so. In fact, this transition can be quite hard. The
reason for this transition being hard is the different objectives of the two
activities. In specification, we have to specify only what the software is
supposed to do, i.e., focus on the external behavior of the system. In order
to identify all the external behaviors, the structure of the problem and its
various components need to be clearly understood besides understanding its
inputs and outputs. However, the structure itself may not be of much use
in specification, as its focus is exclusively on the external behavior or the
eventual system, not the internal structure of the problem domain. Due to
this, one should not expect that once the analysis is done, specification will
be straightforward. Furthermore, many "outputs" of the analysis are not
used directly in the SRS. This does not mean that these outputs are not
useful—they are essential in modeling the problem that leads to the proper
understanding of the requirements, which is a prerequisite to specification.
Hence, the use of the analysis activity and structures that it built may be
indirect, aiding understanding rather than directly aiding specification.

It is worth noting that some similarities exist in the analysis activity and
the design activity. As pointed out by Davis [45], the basic problem during
software design is the same—managing the complexity. The approach used
there is similar^—decomposition and building structures to represent the sys
tem as a series of abstractions. Due to this similarity, the approaches used
for problem analysis and design are frequently similar (e.g., data flow dia
grams and object diagrams are used in analysis as well as design). However,
although the approaches are similar, the objective of the two activities is
completely different. Whereas analysis deals with the problem domain, with
the basic objective of understanding the problem, design deals with the solu
tion domain with the basic objective of optimizing the design [45]. Because
to this, the apphcation of similar approaches produces different structures
during analysis and design. It is sometimes mistakenly beheved that the
structures produced during analysis will and should be carried through in
design. This comes from a basic misunderstanding about the objectives of
the two activities. Though some of the structures may eventually get used
in design, this should be done only if the analysis structures are consistent
with the design objective.

Finally, there is the issue of the level of detail that the requirement
process should aim to uncover and specify. This is also an issue that cannot
be easily resolved and that depends on the objective of the requirement
specification phase. If the objective is to define the overall broad needs
of the system, the requirements can be very abstractly stated. Generally,

88 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

the purpose of such requirements is to perform some feasibility analysis or
use the requirements for competitive bidding. At the lower level are the
requirements where all the behavior and external interfaces of the software
are clearly specified. Such requirements are clearly very detailed and are
suitable for software development.

An example can illustrate this point. Suppose a car manufacturer wants
to have an inventory control system. At an abstract level, the requirements
of the inventory control system could be stated in terms of the number of
parts it has to track, level of concurrency it has to support, whether it will
be on-line or batch processing, what types of information and reports it will
provide (e.g., status of each item on demand, purchase orders for items that
are low in inventory, consumption patterns), etc. Requirements specification
at this level of abstraction can be used to estimate the costs and perform
a cost-benefit analysis. It can also be used to invite tenders from various
developers. However, such a requirements specification is of little use for
a developer given the contract to develop the software. That developer
needs to know the exact format of the reports, all the queries that can be
performed and their structure, total number of terminals the system has to
support, the structure of the major databases that will exist, etc. These are
all specifying the external behavior of the software, but when viewed from
the higher level of abstraction they can be considered as specifying how the
abstract requirements should be implemented (e.g., the details of a report
can be viewed as defining how the basic objective of providing information
is satisfied).

As should be clear, the abstract requirement level is not suitable for
software development. Hence, we will focus mostly on the requirements at
the lower level in which all the details about external behavior that are
needed for the developer to build a software system are specified. That
is, we view the SRS as providing all the detailed information needed by
a software developer for properly developing the system. However, it is
worth pointing out that even when obtaining the detailed requirements is
the objective, abstract requirements can still play a useful role for complex
systems. As the problem analysis starts with some initial description of
the system's behavior or needs, the abstract requirements can play this role
(besides being used for competitive bidding and/or feasibility analysis). In
other words, specifying the requirements at an abstract level is likely to be
useful in producing the SRS that contains the detailed requirements of the
system.

The following sections will be devoted to providing a more detailed de-

3.2, PROBLEM ANALYSIS 89

scription of the activities in the three major activities in the requirements
phase: analysis, specification, and verification.

3.2 Problem Analysis

The basic aim of problem analysis is to obtain a clear understanding of the
needs of the clients and the users, what exactly is desired from the software,
and what the constraints on the solution are [45]. Frequently the chent and
the users do not understand or know all their needs, because the potential of
the new system is often not fully appreciated. The analysts have to ensure
that the real needs of the clients and the users are uncovered, even if they
don't know them clearly. That is, the analysts are not just collecting and
organizing information about the client's organization and its processes, but
they also act as consultants who play an active role of helping the clients
and users identify their needs.

The basic principle used in analysis is the same as in any complex task:
divide and conquer. That is, partition the problem into subproblems and
then try to understand each subproblem and its relationship to other sub-
problems in an effort to understand the total problem.

The concepts of state and projection can sometimes also be used effec
tively in the partitioning process. A state of a system represents some con
ditions about the system. Frequently, when using state, a system is first
viewed as operating in one of the several possible states, and then a detailed
analysis is performed for each state. This approach is sometimes used in
real-time software or process-control software.

In projection, a system is defined from multiple points of view [152].
While using projection, different viewpoints of the system are defined and
the system is then analyzed from these different perspectives. The different
"projections" obtained are combined to form the analysis for the complete
system. Analyzing the system from the different perspectives is often easier,
as it limits and focuses the scope of the study.

In the remainder of this section we will discuss a few methods for problem
analysis. As the goal of analysis is to understand the problem domain, an
analyst must be familiar with different methods of analysis and pick the
approach that he feels is best suited to the problem at hand.

90 3. SOFTWARE REQ UIREMENTS ANALYSIS AND SPECIFICATION

3.2.1 Informal Approach

The informal approach to analysis is one where no defined methodology is
used. Like in any approach, the information about the system is obtained by
interaction with the client, end users, questionnaires, study of existing doc
uments, brainstorming, etc. However, with this approach no formal model
is built of the system. The problem and the system model are essentially
built in the minds of the analysts (or the analysts may use some informal
notation for this purpose) and are directly translated from the minds of the
analysts to the SRS.

Frequently, with such an approach, the analyst will have a series of meet
ings with the clients and end users. In the early meetings, the clients and
end users will explain to the analyst about their work, their environment,
and their needs as they perceive them. Any documents describing the work
or the organization may be given, along with outputs of the existing meth
ods of performing the tasks. In these early meetings, the analyst is basically
the listener, absorbing the information provided. Once the analyst under
stands the system to some extent, he uses the next few meetings to seek
clarifications of the parts he does not understand. He may document the
information in some manner (he may even build a model if he wishes), and
he may do some brainstorming or thinking about what the system should
do. In the final few meetings, the analyst essentially explains to the client
what he understands the system should do and uses the meetings as a means
of verifying if what he proposes the system should do is indeed consistent
with the objectives of the clients. An initial draft of the SRS may be used
in the final meetings.

The informal approach to analysis is used widely and can be quite useful.
The reason for its usefulness is that conceptual modeling-based approaches
frequently do not model all aspects of the problem and are not always well
suited for all the problems. Besides, as the SRS is to be validated and
the feedback from the validation activity may require further analysis or
specification (see Figure 3.1), choosing an informal approach to analysis is
not very risky—-the errors that may be introduced are not necessarily going
to slip by the requirements phase. Hence such approaches may be the most
practical approach to analysis in some situations.

3.2, PROBLEM ANALYSIS 91

3.2.2 D a t a Flow Model ing

Data-flow based modeling, often referred to as the structured analysis tech
nique [48, 130], uses function-based decomposition while modeling the prob
lem. It focuses on the functions performed in the problem domain and the
data consumed and produced by these functions. It is a top-down refinement
approach, which was originally called structured analysis and specification,
and was proposed for producing the specifications. However, we will limit
our attention to the analysis aspect of the approach. Before we describe the
approach, let us the describe the data flow diagram and data dictionary on
which the technique relies heavily.

Data Flow Diagrams and Data Dictionary

Data flow diagrams (also called data flow graphs) are commonly used during
problem analysis. Data flow diagrams (DFDs) are quite general and are not
limited to problem analysis for software requirements specification. They
were in use long before the software engineering discipline began. DFDs are
very useful in understanding a system and can be effectively used during
analysis.

A DFD shows the flow of data through a system. It views a system as a
function that transforms the inputs into desired outputs. Any complex sys
tem will not perform this transformation in a "single step," and a data will
typically undergo a series of transformations before it becomes the output.
The DFD aims to capture the transformations that take place within a sys
tem to the input data so that eventually the output data is produced. The
agent that performs the transformation of data from one state to another
is called a process (or a bubble). So, a DFD shows the movement of data
through the different transformations or processes in the system. The pro
cesses are shown by named circles and data flows are represented by named
arrows entering or leaving the bubbles. A rectangle represents a source or
sink and is a net originator or consumer of data. A source or a sink is typi
cally outside the main system of study. An example of a DFD for a system
that pays workers is shown in Figure 3.2.

In this DFD there is one basic input data flow, the weekly timesheet,
which originates from the source worker. The basic output is the pay
check, the sink for which is also the worker. In this system, first the em
ployee's record is retrieved, using the employee ID, which is contained in
the timesheet. From the employee record, the rate of payment and overtime
are obtained. These rates and the regular and overtime hours (from the

92 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

Employee Record

Overtime Rate Company Records

/ Get \ / \ * / \ To ta l / \ N e t /
E m p l o y e e W Weekly W Overtime) f 2 ^ Deduct)^p^Zc^

\ File ^ R a t e \ '̂ ^^ / A P̂ V / V ^axes J \P^y<^ok,
*

^ , , | \ Regular /^Overtime
Employee I D \ Hours/ Hours

Weekly TImesheet

Check

Tax Rates
Worker

Figure 3.2: DFD of a system that pays workers.

timesheet) are used to compute the pay. After the total pay is determined,
taxes are deducted. To compute the tax deduction, information from the
tax-rate file is used. The amount of tax deducted is recorded in the employee
and company records. Finally, the paycheck is issued for the net pay. The
amount paid is also recorded in company records.

Some conventions used in drawing this DFD should be explained. All
external files such as employee record, company record, and tax rates are
shown as a labeled straight line. The need for multiple data flows by a process
is represented by a '*' between the data flows. This symbol represents the
AND relationship. For example, if there is a '*' between the two input data
flows A and B for a process, it means that A AND B are needed for the
process. In the DFD, for the process "weekly pay" the data flow "hours"
and "pay rate" both are needed, as shown in the DFD. Similarly, the OR
relationship is represented by a '+ ' between the data flows.

This DFD is an abstract description of the system for handling payment.
It does not matter if the system is automated or manual. This diagram could
very well be for a manual system where the computations are all done with
calculators, and the records are physical folders and ledgers. The details

3.2. PROBLEM ANALYSIS 93

and minor data paths are not represented in this DFD. For example, what
happens if there are errors in the weekly timesheet is not shown in this DFD.
This is done to avoid getting bogged down with details while constructing
a DFD for the overall system. If more details are desired, the DFD can be
further refined.

It should be pointed out that a DFD is not a flowchart. A DFD represents
the flow of data, while a flowchart shows the flow of control. A DFD does
not represent procedural information. So, while drawing a DFD, one must
not get involved in procedural details, and procedural thinking must be
consciously avoided. For example, considerations of loops and decisions must
be ignored. In drawing the DFD, the designer has to specify the major
transforms in the path of the data flowing from the input to output. How
those transforms are performed is not an issue while drawing the data flow
graph.

There are no detailed procedures that can be used to draw a DFD for a
given problem. Only some directions can be provided. One way to construct
a DFD is to start by identifying the major inputs and outputs. Minor inputs
and outputs (like error messages) should be ignored at first. Then starting
from the inputs, work toward the outputs, identifying the major transforms
in the way. An alternative is to work down from the outputs toward the in
puts. (Remember that it is important that procedural information like loops
and decisions not be shown in the DFD, and the designer should not worry
about such issues while drawing the DFD.) Following are some suggestions
for constructing a data flow graph [154, 48]:

• Work your way consistently from the inputs to the outputs, or vice
versa. If you get stuck, reverse direction. Start with a high-level data
flow graph with few major transforms describing the entire transfor
mation from the inputs to outputs and then reflne each transform with
more detailed transformations.

• Never try to show control logic. If you flnd yourself thinking in terms
of loops and decisions, it is time to stop and start again.

• Label each arrow with proper data elements. Inputs and outputs of
each transform should be carefully identified.

• Make use of * and + operations and show sufficient detail in the data
flow graph.

• Try drawing alternate data flow graphs before settling on one.

94 3. SOFTWARE REQ UIREMENTS ANALYSIS AND SPECIFICATION

Many systems are too large for a single DFD to describe the data processing
clearly. It is necessary that some decomposition and abstraction mechanism
be used for such systems. DFDs can be hierarchically organized, which
helps in progressively partitioning and analyzing large systems. Such DFDs
together are called a leveled DFD set [48].

A leveled DFD set has a starting DFD, which is a very abstract represen
tation of the system, identifying the major inputs and outputs and the major
processes in the system. Then each process is refined and a DFD is drawn
for the process. In other words, a bubble in a DFD is expanded into a DFD
during refinement. For the hierarchy to be consistent, it is important that
the net inputs and outputs of a DFD for a process are the same as the inputs
and outputs of the process in the higher-level DFD. This refinement stops if
each bubble is considered to be "atomic," in that each bubble can be easily
specified or understood. It should be pointed out that during refinement,
though the net input and output are preserved, a refinement of the data
might also occur. That is, a unit of data may be broken into its components
for processing when the detailed DFD for a process is being drawn. So, as
the processes are decomposed, data decomposition also occurs.

In a DFD, data fiows are identified by unique names. These names are
chosen so that they convey some meaning about what the data is. However,
the precise structure of data fiows is not specified in a DFD. The data dictio
nary is a repository of various data flows defined in a DFD. The associated
data dictionary states precisely the structure of each data fiow in the DFD.
Components in the structure of a data fiow may also be specified in the data
dictionary, as well as the structure of files shown in the DFD. To define the
data structure, different notations are used. These are similar to the nota
tions for regular expressions (discussed later in this chapter). Essentially,
besides sequence or composition (represented by '+') selection and iteration
are included. Selection (represented by vertical bar '|') means one OR the
other, and repetition (represented by '*') means one or more occurrences. In
the DFD shown earlier, data fiows for weekly timesheet are used. The data
dictionary for this DFD is shown in Figure 3.3.

Most of the data flows in the DFD are specified here. Some of the
more obvious ones are not shown here. The data dictionary entry for
weekly timesheet specifies that this data flow is composed of three basic
data entities—the employee name, employee ID, and many occurrences of
the two-tuple consisting of regular hours and overtime hours. The last entity
represents the daily working hours of the worker. The data dictionary also
contains entries for specifying the different elements of a data flow.

3.2, PROBLEM ANALYSIS 95

weekly timesheet =
Employee_name +
Employee Jd +
[Regular_hours -f Overtime_hours] *

pay_rate =
[Hourly | daily | weekly] +
Dollar_amount

Employee_name =
Last + First + Middle-initial

EmployeeJd =
digit + digit -f digit + digit

Figure 3.3: Data dictionary.

Once we have constructed a DFD and its associated data dictionary, we
have to somehow verify that they are "correct." There can be no formal
verification of a DFD, because what the DFD is modeling is not formally
specified anywhere against which verification can be done. Human processes
and rules of thumb must be used for verification. In addition to the walk
through with the client, the analyst should look for common errors. Some
common errors are [48]:

• Unlabeled data flows

• Missing data flows; information required by a process is not available

• Extraneous data flows; some information is not being used in the pro
cess

• Consistency not maintained during refinement

• Missing processes

• Contains some control information

96 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

Perhaps the most common error is unlabeled data flow. If an analyst cannot
label the data flow, it is hkely that he does not understand the purpose and
structure of that data flow. A good test for this type of error is to see that
the entries in the data dictionary are precise for all data flows.

To check if there are any missing data flows, for each process in the DFD
the analyst should ask, "Can the process build the outputs shown from the
given inputs?" Similarly, to check for redundant data flows, the foflowing
question should be asked: "Are all the input data flows required in the
computation of the outputs?"

In a leveled set of DFDs it is important that consistency be maintained.
Consistency can easily be lost if new data flows are added to the DFD during
modification. If such changes are made, appropriate changes should be made
in the parent or the child DFD. That is, if a new data flow is added in a lower-
level DFD, it should also be reflected in the higher-level DFDs. Similarly,
if a data flow is added in a higher-level DFD, the DFDs for the processes
affected by the change should also be appropriately modifled.

The DFDs should be carefully scrutinized to make sure that all the pro
cesses in the physical environment are shown in the DFD. None of the data
flows should actually carry control information. A data flow without any
structure or composition is a potential candidate for control information.

The Structured Analysis Method

Now let us return to the structured analysis method. The basic system
view of this approach is that each system can be viewed as a transformation
function operating within an environment that takes some inputs from the
environment and produces some outputs for the environment. And as the
overall transformation function of the entire system may be too complex
to comprehend as a single function, the function should be partitioned into
sub functions that together form the overall function. The subfunctions can
be further partitioned and the process repeated until we reach a stage where
each function can be comprehended easily. And the basic approach used
to uncover the functions being performed in the system (or the functions
that are part of the overaU system function) is to track the data as it flows
through the system—from the input to the output. It is believed that in
any complex system the data transformation from the input to the output
will not occur in a single step; rather the data will be transformed from the
input to the output in a series of transformations starting from the input and
culminating in the desired output. By understanding the "states" the data is

3.2. PROBLEM ANALYSIS 97

in as it goes through the transformation series, the functions in the system
can be identified; each transformation of the data in the transformation
series is performed by a transformation function. Hence, by tracking as the
data flows through the system, the various functions being performed by a
system can be identified. As this approach can be modeled easily by data
flow diagrams, DFDs are used heavily in this method.

The flrst step in this method is to study the "physical environment."
During this, a DFD of the current nonautomated (or partially automated)
system is drawn, showing the input and output data flows of the system, how
the data flows through the system, and what processes are operating on the
data. This DFD might contain speciflc names for data flows and processes,
as used in the physical environment. For example, names of departments,
persons, local procedures, and organizational files can occur in the DFD for
the physical environment. While drawing the DFD for the physical envi
ronment, an analyst has to interact with the users to determine the overall
process from the point of view of the data. This step is considered complete
when the entire physical data flow diagram has been described and the user
has accepted it as a true representation of the operation of the current sys
tem. The step may start with a context diagram in which the entire system
is treated as a single process and all its inputs, outputs, sinks, and sources
are identified and shown.

The basic purpose of analyzing the current system is to obtain a logical
DFD for the system, where each data flow and each process is a logical
entity or operation, rather than an actual name. Drawing a DFD for the
physical system is only to provide a reasonable starting point for drawing
the logical DFD. Hence, the next step in the analysis is to draw the logical
equivalents of the DFD for the physical system. During this step, the DFD
of the physical environment is taken and all specific physical data fiows
are represented by their logical equivalents (for example, file 12.3.2 may be
replaced by the employee salary file). Similarly, the bubbles for physical
processes are replaced with logical processes. For example, a bubble named
"To_John's_office" in the physical system might be replaced by "issue checks"
in the logical equivalent. Bubbles that do not transform the data in any form
are deleted from the DFD. This phase also ends when the DFD has been
verified by the user.

In the first two steps, the current system is modeled. The next step is
to develop a logical model of the new system after the changes have been
incorporated, and a DFD is drawn to show how data will fiow in the new
system. During this step the analyst works in the logical mode, specifying

98 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

only what needs to be done, not how it will be accompHshed. No separation
between the automated and nonautomated processes is made.

No general rules are provided for constructing the DFD for the new
system. The new system still does not exist; it has to be invented. Conse
quently, what will be the data flows and major processes in this new system
must be determined by the analyst, based on his experience and vision of
the new system. No rules can be provided for this decision. However, before
this can be done, the boundaries of change have to be identified in the logi
cal DFD for the existing system. This DFD models the entire system, and
only parts of it may be modified in the new system. Based on the goals of
the clients and a clear concept about what the client wants to change, the
boundaries of change have to be established in the logical DFD. The DFD
for the new system will replace only that part of the existing DFD within
this boundary. The inputs and outputs of the new DFD should be the same
as the inputs and outputs for the DFD within the boundary.

The next step is to estabhsh the man-machine boundary by specifying
what will be automated and what will remain manual in the DFD for the
new system. Note that even though some processes are not automated, they
could be quite different from the processes in the original system, as even
the manual operations may be performed differently in the new system. Of
ten there is not just one option for the man-machine boundary. Different
possibilities may exist depending on what is automated and the degree of
automation. The analyst should explore and present the different possibili
ties.

The next two steps are evaluating the different options and then pack
aging or presenting the specifications.

For drawing a DFD, a top-down approach is suggested in the structured
analysis method. In the structured analysis method, a DFD is constructed
from scratch when the DFD for the physical system is being drawn and
when the DFD for the new system is being drawn. The second step largely
performs transformations on the physical DFD. Drawing a DFD starts with
a top-level DFD called the context diagram, which lists all the major inputs
and outputs for the system. This diagram is then refined into a description
of the different parts of the DFD showing more details. This results in a
leveled set of DFDs. As pointed out earlier, during this refinement, the
analyst has to make sure consistency is maintained and that net input and
output are preserved during refinement.

Clearly, the structured analysis provides methods for organizing and rep
resenting information about systems. It also provides guidelines for checking

3.2. PROBLEM ANALYSIS 99

the accuracy of the information. Hence, for understanding and analyzing an
existing system, this method provides useful tools. However, most of the
guidelines given in the structured analysis are only applicable in the first
two steps, when the DFD for a current system is to be constructed. For
analyzing the target system and constructing the DFD or the data dictio
nary for the new system to be built (done in step three), this technique does
not provide much guidance. Of course, the study and understanding of the
existing system will help the analyst in this job, but there is no direct help
from the method of structured analysis.

An Example

A restaurant owner feels that some amount of automation will help make her
business more efficient. She also believes that an automated system might
be an added attraction for the customers. So she wants to automate the
operation of her restaurant as much as possible. Here we will perform the
analysis for this problem. Details regarding interviews, questionnaires, or
how the information was extracted are not described. First let us identify
the different parties involved.

Client: The restaurant owner
Potential Users: Waiters, cash register operator

The context diagram for the restaurant is shown in Figure 3.4. The inputs
and outputs of the restaurant are shown in this diagram. However, no details
about the functioning of the restaurant are given here. Using this as a
starting point, a logical DFD of the physical system is given in Figure 3.5
(the physical DFD was avoided for this, as the logical DFD is similar to the
physical and there were no special names for the data or the processes in the
physical system). Observing the operation of the restaurant and interviewing
the owner were the basic means of collecting raw information for this DFD.

Now we must draw a DFD that models the new system to be built. After
many meetings and discussions with the restaurant owner, the following goals
for the new system were established:

• Automate much of the order processing and billing.

• Automate accounting.

• Make supply ordering more accurate so that leftovers at the end of
the day are minimized and the orders that cannot be satisfied due to

100 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

^rder for Supplies

JSupplies

Menu i Restaurant

Supplies
^ Information

^ Sale
Information

Served Meals

Figure 3.4: Context diagram for the restaurant.

nonavailability are also minimized. This was being done without a
careful analysis of sales.

• The owner also suspects that the staff might be stealing/eating some
food/supplies. She wants the new system to help detect and reduce
this.

• The owner would also like to have statistics about sales of different
items.

With these goals, we can define the boundaries for change in the DFD. It is
clear that the new system will affect most aspects of the previous system,
with the exception of making dishes. So, except for that process, the re
maining parts of the old system all fall within our boundary of change. The
DFD for the new system is shown in Figure 3.6. Note that although taking
orders might remain manual in the new system, the process might change,
because the waiter might need to fill in codes for menu items. That is why
it is also within the boundary of change.

The DFD is largely self-explanatory. The major files in the system are:
Supphes file. Accounting file. Orders file, and the Menu. Some new processes
that did not have equivalents earlier have been included in the system. These

3.2. PROBLEM ANALYSIS 101

Supplies Register

Check

Receipt

Figure 3.5: DFD for the existing restaurant system.

are "check for discrepancy," "accounting reports," and "statistics." Note
that the processes are consistent in that the inputs given to them are suf
ficient to produce the outputs. For example, "checking for discrepancy"
requires the following information to produce the report: total supplies re
ceived (obtained from the supplies file), supplies left at the end of the day,
total orders placed by the customers (from the orders file), and the con
sumption rate for each menu item (from the menu). All these are shown as
inputs to the process. Supplies required for the next day are assessed from
the total orders placed in the day and the orders that could not be satisfied
due to lack of supplies (both kept in the order file). To see clearly if the
information is sufficient for the different processes, the structure and exact
contents of each of the data flows has to be specified. The data dictionary
for this is given in Figure 3.7.

The definitions of the different data flows and files are self-explanatory.
Once this DFD and the data dictionary have been approved by the restau
rant owner, the activity of understanding the problem is complete. After
talking with the restaurant owner the man-machine boundary was also de-

102 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

Man-Machine
' Boundary

ŝ Supplies File
Supplier N

Account File

Dishes

Owner

Supplier

Owner

Supplier

Owner

Process \ \ f Produce \ / Payment \ ^ To Account
Order ypjnalV l̂ '" J Bill \^®^®'PV ^ f̂ "®

Order

Money
Customer

Figure 3.6: The DFD for the new restaurant system.

fined (it is shown in the DFD). Now, such tasks as determining the detailed
requirements of each of the bubbles shown in the DFD, and determining the
nonfunctional requirements, deciding codes for the items in the menu and
in the supply list remain. Further refinement for some of the bubbles might
be needed. For example, it has to be determined what sort of accounting
reports or statistics are needed and what their formats should be. Once
these are done, the analysis is complete and the requirements can then be
compiled in a requirements specification document.

3.2. PROBLEM ANALYSIS 103

Supplies-file = [date + [item_no + quantity + cost]*]*
Orders-file = [date + [menu_item_no + quantity + status]*]*
status = satisfied | unsatisfied
order = [menu_item_no + quantity]*
menu = [menu_item_no + name + price + supplies_used]*
supplies-used == [supply _item_no + quantity]*
bill — [name + quantity + price]* +

total-price + sales_tax + service-charge + grand-total
discrepancy .report = [supply _item_no +

amt-ordered + amtJeft + amt-consumed + descr]*

Figure 3.7: Data dictionary for the restaurant.

3.2.3 Object-Oriented Modeling

In object-oriented modeling, a system is viewed as a set of objects. The
objects interact with each other through the services they provide. Some
objects also interact with the users through their services such that the
users get the desired services. Hence, the goal of modeling is to identify the
objects (actually the object classes) that exist in the problem domain, define
the classes by specifying what state information they encapsulate and what
services they provide, and identify relationships that exist between objects
of different classes, such that the overall model is such that it supports the
desired user services.

Object-oriented modeling and systems have been getting a lot of atten
tion in the recent past. The basic reason for this is the behef that object-
oriented systems are going to be easier to build and maintain. It is also
believed that transitioning from object-oriented analysis to object-oriented
design (and implementation) will be easy, and that object-oriented analysis
is more immune to change because objects are more stable than functions.
That is, in a problem domain, objects are likely to stay the same even if
the exact nature of the problem changes, while this is not the case with
function-oriented modeling. Some approaches to object-oriented modeling
and design were proposed early [36, 133, 23, 95], Goals of many of these tech
niques regarding what to produce are quite similar, and their approaches and
notations are also similar. Here, we briefly describe the approach proposed
in [36]; the notation we use is UML ([24, 64] or www.uml.org), which is now

http://www.uml.org

104 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

the de-facto standard notation for 0 0 modeling. We will discuss UML fur
ther in Chapter 7 when we discuss 0 0 design; here we discuss some concepts
needed to discuss analysis.

Basic Concepts and Notation

In understanding or modeling a system using an object-oriented modeling
technique, the system is viewed as consisting of objects. Each object has
certain attributes, which together define the object. Separation of an object
from its attributes is a natural method that we use for understanding systems
(a man is separate from his attributes of height, weight, etc.). In object-
oriented systems, attributes hold the state (or define the state) of an object.
An attribute is a pure data value (like integer, string, etc.), not an object.

Objects of similar type are grouped together to form an object class (or
just class). A class is essentially a type definition, which defines the state
space of objects of its type and the operations (and their semantics) that
can be applied to objects of that type. Formation of classes is also a general
technique used by humans for understanding systems and differentiating
between classes (e.g., an apple tree is an instance of the class of trees, and
the class of trees is different from the class of birds).

An object also provides some services or operations. These services are
the only means by which the state of the object can be modified or viewed
from outside. For operating a service, a message is sent to the object for that
service. In general, these services are defined for a class and are provided for
each object of that class. Encapsulating services and attributes together in
an object is one of the main features that distinguishes an object-oriented
modeling approach from data modeling approaches, like the ER diagrams.

Class diagrams represent a structure of the problem graphically using a
precise notation. In a class diagram, a class is represented as a portrait-style
rectangle divided into three parts. The top part contains the name of the
class. The middle part lists the attributes that objects of this class possess.
And the third part lists the services provided by objects of this class

To model relationship between classes, a few structures are used. The
generalization-specialization structure can be used by a class to inherit all
or some attributes and services of a general class and add more attributes
and services. This structure is modeled in object-oriented modeling through
inheritance. By using a general class and inheriting some of its attributes
and services and adding more, one can create a class that is a speciahzed
version of the general class. And many specialized classes can be created from

3.2. PROBLEM ANALYSIS 105

Superclass

I
Subclass 1 Subclass 2 Subclass n

Container
Class

?
1

Parti
1

Part 2 '

Figure 3.8: Class structures.

a general class, giving us class hierarchies. The aggregation structure models
the whole-part relationship. An object may be composed of many objects;
this is modeled through the aggregation structure. The representation of
these in a class diagram is shown in Figure 3.8.

In addition to these, instances of a class may be related to objects of some
other class. For example, an object of the class Employer may be related to
many objects of the class Employee. This relationship between objects also
has to be captured if a system is to be modeled properly. This is captured
through associations. An association is shown in the class diagram by
having a hne between the two classes. The multiphcity of an association
specifies how many instances of one class may relate to an instances of the
other class through this association. An association between two classes can
be one-to-one (i.e., one instance of one class is related to exactly one instance
of the other class), one-to-many, or some other special cases. Multiplicity is
specified by having a star (*) on the hne adjacent to the class representing
zero or more instances of the class may be related to an instance of the other
class.

Let us illustrate the use of some of these relationships and their repre
sentation through the use of an example. Suppose a system is being contem
plated for a drugstore that will compute the total sales of the drugstore along
with the total sales of different chemists that man the drugstore. The drugs
are of two major types^off-the-shelf and prescription drugs. The system is
to provide help in procuring drugs when out of stock, removing them when
expired, replenishing the off-the-shelf drugs when needed, etc. A model of
the system is shown in Figure 3.9.

106 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

Dmg-Store

Name
Location

ComputeSales ()

A
i

Chemist

Name
Reqistration No.
Address

ChemistSales ()

Off-the-shelf

Qty-on-Shelf

OutOfShelf ()

i
Medicine

Name
Quanity
Expiry-date

Expired ()
OutofStock ()

1

•̂

^ i
Sale

Amount

GetAmount ()

T~
m

1
Prescription

Refrigration Needs
Warnings

Figure 3.9: Model of a drugstore.

Let us briefly explain this class diagram. It has five classes of objects,
each with a defined name, some attributes, and services. For example,
an object of class Chemist has the attributes Name, Registration number,
and Address. It has one service ChemistSales(), which computes the total
sales by this chemist. The Drug-Store class is an aggregation of the class
Medicine and the class Chemist (representing that a drugstore is composed
of medicines and chemists). A Medicine may either be Off-the-shelf or
Prescr ip t ion . The class Medicine has some attributes like Name, Quan
tity in stock, and Expiry-date, and has services like Expired() (to list the
expired medicines), OutOfStock() (to list medicines that are no longer in
stock), etc. These attributes and services are inherited by the two specialized
classes. In addition to these, the Off-the-shelf class has another attribute
qty-on-shelf, representing how many have been put on the shelf and have
services related to shelf stock. On the other hand, the P resc r ip t ion class
has Refrigeration-needs and Warnings as specialized attributes and services

3.2. PROBLEM ANALYSIS 107

related to them. There are various associations in this model. For exam
ple, there is an association between Sale and Medicine. This association
is one-to-many, that is, one sale could be of many medicines. Similarly,
Drug-Store is associated to Medicine and Chemist, and Chemist is associ
ated with Sale.

Performing Analysis

Now that we know what a model of a system consists of, the next question
that arises is how to obtain the model for a system. In other words, how
do we actually perform the analysis? As mentioned earlier, there can be
no "algorithm" to perform the analysis or generate the SRS. Here we briefly
discuss the set of guidelines given in [36], according to which the major steps
in the analysis are:

• Identifying objects and classes

• Identifying structures

• Identifying attributes

• Identifying associations

• Defining services

Identifying Objects and Classes. An object during analysis is an encapsula
tion of attributes on which it provides some exclusive services [36]. It repre
sents something in the problem space. It has been argued that though things
like interfaces between components, functions, etc. are generally volatile and
change with changing needs, objects are quite stable in a problem domain.

To identify analysis objects, start by looking at the problem space and its
description. Obtain a brief summary of the problem space. In the summary
and other descriptions of the problem space, consider the nouns. Frequently,
nouns represent entities in the problem space which will be modeled as ob
jects. Structures, devices, events remembered, roles played, locations, orga
nizational units, etc. are good candidates to consider. A candidate should
be included as an object if the system needs to remember something about
the object, the system needs some services from the object to perform its
own services, and the object has multiple attributes (i.e., it is a high-level
object encapsulating some attributes). If the system does not need to keep
information about some real-world entity or does not need any services from

108 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

the entity, it should not be considered as an object for modehng. Similarly,
carefully consider objects that have only one attribute; such objects can
frequently be included as attributes in other objects. Though the analy
sis focuses on identifying objects, in modeling, classes for these objects are
represented.

Identifying Structures. Structures represent the hierarchies that exist
between object classes. All complex systems have hierarchies. In object-
oriented modeling, the hierarchies are defined between classes that capture
generalization-specialization and whole-part relationships. To identify the
classification structure, consider the classes that have been identified as a
generahzation and see if there are other classes that can be considered as
specializations of this. The specializations should be meaningful for the
problem domain. For example, if the problem domain does not care about
the material used to make some objects, there is no point in specializing
the classes based on the material they are made of. Similarly, consider
classes as specializations and see if there are other classes that have similar
attributes. If so, see if a generalized class can be identified of which these
are specializations. Once again, the structure obtained must naturally reflect
the hierarchy in the problem domain; it should not be "extracted" simply
because some classes have some attributes with the same names.

To identify assembly structure, a similar approach is taken. Consider
each object of a class as an assembly and identify its parts or components.
See if the system needs to keep track of the parts. If it does, then the parts
must be reflected as objects; if not, then the parts should not be modeled
as separate objects. Then, consider an object of a class as a part and see
to which class's object it can be considered as belonging. Once again, this
separation is maintained only if the system needs it. As before, the structures
identifled should naturally reflect the hierarchy in the problem domain and
should not be "forced."

Identifying Attributes. Attributes add detail about the class and are the
repositories of data for an object. For example, for an object of class
Person, the attributes could be the name, sex, and address. The data stored
in forms of values of attributes are hidden from outside the objects and
are accessed and manipulated only by the service functions for that object.
Which attributes should be used to define the class of an object depends
on the problem and what needs to be done. For example, while modeling a
hospital system, for the class Person attributes of height, weight, and date
of birth may be needed, although these may not be needed for a database
for a county that keeps track of populations in various neighborhoods.

3.2. PROBLEM ANALYSIS 109

To identify attributes, consider each class and see which attributes are
needed by the problem domain. This is frequently a simple task. Then
position each attribute properly using the structures; if the attribute is a
common attribute, it should be placed in the superclass, while if it is spe
cific to a specialized object it should be placed with the subclass. While
identifying attributes, new classes may also get defined or old classes may
disappear (e.g., if you find that a class really is an attribute of another).

Identifying Associations. Associations capture the relationship between
instances of various classes. For example, an instance of the class Company
may be related to an instance of the class Person by an "employs" rela
tionship. This is similar to what is done in ER modeling. And like in ER
modeling, an instance connection may be of 1:1 type representing that one
instance of this type is related to exactly one instance of another class. Or
it could be 1:M, indicating that one instance of this class may be related to
many instances of the other class. There are M:M connections, and there
are sometimes multi-way connections, but these are not very common. The
associations between objects are derived from the problem domain directly
once the objects have been identified. An association may have attributes of
its own; these are typically attributes that do not naturally belong to either
object. Although in many situations they can be "forced" to belong to one
of the two objects without loosing any information, it should not be done
unless the attribute naturally belongs to the object.

Defining Services. An object performs a set of predefined services. A
service is performed when the object receives a message for it. Services
really provide the active element in object-oriented modeling; they are the
agent of state change or "processing." It is through the services that desired
functional services can be provided by a system. To identify services, first
identify the occur services, which are needed to create, destroy, and maintain
the instances of the class. These services are generally not shown in the
class diagrams. Other services depend on the type of services the system is
providing. A method for identifying services is to define the system states
and then in each state list the external events and required responses. For
each of these, identify what services the different classes should possess.

All the classes and their relationships are shown in a class diagram. The
class diagram, clearly, gets large and complex for large systems. To handle
the complexity, a subject layer in which the class model is partitioned into
various subjects, with each subject containing some part of the diagram is
suggested. Typically, a subject will contain many related classes.

n o 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

Supply Handling SupplyOrder Supplies

Restaurant Menu Order

Bill

Figure 3.10: Initial classes in the restaurant example.

An Example

Let us consider the example of the restaurant, whose structured analysis was
performed earlier. By stating the goals of the system (i.e., automate the bill
generation for orders given by customers, obtain sale statistics, determine
discrepancy between supphes taken and supplies consumed, automate order
ing of supplies) and studying the problem domain (i.e., the restaurant with
customer, supplier, menu, etc.), we can clearly see that there are at least
the following classes of objects: Restaurant , Restaurant owner, B i l l ,
Menu, CustomerOrder, Supplier , SupplyOrder, Supply Handling, and
Dishes. Each of these entities plays an important role in the system. We
consider this as the starting point and the initial classes. By looking at the
objectives and scope of the system, we find that no information about the
Supplier or the Operator needs to be maintained in the system. Hence,
they need not be modeled in the system as objects. For the same reason,
entities like Dishes and Restaurant owner are not modeled as objects. The
initial classes are shown in Figure 3.10. Note that this model will further
evolve and new classes may get added and some of these may eventually not
be needed.

Now let us try to identify structure between these classes. Clearly, a

3.2. PROBLEM ANALYSIS 111

RestaurcLiit is an aggregation of Menu and Supply handling. As dishes,
operator, etc. are not considered objects, they do not show up as components
of Restaurant. Further, a Menu is an aggregation of many Menultems. This
requires us to add Menultem. Similarly, the SupplyOrder is an aggregation
of (many) Supplyltems. This also requires us to add Supplyltem as a new
class. Furthermore, the association between SupplyOrder and Supplyltem
has an attribute quantity, reflecting the quantity ordered for a particular
item by an order. There is no generalization-specialization hierarchy in this.

Many attributes of various items can be directly identified. A Menultem
has attributes of Number, Name, Price, Supplies used (i.e., which supplies
it uses and quantity; this is needed to detect discrepancies in consumption
and supplies used). Similarly, Supplyltem has Item name and Unit price as
attributes.

With this, we are ready to identify relationships between objects. The
Supply handling (unit) is related to (many) SupplyOrder. Similarly, an
Order (by a customer) is related to many Menultem. Furthermore, this
association has an attribute of its own—quantity. The quantity of the par
ticular Menultem ordered in a particular Order is naturally a property of the
association between the specific Order and the specific Menultem.

Finally, we have to identify the services. Keeping our basic services of the
system in mind (generate sales statistics, bill, discrepancy report, sale order),
we define services of various classes. Supply handling object has the ser
vices CreditSupplyO (used to record the receipt of supplies), DebitSupply()
(used to record the supplies taken out), and PlaceOrder() (to place order
of supplies). For SupplyOrder, one service is identified—ProduceCheck()
to produce the check for the particular order. The object Order has one
service—ProduceBill()—to produce the bill for the particular order. Han-
dhng the bill as essentially something generated for each order, we remove
the object B i l l from the object layer. The main object Restaurant has the
services SaleStat() to generate the sale statistics for which it will require all
order information (which it will obtain through its association with Order).
It also has the service Discrepancy() to generate a discrepancy report. For
this, it will need to find out what items have been consumed their quantity,
and how much supply was debited. The former it can obtain from all the
orders and the latter from Supply handling. The final class diagram is
shown in Figure 3.11.

112 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

Supply Handling

CreditSupply ()
DebltSupply ()
PlaceOrder ()
ProduceCheck ()

Restaurant

SaleStat ()
Descrepancy ()

KH

Menu

Order

SupplyOrder

ProduceCheck ()

/ \
v̂ V J

Quantity

Supplyltem

Item Name
Unit Price

\>

ProduceBill ()

Menultem

Item Name
Item Number
Price
Supplies Used

2:3:

Quantity

Figure 3.11: Class diagram for the restaurant.

3.2. PROBLEM ANALYSIS 113

3.2.4 Prototyping

Prototyping takes a different approach to problem analysis as compared to
modeling-based approaches. In prototyping, a partial system is constructed,
which is then used by the client, users, and developers to gain a better un
derstanding of the problem and the needs. Hence, actual experience with
a prototype that implements part of the eventual software system are used
to analyze the problem and understand the requirements for the eventual
software system. A software prototype can be defined as a partial implemen
tation of a system whose purpose is to learn something about the problem
being solved or the solution approach [46]. As stated in this definition, pro
totyping can also be used to evaluate or check a design alternative (such a
prototype is called a design prototype [46]). Here we focus on prototyping
used primarily for understanding the requirements.

The rationale behind using prototyping for problem understanding and
analysis is that the client and the users often find it difficult to visualize how
the eventual software system will work in their environment just by reading
a specification document. Visuahzing the operation of the software that is
yet to be built and whether it will satisfy the ultimate objectives, merely by
reading and discussing the paper requirements, is indeed difficult. This is
particularly true if the system is a totally new system and many users and
clients do not have a good idea of their needs. The idea behind prototyping
is that chents and the users can assess their needs much better if they can
see the working of a system, even if the system is only a partial system.
Prototyping emphasizes that actual practical experience is the best aid for
understanding needs. By actually experimenting with a system, people can
say, "I don't want this feature" or "I wish it had this feature" or "This is
wonderful."

There are two approaches to prototyping; throwaway and evolutionary
[44, 46]. In the throwaway approach the prototype is constructed with the
idea that it will be discarded after the analysis is complete, and the final
system will be built from scratch. In the evolutionary approach, the proto
type is built with the idea that it will eventually be converted into the final
system. From the point of view of problem analysis and understanding, the
throwaway prototypes are more suited. For the rest of the discussion we
limit our attention to throwaway prototypes.

The first question that needs to be addressed is whether or not to pro
totype. In other words, it is important to clearly understand when proto
typing should be done. The requirements of a system can be divided into

114 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

Prototyping

Well
Understood

Poorly
Understood

Unknown

Figure 3.12: Throwaway prototyping.

three sets—^those that are well understood, those that are poorly understood,
and those that are not known [46]. In a throwaway prototype, the poorly
understood requirements are the ones that should be incorporated. Based
on the experience with the prototype, these requirements then become weh
understood, as shown in Figure 3.12.

It might be possible to divide the set of poorly understood requirements
further into two sets—those critical to design, and those not critical to de
sign [46]. The requirements that can be easily incorporated in the system
later are considered noncritical to design. If which of the poorly understood
requirements are critical and which are noncritical can be determined, then
the throwaway prototype should focus mostly on the critical requirements.
Overall, we can say that if the set of poorly understood requirements is sub
stantial (in particular the subset of critical requirements), then a throwaway
prototype should be built.

The development process using a throwaway prototype was discussed
earlier in Chapter 2. The development activity starts with an SRS for the
prototype. However, developing the SRS for the prototype requires identi
fying the functions that should be included in the prototype. This decision
is typically application-dependent. As mentioned earlier, in general, those
requirements that tend to be unclear and vague, or where the clients and
users are unsure or keep changing their mind, are the ones that should be
implemented in the prototype. User interface, new features to be added
(beyond automating what is currently being done), and features that may
be infeasible, are common candidates for prototyping. Based on what as
pects of the system are included in the prototype, the prototyping can be
considered vertical or horizontal [110]. In horizontal prototyping the system
is viewed as being organized as a series of layers and some layer is the focus
of prototyping. For example, the user interface layer is frequently a good

3.2. PROBLEM ANALYSIS 115

candidate for such prototyping, where most of the user interface is included
in the prototype. In vertical prototyping, a chosen part of the system, which
is not well understood, is built completely. This approach is used to validate
some functionality or capability of the system.

Development of a throwaway prototype is fundamentally different from
developing final production-quahty software. The basic focus during pro
totyping is to keep costs low and minimize the prototype production time.
Due to this, many of the bookkeeping, documenting, and quality control
activities that are usually performed during software product development
are kept to a minimum during prototyping. Efficiency concerns also take a
back seat, and often very high-level interpretive languages are used for pro
totyping. For these reasons, temptation to convert the prototype into the
final system should be resisted.

Experience is gained by putting the system to use by the actual chent
and users. Constant interaction is needed with the client/users during this
activity to understand their responses. Questionnaires and interviews might
be used to gather user response.

The final SRS is developed in much the same way as any SRS is devel
oped. The difference here is that the chent and users will be able to answer
questions and explain their needs much better because of their experience
with the prototype. Some initial analysis is also available.

For prototyping for requirements analysis to be feasible, its cost must
be kept low. Consequently, only those features that will have a valuable
return from the user experience are included in the prototype. Exception
handling, recovery, conformance to some standards and formats are typically
not included in prototypes. Because the prototype is to be thrown away, only
minimal development documents need to be produced during prototyping;
for example, design documents, a test plan, and a test case specification are
not needed during the development of the prototype. Another important
cost-cutting measure is reduced testing. Testing consumes a major part of
development expenditure during regular software development. By using
cost-cutting methods, it is possible to keep the cost of the prototype to less
than a few percent of the total development cost.

The cost of developing and running a prototype can be around 10% of
the total development cost [72]. However, it should be pointed out that if
the cost of prototyping is 10% of the total development cost, it does not
mean that the cost of development has increased by this amount. The main
reason is that the benefits obtained due to the use of prototype in terms
of reduced requirement errors and reduced volume of requirement change

116 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

requests are likely to be substantial (see the examples given earlier in this
chapter), thereby reducing the cost of development itself.

An Example

Consider the example of the restaurant automation discussed earlier. An
initial structured analysis of the problem was also shown earlier. During
the analysis the restaurant owner was quite apprehensive about the ability
and usefulness of the system. She felt that it was risky to automate, as an
improper system might cause considerable confusion and lead to a loss of
clientele. Due to the risks involved, it was decided to build a throwaway
prototype. Note that the basic purpose of the prototype in this situation
is not to uncover or clarify requirements but to ascertain the utility of the
automated system. Of course, the experience with the prototype will also
be used to ensure that the requirements are correct and complete.

The first step in developing a prototype is to prepare an SRS for the
prototype. The SRS need not be formal but should identify the different
system utilities to be included in the prototype. As mentioned earlier, these
are typically the features that are most unclear or where the risk is high. It
was decided that the prototype will demonstrate the following features:

1. Customer order processing and bilhng

2. Supply ordering and processing

The first was included, as that is where the maximum risk exists for the
restaurant (after all, customer satisfaction is the basic objective of the restau
rant, and if customers are unhappy the restaurant will lose business). The
second was included, as maximum potential benefit can be derived from this
feature. Accounting and statistics generation were not to be included in the
prototype.

The prototype was developed using.a database system, in which good
facilities for data entry and form (bill) generation exist. The user interface
for the waiters and the restaurant manager was included in the prototype.
The system was used, in parallel with the existing system, for a few weeks,
and informal surveys with the customers were conducted.

Customers were generally pleased with the accuracy of the bills and the
details they provided. Some gave suggestions about the bill layout. Based
on the experience of the waiters, the codes for the different menu items were
modified to an alphanumeric code. They found that the numeric codes used

3.3. REQUIREMENTS SPECIFICATION 117

in the prototype were hard to remember. The experience of the restaurant
manager and feedback from the suppher were used to determine the final
details about supply processing and handling.

3.3 Requirements Specification

The final output is the software requirements specification document (SRS).
For smaller problems or problems that can easily be comprehended, the spec
ification activity might come after the entire analysis is complete. However,
it is more likely that problem analysis and specification are done concur
rently. An analyst typically will analyze some parts of the problem and
then write the requirements for that part. In practice, problem analysis
and requirements specification activities overlap, with movement from both
activities to the other, as shown in Figure 3.1. However, as ah the infor
mation for specification comes from analysis, we can conceptually view the
specification activity as following the analysis activity.

The first question that arises is: If formal modeling is done during anal
ysis, why are the outputs of modeling—the structures that are built (e.g.,
DFD and DD, Object diagrams)—not treated as an SRS? The main reason
is that modeling generally focuses on the problem structure, not its exter
nal behavior. Consequently, things like user interfaces are rarely modeled,
whereas they frequently form a major component of the SRS. Similarly, for
ease of modeling, frequently "minor issues" like erroneous situations (e.g.,
error in output) are rarely modeled properly, whereas in an SRS, behav
ior under such situations also has to be specified. Similarly, performance
constraints, design constraints, standards compliance, recovery, etc., are not
included in the model, but must be specified clearly in the SRS because the
designer must know about these to properly design the system. It should
therefore be clear that the outputs of a model cannot form a desirable SRS.

For these reasons, the transition from analysis to specification should
also not be expected to be straightforward, even if some formal modeling is
used during analysis. It is not the case that in specification the structures
of modeling are just specified in a more formal manner. A good SRS needs
to specify many things, some of which are not satisfactorily handled during
modeling. Furthermore, sometimes the structures produced during modeling
are not amenable for translation into external behavior specification (which is
what is to be specified in an SRS). For example, the object diagram produced
during an 0 0 analysis is of limited use when specifying the external behavior

118 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

of the desired system.
Essentially, what passes from requirements analysis activity to the spec

ification activity is the knowledge acquired about the system. The modeling
is essentially a tool to help obtain a thorough and complete knowledge about
the proposed system. The SRS is written based on the knowledge acquired
during analysis. As converting knowledge into a structured document is
not straightforward, specification itself is a major task, which is relatively
independent.

A consequence of this is that it is relatively less important to model
"completely," compared to specifying completely. As the primary objective
of analysis is problem understanding, while the basic objective of the re
quirements phase is to produce the SRS, the complete and detailed analysis
structures are not critical. In fact, it is possible to develop the SRS without
using formal modeling techniques. The basic aim of the structures used in
modeling is to help in knowledge representation and problem partitioning,
the structures are not an end in themselves.

With this in mind, let us start our discussion on requirements specifica
tion. We start by discussing the desirable characteristics of an SRS.

3.3.1 Characterist ics of an SRS

To properly satisfy the basic goals, an SRS should have certain properties
and should contain different types of requirements. In this section, we discuss
some of the desirable characteristics of an SRS and components of an SRS.
A good SRS is [91, 92]:

1. Correct

2. Complete

3. Unambiguous

4. Verifiable

5. Consistent

6. Ranked for importance and/or stability

7. Modifiable

8. Traceable

3.3. REQUIREMENTS SPECIFICATION 119

The discussion of these properties here is based on [91, 92], An SRS is correct
if every requirement included in the SRS represents something required in
the final system. An SRS is complete if everything the software is supposed
to do and the responses of the software to all classes of input data are spec
ified in the SRS. Correctness and completeness go hand-in-hand; whereas
correctness ensures that which is specified is done correctly, completeness
ensures that everything is indeed specified. Correctness is an easier prop
erty to establish than completeness as it basically involves examining each
requirement to make sure it represents the user requirement. Completeness,
on the other hand, is the most difficult property to establish; to ensure com
pleteness, one has to detect the absence of specifications, and absence is
much harder to ascertain than determining that what is present has some
property.

An SRS is unambiguous if and only if every requirement stated has one
and only one interpretation. Requirements are often written in natural lan
guage, which are inherently ambiguous. If the requirements are specified in
a natural language, the SRS writer has to be especially careful to ensure that
there are no ambiguities. One way to avoid ambiguities is to use some for
mal requirements specification language. The major disadvantage of using
formal languages is the large effort required to write an SRS, the high cost
of doing so, and the increased difficulty reading and understanding formally
stated requirements (particularly by the users and clients).

An SRS is verifiable if and only if every stated requirement is verifiable.
A requirement is verifiable if there exists some cost-effective process that
can check whether the final software meets that requirement. This implies
that the requirements should have as little subjectivity as possible because
subjective requirements are difficult to verify. Unambiguity is essential for
verifiability. As verification of requirements is often done through reviews,
it also imphes that an SRS is understandable, at least by the developer,
the client, and the users. Understand ability is clearly extremely important,
as one of the goals of the requirements phase is to produce a document on
which the client, the users, and the developers can agree.

An SRS is consistent if there is no requirement that conflicts with an
other. Terminology can cause inconsistencies; for example, different require
ments may use different terms to refer to the same object. There may be
logical or temporal conffict between requirements that causes inconsistencies.
This occurs if the SRS contains two or more requirements whose logical or
temporal characteristics cannot be satisfied together by any software sys
tem. For example, suppose a requirement states that an event e is to occur

120 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

before another event / . But then another set of requirements states (di
rectly or indirectly by transitivity) that event / should occur before event
e. Inconsistencies in an SRS can reflect of some major problems.

Generally, all the requirements for software are not of equal importance.
Some are critical, others are important but not critical, and there are some
which are desirable but not very important. Similarly, some requirements
are "core" requirements which are not likely to change as time passes, while
others are more dependent on time. An SRS is ranked for importance and/or
stability if for each requirement the importance and the stability of the
requirement are indicated. Stability of a requirement reflects the chances of
it changing in future. It can be reflected in terms of the expected change
volume.

Writing an SRS is an iterative process. Even when the requirements of
a system are specified, they are later modified as the needs of the client
change. Hence an SRS should be easy to modify. An SRS is modifiable if its
structure and style are such that any necessary change can be made easily
while preserving completeness and consistency. Presence of redundancy is a
major hindrance to modifiability, as it can easily lead to errors. For example,
assume that a requirement is stated in two places and that the requirement
later needs to be changed. If only one occurrence of the requirement is
modified, the resulting SRS will be inconsistent.

An SRS is traceable if the origin of each of its requirements is clear and
if it facihtates the referencing of each requirement in future development
[91]. Forward traceability means that each requirement should be traceable
to some design and code elements. Backward traceability requires that it be
possible to trace design and code elements to the requirements they support.
Traceability aids verification and validation.

Of all these characteristics, completeness is perhaps the most important
(and hardest to ensure). One of the most common problem in requirements
specification is when some of the requirements of the client are not specified.
This necessitates additions and modifications to the requirements later in the
development cycle, which are often expensive to incorporate. Incompleteness
is also a major source of disagreement between the client and the supplier.
The importance of having complete requirements cannot be overemphasized.

3.3.2 C o m p o n e n t s of a n S R S

Completeness of specifications is difficult to achieve and even more difficult to
verify. Having guidelines about what different things an SRS should specify

3.3. REQUIREMENTS SPECIFICATION 121

will help in completely specifying the requirements. Here we describe some
of the system properties that an SRS should specify. The basic issues an
SRS must address are:

• Functionality

• Performance

• Design constraints imposed on an implementation

• External interfaces

Conceptually, any SRS should have these components. If the traditional
approach to requirement analysis is being followed, then the SRS might
even have portions corresponding to these. However, functional requirements
might be specified indirectly by specifying the services on the objects or by
specifying the use cases.

Functional Requirements

Functional requirements specify which outputs should be produced from the
given inputs. They describe the relationship between the input and output
of the system. For each functional requirement, a detailed description of all
the data inputs and their source, the units of measure, and the range of valid
inputs must be specified.

All the operations to be performed on the input data to obtain the out
put should be specified. This includes specifying the validity checks on the
input and output data, parameters affected by the operation, and equations
or other logical operations that must be used to transform the inputs into
corresponding outputs. For example, if there is a formula for computing the
output, it should be specified. Care must be taken not to specify any algo
rithms that are not part of the system but that may be needed to implement
the system. These decisions should be left for the designer.

An important part of the specification is the system behavior in abnormal
situations, like invahd input (which can occur in many ways) or error during
computation. The functional requirement must clearly state what the system
should do if such situations occur. Specifically, it should specify the behavior
of the system for invalid inputs and invalid outputs. Furthermore, behavior
for situations where the input is valid but the normal operation cannot
be performed should also be specified. An example of this situation is an
airline reservation system, where a reservation cannot be made even for valid

122 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

passengers if the airplane is fully booked. In short, the system behavior for
all foreseen inputs and all foreseen system states should be specified. These
special conditions are often likely to be overlooked, resulting in a system
that is not robust.

Performance Requirements

This part of an SRS specifies the performance constraints on the software
system. All the requirements relating to the performance characteristics of
the system must be clearly specified. There are two types of performance
requirements: static and dynamic.

Static requirements are those that do not impose constraint on the ex
ecution characteristics of the system. These include requirements like the
number of terminals to be supported, the number of simultaneous users to
be supported, and the number of files that the system has to process and
their sizes. These are also called capacity requirements of the system.

Dynamic requirements specify constraints on the execution behavior of
the system. These typically include response time and throughput con
straints on the system. Response time is the expected time for the com
pletion of an operation under specified circumstances. Throughput is the
expected number of operations that can be performed in a unit time. For
example, the SRS may specify the number of transactions that must be
processed per unit time, or what the response time for a particular com
mand should be. Acceptable ranges of the different performance parameters
should be specified, as well as acceptable performance for both normal and
peak workload conditions.

All of these requirements should be stated in measurable terms. Require
ments such as "response time should be good" or the system must be able
to "process all the transactions quickly" are not desirable because they are
imprecise and not verifiable. Instead, statements like "the response time of
command x should be less than one second 90% of the times" or "a transac
tion should be processed in less than one second 98% of the times" should
be used to declare performance specifications.

Design Constraints

There are a number of factors in the client's environment that may restrict
the choices of a designer. Such factors include standards that must be fol
lowed, resource limits, operating environment, reliability and security re-

3.3. REQUIREMENTS SPECIFICATION 123

quirements, and policies that may have an impact on the design of the sys
tem. An SRS should identify and specify all such constraints.

Standards Compliance: This specifies the requirements for the stan
dards the system must follow. The standards may include the report format
and accounting procedures. There may be audit tracing requirements, which
require certain kinds of changes, or operations that must be recorded in an
audit file.

Hardware Limitations: The software may have to operate on some
existing or predetermined hardware, thus imposing restrictions on the design.
Hardware limitations can include the type of machines to be used, operating
system available on the system, languages supported, and limits on primary
and secondary storage.

Reliability and Fault Tolerance: Fault tolerance requirements can
place a major constraint on how the system is to be designed. Fault tol
erance requirements often make the system more complex and expensive.
Requirements about system behavior in the face of certain kinds of faults is
specified. Recovery requirements are often an integral part here, detailing
what the system should do if some failure occurs to ensure certain properties.
Rehability requirements are very important for critical applications.

Security: Security requirements are particularly significant in defense
systems and many database systems. Security requirements place restric
tions on the use of certain commands, control access to data, provide dif
ferent kinds of access requirements for different people, require the use of
passwords and cryptography techniques, and maintain a log of activities in
the system. Given the current security needs even of common systems, they
may also require proper assessment of security threats, proper programming
techniques, and use of tools to detect flaws like buffer overflow.

External Interface Requirements

All the interactions of the software with people, hardware, and other software
should be clearly specified. For the user interface, the characteristics of each
user interface of the software product should be specified. User interface
is becoming increasingly important and must be given proper attention. A
prehminary user manual should be created with all user commands, screen
formats, an explanation of how the system will appear to the user, and
feedback and error messages. Like other specifications these requirements
should be precise and verifiable. So, a statement like "the system should
be user friendly" should be avoided and statements like "commands should

124 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

be no longer than six characters" or "command names should reflect the
function they perform" used.

For hardware interface requirements, the SRS should specify the logical
characteristics of each interface between the software product and the hard
ware components. If the software is to execute on existing hardware or on
predetermined hardware, all the characteristics of the hardware, including
memory restrictions, should be specified. In addition, the current use and
load characteristics of the hardware should be given.

The interface requirement should specify the interface with other software
the system will use or that will use the system. This includes the interface
with the operating system and other applications. The message content and
format of each interface should be specified.

3.3.3 Specification Language

Requirements specification necessitates the use of some specification lan
guage. The language should support the desired qualities of the SRS—
modifiability, understandability, unambiguous, and so forth. In addition,
the language should be easy to learn and use. As one might expect, many of
these characteristics confiict in the selection of a specification language. For
example, to avoid ambiguity, it is best to use some formal language. But for
ease of understanding a natural language might be preferable.

Though formal notations exist for specifying specific properties of the
system, natural languages are now most often used for specifying require
ments. If formal languages are to be used, they are often used to specify
particular properties or for specific parts of the system, and these formal
specifications are generally contained in the overall SRS, which is in a nat
ural language. In other words, the overall SRS is generally in a natural
language, and when feasible and desirable, some specifications in the SRS
may use formal languages.

The major advantage of using a natural language is that both client and
supplier understand the language. However, by the very nature of a natural
language, it is imprecise and ambiguous. To reduce the drawbacks of natural
languages, most often natural language is used in a structured fashion. In
structured English (for example), requirements are broken into sections and
paragraphs. Each paragraph is then broken into subparagraphs. Many orga
nizations also specify strict uses of some words like "shall," "perhaps," and
"should" and try to restrict the use of common phrases in order to improve
the precision and reduce the verbosity and ambiguity. A general rule when

3,3. REQUIREMENTS SPECIFICATION 125

using a natural language is to be precise, factual, and brief, and organize the
requirements hierarchically where possible, giving unique numbers to each
separate requirement.

In an SRS, as discussed, some parts can be specified better using some
formal notation. For example, to specify formats of inputs or outputs, reg
ular expressions can be very useful. Similarly, when discussing systems like
communication protocols, finite state automata can be used. Decision tables
are useful to formally specify the behavior of a system on different combi
nations of inputs or settings. Similarly, some aspects of the system may
be specified or explained using the models that may have been built dur
ing problem analysis. Sometimes models may be included as supporting
documents that help clarify the requirements and the motivation better.

3.3.4 Structure of a Requirements Document

All the requirements for the system have to be included in a document that
is clear and concise. For this, it is necessary to organize the requirements
document as sections and subsections. There can be many ways to structure
a requirements document. Many methods and standards have been proposed
for organizing an SRS. One of the main ideas of standardizing the structure
of the document is that with an available standard, each SRS will fit a certain
pattern, which will make it easier for others to understand (that is one of the
roles of any standard). Another role these standards play is that by requiring
various aspects to be specified, they help ensure that the analyst does not
forget some major property. Here we discuss the organization proposed in
the IEEE guide to software requirements specifications [92].

The IEEE standards recognize the fact that different projects may require
their requirements to be organized differently, that is, there is no one method
that is suitable for all projects. It provides different ways of structuring the
SRS. The first two sections of the SRS are the same in all of them. The
general structure of an SRS is given in Figure 3.13.

The introduction section contains the purpose, scope, overview, etc. of
the requirements document. It also contains the references cited in the doc
ument and any definitions that are used. Section 2 describes the general fac
tors that affect the product and its requirements. Specific requirements are
not mentioned, but a general overview is presented to make the understand
ing of the specific requirements easier. Product perspective is essentially the
relationship of the product to other products; defining if the product is inde
pendent or is a part of a larger product, and what the principal interfaces of

126 3, SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, Acronyms,
1.4 References
1.5 Overview

2. Overall Description
2.1 Product Perspective
2.2 Product Functions
2.3 User Characteristics
2.4 General Constraints

and Abbreviations

2.5 Assumptions and Dependencies
3. Specific Requirements

Figure 3.13: General structure of an SRS.

the product are. A general abstract description of the functions to be per
formed by the product is given. Schematic diagrams showing a general view
of different functions and their relationships with each other can often be
useful. Similarly, typical characteristics of the eventual end user and general
constraints are also specified.

The specific requirements section (section 3 of the SRS) describes all the
details that the software developer needs to know for designing and develop
ing the system. This is typically the largest and most important part of the
document. For this section, diflFerent organizations have been suggested in
the standard. These requirements can be organized by the modes of opera
tion, user class, object, feature, stimulus, or functional hierarchy [92]. One
method to organize the specific requirements is to first specify the external
interfaces, followed by functional requirements, performance requirements,
design constraints, and system attributes. This structure is shown in Figure
3.14 [92].

The external interface requirements section specifies all the interfaces of
the software: to people, other softwares, hardware, and other systems. User
interfaces are clearly a very important component; they specify each human
interface the system plans to have, including screen formats, contents of
menus, and command structure. In hardware interfaces, the logical charac-

3.3. REQUIREMENTS SPECIFICATION 127

3. Specific Requirements
3.1 External Interface Requirements

3.1.1 User Interfaces
3.1.2 Hardware Interfaces
3.1.3 Software Interfaces
3.1.4 Communication Interfaces

3.2. Functional Requirements
3.2.1 Mode 1

3.2.1.1 Functional Requirement 1.1

3.2.1.n Functional Requirement l.n

3.2.m Mode m
3.2.m.l Functional Requirement m.l

S.2.m.n Functional Requirement m.n
3.3 Performance Requirements
3.4 Design Constraints
3.5 Attributes
3.6 Other Requirements

Figure 3.14: One organization for specific requirements.

teristics of each interface between the software and hardware on which the
software can run are specified. Essentially, any assumptions the software is
making about the hardware are listed here. In software interfaces, all other
software that is needed for this software to run is specified, along with the
interfaces. Communication interfaces need to be specified if the software
communicates with other entities in other machines.

In the functional requirements section, the functional capabihties of the
system are described. In this organization, the functional capabilities for
all the modes of operation of the software are given. For each functional
requirement, the required inputs, desired outputs, and processing require
ments will have to be specified. For the inputs, the source of the inputs,
the units of measure, valid ranges, accuracies, etc. have to be specified. For
specifying the processing, all operations that need to be performed on the
input data and any intermediate data produced should be specified. This
includes validity checks on inputs, sequence of operations, responses to ab-

128 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

normal situations, and methods that must be used in processing to transform
the inputs into corresponding outputs. Note that no algorithms are generally
specified, only the relationship between the inputs and the outputs (which
may be in the form of an equation or a formula) so that an algorithm can
be designed to produce the outputs from the inputs. For outputs, the desti
nation of outputs, units of measure, range of valid outputs, error messages,
etc. all have to be specified.

The performance section should specify both static and dynamic per
formance requirements. All factors that constrain the system design are
described in the performance constraints section. The attributes section
specifies some of the overall attributes that the system should have. Any
requirement not covered under these is listed under other requirements. De
sign constraints specify all the constraints imposed on design (e.g., security,
fault tolerance, and standards compliance).

There are three other outhnes proposed by the IEEE standard for or
ganizing "specific requirements." However, these outlines are essentially
guidelines. There are other ways a requirements document can be orga
nized. The key concern is that after the requirements have been identified,
the requirements document should be organized in such a manner that it aids
validation and system design. For different projects many of these sections
may not be needed and can be omitted. Especially for smaller projects, some
of the sections and subsections may not be necessary to properly specify the
requirements.

When use cases (discussed next) are employed, then the functional re
quirements section of the SRS is replaced by use case descriptions. (The
format of a use case description is discussed later.) And the product per
spective part of the SRS may provide an overview or summary of the use
cases.

3.4 Functional Specification with Use Cases

Functional requirements often form the core of a requirements document.
The traditional approach for specifying functionality is to specify each func
tion that the system should provide. Use cases specify the functionality of
a system by specifying the behavior of the system, captured as interactions
of the users with the system. Use cases can be used to describe the business
processes of the larger business or organization that deploys the software, or
it could just describe the behavior of the software system. We will focus on

3.4. FUNCTIONAL SPECIFICATION WITH USE CASES 129

describing the behavior of software systems that are to be built.
Though use cases are primarily for specifying behavior, they can also be

used effectively during analysis. Later when we discuss how to develop use
cases, we will see how they can help in eliciting requirements also.

Use cases drew attention after they were used as part of the object-
oriented modehng approach proposed by Jacobson [95]. Due to this con
nection with an object-oriented approach, use cases are sometimes viewed
as part of an object-oriented approach to software development. However,
they are a general method for describing the interaction of a system (even
non-IT systems.) The discussion of use cases here is based on the concepts
and processes discussed in [39].

3.4.1 Bas ics

A software system (whose requirements are being uncovered) may be used
by many users. However, in addition to users, the software system may also
be used by other systems. In use case terminology, an actor is a person or
a system which uses the system being built for achieving some goal. Note
that actors need not be people only. Also, as an actor interacts for achieving
some goal, it is a logical entity that represents a group of users (people or
system) who behave in a similar manner. Different actors represent groups
with different goals. So, it is better to have a "receiver" and a "sender"
actor rather than having a generic "user" actor for a system in which some
messages are sent by users and received by some other users.

A primary actor is the main actor that initiates a use case (UC) for
achieving a goal, and whose goal satisfaction is the main objective of the
use case. The primary actor is a logical concept and though we assume that
the primary actor executes the use case, some agent may actually execute it
on the behalf of the primary actor. For example, a VP may be the primary
actor for get sales growth report by region use case, though it may actually
be executed by an assistant. We consider the primary actor as the person
who actually uses the outcome of the use case and who is the main consumer
of the goal. Time driven trigger is another example of how a use case may
be executed on behalf of the primary actor (in this situation the report is
generated automatically at some time.)

Note, however, that although the goal of the primary actor is the driving
force behind a use case, the use case must also fulfill any goals that other
stakeholders might also have for this use case. That is, the main goal of a
use case is to describe behavior of the system that results in satisfaction of

130 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

the goals of all the stakeholders, although the use case may be driven by the
goals of the primary actor. For example, a use case "withdraw money from
the ATM" has a customer as its primary actor and will normally describe
the entire interaction of the customer with the ATM. However, the bank
is also a stakeholder of the ATM system and its interests may include that
all steps are logged, money is given only if there are sufficient funds in the
account, and no more than some amount is given at a time, etc. Satisfaction
of these goals should also be shown by the use case "Withdraw money from
the ATM."

For describing interaction, use cases use scenarios. A scenario describes
a set of actions that are performed to achieve a goal under some specified
conditions. The set of actions is generally specified as a sequence (as that is
the most convenient way to express it in text), though in actual execution
the actions specified may be executed in parallel or in some different order.
Each step in a scenario is a logically complete action performed either by
the actor or the system. Generally, a step is some action by the actor (e.g.,
enter information), some logical step that the system performs to progress
towards achieving its goals (e.g., validate information, deliver information),
or an internal state change by the system to satisfy some goals (e.g., log the
transaction, update the record.)

A use case always has a main success scenario, which describes the in
teraction if nothing fails and all steps in the scenario succeed. There may be
many success scenarios. Though the UC aims to achieve its goals, different
situations can arise while the system and the actor are interacting which
may not permit the system to achieve the goal fully. For these situations, a
use case has extension scenarios which describe the system behavior if some
of the steps in the main scenario do not complete successfully. Sometimes
they are also called exception scenarios. A use case is a collection of all the
success and extension scenarios related to the goal. The terminology of use
cases is summarized in Table 3.4.1.

To achieve the desired goal, a system can divide it into sub-goals. Some
of these sub-goals may be achieved by the system itself, but they may also
be treated as separate use cases executed by supporting actors, which may
be another system. For example, suppose for verifying a user in "Withdraw
money from the ATM" an authentication service is used. The interaction
with this service can be treated as a separate use case. A scenario in a use
case may therefore employ another use case for performing some of the tasks.
In other words, use cases permit a hierarchic organization.

It should be evident that the basic system model that use cases assume

3.4. FUNCTIONAL SPECIFICATION WITH USE CASES 131

Term
Actors

Primary actor

Scenario

Main success
scenario
Extension
scenario

Definition
A person or a system which uses the system being
built for achieving some goal.
The main actor for whom a use case is initiated and
whose goal satisfaction is the main objective of the use
case.
A set of actions that are performed to achieve a goal
under some specified conditions.
Describes the interaction if nothing fails and all steps
in the scenario succeed.
Describe the system behavior if some of the steps in
the main scenario do not complete successfully.

Table 3.2: Use Case terms.

is that a system primarily responds to requests from actors who use the
system. By describing the interaction between actors and the system, the
system behavior can be specified, and through the behavior its functional
ity is specified. A key advantage of this approach is that use cases focus
on external behavior, thereby cleanly avoiding doing internal design dur
ing requirements, something that is desired but not easy to do with many
modeling approaches.

Use cases are naturally textual descriptions, and represent the behavioral
requirements of the system. This behavior specification can capture most of
the functional requirements of the system. Therefore, use cases do not form
the complete SRS, but can form a part of it. The complete SRS, as we have
seen, will need to capture other requirements like performance and design
constraints.

Though the detailed use cases are textual, diagrams can be used to sup
plement the textual description. For example, the use case diagram of UML
provides an overview of the use cases and actors in the system and their
dependency. A UML use case diagram generally shows each use case in
the system as an ellipse, shows the primary actor for the use case as a stick
figure connected to the use case with a line, and shows dependency between
use cases by arcs between use cases. Some other relationships between use
cases can also be represented. However, as use cases are basically textual in
nature, diagrams play a limited role in either developing or specifying use
cases. We will not discuss use case diagrams further.

132 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

3.4.2 Examples

Let us illustrate these concepts with a few use cases, which we will also use
to explain other concepts related to use cetses. Let us consider that a small
on-line auction system is to be built, in which different persons can sell and
buy goods. We will assume that there is a separate financial subsystem
through which the payments are made and that each buyer and seller has
an account in it.

In this system, though we have the same people who might be buying
and selling, we dont have "users" as actors. Instead we have "buyers" and
"sellers" as separate logical actors, as both have different goals to achieve.
Besides these, the auction system itself is a stakeholder and an actor. The
financial system is another. Let us first consider the main use cases of
this system—"put some item for auction," "make a bid," and "complete an
auction." These use cases are given in Fig 3.15.

The use cases are self-explanatory. This is the great value of use cases—
they are natural and story-like which makes them easy to understand by
both an analyst and a layman. This helps considerably in minimizing the
communication gap between the developers and other stakeholders.

Some points about the use case are worth discussing. The use cases are
generally numbered for reference purposes. The name of the use case specifies
the goal of the primary actor (hence there is no separate line specifying the
goal). The primary actor can be a person or a system—for UCl and UC2
they are persons but for UC3, it is a system. The primary actor can also be
another software which might request a service. The precondition of a use
case specifies what the system will ensure before allowing the use case to be
initiated. Common preconditions are "user is logged in," "input data exists
in files or other data structures," etc. For an operation like delete it may be
that "item exists," or for a tracking use case it may be that the "tracking
number is vahd."

It is worth noting that the use case description lists contains some actions
that are not necessarily tied to the goals of the primary actor. For example,
the last step in UC 2 is to update the bid price of other bidders. This action
is clearly not needed by the current bidder for his goal. However, as the
system and other bidders are also stakeholders for this use case, the use case
has to ensure that their goals are also satisfied. Similar is the case with the
last item of UCl.

The exception situations are also fairly clear. We have listed only the
most obvious ones. There can be many more, depending on the goals of the

3,4. FUNCTIONAL SPECIFICATION WITH USE CASES 133

• Use Case 1: Put an item up for auction

Primary Actor: Seller

Precondition: Seller has logged in

Main Success Scenario:

1. Seller posts an item (its category, description, picture, etc.) for auction

2. System shows past prices of similar items to seller

3. Seller specifies the starting bid price and a date when auction will close

4. System accepts the item and posts it

Exception Scenarios:

— 2 a) There are no past items of this category

* System tells the seller this situation

• Use Case 2: Make a bid

Primary Actor: Buyer

Precondition: The buyer has logged in

Main Success Scenario:

1. Buyer searches or browses and selects some item

2. System shows the rating of the seller, the starting bid, the current bids,
and the highest bid; asks buyer to make a bid

3. Buyer specifies a bid price, maximum bid price, and an increment

4. System accepts the bid; Blocks funds in bidders account

5. System updates the bid price of other bidders where needed, and updates
the records for the item

Exception Scenarios:

— 3 a) The bid price is lower than the current highest

* System informs the bidder and asks to rebid

— 4 a) The bidder does not have enough funds in his account

* System cancels the bid, asks the user to get more funds

Figure 3.15: Main use cases in an auction system.

134 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

• Use Case 3: Complete auction of an item
Primary Actor: Auction System

Precondition: The last date for bidding has been reached

Main Success Scenario:

1. Select highest bidder; send email to selected bidder and seller informing
final bid price; send email to other bidders also,

2. Debit bidder's account and credit seller's

3. Transfer from seller's acct. commission amt. to organization's acct.

4. Remove item from the site; update records

Exception Scenarios: None

Figure 3.15: Main use cases in an auction system (contd.)

organization. For example, there could be one "user does not complete the
transaction," which is a failure condition that can occur anywhere. What
should be done in this case has to then be specified (e.g., all the records are
cleaned).

A use cases can employ other use cases to perform some of its work. For
example, in UC2 actions like "block the necessary funds" or "Debit bidder's
account and credit seller's" are actions that need to be performed for the
use case to succeed. However, they are not performed in this use case,
but are treated as use cases themselves whose behavior has to be described
elsewhere. If these use cases are also part of the system being built, then
there must be descriptions of these in the requirements document. If they
belong to some other system, then proper specifications about them will
have to be obtained. The financial actions may easily be outside the scope
of the auction system, so will not be described in the SRS. However, actions
like "search" and "browse" are most likely part of this system and will have
to be described in the SRS.

This allows use cases to be hierarchically organized and refinement ap
proach can be used to define a higher level use case in terms of lower services
and then defining the lower services. However, these lower-level use cases
are proper use cases with a primary actor, main scenario, etc. The primary
actor will often be the primary actor of the higher level use case. For exam
ple, the primary actor for the use case "find an item" is the buyer. It also

3.4. FUNCTIONAL SPECIFICATION WITH USE CASES 135

implies that while hsting the scenarios, new use cases and new actors might
emerge. In the requirements document, all the use cases that are mentioned
in this one will need to be specified if they are a part of the system being
built.

3.4.3 E x t e n s i o n s

Besides specifying the primary actor, its goal, and the success and excep
tional scenarios, a use case can also specify a scope. If the system being built
has many subsystems, as is often the case, sometimes system use cases may
actually be capturing the behavior of some subsystem. In such a situation it
is better to specify the scope of that use case as the subsystem. For example,
a use case for a system may be log in. Even though this is a part of the
system, the interaction of the user with the system described in this use case
is limited to the interaction with the "login and authentication" subsystem.
If the architecture of the system has identified "login and authentication"
as a subsystem or a component, then it is better to specify it as the scope.
Generally, a business use case has the enterprise or the organization as the
scope; a system use case has the system being built as the scope; and a
component use case is where the scope is a subsystem.

UCs where the scope is the enterprise can often run over a long period
of time (e.g., process an application of a prospective candidate.) These use
cases may require many different systems to perform different tasks before
the UC can be completed. (E.g., for processing an application the HR de
partment has to do some things, the travel department has to arrange the
travel and lodging, and the technical department has to conduct the inter
view.) The system and subsystem use cases are generally of the type that
can be completed in one relatively short sitting. All the three use cases above
are system use cases. As mentioned before, we will focus on describing the
behavior of the software system we are interested in building. However,
the enterprise level UCs provide the context in which the systems operate.
Hence, sometimes it may be useful to describe some of the key business pro
cesses as summary level use cases to provide the context for the system being
designed and built.

For example, let us describe the overall use case of performing an auction.
A possible use case is given below in Fig 3.4.3. This use case is not a
one-sitting use case and is really a business process, which provides the
context for the earher use cases. It is this use case that the earlier three use
cases exist. Though this use case is also largely done by the system and is

136 5. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

Use Case 0: Auction an item
Primary Actor: Auction system
Scope : Auction conducting organization
Precondition: None
Main Success Scenario:

1. Seller performs Put an item for auction

2. Various bidders perform make a bid

3. On final date perform Complete the auction of the item

4. Get feedback from seller; get feedback from buyer; update records

Figure 3.16: A summary level use case.

probably part of the system being built, frequently such use cases may not
be completely part of the software system and may involve manual steps as
well. For example, in the "auction an item" use case, if the delivery of the
item being auctioned was to be ensured by the auctioning site, then that
will be a step in this use case and it will be a manual step.

Use cases may also specify post conditions for the main success scenario,
or some minimal guarantees they provide in all conditions. For example, in
some use cases, atomicity may be a minimal guarantee. That is, no matter
what exceptions occur either the entire transaction will be completed and
the goal achieved, or the system state will be as if nothing was done. With
atomicity, there will be no partial results and any partial changes will be
rolled back.

3.4.4 Deve loping U s e Cases

UCs not only document requirements, as their form is like story telling and
uses text, both of which are easy and natural with different stakeholders,
they also are a good medium for discussion and brainstorming. Hence, UCs
can also be used for requirements ehcitation and problem analysis. While
developing use cases, informal or formal models may also be built, though
they are not required.

UCs can be evolved in a stepwise refinement manner with each step
adding more details. This approach allows UCs to be presented at differ-

3.4. FUNCTIONAL SPECIFICATION WITH USE CASES 137

ent levels of abstraction. Though any number of levels of abstractions are
possible, four natural levels emerge:

• Actors and goals. The actor-goal list enumerates the use cases and
specifies the actors for each goal. (The name of the use case is generally
the goal.) This table may be extended by giving a brief description of
each of the use cases. At this level, the use cases specify the scope of
the system and give an overall view of what it does. Completeness of
functionality can be assessed fairly well by reviewing these.

• Main success scenarios. For each of the use cases, the main success
scenarios are provided at this level. With the main scenarios, the
system behavior for each use case is specified. This description can be
reviewed to ensure that interests of all the stakeholders are met and
that the use case is delivering the desired behavior.

• Failure conditions. Once the success scenario is listed, all the pos
sible failure conditions can be identified. At this level, for each step in
the main success scenario, the different ways in which a step can fail
form the failure conditions. Before deciding what should be done in
these failure conditions (which is done at the next level), it is better
to enumerate the failure conditions and reviewed for completeness.

• Failure handling. This is perhaps the most tricky and difficult part
of writing a use case. Often the focus is so much on the main func
tionality that people do not pay attention to how failures should be
handled. Determining what should be the behavior under different
failure conditions will often identify new business rules or new actors.

The different levels can be used for different purposes. For discussion
on overall functionality or capabilities of the system, actors and goal level
description is very useful. Failure conditions, on the other hand, are very
useful for understanding and extracting detailed requirements and business
rules under special cases.

The four levels can also guide the analysis activity. First just identify the
actors and their goals and get an agreement with the concerned stakehold
ers on that. The actor-goal list will clearly define the scope of the system
and will provide an overall view of what the system capabilities are. Then
the main success scenario for each UC can be evolved, giving more details
about the main functions of the system. Interaction and discussion are the

138 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

primary means to uncover these scenarios though models may be built, if
required. When the main success scenario for a use case is agreed upon and
the main steps in its execution are specified, then the failure conditions can
be examined. Enumerating failure conditions is an excellent method of un
covering special situations that can occur and which must be handled by the
system. Finally, what should be done for these failure conditions should be
examined and specified. As details of handling failure scenarios can require
a lot of effort and discussion, it is better to first enumerate the different
failure conditions and then get the details of these scenarios. Very often,
when deciding the failure scenarios, many new business rules of how to deal
with these scenarios get uncovered. Note that during this process an analyst
may have to go back to earlier steps as during some detailed analysis new
actors may emerge or new goals and new use cases may get uncovered. That
is, using use cases for analysis is also an interactive task.

What should be the level of detail in a use case? There is no one answer
to to a question hke this; the actual answer always depends on the project
and the situation. So it is with use cases. Generally it is good to have
sufficient details which are not overwhelming but are sufficient to build the
system and meet its quality goals. For example, if there is a small co-located
team building the system, it is quite likely that use cases which fist the main
exception conditions and give a few key steps for the scenarios will suffice.
On the other hand, for a project whose development is to be subcontracted
to some other organization, it is better to have more detailed use cases.

For writing use cases, general technical writing rules apply. Use simple
grammar, clearly specify who is performing the step, and keep the overall
scenario as simple as possible. Also, when writing steps, for simplicity, it
is better to combine some steps into one logical step, if it makes sense.
For example steps "user enters his name," "user enter his SSN," and "user
enters his address" can be easily combined into one step "user enters personal
information."

3.5 Validation

The development of software starts with a requirements document, which
is also used to determine eventually whether or not the delivered software
system is acceptable. It is therefore important that the requirements spec
ification contains no errors and specifies the client's requirements correctly.
Furthermore, as we have seen, the longer an error remains undetected, the

3.5. VALIDATION 139

greater the cost of correcting it. Hence, it is extremely desirable to detect
errors in the requirements before the design and development of the software
begin.

Due to the nature of the requirement specification phase, there is a lot of
room for misunderstanding and committing errors, and it is quite possible
that the requirements specification does not accurately represent the client's
needs. The basic objective of the requirements validation activity is to ensure
that the SRS reflects the actual requirements accurately and clearly. A
related objective is to check that the SRS document is itself of "good quality"
(some desirable quality objectives are given later).

Before we discuss validation, let us consider the type of errors that typi
cally occur in an SRS. Many different types of errors are possible, but the
most common errors that occur can be classified in four types: omission,
inconsistency, incorrect fact, and ambiguity. Omission is a common error
in requirements. In this type of error, some user requirement is simply not
included in the SRS; the omitted requirement may be related to the behavior
of the system, its performance, constraints, or any other factor. Omission
directly affects the external completeness of the SRS. Another common form
of error in requirements is inconsistency. Inconsistency can be due to con
tradictions within the requirements themselves or to incompatibility of the
stated requirements with the actual requirements of the chent or with the en
vironment in which the system will operate. The third common requirement
error is incorrect fact Errors of this type occur when some fact recorded
in the SRS is not correct. The fourth common error type is ambiguity. Er
rors of this type occur when there are some requirements that have multiple
meanings, that is, their interpretation is not unique.

Some projects have collected data about requirement errors. In [47] the
effectiveness of different methods and tools in detecting requirement errors in
specifications for a data processing application is reported. On an average, a
total of more than 250 errors were detected, and the percentage of different
types of errors was:

Omission
26%

Incorrect Fact
10%

Inconsistency
38%

Ambiguity
26%

In [8] the errors detected in the requirements specification of the A-7 project
(which deals with a real-time flight control software) were reported. A total
of about 80 errors were detected, out of which about 23% were clerical in
nature. Of the remaining, the distribution with error type was:

140 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

Omission
32%

Incorrect Fact
49%

Inconsistency
13%

Ambiguity
5%

Though the distribution of errors is diflPerent in these two cases, reflecting the
difference in apphcation domains and the error detection methods used, they
do suggest that the major problems (besides clerical errors) are omission,
incorrect fact, inconsistency, and ambiguity. If we take the average of the
two data tables, it shows that all four classes of errors are very significant,
and a good fraction of errors belong to each of these types. This implies,
that besides improving the quahty of the SRS itself (e.g., no clerical errors),
the validation should focus on uncovering these types of errors.

As requirements are generally textual documents that cannot be exe
cuted, inspections are eminently suitable for requirements validation. Con
sequently, inspections of the SRS, frequently called requirements review, are
the most common method of validation. Because requirements specification
formally specifies something that originally existed informally in people's
minds, requirements validation must involve the clients and the users. Due
to this, the requirements review team generally consists of client as well as
user representatives. We have discussed the general procedure of inspec
tions in an earlier chapter. Here we only discuss some aspects relevant to
requirements reviews.

Requirements review is a review by a group of people to find errors and
point out other matters of concern in the requirements specifications of a
system. The review group should include the author of the requirements
document, someone who understands the needs of the client, a person of
the design team, and the person(s) responsible for maintaining the require
ments document. It is also good practice to include some people not directly
involved with product development, like a software quafity engineer.

Although the primary goal of the review process is to reveal any errors in
the requirements, such as those discussed earlier, the review process is also
used to consider factors affecting quality, such as testability and readabihty.
During the review, one of the jobs of the reviewers is to uncover the require
ments that are too subjective and too difficult to define criteria for testing
that requirement.

Checklists are frequently used in reviews to focus the review effort and
ensure that no major source of errors is overlooked by the reviewers. A
checklist for requirements review should include items like [52]:

• Are all hardware resources defined?

3.5. VALIDATION 141

• Have the response times of functions been specified?

• Have all the hardware, external software, and data interfaces been
defined?

• Have all the functions required by the client been specified?

• Is each requirement testable?

• Is the initial state of the system defined?

• Are the responses to exceptional conditions specified?

• Does the requirement contain restrictions that can be controlled by
the designer?

• Are possible future modifications specified?

Requirements reviews are probably the most effective means for detect
ing requirement errors. The data in [8] about the A-7 project shows that
about 33% of the total requirement errors detected were detected by review
processes, and about 45% of the requirement errors were detected during
the design phase when the requirement document is used as a reference for
design. This clearly suggests that if requirements are reviewed then not only
a substantial fraction of the errors are detected by them, but a vast majority
of the remaining errors are detected soon afterwards in the design activity.

Though requirements reviews remain the most commonly used and viable
means for requirement validation, other possibilities arise if some special
purpose tools for modeling and analysis are used. For example, if the
requirements are written in a formal specification language or a language
specifically designed for machine processing, then it is possible to have tools
to to verify some properties of requirements. These tools will focus on checks
for internal consistency and completeness, which sometimes leads to checking
of external completeness. However, these tools cannot directly check for
external completeness (after all, how will a tool know that some requirement
has been completely omitted?). For this reason, requirements reviews are
needed even if the requirements are specified through a tool or are in a formal
notation.

142 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

3.6 Metrics

As we stated earlier, the basic purpose of metrics at any point during a
development project is to provide quantitative information to the manage
ment process so that the information can be used to effectively control the
development process. Unless the metric is useful in some form to monitor
or control the cost, schedule, or quality of the project, it is of little use for
a project. There are very few metrics that have been defined for require
ments, and little work has been done to study the relationship between the
metric values and the project properties of interest. This says more about
the state of the art of software metrics, rather than the usefulness of having
such metrics. In this section, we will discuss some of the metrics and how
they can be used.

3.6.1 Size—Funct ion Points

A major problem after requirements are done is to estimate the effort and
schedule for the project. For this, some metrics are needed that can be
extracted from the requirements and used to estimate cost and schedule
(through the use of some model). As the primary factor that determines
the cost (and schedule) of a software project is its size, a metric that can
help get an idea of the size of the project will be useful for estimating cost.
This implies that during the requirement phase measuring the size of the
requirement specification itself is pointless, unless the size of the SRS reflects
the effort required for the project. This also requires that relationships of any
proposed size measure with the ultimate effort of the project be established
before making general use of the metric.

A commonly used size metric for requirements is the size of the text of the
SRS. The size could be in number of pages, number of paragraphs, number of
functional requirements, etc. As can be imagined, these measures are highly
dependent on the authors of the document. A verbose analyst who likes to
make heavy use of illustrations may produce an SRS that is many times the
size of the SRS of a terse analyst. Similarly, how much an analyst refines the
requirements has an impact on the size of the document. Generally, such
metrics cannot be accurate indicators of the size of the project. They are
used mostly to convey a general sense about the size of the project.

Function points [2] are one of the most widely used measures of software
size. The basis of function points is that the "functionality" of a system,
that is, what the system performs, is the measure of the system size. And

3.6. METRICS 143

as functionality is independent of how the requirements of the system are
specified, or even how they are eventually implemented, such a measure
has a nice property of being dependent solely on the system capabihties. In
function points, the system functionahty is calculated in terms of the number
of functions it implements, the number of inputs, the number of outputs,
etc.—parameters that can be obtained after requirements analysis and that
are independent of the specification (and implementation) language.

The original formulation for computing the function points uses the count
of five different parameters, namely, external input types, external output
types, logical internal file types, external interface file types, and external
inquiry types. According to the function point approach, these five param
eters capture the entire functionality of a system. However, two elements
of the same type may differ in their complexity and hence should not con
tribute the same amount to the "functionality" of the system. To account
for complexity, each parameter in a type is classified as simple, average, or
complex. The definition of each of these types and the interpretation of their
complexity levels is given later [2].

Each unique input (data or control) type that is given as input to the
apphcation from outside is considered of external input type and is counted.
An external input type is considered unique if the format is different from
others or if the specifications require a different processing for this type from
other inputs of the same format. The source of the external input can be the
user, or some other application, files. An external input type is considered
simple if it has a few data elements and affects only a few internal files
of the application. It is considered complex if it has many data items and
many internal logical files are needed for processing them. The complexity
is average if it is in between. Note that files needed by the operating system
or the hardware (e.g., configuration files) are not counted as external input
files because they do not belong to the application but are needed due to
the underlying technology.

Similarly, each unique output that leaves the system boundary is counted
as an external output type. Again, an external output type is considered
unique if its format or processing is different. Reports or messages to the
users or other applications are counted as external input types. The com
plexity criteria are similar to those of the external input type. For a report, if
it contains a few columns it is considered simple, if it has multiple columns
it is considered average, and if it contains complex structure of data and
references many files for production, it is considered complex.

Each application maintains information internally for performing its func-

144 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

Function type Simple Average Complex
External input
External output
Logical internal file
External interface file
External inquiry

3
4
7
5
3

4
5
10
7
4

7
15
10
6

Table 3.3: Function point contribution of an element.

tions. Each logical group of data or control information that is generated,
used, and maintained by the apphcation is counted as a logical internal file
type. A logical internal file is simple if it contains a few record types, complex
if it has many record types, and average if it is in between.

Files that are passed or shared between applications are counted as ex
ternal interface file type. Note that each such file is counted for all the
applications sharing it. The complexity levels are defined as for logical in
ternal file type.

A system may have queries also, where a query is defined as an input-
output combination where the input causes the output to be generated al
most immediately. Each unique input-output pair is counted as an external
inquiry type. A query is unique if it differs from others in format of input or
output or if it requires different processing. For classifying the query type,
the input and output are classified as for external input type and external
output type, respectively. The query complexity is the larger of the two.

Each element of the same type and complexity contributes a fixed and
same amount to the overall function point count of the system (which is a
measure of the functionality of the system), but the contribution is different
for the different types, and for a type, it is different for different complexity
levels. The amount of contribution of an element is shown in Table 3.3
[2, 113],

Once the counts for all five different types are known for all three differ
ent complexity classes, the raw or unadjusted function point (UFP) can be
computed as a weighted sum as follows:

i=5j=3

UFP = Y.Yl'^^3^i3^

where i refiects the row and j refiects the column in Table 3.3; wij is the
entry in the ith row and j th column of the table (i.e., it represents the

3.6. METRICS 145

contribution of an element of the type i and complexity j) ; and Cij is the
count of the number of elements of type i that have been classified as having
the complexity corresponding to column j .

Once the UFP is obtained, it is adjusted for the environment complexity.
For this, 14 different characteristics of the system are given. These are data
communications, distributed processing, performance objectives, operation
configuration load, transaction rate, on-line data entry, end user efficiency,
on-hne update, complex processing logic, re-usabihty, installation ease, op
erational ease, multiple sites, and desire to facilitate change. The degree of
influence of each of these factors is taken to be from 0 to 5, representing
the six different levels: not present (0), insignificant influence (1), moder
ate influence (2), average influence (3), significant influence (4), and strong
influence (5). The 14 degrees of influence for the system are then summed,
giving a total A'' (Â ranges from 0 to 14*5=70). This N is used to obtain a
complexity adjustment factor (CAP) as follows:

CAP = 0.65 + O.OIA .̂

With this equation, the value of CAF ranges between 0.65 and 1.35. The
delivered function points (DFP) are simply computed by multiplying the
UFP by CAF. That is,

Delivered Function Points = CAF * Unadjusted Function Points.

As we can see, by adjustment for environment complexity, the DFP can
differ from the UFP by at most 35%. The flnal function point count for an
application is the computed DFP.

Function points have been used as a size measure extensively and have
been used for cost estimation. Studies have also been done to establish
correlation between DFP and the final size of the software (measured in
lines of code.) For example, according to one such conversion given in
www.theadvisors.com/langcomparison.htm, one function point is approxi
mately equal to about 125 lines of C code, and about 50 lines of C + + or
Java code. By building models between function points and delivered lines
of code (and existing results have shown that a reasonably strong correlation
exists between DFP and KLOC so that such models can be built), one can
estimate the size of the software in KLOC, if desired.

As can be seen from the manner in which the functionality of the sys
tem is defined, the function point approach has been designed for the data
processing type of applications. For data processing applications, function

http://www.theadvisors.com/langcomparison.htm

146 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

points generally perform very well [106] and have now gained a widespread
acceptance. For such applications, function points are used as an effective
means of estimating cost and evaluating productivity. However, its utility as
a size measure for nondata processing types of applications (e.g., real-time
software, operating systems, and scientific applications) has not been well
established, and it is generally beheved that for such applications function
points are not very well suited.

A major drawback of the function point approach is that the process
of computing the function points involves subjective evaluation at various
points and the final computed function point for a given SRS may not be
unique and can depend on the analyst. Some of the places where subjectivity
enters are: (1) different interpretations of the SRS (e.g., whether something
should count as an external input type or an external interface type; whether
or not something constitutes a logical internal file; if two reports differ in
a very minor way should they be counted as two or one); (2) complexity
estimation of a user function is totally subjective and depends entirely on
the analyst (an analyst may classify something as complex while someone
else may classify it as average) and complexity can have a substantial impact
on the final count as the weighs for simple and complex frequently differ by a
factor of 2; and (3) value judgments for the environment complexity. These
factors make the process of function point counting somewhat subjective.
Organizations that use function points try to specify a more precise set of
counting rules in an effort to reduce this subjectivity. It has also been found
that with experience this subjectivity is reduced [113]. Overall, despite this
subjectivity, use of function points for data processing applications continues
to grow.

The main advantage of function points over the size metric of KLOC, the
other commonly used approach, is that the definition of DFP depends only
on information available from the specifications, whereas the size in KLOC
cannot be directly determined from specifications. Furthermore, the DFP
count is independent of the language in which the project is implemented.
Though these are major advantages, another drawback of the function point
approach is that even when the project is finished, the DFP is not uniquely
known and has subjectivity. This makes building of models for cost esti
mation hard, as these models are based on information about completed
projects (cost models are discussed further in the next chapter). In addi
tion, determining the DFP—from either the requirements or a completed
project—cannot be automated. That is, considerable effort is required to
obtain the size, even for a completed project. This is a drawback compared

3.6. METRICS 147

to KLOC measure, as KLOC can be determined uniquely by automated
tools once the project is completed.

3.6.2 Quality Metrics

As we have seen, the quality of the SRS has direct impact on the cost of the
project. Hence, it is important to ensure that the SRS is of good quality. For
this, some quahty metrics are needed that can be used to assess the quahty
of the SRS. Quality of an SRS can be assessed either directly by evaluating
the quality of the document by estimating the value of one or more of the
quality attributes of the SRS, or indirectly, by assessing the effectiveness
of the quality control measures used in the development process during the
requirements phase. Quahty attributes of the SRS are generally hard to
quantify, and little work has been done in quantifying these attributes and
determining correlation with project parameters. Hence, the use of these
metrics is still limited. However, process-based metrics are better understood
and used more widely for monitoring and controlling the requirements phase
of a project.

Number of errors found is a process metric that is useful for assessing the
quality of requirement specifications. Once the number of errors of different
categories found during the requirement review of the project is known,
some assessment can be made about the SRS from the size of the project
and historical data. This assessment is possible if the development process
is under statistical control. In this situation, the error distribution during
requirement reviews of a project will show a pattern similar to other projects
executed following the same development process. From the pattern of errors
to be expected for this process and the size of the current project (say, in
function points), the volume and distribution of errors expected to be found
during requirement reviews of this project can be estimated. These estimates
can be used for evaluation.

For example, if much fewer than expected errors were detected, it means
that either the SRS was of very high quality or the requirement reviews
were not careful. Further analysis can reveal the true situation. If too many
clerical errors were detected and too few omission type errors were detected,
it might mean that the SRS was written poorly or that the requirements
review meeting could not focus on "larger issues" and spent too much effort
on "minor" issues. Again, further analysis will reveal the true situation.
Similarly, a large number of errors that reflect ambiguities in the SRS can
imply that the problem analysis has not been done properly and many more

148 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

ambiguities may still exist in the SRS. Some project management decision to
control this can then be taken (e.g., build a prototype or do further analysis).

Clearly, review data about the number of errors and their distribution
can be used effectively by the project manager to control quality of the
requirements. From the historical data, a rough estimate of the number
of errors that remain in the SRS after the reviews can also be estimated.
This can be useful in the rest of the development process as it gives some
handle on how many requirement errors should be revealed by later quality
assurance activities.

Requirements rarely stay unchanged. Change requests come from the
clients (requesting added functionality, a new report, or a report in a differ
ent format, for example) or from the developers (infeasibility, difficulty in
implementing, etc.). Change request frequency can be used as a metric to as
sess the stability of the requirements and how many changes in requirements
to expect during the later stages.

Many organizations have formal methods for requesting and incorporat
ing changes in requirements. We have earlier seen a requirements change
management process. Change data can be easily extracted from these
formal change approval procedures. The frequency of changes can also be
plotted against time. For most projects, the frequency decreases with time.
This is to be expected; most of the changes will occur early, when the re
quirements are being analyzed and understood. During the later phases,
requests for changes should decrease.

For a project, if the change requests are not decreasing with time, it could
mean that the requirements analysis has not been done properly. Frequency
of change requests can also be used to "freeze" the requirements—when
the frequency goes below an acceptable threshold, the requirements can be
considered frozen and the design can proceed. The threshold has to be
determined based on experience and historical data.

3.7 Summary

The main goal of the requirements phase is to produce the software require
ments specification (SRS), which accurately captures the client's require
ments and which forms the basis of software development and validation.
The basic reason for the difficulty in specifying software requirements comes
from the fact that there are three interested parties—the client, the end
users, and the software developer. The requirements document has to be

3.7. SUMMARY 149

such that the chent and users can understand it easily and the developers
can use it as a basis for software development. Due to the diverse parties
involved in software requirements specification, a communication gap exists.
This makes the task of requirements specification difficult.

There are three basic activities in the requirements phase. The first is
problem or requirement analysis. The goal of this activity is to understand
such different aspects as the requirements of the problem, its context, and
how it fits within the client's organization. The second activity is require
ments specification, during which the understood problem is specified or
written, producing the SRS. And the third activity is requirements vahda-
tion, which is done to ensure that the requirements specified in the SRS are
indeed what is desired.

There are three main approaches to analysis; unstructured approaches
rely on interaction between the analyst, customer, and user to reveal all the
requirements (which are then documented). The second is the modehng-
oriented approach, in which a model of the problem is built based on the
available information. The model is useful in determining if the understand
ing is correct and in ensuring that all the requirements have been determined.
Modeling may be function-oriented or object-oriented. The third approach
is the prototyping approach in which a prototype is built to validate the
correctness and completeness of requirements.

To satisfy its goals, an SRS should possess characteristics like complete
ness, consistency, unambiguous, verifiable, modifiable, etc. A good SRS
should specify all the functions the software needs to support, performance
of the system, the design constraints that exist, and all the external inter
faces.

One method for specifying the functional specifications that has become
popular is the use case approach. With this approach the functionality of
the system is specified through use cases, with each use case specifying the
behavior of the system when a user interacts with it for achieving some
goal. Each use case contains a normal scenario, as well as many exceptional
scenarios, thereby providing the complete behavior of the system. Though
use cases are meant for specification, as they are natural and story-like, by
expressing them at different levels of abstraction they can also be used for
problem analysis.

For vahdation, the most commonly used method is reviewing or inspect
ing the requirements. In requirements inspections, the team of reviewers
also includes a representative of the client to ensure that all requirements
are captured.

150 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

The main metric of interest for requirements is some quantification of sys
tem size, as it can be used to estimate the effort requirement of the project.
The most commonly used size metric for requirements is the function points.
The function point metric a t tempts to quantify the functionahty of the sys
tem in terms of five parameters and their complexity levels which can be
determined from the requirements of the system. Based on the count of
these five parameters for different complexity levels, and the value of four
teen different environmental factors, the function point count for a system
is obtained. The function point metric can be used for estimating the cost
of the system.

Exercises

1. Is it possible to have a system that can automatically verify completeness of
an SRS document? Explain your answer.

2. Construct an example of an inconsistent (incomplete) SRS.

3. How can you specify the "maintainability" and "user friendliness" of a soft
ware system in quantitative terms?

4. For a complete and unambiguous response time requirement, the environ
mental factors on which the response time depends must be specified. Which
factors should be considered, and what units should be chosen to specify
them?

5. The basic goal of the requirements activity is to get an SRS that has some
desirable properties. What is the role of modeling in developing such an SRS?
List three major benefits that modeling provides, along with justifications,
for achieving the basic goal.

6. Make a friend of yours as the client. Perform structured analysis and object-
oriented analysis for the following:

(a) An electronic mail system.

(b) A simple student registration system.

(c) A system to analyze a person's diet.

(d) A system to manage recipes for a household.

(e) A system to fill tax forms for the current year tax laws.

7. Write the SRS for the restaurant example whose analysis is shown in the
chapter.

8. Write the functional requirements for the restaurant example using use cases.

3.7. SUMMARY 151

9. Develop a worksheet for calculating the function point for a given problem
specification.

10. Compute the function points for the restaurant example (can use the work
sheet).

152 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

Case Studies

We introduce our two running case studies here. We give the problem de
scription and discuss the problem analysis of these case studies. The detailed
SRS for both these case studies are available from the Web site.

Case Study 1—Course Scheduling

Prob lem Descript ion

The computer science department in a university offers many courses every
semester, which are taught by many instructors. These courses are scheduled
based on some policy directions of the department. Currently the scheduling
is done manually, but the department would like to automate it. We have
to first understand the problem and then produce a requirements document
based on our understanding of the problem.

Problem Analys is

We do the problem analysis here—the requirements specification document
is available from the Web site of the book. For analysis, we first identify the
parties involved.

Client: Chairman of the computer science department.
End Users: Department secretary and instructors.

Now we begin to study the current system. After speaking with the instruc
tors, the department chairman, and the secretary, we find that the system
operates as follows. Each instructor specifies, on a sheet of paper, the course
he is teaching, expected enrollment, and his preferences for lecture times.
These preferences must be vahd lecture times, which are specified by the
department. These sheets are given to the department secretary, who keeps
them in the order they are received. After the deadline expires, the secretary
does the scheduling. Copies of the final schedule are sent to the instructors.
The overall DFD for the system is shown in Figure 3.17.

This DFD was discussed with the chairman and the department secre
tary and approved by them. We now focus on the scheduling process, which
is our main interest. Prom the chairman we found that the two major poli
cies regarding scheduling are: (1) the post-graduate (PG) courses are given

CASE STUDIES 153

preference over undergraduate (UG) courses, and (2) no two PG courses can
be scheduled at the same time.

The department secretary was interviewed at length to find out the de
tails of the scheduling activity. The schedule of the last few semesters,
together with their respective inputs (i.e., the sheets) were also studied. It
was found that the basic process is as follows. The sheets are separated into
three piles—one for PG courses with preferences, one for UG courses with
preferences, and one for courses with no preference. The order of the sheets
in the three piles was maintained. First the courses in the PG pile were
scheduled and then the courses in the UG pile were scheduled. The courses
were scheduled in the order they appeared in the pile. During scheduling
no backtracking was done, i.e., once a course is scheduled, the scheduling
of later courses has no effect on its schedule. After all the PG and UG
courses with preferences were processed, courses without any preferences
were scheduled in the available slots. It was also found that information
about classrooms and the department-approved lecture times was tacitly
used during the scheduling. The DFD for the schedule process is shown in
Figure 3.18.

The secretary was not able to explain the algorithm used for scheduling.
It is likely that some hit-and-miss approach is being followed. However,
while scheduling, the following was being checked:

1. Classroom capacity is suflficient for the course.
2. A slot for a room is never allotted to more than one course.

The two basic data flows are the sheets containing preferences and the final
schedule. The data dictionary entry for these is:

collected-forms = [instructor_name -|-
course_number 4- [preferences]*]

schedule = [course_number class_room lecture_time]*

Figure 3.17: Top-level DFD for the current scheduling system.

154 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

UG-Courses

Collected
Forms

Schedule

Courses Without Preferences

Figure 3.18: The DFD for the schedule process.

Now we have to define the DFD for the new or future automated sys
tem. Automating scheduhng can affect the preference collection method, so
boundaries of change include the entire system. After discussion with the
chairman, the instructors, and the secretary, the following decisions were
made regarding what the automated system should do and what the new
environment should be:

1. The preferences will be electronically mailed to the secretary by the in
structors. The secretary will put these preferences for diff'erent courses
in a file in the order in which they are received. The secretary will
also make entries for all courses for which no response has been given
before the deadline. Entries for these courses will have no preferences.

2. The format for each course entry should be similar to the one currently
being used.

3. Entries might have errors, so the system should be able to check for
errors.

4. The current approach for scheduling should be followed. However, the
system should make sure that scheduhng of UG courses does not make
a PG course without any preference unschedulable. This is not being
done currently, but is desired.

5. A reason for unschedulability should be given for the preferences that
are not satisfied or for courses that cannot be scheduled.

6. Information about department courses, classrooms, and valid lecture
times will be kept in a file.

CASE STUDIES 155

Prefs-File

Conflict
Report

Schedule

Instructors,
Secretary,
Chairman

Man-Machine
Boundary Dept-DB

Figure 3.19: DFD for the new system.

The DFD for the new logical system (one with automation) is shown in
Figure 3.19. The two important data entities are the two files in the DFD.
The data dictionary entry for these is:

prefs-file = [pref]*
pref = course_number + enrollment + [preferences]*
dept_DB = [class_rooms]* + dept_course_list + [valid_lecture_time]*
class_rooms = room_no + capacity

It is decided that the scheduling process will be automated. The rest
(such as combining preferences) will be done manually. Based on the format
currently used in the sheets, a detailed format for the course entries was
decided and approved by the instructors. A detailed format for the dept_DB
file was also chosen and approved. The final formats and the requirements
are given in the requirements document.

The complete SRS of this case study, which specifies the functional re
quirements by enumerating the functions of the system, is available from the
Web site of the book.

156 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

Case Study 2—Personal Investment Management
System

Prob lem Descript ion

Many people invest their money in a number of securities (shares). Gener
ally, an investor has multiple portfolios of investments, each portfolio having
investments in many securities. From time to time an investor sells or buys
some securities and gets dividends for the securities. There is a current value
of each security—many sites give this current value. It is proposed to build
a personal investment management system (PIMS) to help investors keep
track of their investments, as well as determine the rate of returns he/she
is getting on the individual investments as well as on the overall portfolio.
The system should also allow an investor to determine the net-worth of the
portfolios.

Problem Analysis

This project started with the above problem statement. During analysis, dis
cussion with the clients were held to clarify various issues. After discussion,
the following clarifications emerged.

• An investor can have multiple portfolios of investments. A portfolio
can have many investments.

• In each investment, the investor invests some moneys from time to
time, and withdraws some funds from time to time. The amount in
vested/withdrawn and the dates are provided by the investor. Any
number of investments/withdrawls can be made.

• There is a current value of each investment. As a default, the previ
ously given current value can be chosen. Provision should be made
to get the current value from some recognized site on the Web. If for
some reason the net is down, then the user should be able to specify
the current value of the shares.

• An investor may also invest in instruments which have a maturity date
and/or a fixed rate of return. Such investments should also be handled
by the system. In addition, for such investments, the system should
provide a provision of alerts (e.g., on maturity).

CASE STUDIES 157

• The investor should be allowed to save information about his portfolio
investments, etc.

• The investor should be allowed to edit entered data.

• An investor should be able to view any of his portfolios—in summary
form or detailed form.

• Data being stored is very personal; even though the system is to work
on a PC, it should provide some security.

• For each investment, the investor can determine the rate of return he
is getting. Besides the rate of return on each investment, the investor
should be given the overall rate of return for each portfolio as well as
total investments. Information like how much money invested, how
much has been earned, etc. can also be shown.

• Rates of return can be computed on a monthly basis. For example,
month is the smallest unit for computing returns. The yearly return
will be computed from this monthly return using monthly compound
ing (i.e., yearly return = (l+monthly return)**12 - 1.)

During the discussions, the scope of the project also got defined.

In Scope

• Managing investment of a single user, which would include maintaining
bookkeeping information about entities like Portfolio, Security, and
Transaction

• Computation of Net-Worth and Rate of Investment (ROI) of the In
vestor

• Giving alerts to the user, if it is requested

• Downloading the current prices of shares from the Web

• User authentication

Out of Scope

• Features for actual purchasing and selhng of securities. That is, actu
ally buying and selhng of shares/securities is done outside PIMS.

158 3. SOFTWARE REQUIREMENTS ANALYSIS AND SPECIFICATION

• Tax computations for gains/losses

• Any market related prediction

Key Use Cases
For this project, a use-case-based requirement analysis and specification is
done. That is, use cases are used for analysis as well as specification. The
main actors for PIMS are the user and the system. During analysis, first the
major use cases categories and key use cases in each category are identified.
The broad categories and the use cases in each category are given in the table
below.

Use Case Category
Installation
System authorization
Portfolio related

Securities related

Transaction related

Information display

Computation
Share prices
Alerts

Use Cases
Installation
Login, Change Password '
Create portfolio. Rename portfolio. Delete
portfoho
Create security. Rename security. Delete
security
Add transaction, Edit transaction. Delete
transaction
Display investment. Display portfolio,
Display security
Compute net-worth. Compute ROI
Get current share price. Edit share price
Set alerts, Show alerts, Delete alerts

Once the main use cases were identified and agreed, details of the use
cases were uncovered. As discussed earlier, first we defined the main success
scenario for the use cases, and then we identified the exception scenarios.

The complete SRS for this case study is available from the book's Web
site.

Software Architecture

A system is an entity that provides some behavior to its environment, where
the environment can consist of people or other systems. In the previous
chapter we saw that expected behavior of a proposed software system is
defined through a software requirement specification (SRS) document. For
building the specified software system, designing the software architecture is
a key step, and is the topic of this chapter.

Any complex system is composed of sub systems that interact under
the control of system design such that the system provides the expected
behavior. While designing such a system, therefore, the logical approach is
to identify the sub-systems that should compose the system, the interfaces
of these subsystems, and the rules for interaction between the subsystems.
This is what software architecture aims to do.

Software architecture is a relatively recent area. As the software systems
increasingly become distributed and more complex, architecture becomes
an important step in building the system. Due to a wide range of options
now available for how a system may be configured and connected, carefully
designing the architecture becomes very important. It is during the archi
tecture design where choices like using some type of middleware, or some
type of back end database, or some type of server, or some type of security
component are made. It is not possible to design the details of the system
and then try to accommodate these choices—the architecture must be cre
ated such that these decisions have been incorporated suitably in the system
structure. Architecture is also the earliest place when properties like relia
bility and performance can be evaluated for the system, a capability that is
increasingly becoming important.

160 4. SOFTWARE ARCHITECTURE

In this chapter, we wih focus primarily on architecture concepts and
some notation for describing architecture. The issue of methodology, that
is, how architecture should be created, is not discussed as architecture is
a high-level creative activity for which methodologies do not really exist.
However, we will discuss some architecture styles, which suggest some forms
of architectures. A combination of some variation of these styles is likely to
be useful for many systems. We also discuss some issues relating to software
architectures like documentation, relationship to design, etc., and discuss one
approach for analyzing architectures. We end the chapter with a dsicussion
of architectures for the two case studies.

4.1 Role of Software Architecture

What is architecture? We must have a clear answer to this before we further
discuss what its role is in building a software system and how we can go
about creating and representing architecture.

At a top level, architecture is a design of a system which gives a very
high level view of the parts of the system and how they are related to form
the whole system. That is, architecture partitions the system in logical parts
such that each part can be comprehended independently, and then describes
the system in terms of these parts and the relationship between these parts.

Any complex system can be partitioned in many different ways, each
providing an useful view and each having different types of logical parts.
The same holds true for a software system^there is no unique structure of
the system that can be described by its architecture; there are many possible
structures.

Due to this possibility of having multiple structures, one of the most
widely accepted definitions of software architecture is that the software ar
chitecture of a system is the structure or structures of the system, which
comprise software elements, the externally visible properties of those ele
ments, and the relationships among them [9]. This definition implies that
for elements in an architecture, we are only interested in those abstractions
that specify those properties that other elements can assume to exist and
that are needed to specify relationships. These properties could be about
the functionality or services the component provides, or the performance
and other quality properties it provides. Details on how these properties are
supported are not needed for architecture. This is an important capability
that allows architecture descriptions to represent a complex system in a sue-

4.1. ROLE OF SOFTWARE ARCHITECTURE 161

cinct form that is easily comprehended. The definition also implies that the
behavior of the elements is part of the architecture; hence any architecture
documentation must clearly specify the behavior. Finally, as with most def
initions, this definition does not say anything about whether an architecture
is good or bad—this determination has to be done through some analysis.

An architecture description of a system will therefore describe the differ
ent structures of the system. The next natural question that arises is what
are these structures in an architecture description good for? Why should a
team building a software system for some customer be interested in creat
ing and documenting the structures of the proposed system. Some of the
important uses that software architecture descriptions play are [9, 35, 93].

1. Understanding and communication: An architecture description is pri
marily to communicate the architecture to its various stakeholders,
which include the users who will use the system, the clients who com
missioned the system, the builders who will build the system, and,
of course, the architects. An architecture description is an important
means of communication between these various stakeholders. Through
this description the stakeholders gain an understanding of some macro
properties of the system and how the system intends to fulfill the func
tional and quality requirements. As the description provides a com
mon language between stakeholders, it also becomes the vehicle for
negotiation and agreement amongst the stakeholders, who may have
conflicting goals.

Clearly, to facilitate communication, software architecture descriptions
must facilitate the understanding of systems. An architecture descrip
tion of the proposed system describes how the system will be com
posed, when it is built. By partitioning the system into parts, and
presenting the system at a higher level of abstraction as composed of
subsystems and their interactions, detailed level complexity is hidden.
This facilitates the understanding of the system and its structure.

Though we are focusing on new systems being created, it should be
pointed out that architecture descriptions can also be used to under
stand an existing system—by specifying different high level views of
the system structure, a system description is simplified with details
about how parts are implemented hidden away. The reduction of sys
tem to a few parts and how they work together is a tremendous aid
in understanding, as it reduces the complexity and allows a person to
deal with a limited complexity at a given time.

162 4. SOFTWARE ARCHITECTURE

2. Reuse: Architecture descriptions can help software reuse. Reuse is
considered one of the main techniques by which productivity can be
improved, thereby reducing the cost of software. The software engi
neering world has, for a long time, been working towards a discipline
where software can be assembled from parts that are developed by
different people and are available for others to use. If one wants to
build a software product in which existing components may be reused,
then architecture becomes the key point at which reuse at the highest
level is decided. The architecture has to be chosen in a manner such
that the components which have to be reused can fit properly and to
gether with other components that may be developed, they provide
the features that are needed.

Architecture also facilitates reuse among products that are similar and
building product families such that the common parts of these different
but similar products can be reused. Architecture helps specify what
is fixed and what is variable in these different products, and can help
minimize the set of variable elements such that different products can
share software parts to the maximum. Again, it is very hard to achieve
this type of reuse at a detail level.

3. Construction and Evolution. As architecture partitions the system
into parts, some architecture provided partitioning can naturally be
used for constructing the system, which also requires that the system
be broken into parts such that different teams (or individuals) can
separately work on different parts. A suitable partitioning in the ar
chitecture can provide the project with the parts that need to be built
to build the system. As, almost by definition, the parts specified in an
architecture are relatively independent (the dependence between parts
coming through their relationship), they can be built independently.
Not only does an architecture guide the development, it also establishes
the constraints—the system should be constructed in a manner that
the structures chosen during the architecture creation are preserved.
That is, the chosen parts are there in the final system and they interact
in the specified manner.

The construction of a software system usually does not end in delivery
of the product—a software system also evolves with time. During
evolution, often new features are added to the system. The architecture
of the system can help in deciding where to add the new features with
minimum complexity and effort, and what the impact on the rest of

4.2. ARCHITECTURE VIEWS 163

the system might be of adding the new features. Also, if some changes
have to be made to the existing functionahty, then architecture can
help determine which are the parts of the system that will be affected
by this change—an exercise that is extremely important in ensuring
that the change is made properly without any unforeseen side effects.

4. Analysis. It is highly desirable if some important properties about the
behavior of the system can be determined before the system is actually
built. This will allow the designers to consider alternatives and select
the one that will best suit the needs. Many engineering disciplines use
models to analyze design of a product for its cost, reliability, perfor
mance, etc. Architecture opens such possibilities for software also. It is
possible (thought the methods are not fully developed or standardized
yet) to analyze or predict the properties of the system being built from
its architecture. For example, the reliability or the performance of the
system can be analyzed. Such an analysis can help determine whether
the system will meet the quality and performance requirements, and
if not, what needs to be done to meet the requirements. For example,
while building a Web site for shopping, it is possible to analyze the
response time or throughput for a proposed architecture, given some
assumptions about the request load and hardware. It can then be de
cided whether the performance is satisfactory or not, and if not, what
new capabilities should be added (for example, a different architecture
or a faster server for the back end) to improve it to a satisfactory level.

One can easily think of other uses of architecture as well. However, not
all of these uses may be significant in a project and which of these uses is
pertinent to a project depends on the nature of the project. In some projects
communication may be very important, but a detailed performance analysis
may be unnecessary (because the system is too small or is meant for only a
few users). In some other systems, performance analysis may be the primary
use of architecture.

4.2 Architecture Views

There is a general view emerging that there is no unique architecture of a
system. The definition that we have adopted (given above) also expresses
this sentiment. Consequently, there is no one architecture drawing of the
system. The situation is similar to that of civil construction a discipline

164 4. SOFTWARE ARCHITECTURE

that is the original user of the concept of architecture and from where the
concept of software architecture has been borrowed. For a building, if you
want to see the floor plan, you are shown one set of drawings. If you are
an electrical engineer and want to see how the electricity distribution has
been planned, you will be shown another set of drawings. And if you are
interested in safety and firefighting, another set of drawings is used. These
drawings are not independent of each other—they are all about the same
building. However, each drawing provides a different view of the building,
a view that focuses on explaining one aspect of the building and tries to a
good job at that, while not divulging much about the other aspects. And
no one drawing can express all the different aspects—such a drawing will be
too complex for to be of any use.

Similar is the situation with software architecture. In software, the dif
ferent drawings are called views. A view represents the system as composed
of some types of elements and relationships between them. Which elements
are used by a view, depends on what the view wants to highlight. Differ
ent views expose different properties and attributes, thereby allowing the
stakeholders and analysts to properly evaluate those attributes for the sys
tem. By focusing only on some aspects of the system, a view reduces the
complexity that a reader has to deal with at a time, thereby aiding system
understanding and analysis.

A view describes a structure of the system. We will use these two
concepts—views and structures—interchangeably. We will also use the term
architectural view to refer to a view. Many types of views have been pro
posed. Most of the proposed views generally belong to one of these three
types [35, 9]:

• Module

• Component and connector

• Allocation

In a module view, the system is viewed as a collection of code units,
each implementing some part of the system functionality. That is, the main
elements in this view are modules. These views are code-based and do not
explicitly represent any runtime structure of the system. Examples of mod
ules are packages, a class, a procedure, a method, a collection of functions,
and a collection of classes. The relationships between these modules are
also code-based and depend on how code of a module interacts with another

4.2. ARCHITECTURE VIEWS 165

module. Examples of relationships in this view are "is a part of" (i.e., mod
ule B is a part of module A), "uses or depends on" (a module A uses services
of module B to perform its own functions and correctness of module A de
pends on correctness of module B,) and "generalization or specialization" (a
module B is a generalization of a module A.)

In a component and connector (C&C) view, the system is viewed as a
collection of runtime entities called components. That is, a component is a
unit which has an identity in the executing system. Objects (not classes),
a collection of objects, and a process are examples of components. While
executing, components need to interact with others to support the system
services. Connectors provide means for this interaction. Examples of con
nectors are pipes and sockets. Shared data can also act as a connector. If
the components use some middleware to communicate and coordinate, then
the middleware is a connector. Hence, the primary elements of this view are
components and connectors.

An allocation view focuses on how the different software units are allo
cated to resources like the hardware, file systems, and people. That is, an
allocation view specifies the relationship between software elements and el
ements of the environments in which the software system is executed. They
expose structural properties like which processes run on which processor,
and how the system files are organized on a file system.

An architecture description consists of views of different types, with each
view exposing some structure of the system. Module views show how the
software is structured as a set of implementation units, C&C views show how
the software is structured as interacting runtime elements, and allocation
views show how software relates to non-software structures. These three
types of view of the same system form the architecture of the system, as
represented in Figure 4.1.

Note that the different views are not unrelated. They all represent the
same system. Hence, there are relationships between elements in one view
and elements in another view. These relationships may be simple or may be
complex. For example, the relationship between modules and components
may be one to one in that one module implements one component. On the
other hand, it may be quite complex with a module being used by multiple
components, and a component using multiple modules. While creating the
different views, the designers have to be aware of this relationship.

The next question is what are the standard views that should be ex
pressed for describing the architecture of a system? For answering this ques
tion, the analogy with buildings may again help. If one is building a simple

166 4. SOFTWARE ARCHITECTURE

C & C views / \ Module views
Runtime structures/ , , . \ - Code structures

Allocation views
software and environment

co-structures

Figure 4.1: Views of Software Architecture.

small house, then perhaps there is no need to have a separate view describing
the emergency and the fire system. Similarly, if there is no air conditioning
in the building, there need not be any view for that. On the other hand, an
office building will perhaps require both of these views, in addition to other
views describing plumbing, space, wiring, etc.

The situation with software is similar which views are needed for a project
depends on the project and the system being built. Depending on the needs
of the project, it can be decided which views are needed. For example,
if performance analysis is to be done, then the architecture must describe
some component and connector view to capture the runtime structure of the
system, as well as describe the allocation view to specify what hardware the
different components run on. If it is to be used for planning the development,
then a module view must be provided so that the different programmers or
teams can be assigned different modules. In general, a large and complex
project where a lot of money is at stake will require many different views
so it can be analyzed from many different angles, and the risks of failures
is reduced by doing so. On the other hand, for a smaller project, maybe a
single view, or a couple of views, will suffice.

However, despite the fact that there are multiple drawings showing differ
ent views of a building, there is one view that predominates in construction—
that of physical structure. This view forms the basis of other views in that
other views cannot really be completed unless this view can be done. Other
views may or may not be needed for constructing a building, depending on
the nature of the project. Hence, in a sense, the view giving the building

4.3. COMPONENT AND CONNECTOR VIEW 167

structure may be considered as the primary view in that it is almost al
ways used, and other views rely on this view substantially. The view also
captures perhaps the most important property to be analyzed in the early
stages, namely, that of space organization.

The situation with software architecture is also somewhat similar. As we
have said, depending on what properties are of interest, different views of the
software architecture are needed. However, of these views, the component
and connector (C&C) view has become the de-facto primary view, one which
is almost always prepared when an architecture is designed (some definitions
even view architecture only in terms of C&C views.) In this chapter, we
will focus primarily on the C&C view, and will discuss the other two types
only briefly. The module view will get discussed further in later chapters
when discussing high level design, which focuses on identifying the different
modules in the software.

4.3 Component and Connector View

Component and Connector (C&C) architecture view of a system has two
main elements—components and connectors. Components are usually com
putational elements or data stores that have some presence during the system
execution. Connectors define the means of interaction between these com
ponents. A C&C view of the system defines the components, and which
component is connected to which and through what connector. A C&C
view describes a runtime structure of the system—what components exist
when the system is executing and how they interact during the execution.
The C&C structure is essentially a graph, with components as nodes and
connectors as edges.

C&C view is perhaps the most common view of architecture and most
box-and-line drawings representing architecture attempt to capture this view.
Most often when people talk about the architecture, they refer to the C&C
view. Most architecture description languages also focus on the C&C view.

4.3.1 Components

Components are generally units of computation or data stores in the system.
A component has a name, which is generally chosen to represent the role of
the component or the function it performs. The name also provides a unique
identity to the component, which is necessary for referencing details about

168 4. SOFTWARE ARCHITECTURE

Client

Server

Database

Applicatior

Figure 4.2: Component examples.

the component in the supporting documents, as a C&C drawing will only
show the component names.

A component is of a component-type, where the type represents a generic
component, defining the general computation and the interfaces a component
of that type must have. Note that though a component has a type, in the
C&C architecture view, we have components (i.e., actual instances) and
not types. Examples of these types are clients, servers, filters, etc. Different
domains may have other generic types like controllers, actuators, and sensors
(for a control system domain.)

In a diagram representing a C&C architecture view of a system, it is
highly desirable to have a different representation for different component
types, so the different types can be identified visually. In a box-and-hne
diagram, often all components are represented as rectangular boxes. Such an
approach will require that types of the components are described separately
and the reader has to read the description to figure out the types of the
components. It is much better to use a different symbol/notation for each
different component type. If there are multiple components of the same type,
then each of these components will be represented using the same symbol
they will be distinguished from each other by their names.

Components use interfaces to communicate with other components. The
interfaces are sometimes called ports. A component must clearly specify its

4.3. COMPONENT AND CONNECTOR VIEW 169

ports. In a diagram, this is typically done by putting suitable marks on the
edges of the symbol being used for the component.

It would be useful if there was a list of standard symbols that could be
used to build an architecture diagram. However, as there is no standard list
of component types, there is no such standard list. Some of the common
symbols used for representing commonly found component types are shown
in Figure 4.2.

As there are no standard notations for different component types and an
architect can use his own symbols, the type information cannot be obtained
by a reader from the symbols used. To make sure that the meanings of the
different symbols is clear to the reader, it is therefore necessary to have a
key of the different symbols to describe what type of component a symbol
represents.

A component is essentially a system in its own right providing some
behavior at defined interfaces (i.e., ports) to its environment. Like any
system, a component may be complex and have a structure of its own, which
can be determined by decomposing the component. In many situations,
particularly for systems that are not too large, there may not be a need to
decompose the components to determine their internal architecture. We will
mostly work with atomic components, that is, components whose internal
structure is not needed for describing or analyzing an architecture view.

4.3,2 Connectors

The different components of a system are likely to interact while the system
is in operation to provide the services expected of the system. After all,
components exist to provide parts of the services and features of the system,
and these must be combined to deliver the overall system functionality. For
composing a system from its components, information about the interaction
between components is necessary.

Interaction between components may be through a simple means sup
ported by the underlying process execution infrastructure of the operating
system. For example, a component may interact with another using the
procedure call mechanism (a connector,) which is provided by the runtime
environment for the programming language. However, the interaction may
involve more complex mechanisms as well. Examples of such mechanisms
are remote procedure call, TCP/IP ports, and a protocol hke HTTP. These
mechanisms requires a fair amount of underlying runtime infrastructure,
as well as special programming within the components to use the infras-

170 4. SOFTWARE ARCHITECTURE

Bus type connector

Database Access

Request - Reply

Pipe

RPC

Figure 4.3: Connector examples.

tructure. Consequently, it is extremely important to identify and explicitly
represent these connectors. Specification of connectors will help identify the
suitable infrastructure needed to implement an architecture, as well as clar
ify the programming needs for components using them. Without a proper
understanding of the connectors, a realization of the components using the
connectors may not be possible.

Note that connectors need not be binary and a connector may provide a
n-way communication between multiple components. For example, a broad
cast bus may be used as a connector, which allows a component to broadcast
its message to all the other components. (Of course, how such a connector
will be implemented is another issue that must be resolved before the ar
chitecture can be implemented. Generally, while creating an architecture,
it is wise for the architect to use the connectors which are available on the
systems on which the software will be deployed. Otherwise, there must be
plans to build those connectors, or buy them, if they are available.)

A connector also has a name that should describe the nature of interac
tion the connector supports. A connector also has a type, which is a generic

4.3. COMPONENT AND CONNECTOR VIEW 171

description of the interaction, specifying properties like whether it is a binary
or n-way, types of interfaces it supports, etc. Sometimes, the interaction sup
ported by a connector is best represented as a protocol. A protocol implies
that when two or more components use the connector using the protocol to
communicate, they must follow some conventions about order of events or
commands, order in which data is to be grouped for sending, error condi
tions etc. For example, if TCP ports are to be used to send information
from one process to another (TCP ports are the connector between the two
components of process type), the protocol requires that a connection must
first be established and a port number obtained before sending the infor
mation, and that the connection should be closed in the end. A protocol
description makes all these constraints explicit, and defines the error con
ditions and special scenarios. If a protocol is used by a connector type, it
should be explicitly stated.

Just like with components, in a C&C architecture diagram of a system,
it is best to use a different notation for the different connector type. It is
a common mistake to use a simple line or an arrow to represent all types
of connectors, forcing the reader to obtain the information about type from
elsewhere. However, multiple instances of the same connector type need not
be always distinguished through naming, as often the components being con
nected can provide the unique identification. As in components, as there are
no commonly accepted notations, it is best to provide a key of the notations
used. Some examples of connectors are shown in Figure 4.3.

It is worth pointing out that the implementation of a connector may
be quite complex and may be distributed. For example, a middleware like
CORBA provides connectors that may be used by objects for interaction.
However, there is a lot of code in the form of ORB (object request broker)
that is needed to support this connector. It is the ORB software that does
the format translations between the sender and the receiver components
and performs all the communication between them (using a protocol called
HOP), besides providing a host of other services that may be needed by
the objects to cooperate. Hence, explicit representation of connectors is
important, particularly in distributed systems where connectors play roles
that cannot be easily changed to implicit language and OS mechanisms.

If the connector is provided by the underlying system, then the compo
nents just have to ensure that they use the connectors as per their speci
fications. If, however, the underlying system does not provide a connector
used in an architecture, then as mentioned above, the connector will have to
be implemented as part of the project to build the system. That is, during

172 4. SOFTWARE ARCHITECTURE

Server
JDBC access

Database

Figure 4.4: Architecture of the survey system.

the development, not only will the components need to be developed, but
resources will have to be assigned to also develop the connector. (This situ
ation might arise for a specialized system that requires connectors that are
specific to the problem domain.)

4 .3 .3 A n E x a m p l e

We have now discussed the two key elements of a C&C architecture view
of a software system, and how they work together. Let us now discuss an
example, putting these concepts together.

Suppose we have to design and build a simple system for taking an on-line
survey of students on a campus. There is a set of multiple choice questions,
and the proposed system will provide the survey form to the student, who
can fill and submit it on-hne. We also want that when the user submits
the form, he/she is also shown the current result of the survey, that is,
what percentage of students so far have filled which options for the different
questions.

The system is best built using the Web; this is the likely choice of any
developer. For this simple system, a traditional 3-tier architecture is pro
posed. It consists of a client which will display the form that the student can
fill and submit, and will also display the results. The second component is
the server, which processes the data submitted by the student, and saves it
on the database, which is the third component. The server also queries the
database to get the outcome of the survey and sends the results in proper
format (HTML) back to the client, which then displays the result. A figure
giving the C&C view is shown in Figure 4.4.

Note that the client, server, and the database are all different types of
components, and hence are shown using different symbols. Note also that the
connectors between the components are also of different types. The diagram
makes the different types clear, making the diagram stand alone and easy to
comprehend.

Note that at the architecture level, a host of details are not discussed.

4.3. COMPONENT AND CONNECTOR VIEW 173

How is the URL of the survey set? What are the modules that go in building
these components and what language they are written in? Questions like
these are not the issues at this level.

Note also that the connector between the client and the server explicitly
says that http is to be used. And the diagram also says that it is a Web client.
This implies that it is assumed that there will be a Web browser running on
the machines from which the student will take the survey. Having the http
as the connector also implies that there is a proper http server running, and
that the server of this system will be suitably attached to it to allow access
by clients. In other words, the entire infrastructure of browser and the http
server, for the purposes of this apphcation, mainly provides the connector
between the client and the server (and a virtual machine to run the client of
the application).

There are some implications of choice of this connector on the compo
nents. The client will have to be written in a manner that it can send the
request using http (this will imply using some type of scripting language
or HTML forms). Similarly, it also implies that the server has to take its
request from the http server in the format specified by the http protocol.
Furthermore, the server has to send its results back to the client in the
HTML format. These are all constraints on implementing this architecture.
Hence, when discussing it and finally accepting it, the implications for the
infrastructure as well as the implementation should be fully understood and
actions should be taken to make sure that these assumptions are valid.

Extension I

The above architecture has no security and a student can take the survey
as many times as he wishes. Furthermore, even a non-student can take the
survey. Now the Dean of students wants that this system be open only to
registered students, and that each student is allowed to take the survey at
most once. To identify the students, it was explained that each student has
an account, and their account information is available from the main proxy
server of the institute.

Now the architecture will have to be quite different. The proposed ar
chitecture now has a separate login form for the user, and a separate server
component which does the validation. For validation, it goes to the proxy
for checking if the login and password provided are valid. If so, the server
returns a cookie to the client (which stores it as per the cookie protocol).
When the student fills the survey form, the cookie information validates the

174 4. SOFTWARE ARCHITECTURE

http http
Server

JDBC access

Database

thttp

Ihttp

Authentication
Server

Figure 4.5: Architecture for the survey system with authentication.

user, and the server checks if this student has already filled the survey. The
architecture for this system is shown in Figure 4.5.

Note that even though we are saying that the connection between the
client and the server is that of http, it is somewhat different from the con
nection in the earlier architecture. In the first architecture, plain http is
sufficient. In this one, as cookies are also needed, the connector is really
http + cookies. So, if the user disables cookies, the required connector is
not available and this architecture will not work.

Extension II

Now suppose, we want the system to be extended in a different way. It
was found that the database server is somewhat unrehable, and is frequently
down. It was also felt that when the student is given the result of the survey
when he submits the form, a somewhat outdated result is acceptable, as the
results are really statistical data and a little inaccuracy will not matter. We
assume that the survey result can be outdated by about 5 data points (even
if it does not include data of 5 surveys, it is OK). What the Dean wanted
was to make the system more reliable, and provide some facility for filling
the survey even when the database is down.

To make the system more reliable, the following strategy was thought.
When the student submits the survey, the server interacts with the database
as before. The results of the survey, however, are also stored in the cache by
the server. If the database is down or unavailable, the survey data is stored
locally in a cache component, and the result saved in the cache component

4.3. COMPONENT AND CONNECTOR VIEW 175

Cache
Manager

call - return

Server
JDBC access

Database

http

Ihttp

Authentication
Server

Figure 4.6: Architecture for the survey system with cache.

is used to provide the result to the student. (This can be done for up to 5
requests, after which the survey cannot be filled.) So, now we have another
component in the server called the cache manager. And there is a connection
between the server and this new component of the call/return type. This
architecture is shown in Figure 4.6.

It should be clear that by using the cache, the availability of the system
is improved. The cache will also have an impact on performance. These ex
tensions shows how architecture affects both availability and performance,
and how properly selecting or tuning the architecture can help meet the
quality goals (or just improve the quality of the system). (Of course, detail
level decisions like how a particular module is implemented also has impli
cations on performance, but they are quite distinct and orthogonal to the
architecture-level decisions.) We will later do a formal evaluation of these
different architectures to see the impact of architectural decisions on some
quality attributes.

176 4. SOFTWARE ARCHITECTURE

4.4 Architecture Styles for C&C View

As mentioned above, an architecture view describes a structure of the system
in terms of its elements and relationships among them. Clearly, different
systems will have different structures, even for the same view. There are,
however, some structures and related constraints that have been observed in
many systems and that seem to represent general structures that are useful
for architecture of a class of problems. These are called architectural styles.
A style defines a family of architectures that satisfy the constraints of that
style [35, 9, 135].

For example, for module views, some of the common styles are decompo
sition, uses, generalization, and layered. In decomposition style, a module is
decomposed into sub-modules, and the system becomes a hierarchy of mod
ules. In the uses style, modules are not parts of each other, but a module
uses services of other modules (for example, a function call or a method invo
cation) to correctly do its own work. In the generalization style, modules are
often classes, and a child class inherits the properties of the parent class and
specializes it. This supports an is-a hierarchy, where a child module is also
of the parent module type. In the layered style, the system is structured as a
stack of layers, each layer representing some virtual machine that provides a
clear set of services. In addition, a layer is allowed to use services only of its
adjacent layers. Some of these will be discussed later in the design chapters.

In this section we discuss some common styles for the C&C view. Many
styles have been proposed for C&C view, some for specific domains. Here
we discuss only a few that are widely discussed in literature and which can
be useful for a large set of problems [135, 35]. These styles can provide ideas
for creating an architecture view for the problem at hand. Styles can be
combined to form richer views. In fact, it is likely that for a problem, a
combination of styles may provide the desired architecture. Many systems
use multiple styles and different parts of a system may use different styles.

4.4.1 Pipe and Filter

Pipe and filter style of architecture is well suited for systems that primarily
do data transformation some input data is received and the goal of the system
is to produce some output data by suitably transforming the input data. A
system using pipe-and-filter architecture achieves the desired transformation
by applying a network of smaller transformations and composing them in a
manner that together the overall desired transformation is achieved.

4.4. ARCHITECTURE STYLES FOR CSzC VIEW 177

The pipe and filter style has only one component type called the filter.
It also has only one connector type, called the pipe. A filter performs a data
transformation, and sends the transformed data to other filters for further
processing using the pipe connector. In other words, a filter receives the data
it needs from some defined input pipes, performs the data transformation,
and then sends the output data to other filters on the defined output pipes.
A filter may have more than one inputs and more than one outputs. Filters
can be independent and asynchronous entities, and as they are concerned
only with the data arriving on the pipe, a filter need not know the identity
of the filter that sent the input data or the identity of the filter that will
consume the data they produce.

The pipe connector is a unidirectional channel which conveys streams of
data received on one end to the other end. A pipe does not change the data
in any manner but merely transports it to the filter on the receiver end in the
order in which the data elements are received. As filters can be asynchronous
and should work without the knowledge of the identity of the producer or the
consumer, buffering and synchronization need to ensure smooth functioning
of the producer-consumer relationship embodied in connecting two filters by
a pipe is ensured by the pipe. The filters merely consume and produce data.

There are some constraints that this style imposes. First, as mentioned
above, the filters should work without knowing the identity of the consumer
or the producer; they should only require the data elements they need. Sec
ond, a pipe, which is a two-way connector, must connect an output port of
a filter to an input port of another filter.

A pure pipe-and-filter structure will also generally have a constraint that
a filter has independent thread of control which process the data as it comes.
Implementing this will require suitable underlying infrastructure to support a
pipe mechanism which buffers the data and does the synchronization needed
(for example, blocking the producer when the buffer is full and blocking the
consumer filter when the buffer is empty). For using this pipe, the filter
builder must be fully aware of the properties of the pipe, particularly with
regards to buffering and synchronization, input and output mechanisms, and
the symbols for end of data.

However, there could be situations in which the constraint that a filter
process the data as it comes may not be required. Without this constraint,
pipe-and-filter style view may have filters that produce the data completely
before passing it on, or which start their processing only after complete input
is available. In such a system the filters cannot operate concurrently, and
the system is like a batch-processing system. However, it can considerably

178 4. SOFTWARE ARCHITECTURE

Sequencer
sequence of words

Sorting
sorted words

Counting

I
frequency of words

Figure 4.7: Pipe-and-Filter example.

simplify the pipes and easier mechanisms can be used for supporting them.
Lets consider an example of a system needed to count the frequency of

different words in a file. An architecture using the pipes-and-filter style for
a system to achieve this is given in Figure 4.7.

This architecture proposes that the input data be first split into a se
quence of words by a component Sequencer. This sequence of words is then
sorted by the component Sorting, which passes the output of sorted words
to another filter (Counting) that counts the number of occurrences of the
different words. This structure of sorting the words first has been chosen
as it will make the task of determining the frequency more efficient, even
though it involves a sort operation. It should be clear that this proposed ar
chitecture can implement the desired functionality. Later in the chapter we
will further discuss some implementation issues related to this architecture.

As can be seen from this example, pipe and filter architectural style is
well suited for data processing and transformation. Consequently, it is useful
in text processing appUcations. Signal processing applications also find it
useful as such applications typically perform encoding, error correction, and
other transformations on the data.

The pipe and filter style, due to the constraints, allows a system's overall
transformation to be composed of smaller transformations. Or viewing it in
another manner, it allows a desired transformation to be factored into smaller
transformations, and then filters built for the smaller transformations. That
is, it allows the techniques of functional composition and decomposition to
be utilized something that is mathematically appealing.

4.4.2 Shared-Data Style

In this style, there are two types of components—data repositories and data
accessors. Components of data repository type are where the system stores
shared data—these could be file systems or databases. These components
provide a rehable and permanent storage, take care of any synchronization

4.4. ARCHITECTURE STYLES FOR C&C VIEW 179

needs for concurrent access, and provide data access support. Components
of data accessor type access data from the repositories, perform computa
tion on the data obtained, and if they want to share the results with other
components, put the results back in the depository. In other words, the
accessors are computational elements that receive their data from the repos
itory and save their data in the repository as well. These components do
not directly communicate with each other—the data repository components
are the means of communication and data transfer between them.

There are two variations of this style possible. In the blackboard style,
if some data is posted on the data repository, all the accessor components
that need to know about it are informed. In other words, the shared data
source is an active agent as well which either informs the components about
the arrival of interesting data, or starts the execution of the components
that need to act upon this new data. In databases, this form of style is
often supported through triggers. The other is the repository style, in which
the data repository is just a passive repository which provides permanent
storage and related controls for data accessing. The components access the
repository as and when they want.

As can be imagined, many database applications use this architectural
style. Databases, though originally more like repositories, now act both as
repositories as well as blackboards as they provide triggers and can act as
efficient data storage as well. Many Web systems frequently follow this style
at the back end^—in response to user requests, different scripts (data acces
sors) access and update some shared data. Many programming environments
are also organized this way the common representation of the program arti
facts is stored in the repository and the different tools access it to perform
the desired translations or to obtain the desired information. (Some years
back there was a standard defined for the common repository to facilitate
integration of tools.)

As an example of a system using this style of architecture, let us con
sider a student registration system in a University. The system clearly has a
central repository which contains information about courses, students, pre
requisites, etc. It has an Administrator component that sets up the repos
itory, rights to different people, etc. The Regis t ra t ion component allows
students to register and update the information for students and courses.
The Approvals component is for granting approvals for those courses that
require instructor's consent. The Reports component produces the report
regarding the students registered in different courses at the end of the regis
tration. The component Course Feedback is used for taking feedback from

180 4. SOFTWARE ARCHITECTURE

Repository

Figure 4.8: Shared data example.

students at the end of the course. This architecture is shown in Figure 4.8.
Note that the different computation components do not need to com

municate with each other and do not even need to know about each others
presence. For example, if later it is decided that the scheduling of courses can
be automated based on data on registration (and other information about
class rooms etc.), then another component called Scheduling can be simply
added. No existing computation component needs to change or be informed
about the new component being added. (This example is based on a system
that is actually used in the author's University.)

There is really only one connector type in this style—read/write. Note,
however, that this general connector style may take more precise form in
particular architectures. For example, though a database can be viewed as
supporting read and updates, for a program interacting with it, the database
system may provide transaction services as well. Connectors using this trans
action service allow complete transactions (which may involve multiple reads
and writes and preserve atomicity) to be performed by an application.

Note also that as in many other cases, the connectors involve a consider
able amount of underlying infrastructure. For example, read and writes to a
file system involves a fair amount of file system software involving issues like
directories, buffering, locking, and synchronization. Similarly, a considerable
amount of software goes in databases to support the type of connections it
provides for query, update, and transactions. We will see another use of this

4.4. ARCHITECTURE STYLES FOR CkC VIEW 181

style later when we discuss the case studies.

4.4.3 Client-Server Style

Another very common style used to build systems today is the client server
style. Client-server computing is one of the basic paradigms of distributed
computing and this architecture style is built upon this paradigm.

In this style, there are two component types—clients and servers. A
constraint of this style is that a client can only communicate with the server,
and cannot communicate with other clients. The communication between a
client component and a server component is initiated by the client the client
sends a request for some service that the server supports. The server receives
the request at its defined port, performs the service, and then returns the
results of the computation to the client who requested the service.

There is one connector type in this style—the request/reply type. A con
nector connects a client to a server. This type of connector is asymmetric—
the client end of the connector can only make requests (and receive the reply),
while the server end can only send rephes in response to the requests it gets
through this connector. The communication is frequently synchronous—the
client waits for the server to return the results before proceeding. That is,
the client is blocked at the request, untill it gets the reply.

A general form of this style is a n-iier structure. In this style, a client
sends a request to a server, but the server, in order to service the request,
sends some request to another server. That is, the server also acts as a client
for the next tier. This hierarchy can continue for some levels, providing a
n-tier system. A common example of this is the 3-tier architecture. In this
style, the clients that make requests and receive the final results reside in the
client-tier. The middle tier, called the business-tier, contains the component
that processes the data submitted by the clients and applies the necessary
business rules. The third tier is the database tier in which the data resides.
The business tier interacts with the database tier for all its data needs.

Most often, in a client server architecture, the client and the server com
ponent reside on different machines. Even if they reside on the same ma
chine, they are designed in a manner that they can exist on different ma
chines. Hence, the connector between the client and the server is expected
to support the request/result type of connection across different machines.
Consequently, these connectors are internally quite complex and involve a
fair amount of networking to support. Many of the client-server systems
today use TCP ports for their connectors. The Web uses the HTTP for

182 4. SOFTWARE ARCHITECTURE

supporting this connector.
Note that there is a distinction between a layered architecture and a

tiered architecture. The tiered style is a component and connector architec
ture view in which each tier is a component, and these components commu
nicate with the adjacent ones through a defined protocol. A layered architec
ture is a module view providing how modules are organized and used. In the
layered organization, modules are organized in layers with modules in a layer
allowed to invoke services only of the modules in the layer below. Hence,
layered and tiered represent two different views. We can have a n-tiered
architecture in which some tier(s) have a layered architecture. For example,
in a client-server architecture, the server might have a layered architecture,
that is, modules that compose the server are organized in the layered style.

4.4,4 Some Other Styles

Publish-Subscribe Style

In this style, there are two types of components. One type of component
subscribes to a set of defined events. Other types of components generate
or publish events. In response to these events, the components that have
published their intent to process the event, are invoked. This type of style
is most natural in user interface frameworks, where many events are defined
(like mouse click) and components are assigned to these events. When that
event occurs, the associated component is executed. As is the case with
most connectors, it is the task of the runtime infrastructure to ensure that
this type of connector (i.e., publish-subscribe) is supported. This style can
be seen as a special case of the blackboard style, except that the repository
aspect is not being used.

Peer-to-peer style, or object-oriented style

If we take a client server style, and generalize each component to be a client
as weh as a server, then we have this style. In this style, components are
peers and any component can request a service from any other component.
The object oriented computation model represents this style well. If we
view components as objects, and connectors as method invocations, then we
have this style. This model is the one that is primarily supported through
middleware connectors like CORBA or .NET.

4.5. DISCUSSION 183

Communicating processes style

Perhaps the oldest model of distributed computing is that of communicating
processes. This style tries to capture this model of computing. The compo
nents in this model are processes or threads, which communicate with each
other either with message passing or through shared memory. This style is
used in some form in many complex systems which use multiple threads or
processes.

4.5 Discussion

Software architecture is an evolving area, and there are many issues that
have not been fully resolved. In this section we discuss some issues in order
to further clarify concepts relating to architecture and designing of architec
tures.

4.5.1 Architecture and Des ign

We have seen that while creating an architecture, the system may be parti
tioned in different ways, each providing a view that focuses on partitioning
the system into parts to highlight some structure of the system. Views may
highlight the runtime structure by showing the components that exist in
the system and how the components interact, or the module structure which
shows how the code modules are organized for the system, or the deployment
structure which focuses on how the different units are assigned to resources.

As partitioning a system into smaller parts and composing the system
from these parts is also a goal of design, a natural question is what is the
difference between a design and architecture as both aim to achieve similar
objectives and seem to fundamentally rely on the divide and conquer rule?
First, it should be clear that architecture is a design in that it is in the
solution domain and talks about the structure of the proposed system. Fur
thermore, an architecture view gives a high level view of the system, relying
on abstraction to convey the meaning—something which design also does.
So, architecture is design.

We can view architecture as a very high-level design, focusing only on
main components, and the architecture activity as the first step in design.
What we term as design is really about the modules that will eventually
exist as code. That is, they are a more concrete representation of the im
plementation (though not yet an implementation). Consequently, during

184 4. SOFTWARE ARCHITECTURE

design lower level issues like the data structures, files, and sources of data,
have to be addressed, while such issues are not generally significant at the
architecture level. We also take the view that design can be considered as
providing the module-view of the architecture of the system. As discussed
before, we believe the third level of design (which we call the detailed design)
is to design the logic of the various modules and their functions.

The boundaries between the first two levels of design—architecture and
high-level design are not fully clear. The way the field has evolved, we can
say that the line between architecture and design is really up to the designer
or the architect. At the architecture level, one needs to show only those parts
that are needed to perform the desired evaluation. The internal structure of
these parts is not important. On the other hand, during design, designing
the structure of the parts that can lead to constructing them is one of the
key tasks. However, which parts of the structure should be examined and
revealed during architecture and which parts during design is a matter of
choice. Generally speaking, details that are not needed to perform the types
of analysis we wish to do at the architecture time are unnecessary and should
be left for design to uncover.

It should, however, be pointed out that having an architecture imposes
constraints on choices that can be made during the design, and while creating
the design of the system these constraints should be honored. We discuss
this issue a bit more later in this section. Design might also have an influence
on architecture—during design some shortcomings in the architecture from
the design perspective might be revealed. This may require the architecture
to be modified. This situation, however, is the same with any stage—a later
stage may require output of an earlier stage to be modified.

4.5.2 Preserving the Integrity of an Architecture

What is the role of the architecture as the project moves forward and design
and development is done? Many novice designers treat architectures as just
pictures which help in understanding the system but which have no role
to play while code is being developed. A mistake made by novices and
professionals alike is that after the architecture is discussed and agreed, when
the teams go to build the system, they build it the way they want to without
regards to the architectural decisions. One informal study at an organization
revealed that the architecture extracted from the code of a product (the
actual architecture of the software) had httle resemblance to the architecture
that was planned and was supposed to be implemented. There are many

4.5. DISCUSSION 185

reasons for this which we will not go into, but lack of communication and
enforcement are important contributors.

For an architecture design to be meaningful, it should guide the design
and development of the system. And if the integrity of the architecture is
fully preserved, the architecture of the final system should be the same as the
architecture designed and agreed to during the early stages of the project.
That is, the implementation must have the components shown in the C&C
view, and the components should interact in the manner prescribed in the
view.

It is important that the architecture integrity is preserved as otherwise
the value of the architecture is minimal. Furthermore, one of the key rea
sons for designing an architecture (rather than just letting some architecture
evolve as the system is built) is to be able to analyze the system properties
well before the system is built and evolve optimal strategies for the final
system. This means that accepting an architecture is far more than just
agreeing that the architecture is correct (in that it can implement the sys
tem). The process of acceptance will generally involve formal or informal
analysis of the architecture, and final acceptance also means that the sys
tem having the proposed architecture will have the properties desired for
the system. By deviating from the architecture, we may go in a direction in
which the system does not have the desired properties. Hence, it is extremely
important that the integrity of the architecture is preserved.

Let us understand the issue of architecture integrity preservation through
an example. Earher, we discussed the architecture of a system to determine
the frequency of different words in a text file. The architecture designed and
agreed is shown in Figure 4.7. The architecture says that the system, in its
execution, will have a component to split the file in words, another compo
nent to sort the words, and the third component to count the frequency of
different words. The data is passed between the components using pipes.

Now consider the following implementation of the system. Each of the
components is written as a complete C program. The first program creates
a pipe and writes to it. The second program reads from this pipe and writes
to another pipe. The third program reads from this new pipe. The overall
system is a small script that executes these programs in parallel.

This implementation is clearly consistent with the architecture view that
was designed earher. Each of the three components have a runtime presence
(they will be executed as separate processes by UNIX,) and they pass data
using the UNIX pipe, which has the same semantics as the pipe connector
of the pipe-and-filter style, in that it provides a buffered, streaming, data

186 4. SOFTWARE ARCHITECTURE

input file

main program

word list
I sorted word list \ . word frequencies

sorted word list

counting

Figure 4.9: Another implementation of the system.

passing mechanism. Hence, it is easy to see that the C&C architecture view
of this implementation is same as the architecture given earlier in Figure 4.7,
and this implementation preservers the architectural integrity.

The above implementation clearly has huge performance overhead in
that separate processes are created and the communication through UNIX
pipes can be quite expensive. Now consider the following implementation,
which avoids these performance problems by having the same functions in the
system, but organizing them differently. The system, written in C, has three
functions corresponding to the three components, and two functions for the
two connectors. The connector function invokes one component function for
getting the data, and then passes the data to the other component function.
In the actual implementation, to further reduce the overhead, we let the main
function perform the roles of both the connector functions. The structure is
shown in Figure 4.9.

Does this implementation preserve the architecture integrity? The an
swer to this is not totally unambiguous. The three functions implement the
same functionality as the components in the architecture design. But can
they be treated as separate components, as they are really just functions?
The answer is not obvious. The components satisfy some properties of the
filters in that they do not need to know the identity of the components from
which they get the data or send the data. The connector in this implemen
tation is really the parameter passing mechanism. Though the data is being
passed as an organized series of data items, it is really not streaming or
buffered in that complete data is passed at once. Furthermore, this struc
ture does not allow the three components to execute in parallel; they are
executed strictly in sequence.

4.5. DISCUSSION 187

count frequencies
of words

word list X
/ / /
X word

get a word

i

word

,

t
flag

same as previous 7

- ^ \
counix count

increment count

Figure 4.10: A third implementation.

Still, this implementation can be viewed as preserving the architectural
integrity, particularly if no restrictions were exphcitly placed on the compo
nents (in terms of parallel execution) and the connectors (in terms of buffer
ing and data passing). Note that these restrictions could have been placed
explicitly in the architecture description or implicitly during its analysis—for
example, the analysis may have assumed that the components are executing
in parallel and may have taken data transfer speeds to be such that they are
consistent with a separate pipe.

Now consider a third implementation. A designer and a coder look at
the problem statement (and do not look at the architecture designed) and
decide that an easy way to implement the problem is to get a word at a
time and then simply increment the count for the word, if it already exists
in the frequency hst, or add the word if it does not. In this, we have a main
C program which has a word extractor and a frequency counter. When the
data is finished, the frequency output program shows the frequencies of the
different words. The structure of this implementation is shown in figure 4.10.

This implementation clearly is not consistent with the architecture de
signed above. It does not have the same components and the processing
approach is different from the one envisaged in the architecture. It should
be pointed out that this implementation is also correct for the problem
statement (the system does implement the requirements). Note that this
mismatch of architecture is largely due to the approach and not due to the
fact that all components are combined in one program. Even if the imple-

188 4. SOFTWARE ARCHITECTURE

mentation was done using separate programs which pass the data through
pipes (an implementation that can be easily done for this approach), the mis
match between the architecture of the system and the designed architecture
will remain.

It is this type of mismatch that frequently occurs. If the implementers of
the system start from the requirements and do not consider the architecture
that has been created, they can create a correct system that may provide
the functionality, but the architecture integrity may not be preserved. This
can have other consequences. For example, the performance of the final
system may not be as was envisaged when the architecture was designed as
the system may get engineered in a manner that it is unable to provide the
performance. By preserving the architecture, if the architecture was designed
and evaluated properly, the final engineered system is more likely to fulfill
the other properties. Besides performance, an architecture may be evaluated
for other properties like maintainability, suitability for use with the available
resources, etc. By not preserving the integrity of the architecture, we risk
not meeting requirements for these properties.

This example illustrates that it is easy to fall in the trap of ignoring the
architecture and building the system from scratch. This is a pitfall that
system designers and builders must avoid. The architecture design imposes
some restrictions on how the system can be built and engineered, and these
constraints and restrictions should be honored and the system should be
built in a manner that the architecture of the final system is same as the
architecture that was conceived (except, of course, the changes that were
intentionally done after careful consideration and discussion).

4 .5.3 D e p l o y m e n t V i e w a n d P e r f o r m a n c e Ana lys i s

As discussed earlier, there are different views through which software archi
tectures can be represented and which views we use depends on the types of
analysis we want to do at the architecture design time. We have focused on
the C&C view as the primary view, and have discussed a few styles for this
view as well.

If we want to analyze the performance of the architecture (to be ex
act, performance of the system that will have the proposed architecture,)
then even though the C&C view represents the run-time structure, it is
not enough. The reason is that though performance depends on the run
time structure of the software, it also depends on the hardware and other
resources that will be used to execute the software. For example, the per-

4.5. DISCUSSION 189

formance of a n-tier system will be very different if all the tiers reside on the
same machine as compared to if they reside on different machines. In other
words, the performance of a system whose architecture remains the same,
can change depending on how the components of the architecture are allo
cated on the hardware. Hence, to do any meaningful performance analysis,
we must specify the allocation as well. The same holds true if we want to do
any reliability or availability analysis, as they also depend on the reliability
of the hardware components involved in running the system.

To facilitate such an analysis, a deployment view needs to be provided.
In a deployment view, the elements of a C&C style are allocated to execution
resources like CPU and communication channels. Hence, the elements of this
view are the software components and connectors from the C&C view, and
the hardware elements like CPU, memory, and bandwidth. This view shows
which software components are allocated to which hardware element. This
allocation can be dynamic and this dynamism can also be represented.

Note that even the allocation view, which is necessary to do performance
analysis, is not sufficient. To analyze the performance, besides the alloca
tion, we will need to properly characterize the hardware elements in terms of
their capacities, and the software elements in terms of their resource require
ment and usage. Using the information, models can be built to determine
bottlenecks, optimal allocation, etc. This is an active area of research and a
survey of the area can be found in [4].

For doing any performance analysis, some models will have to be built,
and these models will need information about the hardware and software
components and how the software is allocated to software. The level of detail
that can be obtained depends on the model used. At the basic level, some
experience-based analysis can be done to see if there are any performance
bottlenecks. The allocation of software can also be examined for optimality
of performance, and if needed that allocation can be changed. For example,
in a n-tier system, it may be found that the overhead of communication is
too heavy between two tiers, and it may be better to allocate both of them
to one machine. Or the analysis may reveal the reverse—allocating both
the database and the business layer on the same machine might degrade the
response time as concurrency will be lost, and it may be decided to add
another machine to host the business layer and connect it to the machine
hosting the database layer with a high speed connection.

Many such possibilities exist for performance analysis. Consequently, for
C&C view of the architecture, it may be desirable to look at an allocation
view at the time of creating the architecture. It may be added that not all

190 4. SOFTWARE ARCHITECTURE

C&C views render themselves easily or fruitfully for allocation view. The
n-tier style (or client-server style), or the process view clearly render itself
to an allocation view. However, it is not clear if the allocation view of a
publish-subscribe view will be very useful. For giving an allocation view, it
is best to chose a C&C view that renders itself naturally to the allocation
view. If the views obtained so far do not render themselves to an allocation
view, but an allocation view is essential for the desired analysis, then a view
should be created that can be used for such an allocation and analysis.

4.5.4 Documenting Architecture Design

So far we have focused on representing views through diagrams. While
designing, diagrams are indeed a good way to explore options and encour
age discussion and brainstorming between the architects. But when the
designing is over, the architecture has to be properly communicated to all
stakeholders for negotiation and agreement. This requires that architecture
be precisely documented with enough information to perform the types of
analysis the different stakeholders wish to make to satisfy themselves that
their concerns have been adequately addressed. Without a properly doc
umented description of the architecture, it is not possible to have a clear
common understanding. Hence, properly documenting an architecture is as
important as creating one. In this section, we discuss what an architecture
document should contain. Our discussion is based on the recommendations
in [93, 35, 9].

Just like different projects require different views, different projects will
need different level of detail in their architecture documentation. In gen
eral, however, a document describing the architecture should contain the
following:

• System and architecture context

• Description of architecture views

• Across views documentation

We know that an architecture for a system is driven by the system ob
jectives and the needs of the stakeholders. Hence, the first aspect that an
architecture document should contain is identification of stakeholders and
their concerns. This portion should give an overview of the system, the dif
ferent stakeholders, and the system properties for which the architecture will

4.5, DISCUSSION 191

be evaluated. A context diagram that establishes the scope of the system,
its boundaries, the key actors in that interact with the system, and sources
and sinks of data can also be very useful. A context diagram is frequently
represented by showing the system in the center, and showing its connections
with people and systems, including sources and sinks of data.

With the context defined, the document can proceed with describing the
different structures or views. As stated before, multiple views of different
types may be needed, and which views are chosen depends on the needs of
the project and its stakeholders. The description of views in the architecture
documentation will almost always contain a pictorial representation of the
view, which is often the primary presentation of the view. As discussed
earlier, in any view diagram it is desirable to have different symbols for
different element types and provide a key for the different types, such that
the type of the different components (represented using the symbols) is clear
to a reader. It is, of course, highly desirable to keep the diagram simple and
uncluttered. If necessary, to keep the complexity of the view manageable,
a hierarchical approach can be followed to make the main view simple (and
provide further details as structure of the elements).

However, a pictorial representation is not a complete description of the
view. It gives an intuitive idea of the design, but is not sufficient for providing
the details. For example, what is the purpose and functionality of a module
or a component is indicated only by its name which is not sufficient. Hence,
supporting documentation is needed for the view diagrams. This supporting
documentation should have some or all of the following:

• Element Catalog. Provides more information about the elements shown
in the primary representation. Besides describing the purpose of the el
ement, it should also describe the elements' interfaces (remember that
all elements have interfaces through which they interact with other el
ements). All the different interfaces provided by the elements should
be specified. Interfaces should have unique identity, and the specifica
tion should give both syntactic and semantic information. Syntactic
information is often in terms of signatures, which describe all the data
items involved in the interface and their types. Semantic information
must describe what the interface does. The description should also
clearly state the error conditions that the interface can return.

• Architecture Rationale. Though a view specifies the elements and and
the relationship between them, it does not provide any insight into why

192 4. SOFTWARE ARCHITECTURE

the architect chose the particular structure. Architecture rationale
gives the reasons for selecting the different elements and composing
them in the way it was done. This section may also provide some
discussion on the alternatives that were considered and why they were
rejected. This discussion, besides explaining the choices, is also useful
later when an analyst making a change wonders why the architecture
should not be changed in some manner (that might make the change
easy).

• Behavior. A view gives the structural information. It does not rep
resent the actual behavior or execution. Consequently, in a structure,
all possible interactions during an execution are shown. Sometimes, it
is necessary to get some idea of the actual behavior of the system in
some scenarios. Such a description is useful for arguing about prop
erties like deadlock. Behavior description can be provided to help aid
understanding of the system execution. Often diagrams like collabo
ration diagrams or sequence diagrams (we will discuss these further in
the Chapter on 0 0 design) are used.

• Other Information, This may include a description of all those deci
sions that have not been taken during architecture creation but have
been deliberately left for future. For example, the choice of a server or
protocol. If this is done, then it must be specified as fixing these wih
have impact on the architecture.

We know that the different views are related. In what we have discussed
so far, the views have been described independently. The architecture doc
ument therefore, besides describing the views, should also describe the re
lationship between the different views. This is the primary purpose of the
across view documentation. Essentially, this documentation describes the
relationship between elements of the different views (for example, how mod
ules in a module view relate to components in a component view, or how
components in a C&C view relate to processes in a process view). This part
of the document can also describe the rationale of the over ah architecture,
why the selected views were chosen, and any other information that cuts
across views.

However, often the relationship between the different views is straight
forward or very strong. In such situations, the different structures may look
very similar and describing the views separately can lead to a repetition. In
such situations, for practical reasons, it is better to combine different views

4.5. DISCUSSION 193

into one. Besides eliminating the duplication, this approach can also help
clearly show the strong relationship between the two views (and in the pro
cess also reduce the across view documentation). Combined views are also
useful for some analysis which require multiple views, for example, perfor
mance analysis, which frequently requires both the C&C view as well as the
allocation view. So, sometimes, it may be desirable to show some combined
views.

Combining of views, however, should be done only if the relationship be
tween the views is strong and straightforward. Otherwise, putting multiple
views in one diagram will clutter the view and make it confusing. The ob
jective of showing multiple views in one is not merely to reduce the number
of views, but is to be done primarily to aid understanding and showing the
relationships. An example of combining is when there are multiple modules
in the module view that form the different layers in the layer view. In such
a situation, it is probably more natural to show one view consisting of the
layers, and overlaying the module structure on the layers. That is, showing
the module structure within the layers. Many layered systems architectures
actually use this approach. In such a situation, it is best to show them to
gether, creating a hybrid style in which both a module view and a C&C view
are captured. Overall, if the mapping can be shown easily and in a simple
manner, then different views should be combined for the sake of simphcity
and compactness. If, however, the relationship between the different views
is complex (for example, a many-to-many relationship between elements of
the different views), then it is best to keep them separate and specify the
relationship separately.

The general structure discussed here can provide a guide for organizing
the architecture document. However, the main purpose of the document is
to clearly communicate the architecture to the stakeholders such that the
desired analysis can be done. And if some of these sections are redundant
for that purpose, they may not be included. Similarly, if more information
needs to be provided, then it should be done.

Finally, a word on the language chosen for describing different parts
of the architecture. Here the choice varies from the formal architecture
description languages (ADLs) to informal notation. Many people now use
UML to represent the architecture, which allows various possibilities to show
the primary description of the view and also allows annotation capability for
supporting document. We believe that any method can be used, as long
as the objective is met. To allow flexibility, we suggest using a problem
specific notation, but following the guidelines for good view representation,

194 4. SOFTWARE ARCHITECTURE

and using a combination of header definitions and text for the supporting
documentation.

4.6 Evaluating Architectures

Architecture of a software system impacts some of the key nonfunctional
quahty attributes hke modifiabihty, performance, rehabihty, portabihty, etc.
The architecture has a much more significant impact on some of these prop
erties than the design and coding choices. That is, even though choice of
algorithms, data structures, etc., are important for many of these attributes,
often they have less of an impact than the architectural choices. Clearly then
evaluating a proposed architecture for these properties can have a beneficial
impact on the project—any architectural changes that are required to meet
the desired goals for these attributes can be done during the architecture
design itself.

There are many nonfunctional quality attributes. Not all of them are
affected by architecture significantly. Some of the attributes on which archi
tecture has a significant impact are performance, reliability and availability,
security (some aspects of it), modifiabihty, reusability, and portabihty. At
tributes like usability are only mildly affected by architecture.

How should a proposed architecture be evaluated for these attributes?
For some attributes like performance and reliability, it is possible to build
formal models using techniques like queuing networks and use them for as
sessing the value of the attribute. However, these models require information
beyond the architecture description, generally in forms of execution times,
and reliability of each component.

Another approach is procedural—a sequence of steps is followed to sub
jectively evaluate the impact of the architecture on some of the attributes.
One such informal analysis approach that is often used is as follows. First
identify the attributes of interest for which an architecture should be evalu
ated. These attributes are usually determined from stakeholder's interests—
the attributes the different stakeholders are most interested in. These at
tributes are then listed in a table. Then for each attribute, an experience-
based, subjective analysis is done (though quantitative analysis can also be
done), to assess the level supported by the architecture. The analysis might
mention the level for each attribute (e.g., good, average, poor), or might
simply mention whether it is satisfactory or not. Based on the outcome of
this analysis, the architecture is either accepted or rejected. If rejected, it

4.6. EVALUATING ARCHITECTURES 195

may be enhanced to improve the performance for the attribute for which the
proposed architecture was unsatisfactory.

Many techniques have been proposed for evaluation, and a survey of them
is given in [51]. Here we briefly discuss some aspects of a more elaborate
and formal technique called architectural tradeoff analysis method.

4.6.1 The ATAM Analysis Method

The architectural tradeoff analysis method (ATAM) [105, 35], besides ana
lyzing the architecture for a set of properties, also helps in identifying de
pendencies between competing properties and perform a tradeoff analysis.
We will, however, mostly focus on the analysis. The basic ATAM analysis
has the following steps, which can be repeated, if needed:

1. Collect Scenarios. Scenarios describe an interaction of the system. For
architecture analysis, scenarios list the situations the system could be
in and for which we would like to evaluate the architecture for different
attributes. Besides normal scenarios, exceptional scenarios of interest
should also be mentioned.

2. Collect Requirements or Constraints. These specify what are the re
quirements for the system. That is, what is expected from the system
in these scenarios. The scenarios together with requirements form the
basis for evaluation—we want to ensure that the software will satisfy
these requirements in these scenarios. These requirements essentially
specify the desired levels (hopefully quantitatively) for the quality at
tributes of interest. So, for example, instead of saying performance is
of interest in this system, a constraint or a requirement will be like
"the average response time should be less than 1 ms."

3. Describe Architectural Views. The views of different proposed archi
tectures are collected here. These are the architectures that will be
evaluated. What views are needed to describe a proposed architecture
depends on what analysis needs to be performed, which is driven by the
requirements or constraints. We will limit our attention to component
and connector view only.

4. Attribute-Specific Analysis. Now we have the proposed architectures,
the different quality attributes of interest for the system, and the dif
ferent scenarios under which these attributes should be evaluated. In

196 4. SOFTWARE ARCHITECTURE

this step, each quahty attribute is analyzed separately and individually.
The analysis should result in what levels an architecture can support
for the quality attribute. So, for example, an analysis can result in a
statement hke "the availabihty of this system is 0.95." Once the anal
ysis for all the attributes is done, it can be seen to what degree the
requirements identified earlier are met. The outcome of this analysis
can become the basis for selecting one architecture over other. It can
also form the basis of changing a proposed architecture in an attempt
to meet the desired levels. If an architecture is changed, then the whole
analysis needs to be repeated, making ATAM a spiral process.

5. Indentify Sensitivities and Tradeoffs, Prom the analysis, for each at
tribute, sensitivity of the different elements in the architecture view
should be determined. That is, how much impact does an element
have on the attribute value. Prom this we identify the sensitivity points,
which are the elements that have the most significant impact on the at
tribute value. Sensitivity points are these elements whose change will
have the maximum impact on the quality attribute. Tradeoff points
are those elements that are sensitivity points for multiple attributes.
Changing these elements will have a significant impact on multiple at
tributes. These elements are where tradeoffs decisions will have to be
taken, particularly if changing it favorably affects one attribute but
negatively affects the other. For example, in a n-tier architecture, a
server will be the tradeoff point as it significantly affects performance
as well as availability. Replicating the server and performing updates
on each server (to keep each current) can improve the availability, but
can have a detrimental effect on update performance.

4.6,2 An Example

Earlier in the chapter, we gave an example of the student-survey system.
We will take that example for evaluation and consider the second and the
third architectures proposed (we do not consider the first one as it does
not have the same functionality as others). Por analysis, we add another
architecture, in which the cache component is between the server and the
database component. That is, in this architecture, each request is directly
sent to the cache, which then decides whether to respond using data from the
cache or from the database. This architecture is shown in Pigure 4.11. We
assume that the cache component in this architectures updates the database

4.6. EVALUATING ARCHITECTURES 197

Server
call - return

Cache Manager
JDBC access

Database

http

http

Authentication
Server

Figure 4.11: Another architecture for the student survey system.

as well as its own data after every 5th survey. (For analysis we add a
requirement on data currency to allow this. The requirement is given below.)
We focus only on survey-taking and ignore the feature of just getting the
survey result.

Let us now analyze these architectures using ATAM. First we hst the
scenarios of interest. These are:

• SI. A student submits the survey form and gets current results of the
survey (normal scenario; all servers are up, load normal.)

• S2. A student tries to take the survey many times.

• S3. The database server is temporarily down.

• S4' The network/system is highly loaded.

Some of the requirements or constraints for the system are:

• Security. A student should be allowed to take the survey at most once.

• Response Time. A student should get a response time of less than 2
sec on an average, 80% of the time.

• Availability. The system should at least have availability of 0.85 (that
is, when a student comes, there is a 85% chance that he can successfully
take the survey).

• Data Currency. The survey result given to a student should be rea
sonably current and should not be older than 5 submissions before.

198 4. SOFTWARE ARCHITECTURE

Now let us evaluate the three architecture proposals for these attributes.
For analysis, we will look at each of the attributes and then study the three
architectures under the scenarios relevant for that attribute. For security
and data currency, we will analyze based on our understanding of the archi
tecture. For availability and response time, formal models are possible. We
will use simple probability-based approach here.

For the availability analysis, we assume that the cache is on the same
machine as the server, the database is on a different machine, and that
availabihty of each of the machines is 0.9. We also assume that when the
database goes down, during its repair time, on an average, 10 student survey
requests come. For response time, we assume the following response times:

Component Normal conditions Heavily loaded
Server + security 300ms 600ms
Database 800ms 1600ms
Cache 50ms 50ms

We also assume that a timeout of about 2 seconds is used when the server
tries to access the database, and that the network is heavily loaded 1% of
the time.

We do not show all the computations here, but illustrate a few. The
availability for the first architecture is the probability that both the server
and database are up, as that is the only case in which a request can be
serviced. This is 0.9 * 0.9 = 0.81. For the second and the third case, it
is slightly more complex. When the database is down (on an average for
10 requests), up to 5 requests can still be serviced. Hence, even when the
database is down, the system is up for half the time. This gives us an
additional availability of 0.5 * 0.9 * 0.1 = 0.045 (half the probability that
server is up and database is down). So, the availability of these architectures
is 0.81 + 0.045 = 0.855.

Determining the average response time is slightly more involved, as we
have to consider both the heavy load and normal load situations. In normal
load, for first architecture, the average response time will be 300 -j- 800 =
1100 ms. When the database is down, then this architecture cannot service a
request. For the second architecture, the response time is 300 + 800 + 50 =
1150 ms in the normal scenario. When the database is down, some requests
can be serviced (probability computed above) by the cache but cache is used
only after the database times out. That is, the response time in this scenario
is 300 + 2000 + 50 = 2350 ms. For the third architecture, in the normal
scenario, the average response time is 350 * 0.8 (for those requests serviced

4.7. SUMMARY 199

Property (Scenario)
Security (SI)
Security (S2)
Response time (SI)
Response time (S3)
Response time (S4)
Availability (S3)
Data Currency (SI)
Data Currency (S2)

Architecture 1
Yes
Yes
1100
N/A
2200
0.81
Yes
N/A

Architecture 2
Yes
Yes
1150
2350
2300
0.855
Yes
Yes

Architecture 3
Yes
Yes
550
550
1100
0.855
Yes
Yes

Table 4.1: Analysis of the architecture options.

by cache) plus 1350 * 0.2 (for those that go to the database). That is, the
average response time is 550 ms. When the database is down, the response
time for the requests that can be serviced remains the same as they are
serviced from the cache in a normal manner. Similar analysis can be done
when the network is congested. For simplicity, we will double these times
(as the response time when the system is congested is double that when it
is not).

With these, we build a table for the different attributes for the scenarios
of interest. This is given in Table 4.1.

Prom this table we can clearly see that security and data currency re
quirements are satisfied by all three architecture options. As the probability
of normal scenario is over 0.8 for all architectures, and response time in nor
mal scenario is less than the required for all, the response time requirement
is also met by all the three architectures. However, the availability require
ment is met by only the second and the third architectures. Of these two
architectures, the third should be preferred as it provides a better response
time.

4.7 Summary

Architecture of a software system is a design of the system that provides
a very high level view of the system in terms of parts of the system and
how they are related to form the whole system. Depending on how the
system is partitioned, we get a different architectural view of the system.
Consequently, the architecture of a software system is defined as the struc
tures of the system which comprise software elements, their externally visible

200 4. SOFTWARE ARCHITECTURE

properties, and relationships among them. The macro level view that the
architecture facilitates development of a high quality system. It also al
lows analysis of many of the system properties like performance that depend
mostly on architecture to be done early in the software life cycle.

There are three main architectural views of a system—module, compo
nent and connector, and allocation. In a module view, the system is viewed
as a structure of programming modules like packages, classes, functions, etc.,
which have to be later constructed. In a component and connector (C&C)
view, the system is a collection of runtime entities called components. Dur
ing execution, these components interact with each other through the con
nectors. An allocation view describes how the different software units are
allocated to hardware resources in the system. These different views are
related as they are of the same system, but this relationship may or may
not be straightforward. If different views are created, then their relationship
must be clearly identified and stated. In this chapter, we focus mostly on
C&C view.

There are some common styles for a C&C view which have been found
useful for creating this architecture view for a system. We have discussed

pipe and filter, shared data, client server, pubhsh-subscribe, peer to peer,
and communicating processes styles. Each of these styles describe the types
of components and connectors that exist and the constraints on how they are
used. For example, the pipe and filter has one type of component (filter) and
one type of connector (pipe) and components can be connected through the
pipe. The client-server style has two types of components (client and server)
and there is one connector (request/reply). A client can only communicate
with the server, and an interaction is initiated by a client. In shared data
style the two component types are repository and data accessors. Data
accessors read/write the repository and share information among themselves
through the repository.

Designing an architecture is the first step towards building a solution for
the problem described in the SRS. The architecture forms the foundation for
the system and rest of the design and development activities. Consequently,
it should be properly documented. A proper architecture document should
describe the context in which the architecture was designed, the different
architectural views that were created, and how the different views relate to
each other. In the context, it is important to identify the different stakehold
ers and their objectives, as that drives the architecture choices. Generally,
one view is taken as the primary view and the architecture description re
volves around that. Different views can be combined with the primary view,

4.7. SUMMARY 201

if this combination does not complicate the architecture diagram or descrip
tion. The architecture description of a view, which often revolves around
an architecture diagram, should clearly specify the different types of ele
ments and their external behavior. The architecture rationale, or why the
architecture choices were made, should also be documented.

As considerable analysis and thought can go into designing the archi
tecture to ensure that the final selected architecture can support the desired
system properties, it is essential that the architecture be preserved during
the rest of the development. That is, the architecture, once selected and
specified, constrains the design and development. It is essential that these
constraints be respected and the design be consistent with the architecture.
We have illustrated how these constraints can be violated while building a
system that still provides the desired functionahty. It is essential that such
violations do not occur.

A considerable analysis of the system attributes hke performance, secu
rity, reliability, and modifiability is possible when the architecture views are
ready. There are many approaches for performing this analysis. We have
briefly discussed the ATAM approach in which first the key scenarios are
enumerated, along with the constraints for the attributes of interest for the
system. Then the proposed architectures are evaluated to see how well they
satisfy the constraints under the different scenarios. The result of this anal
ysis can be used to compare different architecture choices. The analysis can
also be extended to perform sensitivity and tradeoff analysis.

Exercises

1. Explain why architecture is not just one structure consisting of different parts
and their relationship.

2. What do you think is the relationship between the component and connector
view and the module view. In the situations where this relationship is simple,
how will you express it in one diagram?

3. In the student-survey example, extend the architecture diagram to also show
the module view. (If you want to look at the code for the architecture, it is
available from the Web site.)

4. In the analysis done in Section 4.6.2 of the student-survey example, some al
location of software elements to hardware was chosen to perform the analysis.
Draw an allocation view for this allocation.

5. For the example analyzed in Section 4.6.2 of the student-survey system, let
us make the following changes: (1) Suppose the student can also ask for just

202 4. SOFTWARE ARCHITECTURE

the survey result, and the response time requirement for this is different. (2)
Assume that the availabihty of server is much higher (say 0.99) than the
database server (0.9). Now do the analysis.

6. A closed-loop control system generally works as follows. A centralized con
troller gets values from the various sensors, does the computation to deter
mine the various settings (often by solving some partial differential equa
tions), and then issues necessary commands to the actuators in the system
so that the system remains balanced and gives optimal performance. What
would you chose as the primary view to describe the architecture of this con
trol system—give reasons for your selection. Design and draw (the primary
view) at least two architectures for this system, clearly defining the different
elements in it.

7. For the above example, create some scenarios (including some for failures)
and some requirements, and then analyze your architectures to see which one
is the best.

8. Consider an interactive Web site which provides many different features to
perform various tasks. Show that the architecture for this can be represented
as a shared-data style as well as client-server style. Which one will you prefer
and why?

9. Consider the instant messaging system that you use. Which of the views
is best suited to describe its C&C view. Give a diagram to describe the
architecture (C&C view) of such a system.

CASE STUDIES 203

Case Studies

Here we briefly discuss the architecture for the two case studies. The com
plete architecture document is available from the Web site.

Case Study 1—Course Scheduling

This is a batch processing type system, where data is taken by the system
in the start of the processing from the two input files, and the output is
produced at the end. No data updates are done (that is, there is no need
for a repository). For such a system, the pipe-and-filter style is eminently
suited. Hence, we use this style for the architecture of this system. The
proposed architecture is shown in Figure 4.12.

A bit more discussion and evaluation of the architecture is given in the
architecture document for this case study, which is available from the Web
site. It might be added that this case study was originally built without any
architecture design in the process (architectures were not well established
when this case study was done). However, this architecture, even though
done retrospectively, is representative of the system and the actual system
architecture closely resembles this architecture, as will be clear when we
discuss the design of this case study in later chapters.

Case S tudy 2 — P I M S

The main stakeholders for the PIMS system are the individual users who
might use the system and the system designer/builder who will build PIMS.
The main concerns of the two stakeholders are:

Errors in File 1
i

Errors in File2

i

Process Filel

Course Schedule

Process File2
Schedule the

Courses

Filel File2

Figure 4.12; Architecture for course scheduling case study,

204 4. SOFTWARE ARCHITECTURE

Web

Get current

value

Web

V

Get current

value

Add / Edit / Delete
Compute

rate, net

Figure 4.13: Initial architectures for PIMS.

• For Users: The usabihty of the system and providing rate or returns
and the net-worth info. Reasonable response time is also a concern.

• For designer/builder: The system is easy to modify, particularly to
handle future extensions mentioned in the SRS (that is, the system
may become a multi-user system, which may require use of databases
instead of files for keeping data). It should be easily portable.

Hence, the key property which the architecture should aim to satisfy
(besides the functionality) is modifiability or extensibility of the system.
Portability and response time are other factors which should drive the ar
chitecture decisions.

Due to the data-oriented nature of the system, it should be clear that
a shared-data style would be the best. As the system is rather small, the
first architecture proposal was to have two main components—a repository
to keep the data on investments, and a processing component to do all the
processing. And have another component to get the latest value of the shares
from the Web into the repository.

We then realized that there are two independent aspects of processing,
one dealing with data entry and edit, and the other which does the computa
tion of rates of return and net worth. These two do not need to communicate
with each other. Separating the two will make the system more modular and
making modifications will be easier. For example, user interface changes will
affect only the edit component, while any change in reporting or computa
tions will affect the other only. The simplified view of these two architectures

CASE STUDIES 205

is shown in Figure 4.13.
Even though the second architecture is better than the first one as it has

better modularity, the processing components are still very tightly coupled
with the data repository. If the repository changes from one database to
another, then besides making the changes to the repository, the code of
both the computation components will have to be changed.

To separate the data access from the computation, a layer was added
between the computation components and the repository. (By adding a
layer, we are mixing module view and C&C view, but as it is clear and
simple, we continue with it.) The complete description of this architecture,
which includes the user interface component also, is given in the architecture
document for this case study. The document also gives the complete picture
of the previous architecture also, for which only a simplified view is given
here.

The architecture document also gives a simple analysis of the difTerent
architecture, leading to the selection of one architecture as the proposed
architecture for PIMS.

Planning a Software Project

For a successful project, both good project management and good engineer
ing are essential. Lack of either one can cause a project to fail. We have
seen that project management activities can be viewed as having three ma
jor phases: project planning, project monitoring and control, and project
termination. Broadly speaking, planning entails all activities that must be
performed before starting the development work. Once the project is started,
project control begins. In other words, during planning all the activities that
management needs to perform are planned, while during project control the
plan is executed and updated.

Planning may be the most important management activity. Without
a proper plan, no real monitoring or controlhng of the project is possible.
Often projects are rushed toward implementation with not enough time and
effort spent on planning. No amount of technical effort later can compensate
for lack of careful planning. Lack of proper planing is a sure ticket to failure
for a large software project. For this reason, we treat project planning as an
independent chapter.

The basic goal of planning is to look into the future, identify the ac
tivities that need to be done to complete the project successfully, and plan
the scheduling and resources. The inputs to the planning activity are the
requirements specification and the architecture description. A very detailed
requirements document is not essential for planning, but for a good plan all
the important requirements must be known, and it is highly desirable that
architecture decisions have been taken. The major issues project planning
addresses are:

Process planning

208 5. PLANNING A SOFTWARE PROJECT

Effort estimation
Schedule and Resource Estimation
Quality plans
Configuration management plans
Risk management
Project monitoring plans

In the rest of this chapter we will discuss each of these issues and some
techniques for handling them.

5.1 Process Planning

We have already discussed in detail the development process and the various
process models. For a project, during planning, a key activity is to plan
and specify the process that should be used in the project. This means
specifying the various stages in the process, the entry criteria for each stage,
the exit criteria, and the verification activities that will be done at the end
of the stage. As discussed, some established process model may be used
as a standard process and tailored to suit the needs of the project. In an
organization, often standard processes are defined and a project can use
any of these standard processes and tailor it to suit the specific needs of
the project. Hence the process planning activity mostly entails selecting a
standard process and tailoring it for the project.

Tailoring is an advanced topic which we will not discuss in any detail.
Generally, however, based on the size, complexity and nature of the project,
as well as the characteristics of the team, like the experience of the team
members with the problem domain as well as the technology being used,
the standard process is tailored. The common tailoring actions are modify
a step, omit a step, add a step, or change the formality with which a step
is done. After tailoring, the process specification for the project is available.
This process guides rest of the planning, particularly detailed scheduhng
where detailed tasks to be done in the project are defined and assigned to
people to execute them.

5.2 Effort Estimation

For a given set of requirements it is desirable to know how much it will
cost to develop the software, and how much time the development will take.

5.2. EFFORT ESTIMATION 209

These estimates are needed before development is initiated. The primary
reason for cost and schedule estimation is cost-benefit analysis, and project
monitoring and control. A more practical use of these estimates is in bidding
for software projects, where cost estimates must be given to a potential chent
for the development contract.

The bulk of the cost of software development is due to the human re
sources needed, and therefore most cost estimation procedures focus on es
timating effort in terms of person-months (PM). By properly including the
"overheads" (i.e., the cost of hardware, software, office space, etc.) in the
cost of a person-month, effort estimates can be converted into cost.

For a software development project, effort and schedule estimates are
essential prerequisites for managing the project. Otherwise, even simple
questions like "is the project late?" "are there cost overruns?" and "when
is the project likely to complete?" cannot be answered. Effort and schedule
estimates are also required to determine the staffing level for a project during
different phases.

Estimates can be based on subjective opinion of some person or deter
mined through the use of models. Though there are approaches to structure
the opinions of persons for achieving a consensus on the effort estimate (e.g.,
the Delphi approach [20]), it is generally accepted that it is important to
have a more scientific approach to estimation through the use of models. In
this section we discuss only the model-based approach for effort estimation.
Before we discuss the models, let us first understand the limitations of any
effort estimation procedure.

5.2.1 Uncertainties in Effort Estimation

One can perform effort estimation at any point in the software life cycle.
As the effort of the project depends on the nature and characteristics of the
project, at any point, the accuracy of the estimate will depend on the amount
of reliable information we have about the final product. Clearly, when the
product is delivered, the effort can be accurately determined, as all the data
about the project and the resources spent can be fully known by then. This
is effort estimation with complete knowledge about the project. On the
other extreme is the point when the project is being initiated or during the
feasibility study. At this time, we have only some idea of the classes of data
the system will get and produce and the major functionality of the system.
There is a great deal of uncertainty about the actual specifications of the
system. Specifications with uncertainty represent a range of possible final

210 5. PLANNING A SOFTWARE PROJECT

Feasibility Requirement System
Analysis Design

Detailed Coding and Accepted
Design Testing Software

Figure 5.1: Accuracy of effort estimation.

products, not one precisely defined product. Hence, the effort estimation
based on this type of information cannot be accurate. Estimates at this
phase of the project can be off by as much as a factor of four from the actual
final effort.

As we specify the system more fully and accurately, the uncertainties are
reduced and more accurate effort estimates can be made. For example, once
the requirements are completely specified, more accurate effort estimates
can be made compared to the estimates after the feasibihty study. Once the
design is complete, the estimates can be made still more accurately. The
obtainable accuracy of the estimates as it varies with the different phases is
shown in Figure 5.1 [20, 21].

Note that this figure is simply specifying the limitations of effort esti
mating strategies—the best accuracy a effort estimating strategy can hope
to achieve. It does not say anything about the existence of strategies that

5.2. EFFORT ESTIMATION 211

can provide the estimate with that accuracy. For actual effort estimation,
estimation models or procedures have to be developed. The accuracy of the
estimates will depend on the effectiveness and accuracy of the estimation
procedures or models employed and the process (i.e., how predictable it is).

Despite the limitations, estimation models have matured considerably
and generally give fairly accurate estimates. For example, when the CO-
COMO model (discussed later) was checked with data from some projects,
it was found that the estimates were within 20% of the actual effort 68% of
the time.

It should also be mentioned that achieving an estimate after the require
ments have been specified within 20% is actually quite good. With such an
estimate, there need not even be any cost and schedule overruns, as there
is generally enough slack or free time available (recall the study mentioned
earlier that found a programmer spends more than 30% of his time in per
sonal or miscellaneous tasks) that can be used to meet the targets set for the
project based on the estimates. In other words, if the estimate is within 20%
of the actual, the effect of this inaccuracy will not even be reflected in the
final cost and schedule. Highly precise estimates are generally not needed.
Reasonable estimates in a software project tend to become a self-fulfilhng
prophecy—people work to meet the schedules (which are derived from effort
estimates).

5.2.2 Bui lding Effort Est imat ion Model s

An estimation model can be viewed as a "function" that outputs the effort
estimate, clearly this estimation function will need inputs about the project,
from which it can produce the estimate. The basic idea of having a model or
procedure for estimation is that it reduces the problem of estimation to es
timating or determining the value of the "key parameters" that characterize
the project, based on which the effort can be estimated.

Note that an estimation model does not, and cannot, work in a vacuum;
it needs inputs to produce the effort estimate as output. At the start of
a project, when the details of the software itself are not known, the hope
is that the estimation model will require values of parameters that can be
measured at that stage.

Although the effort for a project is a function of many parameters, it is
generally agreed that the primary factor that controls the effort is the size of
the project, that is, the larger the project, the greater the effort requirement.
One common approach therefore for estimating effort is to make it a function

212 5. PLANNING A SOFTWARE PROJECT

of project size, and the equation of effort is considered as

EFFORT = a^SIZE\

where a and b are constants [5], and project size is generally in KLOC
or function points. Values for these constants for a particular process are
determined through regression analysis, which is applied to data about the
projects that has been performed in the past. For example, Watson and
Felix [142] analyzed the data of more than 60 projects done at IBM Federal
Systems Division, ranging from 4,000 to 467,000 lines of delivered source
code, and found that if the SIZE estimate is in thousands of delivered lines
of code (KLOC), the total effort, E, in person-months (PM) can be given by
the equation E = b.2{SIZEy^\

Often, however, simple productivity may be used to determine the overall
estimate from the size. That is, if productivity is P KLOC/PM, then effort
estimate for the project may be SIZE/P person-months. This approach will
work if the size and type of the project are similar to the set of projects from
which the productivity P was obtained.

This approach of determining total effort from the total size is what we
refer to as the top-down approach, as overall effort is first determined and
then from this the effort for different parts are obtained.

In a top-down estimation model by using size as the main input to the
model, we have replaced the problem of effort estimation by size estimation.
One may then ask, why not directly do effort estimation rather than size
estimation? The answer is that size estimation is often easier than direct
effort estimation. For estimating size, the system is generally partitioned
into components it is likely to have. Once the components of the system
are known, as estimating something about a small unit is generally much
easier than estimating it for a larger system, sizes of components can be
generally estimated quite accurately. Once size estimates for components
are available, to get the overall size estimate for the system, the estimates
of all the components can be added up. Similar property does not hold for
effort estimation, as effort for developing a system is not the sum of effort for
developing the components (as additional effort is needed for integration and
other such activities when building a system from developed components).
This key feature, that the system property is the sum of the properties of
its parts, holds for size but not for effort, and is the main reason that size
estimation is considered easier than effort estimation.

With top-down models, if the size estimate is inaccurate, the effort esti
mate produced by the models will also be inaccurate. Hence, it is important

5.2. EFFORT ESTIMATION 213

that good estimates for the size of the software be obtained. There is no
known "simple" method for estimating the size accurately. When estimating
software size, the best way may be to get as much detail as possible about the
software to be developed and to be aware of our biases when estimating the
size of the various components. By obtaining details and using them for size
estimation, the estimates are likely to be closer to the actual size of the final
software. In general, there is often a tendency by people to underestimate
the size of software [20].

A somewhat different approach for effort estimation is the bottom-up
approach. In this approach, the project is first divided into tasks and then
estimates for the different tasks of the project are first obtained. Prom the
estimates of the different tasks, the overall estimate is determined. That is,
the overall estimate of the project is derived from the estimates of its parts.
This type of approach is also called activity-based estimation. Essentially,
in this approach the size and complexity of the project is captured in the set
of tasks the project has to perform.

The bottom-up approach lends itself to direct estimation of effort; once
the project is partitioned into smaller tasks, it is possible to directly estimate
the effort required for them, specially if tasks are relatively small. A risk of
bottom-up methods is that one may omit some important activities in the
list of tasks. Also, directly estimating the effort for some overhead tasks,
such as project management, that span the project can be difficult.

Both the top-down and the bottom-up approaches require information
about the project: size (for top-down approaches) or a hst of tasks (for
bottom-up approaches). In many ways, these approaches are complemen
tary, and often it may be desirable to determine the effort using both the
approaches and then using these estimates to obtain the final estimate.

5,2.3 A Bottom-Up Estimation Approach

If architecture of the system to be built has been developed and if past
information about how effort is distributed over different phases is known,
then the bottom-up approach need not completely list all the tasks, and a
less tedious approach is possible. Here we describe one such approach used
in a commercial organization [97].

In this approach, the major programs (or units or modules) in the soft
ware being built are first determined. Each program unit is then classified
as simple, medium, or complex based on certain criteria. For each classifi
cation unit, an average effort for coding (and unit testing) is decided. This

214 5. PLANNING A SOFTWARE PROJECT

standard coding effort can be based on past data from a similar project,
from some guidelines, or some combination of these.

Once the number of units in the three categories of complexity is known
and the estimated coding effort for each program is selected, the total coding
effort for the project is known. From the coding effort, the effort required
for the other phases and activities is determined as a percentage of coding
effort. Prom information about the past performance of the process, the
likely distribution of effort in different phases of this project is decided, and
then used to determine the effort for other phases and activities. From these
estimates, the total effort for the project is obtained.

This approach lends itself to a judicious mixture of experience and data.
If suitable past data are not available (for example, if launching a new type
of project), one can estimate the coding effort using experience once the
nature of the different types of units is specified. With this estimate, we can
obtain the estimate for other activities by working with some reasonable or
standard effort distribution. This strategy can easily account for activities
that are sometimes difficult to enumerate early but do consume effort by
budgeting effort for "other" or "miscellaneous" category.

The procedure for estimation can be summarized as the following se
quence of steps:

1. Identify modules in the system and classify them as simple, medium,
or complex.

2. Determine the average coding effort for simple/medium/complex mod
ules.

3. Get the total coding effort using the coding effort of different types of
modules and the counts for them.

4. Using the effort distribution for similar projects, estimate the effort for
other tasks and the total effort.

5. Refine the estimates based on project-specific factors.

This procedure uses a judicious mixture of past data (in the form of
distribution of effort) and experience of the programmers. This approach is
also simple and similar to how many of us plan any project. For this reason,
for small projects, many people find this approach natural and comfortable.

5.2. EFFORT ESTIMATION 215

Note that this method of classifying programs into a few categories and
using an average coding effort for each category is used only for effort esti
mation. In detailed scheduling, when a project manager assigns each unit
to a member of the team for coding and budgets time for the activity, char
acteristics of the unit are taken into account to give more or less time than
the average.

5.2.4 COCOMO Model

A top-down model can depend on many different factors, instead of depend
ing only on one variable, giving rise to multivariable models. One approach
for building multivariable models is to start with an initial estimate deter
mined by using the static single-variable model equations, which depend on
size, and then adjusting the estimates based on other variables. This ap
proach implies that size is the primary factor for cost; other factors have a
lesser effect. Here we will discuss one such model called the Constructive
COst MOdel (COCOMO) developed by Boehm [20, 21], This model also
estimates the total effort in terms of person-months. The basic steps in this
model are:

1. Obtain an initial estimate of the development effort from the estimate
of thousands of delivered lines of source code (KLOC).

2. Determine a set of 15 multiplying factors from different attributes of
the project.

3. Adjust the effort estimate by multiplying the initial estimate with all
the multiplying factors.

The initial estimate (also called nominal estimate) is determined by an
equation of the form used in the static single-variable models, using KLOC
as the measure of size. To determine the initial effort Ei in person-months
the equation used is of the type Ei = a ^ (KLOC)^. The value of the
constants a and b depend on the project type. In COCOMO, projects are
categorized into three types-—organic, semidetached, and embedded. These
categories roughly characterize the complexity of the project with organic
projects being those that are relatively straightforward and developed by
a small team, and embedded are those that are ambitious and novel, with
stringent constraints from the environment and high requirements for such
aspects as interfacing and reliability. The constants a and b for different
systems are:

216 5. PLANNING A SOFTWARE PROJECT

System
Organic 3.2 1.05
Semidetached 3.0 1.12
Embedded 2.8 1.20

The value of the constants for a cost model depend on the process and
have to be determined from past data. COCOMO has instead provided
"global" constant values. These values should be considered as values to
start with until data for some projects is available. With project data, the
value of the constants can be determined through regression analysis.

There are 15 different attributes, called cost driver attributes^ that deter
mine the multiplying factors. These factors depend on product, computer,
personnel, and technology attributes (called project attributes). Examples of
the attributes are required software rehability (RELY), product complexity
(CPLX), analyst capability (ACAP), apphcation experience (AEXP), use of
modern tools (TOOL), and required development schedule (SCHD), Each
cost driver has a rating scale, and for each rating, a multiplying factor is
provided. For example, for the product attribute RELY, the rating scale is
very low, low, nominal, high, and very high (and in some cases extra high).
The multiplying factors for these ratings are .75, .88, 1.00, 1.15, and 1.40,
respectively. So, if the rehabihty requirement for the project is judged to be
low then the multiplying factor is .75, while if it is judged to be very high
the factor is 1.40. The attributes and their multiplying factors for differ
ent ratings are shown in Table 5.1 [20, 21]. The COCOMO approach also
provides guidelines for assessing the rating for the different attributes [20].

The multiplying factors for ah 15 cost drivers are multiphed to get the
effort adjustment factor (EAF). The final effort estimate, E, is obtained by
multiplying the initial estimate by the EAF. That is, E = EAF ^ Ei..

By this method, the overall cost of the project can be estimated. For
planning and monitoring purposes, estimates of the effort required for the
different phases is also desirable. In COCOMO, effort for a phase is a defined
percentage of the overall effort. The percentage of total effort spent in a
phase varies with the type and size of the project. The percentages for an
organic software project are given in Table 5.2.

Using this table, the estimate of the effort required for each phase can
be determined from the total effort estimate. For example, if the total effort
estimate for an organic software system is 20 PM and the size estimate is
20KLOC, then the percentage effort for the coding and unit testing phase
will be 40 + (38 - 40)/(32 - 8) * 20 - 39%. The estimate for the effort needed

5,2. EFFORT ESTIMATION 217

Rating
Cost Drivers Very Low Nom- High Very

Low inal High
Product Attributes
RELY, required rehabihty
DATA, database size
CPLX, product complexity
Computer Attributes
TIME, execution time constraint
STOR, main storage constraint
VITR, virtual machine volatihty
TURN, computer turnaround time
Personnel Attributes
ACAP, analyst capability
AEXP, application exp.
PCAP, programmer capability
VEXP, virtual machine exp.
LEXP, prog, language exp.
Project Attributes
MODP, modern prog, practices
TOOL, use of SW tools
SCHED, development schedule

.75

.70

1.46
1.29
1.42
1.21
1.14

1.24
1.24
1.23

.88

.94

.85

.87

.87

1.19
1.13
1.17
1.10
1.07

1.10
1.10
1.08

1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00

1.15
1.08
1.15

1.11
1.06
1.15
1.07

.86

.91

.86

.90

.95

.91

.91
1.04

1.40
1.16
1.30

1.30
1.21
1.30
1.15

.71

.82

.70

.82

.83
1.10

Table 5.1: Effort multipliers for different cost drivers.

Size
Phase

Product design
Detailed design
Code and unit test
Integration and test

Small
2 K L 0 C

16
26
42
16

Intermediate
8 K L 0 C

16
25
40
19

Medium
32 KLOC

16
24
38
22

Large
128 KLOC

16
23
36
25

Table 5.2: Phase-wise distribution of effort.

for this phase is 7.8 PM. This table does not list the cost of requirements as
a percentage of the total cost estimate because the project plan (and cost
estimation) is being done after the requirements are complete. In COCOMO
the detailed design and code and unit testing are sometimes combined into

218 5. PLANNING A SOFTWARE PROJECT

one phase called the programming phase.
As an example, suppose a system for office automation has to be de

signed. Prom the requirements, it is clear that there will be four major
modules in the system: data entry, data update, query, and report genera
tor. It is also clear from the requirements that this project will fall in the
organic category. The sizes for the different modules and the overall system
are estimated to be:

Data Entry 0.6 KLOC
Data Update 0.6 KLOC
Query 0.8 KLOC
Reports 1.0 KLOC
TOTAL 3.0 KLOC

From the requirements, the ratings of the different cost driver attributes are
assessed. These ratings, along with their multiplying factors, are:

Complexity High 1.15
Storage High 1.06
Experience Low 1.13
Programmer Capability Low 1.17

All other factors had a nominal rating. From these, the effort adjustment
factor (EAF) is

EAF = 1.15*1.06*1.13*1.17 = 1.61.

The initial effort estimate for the project is obtained from the relevant equa
tions. We have

E'.^: 3.2* 3^^^ = 10.14PM.

Using the EAF, the adjusted effort estimate is

£; = 1.61* 10.14 = 16.3FM.

Using the preceding table, we obtain the percentage of the total effort con
sumed in different phases. The office automation system's size estimate is 3
KLOC, so we will have to use interpolation to get the appropriate percent
age (the two end values for interpolation will be the percentages for 2 KLOC
and 8 KLOC). The percentages for the different phases are: design—16%,
detailed design—25.83%, code and unit test—41.66%, and integration and
testing—16.5%. With these, the effort estimates for the different phases are:

5.3. PROJECT SCHEDULING AND STAFFING 219

System Design .16 * 16.3 - 2.6 PM
Detailed Design .258 * 16.3 = 4.2 PM
Code and Unit Test .4166 * 16.3 = 6.8 PM
Integration .165 * 16.3 = 2.7 PM.

5.3 Project Scheduling and Staffing

Once the effort is estimated, various schedules (or project duration) are
possible, depending on the number of resources (people) put on the project.
For example, for a project whose effort estimate is 56 person-months, a total
schedule of 8 months is possible with 7 people. A schedule of 7 months with
8 people is also possible, as is a schedule of approximately 9 months with 6
people.

As is well known, however, manpower and months are not fully inter
changeable in a software project. A schedule cannot be simply obtained
from the overah effort estimate by deciding on average staff size and then
determining the total time requirement by dividing the total effort by the
average staff size. Brooks has pointed out that person and months (time) are
not interchangeable. According to Brooks [25], "... man and months are in
terchangeable only for activities that require no communication among men,
like sowing wheat or reaping cotton. This is not even approximately true of
software...."

For instance, in the example here, a schedule of 1 month with 56 people
is not possible even though the effort matches the requirement. Similarly,
no one would execute the project in 28 months with 2 people. In other
words, once the effort is fixed, there is some flexibility in setting the schedule
by appropriately staffing the project, but this flexibility is not unlimited.
Empirical data also suggests that no simple equation between effort and
schedule fits well [127].

In a project, the scheduhng activity can be broken into two subactiv-
ities: determining the overall schedule (the project duration) with major
milestones, and developing the detailed schedule of the various tasks.

5.3.1 Overall Scheduling

One method to determine the normal (or nominal) overall schedule is to
determine it as a function of effort. Any such function has to be determined
from data from completed projects using statistical techniques like fitting
a regression curve through the scatter plot obtained by plotting the effort

220 5. PLANNING A SOFTWARE PROJECT

and schedule of past projects. This curve is generally nonlinear because
the schedule does not grow linearly with effort. Many models follow this
approach [5, 20]. The IBM Federal Systems Division found that the total
duration, M, in calendar months can be estimated by

In COCOMO, the equation for schedule for an organic type of software is

M = 2.bE-^^.

It should be clear that schedule is not a function solely of effort. Hence, the
schedule determined in this manner is not really fixed. However, it can be
used as a guideline or check of the schedules reasonableness, which might be
decided based on other factors.

One rule of thumb, called the square root check, is sometimes used to
check the schedule of medium-sized projects [97]. This check suggests that
the proposed schedule can be around the square root of the total effort in
person-months. This schedule can be met if suitable resources are assigned
to the project. For example, if the effort estimate is 50 person-months, a
schedule of about 7 to 8 months will be suitable.

From this macro estimate of schedule, we have to determine the schedule
for the major milestones in the project. To determine the milestones, we
must first understand the manpower ramp-up that usually takes place in a
project. The number of people in a software project tends to follow the
Rayleigh curve [126, 127]. That is, in the beginning and the end, few people
work on the project; the peak team size (PTS) is reached somewhere near
the middle of the project. This behavior occurs because only a few people
are needed in the initial phases of requirements analysis and design. The
human resources requirement peaks during coding and unit testing. Again,
during system testing and integration, fewer people are required.

Often, the staffing level is not changed continuously in a project and
approximations of the Rayleigh curve are used: assigning a few people at
the start, having the peak team during the coding phase, and then leaving
a few people for integration and system testing. If we consider design and
analysis, build, and test as three major phases, the manpower ramp-up in
projects typically resembles the function shown in Figure 5.2 [97].

For ease of scheduhng, particularly for smaller projects, often the re
quired people are assigned together around the start of the project. This
approach can lead to some people being unoccupied at the start and toward

5.3. PROJECT SCHEDULING AND STAFFING 221

Peak Team

Size

Design Build Test

Figure 5.2: Manpower ramp-up in a typical project.

the end. This slack time is often used for supporting project activities like
training and documentation.

Given the effort estimate for a phase, we can determine the duration
of the phase if we know the manpower ramp-up. For these three major
phases, the percentage of the schedule consumed in the build phase is smaller
than the percentage of the effort consumed because this phase involves more
people. Similarly, the percentage of the schedule consumed in the design and
testing phases exceeds their effort percentages. The exact schedule depends
on the planned manpower ramp-up, and how many resources can be used
effectively in a phase on that project. Generally speaking, design requires
about a quarter of the schedule, build consumes about half, and integration
and system testing consume the remaining quarter. COCOMO gives 19%
for design, 62% for programming, and 18% for integration.

5.3.2 Detailed Scheduling

Once the milestones and the resources are fixed, it is time to set the detailed
scheduling. For detailed schedules, the major tasks fixed while planning
the milestones are broken into small schedulable activities in a hierarchical
manner. For example, the detailed design phase can be broken into tasks
for developing the detailed design for each module, review of each detailed
design, fixing of defects found, and so on. For each detailed task, the project

222 5. PLANNING A SOFTWARE PROJECT

manager estimates the time required to complete it and assigns a suitable
resource so that the overall schedule is met.

At each level of refinement, the project manager determines the effort
for the overall task from the detailed schedule and checks it against the
effort estimates. If this detailed schedule is not consistent with the overall
schedule and effort estimates, the detailed schedule must be changed. If it
is found that the best detailed schedule cannot match the milestone effort
and schedule, then the earher estimates must be revised. Thus, scheduUng
is an iterative process.

Generally, the project manager refines the tasks to a level so that the
lowest-level activity can be scheduled to occupy no more than a few days from
a single resource. Activities related to tasks such as project management,
coordination, database management, and configuration management may
also be hsted in the schedule, even though these activities have less direct
effect on determining the schedule because they are ongoing tasks rather
than schedulable activities. Nevertheless, they consume resources and hence
are often included in the project schedule.

Rarely will a project manager complete the detailed schedule of the entire
project all at once. Once the overall schedule is fixed, detailing for a phase
may only be done at the start of that phase.

For detailed scheduling, tools like Microsoft Project or a spreadsheet can
be very useful. For each lowest-level activity, the project manager specifies
the effort, duration, start date, end date, and resources. Dependencies be
tween activities, due either to an inherent dependency (for example, you can
conduct a unit test plan for a program only after it has been coded) or to a
resource-related dependency (the same resource is assigned two tasks) may
also be specified. From these tools the overall effort and schedule of higher
level tasks can be determined.

A detailed project schedule is never static. Changes may be needed
because the actual progress in the project may be different from what was
planned, because newer tasks are added in response to change requests, or
because of other unforeseen situations. Changes are done as and when the
need arises.

The final schedule, frequently maintained using some suitable tool, is
often the most "live" project plan document. During the project, if plans
must be changed and additional activities must be done, after the decision is
made, the changes must be reflected in the detailed schedule, as this reflects
the tasks actually planned to be performed. Hence, the detailed schedule
becomes the main document that tracks the activities and schedule.

5.3. PROJECT SCHEDULING AND STAFFING 223

Task

Project initiation
Regular activities
Training
Knowledge sharing tasks
Inception phase
Elaboration Iteration 1
Elaboration Iteration 2
Construction Iteration 1
Construction Iteration 2
Construction Iteration 3
Transition phase
Back-end work

Duration
(days)

33.78
87.11
95.11
78.22
26.67
27.56
8.89
8.89
6.22
6.22
56
4.44

Work
(person
-days)
24.2
35.13
49.37
19.56
22.67
55.16
35.88
24.63
28.22
27.03
179.62
6.44

Start
date

5/4/00
6/5/00
5/8/00
6/2/00
4/3/00
5/15/00
6/26/00
7/10/00
7/20/00
7/31/00
8/9/00
8/14/00

End
date

6/23/00
10/16/00
9/29/00
9/30/00
5/12/00
6/23/00
7/7/00
7/21/00
7/28/00
8/8/00
11/3/00
8/18/00

Table 5.3: High-level schedule for the project.

5.3.3 A n Example

Consider the example of a project from [97]. The overall effort estimate for
this project is 501 person-days, or about 24 person-months (this estimation
was done using the bottom-up approach discussed earlier). The customer
gave approximately 5.5 months to finish the project. Because this is more
than the square root of effort in person-months, this schedule was accepted.

The milestones are determined by using the effort estimates for the phases
and an estimate of the number of resources that can be fully occupied in
this phase. Table 5.3 shows the high level schedule of the project. This
project uses a process in which initial requirement and design is done in
two iterations and the development is done in three iterations. The overall
project duration with these milestones is 140 days.

This high-level schedule is not suitable for assigning resources and de
tailed planning. During detailed scheduUng, these tasks are broken into
schedulable activities. In this way, the schedule also becomes a checklist of
tasks for the project. As mentioned before, this exploding of top-level activ
ities is not done fully at the start but rather takes place many times during
the project.

Table 5.4 shows part of the detailed schedule of the construction-iteration
1 phase of the project. For each activity, the table specifies the activity by
a short name, the module to which the activity is contributing, and the
duration and effort. For each task, how much is completed is given in the

224 5. PLANNING A SOFTWARE PROJECT

Module

~
-
-
History
History
History
History
History
History
History
Config.
Mgmt.
Quality

Task

Requirements
Design review
Rework
coding
Review UC17
Review UC19
Rework
Test UC17
Test UC19
Rework
Reconciliation
Tracking
Analysis

Duration
(days)
8.89
1
1
2.67
0.89
0.89
0.89
0.89
0.89
0.89
0.89
7.11
0.89

Effort
(days)
1.33
0.9
0.8
1.87
0.27
0.27
2.49
0.62
0.62
0.71
2.49
2.13
0.62

Start
date
7/10
7/11
7/12
7/10
7/14
7/14
7/17
7/18
7/18
7/18
7/19
7/10
7/19

End
date
7/21
7/12
7/13
7/12
7/14
7/14
7/17
7/18
7/18
7/18
7/19
7/19
7/19

%
done
100
100
100
100
100
100
100
100
100
100
100
100
100

Resource

"bEibj
bb,bj,sb
bj, sb
hp
bj,dd
bj,dd
dd,sb,hp
sb
hp
bj,sb,hp
bj,sb,hp
bb
bb

Table 5.4: Portion of the detailed schedule.

% Complete column. This information is used for activity tracking. The
detailed schedule also specifies the resource to which the task is assigned
(specified by initials of the person.) Sometimes, the predecessors of the
activity (the activities upon which the task depends) are also specified. This
information helps in determining the critical path and the critical resources.
This project finally had a total of about 325 schedulable tasks.

5.3.4 Team Structure

We have seen that the number of resources is fixed when schedule is being
planned. Detailed scheduling is done only after actual assignment of people
has been done, as task assignment needs information about the capabilities
of the team members. In our discussion above, we have imphcitly assumed
that the project's team is led by a project manager, who does the planning
and task assignment. This form of hierarchical team organization is fairly
common, and was earlier called the Chief Programmer Team.

In this hierarchical organization, the project manager is responsible for
all major technical decisions of the project. He does most of the design and
assigns coding of the different parts of the design to the programmers. The
team typically consists of programmers, testers, a configuration controller,
and possibly a librarian for documentation. There may be other roles like
database manager, network manager, backup project manager, or a backup
configuration controller. It should be noted that these are all logical roles
and one person may do multiple such roles.

5.4. SOFTWARE CONFIGURATION MANAGEMENT PLAN 225

For a small project, a one-level hierarchy sufl&ces. For larger projects, this
organization can be extended easily by partitioning the project into modules,
and having module leaders who are responsible for all tasks related to their
module and have a team with them for performing these tasks.

A different team organization is the egoless team [114]: Egoless teams
consist of ten or fewer programmers. The goals of the group are set by
consensus, and input from every member is taken for major decisions. Group
leadership rotates among the group members. Due to their nature, egoless
teams are sometimes called democratic teams. This structure allows input
from all members, which can lead to better decisions for difficult problems.
This structure is well suited for long-term research-type projects that do not
have time constraints. It is not suitable for regular tasks that have time
constraints; for such tasks, the communication in democratic structure is
unnecessary and results in inefficiency.

In recent times, for very large product developments, another structure
has emerged. This structure recognizes that there are three main task cate
gories in software development—management related, development related,
and testing related. It also recognizes that it is often desirable to have the
test and development team be relatively independent, and also not to have
the developers or tests report to a nontechnical manager. In this structure,
consequently, there is an overall unit manager, under whom there are three
small hierarchic organizations—for program management, for development,
and for testing. The primary job of developers is to write code and they
work under a development manager. The responsibility of the testers is to
test the code and they work under a test manager. The program managers
provides the specifications for what is being built, and ensure that develop
ment and testing are properly coordinated. In a large product this structure
may be replicated, one for each major unit. This type of team organization
is used in corporations hke Microsoft.

5.4 Software Configuration Management Plan

From the earlier discussions on software configuration management, it should
be somewhat clear what the SCM plans should contain. The SCM plan,
like other plans, has to identify the activities that must be performed, give
guidelines for performing the activities, and allocate resources for them.

Planning for configuration management involves identifying the config
uration items and specifying the procedures to be used for controlhng and

226 5. PLANNING A SOFTWARE PROJECT

implementing changes to them. We have discussed CM planning while dis
cussing the CM process in Chapter 2. To summarize, the configuration
controller does the CM planning when the project has been initiated and
the operating environment and requirements specifications are known. The
activities in this stage include the following [97]:

• Identify configuration items, including customer-supplied and purchased
items.

• Define a naming scheme for configuration items.

• Define the directory structure needed for CM.

• Define version management procedures, and methods for tracking changes
to configuration items.

• Define access restrictions.

• Define change control procedures.

• Identify and define the responsibility of the CC.

• Identify points at which baselines will be created.

• Define a backup procedure and a reconciUation procedure, if needed.

• Define a release procedure.

The output of this phase is the CM plan. An example of a full CM plan
for a project in a commercial organization is given in [96, 97].

5.5 Quality Plan

Earlier in Chapter 1, we discussed the notion of software quality. Even
though there are different dimensions of quality, in practice, quality man
agement often revolves around defects. Hence, we use "delivered defect
density"—the number of defects per unit size in the delivered software—as
the definition of quality. This definition is currently the de facto industry
standard [41]. By defect we mean something in software that causes the
software to behave in a manner that is inconsistent with the requirements
or needs of the customer. Defect in software implies that its removal will
result in some change being made to the software.

5.5. QUALITY PLAN 227

To ensure that the final product is of high quahty, some quahty control
(QC) activities must be performed throughout the development. A QC task
is one whose main purpose is to identify defects. The purpose of a quality
plan in a project is to specify the activities that need to be performed for
identifying and removing defects, and the tools and methods that may be
used for that purpose.

In a project it is very unlikely that the intermediate work products are
of poor quality, but the final product is of high quality. So, to ensure that
the delivered software is of good quality, it is essential to ensure that all
work products like the requirements specification, design, and test plan are
also of good quality. For this reason, a quality plan should contain quality
activities throughout the project.

The quality plan specifies the tasks that need to be undertaken at differ
ent times in the project to improve the software quality by removing defects,
and how they are to be managed. Before we discuss these, let us first un
derstand the defect injection and removal cycle.

5.5.1 Defect Injection and Removal Cycle

Software development is a highly people-oriented activity and hence it is
error-prone. Defects can be injected in software at any stage during its
evolution. That is, during the transformation from user needs to software
to satisfy those needs, defects can be injected in all the transformation ac
tivities undertaken. These injection stages are primarily the requirements
specification, the high-level design, the detailed design, and coding.

For high-quality software, the final product should have as few defects as
possible. Hence, for delivery of high-quality software, active removal of de
fects through the quality control activities is necessary. The QC activities for
defect removal include requirements reviews, design reviews, code reviews,
unit testing, integration testing, system testing, and acceptance testing (we
do not include reviews of plan documents, although such reviews also help
in improving quahty of the software). Figure 5.3 shows the process of defect
injection and removal.

The task of quality management is to plan suitable quahty control activ
ities and then to properly execute and control them so the projects quality
goals are achieved. With respect to quality control the terms verification and
validation are often used. Verification is the process of determining whether
or not the products of a given phase of software development fulfill the spec
ifications established during the previous phase. Validation is the process of

228 5. PLANNING A SOFTWARE PROJECT

Defect injection

Development
process

T
Requirements

analysis R

T

T

Design R

T

T

Coding R

T

IJT

T

IT/ST

T

AT

T

R - Removal

UT - Unit Testing

IT - Integration Testing

vST - System Testing

AT - Acceptance Testing

Defect Removal

Figure 5.3: Defect injection and removal cycle.

evaluating software at the end of the software development to ensure com
pliance with the software requirements. Clearly, for high reliability we need
to perform both activities. Together they are often called V&V activities.

The major V&V activities for software development are inspection and
testing (both static and dynamic). The quality plan identifies the different
V&V tasks for the different phases and specifies how these tasks contribute to
the project V&V goals. The methods to be used for performing these V&V
activities, the responsibilities and milestones for each of these activities,
inputs and outputs for each V&V task, and criteria for evaluating the outputs
are also specified.

5.5.2 Approaches to Quality Management

Reviews and testing are two most common QC activities. Whereas reviews
are structured, human-oriented processes, testing is the process of executing
software (or parts of it) in an attempt to identify defects. In the procedural
approach to quality management, procedures and guidelines for the review
and testing activities are planned. During project execution, they are carried
out according to the defined procedures. In short, the procedural approach
is the execution of certain processes at defined points to detect defects.

The procedural approach does not allow claims to be made about the
percentage of defects removed or the quahty of the software fohowing the
procedures completion. In other words, merely executing a set of defect
removal procedures does not provide a basis for judging their effectiveness

5.5. QUALITY PLAN 229

or assessing the quality of the final code. Furthermore, such an approach
is highly dependent on the quality of the procedure and the quality of its
execution. For example, if the test planning is done carefully and the plan is
thoroughly reviewed, the quality of the software after testing will be better
than if testing was done but using a test plan that was not carefully thought
out or reviewed.

To better assess the effectiveness of the defect detection processes, metrics-
based evaluation is necessary. Based on analysis of the data, we can decide
whether more testing or reviews are needed. If controls are applied during
the project based on quantitative data to achieve quantitative quality goals,
then we say that a quantitative quality management approach is being ap
plied. Quantitative quality management is an advanced concept, and we
only briefly discuss it.

One approach to quantitative quality management is defect prediction.
In this approach, the quality goal is set in terms of delivered defect density.
Intermediate goals are set by estimating the number of defects that may
be identified by various defect detection activities; then the actual number
of defects are compared to the estimated defect levels. The effectiveness
of this approach depends on how well you can predict the defect levels at
various stages of the project. An approach like this requires past data for
estimation—an example of this can be found in [97].

Another approach is to use statistical process control (SPC) for manag
ing quality. In this approach, performance expectations of the various QC
processes are set, such as testing and reviews, in terms of control limits. If
the actual performance of the QC task is not within the hmits, the situation
is analyzed and suitable action taken. The control hmits resemble prediction
of defect levels based on past performance but can also be used for moni
toring quality activities at a finer level, such as review or unit testing of a
module.

5.5.3 Quality Plan

The quahty plan for a project is what drives the quahty activities in the
project. The sophistication of the plan depends on the type of data or
prediction models available. At the simplest, the quahty plan specifies the
quality control tasks that will be performed in the project. Typically, these
will be schedulable tasks in the detailed schedule of the project. For example,
it will specify what documents will be inspected, what parts of the code will
be inspected, and what levels of testing will be performed. The plan will be

230 5. PLANNING A SOFTWARE PROJECT

considerably enhanced if some sense of defect levels that are expected to be
found for the different quality control tasks are mentioned—these can then
be used for monitoring the quality as the project proceeds.

Much of the quality plan revolves around testing and reviews. Testing
will be discussed in detail in a later Chapter. Effectiveness of reviews de
pends on how they are conducted. One particular process of conducting
reviews called inspections was discussed earlier in Chapter 2. This process
can be apphed to any work product hke requirement specifications, design
document, test plans, project plans, and code.

5.6 Risk Management

A software project is a complex undertaking. Unforeseen events may have
an adverse impact on a projects cost, schedule, or quality. Risk management
is an attempt to minimize the chances of failure caused by unplanned events.
The aim of risk management is not to avoid getting into projects that have
risks but to minimize the impact of risks in the projects that are undertaken.

A risk is a probabilistic event—it may or may not occur. For this rea
son, we frequently have an optimistic tendency to simply not see risks or to
wish that they will not occur. Social and organizational factors also may
stigmatize risks and discourage clear identification of them [30]. This kind
of attitude gets the project in trouble if the risk events materiahze, some
thing that is hkely to happen in a large project. Not surprisingly, then,
risk management is considered first among the best practices for managing
large software projects [26]. It first came to the forefront with Boehm's tu
torial on risk management [19]. Since then, several books have targeted risk
management for software [29, 78].

5.6.1 Risk Management Concepts

Risk is defined as an exposure to the chance of injury or loss. That is, risk
implies that there is a possibility that something negative may happen. In
the context of software projects, negative implies that there is an adverse
effect on cost, quality, or schedule. Risk management is the area that tries
to ensure that the impact of risks on cost, quality, and schedule is minimal.

Risk management can be considered as dealing with the possibility and
actual occurrence of those events that are not "regular" or commonly ex
pected, that is, they are probabilistic. The commonly expected events, such
as people going on leave or some requirements changing, are handled by

5.6. RISK MANAGEMENT 231

RISK IDENTIFICATION

RISK
MANAGEMENT

RISK ASSESSMENT

RISK CONTROL

RISK ANALYSIS

RISK PRIORITIZATION

RISK MANAGEMENT
PLANNING

RISK RESOLUTION

RISK MONITORING

Figure 5.4: Risk management activities.

normal project management. So, in a sense, risk management begins where
normal project management ends. It deals with events that are infrequent,
somewhat out of the control of the project management, and which can have
a major impact on the project.

Most projects have risk. The idea of risk management is to minimize
the possibility of risks materializing, if possible, or to minimize the effects if
risks actually materiahze. For example, when constructing a building, there
is a risk that the building may later collapse due to an earthquake. That is,
the possibility of an earthquake is a risk. If the building is a large residential
complex, then the potential cost in case the earthquake risk materializes can
be enormous. This risk can be reduced by shifting to a zone that is not
earthquake prone. Alternatively, if this is not acceptable, then the effects of
this risk materializing are minimized by suitably constructing the building
(the approach taken in Japan and California). At the same time, if a small
dumping ground is to be constructed, no such approach might be followed,
as the financial and other impact of an actual earthquake on such a building
is so low that it does not warrant special measures.

It should be clear that risk management has to deal with identifying the
undesirable events that can occur, the probability of their occurring, and the
loss if an undesirable event does occur. Once this is known, strategies can
be formulated for either reducing the probability of the risk materializing or
reducing the effect of risk materializing. So the risk management revolves
around risk assessment and risk control. For each of these major activities,
some subactivities must be performed. A breakdown of these activities is
given in Figure 5.4 [19].

232 5. PLANNING A SOFTWARE PROJECT

5.6.2 Risk Assessment

Risk assessment is an activity that must be undertaken during project plan
ning. This involves identifying the risks, analyzing them, and prioritizing
them on the basis of the analysis. Due to the nature of a software project,
uncertainties are highest near the beginning of the project (just as for cost es
timation). Due to this, although risk assessment should be done throughout
the project, it is most needed in the starting phases of the project.

The goal of risk assessment is to prioritize the risks so that attention
and resources can be focused on the more risky items. Risk identification
is the first step in risk assessment, which identifies all the different risks
for a particular project. These risks are project-dependent and identifying
them is an exercise in envisioning what can go wrong. Methods that can aid
risk identification include checklists of possible risks, surveys, meetings and
brainstorming, and reviews of plans, processes, and work products [78].

Checklists of frequently occurring risks are probably the most common
tool for risk identification—most organizations prepare a list of commonly
occurring risks for projects, prepared from a survey of previous projects.
Such a list can form the starting point for identifying risks for the current
project.

Based on surveys of experienced project managers, Boehm [19] has pro
duced a list of the top 10 risk items likely to compromise the success of a
software project. Though risks in a project are specific to the project, this
list forms a good starting point for identifying such risks. Figure 5.5 shows
these top 10 items along with the techniques preferred by management for
managing these risks. Top risks in a commercial software organization can
be found in [97].

The top-ranked risk item is personnel shortfalls. This involves just having
fewer people than necessary or not having people with specific skills that a
project might require. Some of the ways to manage this risk is to get the
top talent possible and to match the needs of the project with the skills
of the available personnel. Adequate training, along with having some key
personnel for critical areas of the project, will also reduce this risk.

The second item, unrealistic schedules and budgets, happens very fre
quently due to business and other reasons. It is very common that high-level
management imposes a schedule for a software project that is not based on
the characteristics of the project and is unrealistic. Underestimation may
also happen due to inexperience or optimism.

The next few items are related to requirements. Projects run the risk

5.6. RISK MANAGEMENT 233

RISK ITEM RISK M A N A G E M E N T T E C H N I Q U E S

1 Personnel Shortfalls

2 Unrealistic Schedules
and Budgets

3 Developing the Wrong
Software Functions

4 Developing the Wrong
User Interface

5 Gold Plating

6 Continuing Stream of
Requirement Changes

7 Shortfalls in Externally
Furnished Components

8 Shortfalls in Externally
Performed Tasks

9 Real Time Performance
Shortfalls

10 Straining Computer Sci
ence Capabilities

Staffing with top talent; Job matching; Team
building; Key personnel agreements; training;
Prescheduling key people

Detailed multi source cost and schedule estima
tion; Design to cost; Incremental Development;
Software reuse; Requirements scrubbing

Organization analysis; Machine analysis; Ops
concept forumlation; User surveys; Prototyping;
Early user's manuals

Prototyping; Scenarios; Task analysis; User char
acterization

Requirements scrubbing; Prototyping; Cost ben
efit analysis; Design to cost

High change threshold; Information hiding; Incre
mental development

Benchmarking inspections; Reference checking;
Compatibility analysis

Reference checking; Preaward audits; Award free
contracts; Competetive design or prototyping;
Team building

Simulation; Benchmarking; Modeling; Prototyp
ing; Instrumentation; Tuning

Technical analysis; Cost benefit analysis; Proto
typing; Reference checking

Figure 5.5: Top 10 risk items and techniques for managing them.

of developing the wrong software if the requirements analysis is not done
properly and if development begins too early. Similarly, often improper
user interface may be developed. This requires extensive rework of the user
interface later or the software benefits are not obtained because users are
reluctant to use it. Gold plating refers to adding features in the software
that are only marginally useful. This adds unnecessary risk to the project
because gold plating consumes resources and time with little return. Some

234 5. PLANNING A SOFTWARE PROJECT

requirement changes are to be expected in any project, but sometimes fre
quent changes are requested, which is often a reflection of the fact that the
chent has not yet understood or settled on its own requirements. The ef
fect of requirement changes is substantial in terms of cost, especially if the
changes occur when the project has progressed to later phases. Performance
shortfalls are critical in real-time systems and poor performance can mean
the failure of the project.

If a project depends on externally available components—either to be
provided by the client or to be procured as an off-the-shelf component—
the project runs some risks. The project might be delayed if the external
component is not available on time. The project would also suffer if the
quality of the external component is poor or if the component turns out to
be incompatible with the other project components or with the environment
in which the software is developed or is to operate. If a project relies on
technology that is not well developed, it may fail. This is a risk due to
straining the computer science capabilities.

Using the checklist of the top 10 risk items is one way to identify risks.
This approach is likely to suffice in many projects. The other methods
are decision driver analysis, assumption analysis, and decomposition [19].
Decision driver analysis involves questioning and analyzing all the major
decisions taken for the project. If a decision has been driven by factors other
than technical and management reasons, it is likely to be a source of risk
in the project. Such decisions may be driven by politics, marketing, or the
desire for short-term gain. Optimistic assumptions made about the project
also are a source of risk. Some such optimistic assumptions are that nothing
will go wrong in the project, no personnel will quit during the project, people
will put in extra hours if required, and all external components (hardware
or software) will be delivered on time. Identifying such assumptions will
point out the source of risks. An effective method for identifying these
hidden assumptions is comparing them with past experience. Decomposition
implies breaking a large project into clearly defined parts and then analyzing
them. Many software systems have the phenomenon that 20% of the modules
cause 80% of the project problems. Decomposition will help identify these
modules.

Risk identification merely identifies the undesirable events that might
take place during the project, i.e., enumerates the "unforeseen" events that
might occur. It does not specify the probabilities of these risks materializing
nor the impact on the project if the risks indeed materialize. Hence the next
tasks are risk analysis and prioritization.

5.6. RISK MANAGEMENT 235

In risk analysis, the probability of occurrence of a risk has to be esti
mated, along with the loss that will occur if the risk does materialize. This
is often done through discussion, using experience and understanding of the
situation. However, if cost models are used for cost and schedule estima
tion, then the same models can be used to assess the cost and schedule risk.
For example, in the COCOMO cost model, the cost estimate depends on
the ratings of the different cost drivers. One possible source of cost risk is
underestimating these cost drivers. The other is underestimating the size.
Risk analysis can be done by estimating the worst-case value of size and all
the cost drivers and then estimating the project cost from these values. This
will give us the worst-case analysis. Using the worst-case effort estimate, the
worst-case schedule can easily be obtained. A more detailed analysis can be
done by considering different cases or a distribution of these drivers.

The other approaches for risk analysis include studying the probability
and the outcome of possible decisions (decision analysis), understanding the
task dependencies to decide critical activities and the probability and cost
of their not being completed on time (network analysis), risks on the various
quahty factors like rehability and usability (quahty factor analysis), and
evaluating the performance early through simulation, etc., if there are strong
performance constraints on the system (performance analysis). The reader
is referred to [19] for further discussion of these topics.

Once the probabilities of risks materializing and losses due to material
ization of different risks have been analyzed, they can be prioritized. One
approach for prioritization is through the concept of risk exposure (RE) [19],
which is sometimes called risk impact. RE is defined by the relationship

RE = Prob{UO) * Loss{UO),

where Prob{UO) is the probability of the risk materializing (i.e., undesirable
outcome) and Loss{UO) is the total loss incurred due to the unsatisfactory
outcome. The loss is not only the direct financial loss that might be incurred
but also any loss in terms of credibility, future business, and loss of property
or life. The RE is the expected value of the loss due to a particular risk.
For risk prioritization using RE, the higher the RE, the higher the priority
of the risk item.

It is not always possible to use models and prototypes to assess the
probabilities of occurrence and of loss associated with particular events. Due
to the nonavailability of models, assessing risk probabiUties is frequently
subjective. A subjective assessment can be done by the estimate of one
person or by using a group consensus technique like the Delphi approach

236 5. PLANNING A SOFTWARE PROJECT

[20]. In the Delphi method, a group of people discusses the problem of
estimation and finally converges on a consensus estimate.

5.6.3 Risk Control

The main objective of risk management is to identify the top few risk items
and then focus on them. Once a project manager has identified and pri
oritized the risks, the top risks can be easily identified. The question then
becomes what to do about them. Knowing the risks is of value only if you
can prepare a plan so that their consequences are minimal—that is the basic
goal of risk management.

One obvious strategy is risk avoidance, which entails taking actions that
will avoid the risk altogether, like the earlier example of shifting the building
site to a zone that is not earthquake-prone. For some risks, avoidance might
be possible.

For most risks, the strategy is to perform the actions that will either
reduce the probability of the risk materializing or reduce the loss due to
the risk materializing. These are called risk mitigation steps. To decide
what mitigation steps to take, a list of commonly used risk mitigation steps
for various risks is very useful here. Generally the compiled table of com
monly occurring risks also contains the compilation of the methods used for
mitigation in the projects in which the risks appeared.

Note that unlike risk assessment, which is largely an analytical exercise,
risk mitigation comprises active measures that have to be performed to min
imize the impact of risks. In other words, selecting a risk mitigation step is
not just an intehectual exercise. The risk mitigation step must be executed
(and monitored). To ensure that the needed actions are executed properly,
they must be incorporated into the detailed project schedule.

Risk prioritization and consequent planning are based on the risk percep
tion at the time the risk analysis is performed. Because risks are probabilistic
events that frequently depend on external factors, the threat due to risks may
change with time as factors change. Clearly, then, the risk perception may
also change with time. Furthermore, the risk mitigation steps undertaken
may affect the risk perception.

This dynamism implies that risks in a project should not be treated
as static and must be monitored and reevaluated periodically. Hence, in
addition to monitoring the progress of the planned risk mitigation steps,
a project must periodically revisit the risk perception and modify the risk
mitigation plans, if needed. Risk monitoring is the activity of monitoring

5.7. PROJECT MONITORING PLAN 237

the status of various risks and their control activities. One simple approach
for risk monitoring is to analyze the risks afresh at each major milestone,
and change the plans as needed.

5.6.4 A Practical Risk Management Approach

Though the concept of risk exposure is rich, a simple practical way of doing
risk planning is to simply categorize risks and the impacts in a few levels and
then use it for prioritization. This approach is used in many organizations.
Here we discuss a simple approach used in an organization [97]. In this
approach, the probability of a risk occurring is categorized as low, medium,
or high. The risk impact can be also classified as low, medium, and high.
With these ratings, the following simple method for risk prioritization can
be specified:

1. For each risk, rate the probability of its happening as low, medium, or
high.

2. For each risk, assess its impact on the project as low, medium, or high.

3. Rank the risks based on the probability and effects on the project; for
example, a high-probability, high-impact item will have higher rank
than a risk item with a medium probability and high impact. In case
of conflict, use judgment.

4. Select the top few risk items for mitigation and tracking.

An example of this approach is given in Table 5.5, which shows the
various ratings and the risk mitigation steps [97].

As we can see, the risk management part of the project management plan,
which is essentially this table, can be very brief and focused. For monitoring
the risks, one way is to redo risk management planning at milestones, giving
more attention to the risks listed in the project plan. During risk monitor
ing at milestones, reprioritization may occur and mitigation plans for the
remainder of the project may change, depending on the current situation
and the impact of mitigation steps taken earlier.

5.7 Project Monitoring Plan

A project management plan is merely a document that can be used to guide
the execution of a project. Even a good plan is useless unless it is properly

238 5. PLANNING A SOFTWARE PROJECT

Seq
N u m
1

2

3

4

5

Risk

Failure to
meet the high
performance

Lack of peo
ple with right
skills

Complexity of
application

Manpower at
trition

Unclear re
quirements

Prob.

High

Med

Med

Med

Med

Impact

High

Med

Med

Med

Med

Exp.

High

Med

Med

Med

Med

Mitigation 1
Plan
Study white papers and 1
guidehnes on perf.
Train team on perf. tuning.
Update review checkhst to
look for perf, pitfalls.
Test apphcation for perf.
during system testing.
Train resources.
Review prototype with cus
tomer.
Develop coding practices.

Ensure ongoing knowledge
transfer,
Deploy persons with prior
experience with the domain.
Train a core group of four
people.
Rotate assignments among
people,
Identify backups for key
roles.
Review a prototype.
Conduct a midstage review.

Table 5.5: Risk management plan for a project.

executed. And execution cannot be properly driven by the plan unless it is
monitored carefully and the actual performance is tracked against the plan.

Monitoring requires measurements to be made to assess the situation
of a project. If measurements are to be taken during project execution, we
must plan carefully regarding what to measure, when to measure, and how to
measure. Hence, measurement planning is a key element in project planning.
In addition, how the measurement data will be analyzed and reported must
also be planned in advance to avoid the situation of collecting data but not
knowing what to do with it. Without careful planning for data collection
and its analysis, neither is likely to happen. In this section we discuss the
issues of measurements and project tracking.

5.7. PROJECT MONITORING PLAN 239

5.7.1 M e a s u r e m e n t s

The basic purpose of measurements in a project is to effectively monitor
and control the project. For monitoring a project schedule, size, effort,
and defects are the basic measurements that are needed [76, 134]. Schedule
is one of the most important metrics because most projects are driven by
schedules and deadlines. Only by monitoring the actual schedule can we
properly assess if the project is on time or if there is a delay. It is, however,
easy to measure because calendar time is usually used in all plans.

Effort is the main resource consumed in a software project. Conse
quently, tracking of effort is a key activity during monitoring; it is essential
for evaluating whether the project is executing within budget. For effort
data some type of timesheet system is needed where each person working
on the project enters the amount of time spent on the project. For better
monitoring, the effort spent on various tasks should be logged separately.
Generally effort is recorded through some online system (like the weekly ac
tivity report system in [96]), which allows a person to record the amount of
time spent on a particular activity. At any point, total effort on an activity
can be aggregated.

Because defects have a direct relationship to software quality, tracking of
defects is critical for ensuring quality. A large software project may include
thousands of defects that are found by different people at different stages.
Just to keep track of the defects found and their status, defects must be
logged and their closure tracked. Once each defect found is logged (and
later closed), analysis can focus on how many defects have been found so far,
what percentage of defects are still open, and other issues. Defect tracking
is considered one of the best practices for managing a project [26]. We will
discuss it in Chapter 10.

Size is another fundamental metric because many data (for example,
delivered defect density) are normalized with respect to size. The size of de
livered software can be measured in terms of LOC (which can be determined
through the use of regular editors and line counters) or function points. At
a more gross level, just the number of modules or number of features might
suffice.

5.7.2 Project Monitor ing and Tracking

The main goal of monitoring is for project managers to get visibility into the
project execution so that they can determine whether any action needs to be

240 5. PLANNING A SOFTWARE PROJECT

taken to ensure that the project goals are met. Different types of monitoring
might be done for a project. The three main levels of monitoring are activity
level, status reporting, and milestone analysis. Measurements taken on the
project are employed for monitoring.

Activity-level monitoring ensures that each activity in the detailed sched
ule has been done properly and within time. This type of monitoring may be
done daily in project team meetings or by the project manager checking the
status of all the tasks scheduled to be completed on that day. A completed
task is often marked as 100% complete in detailed schedule—this is used by
tools like the Microsoft Project to track the percentage completion of the
overall project or a higher level task.

Status reports are often prepared weekly to to take stock of what has
happened and what needs to be done. Status reports typically contain a
summary of the activities successfully completed since the last status report,
any activities that have been delayed, any issues in the project that need
attention, and if everything is in place for the next week.

The milestone analysis is done at each milestone or every few weeks, if
milestones are too far apart. Analysis of actual versus estimated for effort
and schedule is often included in the milestone analysis. If the deviation is
significant, it may imply that the project may run into trouble and might not
meet its objectives. This situation calls for project managers to understand
the reasons for the variation and to apply corrective and preventive actions
if necessary.

A graphical method of capturing the basic progress of a project as com
pared to its plans is the cost-schedule-milestone [20] graph. The graph shows
the planned schedule and cost of different milestones, along with shows the
actual cost and schedule of achieving the milestones achieved so far. By
having both the planned cost versus milestones and the actual cost versus
milestones on the same graph, the progress of the project can be grasped
easily.

The X-axis of this graph is time, where the months in the project sched
ule are marked. The y-axis represents the cost, in dollars or PMs. Two
curves are drawn. One curve is the planned cost and planned schedule, in
which each important milestone of the project is marked. This curve can
be completed after the project plan is made. The second curve represents
the actual cost and actual schedule, and the actual achievement of the mile
stones is marked. Thus, for each milestone the point representing the time
when the milestone is actually achieved and the actual cost of achieving it
are marked. A cost-schedule-milestone graph for the example is shown in

5,8. SUMMARY 241

$100k

• D

c

HI

0)
O)
•o

CO

JO

E
3

o

Acceptance
Testing / *

SW Testing

Time

Figure 5.6: A cost-schedule-milestone graph.

Figure 5.6.
The chart shown in Figure 5,6 is for a hypothetical project whose cost is

estimated to be $100K. Different milestones have been identified and a curve
is drawn with these milestones. The milestones in this project are PDR (pre
liminary design review), CDR (critical design review), Module 1 completion,
Module 2 completion, integration testing, and acceptance testing. For each
of these milestones some budget has been allocated based on the estimates.
The planned budget is shown by a dotted fine. The actual expenditure is
shown with a bold line. This chart shows that only two milestones have been
achieved, PDR and CDR, and though the project was within budget when
PDR was complete, it is now slightly over budget.

5.8 Summary

A proper project plan is an important ingredient for a successful project.
Without proper planning, a software development project is unlikely to suc
ceed. Good planning can be done after the requirements and architecture
for the project are available. The important planning activities are: process

242 5. PLANNING A SOFTWARE PROJECT

planning, effort estimation, scheduling and staffing planning, quality plan
ning, configuration management planning, project monitoring planning, and
risk management.

Process planning generally involves selecting a proper process model and
tailoring it to suit the project needs. In effort estimation overall effort re
quirement for the project and the breakup of the effort for different phases is
estimated. In a top-down approach, total effort is first estimated, frequently
from the estimate of the size, and then effort for different phases or tasks
is determined. In a bottom-up approach, the main tasks in the project are
identified, and effort for them is estimated first. Prom the effort estimates
of the tasks, the overall estimate is obtained.

The overall schedule and the major milestones of a project depend on
the effort estimate and the staffing level in the project and simple models
can be used to get a rough estimate of schedule from effort. Often, an overall
schedule is determined using a model, and then adjusted to meet the project
needs and constraints. The detailed schedule is one in which the tasks are
broken into smaller, schedulable tasks, and then assigned to specific team
members, while preserving the overall schedule and effort estimates. The
detailed schedule is the most live document of project planning as it lists
the tasks that have to be done; any changes in the project plan must be
reflected suitably in the detailed schedule.

Quality plans are important for ensuring that the final product is of high
quality. The project quality plan identifies all the V&V activities that have
to be performed at different stages in the development, and how they are to
be performed.

The goal of configuration management is to control the changes that take
place during the project. The configuration management plan identifies the
configuration items which will be controlled, and specifies the procedures to
accomphsh this and how access is to be controlled.

Risks are those events which may or may not occur, but if they do occur,
they have a negative impact on the project. To meet project goals even
under the presence of risks requires proper risk management. Risk man
agement requires that risks be identified, analyzed, and prioritized. Then
risk mitigation plans are made and performed to minimize the effect of the
highest priority risks.

Por a plan to be successfully implemented it is essential that the project
be monitored carefully. Activity level monitoring, status reports, and mile
stone analysis are the mechanisms that are often used. Por analysis and
reports, the actual effort, schedule, defects, and size should be measured.

5,8. SUMMARY 243

With these meetsurements, it is possible to monitor the performance of a
project with respect to its plan. And based on this monitoring, actions can
be taken to correct the course of execution, if the need arises.

Overall, project planning lays out the pa th the project should follow in
order to achieve the project objectives. It specifies all the tasks tha t the
project members should perform, and specifies who will do what, in how
much time, and when in order to execute this plan. With a detailed plan,
what remains to be done is to execute the plan, which is done through the
rest of the project. Of course, plans never remain unchanged, as things
do not always work as planned. With proper monitoring in place, these
situations can be identified and plans changed accordingly. Basic project
planning principles and techniques can be used for plan modification also.

Exercises

1. Suppose that the requirements specification phase is divided into two parts:
the initial requirements and feasibility study and the detailed requirements
specification. Suppose that first part costs about 25% of the total require
ment cost. Based on the cost distribution data given earlier, develop a cost
estimation model that can be used to predict the cost after (a) the feasibility
study and (b) the detailed requirements. What are the basic parameters for
this cost model? How accurate is this cost model?

2. For the above, if eff'ort is estimated after the feasibility study, some clear risks
emerge. What are these and what will be your mitigation plan?

3. Consider a project to develop a full-screen editor. The major components
identified are (1) screen edit, (2) command language interpreter, (3) file input
and output, (4) cursor movement, and (5) screen movement. The sizes for
these are estimated to be 4K, 2K, IK, 2K, and 3K delivered source code lines.
Use the COCOMO model to determine overall eff'ort and schedule estimates
(assume values for different cost drivers, with at least three of them being
different from 1.0) and effort and schedule estimates for different phases, (b)
Use the bottom-up approach given in the chapter to estimate the effort.

4. For the preceding example, assuming that you have a team of 3 people, de
velop a high level schedule, and a detailed schedule.

5. What are the limitations of the cost estimation models?

6. Assume that testing (and bug fixing) effort is proportional to the number
of errors detected (regardless of the nature of error). Suppose that testing
detects 90% of the total errors (10% remain undetected). By adding design
and code reviews, suppose the cost of the design and coding phases increases

244 5. PLANNING A SOFTWARE PROJECT

by 10% each (from the base distribution given earher), and 10% of the errors
are detected in design reviews and 10% in code reviews. (So, testing now
detects only 70% of errors.) What is the impact on the overall cost of reviews?

7. You want to monitor the effort spent on different phases in the project and
the time spent on different components. Design a time sheet or form to be
filled in by the programmers that can be used to get this data. The design
should be such that automated processing is possible.

8. For a student project being done in a semester course, list the major risks
and risk mitigation strategy for them.

9. For a group student project in the software engineering course, device a suit
able monitoring plan, and plans for data collection for this monitoring.

10. For a project to manage enrollment and activities in a hobby club, design a
suitable quality plan.

11. Suppose a customer gives a project to build parts of a larger system to your
group, and other parts to some other groups. Your group has to use an
internal tool of the customer, whose new version is to come out soon. Prepare
a risk management plan for your project,

12. In the defect injection and removal cycle, suppose the defect injection rates
in requirements, design, and coding are 5 defects per KLOC, 10 defects per
KLOC, and 60 defects per KLOC respectively. Develop a quality plan and
give some removal rates for the different QC tasks in your plan such that the
final quality is less than 2 defects per KLOC.

13. For the injection rates given above, suppose the defect removal efficiency of
requirement review, design review, unit testing, and system testing are 80%
each. What would be the final delivered quality, assuming that these are the
only QC tasks performed in the project.

14. In the example above, suppose there are different effort for removing defects
in different QC tasks, and that the effort increases as the removal efficiency
of the task increases. On what basis would you allocate effort to different
QC tasks? (An approach for a general form of this problem can be found in
[102].)

CASE STUDIES 245

Case Studies

Case Study 1—Course Scheduling

Here we present some aspects of developing the project plan. The complete
plan is available from the book's Web site. The project has three main
modules. The size estimates for these in lines of code are:

Input 650
Schedule 650
Output 150
TOTAL 1450 = 1.45 KLOC

Because this project is somewhat small and straightforward, a waterfall
type of process will be used. We use the simple method of determining the
total effort from the size based on average productivity. Based on experience
and capability of programmers (though no data has been formally collected
for this), it is felt that for a project of this size the productivity will be of
the order of 600 LOG per PM. Prom this, we get the effort estimate:

E = 1.45/.6 = 2.4FM.

To get the phase-wise breakup of cost we use the distribution of costs given
earher for COCOMO. The phase-wise cost breakup for the project is

Design 2.4 * 0.16 = 0.38 PM
Detailed Design .26 * 2.4 = 0.62 PM
Coding and Testing .42 * 2.4 = 1.0 PM
Integration 0.16 * 2.4 = 0.38 PM

The total coding and unit testing effort is one PM, in which the different
modules will be coded and tested. We approximate the effort for the dif
ferent modules in this phase by dividing one PM in the ratio of the sizes of
the modules. From this we get the estimate for coding and unit testing of
different modules.

The team consists of three persons, all of whom are students who will
devote about one-third to one-fourth of their time to the project. A relatively
fiat team structure will be used with a leader who will allocate tasks to team
members. During system design, only the two members will be involved.
During detailed design, coding and unit testing, all three will work. There
will be no librarian or configuration controller in the project, as it is a small

246 5. PLANNING A SOFTWARE PROJECT

project, and the programmers themselves will do the documentation and
configuration management tasks.

The project will produce the following documents (besides the SRS):
System design, code, system test plan, and system test report. No unit
testing report is needed. Similarly, detailed design is treated as an activity
to help the programmer but its output need not be submitted or reviewed.
The quality plan will be fixed accordingly.

The final project plan for the project is available from the Web site.

Case Study 2—PIMS

In this case study, as it was felt that the requirements are not fully clear
and may evolve, an interactive development process was chosen, with two
iterations. What will be done in the two iterations was decided, as given
below.

Iteration 1. Basic functionality of PIMS without authentication and with
out getting current value data from the Web. That is, all modules
related to data access and main control, and modules for key compu
tations.

Iteration 2. Enhance to get current data from the Web, build security,
installation module, and the alert system.

A bottom-up estimation was done for these two iterations. The effort
and schedule estimates for the two iterations were.

• Iteration 1: 192 person days; 27 days.

• Iteration 2: 88 person-days; 10 days.

The assignment to team members was straightforward. The risk man
agement plan was also simple. The complete project management plan is
available from the Web site—it is self explanatory.

6

Function-Oriented Design

The design activity begins when the requirements document for the soft
ware to be developed is available and the architecture has been designed.
During design we further refine the architecture. Generally, design focuses
on the what we have called the module view in Chapter 4. That is, during
design we determine what modules should the system have and which have
to be developed. Sometimes, the module view may effectively be a module
structure of each component in the architecture. That is, the design exercise
determines the module structure of the components. However, this simple
mapping of components and modules may not always hold. In that case we
have to ensure that the module view created in design is consistent with the
architecture.

The design of a system is essentially a blueprint or a plan for a solution
for the system. Here we consider a system to be a set of modules with
clearly defined behavior which interact with each other in a defined manner
to produce some behavior or services for its environment. A module of a
system can be considered a system, with its own modules.

The design process for software systems often has two levels. At the first
level the focus is on deciding which modules are needed for the system, the
specifications of these modules, and how the modules should be intercon
nected. This is what is called the system design or top-level design. In the
second level, the internal design of the modules, or how the specifications
of the module can be satisfied, is decided. This design level is often called
detailed design or logic design. Detailed design essentially expands the sys
tem design to contain a mofe detailed description of the processing logic and
data structures so that the design is sufficiently complete for coding.

248 6. FUNCTION-ORIENTED DESIGN

A design methodology is a systematic approach to creating a design by
applying of a set of techniques and guidehnes. Most design methodologies fo
cus on the system design, and do not reduce the design activity to a sequence
of steps that can be blindly followed by the designer,

In this chapter we discuss the function-oriented methods for design and
describe one particular methodology—the structured design methodology—
in some detail. In a function-oriented design approach, a system is viewed
as a transformation function, transforming the inputs to the desired out
puts. The purpose of the design phase is to specify the components for this
transformation function, so that each component is also a transformation
function. That is, each module in design supports a functional abstraction.
The basic output of the system design phase, when a function oriented design
approach is being followed, is the definition of all the major data structures
in the system, all the major modules of the system, and how the modules
interact with each other.

In this chapter, we first discuss some general design principles. Then
we discuss a notation for expressing function-oriented designs and describe
the structured design methodology for developing a design. Then we discuss
some verification methods for design and some metrics that are applicable
to function-oriented designs. As in most chapters, we will end with the case
studies.

6.1 Design Principles

The design of a system is correct if a system built precisely according to the
design satisfies the requirements of that system. Clearly, the goal during
the design phase is to produce correct designs. However, correctness is not
the sole criterion during the design phase, as there can be many correct
designs. The goal of the design process is not simply to produce a design
for the system. Instead, the goal is to find the best possible design within
the limitations imposed by the requirements and the physical and social
environment in which the system will operate.

To evaluate a design, we have to specify some properties and criteria that
can be used for evaluation. Ideally, these properties should be as quantitative
as possible. In that situation we can precisely evaluate the "goodness" of
a design and determine the best design. However, criteria for quahty of
software design is often subjective or non-quantifiable. In such a situation,
criteria are essentially thumb rules that aid design evaluation.

6.1. DESIGN PRINCIPLES 249

A design should clearly be verifiable, complete (implements all the spec
ifications) , and traceable (all design elements can be traced to some require
ments). However, the two most important properties that concern designers
are eflftciency and simplicity. Efficiency of any system is concerned with the
proper use of scarce resources by the system. The need for efficiency arises
due to cost considerations. If some resources are scarce and expensive, it is
desirable that those resources be used efficiently. In computer systems, the
resources that are most often considered for efficiency are processor time and
memory. An efficient system is one that consumes less processor time and
requires less memory. In earlier days, the efficient use of CPU and memory
was important due to the high cost of hardware. Now that the hardware
costs are low compared to the software costs, for many software systems
traditional efficiency concerns now take a back seat compared to other con
siderations. One of the exceptions is real-time systems, for which there are
strict execution time constraints.

Simplicity is perhaps the most important quality criteria for software
systems. We have seen that maintenance of software is usually quite ex
pensive. Maintainability of software is one of the goals we have estabhshed.
The design of a system is one of the most important factors affecting the
maintainability of a system. During maintenance, the first step a maintainer
has to undertake is to understand the system to be maintained. Only after
a maintainer has a thorough understanding of the different modules of the
system, how they are interconnected, and how modifying one will affect the
others should the modification be undertaken. A simple and understandable
design will go a long way in making the job of the maintainer easier.

These criteria are not independent, and increasing one may have an un
favorable effect on another. For example, often the "tricks" used to increase
efficiency of a system result in making the system more complex. There
fore, design decisions frequently involve trade-offs. It is the designers' job
to recognize the trade-offs and achieve the best balance. For our purposes,
simplicity is the primary property of interest, and therefore the objective of
the design process is to produce designs that are simple to understand.

Creating a simple (and efficient) design of a large system can be an
extremely complex task that requires good engineering judgment. As de
signing is fundamentally a creative activity, it cannot be reduced to a series
of steps that can be simply followed, though guidehnes can be provided.
In this section we will examine some basic guiding principles that can be
used to produce the design of a system. Some of these design principles are
concerned with providing means to effectively handle the complexity of the

250 6. FUNCTION-ORIENTED DESIGN

design process. Effectively handling the complexity will not only reduce the
effort needed for design (i.e., reduce the design cost), but can also reduce
the scope of introducing errors during design. The principles discussed here
form the basis for most of the design methodologies.

It should be noted that the principles that can be used in design are the
same as those used in problem analysis. In fact, the methods are also similar
because in both analysis and design we are essentially constructing models.
However, there are some fundamental differences. First, in problem analysis,
we are constructing a model of the problem domain, while in design we are
constructing a model for the solution domain. Second, in problem analysis,
the analyst has limited degrees of freedom in selecting the models as the
problem is given, and modehng has to represent it. In design, the designer
has a great deal of freedom in deciding the models, as the system the designer
is modeling does not exist; in fact the designer is creating a model for the
system that will be the basis of building the system. That is, in design, the
system depends on the model, while in problem analysis the model depends
on the system. Finally, as pointed out earlier, the basic aim of modeling in
problem analysis is to understand, while the basic aim of modeling in design
is to optimize (in our case, simphcity and performance). In other words,
though the basic principles and techniques might look similar, the activities
of analysis and design are very different.

6.1.1 Problem Partitioning and Hierarchy

When solving a small problem, the entire problem can be tackled at once.
The complexity of large problems and the limitations of human minds do
not allow large problems to be treated as huge monoliths. For solving larger
problems, the basic principle is the time-tested principle of "divide and con
quer." Clearly, dividing in such a manner that all the divisions have to be
conquered together is not the intent of this wisdom. This principle, if elab
orated, would mean "divide into smaller pieces, so that each piece can be
conquered separately."

For software design, therefore, the goal is to divide the problem into
manageably small pieces that can be solved separately. It is this restriction
of being able to solve each part separately that makes dividing into pieces a
complex task and that many methodologies for system design aim to address.
The basic rationale behind this strategy is the beHef that if the pieces of a
problem are solvable separately, the cost of solving the entire problem is
more than the sum of the cost of solving all the pieces.

6.1. DESIGN PRINCIPLES 251

However, the different pieces cannot be entirely independent of each
other, as they together form the system. The different pieces have to cooper
ate and communicate to solve the larger problem. This communication adds
complexity, which arises due to partitioning and may not have existed in the
original problem. As the number of components increases, the cost of parti
tioning, together with the cost of this added complexity, may become more
than the savings achieved by partitioning. It is at this point that no further
partitioning needs to be done. The designer has to make the judgment about
when to stop partitioning.

As discussed earlier, two of the most important quality criteria for soft
ware design are simplicity and understandability. It can be argued that
maintenance is minimized if each part in the system can be easily related
to the application and each piece can be modified separately. If a piece can
be modified separately, we call it independent of other pieces. If module A
is independent of module B, then we can modify A without introducing any
unanticipated side effects in B. Total independence of modules of one system
is not possible, but the design process should support as much independence
as possible between modules. Dependence between modules in a software
system is one of the reasons for high maintenance costs. Clearly, proper
partitioning will make the system easier to maintain by making the design
easier to understand. Problem partitioning also aids design verification.

Problem partitioning, which is essential for solving a complex problem,
leads to hierarchies in the design. That is, the design produced by using
problem partitioning can be represented as a hierarchy of components. The
relationship between the elements in this hierarchy can vary depending on
the method used. For example, the most common is the "whole-part of"
relationship. In this, the system consists of some parts, each part consists
of subparts, and so on. This relationship can be naturally represented as a
hierarchical structure between various system parts. In general, hierarchical
structure makes it much easier to comprehend a complex system. Due to this,
all design methodologies aim to produce a design that employs hierarchical
structures.

6.1.2 Abstraction

Abstraction is a very powerful concept that is used in all engineering disci
plines. It is a tool that permits a designer to consider a component at an
abstract level without worrying about the details of the implementation of
the component. Any component or system provides some services to its en-

252 6. FUNCTION-ORIENTED DESIGN

vironment. An abstraction of a component describes the external behavior
of that component without bothering with the internal details that produce
the behavior. Presumably, the abstract definition of a component is much
simpler than the component itself.

Abstraction is an indispensable part of the design process and is essential
for problem partitioning. Partitioning essentially is the exercise in determin
ing the components of a system. However, these components are not isolated
from each other; they interact with each other, and the designer has to spec
ify how a component interacts with other components. To decide how a
component interacts with other components, the designer has to know, at
the very least, the external behavior of other components. If the designer
has to understand the details of the other components to determine their
external behavior, we have defeated the purpose of partitioning—isolating a
component from others. To allow the designer to concentrate on one com
ponent at a time, abstraction of other components is used.

Abstraction is used for existing components as well as components that
are being designed. Abstraction of existing components plays an important
role in the maintenance phase. To modify a system, the first step is un
derstanding what the system does and how. The process of comprehending
an existing system involves identifying the abstractions of subsystems and
components from the details of their implementations. Using these abstrac
tions, the behavior of the entire system can be understood. This also helps
determine how modifying a component affects the system.

During the design process, abstractions are used in the reverse manner
than in the process of understanding a system. During design, the compo
nents do not exist, and in the design the designer specifies only the abstract
specifications of the different components. The basic goal of system design
is to specify the modules in a system and their abstractions. Once the dif
ferent modules are specified, during the detailed design the designer can
concentrate on one module at a time. The task in detailed design and im
plementation is essentially to implement the modules so that the abstract
specifications of each module are satisfied.

There are two common abstraction mechanisms for software systems:
functional abstraction and data abstraction. In functional abstraction, a
module is specified by the function it performs. For example, a module
to compute the log of a value can be abstractly represented by the function
log. Similarly, a module to sort an input array can be represented by the
specification of sorting. FYmctional abstraction is the basis of partitioning
in function-oriented approaches. That is, when the problem is being parti-

6.1. DESIGN PRINCIPLES 253

tioned, the overall transformation function for the system is partitioned into
smaller functions that comprise the system function. The decomposition of
the system is in terms of functional modules.

The second unit for abstraction is data abstraction. Any entity in the real
world provides some services to the environment to which it belongs. Often
the entities provide some fixed predefined services. The case of data entities
is similar. Certain operations are required from a data object, depending
on the object and the environment in which it is used. Data abstraction
supports this view. Data is not treated simply as objects, but is treated as
objects with some predefined operations on them. The operations defined
on a data object are the only operations that can be performed on those
objects. From outside an object, the internals of the object are hidden; only
the operations on the object are visible. Data abstraction forms the basis for
object-oriented design, which is discussed in the next chapter. In using this
abstraction, a system is viewed as a set of objects providing some services.
Hence, the decomposition of the system is done with respect to the objects
the system contains.

6.1.3 Modularity

As mentioned earlier, the real power of partitioning comes if a system is
partitioned into modules so that the modules are solvable and modifiable
separately. It will be even better if the modules are also separately compil
able (then changes in a module will not require recompilation of the whole
system). A system is considered modular if it consists of discreet components
so that each component can be implemented separately, and a change to one
component has minimal impact on other components.

Modularity is a clearly a desirable property in a system. Modularity helps
in system debugging—isolating the system problem to a component is easier
if the system is modular; in system repair—changing a part of the system is
easy as it affects few other parts; and in system building—a modular system
can be easily built by "putting its modules together."

A software system cannot be made modular by simply chopping it into
a set of modules. For modularity, each module needs to support a well-
defined abstraction and have a clear interface through which it can interact
with other modules. Modularity is where abstraction and partitioning come
together. For easily understandable and maintainable systems, modularity
is clearly the basic objective; partitioning and abstraction can be viewed as
concepts that help achieve modularity.

254 6. FUNCTION-ORIENTED DESIGN

6.1.4 Top-Down and Bottom-Up Strategies

A system consists of components, which have components of their own; in
deed a system is a hierarchy of components. The highest-level component
correspond to the total system. To design such a hierarchy there are two pos
sible approaches: top-down and bottom-up. The top-down approach starts
from the highest-level component of the hierarchy and proceeds through to
lower levels. By contrast, a bottom-up approach starts with the lowest-level
component of the hierarchy and proceeds through progressively higher levels
to the top-level component.

A top-down design approach starts by identifying the major components
of the system, decomposing them into their lower-level components and iter
ating until the desired level of detail is achieved. Top-down design methods
often result in some form of stepwise refinement Starting from an abstract
design, in each step the design is refined to a more concrete level, until we
reach a level where no more refinement is needed and the design can be im
plemented directly. The top-down approach has been promulgated by many
researchers and has been found to be extremely useful for design. Most
design methodologies are based on the top-down approach.

A bottom-up design approach starts with designing the most basic or
primitive components and proceeds to higher-level components that use
these lower-level components. Bottom-up methods work with layers of
abstraction. Starting from the very bottom, operations that provide a layer
of abstraction are implemented. The operations of this layer are then used to
implement more powerful operations and a still higher layer of abstraction,
until the stage is reached where the operations supported by the layer are
those desired by the system.

A top-down approach is suitable only if the specifications of the system
are clearly known and the system development is from scratch. However, if a
system is to be built from an existing system, a bottom-up approach is more
suitable, as it starts from some existing components. So, for example, if an
iterative enhancement type of process is being followed, in later iterations,
the bottom-up approach could be more suitable (in the first iteration a top-
down approach can be used).

Pure top-down or pure bottom-up approaches are often not practical.
For a bottom-up approach to be successful, we must have a good notion
of the top to which the design should be heading. Without a good idea
about the operations needed at the higher layers, it is difficult to determine
what operations the current layer should support. Top-down approaches

6.2. MODULE-LEVEL CONCEPTS 255

require some idea about the feasibility of the components specified during
design. The components specified during design should be implement able,
which requires some idea about the feasibility of the lower-level parts of a
component. A common approach to combine the two approaches is to pro
vide a layer of abstraction for the application domain of interest through
libraries of functions, which contains the functions of interest to the appli
cation domain. Then use a top-down approach to determine the modules in
the system, assuming that the abstract machine available for implementing
the system provides the operations supported by the abstraction layer. This
approach is frequently used for developing systems. It can even be claimed
that it is almost universally used these days, as most developments now
make use of the layer of abstraction supported in a system consisting of the
library functions provided by operating systems, programming languages,
and special-purpose tools.

6.2 Module-Level Concepts

In the previous section we discussed some general design principles. Now
we turn our attention to some concepts specific to function-oriented design.
Before we discuss these, let us define what we mean by a module. A module
is a logically separable part of a program. It is a program unit that is
discreet and identifiable with respect to compiling and loading. In terms
of common programming language constructs, a module can be a macro, a
function, a procedure (or subroutine), a process, or a package. In systems
using functional abstraction, a module is usually a procedure of function or
a collection of these.

To produce modular designs, some criteria must be used to select modules
so that the modules support well-defined abstractions and are solvable and
modifiable separately. In a system using functional abstraction, couphng
and cohesion are two modularization criteria, which are often used together.

6.2.1 Coupling

Two modules are considered independent if one can function completely
without the presence of other. Obviously, if two modules are independent,
they are solvable and modifiable separately. However, all the modules in
a system cannot be independent of each other, as they must interact so
that together they produce the desired external behavior of the system. The
more connections between modules, the more dependent they are in the sense

256 6, FUNCTION-ORIENTED DESIGN

that more knowledge about one module is required to understand or solve
the other module. Hence, the fewer and simpler the connections between
modules, the easier it is to understand one without understanding the other.
The notion of couphng [138, 154] attempts to capture this concept of "how
strongly" different modules are interconnected.

Coupling between modules is the strength of interconnections between
modules or a measure of interdependence among modules. In general, the
more we must know about module A in order to understand module B, the
more closely connected A is to B. "Highly coupled" modules are joined by
strong interconnections, while "loosely coupled" modules have weak inter
connections. Independent modules have no interconnections. To solve and
modify a module separately, we would like the module to be loosely coupled
with other modules. The choice of modules decides the coupling between
modules. Because the modules of the software system are created during
system design, the couphng between modules is largely decided during sys
tem design and cannot be reduced during implementation.

Coupling increases with the complexity and obscurity of the interface
between modules. To keep coupling low we would like to minimize the
number of interfaces per module and the complexity of each interface. An
interface of a module is used to pass information to and from other modules.
Couphng is reduced if only the defined entry interface of a module is used
by other modules (for example, passing information to and from a module
exclusively through parameters). Coupling would increase if a module is
used by other modules via an indirect and obscure interface, like directly
using the internals of a module or using shared variables.

Complexity of the interface is another factor affecting couphng. The
more complex each interface is, the higher will be the degree of coupling.
For example, complexity of the entry interface of a procedure depends on
the number of items being passed as parameters and on the complexity
of the items. Some level of complexity of interfaces is required to support
the communication needed between modules. However, often more than this
minimum is used. For example, if a field of a record is needed by a procedure,
often the entire record is passed, rather than just passing that field of the
record. By passing the record we are increasing the couphng unnecessarily.
Essentially, we should keep the interface of a module as simple and small as
possible.

The type of information flow along the interfaces is the third major factor
affecting coupling. There are two kinds of information that can flow along
an interface: data or control. Passing or receiving control information means

6.2. MODULE-LEVEL CONCEPTS 257

Interface
Complexity

Type of
Connection

Type of
Communication

Low Simple
obvious

To module
by name

Data

Control
High Complicated To internal

obscure elements Hybrid

Table 6.1: Factors affecting coupling.

that the action of the module will depend on this control information, which
makes it more difficult to understand the module and provide its abstraction.
Transfer of data information means that a module passes as input some data
to another module and gets in return some data as output. This allows
a module to be treated as a simple input-output function that performs
some transformation on the input data to produce the output data. In
general, interfaces with only data communication result in the lowest degree
of couphng, followed by interfaces that only transfer control data. Coupling
is considered highest if the data is hybrid, that is, some data items and some
control items are passed between modules. The effect of these three factors
on coupling is summarized in Table 6.1 [138].

6.2.2 Cohes ion

We have seen that coupling is reduced when the relationships among el
ements in different modules are minimized. That is, coupling is reduced
when elements in different modules have little or no bonds between them.
Another way of achieving this effect is to strengthen the bond between ele
ments of the same module by maximizing the relationship between elements
of the same module. Cohesion is the concept that tries to capture this intra-
module [138, 154]. With cohesion, we are interested in determining how
closely the elements of a module are related to each other.

Cohesion of a module represents how tightly bound the internal elements
of the module are to one another. Cohesion of a module gives the designer
an idea about whether the different elements of a module belong together in
the same module. Cohesion and coupling are clearly related. Usually, the
greater the cohesion of each module in the system, the lower the couphng
between modules is. This correlation is not perfect, but it has been observed

258 6. FUNCTION-ORIENTED DESIGN

in practice. There are several levels of cohesion:

• Coincidental

• Logical

• Temporal

• Procedural

• Communicational

• Sequential

• Functional

Coincidental is the lowest level, and functional is the highest. These levels do
not form a linear scale. Functional binding is much stronger than the rest,
while the first two are considered much weaker than others. Often, many
levels can be applicable when considering cohesion between two elements of
a module. In such situations, the highest level is considered. Cohesion of a
module is considered the highest level of cohesion applicable to all elements
in the module.

Coincidental cohesion occurs when there is no meaningful relationship
among the elements of a module. Coincidental cohesion can occur if an
existing program is "modularized" by chopping it into pieces and making
different pieces modules. If a module is created to save duplicate code by
combining some part of code that occurs at many different places, that mod
ule is likely to have coincidental cohesion. In this situation, the statements
in the module have no relationship with each other, and if one of the mod
ules using the code needs to be modified and this modification includes the
common code, it is hkely that other modules using the code do not want the
code modified. Consequently, the modification of this "common module"
may cause other modules to behave incorrectly. The modules using these
modules are therefore not modifiable separately and have strong interconnec
tion between them. We can say that, generally speaking, it is poor practice
to create a module merely to avoid duplicate code (unless the common code
happens to perform some identifiable function, in which case the statements
will have some relationship between them) or to chop a module into smaller
modules to reduce the module size.

A module has logical cohesion if there is some logical relationship be
tween the elements of a module, and the elements perform functions that

6.2. MODULE-LEVEL CONCEPTS 259

fall in the same logical class. A typical example of this kind of cohesion is a
module that performs all the inputs or all the outputs. In such a situation, if
we want to input or output a particular record, we have to somehow convey
this to the module. Often, this will be done by passing some kind of special
status flag, which will be used to determine what statements to execute in
the module. Besides resulting in hybrid information flow between modules,
which is generally the worst form of couphng between modules, such a mod
ule win usually have tricky and clumsy code. In general, logically cohesive
modules should be avoided, if possible.

Temporal cohesion is the same as logical cohesion, except that the el
ements are also related in time and are executed together. Modules that
perform activities like "initialization," "clean-up," and "termination" are
usually temporally bound. Even though the elements in a temporally bound
module are logically related, temporal cohesion is higher than logical cohe
sion, because the elements are all executed together. This avoids the problem
of passing the flag, and the code is usually simpler.

A procedurally cohesive module contains elements that belong to a com
mon procedural unit. For example, a loop or a sequence of decision state
ments in a module may be combined to form a separate module. Procedu
rally cohesive modules often occur when modular structure is determined
from some form of flowchart. Procedural cohesion often cuts across func
tional hues. A module with only procedural cohesion may contain only part
of a complete function or parts of several functions.

A module with communicational cohesion has elements that are related
by a reference to the same input or output data. That is, in a communi-
cationally bound module, the elements are together because they operate
on the same input or output data. An example of this could be a mod
ule to "print and punch record." Communicationally cohesive modules may
perform more than one function. However, communicational cohesion is
sufficiently high as to be generally acceptable if alternative structures with
higher cohesion cannot be easily identified.

When the elements are together in a module because the output of one
forms the input to another, we get sequential cohesion. If we have a sequence
of elements in which the output of one forms the input to another, sequential
cohesion does not provide any guidehnes on how to combine them into mod
ules. Different possibilities exist: combine all in one module, put the first
half in one and the second half in another, the first third in one and the rest
in the other, and so forth. Consequently, a sequentially bound module may
contain several functions or parts of different functions. Sequentially cohe-

260 6. FUNCTION-ORIENTED DESIGN

sive modules bear a close resemblance to the problem structure. However,
they are considered to be far from the ideal, which is functional cohesion.

Functional cohesion is the strongest cohesion. In a functionally bound
module, all the elements of the module are related to performing a single
function. By function, we do not mean simply mathematical functions; mod
ules accomplishing a single goal are also included. Functions like "compute
square root" and "sort the array" are clear examples of functionally cohesive
modules.

How does one determine the cohesion level of a module? There is no
mathematical formula that can be used. We have to use our judgment for
this. A useful technique for determining if a module has functional cohesion
is to write a sentence that describes, fully and accurately, the function or
purpose of the module. The following tests can then be made [138]:

1. If the sentence must be a compound sentence, if it contains a comma, or
it has has more than one verb, the module is probably performing more
than one function, and it probably has sequential or communicational
cohesion.

2. If the sentence contains words relating to time, like "first," "next,"
"when," and "after" the module probably has sequential or temporal
cohesion.

3. If the predicate of the sentence does not contain a single specific object
following the verb (such as "edit all data") the module probably has
logical cohesion.

4. Words like "initialize" and "cleanup" imply temporal cohesion.

Modules with functional cohesion can always be described by a simple sen
tence. However, if a description is a compound sentence, it does not mean
that the module does not have functional cohesion. Functionally cohesive
modules can also be described by compound sentences. If we cannot de
scribe it using a simple sentence, the module is not likely to have functional
cohesion.

6.3 Design Notation and Specification

During the design phase there are two things of interest: the design of the
system, the producing of which is the basic objective of this phase, and the

6.3. DESIGN NOTATION AND SPECIFICATION 261

process of designing itself. It is for the latter that principles and methods are
needed. In addition, while designing, a designer needs to record his thoughts
and decisions and to represent the design so that he can view it and play
with it. For this, design notations are used.

Design notations are largely meant to be used during the process of design
and are used to represent design or design decisions. They are meant largely
for the designer so that he can quickly represent his decisions in a compact
manner that he can evaluate and modify. These notations are frequently
graphical.

Once the designer is satisfied with the design he has produced, the de
sign is to be precisely specified in the form of a document. Whereas a design
represented using the design notation is largely to be used by the designer, a
design specification has to be so precise and complete that it can be used as
a basis of further development by other programmers. Often, design specifi
cation uses textual structures, with design notation helping understanding.

6.3,1 Structure Charts

For a function-oriented design, the design can be represented graphically by
structure charts. The structure of a program is made up of the modules of
that program together with the interconnections between modules. Every
computer program has a structure, and given a program its structure can
be determined. The structure chart of a program is a graphic representation
of its structure. In a structure chart a module is represented by a box with
the module name written in the box. An arrow from module A to module B
represents that module A invokes module B. B is called the subordinate of A,
and A is called the superordinate of B. The arrow is labeled by the parameters
received by B as input and the parameters returned by B as output, with the
direction of flow of the input and output parameters represented by small
arrows. The parameters can be shown to be data (unfilled circle at the tail
of the label) or control (filled circle at the tail). As an example consider the
structure of the following program, whose structure is shown in Figure 6.1.

main ()
{

i n t sum, n , N, a[MAX];
r e a d n u m s C a , &N); s o r t (a , N) ; s c a n f (& n) ;
sum = a d d _ n (a , n) ; p r i n t f (s u m) ;

>

r e a d n u m s (a , N)

262 6, FUNCTION-ORIENTED DESIGN

"•yy^

readnums

main

sort

f

switch

add_n

Figure 6.1: The structure chart of the sort program.

i n t a [] , *N ;
{

>

s o r t (a , N)
i n t a [] , N;
{

if (a [i] > a [t]) s w i t c h (a [i] , a [t]) ;

}

/* Add the first n numbers of a */
add_n(a, n)
int a [] , n ;
{

>

In general, procedural information is not represented in a structure chart,
and the focus is on representing the hierarchy of modules. However, there are
situations where the designer may wish to communicate certain procedural
information explicitly, like major loops and decisions. Such information can

6,3, DESIGN NOTATION AND SPECIFICATION 263

/

B

A

/ '
r" '"I "

C

- ^

>̂
:>

D

Figure 6.2: Iteration and decision representation.

also be represented in a structure chart. For example, let us consider a
situation where module A has subordinates B, C, and D, and A repeatedly
calls the modules C and D. This can be represented by a looping arrow
around the arrows joining the subordinates C and D to A, as shown in
Figure 6.2. All the subordinate modules activated within a common loop
are enclosed in the same looping arrow.

Major decisions can be represented similarly. For example, if the invo
cation of modules C and D in module A depends on the outcome of some
decision, that is represented by a small diamond in the box for A, with the
arrows joining C and D coming out of this diamond, as shown in Figure 6.2.

Modules in a system can be categorized into few classes. There are some
modules that obtain information from their subordinates and then pass it
to their superordinate. This kind of module is an input module. Similarly,
there are output modules, that take information from their superordinate
and pass it on to its subordinates. As the name suggests, the input and
output modules are typically used for input and output of data from and to
the environment. The input modules get the data from the sources and get
it ready to be processed, and the output modules take the output produced
and prepare it for proper presentation to the environment. Then there are
modules that exist solely for the sake of transforming data into some other
form. Such a module is called a transform module. Most of the compu
tational modules typically fall in this category. Finally, there are modules
whose primary concern is managing the flow of data to and from different
subordinates. Such modules are called coordinate modules. The structure
chart representation of the different types of modules is shown in Figure 6.3.

264 6. FUNCTION-ORIENTED DESIGN

Data to
Superiordinate

Input
Module

Data from
Superiordinate

Output
Module

Coordinate
Module

9 ^ ^

?J
Transform

Module

S'
Composite

Module

9^

Figure 6.3: Different types of modules.

A module can perform functions of more than one type of module. For
example, the composite module in Figure 6.3 is an input module from the
point of view of its superordinate, as it feeds the data Y to the superordinate.
Internally, A is a coordinate module and views its job as getting data X from
one subordinate and passing it to another subordinate, which converts it to
Y. Modules in actual systems are often composite modules.

A structure chart is a nice representation mechanism for a design that
uses functional abstraction. It shows the modules and their call hierarchy,
the interfaces between the modules, and what information passes between
modules. It is a convenient and compact notation that is very useful while
creating the design. That is, a designer can make effective use of structure
charts to represent the model he is creating while he is designing. However,
it is not sufficient for representing the final design, as it does not give all
the information needed about the design. For example, it does not specify
the scope, structure of data, specifications of each module, etc. Hence, it is
generally supplemented with textual specifications to convey design to the

6.3. DESIGN NOTATION AND SPECIFICATION 265

implementer.
We have seen how to determine the structure of an existing program.

But once the program is written, its structure is fixed and Httle can be
done about altering the structure. However, for a given set of requirements
many different programs can be written to satisfy the requirements, and
each program can have a different structure. That is, although the structure
of a given program is fixed, for a given set of requirements, programs with
different structures can be obtained. The objective of the design phase using
function-oriented method is to control the eventual structure of the system
by fixing the structure during design.

6.3.2 Specification

Using some design rules or methodology, a conceptual design of the system
can be produced in terms of a structure chart. As seen earlier, in a structure
chart each module is represented by a box with a name. The functionality
of the module is essentially communicated by the name of the box, and
the interface is communicated by the data items labeling the arrows This
is alright while the designer is designing but inadequate when the design
is to be communicated. To avoid these problems, a design specification
should define the major data structures, modules and their specifications,
and design decisions.

During system design, the major data structures for the software are
identified; without these, the system modules cannot be meaningfully defined
during design. In the design specification, a formal definition of these data
structures should be given.

Module specification is the major part of system design specification. All
modules in the system should be identified when the system design is com
plete, and these modules should be specified in the document. During system
design only the module specification is obtained, because the internal details
of the modules are defined later. To specify a module, the design document
must specify (a) the interface of the module (all data items, their types,
and whether they are for input and/or output), (b) the abstract behavior
of the module {what the module does) by specifying the module's function-
ahty or its input/output behavior, and (c) all other modules used by the
module being specified—this information is quite useful in maintaining and
understanding the design.

Hence, a design specification will necessarily contain specification of the
major data structures and modules in the system. After a design is ap-

266 6. FUNCTION-ORIENTED DESIGN

proved (using some verification mechanism), the modules will have to be
implemented in the target language. This requires that the module "head
ers" for the target language first be created from the design. This translation
of the design for the target language can introduce errors if it's done man
ually. To eliminate these translation errors, if the target language is known
(as is generally the case after the requirements have been specified), it is
better to have a design specification language whose module specifications
can be used almost directly in programming. This not only minimizes the
translation errors that may occur, but also reduces the effort required for
translating the design to programs. It also adds incentive for designers to
properly specify their design, as the design is no longer a "mere" document
that will be thrown away after review—it will now be used directly in coding.
In the case study, a design specification language close to C has been used.
Prom the design, the module headers for C can easily be created with some
simple editing.

To aid the comprehensibility of the design, all major design decisions
made by the designers during the design process should be explained explic
itly. The choices that were available and the reasons for making a particular
choice should be explained. This makes a design more visible and will help
in understanding the design.

6.4 Structured Design Methodology

Creating the software system design is the major concern of the design phase.
Many design techniques have been proposed over the years to provide some
discipline in handling the complexity of designing large systems. The aim
of design methodologies is not to reduce the process of design to a sequence
of mechanical steps but to provide guidehnes to aid the designer during
the design process. Here we describe the structured design methodology
[138, 154] for developing system designs.

Structured design methodology (SDM) views every software system as
having some inputs that are converted into the desired outputs by the soft
ware system. The software is viewed as a transformation function that trans
forms the given inputs into the desired outputs, and the central problem of
designing software systems is considered to be properly designing this trans
formation function. Due to this view of software, the structured design
methodology is primarily function-oriented and relies heavily on functional
abstraction and functional decomposition.

6.4. STRUCTURED DESIGN METHODOLOGY 267

The concept of the structure of a program hes at the heart of the struc
tured design method. During design, structured design methodology aims to
control and influence the structure of the final program. The aim is to design
a system so that programs implementing the design would have a hierarchi
cal structure, with functionally cohesive modules and as few interconnections
between modules as possible.

In properly designed systems it is often the case that a module with sub
ordinates does not actually perform much computation. The bulk of actual
computation is performed by its subordinates, and the module itself largely
coordinates the data flow between the subordinates to get the computation
done. The subordinates in turn can get the bulk of their work done by their
subordinates until the "atomic" modules, which have no subordinates, are
reached. Factoring is the process of decomposing a module so that the bulk
of its work is done by its subordinates. A system is said to be completely
factored if all the actual processing is accomplished by bottom-level atomic
modules and if non-atomic modules largely perform the jobs of control and
coordination. SDM attempts to achieve a structure that is close to being
completely factored.

The overall strategy is to identify the input and output streams and the
primary transformations that have to be performed to produce the output.
High-level modules are then created to perform these major activities, which
are later refined. There are four major steps in this strategy:

1. Restate the problem as a data flow diagram

2. Identify the input and output data elements

3. First-level factoring

4. Factoring of input, output, and transform branches

We will now discuss each of these steps in more detail. The design of the case
study using structured design will be given later. For illustrating each step
of the methodology as we discuss them, we consider the following problem:
there is a text file containing words separated by blanks or new fines. We
have to design a software system to determine the number of unique words
in the file.

6.4.1 Restate the Problem as a Data Flow Diagram

To use the SD methodology, the first step is to construct the data fiow
diagram for the problem. We studied data fiow diagrams in Chapter 3.

268 6. FUNCTION-ORIENTED DESIGN

However, there is a fundamental difference between the DFDs drawn during
requirements analysis and those drawn during structured design. In the
requirements analysis, a DFD is drawn to model the problem domain. The
analyst has little control over the problem, and hence his task is to extract
from the problem all the information and then represent it as a DFD.

During design activity, we are no longer modeling the problem domain,
but rather are dealing with the solution domain and developing a model for
the eventual system. That is, the DFD during design represents how the
data will flow in the system when it is built. In this modeling, the major
transforms or functions in the software are decided, and the DFD shows
the major transforms that the software will have and how the data will
flow through different transforms. So, drawing a DFD for design is a very
creative activity in which the designer visualizes the eventual system and
its processes and data flows. As the system does not yet exist, the designer
has complete freedom in creating a DFD that will solve the problem stated
in the SRS. The general rules of drawing a DFD remain the same; we show
what transforms are needed in the software and are not concerned with the
logic for implementing them. Consider the example of the simple automated
teller machine that allows customers to withdraw money. A DFD for this
ATM is shown in Figure 6.4.

There are two major streams of input data in this diagram. The first
is the account number and the code, and the second is the amount to be
debited. The DFD is self-explanatory. Notice the use of * at different places
in the DFD. For example, the transform "vahdate," which verifies if the
account number and code are valid, needs not only the account number and
code, but also information from the system database to do the validation.
And the transform debit account has two outputs, one used for recording
the transaction and the other to update the account.

As another example, consider the problem of determining the number of
different words in an input file. The data flow diagram for this problem is
shown in Figure 6.5.

This problem has only one input data stream, the input file, while the
desired output is the count of different words in the file. To transform the
input to the desired output, the first thing we do is form a hst of all the
words in the file. It is best to then sort the list, as this will make identifying
different words easier. This sorted fist is then used to count the number of
different words, and the output of this transform is the desired count, which
is then printed. This sequence of data transformation is what we have in the
data flow diagram.

6.4. STRUCTURED DESIGN METHODOLOGY 269

System
Database

Figure 6.4: Data flow diagram of an ATM.

Input

Figure 6.5: DFD for the word-counting problem.

6.4.2 Identify the Most Abstract Input and Output D a t a
Elements

Most systems have some basic transformations that perform the required
operations. However, in most cases the transformation cannot be easily
applied to the actual physical input and produce the desired physical output.
Instead, the input is first converted into a form on which the transformation
can be apphed with ease. Similarly, the main transformation modules often

270 6. FUNCTION-ORIENTED DESIGN

produce outputs that have to be converted into the desired physical output.
The goal of this second step is to separate the transforms in the data flow
diagram that convert the input or output to the desired format from the
ones that perform the actual transformations.

For this separation, once the data flow diagram is ready, the next step is
to identify the highest abstract level of input and output. The most abstract
input data elements are those data elements in the data flow diagram that
are farthest removed from the physical inputs but can still be considered
inputs to the system. The most abstract input data elements often have
little resemblance to the actual physical data. These are often the data ele
ments obtained after operations like error checking, data validation, proper
formatting, and conversion are complete.

Most abstract input (MAI) data elements are recognized by starting
from the physical inputs and traveling toward the outputs in the data flow
diagram, until the data elements are reached that can no longer be considered
incoming. The aim is to go as far as possible from the physical inputs,
without losing the incoming nature of the data element. This process is
performed for each input stream. Identifying the most abstract data items
represents a value judgment on the part of the designer, but often the choice
is obvious.

Similarly, we identify the most abstract output data elements (MAO) by
starting from the outputs in the data flow diagram and traveling toward the
inputs. These are the data elements that are most removed from the actual
outputs but can stifl be considered outgoing. The MAO data elements may
also be considered the logical output data items, and the transforms in the
data flow diagram after these data items are basically to convert the logical
output into a form in which the system is required to produce the output.

There will usually be some transforms left between the most abstract
input and output data items. These central transforms perform the basic
transformation for the system, taking the most abstract input and trans
forming it into the most abstract output. The purpose of having central
transforms deal with the most abstract data items is that the modules imple
menting these transforms can concentrate on performing the transformation
without being concerned with converting the data into proper format, vali
dating the data, and so forth. It is worth noting that if a central transform
has two outputs with a + between them, it often indicates the presence of a
major decision in the transform (which can be shown in the structure chart).

Consider the data flow diagram shown in Figure 6.5. The arcs in the
data flow diagram are the most abstract input and most abstract output.

6.4. STRUCTURED DESIGN METHODOLOGY 271

The choice of the most abstract input is obvious. We start following the
input. First, the input file is converted into a word list, which is essentially
the input in a different form. The sorted word hst is still basically the input,
as it is still the same list, in a different order. This appears to be the most
abstract input because the next data (i.e., count) is not just another form of
the input data. The choice of the most abstract output is even more obvious;
count is the natural choice (a data that is a form of input will not usually
be a candidate for the most abstract output). Thus we have one central
transform, count-number-of-different-words, which has one input and one
output data item.

Consider now the data flow diagram of the automated teller shown in
Figure 6.4. The two most abstract inputs are the dollar amount and the val
idated account number. The validated account number is the most abstract
input, rather than the account number read in, as it is still the input—but
with a guarantee that the account number is valid. The two abstract outputs
are obvious. The abstract inputs and outputs are marked in the data flow
diagram.

6.4.3 First-Level Factoring

Having identifled the central transforms and the most abstract input and
output data items, we are ready to identify some modules for the system.
We first specify a main module, whose purpose is to invoke the subordinates.
The main module is therefore a coordinate module. For each of the most
abstract input data items, an immediate subordinate module to the main
module is specified. Each of these modules is an input module, whose pur
pose is to deliver to the main module the most abstract data item for which
it is created.

Similarly, for each most abstract output data item, a subordinate module
that is an output module that accepts data from the main module is specified.
Each of the arrows connecting these input and output subordinate modules
are labeled with the respective abstract data item flowing in the proper
direction.

Finally, for each central transform, a module subordinate to the main
one is specifled. These modules will be transform modules, whose purpose is
to accept data from the main module, and then return the appropriate data
back to the main module. The data items coming to a transform module from
the main module are on the incoming arcs of the corresponding transform
in the data flow diagram. The data items returned are on the outgoing arcs

272 6. FUNCTION-ORIENTED DESIGN

Sorted w.l.
Main m

Get Sorted
Word List iX

^

count

Count Number of
Different Words

Output
Count

Figure 6.6: First-level factoring.

of that transform. Note that here a module is created for a transform, while
input/output modules are created for data items. The structure after the
first-level factoring of the word-counting problem (its data flow diagram was
given earlier) is shown in Figure 6.6.

In this example, there is one input module, which returns the sorted word
list to the main module. The output module takes from the main module
the value of the count. There is only one central transform in this example,
and a module is drawn for that. Note that the data items travehng to and
from this transformation module are the same as the data items going in
and out of the central transform.

Let us examine the data flow diagram of the ATM. We have already seen
that this has two most abstract inputs, two most abstract outputs, and two
central transforms. Drawing a module for each of these, we get the structure
chart shown in Figure 6.7.

As we can see, the first-level factoring is straightforward, after the most
abstract input and output data items are identified in the data flow diagram.
The main module is the overall control module, which will form the main
program or procedure in the implementation of the design. It is a coordinate
module that invokes the input modules to get the most abstract data items,
passes these to the appropriate transform modules, and delivers the results
of the transform modules to other transform modules until the most abstract
data items are obtained. These are then passed to the output modules.

6.4. STRUCTURED DESIGN METHODOLOGY 273

Figure 6.7: First-level factoring for ATM.

6.4,4 Factoring the Input, Output , and Transform Branches

The first-level factoring results in a very high-level structure, where each
subordinate module has a lot of processing to do. To simplify these modules,
they must be factored into subordinate modules that will distribute the work
of a module. Each of the input, output, and transformation modules must
be considered for factoring. Let us start with the input modules.

The purpose of an input module, as viewed by the main program, is
to produce some data. To factor an input module, the transform in the
data flow diagram that produced the data item is now treated as a central
transform. The process performed for the first-level factoring is repeated here
with this new central transform, with the input module being considered the
main module. A subordinate input module is created for each input data
stream coming into this new central transform, and a subordinate transform
module is created for the new central transform. The new input modules
now created can then be factored again, until the physical inputs are reached.
Factoring of input modules will usually not yield any output subordinate
modules.

The factoring of the input module get-sorted-list in the first-level struc
ture is shown in Figure 6.8. The transform producing the input returned by
this module (i.e., the sort transform) is treated as a central transform. Its
input is the word list. Thus, in the first factoring we have an input module
to get the list and a transform module to sort the list. The input module can
be factored further, as the module needs to perform two functions, getting
a word and then adding it to the list. Note that the looping arrow is used

274 6. FUNCTION-ORIENTED DESIGN

Get Sorted List

1 Get a
word Add to

Word List

Figure 6.8: Factoring the input module.

to show the iteration.
The factoring of the output modules is symmetrical to the factoring of

the input modules. For an output module we look at the next transform to
be applied to the output to bring it closer to the ultimate desired output.
This now becomes the central transform, and an output module is created
for each data stream going out of this transform. During the factoring of
output modules, there will usually be no input modules. In our example,
there is only one transform after the most abstract output, so this factoring
need not be done.

If the data flow diagram of the problem is sufficiently detailed, factoring
of the input and output modules is straightforward. However, there are no
such rules for factoring the central transforms. The goal is to determine sub-
transforms that will together compose the overall transform and then repeat
the process for the newly found transforms, until we reach the atomic mod
ules. Factoring the central transform is essentially an exercise in functional
decomposition and will depend on the designers' experience and judgment.

One way to factor a transform module is to treat it as a problem in
its own right and start with a data flow diagram for it. The inputs to the
data flow diagram are the data coming into the module and the outputs are
the data being returned by the module. Each transform in this data flow
diagram represents a subtransform of this transform. The central transform
can be factored by creating a subordinate transform module for each of the
transforms in this data flow diagram. This process can be repeated for the

6.4. STRUCTURED DESIGN METHODOLOGY 275

Count Number of
Different Words

Get a
Word

Same as
Previous

1«^9 coun^

ocount

Increment
Count

Figure 6.9: Factoring the central transform.

new transform modules that are created, until we reach atomic modules.
The factoring of the central transform count-the-number-of-different-words
is shown in Figure 6.9.

This was a relatively simple transform, and we did not need to draw
the data flow diagram. To determine the number of words, we have to get
a word repeatedly, determine if it is the same as the previous word (for a
sorted hst, this checking is sufficient to determine if the word is different
from other words), and then count the word if it is different. For each of
the three different functions, we have a subordinate module, and we get the
structure shown in Figure 6.9.

It should be clear that the structure that is obtained depends a good
deal on what are the most abstract inputs and most abstract outputs. And
as mentioned earlier, determining the most abstract inputs and outputs re
quires making a judgment. However, if the judgment is different, though
the structure changes, it is not affected dramatically. The net effect is that
a bubble that appears as a transform module at one level may appear as
a transform module at another level. For example, suppose in the word-
counting problem we make a judgment that word-hst is another form of the
basic input but sorted-word-list is not. If we use word-list as the most ab
stract input, the net result is that the transform module corresponding to
the sort bubble shows up as a transform module one level above. That is,
now it is a central transform (i.e., subordinate to the main module) rather
than a subordinate to the input module "get-sorted-word-list." So, the SDM
has the desired property that it is not very sensitive to some variations in
the identification of the most abstract input and most abstract output.

276 6. FUNCTION-ORIENTED DESIGN

6.4.5 Design Heuristics

The design steps mentioned earlier do not reduce the design process to a
series of steps that can be followed blindly. The strategy requires the designer
to exercise sound judgment and common sense. The basic objective is to
make the program structure reflect the problem as closely as possible. With
this in mind the structure obtained by the methodology described earlier
should be treated as an initial structure, which may need to be modified.
Here we mention some heuristics that can be used to modify the structure, if
necessary. Keep in mind that these are merely pointers to help the designer
decide how the structure can be modified. The designer is still the final
judge of whether a particular heuristic is useful for a particular application
or not.

Module size is often considered an indication of module complexity. In
terms of the structure of the system, modules that are very large may not
be implementing a single function and can therefore be broken into many
modules, each implementing a different function. On the other hand, mod
ules that are too small may not require any additional identity and can be
combined with other modules.

However, the decision to split a module or combine different modules
should not be based on size alone. Cohesion and coupling of modules should
be the primary guiding factors. A module should be split into separate
modules only if the cohesion of the original module was low, the resulting
modules have a higher degree of cohesion, and the coupling between modules
does not increase. Similarly, two or more modules should be combined only
if the resulting module has a high degree of cohesion and the couphng of
the resulting module is not greater than the couphng of the submodules.
Furthermore, a module usually should not be split or combined with another
module if it is subordinate to many different modules. As a rule of thumb,
the designer should take a hard look at modules that will be larger than
about 100 lines of source code or will be less than a couple of lines.

Another parameter that can be considered while "fine-tuning" the struc
ture is the fan-in and fan-out of modules. Fan-in of a module is the number
of arrows coming in the module, indicating the number of superordinates
of a module. Fan-out of a module is the number of arrows going out of
that module, indicating the number of subordinates of the module. A very
high fan-out is not very desirable, as it means that the module has to con
trol and coordinate too many modules and may therefore be too complex.
Fan-out can be reduced by creating a subordinate and making many of the

6.4, STRUCTURED DESIGN METHODOLOGY Til

current subordinates subordinate to the newly created module. In general
the fan-out should not be increased above five or six.

Whenever possible, the fan-in should be maximized. Of course, this
should not be obtained at the cost of increasing the coupling or decreasing
the cohesion of modules. For example, implementing different functions into
a single module, simply to increase the fan-in, is not a good idea. Fan-in
can often be increased by separating out common functions from different
modules and creating a module to implement that function.

Another important factor that should be considered is the correlation of
the scope of effect and scope of control. The scope of effect of a decision (in
a module) is the collection of all the modules that contain any processing
that is conditional on that decision or whose invocation is dependent on the
outcome of the decision. The scope of control of a module is the module
itself and all its subordinates (not just the immediate subordinates). The
system is usually simpler when the scope of effect of a decision is a subset of
the scope of control of the module in which the decision is located. Ideally,
the scope of effect should be limited to the modules that are immediate
subordinates of the module in which the decision is located. Violation of
this rule of thumb often results in more coupling between modules.

There are some methods that a designer can use to ensure that the scope
of effect of a decision is within the scope of control of the module. The
decision can be removed from the module and "moved up" in the structure.
Alternatively, modules that are in the scope of effect but are not in the scope
of control can be moved down the hierarchy so that they fall within the scope
of control.

6.4.6 Transaction Analys is

The structured design technique discussed earher is called transform anal
ysis, where most of the transforms in the data flow diagram have a few
inputs and a few outputs. There are situations where a transform splits an
input stream into many different substreams, with a different sequence of
transforms specified for the different substreams. For example, this is the
case with systems where there are many different sets of possible actions
and the actions to be performed depend on the input command specified. In
such situations the transform analysis can be supplemented by transaction
analysis, and the detailed data flow diagram of the transform splitting the
input may look like the DFD shown in Figure 6.10.

The module splitting the input is called the transaction center; it need

278 6. FUNCTION-ORIENTED DESIGN

Transaction
Center

Figure 6.10: DFD for transaction analysis.

^
Transaction

Analysis

Get
Transaction

Get Validate
Do Type^ DoType2 DoTypOf,

7 ^ X T^TX

Figure 6.11: Factored transaction center.

not be a central transform and may occur on either the input branch or
the output branch of the data flow diagram of the system. One of the
standard ways to convert a data flow diagram of the form shown in Figure
6.10 into a structure chart is to have an input module that gets the analyzed
transaction and a dispatch module that invokes the modules for the different
transactions. This structure is shown in Figure 6.11.

For smaller systems the analysis and the dispatching can be done in
the transaction center module itself, giving rise to a flatter structure. For

6.4. STRUCTURED DESIGN METHODOLOGY 279

designing systems that require transaction analysis, start with a data flow
diagram, as in transform analysis, and identify the transform centers. Factor
the data flow diagram, as is done in transform analysis. For the modules
corresponding to the transform centers, draw the detailed data flow dia
gram, which win be of the form shown in Figure 6.11. Choose one of the
transaction-centered organizations, either one with a separate dispatch and
input module or one with ah combined in one module. Specify one subor
dinate module for each transaction. Temptations to combine many similar
transactions into one module should be avoided, as it would result in a log
ically cohesive module. Then each transaction module should be factored,
as is done in transform analysis. There are usually many distinct actions
that need to be performed for a transaction; they are often specified in the
requirements for each transaction. In such cases one subordinate module to
the transaction module should be created for each action. Further factoring
of action modules into many detailed action modules may be needed. In
many transaction-oriented systems, there is a lot of commonality of actions
among the different transactions. This commonality should be exploited by
sharing the modules at either the action level or the detailed action level.

6.4.7 Discuss ion

No design methodology reduces design to a series of steps that can be me
chanically executed. All design methodologies are, at best, a set of guidelines
that, if applied, will most likely give a design that will satisfy the design ob
jectives. The basic objective is to produce a design that is modular and
simple. One way to achieve modularity is to have a design that has highly
cohesive modules with low coupling between different modules. In other
words, the basic objective of the design activity using a function-oriented
approach is to create an architecture, that, if implemented, will satisfy the
SRS, and that contains cohesive modules that have low couphng with others.
Structured design methodology is an approach for creating a design that is
likely to satisfy this objective. Now that we have studied the methodology,
let us see how it actually achieves this goal.

The basic principle behind the SDM, as with most other methodologies,
is problem partitioning, in which the problem is partitioned into subproblems
that can be solved separately. In SDM, at the very basic level, this is done
by partitioning the system into subsystems that deal with input, subsystems
that deal with output, and subsystems that deal with data transformation.

The rationale behind this partitioning is that in many systems, partic-

280 6. FUNCTION-ORIENTED DESIGN

ularly data processing systems, a good part of the system code deals with
managing the inputs and outputs. The components deahng with inputs
have to deal with issues of screens, reading data, formats, errors, exceptions,
completeness of information, structure of the information, etc. Similarly,
the modules deahng with output have to prepare the output in presentation
formats, make charts, produce reports, etc. Hence, for many systems, it is
indeed the case that a good part of the software has to deal with inputs
and outputs. The actual transformation in the system is frequently not very
complex—it is deahng with data and getting it in proper form for performing
the transformation or producing the output in the desired form that requires
considerable processing.

Structured design methodology clearly separates the system at the very
top level into various subsystems, one for managing each major input, one
for managing each major output, and one for each major transformation.
The modules performing the transformation deal with data at an abstract
level, that is, in the form that is most convenient for processing. Due to this,
these modules can focus on the conceptual problem of how to perform the
transformation without bothering with how to obtain "clean" inputs or how
to "present" the output. And these subsystems are quite independent of each
other, interacting only through the main module. Hence, this partitioning
leads to independent subsystems that do not interact directly, and hence can
be designed and developed separately.

This partitioning is at the heart of SDM. In the SDM itself, this parti
tioning is obtained by starting with a data flow diagram. However, the basic
idea of the SDM can be effectively used even if one wants to go directly to
the first structure (without going through a DFD).

Besides this central idea, another basic idea behind the SDM is that
processing of an input subsystem should be done in a progressive manner,
starting from the raw input and progressively applying transformations to
eventually reach the most abstract input level (what this input subsystem has
to produce). Similar is the case with the structure for the subsystems dealing
with outputs. The basic idea here is to separate the different transformations
performed on the input before it is in a form ready to be "consumed."
And if the SDM is followed carefully, this leads to a "thin and tall" tree
as a structure for the input or output subsystem. For example, if an input
goes through a series of bubbles in the DFD before it is considered most
abstract, the structure for this wih be a tree with each node having two
subordinates—one obtaining the input data at its level of abstraction and
the other a transform module that is used to transform the data to the next

6.5. VERIFICATION 281

abstract level (which is passed to the superordinate). Similar effect can also
be obtained by the main input module having one input module and then a
series of transform modules, each performing one transform. In other words,
the basic idea in SDM for processing an input is to partition the processing
of an input into a series of transforms. As long as this approach is followed,
it is not terribly important how the structure for the input subsystem is
obtained.

These ideas that the methodology uses to partition the problem into
smaller modules lead to a structure in which different modules can be solved
separately and the connections between modules are minimized (i.e., the
coupling is reduced)—most connections between modules go through some
coordinate modules. These ideas of structuring are sound and lead to a
modular structure. It is important that these fundamental ideas behind the
SDM be kept in mind when using this approach. It may not be so impor
tant to follow SDM down to the smallest detail. This is how experienced
designers use most methodologies; the detailed steps of the methodology are
not necessarily followed, but the philosophy is. Many experienced design
ers do not start with a detailed DFD when using the SDM; they prefer to
work directly with the structure or with a very high-level DFD. But they
do use these principles when creating the structure. Such an approach is
recommended only when one has some experience with the SDM.

6.5 Verification

The output of the system design phase, like the output of other phases in the
development process, should be verified before proceeding with the activities
of the next phase. If the design is expressed in some formal notation for
which analysis tools are available, then through tools it can be checked for
internal consistency (e.g., those modules used by another are defined, the
interface of a module is consistent with the way others use it, data usage is
consistent with declaration, etc.) If the design is not specified in a formal,
executable language, it cannot be processed through tools, and other means
for verification have to be used. The most common approach for verification
is design review or inspections. We discuss this approach here.

The purpose of design reviews is to ensure that the design satisfies the
requirements and is of "good quahty." If errors are made during the design
process, they will ultimately refiect themselves in the code and the final
system. As the cost of removing faults caused by errors that occur during

282 6. FUNCTION-ORIENTED DESIGN

design increases with the delay in detecting the errors, it is best if design
errors are detected early, before they manifest themselves in the system.
Detecting errors in design is the purpose of design reviews.

The system design review process is similar to the inspection process,
in that a group of people get together to discuss the design with the aim
of revealing design errors or undesirable properties. The review group must
include a member of both the system design team and the detailed design
team, the author of the requirements document, the author responsible for
maintaining the design document, and an independent software quality en
gineer. As with any review, it should be kept in mind that the aim of the
meeting is to uncover design errors not to try to fix them; fixing is done
later.

The number of ways in which errors can come in a design is limited
only by the creativity of the designer. However, there are some forms of
errors that are more often observed. Here we mention some of these [52].
Perhaps the most significant design error is omission or misinterpretation of
specified requirements. Clearly, if the system designer has misinterpreted
or not accounted for some requirement it will be reflected later as a fault
in the system. Sometimes, this design error is caused by ambiguities in the
requirements.

There are some other quality factors that are not strictly design errors
but that have implications on the reliability and maintainability of the sys
tem. An example of this is weak modularity (that is, weak cohesion and/or
strong coupling). During reviews, elements of design that are not conducive
to modification and expansion or elements that fail to conform to design
standards should also be considered "errors."

A Sample Checklist: The use of checklists can be extremely useful for
any review. The checklist can be used by each member during private study
of the design and during the review meeting. For best results the checkhst
should be tailored to the project at hand, to uncover problem-specific errors.
Here we list a few general items that can be used to construct a checklist for
a design review [52]:

• Is each of the functional requirements taken into account?

• Are there analyses to demonstrate that performance requirements can
be met?

• Are all assumptions explicitly stated, and are they acceptable?

6.6. METRICS 283

• Are there any limitations or constraints on the design beyond those in
the requirements?

• Are external specifications of each module completely specified?

• Have exceptional conditions been handled?

• Are all the data formats consistent with the requirements?

• Are the operator and user interfaces properly addressed?

• Is the design modular, and does it conform to local standards?

• Are the sizes of data structures estimated? Are provisions made to
guard against overflow?

6.6 Metrics

We have already seen that the basic purpose of metrics is to provide quanti
tative data to help monitor the project. Here we discuss some of the metrics
that can be extracted from a design and that could be useful for evaluating
the design. We do not discuss the standard metrics of effort or defect that
are collected (as per the project plan) for project monitoring.

Size is always a product metric of interest, as size is the single most
influential factor deciding the cost of the project. As the actual size of the
project is known only when the project ends, at early stages the project size
is only an estimate. As we saw in Figure 5.1, our ability to estimate size
becomes more accurate as development proceeds. Hence, after design, size
(and cost) re-estimation are typically done by project management. After
design, as all the modules in the system and major data structures are known,
the size of the final system can be estimated quite accurately.

For estimating the size, the total number of modules is an important
metric. This can be easily obtained from the design. By using an average
size of a module, from this metric the final size in LOG can be estimated.
Alternatively, the size of each module can be estimated, and then the total
size of the system will be estimated as the sum of all the estimates. As a
module is a smah, clearly specified programming unit, estimating the size of
a module is relatively easy.

Another metric of interest is complexity, as one of our goals is to strive for
simplicity and ease of understanding. A possible use of complexity metrics
at design time is to improve the design by reducing the complexity of the

284 6. FUNCTION-ORIENTED DESIGN

modules that have been found to be most complex. This will directly improve
the testability and maintainability. If the complexity cannot be reduced
because it is inherent in the problem, complexity metrics can be used to
highhght the more complex modules. As complex modules are often more
error-prone, this feedback can be used by project management to ensure
that strict quality assurance is performed on these modules as they evolve.
Overall, complexity metrics are of great interest at design time and they can
be used to evaluate the quality of design, improve the design, and improve
quahty assurance of the project. We will describe some of the metrics that
have been proposed to quantify the complexity of design.

6.6.1 Network Metrics

Network metrics for design focus on the structure chart (mostly the call
graph component of the structure chart) and define some metrics of how
"good" the structure or network is in an effort to quantify the complexity
of the call graph. As coupling of a module increases if it is called by more
modules, a good structure is considered one that has exactly one caller.
That is, the call graph structure is simplest if it is a pure tree. The more the
structure chart deviates from a tree, the more complex the system. Deviation
of the tree is then defined as the graph impurity of the design [153]. Graph
impurity can be defined as

Graph impurity — n — e — 1

where n is the number of nodes in the structure chart and e is the number
of edges. As in a pure tree the total number of nodes is one more than the
number of edges, the graph impurity for a tree is 0. Each time a module has a
fan-in of more than one, the graph impurity increases. The major drawback
of this approach is that it ignores the common use of some routines like
library or support routines. An approach to handle this is not to consider
the lowest-level nodes for graph impurity because most often the lowest-level
modules are the ones that are used by many diflferent modules, particularly
if the structure chart was factored. Library routines are also at the lowest
level of the structure chart (even if they have a structure of their own, it
does not show in the structure chart of the application using the routine).

Other network metrics have also been defined. For most of these metrics,
significant correlations with properties of interest have not been established.
Hence, their use is limited to getting some idea about the structure of the
design,

6.6. METRICS 285

6.6.2 Stability Metrics

We know that maintainability of software is a highly desired quality at
tribute. Maintenance activity is hard and error-prone as changes in one
module require changes in other modules to maintain consistency, which re
quire further changes, and so on. It is clearly desirable to minimize this ripple
effect of performing a change, which is largely determined by the structure
of the software. Stability of a design is a metric that tries to quantify the re
sistance of a design to the potential ripple effects that are caused by changes
in modules [151]. The higher the stability of a program design, the better
the maintainability of the program. Here we define the stabihty metric as
defined in [151].

At the lowest level, stability is defined for a module. From this, the
stability of the whole system design can be obtained. The aim is to define
a measure so that the higher the measure the less the ripple effect on other
modules that in some way are related to this module. The modules that can
be affected by change in a module are the modules that invoke the module or
share global data (or files) with the module. Any other module will clearly
not be aflFected by change in a module. The potential ripple effect is defined
as the total number of assumptions made by other modules regarding the
module being changed. Hence, counting the number of assumptions made
by other modules is central to determining the stability of a module.

As at design time only the interfaces of modules are known and not their
internals, for calculating design stability only the assumptions made about
the interfaces need be considered. The interface of a module consists of all
elements through which this module can be affected by other modules, i.e.,
through which this module can be coupled with other modules. Hence, it
consists of the parameters of the modules and the global data the module
uses. Once the interface is identified, the structure of each element of the
interface is examined to determine all the minimal entities in this element
for which assumptions can be made. The minimal entities generally are
the constituents of the interface element. For example, a record is broken
into its respective fields as a calling module can make assumptions about a
particular field.

For each minimal entity at least two categories of assumptions can be
made—about the type of the entity and about the value of the entity. (The
assumption about the type is typically checked by a compiler if the program
ming language supports strong typing.) Each minimal entity in the interface
is considered as contributing one assumption in each category. A structured

286 6. FUNCTION-ORIENTED DESIGN

type is considered as contributing one more assumption about its structure
in addition to the assumptions its minimal elements contribute. The pro
cedure for determining the stability of a module x and the stability of the
program can be broken into a series of steps [151]:

Step 1: From the design, analyze the module x and all the modules that
call X or share some file or data structure with x^ and obtain the following
sets.

Jx = {modules that invoke x}

J^ = {modules invoked by x}

Rxy = {passed parameters returned from x to y, y e J^}

R^y = {parameters passed from x to y, y £ J^}

GRx = {Global data referenced in x}

GDx = {Global data defined in x}

Note that determining GRx and GDx is not always possible when pointers
and indirect referencing are used. In that case, a conservative estimate is to
be used. From these, for each global data item i, define the set Gi as

Gi = {x\ieGRxUGDx}.

The set Gi represents the set of modules where the global data i is either
referenced or defined. Where it is not possible to compute G accurately, the
worst case should be taken.

Step 2: For each module x, determine the number of assumptions made
by a caller module y about elements in Rxy (parameters returned from mod
ule X to y) through these steps:

1. Initialize assumption count to 0.

2. If i is a structured data element, decompose it into base types, and
increment the assumption count by 1; else consider i minimal.

3. Decompose base types, and if they are structured, increment the count
by 1.

4. For each minimal entity i, if module y makes some assumption about
the value of i, increment the count by 2; else increment by 1.

6.6. METRICS 287

Let TPxy represent the total number of assumptions made by a module y
about parameters in Rxy.

Step 3: Determine TP^y, the total number of assumptions made by a
module y called by the module x about elements in R^y (parameters passed
from module x to y). The method for computation is the same as in the
previous step.

Step 4- For each data element i e GDx (i.e., the global data elements
modified by the module x), determine the total number of assumptions made
by other modules about i. These will be the modules other than x that use or
modify i, i.e., the set of modules to be considered is {Gi — {x}}. The counting
method of step 2 is used. Let TGx be the total number of assumptions made
by other modules about the elements in GDx.

Step 5: For a module x, the design logical ripple effect (DLRE) is defined
as:

DLREx = TGx+Yl ^P-y + E ^P'xy
y^Jx yef^

DLREx is the total number of assumptions made by other modules that in
teract with X through either parameters or global data. The design stability
(DS) of a module x is then defined as

DSx = l/{l +DLREx).

Step 6: The program design stability (PDS) is computed as

PDS =^\l{l-\-Y,DLREx).
X

By following this sequence of steps, the design stability of each module and
the overall program can be computed. The stability metric, in a sense, is
trying to capture the notion of coupling of a module with other modules. The
stability metrics can be used to compare alternative designs—the larger the
stability, the more maintainable the program. It can also be used to identify
modules that are not very stable and that are highly coupled with other
modules with a potential of high ripple effect. Changes to these modules
will not be easy, hence a redesign can be considered to enhance the stabihty.
Only a limited validation has been done for this metric. Some validation
has been given in [151], showing that if programming practices are followed
which are generally recognized as enhancing maintainabihty, then higher
program stability results.

288 6. FUNCTION-ORIENTED DESIGN

Another stability metric was described in [121]. In this formulation, the
effect of a change in a module i on another module j is represented as a
probabihty. For the entire system, the effect of change is captured by the
probabiHty of change metrics C. An element C[i,j] of the matrix represents
the probabihty that a change in module i will result in a change in module j .
With this matrix the ripple effect of a change in a module can also be easily
computed. This can then be used to model the stability of the system. The
main problem with this metric is to estimate the elements of the matrix.

6.6.3 Information Flow Metrics

The network metrics of graph impurity had the basis that as the graph
impurity increases, the coupling increases. However, it is not a very good
approximation for coupling, as coupling of a module increases with the com
plexity of the interface and the total number of modules a module is coupled
with, whether it is the caller or the callee. So, if we want a metric that is
better at quantifying couphng between modules, it should handle these. The
information flow metrics attempt to define the complexity in terms of the
total information flowing through a module.

In one of the earliest work on information flow metrics [84, 85], the
complexity of a module is considered as depending on the intramodule com
plexity and the intermodule complexity. The intramodule complexity is
approximated by the size of the module in lines of code (which is actually
the estimated size at design time). The intermodule complexity of a module
depends on the total information flowing in the module (inflow) and the to
tal information flowing out of the module (outflow). The inflow of a module
is the total number of abstract data elements flowing in the module (i.e.,
whose values are used by the module), and the outflow is the total number
of abstract data elements that are flowing out of the module (i.e., whose
values are defined by this module and used by other modules). The module
design complexity, Dc, is defined as

Dc = size * (inflow * outflow)'^.

The term (inflow * outflow) refers to the total number of combinations of
input source and output destination. This term is squared, as the intercon
nection between the modules is considered a more important factor (com
pared to the internal complexity) determining the complexity of a module.
This is based on the common experience that the modules with more in-

6.6. METRICS 289

terconnections are harder to test or modify compared to other similar-size
modules with fewer interconnections.

The metric defined earlier defines the complexity of a module purely in
terms of the total amount of data flowing in and out of the module and the
module size. A variant of this was proposed based on the hypothesis that
the module complexity depends not only on the information flowing in and
out, but also on the number of modules to or from which it is flowing. The
module size is considered an insignificant factor, and complexity Dc for a
module is defined as [155]:

Dc = fanJn * fan.out + inflow * outflow

where fanJn represents the number of modules that call this module and
fan_out is the number of modules this module calls.

The main question that arises is how good these metrics are. For "good,"
we will have to define their purpose, or how we want to use them. Just having
a number signifying the complexity is, in itself, of little use, unless it can
be used to make some judgment about cost or quahty. One way to use the
information about complexity could be to identify the complex modules, as
these modules are likely to be more error prone and form "hot spots" later,
if they are left as is. Once these modules are identified, the design can be
evaluated to see if the complexity is inherent in the problem or if the design
can be changed to reduce the complexity.

To identify modules that are "extra complex," we will have to define
what complexity number is normal. Having a threshold complexity above
which a module is considered complex assumes the existence of a globally
accepted threshold value. This may not be possible, as designs in different
problem domains produce different types of modules. Another alternative
is to consider a module against other modules in the current design only,
instead of comparing the modules against a prespecified standard. That is,
evaluate the complexity of the modules in the design and highlight modules
that are, relatively speaking, more complex. In this approach, the criteria
for marking a module complex is also determined from the current design.

One such method for highlighting the modules was suggested in [155]. Let
avg-Complexity be the average complexity of the modules in the design being
evaluated, and let std-deviation be the standard deviation in the design
complexity of the modules of the system. The proposed method classifies
the modules in three categories: error-prone, complex, and normal. If Dc is
the complexity of a module, it can be classified as follows:

290 6. FUNCTION-ORIENTED DESIGN

Error-prone If Dc > avg-complexity + std-deviation
Complex If avg-Complexity < Dc < avg-com.pl exity

+ std-deviation
Normal Otherwise

Note that this definition of error-prone and complex is independent of the
metric definition used to compute the complexity of modules. With this
approach, a design can be evaluated by itself, not for overall design quality,
but to draw attention to the error-prone and complex modules. This infor
mation can then be used to redesign the system to reduce the complexity
of these modules (which also results in overall complexity reduction). This
approach has been found to be very effective in identifying error-prone mod
ules [155]. In evaluations of some completed projects, it has been shown that
error-prone and complex modules together highlight the modules in which
most errors occurred [155]. This suggests that for a project, modules thus
highlighted during design time point to modules that will be "hot spots"
if the design is not improved by reducing their complexity. Another use of
this is that even if the complexity of these modules is not reduced (perhaps
because the complexity is intrinsic in the problem), identification of error-
prone modules can help in quality assurance later; these modules can be
required to undergo more rigorous quality assurance.

6.7 Summary

The design of a system is a plan for a solution such that if the plan is
implemented, the implemented system will satisfy the requirements of the
system and will preserve its architecture. The design activity is a two-
level process. The first level produces the system design which defines the
modules needed for the system, and how the components interact with each
other. The detailed design refines the system design, by providing more
description of the processing logic of components and data structures. A
design methodology is a systematic approach to creating a design. Most
design methodologies concentrate on system design. During system design
a module view of the system is developed, which should be consistent with
the component view created during architecture design.

The design process uses the time tested strategy of problem partition
ing, through which the complexity of designing large systems is broken into
smaller problems that can be solved separately. Effective partitioning de-

http://-com.pl

6.7. SUMMARY 291

pends on the use of abstraction, which permits a designer to concentrate
on one module or component at a time by using the abstraction of other
modules or components.

Modularity is a means of problem partitioning in software design. A sys
tem is considered modular if each component has a well-defined abstraction
and if change in one component has minimal impact on other components.
Two criteria used for deciding the modules during design are coupling and
cohesion. Coupling is a measure of interdependence between modules, while
cohesion is a measure of the strength with which the different elements of
a module are related. There are different levels of cohesion, functional and
type cohesion being the highest levels and incidental being the lowest. In
general, other properties being equal, coupling should be minimized and
cohesion maximized.

The structured design method is one of the best known methods for
developing the design of a software system. This method creates a structure
chart that can be used to implement the system. The goal is to produce a
structure where the modules have minimum dependence on each other (low
coupling) and a high level of cohesion. The basic methodology has four steps:
(1) restate the problem as a data flow graph; (2) identify the most abstract
input and output data elements; (3) perform first-level factoring, which is
done by specifying an input module for each of the most abstract inputs,
an output module for each of the most abstract outputs, and a transform
module for each of the central transforms; and (4) factor each of the input,
output, and transform modules.

The methodology does not reduce the problem of design to a series of
steps that can be followed blindly. The essential goal is to get a clear hi
erarchical structure. A number of design heuristics can be used to improve
the structure resulting from the apphcation of the basic methodology. The
basic guiding principles are simplicity, high cohesion, and low coupling.

The most common method for verifying a design is design reviews or
inspection, in which a team of people reviews the design for the purpose of
finding defects. If the design is expressed in some formal notation, then some
amount of consistency checking can be done automatically through the aid
of tools.

There are a number of metrics that can be used to evaluate function-
oriented designs. Network metrics evaluate the structure chart and consider
deviation from the tree as the metric signifying the quality of design. The
stability metric we discussed tries to quantify how resistant the design is to
the ripple effects caused by changes by explicitly counting the number of

292 6. FUNCTION-ORIENTED DESIGN

assumptions modules make about each other. The information flow com
plexity metrics define design complexity based on the internal complexity of
the module and the number of connections between modules.

Exercises

1. What is the relationship between an architecture and system-level design?

2. Consider a program containing many modules. If a global variable x must be
used to share data between two modules A and B, how would you design the
modules to minimize coupling?

3. List a set of poor programming practices, based on the criteria of coupling
and cohesion.

4. What is the cohesion of the following module? How would you change the
module to increase cohesion?

procedure file (file_ptr, file_name, op_name);
begin

case op_name of
"open": perform activities for opening the file.
"close": perform activities for opening the file.
"print": print the file

end case
end

5. If some existing modules are to be re-used in building a new system, will you
use a top-down or bottom-up approach? Why?

6. If a module has logical cohesion, what kind of coupling is this module likely
to have with others?

7. What is the diff'erence between a flow chart and a structure chart?

8. Draw the structure chart for the following program:

m a i n O ;
{ i n t X, y ;

X = 0; y = 0;
a () ; b () ; }

a ()
{ x = x+y; y = y+5; }
b ()
{ X = x+5; y = y+x; a () ; }

6.7. SUMMARY 293

How would you modify this program to improve the modularity?

9. If a ' + ' or a '*' is present between two output streams from a transform in
a data flow graph, state some specific property about the module for that
transform.

10. Use the structured design methodology to produce a design for the following:

(a) A system to convert ASCII to EBSDIC.

(b) A system to analyze your diet when given your daily intake (and some
data files about different types of food and recommended intakes).

(c) A system to do student registration in the manner it is done at your
college.

(d) A system to manage the inventory at a hardware store.

(e) A system for a drug store that will manage inventory, keep track of
expiration dates, and track allergy records of patients to avoid issuing
medicines that might be harmful.

(f) A system that acts as a calculator with only basic arithmetic functions.

11. Is this statement true: "If we follow the structured design methodology (with
out applying any heuristics), the resulting structure will always have one
transform module for each bubble in the data flow graph"? Explain your
answer.

12. Given a structure with high fan-out, how would you convert it to a structure
with a low fan-out?

13. Discuss some approaches on how you can use metrics to guide you in design
to produce a design that is easy to modify.

14. Design an experiment to study whether the information flow metrics and
stability metrics are correlated.

15. If you have all the metrics data available for design, how will you use this
data? Specify your objectives, the metrics you will use, how you will interpret
the value, and what possible actions you will take based on the interpretation.

294 6. FUNCTION-ORIENTED DESIGN

Case Studies

Here we discuss how we went about creating the design for Case Study 1
using the structured design methodology. Here we discuss only the process of
creating the design; the design document giving the final design is available
from the Web site.

The function-oriented design for the case study 2 was not done and hence
is not discussed here.

Structured Design

We first discuss creating the design for Case Study 1 (course scheduling)
using structured design methodology. We describe how the design was ob
tained; the details of the design are available from the Web site.

Data Flow Diagram: This is the first step in the structured design
method. In our case study, there are two inputs: filel and file2. Three
outputs are required: the timetable, the conflict table, and the explanations
for the schedule. A high-level data flow diagram of this problem is given in
Figure 6.12.

The diagram is fairly clear. First we get from filel the information about
classrooms, lecture times, and courses, and we validate their format. The
validated input from filel is used for cross-validating information in file2.
After vahdating the file2 input, we get an array of valid course records (with
preferences, etc.) that must be scheduled. Because PC courses have to
be scheduled before UG courses, these course records are separated into
different groups: PG courses with preferences, UG courses with preferences,
PG courses with no preference, and UG courses with no preference. This
separated course list is the input to the schedule transform, the output of
which is the three desired outputs.

The most abstract input and most abstract output are fairly obvious
here. The "separated course schedule" is the most abstract input and the
three outputs of the schedule transform are the most abstract outputs. There
is only one central transform: schedule.

CASE STUDIES 295

^

03

I

03

Q

rH

CD

fo

296 6. FUNCTION-ORIENTED DESIGN

Mam
b.c.e ^ ^ 1 ^

Get ^
Validated Input

. g . h \
t

1 21
1 Schedule |

y
Print 3°1
Timetable

) / ^

\ Output

''A
4

Print 3''2
Conflict

^ f

Print 3o3
Explanation

Figure 6.13: First level factoring.

First-Level Factoring: The first-level structure chart can easily be ob
tained and is shown in Figure 6.13. In the structure chart, instead of having
one output module for each of the three outputs, as is shown in the data flow
diagram, we have only one output module, which then invokes three output
modules for the different outputs.

Factoring the Input and Output Modules: The output module does not
need any factoring. According to the design methodology, the input module
get-validated Jnput will have one input module to get the array of validated
course records and one transform module to separate into course groups.
This input module can then be further factored into three input modules to
get different validated inputs from filel, one input module to get data from
file2, and one module for validating the file2 data. Because the data from
filel is also needed for the central transform, we modify the structure of the
input branch. The structure chart for the input branch is shown in Figure
6.14.

Factoring the Central Transform: Now the central transform has to be
factored. According to the requirements, PG courses have to be given pref
erence over UG courses, and the highest priority of each course must be
satisfied. This means that the courses with no priority should be sched
uled after the courses with priority. Hence, we have four major subordinate
modules to the central transform: schedule PG courses with preferences,
schedule UG courses with preferences, schedule PG courses with no prefer
ences, and schedule UG courses with no preferences. The structure of the
central transform is shown in Figure 6.15.

CASE STUDIES 297

b.c.e^

Get Validated Input

Separate
Courses

1o3

1o2

Validate File 2

'=^JNO""° d ^
Valid
Pref List

Get i»2oi

Course
Get i°2o2

Pref Valid

Figure 6.14: Factoring of the input branch.

Schedule
PG Prefs

b.c.eo/

Schedule

Schedule
UG Prefs

2o3
Schedule
PG No Prefs

2°4
Schedule
UG No Prefs

Figure 6.15: Factoring the central transform.

These can then be combined into a structure chart for the system. The
overall structure chart is shown in Figure 6.16. This structure chart gives
an overall view of the strategy for structuring the programs. Further details
about each module will evolve during detailed design and coding.

298 6. FUNCTION-ORIENTED DESIGN

Q>

§
^ Q)

t>
^ ^ u

c
o
to
c — <o

•c X
Q. tlJ

© 2 CO

[co

^
x: u

O
Z
o

CO Q . Q .

CDQ->

a;

CO

<v
4 ^

0
4^ o

4-^
CO

<V

bO

CASE STUDIES 299

Analysis Using Information Flow Metrics
Based on the structure chart, the design of the system was first specified

completely: this required formally specifying the data structures and all
the modules. For each module, we specified the purpose of the module, its
interface, the modules it invokes, and the estimated size of the module (in
LOG). This formed the first version of the design document.

The first thing that could be noted was that when specifying a complete
design from the structure chart, the design usually expands. For example,
we found that for supporting the module for scheduling the UG courses with
preferences (SchedUgPrefs) a lot more needs to be done. The reason is as
follows. The UG courses with preferences are scheduled before PG courses
with no preferences. However, PG courses are to be given preferences and no
two PG courses can be scheduled in the same time slot. Hence, a UG course
should not be allotted a slot that makes a PG course "unschedulable." This
requires that "safety" of a room and time for a UG course should be checked
before allocation.

For this, another data structure was specified. Essentially, a three-
dimensional hnked list was defined, which contained for each PG course
the list of time slots for which it could be allotted, and for each time slot a
list of all rooms where it could be allotted was maintained. This structure
can be used for checking the safety—an allocation should not make a PG
course unschedulable. In addition to this, a lot of utihty routines needed
to be defined to support the other functions, e.g., sort_rooms(), get_index(),
and chk_fmt_course_no().

The complete first version design was then analyzed using information
flow metrics described earlier in the chapter. We followed the approach
of comparing modules of the design among themselves and then highlight
the "error-prone" and "complex modules" (as described earfier). In the
case study we used the metric where complexity of a module is defined as
Dc = fanJn * fan.out + inflow * outflow. The definition of error-prone
and complex is as given earlier, except that we also use size for classification;
the size of the module must also be above average or above (average +
standard deviation) for it to be classified as complex or error prone. A
locally developed tool called dmetric was used to extract the information
flow metrics. The overall metrics and results of the analysis are given here.

OVERALL METRICS

300 6. FUNCTION-ORIENTED DESIGN

#modules: 35 Total size: 1330 Avg. size: 38 Std.Deviation: 27

Total complexity: 595 Avg. complexity: 17 Std.Deviation: 33

Deviation of the structure chart from a tree = 0

(without considering leaves)

ERROR-PRONE MODULES

8) sched_ug_pref

call.in: 1 call_out: 4 inflow: 5 outflow:13 size:100

design complexity: 69

COMPLEX MODULES

5) validate_file2

call_in: 1 call_out: 4 inflow: 4 outflow: 8 size:100

design complexity: 36

7) sched_pg_pref

call_in: 1 call_out: 1

design complexity: 7

13) is_safe_allotment

call_in: 1 call_out: 0

design complexity: 3

15) validate_classrooms

call_in: 1 call_out: 5

design complexity: 26

inflow: 1 outflow: 6 size:75

inflow: 3 outflow: 1 size:80

inflow: 3 outflow: 7 size:80

16) validate_dept_courses

call_in: 1 call_out: 3 inflow: 2 outflow: 5

design complexity: 13

17) validate_lec_times

call_in: 1 call_out: 3

design complexity: 13

s ize:75

inflow: 2 outflow: 5 s ize :70

This data flow analysis clearly points out that the module to schedule UG
courses with preferences is the most complex, with a complexity considerably

CASE STUDIES 301

higher than the average. It also shows that the overall structure is a tree
(with a 0 deviation). Hence, we considered the structure to be alright. Based
on this analysis, parts of the design dealing with scheduling of UG courses
was re-examined in an effort to reduce complexity.

During analysis we observed that much of the complexity was due to
the 3-D linked data structure being used for determining safety. Through
discussions, we then developed a different approach for determining safety.
The idea was that instead of using a separate data structure, before allo
cating a UG course, we would "simulate" the scheduling of the PgNoPref
courses, using the regular function for scheduling these courses. If the num
ber of courses the function sched_pg_no_prefs() returns is the same before
and after the planned UG course scheduling, then the current allocation is
safe. For this approach, we just have to make sure that is_safe_allotment()
invokes sched_pg_no_prefs() with temporary data structures such that the ac
tual timetable is not affected during this "simulation." The design was then
modified to incorporate this approach. On analyzing the complexity again,
we found that this approach reduced the complexity of the sched_ug_pref()
module significantly and the complexity of this module was now similar to
complexity of other modules. Overall, we considered the modified design
satisfactory.

This demonstrates how highlighting of "hot spots" can be used to focus
the attention of the designer or analysts and to improve the quahty of the
design. Note that this is done before the coding has started, which makes
it very efficient from the point of view of cost. For example, if the same
decision of changing the method of determining safety was taken after the
code was developed, it would require that some parts of the old code be
discarded, new code developed, and the design document changed to reflect
the new design. All this will require considerably more effort than what
was spent to change the design. Metrics-based analysis can also be used
for monitoring by the project management; a quick look at the results of
complexity and structure analysis will reveal if the structure and complexity
are "acceptable" or if the design needs improvement.

The specification of the final design is available from the book's Web site.

Object-Oriented Design

Object-oriented (00) approaches for software development have become ex
tremely popular in recent years. Much of the new development is now being
done using 0 0 techniques and languages. There are many advantages that
0 0 systems offer. An 0 0 model closely represents the problem domain,
which makes it easier to produce and understand designs. As requirements
change, the objects in a system are less immune to these changes, thereby
permitting changes more easily. Inheritance and close association of objects
in design to problem domain entities encourage more reuse, that is, new
applications can use existing modules more effectively, thereby reducing de
velopment cost and cycle time. Object-oriented approaches are believed to
be more natural and provide richer structures for thinking and abstraction.
Common design patterns have also been uncovered that allow reusability
at a higher level. (Design patterns is an advanced topic which we will not
discuss further; interested readers are referred to [69].)

The object-oriented design approach is fundamentally different from the
function-oriented design approaches primarily due to the different abstrac
tion that is used. It requires a different way of thinking and partitioning.
It can be said that thinking in object-oriented terms is most important for
producing truly object-oriented designs.

During design, as mentioned in the previous chapter, our focus is on what
is called the module view in architecture. That is, the goal is to identify the
modules that the system should have, and their interfaces and relationships.
In OOD, we are therefore identifying the classes that should exist in the
software and the relationship between these classes. During architecture
design, the component and connector view is typically fixed. A goal of

304 7. OBJECT-ORIENTED DESIGN

design is to ensure that the architecture is preserved, and the relationship
between the components and modules is clear.

In this chapter, we will discuss some important concepts that form the
basis of object-orientation. Then we will discuss some concepts that influence
a designer in creating a an object-oriented design (OOD). We'll then describe
the UML notation that can be used while doing an object-oriented design,
followed by an OOD methodology. Then we'll discuss some metrics that
are applicable on OOD and that can be used to evaluate the quality of
design. We do not discuss verification methods, as the design verification
methods discussed in the previous chapter are general methods that can be
used regardless of the approach used for producing the design. Finally, as
with other chapters, we'll end by doing the 0 0 design of the case studies,
Before we proceed, let us understand the relationship between 0 0 analysis
and 0 0 design.

7.1 OO Analysis and OO Design

Pure object-oriented development requires that object-oriented techniques
be used during the analysis, design, and implementation of the system. How
ever, much of the focus of the object-oriented approach to software develop
ment has been on analysis and design. Various methods have been proposed
for analysis and design, many of which propose a combined analysis and
design technique. We will refer to a combined method as object-oriented
analysis and design (OOAD). In OOAD the boundary between analysis and
design is blurred. One reason for this blurring is the similarity of basic
constructs (i.e., objects and classes) that are used in analysis and design.
Though there is no agreement about what parts of the object-oriented de
velopment process belong to analysis and what parts to design, there is some
general agreement about the domains of the two activities.

The fundamental difference between object-oriented analysis (OOA) and
object-oriented design (OOD) is that the former models the problem domain,
leading to an understanding and specification of the problem, while the latter
models the solution to the problem. That is, analysis deals with the problem
domain, while design deals with the solution domain. However, in OOAD
it is beheved that the problem domain representation created by OOA is
generally subsumed in the solution domain representation. That is, the
solution domain representation, created by OOD, generally contains much
of the representation created by OOA, and more. This is shown in Figure

7.1, 00 ANALYSIS AND 00 DESIGN 305

Real-World Problem

Problem
Domain

Representation

Solution Domain
Representation

Analysis

Figure 7.1: Relationship between OOA and OOD.

7.1 [118].
As the objective of both OOA and OOD is to model some domain, fre

quently the OOA and OOD processes (i.e., the methodologies) and the repre
sentations look quite similar. This contributes to the blurring of the bound
aries between analysis and design. It is often not clear where analysis ends
and design begins. The separating line is a matter of perception. The lack of
clear separation between analysis and design can also be considered one of the
strong points of the object-oriented approach—the transition from analysis
to design is "seamless." This is also the main reason 0 0 A D methods—where
analysis and design are both performed—have been proposed.

Despite the difference in perceptions on the boundary between OOA and
OOD, one thing is clear. The main difference between OOA and OOD, due
to the different domains of modeling, is in the type of objects that come
out of the analysis and design processes. The objects during OOA focus
on the problem domain and generally represent some things or concepts in
the problem. These objects are sometimes called semantic objects as they
have a meaning in the problem domain [118]. The solution domain, on
the other hand, consists of semantic objects as well as other objects. During
design, as the focus is on finding and defining a solution, the semantic objects
identified during OOA may be refined and extended from the point of view of
implementation, and other objects are added that are specific to the solution
domain. The solution domain objects include interface, application^ and
utility objects [118]. The interface objects deal with the user interface, which

306 7. OBJECT-ORIENTED DESIGN

is not directly a part of the problem domain but represents some aspect of
the solution desired by the user. The application objects specify the control
mechanisms for the proposed solution. They are driver objects that are
specific to the application needs. Utility objects are those needed to support
the services of the semantic objects or to implement them efficiently (e.g.,
queues, trees, and tables). These objects are frequently general-purpose
objects and are not application-dependent.

The basic goal of the analysis and design activities is to identify the
classes in the system and their relationships, and frequently represented by
class diagrams. However, the system has to support some functionality and
behavior. Hence, in addition to concentrating on the static structure of the
problem or solution domains, the dynamic behavior of the system has to
be studied to make sure that the final design supports the desired dynamic
behaviors. Due to this, some dynamic modeling of the system is desired
before the design is complete. Whether this type of modeling is part of
analysis or design, i.e., where in the overall OOAD process the boundary
between analysis and design is, is not generally agreed on.

Another way to view the difference between modeling and design is that
in design, a model is built for the (eventual) implementation. As a con
sequence, implementation issues drive the modeling process during design.
While in analysis, comprehension and representation issues drive the pro
cess. This also results in OOA sometimes using primitives that are some
what richer than the ones used in OOD, as the OOD primitives tend to be
closely associated with the features of the programming language to be used
for implementing the design. The models built during object-oriented anal
ysis form the starting point of object-oriented design, and the model built
by OOD forms the basis for object-oriented implementation.

7.2 GO Concepts

Here we discuss the main concepts behind object-orientation. Though these
concepts were also used during object-oriented analysis, they are discussed
in more concrete terms here, as a design deals with the solution domain and
is therefore closer to the final implementation. As the discussion revolves
around the 0 0 concepts as supported in programming languages, readers
who are very familiar with 0 0 languages and their concepts can omit this
section. In the following section we discuss some design concepts.

7.2, 00 CONCEPTS 307

7.2.1 Classes and Objects

Classes and objects are the basic building blocks of an OOD, just like func
tions (and procedures) are for a function-oriented design. During design, we
are not dealing just with abstractions of real-world objects (as is the case
with analysis), but we are also dealing with abstract software objects. Dur
ing analysis, we viewed an object as an entity in the problem domain that
had clearly defined boundaries and behavior. During design, this has to be
extended to accommodate software objects.

Encapsulation

In general, we consider objects entities that provide some services to be
used by a client, which could be another object, program, or a user. The
basic property of an object is encapsulation: it encapsulates the data and
information it contains, and supports a well-defined abstraction. For this,
an object provides some well-defined services its clients can use, with the
additional constraint that a client can access the object only through these
services. This encapsulation of information along with the implementation
of the operations performed on the information such that from outside a
set of services is available is a key concept in object orientation. The set of
services that can be requested from outside the object forms the interface
of the object. An object may have operations defined only for internal use
that cannot be used from outside. Such operations do not form part of the
interface. The interface defines ah ways in which an object can be used from
outside.

For example, consider an object d i rec to ry of telephone numbers that
has add-name(), change-number(), and find-number() operations as part of
the interface. These are the operations that can be invoked from outside
on the object d i rec tory . It may also have internal operations like hash()
and insert0 that are used to support the operations in the interface but do
not form part of the interface. These operations can only be invoked from
within the object d i rec to ry (i.e., by the operations defined on the object).
Note that objects of other classes may also have the same interface (see the
discussion on inheritance later).

A major advantage of encapsulation is that access to the encapsulated
data is limited to the operations defined on the data. Hence, it becomes much
easier to ensure that the integrity of data is preserved, something very hard
to do if any program from outside can directly manipulate the data structures
of an object. This is an extremely desirable property when building large

308 7. OBJECT-ORIENTED DESIGN

systems, without which things can be very chaotic. In function-oriented
systems, this is usually supported through self-discipline by providing access
functions to some data and requiring or suggesting that other programs
access the information through the access functions. In 0 0 languages, this
is enforced by the language, and no program from outside can directly access
the encapsulated data.

Encapsulation, leading to the separation of the interface and its imple
mentation, has another major consequence. As long as the interface is pre
served, implementation of an object can be changed without affecting any
user of the object. For example, consider the d i r ec to ry object discussed
earlier. Suppose the object uses an array of words to implement the oper
ations defined on d i rec tory . Later, if the implementation is changed from
the array to a B-tree or by using hashing, only the internals of the object
need to be changed (i.e., the data definitions and the implementation of the
operations). From the outside, the d i rec to ry object can continue to be
used in the same manner as before, because its interface is not changed.

State, Behavior, and Identity

An object has state, behavior, and identity [23, 124]. The encapsulated
data for an object defines the state of the object. An important property
of objects is that this state persists, in contrast to the data defined in a
function or procedure, which is generally lost once the function stops being
active (finishes its current execution). In an object, the state is preserved
and it persists through the life of the object, i.e., unless the object is actively
destroyed.

The various components of the information an object encapsulates can
be viewed as "attributes" of the object. That is, an object can be viewed
as having various attributes, whose values (together with the information
about the relationship of the object to the other objects) form the state of
the object. The relationship between attributes and encapsulated data is
that the former is in terms of concepts that may have some meaning in the
problem domain: they essentially represent the abstract information being
modeled by the components of the data structures.

The state and services of an object together define its behavior. We
can say that the behavior of an object is how an object reacts in terms of
state changes when it is acted on, and how it acts upon other objects by
requesting services and operations. Generally, for an object, the defined
operations together specify the behavior of the object. However, it should

7.2. 00 CONCEPTS 309

be pointed out that although the operations specify the behavior, the actual
behavior also depends on the state of the object as an operation acts on the
state and the sequence of actions it performs can depend on the state. A
side effect of performing an operation may be that the state of the object is
modified. As operations are the only means by which some activity can be
performed by the object, it should also be clear that the current state of an
object represents the sequence of operations that have been performed on it.

Finally, an object has identity. Identity is the property of an object that
distinguishes it from all other objects. In most programming languages,
variable names are used to distinguish objects from each other. So, for
example, one can declare objects si, s2, ... of class type Stack. Each of
these variables si, s2, ... will refer to a unique stack having a state of its
own (which depends on the operations performed on the stack represented
by the variable).

Classes

Objects represent the basic run-time entities in an 0 0 system; they occupy
space in memory that keeps its state and is operated on by the defined
operations on the object. A class, on the other hand, defines a possible set
of objects. We have seen that objects have some attributes, whose values
constitute much of the state of an object. What attributes an object has are
defined by the class of the object. Similarly, the operations allowed on an
object or the services it provides, are defined by the class of the object. But
a class is merely a definition that does not create any objects and cannot
hold any values. When objects of a class are created, memory for the objects
is allocated.

A class can be considered a template that specifies the properties for
objects of the class. Classes have [136]:

1. An interface that defines which parts of an object of a class can be
accessed from outside and how

2. A class body that implements the operations in the interface

3. Instance variables that contain the state of an object of that class

Each object, when it is created, gets a private copy of the instance variables,
and when an operation defined on the class is performed on the object, it is
performed on the state of the particular object.

310 7. OBJECT-ORIENTED DESIGN

The relationship between a class and objects of that class is similar to the
relationship between a type and elements of that type. A class represents
a set of objects that share a common structure and a common behavior,
whereas an object is an instance of a class. The interface of the objects
of a class—the behavior and the state space (i.e., the states an object can
take)—are all specified by the class. The class specifies the operations that
can be performed on the objects of that class and the interface of each of
the operations.

Note that classes can be viewed as abstract data types. Abstract data
types (ADTs) were promulgated in the 1970s, and a considerable amount
of work has been done on specification and implementation of ADTs. The
major diff'erences between ADTs and class are inheritance and polymorphism
(discussed later). Classes without inheritance are essentially ADTs, but with
inheritance, which is considered a central property of object orientation, their
semantics are richer than that of an ADT.

Not all operations defined on a class can be invoked on objects of that
class from outside the object—some operations are defined that are entirely
for internal use. The case for data declarations within the class is similar.
Although generally it is fully encapsulated, in some languages it is possible
to have some data visible from outside. However, this distinction of what is
visible from outside has to be enforced by the language. Using the C++ clas
sification, the data and operations of a class (sometimes collectively referred
to as features) can be declared as one of three types:

• Public. These are (data or operation) declarations that are accessible
from outside the class to anyone who can access an object of this class.

• Protected. These are declarations that are accessible from within the
class itself and from within subclasses (actually also to those classes
that are declared as friends).

• Private. These are declarations that are accessible only from within
the class itself (and to those classes that are declared as friends).

Different programming languages provide different access restrictions, but
pubhc and private separation are generally needed. At least one operation
is needed to create (and initialize) an object and one is needed to destroy an
object. The operation creating and initializing objects is called constructor,
and the operation destroying objects is called destructor. The remaining

7.2. 00 CONCEPTS 311

class List{
private:
/ / data definitions to implement bag
int list[MAX];
int size;

public:
L is tO {size = 0};
add (number); / / add a number
int ispresent (number); //check if number i s present
int delete (number); / / delete a number, if present

Figure 7.2: Class Lis t of numbers.

operations can be broadly divided into two categories: modifiers and value-
ops. Modifiers are operations that modify the state of the object, while
value-ops are operations that access the object state but do not alter it. The
operations defined on a class are also called methods of that class.

When a chent requests some operations on an object, the request is
actually bound to a method defined on the class of the object. Then that
method is executed, using the state of the object on which the operation is
to be executed. In other words, the object itself provides the state while
the class provides the actual procedure for performing the operation on the
object.

An Example

An example will illustrate these concepts. Suppose we need to have an object
that represents a list of integers. The list consists of the numbers we put
in it. We want it to be such that we can check if a number exists, and
add or remove a number. In C+-I-, the class definition Lis t (to be used for
obtaining the object l i s t) could be something like Figure 7.2.

With this definition, a particular list, l i s t , can be created by declaring
Lis t l i s t . We can declare as many objects of the type Lis t as we want.
Whenever an object is declared of the type Lis t , the constructor operator
List() is executed, which sets the size of that list to 0. In C++, the operator
with the same name as the name of the class is the constructor operator
invoked to initialize the object whenever the object is created by declaration.
We can add a number n to this bag by invoking l i s t . add(n). The history of

312 7. OBJECT-ORIENTED DESIGN

whatever numbers we add to l i s t is preserved within the hst (in its private
data members). Much later, when we want to check if a number is present, it
will return that the number is present if at any time in the past the number
was added to l i s t and it has not been deleted.

Note that the fact that the list is implemented as an array and a size
pointer is not visible from outside. Other programs use lists by declaring
objects of the type Lis t and then performing operations on them. If at a
later time, due to efficiency reasons we want to change the implementation of
Lis t to use a binary search tree, we will have to change the data structures
and the code of the operations. However, no change needs to be made to
the programs that declare and use various lists.

In C4-+, the interface of the object is whatever is defined as public.
Generally, it will contain only the operations. The declarations in the private
part can only be used from within the object; they cannot be accessed from
outside. If some function is declared as private, then that function cannot be
invoked from outside; it can only be used by the other operations defined on
the class. The code for a function defined in a class can either be given with
the definition of the function interface (as was done with the constructor
List()) or defined elsewhere. If it is defined elsewhere, the definition has to
be prefixed with the class name. For example, the function add(n) will be
declared as List::add(int n).

7.2.2 Relationships Among Objects

An object, as a stand-alone entity, has very limited capabilities—it can only
provide the services defined on it. Any complex system will be composed
of many objects of different classes, and these objects will interact with
each other so that the overall system objectives are met. In object-oriented
systems, an object interacts with another by sending a message to the object
to perform some service it provides. On receiving the message, the object
invokes the requested service or the method and sends the result, if needed.
Frequently, the object providing the service is called the server and the
object requesting the service is called the client This form of chent-server
interaction is a direct fall out of encapsulation and abstraction supported by
objects.

If an object invokes some services in other objects, we can say that the
two objects are related in some way to each other. All objects in a system
are not related to all other objects. In fact, in most programming languages,
an object cannot even access all objects, but can access only those objects

7.2. 00 CONCEPTS 313

that have been exphcitly programmed or located for this purpose. During
design, which objects are related has to be clearly defined so that the system
can be properly implemented.

If an object uses some services of another object, there is an association
between the two objects. This association is also called a link—a hnk exists
from one object to another if the object uses some services of the other object.
Links frequently show up as pointers when programming. A link captures
the fact that a message is flowing from one object to another. However,
when a link exists, though the message flows in the direction of the link,
information can flow in both directions (e.g., the server may return some
results).

With associations comes the issue of visibility, that is, which object is
visible to which. This is an issue that is very pertinent for implementation
and therefore comes up during design. However, this is not an important
issue during analysis and is therefore rarely dealt with during 0 0 A . The
basic issue here is that if there is a link from object A to object B, for A to
be able to send a message to B, B must be visible to A in the final program.
There are different ways to provide this visibility. Some of the important
possibilities are [23]:

• The supplier object is global to the client.

• The supplier object is a parameter to some operation of the client that
sends the message.

• The supplier object is a part of the client object.

• The supplier object is locally declared in some operation.

Each of these has some consequences. For example, if the supplier object is a
global object to the client, then the scoping of languages may make the client
visible to many other objects. This is, in general, not very desirable, and
should be done only when there is common information that many different
classes need. If the supplier object is a parameter of a method, then the
intention is to show that the object belongs elsewhere, and this object may
access it only through this method. If the suppher object is a part of the
chent, it means that the supplier object is declared as a data member of this
class. This imphes that when the life of the chent object finishes, the suppher
object is also destroyed. This clearly can have implications on sharing of
objects and services. Overall, how an object is made visible to an object

314 7. OBJECT-ORIENTED DESIGN

that needs to access it is an important design issue to be kept in mind when
designing associations.

If the suppher object is declared in the chent object, there are different
ways to implement associations. They can be implemented by a pointer
in one of the objects (generally the client object) to the other object. The
problem with this approach comes if the link is to be traversed in the reverse
direction from the object to which it is pointed. For this, a search needs to
be performed on all existing objects of the class with which this class has
an association to find which object has the pointer to this object. Hence,
this method of implementation should be used only if it is clear that the
apphcation is such that the reverse traversal of the link will never be needed.

Another way of implementing the association is by making the link bi
directional, which is what hnks generally mean in modeling. This can be
done by keeping a pointer to the other object in each of the two objects. This
is more expensive in terms of storage, but it solves the problem. However,
care must be taken to see that the links are consistent; whenever one of the
pointers is modified, the other pointer needs to be modified accordingly.

Yet another way of implementing association is to create a new object,
whose only duty is to keep track of the links between objects. This approach
separates the link maintenance job from the two objects. This is useful when
there are many hnks. Each object will register its link with this special-
purpose object.

Links between objects capture the client/server type of relationship. An
other type of relationship between objects is aggregation, which reflects the
whole/part-of relationship. Though not necessary, aggregation generally
implies containment. That is, if an object A is an aggregation of objects B
and C, then objects B and C will generally be within object A (though there
are situations where the conceptual relationship of aggregation may not get
reflected as actual containment of objects). The main implication of this is
that a contained object cannot survive without its containing object. With
hnks, that is not the case. An example of aggregation in C + + notation is
shown next:

class Disk {

private:

Track *tracks;

disk information

>;

7.2. 00 CONCEPTS 315

class Track {

private:

Sector sectors[MAX];

>;

Class Sector {

private:

>

In this example, a class of type Disk is declared, which specifies that any
object of this type will have within it a pointer to another object of class
Track, and this pointer is private information of the object that cannot be
accessed from outside the object. The definition of the class Track states
that each object of this type will have an array of elements of class Sector
within it as private data members. The example captures the fact that a disk
consists of many tracks, and each track contains many sectors. As shown
by class definitions, aggregation can be implemented by declaring the parts
as objects within the class, as is done while defining the class Track. Or it
can be implemented as a pointer to the part, as is done while defining Disk.
The latter method is also used for defining aggregation; hence representing
aggregation is used only for efficiency reasons or if the object is to be accessed
by many other objects outside the container object.

7.2.3 Inheritance and Po lymorphism

Inheritance is a concept unique to object orientation. Some of the other con
cepts, such as information hiding, can be supported by non-object-oriented
languages through self-discipline, but inheritance cannot generally be sup
ported by such languages. It is also the concept central to many of the
arguments claiming that software reuse can be better supported with object
orientation.

Inheritance is a relation between classes that allows for definition and
implementation of one class based on the definition of existing classes [107].
Let us try to understand this better. When a class B inherits from another
class A, B is referred to as the subclass or the derived class and A is referred
to as the superclass or the base class. In general, a subclass B will have
two parts: a derived part and an incremental part [107]. The derived part

316 7. OBJECT-ORIENTED DESIGN

X

Base Class

Derived Part

(from X)

Incremental

Part

(new)

Y - Derived class

Figure 7.3: Inheritance.

is the part inherited from A and the incremental part is the new code and
definitions that have been specifically added for B. This is shown in Figure
7.3 [107]. Objects of type B have the derived part as well as the incremental
part. Hence, by defining only the incremental part and inheriting the derived
part from an existing class, we can define objects that contain both.

Inheritance is often called an "is-a" relation, implying that an object of
type B is also an instance of type A. That is, an instance of a subclass,
though more than an instance of the superclass, is also an instance of the
superclass.

In general, an inherited feature of A may be redefined in various forms
in B. This redefinition may change the visibility of the operation (e.g., a
public operation of A may be made private in B), changed (e.g., by defining
a different sequence of instructions for this operation), renamed, voided, and
so on.

The inheritance relation between classes forms a hierarchy. As inheri
tance represents an "is-a" relation, it is important that the hierarchy repre
sent a structure present in the application domain and is not created simply
to reuse some parts of an existing class. That is, the hierarchy should be
such that an object of a class is also an object of all its super classes in the
problem domain.

The power of inheritance lies in the fact that all common features of the
subclasses can be accumulated in the superclass. In other words, a feature
is placed in the higher level of abstractions. Once this is done, such features
can be inherited from the parent class and used in the subclass directly.

7.2. 00 CONCEPTS 317

ZeroAreaObject

Graphical Object

color
draw-style

moveO
roatateO
scaleQ
setColorO

X

Line

start
end

A

OpenCurve

NonZeroAreaObject

fiUColor

fillStyle

^^

Polygon

noOfsides
vertices []

areaO

Circle

center
radius

Figure 7.4: An inheritance example.

This imphes that if there are many abstract class definitions available, when
a new class is needed, it is possible that the new class is a speciahzation of
one or more of the existing classes. In that case, the existing class can be
tailored through inheritance to define the new class.

Inheritance promotes reuse by defining the common operations of the
subclasses in a superclass. However, inheritance makes the subclasses de
pendent on the superclass, and a change in the superclass will directly affect
the subclasses that inherit from it. As classes may change as design is re
fined, with each change in a class, its impact on the subclasses will also have
to be analyzed. This also has an impact on the testing of classes. We will
discuss the issue of testing later in the book.

Let us illustrate inheritance through the use of an example. Consider a
graphics package that has the class GraphicalObject representing all graph
ical objects. A graphical object can have a zero area or a non-zero area,
giving two subclasses ZeroAreaObject and NonZeroAreaObject. Line and
Curve are two specific object classes of the first category, and Polygon and
Circ le are two specific object classes of the latter category. This hierarchy
of classes is shown in Figure 7.4.

318 7. OBJECT-ORIENTED DESIGN

As we can see, the Graphical Object has attributes of color and draw-
style (which represents the style of drawing the figure)—both of which each
graphical object has. It has many operations defined on it—move(), rotate(),
scale(), etc.—the ones that are needed for every object by the graphics pack
age. Note, however, that even though operations like rotate() and scale() are
defined for an object, they are totally conceptual in that their exact specifi
cation depends on the nature of the object (e.g., rotate() on a circle has to
do different things than rotate() on a line). Hence, these operations have to
be defined for each object. In C++, such operations that are declared in a
superclass and redefined in a subclass are declared as virtual in the super
class. If an operation specified in a class is always redefined in its subclass,
then the operation can be defined as pure virtual (in C++, this is done by
equating it to 0), implying that the operation has no body. The implication
of existence of these operations is that no objects of this class can be created,
as some of the operations declared in the class are not defined and hence
cannot be performed. Such a class is sometimes called an abstract base class.
The C++ class skeletons for this hierarchy are shown next:

class GraphicalObject {

protected:

unsigned int colpr;

unsigned int draw_style;

public:

virtual void move(Point fenewLocation);

virtual void rotate(double angle);

virtual void scale(double XScale , double YScale);

void setColorC unsigned int col);

void setDrawStyleC unsigned int style);

>;

class ZeroAreaObject: public GraphicalObject {};

class NonZeroAreaObject: public GraphicalObject {

protected:

unsigned int fillColor;

unsigned int fillStyle;

public:

virtual fillO ;

>;

class Line: public ZeroAreaObject {

7.2. 00 CONCEPTS 319

private:

Point start, end;

public:

int length0;

Point &midPoint();

// Inherited virtual features are given definition here

void move(Point &newLocation);

void rotate(double angle);

void scale(double XScale, double YScale);

};

class OpenCurve: public ZeroAreaObject {

private:

Point *controlPoints;

public:

// Inherited virtual features are given definition here

>;

class Polygon: public NonZeroAreaObject {

private:

Point *vertices;

unsigned int noOfSides;

public:

double areaO ;

// Inherited virtual features are defined here

>;

class Circle: public NonZeroAreaObject {
private:

Point centre;
unsigned int radius;

public:
double areaO ;
/ / Inherited vir tual features are defined here

>;

Inheritance can be broadly classified as being of two types: strict inheritance
and nonstrict inheritance [136]. In strict inheritance a subclass takes all the
features from the parent class and adds additional features to specialize it.
That is, all data members and operations available in the base class are also
available in the derived class. This form supports the "is-a" relation and is
the easiest form of inheritance. Nonstrict inheritance occurs when the sub-

320 7. OBJECT-ORIENTED DESIGN

AndGate

A, B
and()

A

NotGate

A
notO

NandGate

A,B
nandO

^ i \

OrGate

A,B

or()

^

NorGate

A,B
nor()

Figure 7.5: Multiple inheritance.

class does not have all the features of the parent class or some features have
been redefined. This form of inheritance has consequences in the dynamic
behavior and complicates testing.

A class hierarchy need not be a simple tree structure. It may be a graph,
which implies that a class may inherit from multiple classes. This type
of inheritance, when a subclass inherits from many superclasses, is called
multiple inheritance. Consider part of the class hierarchy of logic gates for
a system for simulating digital logic of circuits as shown in Figure 7.5. In
this example, there are separate classes to represent And gates, Nor gates,
and Or gates. The class for representing Nand gates inherits from both the
class for And gates and the class for Not gates. That is, all the definitions
(instances and operations) that have been declared as public (or protected) in
the classes NotGate and AndGate are available for use to the class NcindGate.
Similarly, the class NorGate inherits from the OrGate and NotGate. Like in
regular inheritance, a subclass can redefine any feature if it desires.

Multiple inheritance brings in some new issues. First, some features of
two-parent classes may have the same name. So, for example, there may be
an operation 0() in class A and class B. If a class C inherits from class A
and class B, then when 0() is invoked from an object of class C, if 0() is
not defined locally within C, it is not clear from where the definition of 0()
should be taken—from class A or from class B. This ambiguity does not arise
if there is no multiple inheritance; the operation of the closest ancestor in
which 0() is defined is executed. Different language mechanisms or rules can
be used to resolve this ambiguity. In C++, when such an ambiguity arises,
the programmer has to resolve it by explicitly specifying the superclass from
which the definition of the feature is to be taken.

Multiple inheritance also brings in the possibility of repeated inheritance,

7.2. 00 CONCEPTS 321

xx

B C

JDL

Figure 7.6: Repeated inheritance.

where a class inherits more than once from the same class [136]. For example,
consider the situation shown in Figure 7.6 where classes B and C inherit from
class A and class D inherits from both B and C. A situation like this means
that effectively class D is inheriting twice from A—once through B and once
through C. This form of inheritance is even more complex, as features of A
may have been renamed in B and C, and can lead to run-time errors.

Due to the complexity that comes with multiple inheritance and its vari
ations and the possibihty of confusion that comes with them, it is generally
advisable to avoid their usage.

Inheritance brings in polymorphism, a general concept widely used in type
theory, that deals with the ability of an object to be of different types. In
OOD, polymorphism comes in the form that a reference in an 0 0 program
can refer to objects of different types at different times. Here we are not
talking about "type coercion," which is allowed in languages like C; these
are features that can be avoided if desired. In object-oriented systems, with
inheritance, polymorphism cannot be avoided—it must be supported. The
reason is the "is-a" relation supported by inheritance—an object x declared
to be of class B is also an object of any class A that is the superclass of B.
Hence, anywhere an instance of A is expected, x can be used.

With polymorphism, an entity has a static type and a dynamic type
[107]. The static type of an object is the type of which the object is declared
in the program text, and it remains unchanged. The dynamic type of an
entity, on the other hand, can change from time to time and is known only at
reference time. Once an entity is declared, at compile time the set of types

322 7. OBJECT-ORIENTED DESIGN

that this entity belongs to can be determined from the inheritance hierarchy
that has been defined. The dynamic type of the object wih be one of this
set, but the actual dynamic type will be defined at the time of reference of
the object. In the preceding example, the static type of x is B. Initially, its
dynamic type is also B. Suppose an object y is declared of type A, and in
some sequence of instructions there is an instruction x \— y. Due to the "is-
a" relation between A and B, this is a valid statement. After this statement
is executed, the dynamic type of x will change to A (though its static type
remains B). This type of polymorphism is called object polymorphism [136],
in which wherever an object of a superclass can be used, objects of subclasses
can be used.

This type of polymorphism requires dynamic 6mdm^ of operations, which
brings in feature polymorphism. Dynamic binding means that the code as
sociated with a given procedure call is not known until the moment of the
call [107]. Let us illustrate with an example. Suppose x is a polymorphic
reference whose static type is B but whose dynamic type could be either
A or B. Suppose that an operation O is defined in the class A, which is
redefined in the class B. Now when the operation O is invoked on a;, it is
not known statically what code will be executed. That is, the code to be
executed for the statement x.O is decided at run time, depending on the
dynamic type of x—if the dynamic type is A, the code for the operation O
in class A will be executed; if the dynamic type is B, the code for operation
O in class B will be executed. This dynamic binding can be used quite ef
fectively during application development to reduce the size of the code. For
example, take the case of the graphical object hierarchy discussed earlier. In
an application, suppose the elements of a figure are stored in an array A (of
GraphicalObject type). Suppose element 1 of this array is a line, element
2 is a circle, and so on. Now if we want to rotate each object in the figure,
we simply loop over the array performing A[i] . r o t a t e () . For each A[i],
the appropriate rotate function will be executed. That is, which function
A[i].rotate() refers to is decided at run time, depending on the dynamic type
of object A[i].

This feature polymorphism, which is essentially overloading of the fea
ture (i.e., a feature can mean different things in different contexts and its
exact meaning is determined only at run time) causes no problem in strict
inheritance because all features of a superclass are available in the subclasses.
But in nonstrict inheritance, it can cause problems, because a child may lose
a feature. Because the binding of the feature is determined at run time,
this can cause a run-time error as a situation may arise where the object is

7.3. DESIGN CONCEPTS 323

bound to the superclass in which the feature is not present.

7.3 Design Concepts

In an 0 0 system, the basic module is a class, and during design the key-
activity is to identify and specify the modules that should be there in the
system being built. The goal of the design activity is to create a design that,
besides being correct, has other attributes that make it a good design.

There are many desirable attributes for an 0 0 system. However, here
we will focus on three main concepts. If we can create a design that is
satisfactory from these three perspectives (and is correct,) then we can be
fairly sure that we have a good design. These key concepts govern the
quality of a design, and should therefore drive the design process and the
design choices. The three concepts are cohesion, coupling, and open-closed
principle. Our goal is to create a design in which the modules are low
in coupling, high in cohesion (we will soon understand what low and high
means), and which satisfy the open-closed principle. Besides these, we also
discuss a few design guidehnes that suggest more concrete ways of putting
these principles in practice.

7.3.1 Coupling

As mentioned in the previous chapter, coupling is an inter-module concept
which captures the strength of interconnection between modules. The more
tightly coupled the modules are, the more dependent they are on each other,
and the more difficult it is to understand and modify them. Low coupling is
desirable for making the system more understandable and modifiable.

The degree of coupling between a module and another module depends on
how much information is needed about the other module for understanding
and modifying this module, and how complex and exphcit this information is.
Low coupling occurs when this information is as little as possible, as simple
as possible, and is easily visible or identifiable. In the previous chapter we
discussed this concept for systems with functional modules. Although the
concept remains the same, its manifestation in 0 0 systems is somewhat
different as objects are semantically richer than functions. In 0 0 systems,
three different types of coupling exists between modules [53]

• Interaction coupling

• Component coupling

324 7. OBJECT-ORIENTED DESIGN

• Inheritance coupling

Interaction coupling occurs due to methods of a class invoking methods
of other classes. Note that as we are looking at coupling between classes
we focus on interaction between classes, and not within a class. In many
ways, this situation is similar to a function calling another function and
hence this coupling is similar to coupling between functional modules. Like
with functions, the worst form of coupling here is if methods directly access
internal parts of other methods. (This type of interaction is disallowed in
many languages but is allowed where concepts like friend classes, which allow
a friend to delve into the internals of a class, exist.)

Interaction couphng reduces, though is still very high, if methods of a
class interact with methods in another class by directly manipulating in
stance variables or attributes of objects of the other class. This form of
interaction is also bad as one has to understand the code of other classes to
understand what changes they are making to the class. It also violates the
encapsulation principle of 0 0 . This form of interaction is worse if variables
are used to communicate temporary data, that is, the variables are used not
to hold the state of the object but to pass state of the computation from one
object to another. If this temp-value holder variable happens to be in the
super class, then the coupling worsens since the variable is visible to all sub
classes.

Coupling is least (like in couphng with functional modules) if methods
communicate directly through parameters. Within this category, couphng is
lower if only data is passed, but is higher if control information is passed since
the invoked method impacts the execution sequence in the calling method.
Also, coupling is higher if the amount of data being passed is more. So, if
whole data structures are passed when only some parts are needed, couphng
is being unnecessarily increased. Similarly, if an object is passed to a method
when only some of its component objects (or objects the passed object refers
to) are used within the method, coupling increases unnecessarily. The least
coupling situation therefore is when communication is with parameters only,
with only necessary variables being passed, and these parameters only pass
data.

Component coupling refers to the interaction between two classes where
a class has variables of the other class. Three clear situations exist when this
can happen. A class C can be component coupled with another class C, if C
has an instance variable of type C, or C has a method whose parameter is of
type C, or if C has a method which has a local variable of type C (which can

7.3. DESIGN CONCEPTS 325

then be passed as parameter to some method it invokes.) Note that when
C is component coupled with C, it has the potential of being component
coupled with all subclasses of C as at runtime an object of any subclass
may actually be used. It should be clear that whenever there is component
coupling, there is likely to be interaction coupling. Component coupling is
considered to be weakest (i.e., most desired) if in a class C, the variables of
class C are either in the signatures of the methods of C, or some attributes
are of type C. If interaction is through local variables, then this interaction
is not visible from outside, and therefore increases coupling.

Inheritance coupling is due to the inheritance relationship between classes.
Two classes are considered inheritance coupled if one class is a direct or in
direct subclass of the other. If inheritance adds coupling, one can ask the
question why not do away with inheritance altogether. The reason is that
inheritance may reduce the overall coupling in the system. Let us consider
two situations. If a class A is coupled with another class B, and if B is a
hierarchy with B and B as two subclasses, then if a method m is factored out
of B and B and put in the super class B, the coupling reduces as A is now
only coupled with B, whereas earlier it was coupled with both B and B. Sim
ilarly, if B is a class hierarchy which supports specialization-generalization
relationship, then if new subclasses are added to B, no changes need to be
made to a class A which calls methods in B. That is, for changing B's hier
archy, A need not be disturbed. Without this hierarchy, changes in B would
most likely result in changes in A.

Within inheritance coupling there are some situations that are worse
than others. The worst form is when a subclass B modifies the signature of
a method in B (or deletes the method). This situation can easily lead to a
run-time error, besides violating the true spirit of the is-a relationship. If
the signature is preserved but the implementation of a method is changed,
that also violates the is-a relationship, though may not lead to a run-time
error, and should be avoided. The least coupling scenario is when a subclass
only adds instance variables and methods but does not modify any inherited
ones.

7.3.2 Cohesion

Whereas coupling is an inter-module concept, cohesion is an intra-module
concept. It focuses on why elements of a module are together in the same
module. The objective here is to have elements that are tightly related to be
long to the same module. This will make the modules easier to understand,

326 7. OBJECT-ORIENTED DESIGN

and as they capture clear concepts and abstractions, easier to modify. Gen
erally, higher cohesion will lead to lower coupling as many elements that need
to interact a lot will reside together in strongly coupled modules, lessening
the need for interaction with other modules. On the other hand, modules
that have low cohesion will often need to interact with other modules to
perform their task. Clearly, for making a system more understandable and
modifiable, we would like it to consist of modules that are highly cohesive.
In other words, the goal is to have a high degree of cohesion in the modules
in the system. Cohesion in 0 0 systems also has three aspects [53]:

• Method cohesion

• Class cohesion

• Inheritance cohesion

Method cohesion is same as cohesion in functional modules, which we
discussed at length in the previous chapter. It focuses on why the different
code elements of a method are together within the method. The highest
form of cohesion is if each method implements a clearly defined function,
and all statements in the method contribute to implementing this function.
In general, with functionally cohesive methods, what the method does can
be stated easily with a simple statement. That is, in a short and simple
statement of the type "this method does...," we can express the functionality
of the method.

Class cohesion focuses on why different attributes and methods are to
gether in this class. The goal is to have a class that implements a single
concept or abstraction with all elements contributing towards supporting
this concept. In general, whenever there are multiple concepts encapsulated
within a class, the cohesion of the class is not as high as it could be, and
a designer should try to change the design to have each class encapsulate a
single concept.

One symptom of the situation where a class has multiple abstractions is
that the set of methods can be partitioned into two (or more) groups, each
accessing a distinct subset of the attributes. That is, the set of methods
and attributes can be partitioned into separate groups, each encapsulating
a different concept. Clearly, in such a situation, by having separate classes
encapsulating separate concepts, we can have modules with improved cohe
sion.

7.3, DESIGN CONCEPTS 327

In many situations, even though two (or more) concepts may be en
capsulated within a class, there are some methods that access attributes of
both the encapsulated concepts. This happens, when the class represents
different entities which have a relationship between them. For cohesion, it
is best to represent them as two separate classes with relationship among
them. That is, we should have multiple classes, with some methods in these
classes accessing objects of the other class. In a way, this improvement in
cohesion results in an increased couphng. However, for modifiability and
understandability, it is better if each class encapsulates a single concept.

Inheritance cohesion focuses on why classes are together in an hierar
chy. The two main reasons for inheritance are to model generalization-
specialization relationship, and for code reuse. Cohesion is considered high if
the hierarchy supports generalization-specialization of some concept (which
is likely to naturally lead to reuse of some code). It is considered lower if
the hierarchy is primarily for sharing code with weak conceptual relationship
between superclass and subclasses. In other words, it is desired that in an
0 0 system the class hierarchies should be such that they support clearly
identified generafization-speciahzation relationship.

7.3,3 The Open-Closed Principle

This is a design concept which came into existence in the 0 0 context. Like
with cohesion and coupling, the basic goal here is again to promote building
of systems that are easily modifiable, as modification and change happen
frequently and a design that cannot easily accommodate change will result
in systems that will die fast and will not be able easily adapt to the changing
world.

The basic principle, as stated by Bertrand Myers is "Software entities
should be open for extension, but closed for modification" [15]. A mod
ule being "open for extension" means that its behavior can be extended
to accommodate new demands placed on this module due to changes in
requirements and system functionality. The modules being "closed for mod
ification" means that the existing source code of the module is not changed
when making enhancements.

Then how does one make enhancements to a module without changing
the existing source code? This principle restricts the changes to modules
to extension only, i.e., it allows addition of code, but disallows changing of
existing code. If this can be done, clearly, the value is tremendous. Code
changes involve heavy risk and to ensure that a change has not "broken"

328 7. OBJECT-ORIENTED DESIGN

0..n
Printer 1

Figure 7.7: Example without using subtyping.

things that were working often requires a lot of regression testing. This risk
can be minimized if no changes are made to existing code. But if changes
are not made, how will enhancements be made? This principle says that
enhancements should be made by adding new code, rather than altering old
code.

There is another side benefit of this. Programmers typically prefer writ
ing new code rather than modifying old code. But the reality is that systems
that are being built today are being built on top of existing software. If this
principle is satisfied, then we can expand existing systems by mostly adding
new code to old systems, and minimizing the need for changing code.

This principle can be satisfied in 0 0 designs by properly using inheri
tance and polymorphism. Inheritance allows creating new classes that will
extend the behavior of existing classes without changing the original class.
And it is this property that can be used to support this principle. As an
example consider an application in which a client object (of type Client)
interacts with a printer object (of class Printer 1) and invokes the necessary
methods for completing its printing needs. The class diagram for this will
be as shown in Figure 7.7.

In this design, the client directly calls the methods on the printer object
for printing something. Now suppose the system has to be enhanced to allow
another printer to be used by the client. Under this design, to implement
this change, a new class Printer2 will have to be created and the code of the
client class wih have to be changed to allow using object of Printer2 type as
well. This design does not support the open-closed principle as the Client
class is not closed against change.

The design for this system, however, can be done in another manner
that supports the open-closed principle. In this design, instead of directly
implementing the Printer 1 class, we create an abstract class Printer that
defines the interface of a printer and specifies all the methods a printer object
should support. Printer 1 is implemented as a speciahzation of this class. In
this design, when Printer2 is to be added, it is added as another subclass
of type Printer. The client does not need to be aware of this subtype as it

7.3. DESIGN CONCEPTS 329

0..n 0..n

Printer 1 Printer 2

Figure 7.8: Example using subtyping.

interacts with objects of type Printer. That is, the chent only deals with a
generic Printer, and its interaction is same whether the object is actually of
type Printer 1 or Printer2. The class diagram for this is shown in Figure 7.8.

It is this inheritance property of 0 0 that is leveraged to support the
open-closed principle. The basic idea is to have a class encapsulate the ab
straction of some concept. If this abstraction is to be extended, the extension
is done by creating new subclasses of the abstraction, thereby keeping all the
existing code unchanged.

If inheritance hierarchies are built in this manner, they are said to satisfy
the Liskov Substitution Principle [112]. According to this principle, if a
program is using object ol of a (base) class C, that program should remain
unchanged if ol is replaced by an object o2 of a class C, where C is a subclass
of C. If this principle is satisfied for class hierarchies, and hierarchies are used
properly, then the open-closed principle can be supported. It should also be
noted that recommendations for both inheritance coupling and inheritance
cohesion support that this principle be followed in class hierarchies.

7.3.4 Some Design Guidelines

In an 0 0 design, class definitions make up the bulk of the system definition.
Therefore, the design of classes has a major impact on the overall quality
of the design. Here we present a set of guidelines for class design that can
be used to produce "good quality" classes [107], or reusable classes [103].
Most of these rules, and their intent, are self-explanatory and based on the

330 7. OBJECT-ORIENTED DESIGN

preceding discussion of design concepts.

1. The public interface of a class should only contain the operations de
fined on the class. That is, the data definitions should not be a part
of the public interface.

2. Only the operations that form the interface for a class, that is, the
ones needed by the users of the class, should be the public members of
the class.

3. An instance of a class should not send messages directly to components
of another class. That is, if there is a class C defined inside a class
B, then objects of a class A should not directly perform operations on
objects of class C (though many languages will permit it).

4. Each operation defined on a class should be such that it either modifies
or accesses some data defined in the class.

5. A class should be dependent on as few classes as possible.

6. The interaction between two classes should be exphcit. That is, global
objects should be avoided, and any objects needed by an object should
be exphcitly passed as a parameter or accessed through other exphcitly
defined means.

7. Each subclass should be developed as a specialization of the superclass
with the public interface of the superclass becoming part of the public
interface of the subclass.

8. The inheritance hierarchy should model some hierarchy that naturally
exists, and the class definition at each level should represent some
concept. The top of the hierarchy should be an abstract class.

9. Inside a class, case analysis on object type should be avoided. If this
is needed, it should be done by sending messages.

10. The number of arguments and the size of methods should be kept
small.

7.4. UNIFIED MODELING LANGUAGE (UML) 331

7.4 Unified Modeling Language (UML)

Most design approaches have two aspects to them—a language or a nota
tion to express the design, particularly while it is being developed, and a
methodology for developing the design. As design is a creative and iterative
activity, a good notation should aid the designer during the design activ
ity. This means that the notation should allow the designer to succinctly
capture the key aspects of the design (and refine it later), and allow easy
communication to encourage brainstorming. With good notation, often the
methodology for design becomes a set of general rules, and the notation
becomes the primary tool for creating the design.

Unified Modeling Language (UML) is a graphical notation for expressing
object oriented designs [24, 124, 64]. It is called a modeling language and not
a design notation as it allows representing various aspects of the system, not
just the design that has to be implemented. For a design, a specification of
the classes that exist in the system might suffice. However, while modeling,
during the design process, the designer also tries to understand how the
different classes are related and how they interact to provide the desired
functionality. This aspect of modehng helps build designs that are more
likely to satisfy all the requirements of the system. Due to the ability of
UML to create different models, it has become an aid for understanding the
system, designing the system, as well as a notation for representing design.

Though UML has now evolved into a fairly comprehensive and large
modeling notation, we will focus on a few central concepts and notations
relating to classes and their relationships and interactions. Though we have
already seen some of the notation when discussing 0 0 analysis, we discuss it
here independently for sake of completeness. For a more detailed discussion
on UML, the reader is referred to [24, 124, 64].

7.4.1 Class D i a g r a m

The class diagram of UML is the central piece in a design or model. As
the name suggests, these diagrams describe the classes that are there in
the design. As the final code of an 0 0 implementation is mostly classes,
these diagrams have a very close relationship with the final code. There
are many tools that translate the class diagrams to code skeletons, thereby
avoiding errors that might get introduced if the class diagrams are manually
translated to class definitions by programmers. A class diagram defines

332 7. OBJECT-ORIENTED DESIGN

1. Classes that exist in the system—besides the class name, the diagrams
are capable of describing the key fields as well as the important meth
ods of the classes.

2. Associations between classes—what types of associations exist between
different classes.

3. Subtype, supertype relationship—classes may also form subtypes giving
type hierarchies using polymorphism. The class diagrams can represent
these hierarchies also.

A class itself is represented as a rectangular box which is divided into
three areas. The top part gives the class name. By convention the class
name is a word with the first letter in uppercase. (In general, if the class
name is a combination of many words, then the first letter of each word
is in uppercase.) The middle part lists the key attributes or fields of the
class. These attributes are the state holders for the objects of the class.
By convention, the name of the attributes starts with a lowercase, and if
multiple words are joined, then each new word starts with an uppercase. The
bottom part lists the methods or operations of the class. These represent
the behavior that the class can provide. Naming conventions are same as for
attributes but to show that it is a function, the names end with "()". (The
parameters of the methods can also be specified, if desired.)

Sometimes, designers may like to specify the responsibility of a class.
The responsibility is what the entire class is meant to do using its attributes
and methods. Some designers feel that cohesive classes have clearly defined
responsibility. If responsibility needs to be specified, it is typically done
by having a 4th part at the bottom of the class box and specifying the
responsibility in it as plain text.

If a class is an interface (having specifications but no body,) this can
be specified by marking the class with the stereotype "<< interface >>" ,
which is generally written above the class name. Similarly, if a class/method-
/attribute has some properties that we want to specify, it can be done by
tagging the entity by specifying the property next to the entity name within
"{" and " } " or by putting some special symbol. Example of a class, an
interface, and a class with some tagged values is shown in Figure 7.9.

The divided-box notation is to describe the key features of a class as a
stand alone entity. However, classes have relationships between them, and
objects of different classes interact. Therefore, to model a system or an
application, we must represent relationship between classes. One common

7.4. UNIFIED MODELING LANGUAGE (UML) 333

Queue

(private) front: int
{private} rear: int
{readonly} MAX: int

{public} add(element: int)
{public} removeQ: int
{protected} isEmpty(): boolean

«interface»
Figure

area: double
perimeter: double

calculateArea(): double

calculatePerimeter(): double

Figure 7.9: Class, stereotypes, and tagged values.

relationship is the generalization-specialization relationship between classes,
which finally gets reflected as the inheritance hierarchy. In this hierarchy,
properties of general significance are assigned to a more general class—the
superclass—while properties which can specialize an object further are put
in the subclass. All properties of the superclass are inherited by the subclass,
so a subclass contains its own properties as well as those of the superclass.

The generalization-specialization relationship is specified by having ar
rows coming from the subclass to the superclass, with the empty triangle
shaped arrow-head touching to the superclass. Often, when there are mul
tiple subclasses of a class, this may be specified by having one arrow head
on the superclass, and then drawing fines from this to the different sub
classes. In this hierarchy, often speciahzation is done on the basis of some
discriminator—a distinguishing property that is used to speciafize super
class into different subclasses. In other words, by using the discriminator,
objects of the superclass type are partitioned into sets of objects of different
subclass types. The discriminator used for the generalization-specialization
relationship can be specified by labehng the arrow. An example of how this
relationship is modeled in UML is shown in 7.10.

In this example, the IITKPerson class represents all people belonging
to the IITK. These are broadly divided into two subclasses—Student and
Employee, as both these types have many different properties (some common
ones also) and different behavior. Similarly, students have two different sub
classes, UnderGraduate and PostGraduate, both requiring some different
attributes and having different constraints. The Employee class has sub
types representing the faculty, staff, and research staff. (This hierarchy is
from an actual working system developed for the author's Institute.)

334 7. OBJECT-ORIENTED DESIGN

IITK Person

. ^

Student
Discriminator

Employee

_Z\
Job nature

Under
Graduate

Post
Graduate

.Z^

Staff Research Faculty

Figure 7.10: A class hierarchy.

Address

Bio metric

<^ IITK Person Advances

Figure 7.11: Aggregation and association among classes.

Besides the generalization-specialization relationship, another common
relationship is association, which allows objects to communicate with each
other. An association between two classes means that an object of one class
needs some services from objects of the other class to perform its own service.
The relationship is that of peers in that objects of both the classes can use
services of the other. The association is shown by a hne between the two
classes. An association may have a name which can be specified by labehng
the association line. (The association can also be assigned some attributes
of its own.) And if the roles of the two ends of the association need to be
named, that can also be done. In an association, an end may also have
multiplicity ahowing relationships like 1 to 1, or 1 to many be modeled.
Where there is a fixed multiphcity, it is represented by putting a number at
that end; a zero or many multiplicity is represented by a *.

7.4. UNIFIED MODELING LANGUAGE (UML) 335

Another type of relationship is the part-whole relationship which rep
resents the situation when an object is composed of many parts, each part
itself is an object. This situation represents containment or aggregation—i.e.
object of a class are contained inside the object of another class. (Contain
ment and aggregation can be treated separately and shown differently, but
we will consider them as the same.) For representing this aggregation rela
tionship, the class which represents the "whole" is shown at the top and a
line emanating from a little diamond connecting it to classes which represent
the parts. Often in an implementation this relationship is implemented in
the same manner as an association, hence, this relationship is also sometimes
modeled as an association.

The association and aggregation are shown in Figure 7.11, expanding
the example given above. An object of IITKPerson type contains two
objects of type Address, representing the permanent address and the current
address. It also contains an object of type Biometricinf o, which keeps
information like the person's picture and signature. As these objects are
common to all people, they belong in the parent class rather than a subclass.
An IITKPerson is allowed to take some advances from the Institute to meet
expenses for travel, medical, etc. Hence, Advances is a different class (which,
incidently, has a hierarchy of its own) to which IITKPerson class as a 1 to
m association. (These relations are also from the system.)

Class diagrams focus on classes, and should not be confused with object
diagram. Objects are specific instances of classes. Sometimes, it is desirable
to model specific objects and relationship between them, and for that object
diagrams are used. An object is represented like a class, except that its
name also specifies the name of the class to which it belongs. Generally,
the object name starts with lowercase, and the class name is specified after
a colon. To further clarify, the entire name is underlined. An example is,
myList: List. The attributes of an object may have specific values. These
values can be specified by giving them along with the attribute name (E.g.
name = "John").

7.4.2 Sequence and Collaboration Diagrams

Class diagrams represent the static structure of the system, or they capture
what is the structure of the code that may implement it, and how the differ
ent classes in the code are related. Class diagrams, however, do not represent
the dynamic behavior of the system. That is, how the system behaves when
it performs some of its functions cannot be represented by class diagrams.

336 7. OBJECT-ORIENTED DESIGN

This is done through sequence diagrams or collaboration diagrams, together
called interaction diagrams. An interaction diagram typically captures the
behavior of a use case and models how the different objects in the system col
laborate to implement the use case. Let us first discuss sequence diagrams,
which is perhaps more common of the two interaction diagrams.

A sequence diagram shows the series of messages exchanged between
some objects, and their temporal ordering, when objects collaborate to pro
vide some desired system functionality (or implement a use case). The se
quence diagram is generally drawn to model the interaction between objects
for a particular use case. Note that in a sequence diagram (and also in col
laboration diagrams), it is objects that participate and not classes. When
capturing dynamic behavior, the role of classes are limited as during execu
tion it is objects that exist.

In a sequence diagram, all the objects that participate in the interaction
are shown at the top as boxes with object names. For each object, a ver
tical bar representing its lifeline is drawn downwards. A message from one
object to another is represented as an arrow from the lifeline of one to the
lifeline of the other. Each message is labeled with the message name, which
typically should be the name of a method in the class of the target object.
An object can also make a self call, which is shown as an message starting
and ending in the same objects lifeline. To clarify the sequence of messages
and relative timing of each, time is represented as increasing as one moves
farther away downwards from the object name in the object life. That is,
time is represented by the y-axis, increasing downwards.

Using the lifeline of objects and arrows, one can model objects lives
and how messages flow from one object to another. However, frequently a
message is sent from one object to another only under some condition. This
condition can be represented in the sequence diagram by specifying it within
brackets before the message name. If a message is sent to multiple receiver
objects, then this multiplicity is shown by having a "*" before the message
name.

Each message has a return, which is when the operation finishes and
returns the value (if any) to the invoking object. Though often this message
can be implied, sometimes it may be desirable to show the return message
explicitly. This is done by showing a dashed arrow. A sequence diagram
for an example is shown in Figure 7.12. This example is for printing the
graduation report for students. The object for GradReport (which has the
responsibility for printing the report) sends a message to the Student objects
for the relevant information, which request the CourseTaken objects for the

7A. UNIFIED MODELING LANGUAGE (UML) 337

GradReport:
GraduationReport

Studentobj:
Student

Course_tal<en_obj:
CourseTaken

getStudentDetailsQ
> 4 >

rT<-
PrintReportO

getGradesO

Courseobi:
Course

getCourseDetailsQ

ReturnDetailsQ

ReturnCourseDetailsQ pi

Figure 7.12: Sequence diagram for printing a graduation report.

courses the student has taken. These objects get information about the
courses from the Course objects. (This example is discussed in greater
length later in Chapter 9, where this implementation is improved through
refactoring. The class diagram is also given in that Chapter in Figure 9.5.)

A collaboration diagram also shows how objects communicate. Instead
of using a timeline-based representation that is used by sequence diagrams,
a collaboration diagram looks more like a state diagram. Each object is
represented in the diagram, and the messages sent from one object to an
other are shown as numbered arrows from one object to the other. In other
words, the chronological ordering of messages is captured by message num
bering, in contrast to a sequence diagram where ordering of messages is
shown pictorially. As should be clear, the two types of interaction diagrams
are semantically equivalent and have the same representation power. The
collaboration diagram for the above example is shown in Figure 7.13. Over
the years, however, sequence diagrams have become more popular, as people
find the visual representation of sequencing quicker to grasp.

As we can see, an interaction diagram models the internal dynamic be
havior of the system, when the system performs some function. The internal
dynamics of the system is represented in terms of how the objects interact
with each other. Through an interaction diagram, one can clearly see how
a system internally implements an operation, and what messages are sent

338 7. OBJECT-ORIENTED DESIGN

GradReport
GraduationReport

1- getStudentDetailsQ

6' StudentDetails

X
Student obi. Student

5: ReturnCourseDetailsO

Course_obj •
Course

4 ReturnDetailsQ

>

3: getCourseDetailsQ

2- getGradesQ

t

Course_taken_obj.
CourseTaken

Figure 7.13: Collaboration diagram for printing a graduation report.

between different objects. If a convincing interaction diagram cannot be
constructed for a system operation with the classes that have been identified
in the class diagram, then it is safe to say that the system structure is not
capable of supporting this operation and that it must be enhanced. So, it
can be used to vahdate if the system structure being designed through class
diagrams is capable of providing the desired services.

As a system has many functions, each involving different objects in dif
ferent ways, there will be a dynamic model for each of these functions or use
cases. In other words, whereas one class diagram can capture the structure
of the system's code, for the dynamic behavior many diagrams are needed.
Many systems may be performing many functions and it may not be feasible
or practical to draw the interaction diagram for each of these. Typically,
during design, interaction diagram of some key use cases or functions will
be drawn to make sure that the classes that exist can indeed support the
desired use cases, and to understand their dynamics. So, while creating the
design, it should be kept in mind that while one class diagram is needed
to represent the structure of the system, an interaction diagram represents
interactions of objects for one of the many scenarios.

7.4. UNIFIED MODELING LANGUAGE (UML) 339

Math

Geometry

1
Calculus

1 1
Integration

Sorting ^ Printing

COMPONENT -CONNECTOR

« subsystem »

Data storage

PACKAGE SUBSYSTEM

Figure 7.14: Subsystems, Components, and packages.

7.4.3 Other Diagrams and Capabil it ies

UML is an extensible and quite elaborate modeling notation. Above we have
discussed notation related to two of the most common models developed
while modehng a system—class diagrams and interaction diagrams. These
two together help model the static structure of the system as well as the
dynamic behavior. There are, however, many other aspects that might need
to be modeled for which extra notation is required. UML provides notation
for many different types of models.

In modeling and building systems, often instead of classes, components
are used. Components often encapsulate "larger" elements, and are seman-
tically simpler than classes. Components often encapsulate subsystems and
provide clearly defined interfaces through which these components can be
used by other components in the system. While designing an architecture,
as we have seen, components are very useful. UML provides a notation for
specifying a component. UML also provides a separate notation for a sub
system. In a large system, many classes may be combined together to form
packages, where a package is a cohection of many elements, possibly of dif
ferent types. UML also provides a notation to specify packages. These are
shown in Figure 7.14.

In the chapter on Architecture we discussed the deployment view of the
system, which may be quite different from the component or module view.
In deployment view, the focus is what software element uses which hardware,
that is, how is the system deployed. UML has notation for representing a

340 7. OBJECT-ORIENTED DESIGN

deployment view. The main element is a node^ represented as a named cube,
which represents a computing resource like the CPU which physically exists.
The name of the cube identifies the resource as well as its type. Within the
cube for the node the software elements it deploys (which can be components,
packages, classes, etc.) are shown using their respective notation. If different
nodes communicate with each other, this is shown by connecting the nodes
by lines.

The notation for packages and deployment view provide structural views
of the system from different perspectives. UML also provides notation to
express different types of behavior. A state diagram is a model in which the
entity being modeled is viewed as a set of states, with transitions between
the states taking place when some event occurs. A state is represented as
a rectangle with rounded edges or as ellipses or circles; transitions are rep
resented by arrows connecting two states. Details can also be attached to
transitions. State diagrams are often used to model the behavior of objects
of a class—the state represents the different states of the object and transi
tion captures the performing of the different operations on that object. So,
whereas interaction diagrams capture how objects collaborate, a state dia
gram models how an object itself evolves as operations are performed on it.
This can help clearly elucidate and specify the behavior of a class. We will
discuss it further in the next chapter, as we view state diagrams as helping
in doing the detailed design of a class.

Activity Diagrams provide another method for modeling dynamic behav
ior. These diagrams model a system by modeling the activities that take
place in it when the system executes for performing some function. Each
activity is represented like an oval, with the name of the activity within
it. Prom the activity, the system proceeds to other activities. Often, which
activity to perform next depends on some decision. This decision is shown
as a diamond leading to multiple activities (which are the options for this
decision). Repeated execution of some activities can also be shown. These
diagrams are like flow charts, but also have notation to specify parallel execu
tion of activities in a system by specifying an activity splitting into multiple
activities or many activities joining (synchronizing) after their completion.

UML is an extensible notation allowing a modeler the flexibility to rep
resent newer concepts as well. There are many situations in which a modeler
needs some notation which is similar to an existing one but is not exactly
the same. Por example, in some cases, one may want to specify if a class
is an abstract class or an interface. Instead of having special notation for
these concepts, UML has the concept of a stereotype, through which existing

7.5. A DESIGN METHODOLOGY 341

notation can be used to model different concepts. An existing notation, for
example of a class, can be used to represent some other similar concept by
specifying it as a stereotype by giving the name of the new concept within
< < and > > . We have already seen an example earlier. A metaclass can be
specified in a similar manner; and so can a utility class (one which has some
utility functions which are directly used and whose objects are not created).

Tagged values can be used to specify additional properties of the elements
to which they are attached. They can be attached to any name, and are
specified within "{ }". Though tagged values can be anything a modeler
wants, it is best to limit its use to a few clearly defined (and pre-agreed)
properties like private, abstract, query, and readonly. Notes can also be
attached to the different elements in a model. We have earlier seen the use
of some tagged values in Figure 7.9.

We discussed use cases and use case diagrams in an earlier chapter. Use
case diagrams are part of the UML. However, as discussed earlier, use case
diagrams add little additional information that use cases do not provide.
They are mostly used for providing a high-level summary of use cases.

7.5 A Design Methodology

Many design and analysis methodologies have been proposed. Some of the
earlier ones are [23, 37, 95, 133]. As we stated earher, a methodology basi
cally uses the concepts (of 0 0 in this case) to provide guidelines and notation
for the design activity. Though methodologies are useful, they do not reduce
the activity of design to a sequence of steps that can be followed mechani
cally. Due to this, the overall approach and the principles behind it are often
more useful than the details of the methodologies. In fact, most experienced
designers tailor the methodology to suit their way of thinking and working.
We will discuss only one particular methodology here, as at an abstract level
most methodologies start to seem very similar and vary mostly in details.
Even though it is one of the earlier methodologies, its basic concepts are still
applicable.

We assume that during architecture design the system has been broken
into high-level subsystems or components. The problem we address is how
to produce an object-oriented design for a subsystem, which can itself be
viewed as a system.

As we discussed earlier, the 0 0 design of consists of specification of all
the classes and objects that will exist in the system implementation. A

342 7. OBJECT-ORIENTED DESIGN

complete 0 0 design should be such that in the implementation phase only
further details about methods or attributes need to be added. A few low-
level objects may be added later, but most of the classes and objects and
their relationships are identified during design.

In 0 0 design, the 0 0 analysis forms the starting step. Using the model
produced during analysis, a detailed model of the final system is built. As
we discussed earlier, in an object-oriented approach, the separation between
analysis and design is not very clear and depends on the perception. We will
follow what we defined in Chapter 4 regarding what constitutes the output of
an OOA—a, class diagram of the problem. The OMT methodology that we
discuss for design considers dynamic modeling and functional modeling parts
of the analysis [133]. As these two models have little impact on the object
model produced in OOA or on the SRS, we view these modehng as part of
the design activity. Hence, performing the object modeling can be viewed
as the first step of design. With this point of view, the design methodology
for producing an 0 0 design consists of the following sequence of steps:

• Produce the class diagram

• Produce the dynamic model and use it to define operations on classes

• Produce the functional model and use it to define operations on classes

• Identify internal classes and operations

• Optimize and package

We discussed object-oriented modeling in Chapter 4, along with a method
ology for performing the modeling. Any methodology can be followed, as
long as the output of the modehng activity is the class diagram representing
the problem structure. Hence, the first step of the design is generally per
formed during the requirements phase when the problem is being modeled
for producing the SRS. Briefiy, during analysis, the basic goal is to pro
duce a class diagram of the problem domain. This requires identification of
object types in the problem domain, the structures between classes (both
inheritance and aggregation), attributes of the different classes, associations
between the different classes, and the services each class needs to provide to
support the system. For further details, the reader should refer to Chapter
4.

7.5. A DESIGN METHODOLOGY 343

7,5.1 Dynamic Modeling

The class diagram models the static structure of the system, However, just
modeling the static structure is not sufficient for designing the system, as
the desired effect of the events on the system state will also impact the final
structure of the system. So, a better understanding of the dynamic behavior
of the system will help in further refining the design.

The dynamic model of a system aims to specify how the state of various
objects changes when events occur. An event is something that happens at
some time instance. For an object, an event is essentially a request for an
operation. An event typically is an occurrence of something and has no time
duration associated with it. Each event has an initiator and a responder.
Events can be internal to the system, in which case the event initiator and
the event responder are both within the system. An event can be an external
event, in which case the event initiator is outside the system (e.g., the user
or a sensor).

A scenario is a sequence of events that occur in a particular execution
of the system, as we have seen while discussing use cases in Chapter 3.
From the scenarios, the different events being performed on different objects
can be identified, which are then used to identify services on objects. The
different scenarios together can completely characterize the behavior of the
system. If the design is such that it can support all the scenarios, we can be
sure that the desired dynamic behavior of the system can be supported by
the design. This is the basic reason for performing dynamic modehng. With
use cases, dynamic modeling involves preparing interaction diagrams for the
important scenarios, identifying events on classes, ensuring that events can
be supported, and perhaps build state models for the classes.

It is best to start by modeling scenarios being triggered by external
events. The scenarios should not necessarily cover all possibilities, but the
major ones should be considered. First the main success scenarios should
be modeled, then scenarios for "exceptional" cases should be modeled. For
example, in the system for a restaurant that we discussed in Chapter 4, the
main success scenario for placing an order could be:

344 7. OBJECT-ORIENTED DESIGN

Customer reads the menu.
Customer places the order.
Order is sent to the kitchen for preparation.
Ordered items are served.
Customer requests for a bill for the order.
Bill is prepared for this order;
Customer is given the bill;
Customer pays the bill.

An "exception" scenario could be if the ordered item was not available or
if the customer cancels his order. From each scenario, events have to be
identified. Events are interactions with the outside world and object-to-
object interactions. All the events that have the same effect on the flow
of control in the system are grouped as a single event type. Each event
type is then allocated to the object classes that initiate it and that service
the event. With this done, a scenario can be represented as a sequence
(or collaboration) diagram showing the events that will take place on the
different objects if the execution corresponding to the scenario takes place.
A possible sequence diagram of the preceding scenario is given in Figure
7.15.

Once the main scenarios are modeled, various events on objects that
are needed to support executions corresponding to the various scenarios are
known. This information is then used to expand our view of the classes in the
design. The main reason for performing dynamic modeling is that scenarios
and sequence diagrams extend the initial design. Generally speaking, for
each event in the sequence diagrams, there will be an operation on the object
on which the event is invoked. So, by using the scenarios and sequence
diagrams we can further refine our view of the objects and add operations
that are needed to support some scenarios but may not have been identified
during initial modeling. For example, from the event trace diagram in Figure
7.15, we can see that "placeOrder" and "getBill" will be two operations
required on the object of type Order if this interaction is to be supported.

The effect of these different events on a class itself can be modeled using
the state diagrams. We believe that the state transition diagram is of hmited
use during system design but may be more useful during detailed design.
Hence, we will discuss state modeling of classes in the next chapter.

7.5. A DESIGN METHODOLOGY 345

menu : Menu customer : Customer

read

order : Order bill: Bill kitchen : Kitchen

place order

serve

getBill

bill

pay bill

rS

prepare |̂

bill

n

prepare

dishes

r

Figure 7.15: A sequence diagram for the restaurant.

7.5.2 Functional Mode l ing

The functional model describes the computations that take place within a
system. It is the third dimension in modeling—object modeling looks at the
static structure of the system, dynamic modeling looks at the events in the
system, and functional modeling looks at the functionality of the system. In
other words, the functional model of a system specifies what happens in the
system, the dynamic model specifies when it happens, and the class model
specifies what it happens to [133].

A functional model of a system specifies how the output values are com
puted in the system from the input values, without considering the con
trol aspects of the computation. This represents the functional view of the
system—the mapping from inputs to outputs and the various steps involved
in the mapping. Generally, when the transformation from the inputs to out
puts is complex, consisting of many steps, the functional modeling is likely
to be useful. In systems where the transformation of inputs to outputs is
not complex, the functional model is likely to be straightforward.

As we have seen, the functional model of a system (either the problem
domain or the solution domain) can be represented by a data flow diagram

346 7. OBJECT-ORIENTED DESIGN

(DFD). We have used DFDs in problem modeling, and the structured design
methodology, discussed in Chapter 6. Just as with dynamic modeling, the
basic purpose of doing functional modeling, when the goal is to obtain an
object oriented design for the system, is to use the model to make sure that
the object model can perform the transformations required from the system.
As processes represent operations and in an object-oriented system, most of
the processing is done by operations on classes, all processes should show up
as operations on classes. Some operations might appear as single operations
on an object; others might appear as multiple operations on different classes,
depending on the level of abstraction of the DFD. If the DFD is sufficiently
detailed, most processes will occur as operations on classes. The DFD also
specifies the abstract signature of the operations by identifying the inputs
and outputs.

7.5.3 Defining Internal Classes and Operat ions

The classes identified so far are the ones that come from the problem domain.
The methods identified on the objects are the ones needed to satisfy all the
interactions with the environment and the user and to support the desired
functionality. However, the final design is a blueprint for implementation.
Hence, implementation issues have to be considered. While considering im
plementation issues, algorithm and optimization issues arise. These issues
are handled in this step.

First, each class is critically evaluated to see if it is needed in its present
form in the final implementation. Some of the classes might be discarded if
the designer feels they are not needed during implementation.

Then the implementation of operations on the classes is considered. For
this, rough algorithms for implementation might be considered. While doing
this, a complex operation may get defined in terms of lower-level operations
on simpler classes. In other words, effective implementation of operations
may require heavy interaction with some data structures and the data struc
ture to be considered an object in its own right. These classes that are iden
tified while considering implementation concerns are largely support classes
that may be needed to store intermediate results or to model some aspects
of the object whose operation is to be implemented. The classes for these
objects are called container classes.

Once the implementation of each class and each operation on the class
has been considered and it has been satisfied that they can be implemented,
the system design is complete. The detailed design might also uncover some

7.5. A DESIGN METHODOLOGY 347

very low-level objects, but most such objects should be identified during
system design.

7.5.4 Optimize and Package

In the design methodology used, the basic structure of the design was created
during analysis. As analysis is concerned with capturing and representing
various aspects of the problem, some ineflficiencies may have crept in. In this
final step, the issue of efficiency is considered, keeping in mind that the final
structures should not deviate too much from the logical structure produced
by analysis, as the more the deviation, the harder it will be to understand a
design. Some of the design optimization issues are discussed next [133].

Adding Redundant Associations. The association in the initial de
sign may make it very inefficient to perform some operations. In some cases,
these operations can be made more efficient by adding more associations.
Consider the example where a Company has a relationship to a person (a
company employs many persons) [133]. A person may have an attribute
languages-spoken, which lists the languages the person can speak. If the
company sometimes needs to determine all its employees who know a spe
cific language, it has to access each employee object to perform this opera
tion. This operation can be made more efficient by adding an index in the
Company object for different languages, thereby adding a new relationship
between the two types of objects. This association is largely for efficiency.
For such situations, the designer must consider each operation and deter
mine how many objects in an association are accessed and how many are
actually selected. If the hit ratio is low, indexes can be considered.

Saving Derived Attributes. A derived attribute is one whose value
can be determined from the values of other attributes. As such an attribute
is not independent, it may not have been specified in the initial design.
However, if it is needed very often or if its computation is complex, its value
can be computed and stored once and then accessed later. This may require
new objects to be created for the derived attributes. However, it should be
kept in mind that by doing this the consistency between derived attributes
and base attributes will have to be maintained and any changes to the base
attributes may have to be reflected in the derived attributes.

Use of Generic Types. A language like C++ allows "generic" classes
to be declared where the base type or the type of some attribute is kept
"generic" and the actual type is specified only when the object is actually
defined. (The approach of C++ does not support true generic types, and

348 7. OBJECT-ORIENTED DESIGN

this type of definition is actually handled by the compiler.) By using generic
types, the code size can be reduced. For example, if a list is to be used in
different contexts, a generic list can be defined and then instantiated for an
integer, real, and char types.

Adjustment of Inheritance. Sometimes the same or similar oper
ations are defined in various classes in a class hierarchy. By making the
operation slightly more general (by extending interface or its functionality),
it can be made a common operation that can be "pushed" up the hierarchy.
The designer should consider such possibilities. Note that even if the same
operation has to be used in only some of the derived classes, but in other
derived classes the logic is different for the operation, inheritance can still
be used effectively. The operation can be pushed to the base class and then
redefined in those classes where its logic is different.

Another way to increase the use of inheritance, which promotes reuse,
is to see if abstract classes can be defined for a set of existing classes and
then the existing classes considered as a derived class of that. This will
require identifying common behavior and properties among various classes
and abstracting out a meaningful common superclass. Note that this is
useful only if the abstract superclass is meaningful and the class hierarchy is
"natural." A superclass should not be created simply to pack the common
features on some classes together in a class.

Besides these, the general design principles discussed earUer should be
applied to improve the design—to make it more compact, efficient, and mod
ular. Often these goals will conflict. In that case, the designer has to use
his judgment about which way to go. In general, as we stated earlier in the
chapter, understandability and modularity should be given preference over
efficiency and compactness.

7.5.5 Examples

Before we apply the methodology on some examples, it should be remem
bered again that no design methodology reduces the activity of producing
a design to a series of steps that can be mechanically executed; each step
requires some amount of engineering judgment. Furthermore, the design
produced by following a methodology should not be considered the final de
sign. The design can and should be modified using the design principles and
the ultimate objectives of the project in mind. Methodologies are essentially
guidehnes to help the designer in the design activity; they are not hard-and-
fast rules. The examples we give here are relatively small, and all aspects of

7.5. A DESIGN METHODOLOGY 349

History

addWordO

existsO

/ \

File

name

getwordO
isEofO

^

t
Word

string

setstringO
getstringO

Counter

count

increment()
displayO

Figure 7.16: Class diagram for the word counting problem.

the methodology do not get reflected in them. However, the design of the
case studies, given at the end of the chapter, will provide a more substantial
example for design.

The Word-Counting Problem

Let us first consider the word counting problem discussed in Chapter 6 (for
which the structured design was done). The initial analysis clearly shows
that there is a Fi le object, which is an aggregation of many Word objects.
Further, one can consider that there is a Counter object, which keeps track
of the number of different words. It is a matter of preference and opinion
whether Counter should be an object, or counting should be implemented
as an operation. If counting is treated as an operation, the question will
be to which object it belongs. As it does not belong "naturally" to either
the class Word nor the class F i le , it will have to be "forced" into one of the
classes. For this reason, we have kept Counter as a separate object. The
basic problem statement finds only these three objects. However, further
analysis for services reveals that some history mechanism is needed to check
if the word is unique. The class diagram obtained after doing the initial
modeling is shown in Figure 7.16.

Now let us consider the dynamic modeling for this problem. This is
essentially a batch processing problem, where a file is given as input and
some output is given by the system. Hence, the use case and scenario for

350 7. OBJECT-ORIENTED DESIGN

Text file History

No of
different
words

History

Figure 7.17: Functional Model for the word counting problem.

this problem are straightforward. For example, the scenario for the "normal"
case can be:

System prompts for the file name; user enters the file name.
System checks for existence of the file.
System reads the words from the file.
System prints the count.

From this simple scenario, no new operations are uncovered, and our ob
ject diagram stays unchanged. Now we consider the functional model. One
possible functional model is shown in Figure 7,17. The model reinforces the
need for some object where the history of what words have been seen is
recorded. This object is used to check the uniqueness of the words. It also
shows that various operations like increment(), isunique(), and addToHis-
toryO are needed. These operations should appear as operations in classes
or should be supported by a combination of operations. In this example,
most of these processes are reflected as operations on classes and are already
incorporated in the design.

Now we are at the last two steps of design methodology, where implemen
tation and optimization concerns are used to enhance the object model. The
first decision we take is that the history mechanism will be implemented by

7.5. A DESIGN METHODOLOGY 351

a binary search tree. Hence, instead of the class History, we have a differ
ent class Btree. Then, for the class Word, various operations are needed to
compare different words. Operations are also needed to set the string value
for a word and retrieve it. The final class diagram is similar in structure to
the one shown in Figure 7.16, except for these changes.

The final step of the design activity is to specify this design. This is
not a part of the design methodology, but it is an essential step, as the
design specification is what forms the major part of the design document.
The design specification, as mentioned earlier, should specify all the classes
that are in the design, all methods of the classes along with their interfaces.
We use C + + class structures for our specification. The final specification
of this problem is given next. This specification can be reviewed for design
verification and can be used as a basis of implementing the design.

class Word {

private :

char *string; // string representing the word

public:

bool operator == (Word); // Checks for equality

bool operator < (Word)

bool operator > (Word)

Word operator = (Word); // The assignment operator

void setWord (char *); // Sets the string for the word

char *getWord (); // gets the string for the word

};

class File {

private:

FILE inFile;

char *fileName;

public:

Word getWord (); // get a word; Invokes operations of Word

bool isEof (); // Checks for end of file

void fileOpen (char *);

>;

class Counter {

private:

int counter;

public:

void increment ();

352 7. OBJECT-ORIENTED DESIGN

void display ();

};

class Btree: GENERIC in <ELEMENT_TYPE> {

private:

ELEMENT.TYPE element;

Btree < ELEMENT.TYPE > *left;

Btree < ELEMENT.TYPE > *right;

public:

void insert(ELEMENT.TYPE); //to insert an element

bool lookupC ELEMENT.TYPE); //to check if an element exists

>;

As we can see, all the class definitions complete with data members and
operations and all the major declarations are given in the design specifica
tion. Only the implementation of the methods are not provided. This design
was later implemented in C++. The conversion to code required only minor
additions and modifications to the design. The final code was about 240
lines of C++ code (counting noncomment and nonblank lines only).

Rate of Returns Problem

Let us consider a slightly larger problem: that of determining the rate of
returns on investments. An investor has made investments in some compa
nies. For each investment, in a file, the name of the company, all the money
he has invested (in the initial purchase as well as in subsequent purchases),
and all the money he has withdrawn (through sale of shares or dividends)
are given, along with the dates of each transaction. The current value of the
investment is given at the end, along with the date. The goal is to find the
rate of return the investor is getting for each investment, as well as the rate
of return for the entire portfolio. In addition, the amounts he has invested
initially, amounts he has invested subsequently, amounts he has withdrawn,
and the current value of the portfolio also is to be output.

This is a practical problem that is frequently needed by investors (and
forms the basis of our second Case Study). The computation of rate of re
turn is not straightforward and cannot be easily done through spreadsheets.
Hence, such a software can be of practical use. Besides the basic functional
ity given earlier, the software needs to be robust and catch errors that can
be caught in the input data.

We start with the analysis of the problem. Initial analysis clearly shows
that there are a few object classes of in teres t^Por t fo l io , Investment,

7.5. A DESIGN METHODOLOGY 353

Portfolio

totlnitlnvest
totCurValue
totWithdrawls
totDeposits
rate

computeRate ()
computeRest ()
printResults ()

\>

Investment

name
rate

computeRate ()

Transaction

date
amount

1
Deposit

getamt ()

Withdrawl

getamt ()

Figure 7.18: Class diagram for rate of return problem.

and Transaction. A portfolio consists of many investments, and an in
vestment consists of many transactions. Hence, the class Por t fo l io is an
aggregation of many Investments, and an Investment s an aggregation of
many Transactions. A transaction can be of Withdrawal type or Deposit
type, resulting in a class hierarchy, with Investment being the superclass
and Withdrawal and Deposit subclasses.

For an object of class Investment, the major operation we need to per
form is to find the rate of return. For the class Por t fo l io we need to have
operations to compute rate of return, total initial investment, total with
drawal, and total current value of the portfolio. Hence, we need operations
for these. The class diagram obtained from analysis of the problem is shown
in Figure 7.18.

In this problem, as the interaction with the environment is not much,
the dynamic model is not significant. Hence, we omit the dynamic modeling
for this problem. A possible functional model is given in Figure 7.19. The
classes are then enhanced to make sure that each of the processes of the
functional model is reflected as operations on various objects. As we can
see, most of the processes already exist as operations.

Now we have to perform the last two steps of the design methodology,

354 7. OBJECT-ORIENTED DESIGN

Input File

Figure 7.19: Functional model for the rate of return problem.

where implementation and optimization concerns are used to enhance the
classes. While considering the implementation of computation of total initial
investment, computation of overall return rate, overall withdrawals and so
on, we notice that for all of these, appropriate data from each investment
is needed. Hence, to the class Investments, appropriate operations need
to be added. Further, we note that all the computations for total initial
investment, total current value, and so on are all done together, and each
of these is essentially adding values from various investments. Hence, we
combine them in a single operation in Por t fo l io and a corresponding single
operation in Investment. Studying the class hierarchy, we observe that the
only difference in the two subclasses Withdrawal and Deposit is that in
one case the amount is subtracted and in the other it is added. In such a
situation, the two types can be easily considered a single type by keeping the
amount as negative for a withdrawal and positive for a deposit. So we remove
the subclasses, thereby simplifying the design and implementation. Instead
of giving the class diagram for the final design, we provide the specification
of the classes:

class Transaction {
private:

int amount; / / money amount for the transaction
int month; / / month of the transaction
int year; / / year of the transaction

7.5. A DESIGN METHODOLOGY 355

public:

getAmount();

getMonthO ;

getYearO ;

Transaction(amount, month, year); // sets values

>;

class Investment {

private:

char *investmentName; // Name of the company

Transaction *transactArray; // List of transactions

int noOfTransacts; // Total number of transactions

float rateOfReturn; // rate of return

public:

getTransactDetailsO; // Set details of transactions

computeRateO ;

float getRateO; // Return the rate of the returns

compute(initVal, totWithdrawls, totCurVal, totDeposits);

// Returns these values for this investment

>;

class Portfolio {

private:

Investment *investArray; // List of investments

int noOfInvestments; // Total number of investments

int totallnitlnvest;

int totalDeposits;

int totalCurVal;

int totalWithdrawl;

float RateOfReturns; // Overall rate of returns

public:

getlnvestDetailsC char * fname); // Parse the input file

computeRateO; // Compute rates of return

computeO; // Compute other totals

printResultsO; // Print return rates, total values, etc.

} ;

The design is self-explanatory. This design was later implemented in C++
code, and we found that only minor implementation details were added
during the implementation, showing the correctness and completeness of
the design. The final size of the program was about 470 fines of C + + code
(counting noncomment and nonblank lines only).

356 7. OBJECT-ORIENTED DESIGN

7.6 Metrics

We have already seen that the basic paradigm behind OOD is fundamentally
different from the paradigm of function-oriented design. This has brought
in a different building block and concepts related to this building block.
The definition of modularity has also changed for this new building block,
and new methodologies have been proposed for creating designs using this
paradigm. It is, therefore, natural to expect that a new set of metrics will
be required to evaluate an 0 0 design. A few attempts have been made to
propose metrics for object-oriented software [1, 32, 111].

Here we present some metrics that have been proposed for evaluating
the complexity of an OOD. As design of classes is the central issue in OOD
and the major output of any OOD methodology is the class definition, these
metrics focus on evaluating classes. Note that for measuring the size of a
system, conventional approaches, which measure the size in LOG or function
points, can be used, even if 0 0 is used for design. It is the metrics for
evaluating the quality or complexity of the design that need to be redefined
for OOD. The metrics discussed were proposed in [32], and the discussion
is based on this work. The results of an experiment described in [6] for
validating these metrics and the metrics data presented in [32] are used to
discuss the role of these metrics.

Weighted Methods per Class (WMC)

The effort in developing a class wih in some sense be determined by the num
ber of methods the class has and the complexity of the methods. Hence, a
complexity metric that combines the number of methods and the complexity
of methods can be useful in estimating the overall complexity of the class.
The weighted methods per class (WMC) metric does precisely this.

Suppose a class C has methods Mi,M2,... ,M„ defined on it. Let the
complexity of the method Mi be Q . As a method is like a regular function
or procedure, any complexity metric that is applicable for functions can be
used to define Ci (e.g., estimated size, interface complexity, and data flow
complexity). The WMC is defined as:

i=n

If the complexity of each method is considered 1, WMC gives the total
number of methods in the class.

7.6. METRICS 357

The data given in [6, 32], which is based on evaluation of some existing
programs, shows that in most cases, the classes tend to have only a small
number of methods, implying that most classes are simple and provide some
specific abstraction and operations. Only a few classes have many methods
defined on them. The analysis in [6] showed that the WMC metric has a
reasonable correlation with fault-proneness of a class. As can be expected,
the larger the WMC of a class the better the chances that the class is fault-
prone.

Depth of Inheritance Tree (DIT)

Inheritance is, as we have mentioned, one of the unique features of the object-
oriented paradigm. As we have said before, inheritance is one of the main
mechanisms for reuse in OOD—the deeper a particular class is in a class
hierarchy, the more methods it has available for reuse, thereby providing a
larger reuse potential. At the same time, as we have mentioned, inheritance
increases coupling, which makes changing a class harder. In other words, a
class deep in the hierarchy has a lot of methods it can inherit, which makes
it difficult to predict its behavior. For both these reasons, it is useful to have
some metric to quantify inheritance. The depth of inheritance tree (DIT) is
one such metric.

The DIT of a class C in an inheritance hierarchy is the depth from the
root class in the inheritance tree. In other words, it is the length of the
shortest path from the root of the tree to the node representing C or the
number of ancestors C has. In case of multiple inheritance, the DIT metric
is the maximum length from a root to C.

The data in [6, 32] suggests that most classes in applications tend to be
close to the root, with the maximum DIT metric value (in the applications
studied) being around 10. Most the classes have a DIT of 0 (that is, they are
the root). This seems to suggest that the designers tend to keep the number
of abstraction levels (reflected by the levels in the inheritance tree) small,
presumably to aid understanding. In other words, designers (of the systems
evaluated) might be giving up on reusabihty in favor of comprehensibility.
The experiments in [6] show that DIT is very significant in predicting defect-
proneness of a class: the higher the DIT the higher the probability that the
class is defect-prone.

358 7. OBJECT-ORIENTED DESIGN

Number of Children (NOC)

The number of children (NOC) metric value of a class C is the number of
immediate subclasses of C. This metric can be used to evaluate the degree
of reuse, as a higher NOC number reflects reuse of the definitions in the
superclass by a larger number of subclasses. It also gives an idea of the
direct influence of a class on other elements of a design—the larger the
influence of a class, the more important that the class is correctly designed.
In the empirical observations, it was found that classes generally had a small
NOC metric value, with a vast majority of classes having no children (i.e.,
NOC is 0). This suggests that in the systems analyzed, inheritance was not
used very heavily. However, the data in [6] seems to suggest that the larger
the NOC, the lower the probabihty of detecting defects in a class. That is,
the higher NOC classes are less defect-prone. The reasons for this are not
definitive.

Coupling Between Classes (CBC)

As discussed earher, couphng between modules of a system, in general, re
duces modularity and makes module modification harder. In OOD, as the
basic module is a class, it is desirable to reduce the coupling between classes.
The less coupling of a class with other classes, the more independent the
class, and hence it will be more easily modifiable. Couphng between classes
(CBC) is a metric that tries to quantify coupling that exists between classes.

The CBC value for a class C is the total number of other classes to which
the class is coupled. Two classes are considered coupled if methods of one
class use methods or instance variables defined in the other class. In general,
whether two classes are coupled can easily be determined by looking at the
code and the definitions of all the methods of the two classes. However, note
that there are indirect forms of coupling (through pointers, etc.) that are
hard to identify by evaluating the code.

The experimental data indicates that most of the classes are self-contained
and have a CBC value of 0, that is, they are not coupled with any other class,
including superclasses [32]. Some types of classes, for example the ones that
deal with managing interfaces (called interface objects earlier), generally
tend to have higher CBC values. The data in [6] found that CBC is signifi
cant in predicting the fault-proneness of classes, particularly those that deal
with user interfaces.

7.6. METRICS 359

Response for a Class (RFC)

Although the CBC for a class captures the number of other classes to which
this class is coupled, it does not quantify the "strength" of interconnection.
In other words, it does not explain the degree of connection of methods of a
class with other classes. Response for a class (RFC) tries to quantify this by
capturing the total number of methods that can be invoked from an object
of this class.

The RFC value for a class C is the cardinality of the response set for
a class. The response set of a class C is the set of all methods that can
be invoked if a message is sent to an object of this class. This includes all
the methods of C and of other classes to which any method of C sends a
message. It is clear that even if the CBC value of a class is 1 (that is, it is
coupled with only one class), the RFC value may be quite high, indicating
that the "volume" of interaction between the two classes is very high. It
should be clear that it is likely to be harder to test classes that have higher
RFC values.

The experimental data found that most classes tend to invoke a small
number of methods of other classes. Again, classes for interface objects tend
to have higher RFC values. The data in [6] found that RFC is very significant
in predicting the fault-proneness of a class—the higher the RFC value the
larger the probability that the class is defect-prone.

Lack of Cohesion in Methods (LCOM)

This last metric in the suite of metrics proposed in [32] tries to quantify
cohesion of classes. As we have seen, along with low coupling between mod
ules, high cohesion is a highly desirable property for modularity. For classes,
cohesion captures how closely bound are the different methods of the class.
One way to quantify this is given by the LCOM metric.

Two methods of a class C can be considered "cohesive" if the set of
instance variables of C that they access have some elements in common.
That is, if / i and I2 are the set of instance variables accessed by the methods
Ml and M2, respectively, then Mi and M2 are similar ii Ii n I2 y^ 4>- Let
Q be the set of all cohesive pairs of methods, that is, all (M^, Mj) such that
li and Ij have a non-null intersection. Let P be the set of all noncohesive
pairs of methods, that is, pairs such that the intersection of sets of instance
variables they access is null. Then LCOM is defined as

LCOM - |P | - |g|,if \P\ > \Q\ 0 otherwise.

360 7. OBJECT-ORIENTED DESIGN

If there are n methods in a class C, then there are n(n — 1) pairs, and LOOM
is the number of pairs that are non cohesive minus the number of pairs that
are cohesive. The larger the number of cohesive methods, the more cohesive
the class will be, and the LOOM metric will be lower. A high LCOM value
may indicate that the methods are trying to do different things and operate
on different data entities, which may suggest that the class supports multiple
abstractions, rather than one abstraction. If this is vahdated, the class can
be partitioned into different classes. The data in [6] found little significance
of this metric in predicting the fault-proneness of a class.

In [6], the first five metrics, which were found to be significant in pre
dicting the fault-proneness of classes, were combined to predict the fault-
proneness of classes. The experiments showed that the first five metrics,
when combined (in this case the coefficients for combination were deter
mined by multivariate analysis of the fault and metric data) are very ef
fective in predicting fault-prone classes. In their experiment, out of a total
of 58 faulty classes, 48 classes were correctly predicted as fault-prone. The
prediction missed 10 classes and predicted 32 extra classes as fault-prone,
although they were not so.

7.7 Summary

In the previous chapter we studied how a software system can be designed
using functional abstraction as the basic unit. In this chapter, we looked at
how a system can be designed using objects and classes as the basic unit.
The fundamental difference in this approach from functional approaches is
that an object encapsulates state and provides some predefined operations
on that state. That is, state (or data) and operations (i.e., functions) are
considered together, whereas in the function-oriented approach the two are
kept separate.

When using an object-oriented approach, an object is the basic design
unit. For objects, during design, the class for the objects is identified. A
class represents the type for the object and defines the possible state space
for the objects of that class and the operations that can be performed on
the objects. An object is an instance of a class and has state, behavior, and
identity. Objects in a system do not exist in isolation but are related to each
other. One of the goals of design is to identify the relationship between the
objects of different classes.

Universal Modeling Language (UML) has become the de-facto standard

7.7, SUMMARY 361

for building models of object-oriented systems. UML has various types of
diagrams to model different types of properties, and allows both static struc
ture as well as dynamic behavior to be modeled. It is an extensible notation
that allows new types to be added.

For representing the static structure, the main diagram is the class dia
gram, which represents the classes in the system and relationships between
the classes. The relationship between the classes may be generalization-
specialization, which leads to class hierarchies. The relationship may be
that of an aggregation which models the "whole-part of" relationship. Or
it may be an association, which models the client-serve type of relationship
between classes.

For modeling the dynamic behavior, sequence or collaboration diagrams
(together called interaction diagrams) may be used. These diagrams rep
resent how a scenario is implemented by involving different objects. The
focus is on capturing the messages that are exchanged between objects to
implement a scenario.

There are many other diagrams that UML has proposed that can be
used to model other aspects. For example, the state diagram can be used
to model behavior of a class. Activity diagrams can model the activities
that take place in a system during some execution. For static structure, it
provides notation for specifying subsystems, packages, and components.

To ensure that the design is modular, some general properties should
be satisfied. The three properties we have discussed are cohesion, coupling,
and open-closed principle. Coupling is an inter-class concept and captures
how closely the different classes interact with each other and how much they
depend on each other. Cohesion is an intra-class concept and captures how
strongly the elements of a class are related. Open-closed principle states
that the classes should be designed in a manner that they are closed for
modification but are open for extension. A good design should have low
couphng, high cohesion, and should satisfy the open-closed principle—these
make the design more modular and easier to change.

A good modeling notation and principles to evaluate a design are the key
necessities for creating good design. Design methodologies help by providing
some guidehnes of how to create a design. We discussed the object mod
eling technique for design, which first creates a class model for the system,
and then refines it through dynamic modeling, and functional modeling.
Identifying the internal classes and optimization are the final steps in this
methodology for creating a design.

Finally, we discussed some metrics that can be used to study the com-

362 7. OBJECT-ORIENTED DESIGN

plexity of an object-oriented design. We presented one suite of metrics that
were proposed, along with some data regarding their vahdation. The metric
weighted methods per class is defined as the sum of complexities of all the
methods and gives some idea about how much effort might be needed to
develop the class. The depth of inheritance tree of a class is defined as the
maximum depth in the class hierarchy of this class, and can represent the
potential of reuse that exists for a class, and the degree of coupling between
the class and its parent classes. The number of children metric is the num
ber of immediate subclasses of a class, and it can be used to capture the
degree of reuse of a class. Coupling of a class is the number of classes whose
methods it uses or who use its methods. The response for a class metric is
the number of methods that can be invoked by sending a message to this
class. It tries to capture the strength of interconnection between classes.
Finally, the lack of cohesion metric represents the number of method pairs
whose set of access variables have nothing in common minus the number of
method pairs that have some common instance variable.

Unlike in previous chapters, we have not discussed verification methods
here. The reason is that verification methods discussed in the previous
chapters are general techniques that are not specific to function-oriented
approaches. Hence, the same general techniques can be used for object-
oriented design.

Exercises

1. What is the relationship between abstract data types and classes?

2. Why are private parts of a superclass generally not made accessible to sub
classes?

3. In C4-+, friends of a class C can access the private parts of C. For declaring
a class F a friend of C, where should it be declared—in C or in F? Why?

4. What are the different ways in which an object can access another object in
a language like C++? (Do not consider the access allowed by being a friend.)

5. What are the potential problems that can arise in software maintenance due
to different types of inheritance?

6. What is the relationship between OCA, SRS, and GOD?

7. In the word-counting example, a different functional model was used from the
one proposed in Chapter 6. Use the model given in Chapter 6 and modify
the 0 0 design.

EXERCISES 363

8. Suppose a simulator for a disk is to be written (for teaching an Operating
Systems course). Use OMT to design the simulator.

9. If an association between classes has some attributes of its own, how will you
implement it?

10. If we were to use the method described in Chapter 5 to identify error-prone
and complex modules, which of the metrics will you use and why (you may
also combine the metrics).

11. Design an experiment to validate your proposal for predicting error-prone
modules. Specify data collection and analysis.

12. Compare the 0 0 designs and the structured design of the case study to
obtain some observations for comparing the two design strategies (this can
be considered a research problem).

364 7. OBJECT-ORIENTED DESIGN

Case Studies

As with previous chapters, we end this chapter by performing the object-
oriented design of the case studies. Here we discuss the apphcation of the
design process on the case study, i.e., how the design for the case studies is
created. The final design specifications are given on the Web site. While
discussing the creation of design, we provide only the main steps to give an
idea of the design activity.

Case Study 1—Course Scheduling

We start the design activity by identifying classes of objects in the prob
lem domain and relationship between the classes. Prom the problem spec
ification, given in Chapter 3, we can clearly identify the following objects:
TimeTable, Course, Room,LectureSlot, CToBeSched (course to be sched
uled), InputFile_l , and InputFile_2. From the problem, it is clear that
TimeTable, an important object in the problem domain, is an aggregation
of many TimeTableEntry, each of which is a collection of a Course, a Room
where the course is scheduled, and a LectureSlot in which the course is
scheduled.

On looking at the description of file 1, we find that it contains a list
of rooms, courses, and time slots that is later used to check the validity of
entries in file 2. This results in the objects RoomDB, CourseDB, and SlotDB,
each of which is an aggregation of many members of Room, Course, and
Slot, respectively. Similarly, on looking at the description of file 2, we find
that it contains a TableOf CToBeSched, which is an aggregation of many
CToBeSched.

On studying the problem further and considering the scheduling con
straints imposed by the problem, it is clear that for scheduling, the courses
have to be divided into four different types—depending on whether the
course is a UG course or a PG course, and whether or not preferences are
given. In other words, we can specialize CToBeSched to produce four sub
classes: PGwithPref, UGwithPref, PGwithoutPref, and UGwithoutPref.
The classes that represent courses with preferences will contain a list of pref
erences, which is a list of LectureSlots . This is the only hierarchy that is
evident from examining the problem.

Considering the attributes of the object classes, the problem clearly spec
ifies that a Room has the attributes roomNo and capacity] a LectureSlot has
one major attribute, the slot it represents; and a Course has courseName

CASE STUDIES 365

as an attribute. A CToBeSched contains a Course and has enrollment as an
attribute.

Considering the services for the classes, we identify from the problem
specification services like scheduleAll() on TableOf CToBeSched, which sched
ules all the courses, printTablef) for the TimeTable, setentry() and getentry()
for a TimeTableEntry, and insert() and lookup() operations for the various
lists. The initial class diagram is shown in Figure 7.20.

The system here is not an interactive system; hence dynamic modehng is
rather straightforward. The normal scenario is that the inputs are given and
the outputs are produced. There are at least two different normal scenarios
possible, depending on whether there are any conflicts (requiring conflicts
and their reasons to be printed) or not (in which case only the timetable
is printed). The latter normal scenario does not reveal any new operations.
However, a natural way to model the first scenario is to have an object
Conflict Table into which different conflicts for the different time slots of
different courses are stored, and from where they are later printed. Hence,
we add this object and model it as an aggregation of Conf l ic tTableEntry,
with an operation insertEntry() to add a conflict entry in the table and an
operation printTable() to print the conflicts. Then there are a number of
exception scenarios—one for each possible error in the input. In each case,
the scenario shows that a proper error message is to be output. This requires
that operations needed on objects like Room, Course and Slot check their
formats for correctness. Hence, validation operations are added to these
objects.

The functional model for the problem was given in Chapter 6. • It shows
that from file 1, roomDB, courseDB, and slotDB need to be formed and the
entries for each of these have to be obtained from the file and validated. As
validation functions are already added, this adds the function for producing
the three lists, called huild-CRS-DBs(). Similarly, the DFD clearly shows
that on InputFile_2 a function to build the table of courses to be scheduled
is needed, leading to the adding of the operation huildCtoBeSched(). While
building this table, this operation also divides them into the four groups of
courses, as done in the DFD. The DFD shows that an operation to sched
ule the courses is needed. This operation {scheduleAll()) is already there.
Although the high-level DFD does not show, but a further refinement of
the bubble for "schedule" shows that bubbles are needed for scheduling PC
courses with preferences, UG courses with preferences, PC courses without
preferences, and UG courses without preferences (they are reflected in the
structure chart as modules). These bubbles get reflected as schedule() op-

366 7. OBJECT-ORIENTED DESIGN

InputRlel

K>-

lnputFile2

N7

TableofCtoBeSched

scheduleAII()

PGwithPref

LectureSlot

\>

Rcx)mDB

insert ()
lookup ()

CourseDB

insert ()
lookup ()

SlotDB

insert ()
lookup ()

>̂-

P i

Room

roomNo
capacity

Course

name

LectureSlot

slot

CtoBeSched

enrollment

I
\>-

UQwithPref

! I

PGwithoutPref

LectureSlot

UGwithoutPref

TimeTable

printTable ()

TimeTableEntry

setentry ()
getentry ()

\>

' Course

' Room

• LectureSlot

Figure 7.20: Initial class diagram for the case study.

CASE STUDIES 367

erations on all four subclasses—PGwithPref, UGwithPref, PGwihoutPref s,
and UGwithoutPref s. The DFD also has bubbles for printing the timetable
and conflicts. These get translated into print operations on TimeTable,
TimeTableEntry, ConflictTable, and ConflictTableEntry.

Now we come to the last steps of considering implementation concerns.
Many new issues come up here. First, we decided to have a generic tem
plate class, which can be used to implement the various DBs, as all DBs
are performing similar functions. Hence, we defined a template class Lis t .
When considering the main issue of scheduling, we notice that scheduling
UG courses with preferences, as discussed in the Chapter 6, is not straight
forward, as the system has to ensure that it does not make any PG course
without preference "unschedulable." To handle this, we take a simple ap
proach of having a data structure that will reserve slots for PG courses and
will then be used to check for the safety of an assignment while scheduling
PG courses with preferences. This adds an internal class PGReserve, with
operations like is Allotment Safe() (to check if making an allotment for UG
course is "safe"). Initialize() (to initially "mark" all possible slots where
PGwithoutPref courses can be scheduled). The structure is then used to
schedule the PG courses without preferences after the UG courses with pref
erences are scheduled, leading to the operation getSuitahleSchedule().

To implement the scheduhng operation, we decided to use the dynamic
binding capability. For each subclass, the schedule() operation that has been
defined is made to have the same signature, and a corresponding virtual
function is added in the superclass CtoBeScheduled. With this, when the
courses are to be scheduled, we can just go over all the courses that need to be
scheduled and call the schedule operation. Dynamic binding will ensure that
the appropriate schedule operation is called, depending on the type of course
(i.e., to which of the four subclasses it belongs). All schedule operations will
interact with the TimeTable for checking the conditions specified in the
requirements. Various functions are added on TimeTable for this.

Having considered the scheduling operation, we considered the major op
eration on the files. It becomes clear that to implement these operations,
various parsing functions are needed on the two files. These functions are
then added. As these operations are only needed to implement the exter
nally visible operations on the class, they are defined as private operations.
Considering the public operations on these files reinforce the need for in
sert () and lookup() operations in the different DBs, these operations require
operations to set the attributes of the independent object of which they are
an aggregation. Hence, these operations are added. In a similar manner,

368 7. OBJECT-ORIENTED DESIGN

while considering implementation issues various other operations on the dif
ferent object classes were revealed. Various other operations are revealed
when considering implementation of other operations. The final class dia
gram after the design is given in the design document available from the
Web site.

As we can see, the class diagram, even for this relatively small system, is
quite complex and not easily manageable. Furthermore, it is not practical to
properly capture the parameters of the various operations in object diagrams.
The types of the various attributes is also frequently not shown to keep the
diagram compact. Similarly, all associations do not get reflected. Hence, for
specifying the design precisely, this class diagram is translated to a precise
specification of the classes. The final design specifications are also given in
the design document available from the Web site.

Case Study 2 — P I M S

The requirements for this case study have been given before. After reviewing
the use cases, the following classes clearly emerge.

• Investment

• Portfolio

• Security

• Transaction

• GUI

• NetLoader

• Current Value System

• Alerts

• SecurityManager

• DataRepository

The relationship between them is relatively straightforward. The class
diagram containing some of the classes is shown in Figure 7.21. Though
this initial class structure was evolved during modeling, later the subtypes

CASE STUDIES 369

Investment

Portfolio

Security

Transaction

Bank Deposit
1

Shares

Debit Credit

Figure 7.21: Class diagram for PIMS

of transaction were eliminated as they provided little useful value. Subtypes
of security type were also eliminated.

There are many use cases specified in the SRS for this system. After the
initial modeling of these classes and their methods, sequence diagrams for
some of the scenarios of some of the use cases are drawn. Prom this exercise,
the specifications of the classes is refined. Some of the sequence diagrams
and the specifications of the classes are given in the design document which
is available from the Web site.

8

Detailed Design

In previous chapters we discussed two different approaches for system design.
In system design we concentrate on the modules in a system and how they
interact with each other. Once a module is precisely specified, the internal
logic that will implement the given specifications can be decided, and is the
focus of this chapter. In this chapter we discuss methods for developing and
specifying the detailed design of a module. We also discuss the metrics that
can be extracted from a detailed design.

8.1 Detailed Design and PDL

Most design techniques, like structured design, identify the major modules
and the major data flow among them. The methods used to specify the
system design typically focus on the external interfaces of the modules and
cannot be extended to specify the internals. Process design language (PDL)
is one way in which the design can be communicated precisely and completely
to whatever degree of detail desired by the designer. That is, it can be used
to specify the system design and to extend it to include the logic design.
PDL is particularly useful when using top-down refinement techniques to
design a system or module.

8.1.1 PDL

One way to communicate a design is to specify it in a natural language, like
English. This approach often leads to misunderstanding, and such imprecise
communication is not particularly useful when converting the design into
code. The other extreme is to communicate it precisely in a formal language,

372 8. DETAILED DESIGN

minmaxCinfile)

ARRAY a

DO UNTIL end of input

READ an item into a

ENDDO

max, min := first item of a

DO FOR each item in a

IF max < item THEN set max to item

IF min > item THEN set min to item
ENDDO

END

Figure 8.1: PDL description of the minmax program.

like a programming language. Such representations often have great detail,
which is necessary for implementation but not important for communicating
the design. These details are often a hindrance to easy communication of the
basic design. Ideally we would like to express the design in a language that
is as precise and unambiguous as possible without having too much detail
and that can be easily converted into an implementation. This is what PDL
attempts to do.

PDL has an overall outer syntax of a structured programming language
and has a vocabulary of a natural language (English in our case). It can be
thought of as "structured English." Because the structure of a design ex
pressed in PDL is formal, using the formal language constructs, some amount
of automated processing can be done on such designs. As an example, con
sider the problem of finding the minimum and maximum of a set of numbers
in a file and outputting these numbers in PDL as shown in Figure 8.1.

Notice that in the PDL program we have the entire logic of the procedure,
but little about the details of implementation in a particular language. To
implement this in a language, each of the PDL statements will have to be
converted into programming language statements. Let us consider another
example. Text is given in a file with one blank between two words. It is to
be formatted into fines of 80 characters, except the last fine. A word is not
to be divided into two fines, and the numbers of blanks needed to fill the line
are added at the end, with no more than two blanks between words. The
PDL program is shown in Figure 8.2. Notice the use of procedure to express

8.1. DETAILED DESIGN AND PDL 373

Initialize buf to empty

DO FOREVER

DO UNTIL (#chars in buf > 80 & word boundary is reached)

OR (end-of-text reached)

read chars in buf

ENDDO

IF #chars > 80 THEN

remove last word from buf

PRINT-WITH-FILL (buf)

set buf to last word ELSEIF #chars = 80 THEN

print (Buf)

set buf to empty

ELSE EXIT the loop

ENDDO

PROCEDURE PRINT-WITH-FILL (buf)

Determine #words and #character in buf

#of blanks needed = 80 - #character

DO FOR each word in the buf

print (word)

if #printed words > (#word - #of blanks needed) THEN

print (two blanks)

ELSE print (single blank)

ENDDO

Figure 8.2: PDL description of text-formatter.

the design.
With PDL, a design can be expressed in whatever level of detail that is

suitable for the problem. One way to use PDL is to first generate a rough
outline of the entire solution at a given level of detail. When the design is
agreed on at this level, more detail can be added. This allows a successive
refinement approach, and can save considerable cost by detecting the design
errors early during the design phase. It also aids design verification by
phases, which helps in developing error-free designs. The structured outer
syntax of PDL also encourages the use of structured language constructs
while implementing the design.

The basic constructs of PDL are similar to those of a structured language.
The first is the IF construct. It is similar to the if-then-else construct of Pas-

374 8. DETAILED DESIGN

cal. However, the conditions and the statements to be executed need not
be stated in a formal language. For a general selection, there is a CASE
statement. Some examples of CASE statements are:

CASE OF transaction type
CASE OF operator type

The DO construct is used to indicate repetition. The construct is indicated
by:

DO iteration criteria
one or more statements

ENDDO

The iteration criteria can be chosen to suit the problem, and unlike a formal
programming language, they need not be formally stated. Examples of valid
uses are:

DO WHILE there are characters in input file
DO UNTIL the end of file is reached
DO FOR each item in the list EXCEPT when item is zero

A variety of data structures can be defined and used in PDL such as lists,
tables, scalar, and integers. Variations of PDL, along with some automated
support, are used extensively for communicating designs.

8.1.2 Logic/Algorithm Design

The basic goal in detailed design is to specify the logic for the diff'erent mod
ules that have been specified during system design. Specifying the logic will
require developing an algorithm that will implement the given specifications.
Here we consider some principles for designing algorithms or logic that will
implement the given specifications.

The term algorithm is quite general and is applicable to a wide variety
of areas. Essentially, an algorithm is a sequence of steps that need to be
performed to solve a given problem. The problem need not be a program
ming problem. We can, for example, design algorithms for such activities as

8.1. DETAILED DESIGN AND PDL 375

cooking dishes (the recipes are nothing but algorithms) and building a table.
In the software development Hfe cycle we are only interested in algorithms
related to software. For this, we define an algorithm to be an unambiguous
procedure for solving a problem [74], A procedure is a finite sequence of
well-defined steps or operations, each of which requires a finite amount of
memory and time to complete. In this definition we assume that termination
is an essential property of procedures. From now on we will use procedures,
algorithms, and logic interchangeably.

There are a number of steps that one has to perform while developing
an algorithm [74]. The starting step in the design of algorithms is statement
of the problem. The problem for which an algorithm is being devised has
to be precisely and clearly stated and properly understood by the person
responsible for designing the algorithm. For detailed design, the problem
statement comes from the system design. That is, the problem statement is
already available when the detailed design of a module commences. The next
step is development of a mathematical model for the problem. In modeling,
one has to select the mathematical structures that are best suited for the
problem. It can help to look at other similar problems that have been solved.
In most cases, models are constructed by taking models of similar problems
and modifying the model to suit the current problem. The next step is the
design of the algorithm. During this step the data structure and program
structure are decided. Once the algorithm is designed, its correctness should
be verified.

No clear procedure can be given for designing algorithms. Having such
a procedure amounts to automating the problem of algorithm development,
which is not possible with the current methods. However, some heuristics or
methods can be provided to help the designer design algorithms for modules.
The most common method for designing algorithms or the logic for a module
is to use the stepwise refinement technique [148].

The stepwise refinement technique breaks the logic design problem into a
series of steps, so that the development can be done gradually. The process
starts by converting the specifications of the module into an abstract descrip
tion of an algorithm containing a few abstract statements. In each step, one
or several statements in the algorithm developed so far are decomposed into
more detailed instructions. The successive refinement terminates when all
instructions are sufficiently precise that they can easily be converted into
programming language statements. During refinement, both data and in
structions have to be refined. A guideline for refinement is that in each step
the amount of decomposition should be such that it can be easily handled

376 8. DETAILED DESIGN

int count (file)
FILE file;
word_list wl;
{

read file into wl
sort (wl);
count = different_words (wl);
printf (count);

}

Figure 8.3: Strategy for the first step in stepwise refinement.

and that represents one or two design decisions.
The stepwise refinement technique is a top-down method for developing

detailed design. We have already seen top-down methods for developing
system designs. To perform stepwise refinement, a language is needed to
express the logic of a module at different levels of detail, starting from the
specifications of the module. We need a language that has enough fiexibil-
ity to accommodate different levels of precision. Programming languages
typically are not suitable as they do not have this fiexibility. For this pur
pose, PDL is very suitable. Its formal outer syntax ensures that the design
being developed is a "computer algorithm" whose statements can later be
converted into statements of a programming language. Its flexible natural
language-based inner syntax allows statements to be expressed with varying
degrees of precision and aids the refinement process.

An Example: Let us again consider the problem of counting different
words in a text file. Suppose that in the high-level structure chart of a
large text processing system, a COUNT module is specified whose job is to
determine the count of different words. During detailed design we have to
determine the logic of this module so that the specifications are met. We
will use the stepwise refinement method for this. For specification we will
use PDL, adapted to C-style syntax. A simple strategy for the first step is
shown in Figure 8.3.

This strategy is simple and easy to understand. This is the strategy
that we proposed in the data flow graph ear her. The "primitive" operations
used in this strategy are very high-level and need to be further refined.
Specifically, there are three operations that need refinement. These are (1)
read file into the word list, whose purpose is to read all the words from the

8.1. DETAILED DESIGN AND PDL 377

read_from_file (file, wl)

FILE file;

word_list wl;

{

initialize wl to empty;

while not end-of-file {

get_a_word from file

add word to wl

>

Figure 8.4: Refinement of the reading operation.

file and create a word fist, (2) sort(wl), which sorts the word fist in ascending
order, and (3) count different words from a sorted word fist. So far, only one
data structure is defined: the word list. As refinement proceeds, more data
structures might be needed.

In the next refinement step, we should select one of the three operations
to be refined and further elaborate it. In this step we will refine the reading
procedure. One strategy for implementing the read module is to read words
and add them to the word list. This is shown in Figure 8.4.

This is a straightforward strategy, simple enough to be easily handled
in one refinement step. Another strategy could be to read large amounts of
data from the file in a buffer and form the word hst from this buffer. This
might lead to a more efficient implementation. For the next refinement step
we select the counting function. A strategy for implementing this function
is shown in Figure 8.5.

Similarly, we can refine the sort function. Once these refinements are
done, we have a design that is sufficiently detailed and needs no further re
finement. For more complex problems many successive refinements might
be needed for a single operation. Design for such problems can proceed in
two ways—depth first or breadth first. In the depth first approach, when an
operation is being refined, its refinement is completely finished (which might
require many levels of refinement) before refinement of other operations be
gins. In the breadth first approach, all operations needing refinement are
refined once. Then all the operations specified in this refinement are refined
once. This is done until no refinement is needed. A combination of the two
approaches could also be followed.

It is worth comparing the structure of the PDL programs produced by

378 8. DETAILED DESIGN

int different_words (wl)

word_list wl;

{

word last, cur;

int cnt;

last = first word in wl

cnt = 1;

while not end of list {

cur = next word from wl

if (cur <> last) {

cnt = cnt + 1;

last = cur;

}
}
return (cnt)

Figure 8.5: Refinement of the function different .words.

this method as compared to the structure produced using the structured de
sign methodology. The two structures are not the same. The basic difference
is that in stepwise refinement, the function sort is subordinate to the main
module, while in the design produced by using structured design method
ology, it is a subordinate module to the input module. This is not just a
minor point; it points to a difference in approaches. In stepwise refinement,
in each refinement step we specify the operations that are needed (as we do
while drawing the data flow diagram). In structured design, the focus is on
partitioning the problem into input, output, and transform modules, which
usually results in a different structure.

8.1.3 State Modeling of Classes

For object-oriented design, the approach just discussed for obtaining the
detailed design may not be sufficient, as it focuses on specifying the logic or
the algorithm for the modules identified in the (function-oriented) high-level
design. But a class is not a functional abstraction and cannot be viewed as
an algorithm. A method of a class can be viewed as a functional module,
and the methods can be used to specify the logic for the methods.

8.1. DETAILED DESIGN AND PDL 379

The technique for getting a more detailed understanding of the class as
a whole, without talking about the logic of different methods, has to be dif
ferent from the refinement-based approach. An object of a class has some
state and many operations on it. To better understand a class, the relation
ship between the state and various operations and the effect of interaction of
various operations have to be understood. This can be viewed as one of the
objectives of the detailed design activity for object-oriented development.
Once the overall class is better understood, the algorithms for its various
methods can be developed. Note that the axiomatic specification approach
for a class, discussed earlier in this chapter, also takes this view. Instead of
specifying the functionality of each operation, it specifies, through axioms,
the interaction between different operations.

A method to understand the behavior of a class is to view it as a finite
state automata (FSA). An FSA consists of states and transitions between
states, which take place when some events occur. When modehng an object,
the state is the value of its attributes, and an event is the performing of an
operation on the object. A state diagram relates events and states by showing
how the state changes when an event is performed. A state diagram for an
object will generally have an initial state, from which all states in the FSA
are reachable (i.e., there is a path from the initial state to all other states).

A state diagram for an object does not represent all the actual states of
the object, as there are many possible states. A state diagram attempts to
represent only the logical states of the object. A logical state of an object
is a combination of all those states from which the behavior of the object is
similar for all possible events. Two logical states will have different behavior
for at least one event. For example, for an object that represents a stack,
all states that represent a stack of size more than 0 and less than some
defined maximum are similar as the behavior of all operations defined on
the stack will be similar in all such states (e.g., push will add an element,
pop will remove one, etc.). However, the state representing an empty stack
is different as the behavior of top and pop operations are different now (an
error message may be returned). Similarly, the state representing a full stack
is different. The state model for this bounded size stack is shown in Figure
8.6.

The finite state modeling of objects is an aid to understand the effect of
various operations defined on the class on the state of the object. A good un
derstanding of this can aid in developing the logic for each of the operations.
To develop the logic of operations, regular approaches for algorithm develop
ment can be used. The model can also be used to validate if the logic for an

380 8. DETAILED DESIGN

pop/err-msg

Figure 8.6: FSA model of a stack.

operation is correct. As we have seen, for a class, typically the input-output
specification of the operations is not provided. Hence, the FSA model can
be used as a reference for validating the logic of the different methods. As
we will see in Chapter 10, a state model can be used for generating test cases
for validation.

State modeling of classes has also been proposed as a technique for anal
ysis [133). However, we beheve that it has hmited use during analysis, and
its role is more appropriate during detailed design when the detailed working
of a class needs to be understood. Even here, the scope of this modeling is
limited. It is likely to be more of use if the interaction between the methods
through the state is heavy and there are many states in which the methods
need to behave differently.

8.2 Verification

There are a few techniques available to verify that the detailed design is
consistent with the system design. The focus of verification in the detailed
design phase is on showing that the detailed design meets the specifications
laid down in the system design. Validating that the system as designed is
consistent with the requirements of the system is not stressed during detailed
design. The three verification methods we consider are design walkthroughs,
critical design review, and consistency checkers.

8.2.1 Des ign Walkthroughs

A design walkthrough is a manual method of verification. The definition and
use of walkthroughs change from organization to organization. Here we de-

8.2. VERIFICATION 381

scribe one walkthrough model. A design walkthrough is done in an informal
meeting called by the designer or the leader of the designer's group. The
walkthrough group is usually small and contains, along with the designer,
the group leader and/or another designer of the group. The designer might
just get together with a colleague for the walkthrough or the group leader
might require the designer to have the walkthrough with him.

In a walkthrough the designer explains the logic step by step, and the
members of the group ask questions, point out possible errors or seek clar
ification. A beneficial side effect of walkthroughs is that in the process of
articulating and explaining the design in detail, the designer himself can
uncover some of the errors.

Walkthroughs are essentially a form of peer review. Due to its informal
nature, they are usually not as effective as the design review.

8.2.2 Critical Des ign Rev iew

The purpose of critical design review is to ensure that the detailed design sat
isfies the specifications laid down during system design. The critical design
review process is same as the inspections process in which a group of people
get together to discuss the design with the aim of revealing design errors
or undesirable properties. The review group includes, besides the author of
the detailed design, a member of the system design team, the programmer
responsible for ultimately coding the module(s) under review, and an inde
pendent software quahty engineer. While doing design review it should be
kept in mind that the aim is to uncover design errors, not try to fix them.
Fixing is done later.

The use of checklists, as with other reviews, is considered important for
the success of the review. The checklist is a means of focusing the discussion
or the "search" of errors. Checklists can be used by each member during
private study of the design and during the review meeting. For best results,
the checklist should be tailored to the project at hand, to uncover project-
specific errors. Here we list a few general items that can be used to construct
a checklist for a design review [52].

A Sample Checklist

• Does each of the modules in the system design exist in detailed design?

• Are there analyses to demonstrate that the performance requirements
can be met?

382 8. DETAILED DESIGN

• Are all the assumptions explicitly stated, and are they acceptable?

• Are all relevant aspects of system design reflected in detailed design?

• Have the exceptional conditions been handled?

• Are all the data formats consistent with the system design?

• Is the design structured, and does it conform to local standards?

• Are the sizes of data structures estimated? Are provisions made to
guard against overflow?

• Is each statement specified in natural language easily codable?

• Are the loop termination conditions properly specified?

• Are the conditions in the loops OK?

• Are the conditions in the if statements correct?

• Is the nesting proper?

• Is the module logic too complex?

• Are the modules highly cohesive?

8.2.3 Consis tency Checkers

Design reviews and walkthroughs are manual processes; the people involved
in the review and walkthrough determine the errors in the design. If the
design is specified in PDL or some other formally defined design language,
it is possible to detect some design defects by using consistency checkers.

Consistency checkers are essentially compilers that take as input the de
sign specified in a design language (PDL in our case). Clearly, they cannot
produce executable code because the inner syntax of PDL allows natural
language and many activities are specified in the natural language. How
ever, the module interface specifications (which belong to outer syntax) are
specified formally. A consistency checker can ensure that any modules in
voked or used by a given module actually exist in the design and that the
interface used by the caller is consistent with the interface definition of the
called module. It can also check if the used global data items are indeed
defined globally in the design.

8.3. METRICS 383

Depending on the precision and syntax of the design language, consis
tency checkers can produce other information as well. In addition, these
tools can be used to compute the complexity of modules and other metrics,
because these metrics are based on alternate and loop constructs, which
have a formal syntax in PDL. The trade-off here is that the more formal
the design language, the more checking can be done during design, but the
cost is that the design language becomes less flexible and tends towards a
programming language.

8.3 Metrics

After the detailed design the logic of the system and the data structures
are largely specified. Only the implementation-oriented details, which are
often specific to the programming language used, need to be further defined.
Hence, many of the metrics that are traditionally associated with code can be
used effectively after detailed design. During detailed design ah the metrics
covered during the system design are applicable and useful. With the logic
of modules available after detailed design, it is meaningful to talk about the
complexity of a module. Traditionally, complexity metrics are applied to
code, but they can easily be applied to detailed design as well. Here we
describe some metrics applicable to detailed design.

8.3.1 Cyclomat ic Complex i ty

Based on the capability of the human mind and the experience of people,
it is generally recognized that conditions and control statements add com
plexity to a program. Given two programs with the same size, the program
with the larger number of decision statements is likely to be more complex.
The simplest measure of complexity, then, is the number of constructs that
represent branches in the control flow of the program, like i f then e l s e ,
while do, repeat unt i l , and goto statements.

A more refined measure is the cyclomatic complexity measure proposed
by McCabe, which is a graph-theoretic-based concept. For a graph G with
n nodes, e edges, and p connected components, the cyclomatic number V(G)
is defined as

V{G) = e-n + p.

To use this to define the cyclomatic complexity of a module, the control flow
graph G of the module is first drawn. To construct a control flow graph of a

384 8. DETAILED DESIGN

Figure 8.7: Flow graph of the example.

program module, break the module into blocks delimited by statements that
affect the control flow, like if, while, repeat , and goto. These blocks
form the nodes of the graph. If the control from a block i can branch to a
block j , then draw an arc from node i to node j in the graph. The control
flow of a program can be constructed mechanically. As an example, consider
the C-like function for bubble sorting, given next. The control flow graph
for this is given in Figure 8.7.

0.
1.
2.
3.
4.
5.
6.
7.
8.
9.

i = 1;
while (i <= n) {

J = i ;
while (j <= i) {

if (A[i] < A[j])
swap (A [i] , A[j]) ;

j = j + 1; >
i = i + 1; }

The graph of a module has an entry node and an exit node, corresponding

8.3. METRICS 385

to the first and last blocks of statements (or we can create artificial nodes for
simplicity, as in the example). In such graphs there will be a path from the
entry node to any node and a path from any node to the exit node (assuming
the program has no anomalies like unreachable code). For such a graph, the
cyclomatic number can be 0 if the code is a linear sequence of statements
without any control statement. If we draw an arc from the exit node to the
entry node, the graph will be strongly connected because there is a path
between any two nodes. The cyclomatic number of a graph for any program
will then be nonzero, and it is desirable to have a nonzero complexity for a
simple program without any conditions (after all, there is some complexity
in such a program). Hence, for computing the cyclomatic complexity of a
program, an arc is added from the exit node to the start node, which makes
it a strongly connected graph. For a module, the cyclomatic complexity is
defined to be the cyclomatic number of such a graph for the module.

As it turns out the cyclomatic complexity of a module (or cyclomatic
number of its graph) is equal to the maximum number of linearly indepen
dent circuits in the graph. A set of circuits is linearly independent if no
circuit is totally contained in another circuit or is a combination of other
circuits. So, for calculating the cyclomatic number of a module, we can
draw the graph, make it connected by drawing an arc from the exit node to
the entry node, and then either count the number of circuits or compute it
by counting the number of edges and nodes. In the graph shown in Figure
8.7, the cyclomatic complexity is

F (G ') - 1 0 - 7 + 1 - 4 .

The independent circuits are:

ckt 1: b c e b
ckt 2: b c d e b
ckt 3: a b f a
ckt 4: a g a

It can also be shown that the cyclomatic complexity of a module is the
number of decisions in the module plus one, where a decision is effectively
any conditional statement in the module [41]. Hence, we can also compute
the cyclomatic complexity simply by counting the number of decisions in
the module. For this example, as we can see, we get the same cyclomatic
complexity for the module if we add 1 to the number of decisions in the

386 8. DETAILED DESIGN

module. (The module has three decisions: two in the two while statements
and one in the if statement.)

The cyclomatic number is one quantitative measure of module complex
ity. It can be extended to compute the complexity of the whole program,
though it is more suitable at the module level. McCabe proposed that the
cyclomatic complexity of modules should, in general, be kept below 10. The
cyclomatic number can also be used as a number of paths that should be
tested during testing. Cyclomatic complexity is one of the most widely used
complexity measures. Experiments indicate that the cyclomatic complexity
is highly correlated to the size of the module in LOG (after all, the more
lines of code the greater the number of decisions). It has also been found to
be correlated to the number of faults found in modules.

8.3.2 Data Bindings

We have seen that coupling and cohesion are important concepts for evaluat
ing a design. However, to be truly effective, metrics are needed to "measure"
the coupling between modules or the cohesion of a module. During system
design, we tried to quantify coupling based on information flow between
modules. Now that the logic of modules is also available, we can come up
with metrics that also consider the logic. One metric that attempts to cap
ture the module-level concept of coupling is data binding. Data bindings are
measures that capture the data interaction across portions of a software sys
tem [90]. In other words, data bindings try to specify how strongly coupled
different modules in a software system are. Different types of data bindings
are possible [90].

A potential data binding is defined as a triplet (p, x^ q), where p and q are
modules and x is a variable within the static scope of both p and q. This
reflects the possibility that the modules p and q may communicate with
each other through the shared variable x. This binding does not consider
the internals of p and q to determine if the variable x is actually accessed in
any of the modules. This binding is based on data declaration.

A used data binding is a potential binding where both p and q use the
variable x for reference or assignment. This is harder to compute than
potential data binding and requires more information about the internal
logic of a module.

An actual data binding is a used data binding with the additional re
striction that the module p assigns a value to x and q references x. It is the
hardest to compute, and it signifies the situation where information may flow

8.3. METRICS 387

from the module p to module q through the shared variable x. Computation
of actual data binding requires detailed logic descriptions of modules p and

q-
All of these data bindings attempt to represent the strength of intercon

nections among modules. The greater the number of bindings between two
modules, the higher the interconnection between these modules. For a par
ticular type of binding, a matrix can be computed that contains the number
of bindings between different modules. This matrix can be used for further
statistical analysis to determine the interconnection strength of the system
or a subsystem.

8.3.3 Cohesion Metric

Here we discuss one attempt at quantifying the cohesion of a module [54].
To compute the value of the cohesion metric for a module M, a flow graph
G is constructed for M. Each vertex in G is an executable statement in
M. For each node, we also record the variable referenced in the statement.
An arc exists from a node Si to another node Sj if the statement Sj can
immediately follow the statement Si in some execution of the module. In
addition to these, we add an initial node I from where the execution of the
module starts, and a final node T, at which the execution of the module
terminates. For termination statements (e.g., return, exit) we draw an arc
from the statement to T.

From G a reduced flow graph is constructed by deleting those nodes that
do not refer to any variable (such as unconstrained gotos). All the arcs
coming in the deleted node are redirected to the node that is the successor
of the deleted node (such nodes will have only one successor).

Assume that the variables are sequentially numbered as 1, 2, ..., n. For
a variable i, Ri is the reference set, which is the set of all the executable
statements that refer to the variable i. The union of all the RiS is the set of
all the nodes in the graph (minus the node for T, which is a nonexecuting
node). Let | G \ refer to the (number of nodes - 1) for the reduced graph.

The cohesion of a set of statements S is defined as

I S I dim{S)
^ ^ \G\dim{G)

where dim{) is the dimension of a set of statements, which is the maximum
number of linearly independent paths from I to T that pass through any
element of S. Thus, the dimension of a set of statements S is the count of all

388 8. DETAILED DESIGN

the independent paths from the start statement to the end statement of a
module that includes at least one statement from the set. If S is the set of
all the statements in the module (if S is the same as G), then dim S is the
same as the cyclomatic complexity of the module.

The cohesion of a module is defined as the average cohesion of the ref
erence sets of the different statements or nodes in (reduced) G. Hence the
cohesion of the module C(M) is

i—n

C{M) = ^ .
n

Essentially, this metric is trying to measure cohesion of a module by seeing
how many independent paths of the module go through the different state
ments. The idea is that if a module has high cohesion, most of the variables
will be used by statements in most paths. Hence for a high-cohesion module,
the cohesion of the reference set of each variable will be high. The highest
cohesion number achievable by this is when the dimension of all the reference
sets is all the independent paths, thus the same as the cyclomatic complex
ity. In other words, the highest cohesion is when all the independent paths
use all the variables of the module.

8.4 Summary

Detailed design starts after the module specifications are available, as part
of the output of the system design. The goal of this activity is to develop
the internal logic of the modules.

To express the internal logic of a module, we need a design language. The
design language should be such that it is flexible enough to be easily usable,
yet precise enough to be easily convertible into code. We have described
a language, process design language (PDL), that satisfies the requirements.
PDL can be used to express the detailed design of systems. It has a formal
outer syntax and a flexible inner syntax and vocabulary, giving it a balance
between formalism and ease of expression. Stepwise refinement and other
algorithm development techniques can be used along with PDL to design as
well as specify the logic.

For objects, state modehng can be used to understand the behavior of an
object, as functional means are not sufficient. With state modehng, the state
of an object is captured with methods causing transitions between states.

8.4. SUMMARY 389

Like any phase, we need some metrics to evaluate the effectiveness of
the phase and to evaluate the output of that phase. We considered a met
ric called cyclomatic complexity for evaluating the complexity of modules
from their detailed design. This metric can be also used to assess the overall
complexity of the system, or it can be used to identify the most complex
modules, which are more likely to be "error-prone." In a module the cy
clomatic complexity equals the number of decisions in the module plus one.
We also discussed the data binding metric and a cohesion metric.

A few techniques exist for verifying the detailed design. The most com
mon are design walkthroughs and critical design review. Automated tools
can be used for some consistency checking if a well-defined design language,
like PDL, is used. Even with automated consistency checkers, reviews and
walkthroughs remain the most important methods for verifying the detailed
design. We have described the review process and given a sample checklist
that can be used in the review.

The detailed design activity is is frequently not performed formally be
cause a detailed design description of the modules does not always adds much
value, and experienced programmers feel that they can go directly to cod
ing. Furthermore, the detailed design document has little archival value as
it is almost impossible to keep the detailed design document consistent with
the code. Hence the primary use of the detailed design phase is to help the
programmer who can specify the logic and get it verified before writing the
code. Due to this, developing the detailed design is of value mostly for the
more complex and important modules. Even for these, the detailed design is
often done informally by the programmer as part of the personal process of
developing code. Due to these reasons, we will not give the detailed design
of the case study.

Exercises

1. The detailed design of a system can involve many persons, each developing
the detailed design of a set of modules. Draw a process diagram for this
method of detailed design development.

2. Extend the PDL with constructs to support classes. Then write the detailed
design for classes String, Btree, SymbolTable.

3. Do a state modeling of these classes: String, Btree, and SymbolTable.

4. What features would you like to add to PDL if the target source language
supports data abstraction?

390 8. DETAILED DESIGN

5. If cyclomatic complexity of a module is much higher than the suggested limit
of 10, what will you do? Give reasons and guidelines for whatever you pro
pose.

6. Design an experiment to study the relationship between the cyclomatic com
plexity and size in LOG of modules. Gollect a set of programs and then per
form the experiment and determine the nature of the relationship between
them for these programs.

7. Design an experiment to study the relation between cyclomatic complexity
and "error-proneness" of modules. If you can collect error data, execute the
experiment on the data you can collect.

9

Coding

The goal of the coding or programming activity is to implement the design
in the best possible manner. The coding activity affects both testing and
maintenance profoundly. As we saw earlier, the time spent in coding is a
small percentage of the total software cost, while testing and maintenance
consume the major percentage. Thus, it should be clear that the goal during
coding should not be to reduce the implementation cost, but the goal should
be to reduce the cost of later phases, even if it means that the cost of this
phase has to increase. In other words, the goal during this phase is not to
simplify the job of the programmer. Rather, the goal should be to simplify
the job of the tester and the maintainer.

This distinction is important, as programmers are often concerned about
how to finish their job quickly, without keeping the later phases in mind.
During coding, it should be kept in mind that the programs should not be
constructed so that they are easy to write, but so that they are easy to read
and understand. A program is read a lot more often and by a lot more
people during the later phases.

There are many different criteria for judging a program, including read
ability, size of the program, execution time, and required memory. Having
readability and understandability as a clear objective of the coding activity
can itself help in producing software that is more maintainable. A famous
experiment by Weinberg showed that if programmers are specified a clear ob
jective for the program, they usually satisfy it [143]. In the experiment, five
different teams were given the same problem for which they had to develop
programs. However, each of the teams was specified a different objective,
which it had to satisfy. The different objectives given were: minimize the

392 9. CODING

Minimize effort to complete (01)
Minimize number of statements (02)
Minimize memory required (03)
Maximize program clarity (04)
Maximize output clarity (05)

Resulting Rank (1 = Best)
0 1 02 0 3 04 05
1 4 4 5 3

2-3 1 2 3 5
5 2 1 4 4
4 3 3 2 2

2-3 5 5 1 1

Figure 9.1: The Weinberg experiment.

effort required to complete the program, minimize the number of statements,
minimize the memory required, maximize the program clarity, and maximize
the output clarity. It was found that in most cases each team did the best
for the objective that was specified to it. The rank of the different teams for
the different objectives is shown in Figure 9.1.

The experiment clearly shows that if objectives are clear, programmers
tend to achieve that objective. Hence, if readabihty is an objective of the
coding activity, then it is likely that programmers will develop easily under
standable programs. For our purposes, ease of understanding and modifica
tion are the basic goals of the programming activity.

In this chapter we will first discuss some programming practices and
guidehnes, in which we will also discuss some common coding errors to make
students aware of them. Then we discuss some processes that are followed
while coding. Refactoring is discussed next, which is done during coding but
is a distinct activity. We then discuss some verification methods, followed
by discussion of some metrics. We end the chapter with a discussion of the
implementation of the case studies.

9.1 Programming Principles and Guidelines

The main task before a programmer is to write quality code with few bugs
in it. The additional constraint is to write code quickly. Writing sohd code
is a skill that can only be acquired by practice. However, based on expe
rience, some general rules and guidelines can be given for the programmer.
Good programming (producing correct and simple programs) is a practice
independent of the target programming language, although well-structured
programming languages make the programmer's job simpler. In this section,
we will discuss some concepts and practices that can help a programmer write
higher quality code. As a key task of a programmer is to avoid errors in the

9.1. PROGRAMMING PRINCIPLES AND GUIDELINES 393

programs, we first discuss some common coding errors.

9.1.1 C o m m o n Coding Errors

Software errors (we will use the terms errors, defects and bugs interchange
ably in our discussion here; precise definitions are given in the next chapter)
are a reality that all programmers have to deal with. Much of effort in de
veloping software goes in identifying and removing bugs. There are various
practices that can reduce the occurrence of bugs, but regardless of the tools
or methods we use, bugs are going to occur in programs. Though errors can
occur in a wide variety of ways, some types of errors are found more com
monly. Here we give a list of some of the commonly occurring bugs. The
main purpose of discussing them is to educate programmers about these
mistakes so that they can avoid them. The compilation is based on vari
ous published articles on the topic (e.g., [28, 87, 57, 55, 150]), and a more
detailed compilation is available in the TR [141].

Memory Leaks

A memory leak is a situation where the memory is allocated to the program
which is not freed subsequently. This error is a common source of software
failures which occurs frequently in the languages which do not have auto
matic garbage collection (like C, C++) . They have little impact in short
programs but can have catastrophic effect on long running systems. A soft
ware system with memory leaks keeps consuming memory, till at some point
of time the program may come to an exceptional halt because of the lack of
free memory. An example of this error is:

char* f00(int s)
{

char *output;
if (s>0)

output=(char*) malloc (size);
if (s==l)

return NULL; /* if s==l then mem leaked */
return(output);

394 9. CODING

Freeing an Already Freed Resource

In general, in programs, resources are first allocated and then freed. For
example, memory is first allocated and then deallocated. This error occurs
when the programmer tries to free the already freed resource. The impact
of this common error can be catastrophic. An example of this error is:

main ()
{

char *str;
str = (char *)malloc (10);
if (global==0)

free(str) ;
f r e e (s t r) ; / * s t r i s a l r e a d y f r e e d

}

The impact of this error can be more severe if we have some malloc state
ment between the two free statements—there is a chance that the first freed
location is now allocated to the new variable and the subsequent free will
deallocate it!

NULL Dereferencing

This error occurs when we try to access the contents of a location that points
to NULL. This is a commonly occurring error which can bring a software
system down. It is also difficult to detect as it the NULL dereferencing may
occur only in some paths and only under certain situations. Often improper
initialization in the different paths leads to the NULL reference statement.
It can also be caused because of aliases—for example, two variables refer to
the same object, and one is freed and an attempt is made to dereference the
second. This code segment shows two instances of NULL dereference.

char *ch=NULL;
if (x>0)
{

ch='c ' ;
>
printf ("\yoC" , *ch); /* ch may be NULL
*ch=malloc(size);
ch = 'c'; /* ch will be NULL if malloc returns NULL

9.1. PROGRAMMING PRINCIPLES AND GUIDELINES 395

Similar to NULL dereference is the error of accessing uninitialized memory.
This often occurs if data is initialized in most cases, but some cases do not

get covered, they were not expected. An example of this error is:

switchC i)
{

case 0: s=OBJECT_l; b reak;
case 1: s=0BJECT_2;break;

}
r e t u r n (s) ; /* s not i n i t i a l i z e d for va lues

o ther than 0 or 1 */

Lack of Unique Addresses

Aliasing creates many problems, and among them is violation of unique
addresses when we expect different addresses. For example in the string
concatenation function, we expect source and destination addresses to be
different. If this is not the case, as is the situation in the code segment
below, it can lead to runtime errors.

strcat (src ,destn) ;
/* In above function, if src is aliased to destn,
* then we may get a runtime error */

Synchronization Errors

In a parallel program, where there are multiple threads possibly accessing
some common resources, then synchronization errors are possible [43, 55].
These errors are very difficult to find as they don't manifest easily. But when
they do manifest, they can cause serious damage to the system. There are
different categories of synchronization errors, some of which are:

1. Deadlocks

2. Race conditions

3. Inconsistent synchronization

Deadlock is a situation in which one or more threads mutually lock each
other. The most frequent reason for the cause of deadlocks is inconsistent

396 9. CODING

locking sequence—the threads in deadlock wait for resources which are in
turn locked by some other thread. Race conditions occur when two threads
try to access the same resource and the result of the execution depends on
the order of the execution of the threads. Inconsistent synchronization is also
a common error representing the situation where there is a mix of locked and
unlocked accesses to some shared variables, particularly if the access involves
updates. Some examples of these errors are given in the [141].

Array Index Out of Bounds

Array index often goes out of bounds, leading to exceptions. Care needs
to be taken to see that the array index values are not negative and do not
exceed their bounds.

Arithmetic exceptions

These include errors like divide by zero and floating point exceptions. The
result of these may vary from getting unexpected results to termination of
the program.

Off by One

This is one of the most common errors which can be caused in many ways.
For example, starting at 1 when we should start at 0 or vice versa, writing
<— N instead of < N or vice versa, and so on.

Enumerated data types

Overflow and underflow errors can easily occur when working with enumer
ated types, and care should be taken when assuming the values of enumer
ated data types. An example of such an error is:

t y p e d e f enum {A, B ,C , D> g r a d e ;
v o i d f 0 0 (g r a d e x)
{

i n t l , m ;
l=GLOBAL_ARRAY[x-l]; / * Under f low p o s s i b l e */
m = GLOBAL_ARRAY [x + 1] ; / * Over f low p o s s i b l e * /

}

9.1. PROGRAMMING PRINCIPLES AND GUIDELINES 397

Illegal use of &; instead of &;&:

This bug arises if non short circuit logic (like & or |) is used instead of short
circuit logic (&& or ||). Non short circuit logic will evaluate both sides of
the expression. But short circuit operator evaluates one side and based on
the result, it decides if it has to evaluate the other side or not. An example
is:

i f (o b j e c t ! = n u l l & o b j e c t . g e t T i t l e () != n u l l)
/* Here second o p e r a t i o n can cause a n u l l de re fe rence */

String handling errors

There are a number of ways in which string handling functions like strcpy,
sprintf, gets etc can fail. Examples are one of the operands is NULL, the
string is not NULL terminated, or the source operand may have greater size
than the destination. String handling errors are quite common.

Buffer overflow

Though buffer overflow is also a frequent cause of software failures, in todays
world its main impact is that it is a security flaw that can be exploited by a
malicious user for executing arbitrary code.

When a program takes an input which is being copied in a buffer, by
giving a large (and malicious) input, a malicious user can overflow the buffer
on the stack. By doing this, the return address can get rewritten to what
ever the malicious user has planned. So, when the function call ends, the
control goes to where the malicious user has planned, which is typically
some malicious code to take control of the computer or do some harmful ac
tions. Basically, by exploiting the buffer overflow situation, a malicious user
can execute arbitrary code. The following code fragment illustrates buffer
overflow:

void mygetsCchar *str){
int ch ;
while (ch = getchar() ! = '\n' && ch! = ̂ \0O

*(str++)=ch;
*str='\0' ;

}
main (){

char s2 [4] ;
mygets(s2) ;

398 9. CODING

}

Here there is a possible buffer overflow attack. If the input given is large,
it can overflow the buffer s2, and by carefully crafting the bytes that go on
the stack the return address of mygets() can be replaced by an address of a
malicious program. For further discussion on buffer overflow and on writing
code that is secure, the reader is referred to [88].

9.1.2 Structured Programming

As stated earlier the basic objective of the coding activity is to produce
programs that are easy to understand. It has been argued by many that
structured programming practice helps develop programs that are easier to
understand. The structured programming movement started in the 1970s,
and much has been said and written about it. Now the concept pervades so
much that it is generally accepted—even implied—that programming should
be structured. Though a lot of emphasis has been placed on structured
programming, the concept and motivation behind structured programming
are often not well understood. Structured programming is often regarded as
"goto-less" programming. Although extensive use of gotos is certainly not
desirable, structured programs can be written with the use of gotos. Here
we provide a brief discussion on what structured programming is.

A program has a static structure as well as a dynamic structure. The
static structure is the structure of the text of the program, which is usu
ally just a linear organization of statements of the program. The dynamic
structure of the program is the sequence of statements executed during the
execution of the program. In other words, both the static structure and the
dynamic behavior are sequences of statements; where the sequence repre
senting the static structure of a program is fixed, the sequence of statements
it executes can change from execution to execution.

The general notion of correctness of the program means that when the
program executes, it produces the desired behavior. To show that a program
is correct, we need to show that when the program executes, its behavior
is what is expected. Consequently, when we argue about a program, either
formally to prove that it is correct or informally to debug it or convince
ourselves that it works, we study the static structure of the program (i.e., its
code) but try to argue about its dynamic behavior. In other words, much of
the activity of program understanding is to understand the dynamic behavior
of the program from the text of the program.

9,1. PROGRAMMING PRINCIPLES AND GUIDELINES 399

It will clearly be easier to understand the dynamic behavior if the struc
ture in the dynamic behavior resembles the static structure. The closer the
correspondence between execution and text structure, the easier the program
is to understand, and the more different the structure during execution, the
harder it will be to argue about the behavior from the program text. The
goal of structured programming is to ensure that the static structure and the
dynamic structures are the same. That is, the objective of structured pro
gramming is to write programs so that the sequence of statements executed
during the execution of a program is the same as the sequence of statements
in the text of that program. As the statements in a program text are linearly
organized, the objective of structured programming becomes developing pro
grams whose control flow during execution is linearized and follows the linear
organization of the program text.

Clearly, no meaningful program can be written as a sequence of simple
statements without any branching or repetition (which also involves branch
ing). So, how is the objective of linearizing the control flow to be achieved?
By making use of structured constructs. In structured programming, a state
ment is not a simple assignment statement, it is a structured statement. The
key property of a structured statement is that it has a single-entry and a
single-exit That is, during execution, the execution of the (structured)
statement starts from one defined point and the execution terminates at one
defined point. With single-entry and single-exit statements, we can view
a program as a sequence of (structured) statements. And if ah statements
are structured statements, then during execution, the sequence of execution
of these statements will be the same as the sequence in the program text.
Hence, by using single-entry and single-exit statements, the correspondence
between the static and dynamic structures can be obtained. The most com
monly used single-entry and single-exit statements are:

Selection: if B then SI else S2
if B then SI

Iteration: While B do S
repeat S until B

Sequencing: SI; S2; S3;...

It can be shown that these three basic constructs are sufficient to program
any conceivable algorithm. Modern languages have other such constructs
that help linearize the control flow of a program, which, generally speaking,

400 9. CODING

makes it easier to understand a program. Hence, programs should be written
so that, as far as possible, single-entry, single-exit control constructs are used.
The basic goal, as we have tried to emphasize, is to make the logic of the
program simple to understand. No hard-and-fast rule can be formulated
that will be applicable under all circumstances. Structured programming
practice forms a good basis and guideline for writing programs clearly.

It should be pointed out that the main reason structured programming
was promulgated is formal verification of programs. As we will see later
in this chapter, during verification, a program is considered a sequence of
executable statements, and verification proceeds step by step, considering
one statement in the statement list (the program) at a time. Implied in these
verification methods is the assumption that during execution, the statements
will be executed in the sequence in which they are organized in the program
text. If this assumption is satisfied, the task of verification becomes easier.
Hence, even from the point of view of verification, it is important that the
sequence of execution of statements is the same as the sequence of statements
in the text.

A final note about the structured constructs. Any piece of code with
a single-entry and single-exit cannot be considered a structured construct.
If that is the case, one could always define appropriate units in any pro
gram to make it appear as a sequence of these units (in the worst case, the
whole program could be defined to be a unit). The basic objective of using
structured constructs is to linearize the control flow so that the execution
behavior is easier to understand and argue about. In linearized control flow,
if we understand the behavior of each of the basic constructs properly, the
behavior of the program can be considered a composition of the behaviors of
the different statements. For this basic approach to work, it is imphed that
we can clearly understand the behavior of each construct. This requires that
we be able to succinctly capture or describe the behavior of each construct.
Unless we can do this, it will not be possible to compose them. Clearly, for
an arbitrary structure, we cannot do this merely because it has a single-entry
and single-exit. It is from this viewpoint that the structures mentioned ear-
her are chosen as structured statements. There are well-defined rules that
specify how these statements behave during execution, which allows us to
argue about larger programs.

Overall, it can be said that structured programming, in general, leads
to programs that are easier to understand than unstructured programs, and
that such programs are easier (relatively speaking) to formally prove. How
ever, it should be kept in mind that structured programming is not an end in

9.1. PROGRAMMING PRINCIPLES AND GUIDELINES 401

itself. Our basic objective is that the program be easy to understand. And
structured programming is a safe approach for achieving this objective. Still,
there are some common programming practices that are now well understood
that make use of unstructured constructs (e.g., break statement, continue
statement). Although efforts should be made to avoid using statements that
effectively violate the single-entry single-exit property, if the use of such
statements is the simplest way to organize the program, then from the point
of view of readability, the constructs should be used. The main point is that
any unstructured construct should be used only if the structured alterna
tive is harder to understand. This view can be taken only because we are
focusing on readability. If the objective was formal verifiability, structured
programming will probably be necessary.

9.1.3 Information Hiding

A software solution to a problem always contains data structures that are
meant to represent information in the problem domain. That is, when soft
ware is developed to solve a problem, the software uses some data structures
to capture the information in the problem domain.

In general, only certain operations are performed on some information.
That is, a piece of information in the problem domain is used only in a
limited number of ways in the problem domain. For example, a ledger in
an accountant's office has some very defined uses: debit, credit, check the
current balance, etc. An operation where all debits are multiplied together
and then divided by the sum of all credits is typically not performed. So, any
information in the problem domain typically has a small number of defined
operations performed on it.

When the information is represented as data structures, the same princi
ple should be apphed, and only some defined operations should be performed
on the data structures. This, essentially, is the principle of information hid
ing. The information captured in the data structures should be hidden from
the rest of the system, and only the access functions on the data structures
that represent the operations performed on the information should be vis
ible. In other words, when the information is captured in data structures
and then on the data structures that represent some information, for each
operation on the information an access function should be provided. And as
the rest of the system in the problem domain only performs these defined
operations on the information, the rest of the modules in the software should
only use these access functions to access and manipulate the data structures.

402 9, CODING

Information hiding can reduce the coupling between modules and make
the system more maintainable. Information hiding is also an effective tool
for managing the complexity of developing software—by using information
hiding we have separated the concern of managing the data from the concern
of using the data to produce some desired results.

Many of the older languages, like Pascal, C, and FORTRAN, do not
provide mechanisms to support data abstraction. With such languages, in
formation hiding can be supported only by a disciplined use of the language.
That is, the access restrictions will have to be imposed by the programmers;
the language does not provide them. Most modern 0 0 languages provide
hnguistic mechanisms to implement information hiding.

9.1.4 Some Programming Practices

The concepts discussed above can help in writing simple and clear code
with few bugs. There are many programming practices that can also help
towards that objective. We discuss here a few rules that have been found to
make code easier to read as well as avoid some of the errors. Some of these
practices are from [141].

Control Constructs: As discussed earlier, it is desirable that as much
as possible single-entry, single-exit constructs be used. It is also desirable
to use a few standard control constructs rather than using a wide variety of
constructs, just because they are available in the language.

Gotos: Gotos should be used sparingly and in a disciplined manner.
Only when the alternative to using gotos is more complex should the gotos
be used. In any case, alternatives must be thought of before finally using
a goto. If a goto must be used, forward transfers (or a jump to a later
statement) is more acceptable than a backward jump.

Information Hiding; As discussed earlier, information hiding should
be supported where possible. Only the access functions for the data struc
tures should be made visible while hiding the data structure behind these
functions.

User-Defined Types: Modern languages allow users to define types
like the enumerated type. When such facilities are available, they should
be exploited where applicable. For example, when working with dates, a
type can be defined for the day of the week. Using such a type makes the
program much clearer than defining codes for each day and then working
with codes.

9.1. PROGRAMMING PRINCIPLES AND GUIDELINES 403

Nesting: If nesting of if-then-else constructs becomes too deep, then the
logic become harder to understand. In case of deeply nested if-then-elses,
it is often difficult to determine the if statement to which a particular else
clause is associated. Where possible, deep nesting should be avoided, even if
it means a little inefficiency. For example, consider the following construct
of nested if-then-elses:

if CI then SI
else if C2 then S2

else if C3 then S3
else if C4 then S4;

If the different conditions are disjoint (as they often are), this structure can
be converted into the following structure:

if CI then SI
if C2 then S2
if C3 then S3
if C4 then S4

This sequence of statements will produce the same result as the earlier se
quence (if the conditions are disjoint), but it is much easier to understand.
The price is a little inefficiency.

Module Size: We discussed this issue during system design. A pro
grammer should carefully examine any function with too many statements
(say more than 100). Large modules often will not be functionally cohesive.
There can be no hard-and-fast rule about module sizes the guiding principle
should be cohesion and coupling.

Module Interface: A module with a complex interface should be care
fully examined. As a rule of thumb, any module whose interface has more
than five parameters should be carefully examined and broken into multiple
modules with a simpler interface if possible.

Side Effects: When a module is invoked, it sometimes has side effects
of modifying the program state beyond the modification of parameters listed
in the module interface definition, for example, modifying global variables.
Such side effects should be avoided where possible, and if a module has side
effects, they should be properly documented.

Robustness: A program is robust if it does something planned even for
exceptional conditions. A program might encounter exceptional conditions

404 9. CODING

in such forms as incorrect input, the incorrect value of some variable, and
overflow. If such situations do arise, the program should not just "crash" or
"core dump"; it should produce some meaningful message and exit gracefully.

Switch case v^ith default: If there is no default case in a "switch"
statement, the behavior can be unpredictable if that case arises at some point
of time which was not predictable at development stage. Such a practice can
result in a bug like NULL dereference, memory leak, as well ets other types
of serious bugs. It is a good practice to always include a default case.

switch (i)-C
case 0 : { s = m a l l o c (s i z e)
}

s [0] = y; /* NULL de re fe r ence if d e f a u l t occu r s* /

Empty Catch Block: An exception is caught, but if there is no action,
it may represent a scenario where some of the operations to be done are not
performed. Whenever exceptions are caught, it is a good practice to take
some default action, even if it is just printing an error message.

t r y {
F i l e l n p u t S t r e a m f i s = new
F i l e I n p u t S t r e a m (" I n p u t F i l e ") ;

>
ca tch (lOException ioe) { }

/ / not a good p r a c t i c e

Empty if, while Statement: A condition is checked but nothing is
done based on the check. This often occurs due to some mistake and should
be caught. Other similar errors include empty finally, try, synchronized,
empty static method, etc. Such useless checks should be avoided.

if (x == 0) {} /* no th ing i s done a f t e r checking x */
e l s e {

>

Read Return to be Checked: Often the return value from reads is
not checked, assuming that the read returns the desired values. Sometimes
the result from a read can be different from what is expected, and this can
cause failures later. There may be some cases where neglecting this condition
may result in some serious error. For example, if read from scanf() is more

9.1. PROGRAMMING PRINCIPLES AND GUIDELINES 405

than expected, then it may cause a buffer overflow. Hence the value of read
should be checked before accessing the data read. (This is the reason why
most languages provide a return value for the read operation.)

Return From Finally Block: One should not return from finally block,
as cases it can create false beliefs. For example, consider the code

p u b l i c S t r i n g f o o () {
t r y {

t h row new E x c e p t i o n ("An E x c e p t i o n ") ;
}
c a t c h (E x c e p t i o n e) {

th row e ;
}
f i n a l l y {

r e t u r n "Some v a l u e " ;
}

}

In this example, a value is returned both in exception and nonexception
scenarios. Hence at the caller site, the user will not be able to distinguish
between the two. Another interesting case arises when we have a return
from try block. In this case, if there is a return in finally also, then the value
from finally is returned instead of the value from try.

Correlated Parameters: Often there is an implicit correlation between
the parameters. For example, in the code segment given below, "length"
represents the size of BUFFER. If the correlation does not hold, we can run
into a serious problem like buffer overflow (iUustrated in the code fragment
below). Hence, it is a good practice to vahdate this correlation rather than
assuming that it holds. In general, it is desirable to do some counter checks
on implicit assumptions about parameters.

v o i d (c h a r * s r c , i n t l e n g t h , c h a r d e s t n []) {
s t r c p y (d e s t n , s r c) ; / * Can c a u s e b u f f e r o v e r f l o w

i f l e n g t h > MAX.SIZE */
}

Trusted Data sources: Counter checks should be made before access
ing the input data, particularly if the input data is being provided by the
user or is being obtained over the network. For example, while doing the
string copy operation, we should check that the source string is nuh termi
nated, or that its size is as we expect. Similar is the case with some network

406 9. CODING

data which may be sniffed and prone to some modifications or corruptions.
To avoid problems due to these changes, we should put some checks, like
parity checks, hashes, etc. to ensure the validity of the incoming data.

Give Importance to Exceptions: Most programmers tend to give less
attention to the possible exceptional cases and tend to work with the main
flow of events, control, and data. Though the main work is done in the main
path, it is the exceptional paths that often cause software systems to fail.
To make a software system more reliable, a programmer should consider all
possibilities and write suitable exception handlers to prevent failures or loss
when such situations occur.

9.1.5 Coding Standards

Programmers spend far more time reading code than writing code. Over
the life of the code, the author spends a considerable time reading it dur
ing debugging and enhancement. People other than the author also spend
considerable effort in reading code because the code is often maintained by
someone other than the author. In short, it is of prime importance to write
code in a manner that it is easy to read and understand. Coding standards
provide rules and guidelines for some aspects of programming in order to
make code easier to read. Most organizations who develop software regu
larly develop their own standards.

In general, coding standards provide guidelines for programmers regard
ing naming, file organization, statements and declarations, and layout and
comments. To give an idea of coding standards (often called conventions
or style guidelines), we discuss some guidelines for Java, based on publicly
available standards (from www.geosoft.no or java.sun.com/docs).

Naming Conventions

Some of the standard naming conventions that are followed often are:

• Package names should be in lower case (e.g., mypackage, edu.iitk.maths)

• Type names should be nouns and should start with uppercase (e.g.,
Day, DateOfBirth, EventHandler)

Variable names should be nouns starting with lower case (e.g., name,
amount)

Constant names should be all uppercase (e.g., PI, MAXJTERATIONS)

•

http://www.geosoft.no
http://java.sun.com/docs

9.1. PROGRAMMING PRINCIPLES AND G UIDELINES 407

• Method names should be verbs starting with lowercase (e.g., getValue())

• Private class variables should have the _ suffix (e.g., "private int value_").
(Some standards will require this to be a prefix.)

• Variables with a large scope should have long names; variables with a
small scope can have short names; loop iterators should be named i, j ,
k, etc.

• The prefix is should be used for boolean variables and methods to avoid
confusion (e.g., isStatus should be used instead of status); negative
boolean variable names (e.g., isNotCorrect) should be avoided.

• The term compute can be used for methods where something is being
computed; the term find can be used where something is being looked
up (e.g., computeMean(), findMin().)

• Exception classes should be suffixed with Exception (e.g., OutOfBound-
Exception.)

Files

There are conventions on how files should be named, and what files should
contain, such that a reader can get some idea about what the file contains.
Some examples of these conventions are:

• Java source files should have the extension .Java—this is enforced by
most compilers and tools.

• Each file should contain one outer class and the class name should be
same as the file name.

• Line length should be limited to less than 80 columns and special char
acters should be avoided. If the line is longer, it should be continued
and the continuation should be made very clear.

Statements

These guidelines are for the declaration and executable statements in the
source code. Some examples are given below. Note, however, that not
everyone will agree to these. That is why organizations generally develop
their own guidelines that can be followed without restricting the fiexibility
of programmers for the type of work the organization does.

408 9. CODING

• Variables should be initialized where declared, and they should be
declared in the smallest possible scope.

• Declare related variables together in a common statement. Unrelated
variables should not be declared in the same statement.

• Class variables should never be declared pubhc.

• Use only loop control statements in a for loop.

• Loop variables should be initialized immediately before the loop.

• Avoid the use of break and continue in a loop.

• Avoid the use of do ... while construct.

• Avoid complex conditional expressions—introduce temporary boolean
variables instead.

• Avoid executable statements in conditionals.

Commenting and Layout

Comments are textual statements that are meant for the program reader to
aid the understanding of code. The purpose of comments is not to explain in
English the logic of the program—if the logic is so complex that it requires
comments to explain it, it is better to rewrite and simphfy the code instead.
In general, comments should explain what the code is doing or why the code
is there, so that the code can become almost standalone for understanding
the system. Comments should generally be provided for blocks of code, and
in many cases, only comments for the modules need to be provided.

Providing comments for modules is most useful, as modules form the unit
of testing, compiling, verification and modification. Comments for a module
are often called prologue for the module, which describes the functionality
and the purpose of the module, its public interface and how the module
is to be used, parameters of the interface, assumptions it makes about the
parameters, and any side eff"ects it has. Other features may also be included.
It should be noted that prologues are useful only if they are kept consistent
with the logic of the module. If the module is modified, then the prologue
should also be modified, if necessary.

Java provides documentation comments that are delimited by "/** ...
*/", and which could be extracted to HTML files. These comments are

9.2. CODING PROCESS 409

mostly used as prologues for classes and its methods and fields, and are meant
to provide documentation to users of the classes who may not have access to
the source code. In addition to prologue for modules, coding standards may
specify how and where comments should be located. Some such guidelines
are:

• Single hne comments for a block of code should be aligned with the
code they are meant for.

• There should be comments for all major variables explaining what they
represent.

• A block of comments should be preceded by a blank comment line with
just "/*" and ended with a line containing just "*/".

• Trailing comments after statements should be short, on the same line,
and shifted far enough to separate them from statements.

Layout guidelines focus on how a program should be indented, how it
should use blank lines, white spaces, etc. to make it more easily readable.
Indentation guidelines are sometimes provided for each type of programming
construct. However, most programmers learn these by seeing the code of
others and the code fragments in books and documents, and many of these
have become fairly standard over the years. We will not discuss them further
except saying that a programmer should use some conventions, and use them
consistently.

9.2 Coding Process

The coding activity starts when some form of design has been done and
the specifications of the modules to be developed are available. With the
design, modules are usually assigned to individual developers for coding. In
a top-down implementation, we start by assigning modules at the top of the
hierarchy and proceed to the lower levels. In a bottom-up implementation,
the development starts with first implementing the modules at the bottom

of the hierarchy and proceeds up. The impact of how we proceed is on
integration and testing.

When modules are assigned to developers, they use some process for
developing the code. We now look at some processes that developers use
during coding, or that have been suggested.

410 9. CODING

Specification of the module

1
J Write some code to

implement some functionality

1 '
Enhance test scripts for
testing new functionality

Run the test script

/ ^ o ^^^^-^ Yes ^ ^ Errors ^ >

TNO

No ^ / ^ ^ ^̂ ^ s p e c s ^ \ ^

Fix

1

"̂̂ v.. covered ^̂ .̂ ^

Figure 9.2: An incremental coding process.

9,2.1 An Incremental Coding Process

The process followed by many developers is to write the code for the currently
assigned module, and when done, perform unit testing on it and fix the bugs
found. Then the code is checked in the project repository to make it available
to others in the project. (We will explain the process of checking in later.)

A better process for coding, that is often followed by experienced devel
opers, is to develop the code incrementally. That is, write code for imple
menting only part of the functionality of the module. This code is compiled
and tested with some quick tests to check the code that has been written so
far. When the code passes these tests, the developer proceeds to add further
functionality to the code, which is then tested again. In other words, the
code is built incrementally by the developers, testing it as it is built. This
coding process is shown in Figure 9.2.

The basic advantage of developing code incrementally with testing being
done after every round of coding is to facilitate debugging—an error found

9.2. CODING PROCESS 411

in some testing can be safely attributed to code that was added since last
successful testing. For following this process, it is essential that there be
automated test scripts that can run the test cases with the click of a button.
With these test scripts, testing can be done as frequently as desired, and
new test cases can be added easily. These test scripts are a tremendous aid
when code is enhanced in future due to requirement changes—through the
test scripts it can be quickly checked that the earher functionality is still
working. These test scripts can also be used with some enhancements for
the final unit testing that is often done before checking in the module.

9.2.2 Test Driven Development

Test Driven Development (TDD) [11] is a coding process that turns around
the common approach to coding. In TDD, a programmer first writes the
test scripts, and then writes the code to pass the tests. The whole process is
done incrementally, with tests being written based on the specifications and
code being written to pass the tests. The TDD process is shown in Figure
9.3.

This is a relatively new approach, which has been adopted in the extreme
programming (XP) methodology [10]. The concept of TDD is, however,
general and not tied to any particular methodology. The discussion of TDD
here is based on [11].

A few points are worth noting about TDD. First, the approach says that
you write just enough code to pass the tests. By following this, the code is
always in sync with the tests. This is not always the case with the code-first
approach, in which it is all too common to write a long piece of code, but
then only write a few tests which cover only some parts of the code. By
encouraging that code is written only to pass the tests, the responsibility of
ensuring that required functionality is built is being passed to the activity
of writing the test cases. That is, it is the task of test cases to check that
the code that will be developed has all the functionality needed.

This writing of test cases before the code is written makes the develop
ment usage-driven. That is, first the focus is to determine how the code to
be developed will be used. This is extracted from the specifications and the
usage interface is specified precisely when the test cases are written. This
helps ensure that the interfaces are from the perspective of the user of the
code and that some key usage scenarios have been enunciated before the
code is written. The focus is on the users of the code and the code is written
to satisfy the users. This can reduce interface errors.

412 9. CODING

Specification of the module

1
Write/add test scripts for some

parts of functionality as
per the specifications

Add code to pass the
new test cases

(as well as old ones)

Run the code on test scripts

Improve code

Yes

Fix

Yes

Exit

Figure 9.3: Test driven development process.

In TDD, some type of prioritization for code development naturally hap
pens. It is most likely that the first few tests are likely to focus on using
the main functionality. Generally, the test cases for lower priority features
or functionahty will be developed later. Consequently, code for high priority
features will be developed first and lower priority items will be developed
later. This has the benefit that higher priority items get done first, but has

9.2. CODING PROCESS 413

the drawback that some of the lower priority features or some special cases
for which test cases are not written may not get handled in the code.

As the code is written to satisfy the test cases, the completeness of the
code depends on the thoroughness of the test cases. Often it is hard and
tedious to write test cases for all the scenarios or special conditions, and
it is highly unlikely that a developer will write test cases for all the special
cases. In TDD, as the goal is to write enough code to pass the test cases, such
special cases may not get handled. Also, as at each step code is being written
primarily to pass the tests, it may later be found that earlier algorithms
were not well suited. In that case, the code should be improved before new
functionality is added, as shown in Figure 9.3.

9.2.3 Pair Programming

Pair programming is also a coding process that has been proposed as a
key technique in extreme programming (XP) methodology [10]. In pair
programming, code is not written by individual programmers but by a pair
of programmers. That is, the coding work is assigned not to an individual
but to a pair of individuals. This pair together writes the code.

The process envisaged is that one person will type the program while the
other will actively participate and constantly review what is being typed.
When errors are noticed, they are pointed out and corrected. When needed,
the pair discuss the algorithms, data structures, or strategies to be used in
the code to be written. The roles are rotated frequently making both equal
partners and having similar roles.

The basic motivation for pair programming is that as code reading and
code reviews have been found to be very effective in detecting defects, by
having a pair do the programming we have the situation where the code
is getting reviewed as it is being typed. That is, instead of writing code
and then getting it reviewed by another programmer, we have a program
mer who is constantly reviewing the code being written. Like incremental
development and testing, we now have incremental reviewing taking place.

Besides ongoing code review, having two programmers apply themselves
to the programming task at hand is likely to result in better decisions being
taken about the data structures, algorithms, interfaces, logic, etc. Special
conditions, which frequently result in errors, are also more hkely to be dealt
with in a better manner.

The potential drawback of pair programming is that it may result in loss
of productivity by assigning two people for a programming task. It is clear

414 9. CODING

that a pair will produce better code as compared to code being developed
by a single programmer. The open question is whether this increase in
productivity due to improved code quality offsets the loss incurred by putting
two people on a task. There are also issues of accountability and code
ownership, particularly when the pairs are not fixed and rotate (as has been
proposed in XP). Impact of pair programming is an active area of research,
particularly for experimental software engineering.

9.2.4 Source Code Control and Build

In a project many different people develop source code. Each programmer
creates different source files, which are eventually combined together to cre
ate executables. Programmers keep changing their source files as the code
evolves, as we have seen in the processes discussed above, and often make
changes in other source files as well. In order to keep control over the sources
and their evolution, source code control is almost always used in projects
using tools like the CVS on UNIX (www.cvshome.org) or visual source safe
(VSS) on Windows (msdn.microsoft.com/vstudio/previous/ssafe) Here we
give a brief description of how these tools are used in the coding process.
Earlier in Chapter 2 we have discussed the concepts of a general CM process.
Our discussion is based on CVS.

A modern source code control system contains a repository, which is
essentially a controlled directory structure, which keeps the full revision
history of all the files. For efficiency, a file history is generally kept as deltas
or increments from the base file. This allows any older version of the file to
be recreated, thereby giving the flexibility to easily discard a change, should
the need arise. The repository is also the "official" source for all the files.

For a project, a repository has to be set up with permissions for different
people in the project. The files the repository will contain are also specified—
these are the files whose evolution the repository maintains. Programmers
use the repository to make their source files changes available, as well as
obtain other source files. Some of the types of commands that are generally
performed by a programmer are:

Get a local copy. A programmer in a project works on a local copy of the
file. Commands are provided to make a local copy from the reposi
tory. Making a local copy is generally called a checkout. An example
command is cvs checkout < module >, which copies a set of files that
belongs to the < module > on the local machine. A user will get the

http://www.cvshome.org
http://msdn.microsoft.com/vstudio/previous/ssafe

9.2. CODING PROCESS 415

latest copy of the file. However, if a user wants, any older version of
a file can be obtained from the repository, as the complete history is
maintained. Many users can check out a file.

Make changes to file(s). The changes made to the local file by a pro
grammer remain local until the changes are committed back on the
repository. By committing (e.g., by cvs commit < file >) the changes
made to the local file are made to the repository, and are hence avail
able to others. This operation is also referred to as check in.

Update a local copy. Changes committed by project members to the repos
itory are not refiected in the local copies that were made before the
changes were committed. For getting the changes, the local copies of
the files have to be updated (e.g., by cvs update command). By an
update, all the changes made to the files are refiected in the local copy.

Get Reports. Source control tools provide a host of commands to provide
different reports on the evolution of the files. These include reports
like the difference between the local file and the latest version of the
file, all changes made to a file along with the dates and reasons for
change (which are typically provided while committing a change).

Note that once the changes are committed, they become available to all
members of the team, who are generally supposed to use the source files from
the repository for checking their own programs. Hence, it is essential that a
programmer commits a source file only when it is in a state that it is usable
by others. In steady state, the normal behavior of a project member will be
as follows: check out the latest version of the files to be changed; make the
planned changes to them; validate that the changes have the desired effect
(for which all the files may be copied and the system tried out locally);
commit the changes back to the repository.

It should be clear that if two people check out some file and then make
changes, there is a possibility of a conflict—different changes are made to
the same parts of the file. All tools will detect the conflict when the second
person tries to commit the changes, and will inform the user. The user has
to manually resolve the conflit, i.e., make the file such that the changes do
not conflict with existing changes, and then commit the file. Confiicts are
usually rare as they occur only if different changes are made to the same
lines in a file.

With a source code control system, a programmer does not need to main
tain ah the versions—at any time if some changes need to be undone, older

416 9. CODING

versions can be easily recovered. The repositories are always backed up, so
they also provide protection against accidental loss. Furthermore, a record
of changes is maintained—who made the change and when, why was the
change made, what were the actual changes, etc. Most importantly, the
repository provides a central place for the latest and authoritative files of
the project. This is invaluable for products that have a long life and that
evolve over many years.

Besides using the repository for maintaining the different versions, it is
also used for constructing the software system from the sources—an activity
often called build. The build gets the latest version (or the desired version
number) of the sources from the repository, and creates the executables from
the sources.

Building the final executables from the source files is often done through
tools like the Makefile [62], which specify the dependence between files and
how the final executables are constructed from the source files. These tools
are capable of recognizing that files have changed and will recompile when
ever files are changed for creating the executables. With source code control,
these tools will generally get the latest copy from the repository, then use it
for creating executables.

This is one of the simplest approaches to source code control and build.
Often, when large systems are being built, more elaborate methods for source
code control and build are needed. Such methods often have a hierarchy of
controlled areas, each having different levels of control and different sources,
with the top of the hierarchy containing all the files needed to build the "of
ficial" system. Lower levels of the hierarchy can be used by different groups
to create "local" builds for testing and other purposes. In such a system,
forward integration and reverse integration is needed to pass changes back
and forth between the controlled areas at different levels of the hierarchy.
An advanced tool like ClearCase provides such capabihties.

9.3 Refactoring

We have seen that coding often involves making changes to some existing
code. Code also changes when requirements change or when new function
ality is added. Due to the changes being done to modules, even if we started
with a good design, with time we often end up with code whose design is
not as good as it could be. And once the design embodied in the code be
comes complex, then enhancing the code to accommodate required changes

9.3. REFACTORING 417

becomes more complex, time consuming, and error prone. In other words,
the productivity and quaUty starts decreasing.

Refactoring is the technique to improve existing code and prevent this
design decay with time. Refactoring is part of coding in that it is per
formed during the coding activity, but is not regular coding. Refactoring
has been practiced in the past by programmers, but recently it has taken a
more concrete shape, and has been proposed as a key step in the Extreme
Programming practice [10]. Refactoring also plays an important role in test
driven development—code improvement step in the TDD process is really
doing refactoring. Here we discuss some key concepts and some methods for
doing refactoring. The discussion here is based on the book on this topic by
Fowler [65].

9.3.1 Basic Concepts

Refactoring is defined as a change made to the internal structure of software
to make it easier to understand and cheaper to modify without changing
its observable behavior [65]. A key point here is that the change is being
made to the design embodied in the source code (i.e., the internal structure)
exclusively for improvement purposes.

The basic objective of refactoring is to improve the design. However,
note that this is not about improving a design during the design stages for
creating a design which is to be later implemented (which is the focus of
design methodologies), but about improving the design of code that already
exists. In other words, refactoring, though done on source code, has the
objective of improving the design that the code implements. Therefore, the
basic principles of design guide the refactoring process. Consequently, a
refactoring generally results in one or more of the following:

1. Reduced coupling

2. Increased cohesion

3. Better adherence to open-closed principle (for 0 0 systems)

Refactoring involves changing the code to improve one of the design
properties, while keeping the external behavior the same. Refactoring is
often triggered by some coding changes that have to be done. If some en
hancements are to be made to the existing code, and it is felt that if the
code structure was different (better) then the change could have been done
easier, that is the time to do refactoring to improve the code structure.

418 9. CODING

Even though refactoring is triggered by the need to change the software
(and its external behavior), it should not be confused or mixed with the
changes for enhancements. It is best to keep these two types of changes
separate. So, while developing code, if refactoring is needed, the programmer
should cease to write new functionality, and first do the refactoring, and then
add new code.

The main risk of refactoring is that existing working code may "break"
due to the changes being made. This is the main reason why most often
refactoring is not done. (The other reason is that it may be viewed as an
additional and unnecessary cost.) To mitigate this risk, the two golden rules
are:

1. Refactor in small steps

2. Have test scripts available to test existing functionality

If a good test suite is available, then whether refactoring preserves ex
isting functionality can be checked easily. Refactoring cannot be done effec
tively without an automated test suite as without such a suite determining if
the external behavior has changed or not will become a costly affair. By do
ing refactoring in a series of small steps, and testing after each step, mistakes
in refactoring can be easily identified and rectified. With this, each refactor
ing makes only a small change, but a series of refactorings can significantly
transform the program structure.

With refactoring, code becomes continuously improving. That is, the
design, rather than decaying with time, evolves and improves with time.
With refactoring, the quality of the design improves, making it easier to
make changes to the code as well as find bugs. The extra cost of refactoring
is paid for by the savings achieved later in reduced testing and debugging
costs, higher quality, and reduced effort in making changes.

If refactoring is to be practiced, its usage can also ease the design task in
the design stages. Often the designers spend considerable effort in trying to
make the design as good as possible, try to think of future changes and try to
make the design flexible enough to accommodate all types of future changes
they can envisage. This makes the design activity very complex, and often
results in complex designs. With refactoring, the designer does not have to
be terribly worried about making the best or most flexible design—the goal
is to try to come up with a good and simple design. And later if new changes
are required that were not thought of before, or if shortcomings are found in
the design, the design is changed through refactoring. More often than not,

9.3. REFACTORING 419

GradReport

^printReportO
^printAIIO 1 0..n

Student
%>RollNo: integer
^ N a m e : String
%DOB : Date
^Address : String
%CourseList: integer[]
%>Age: integer

^CourseNo. integer[]
%>Grade: cliar[]
%Sem: integerj]
%Cour3eTitle : String[]
%Units: integer!]
^Tinesis; String
%pg_or_ug: boolean

Figure 9.4: Initial class diagram.

the extra flexibility envisaged and designed is never needed, resulting in a
system that is unduly complex.

Note that refactoring is not a technique for bug fixing or for improving
code that is in very bad shape. It is done to code that is mostly working—
the basic purpose is to make the code live longer by making its structure
healthier. It starts with healthy code and instead of letting it become weak,
it continues to keep it healthy.

9.3.2 An example

Let us illustrate the refactoring process by an example. Let us consider a
simplified system to produce a graduation report for a student. A student in
a university takes a set of courses, and perhaps, writes a thesis. This system
checks the whether a student has completed the graduation requirements,
and prints the result along with the hst of courses the students has taken,
the thesis the student may have done, the student's cumulative grade points
(referred to as CPI or cumulative point index), and other information about
the student. A student may be a graduate student (referred to as PG or
postgraduate) or an undergraduate (UG). To keep the example simple, the
graduation requirements for the two are only in terms of number of courses
they have to take, and that graduate students have to do a thesis.

Consider a simple implementation for this, whose design is shown in the
class diagram in Figure 9.4. (The full code for this implementation as well
as code after refactorings is available on the book's Web site.)

There is an array of student objects, which is accessed by printReport().
The object for a students contains all the information about the student,

420 9. CODING

GradReport

^printReportO
^printAIIO

.1..n

Student
^Rol INo: integer
^ N a m e : String
^ D O B : Date
^Address : String
^CourseList: int []
^ A g e : integer
^pg_or_ug: boolean

1..n

CourseTaken
l>CourseNo : integer
|>Grade/boolean
|>Sem: integer

^getGradeO
^getSemO

1..n

Course
%>Cour3eNo : integer
%CourseTitle: String
%Unlts: integer

^getCourseNoC)
^getCourseTitleO

Figure 9.5: Class diagram after first refactoring.

which also provides a host of methods (not shown in the diagram) to provide
the required information to a client object. All the logic for producing the
report is in PrintReport()—it gets info about the student, perform suitable
checks depending on whether the student is a UG or a PG, and prints the
data about the student, the report, the list of courses, and computes and
prints the grade point (called CPI).

This implementation has poor cohesion (one class encapsulates every
thing), very strong coupling between the two classes, and adding another
category of student (e.g., having a separate category for PhD students) will
require making changes in existing code. Clearly, this poor design can be
improved through refactoring.

As refactoring involves frequent testing, before refactoring, it is best
to have an automated test script which can be used to test the changes
as they are made. For this implementation, we have created a test script
using JUnit (we will discuss this more later in the chapter). The test script
essentially first creates a few students and sets suitable values (through a
constructor), then invokes printReport() to print the report on a file, and
then uses different assertions provided in JUnit to check if the output is as
expected. (The test script is also available from the Web site.) This script
will be executed every time a refactoring is done to check if anything is
"broken." As refactoring should not change external behavior, it should be
possible to use the earlier test scripts.

To improve this design, we will perform a series of refactoring steps. In

9.3. REFACTORING 421

GradReport

^printReportO
^printAHO

DOB

%DD : integer
%MM : integer
%YY: integer
%Age: integer

1

^printAgeO
^printDOBO

1..n

Student
|>Name; String
|>RollNo: integer
|>Address : String
|>pg_or_ug: boolean
|>Tliesis : String

^printDetailsO
^printCPIO
^checkPassO

CourseTaken
%CourseNunnber: integer
^ G r a d e : char
%>Sem: integer

^printGradeO

1..n

W

1..n

1
Course

%>CourseNo: integer
%CourseTitle: String
%Units : integer

"^printCourseO
^getUnitsO

Figure 9.6: Class diagram after second refactoring.

the first step, we improve the cohesion by creating a new class for Course,
which contains all information about the course, and a class CourseTaken
which contains information related to a student taking a course (for exam
ple, the semester in which the course is taken and the grade the student
gets). The responsibihties are also suitably shifted to these classes (and the
constructor of Student also distributes the necessary construction activities
among constructors of the different classes). The design after this refactoring
is shown in 9.5.

With this refactoring, arrays in the earUer code have been converted into
objects. Furthermore, redundancy in course information, which existed in
earlier design (information about a course was replicated in each Student
object that had that course) has also been eliminated.

The code after this refactoring can be tested using the test script for the
original code. In other words, the earlier test script can be executed directly
with this refactored code.

This design, though much improved, can still be improved. We can see
that though date of birth of a student is information about a student, we can
easily create an object to represent dates. This will be a more flexible and
cohesive design. Also, the responsibility of printing different parts still rests

422 9. CODING

within the main printReport() function, even though some of the informa
tion that is to be printed resides now with different objects. This increases
couphng as the GradReport object will have to invoke methods on different
objects to get the information it needs, and then print it. In this refactor-
ing, functionality is distributed among objects such that the functionality
resides where it belongs, that is, the functionality is performed in the object
that has most of the information needed to perform the required function.
This has been done with some printing functions as well as calculation of
the grade point average. The design after this refactoring is shown in Figure
9.6. Again, as the external interface is preserved, the earlier test script can
be used to execute this program and check that it passes.

In the final refactoring, we make use of inheritance. We note that in this
design, coupling has been reduced and cohesion has been improved, the open-
closed principle is still violated. If we were to add another class of student,
then the code wih have to be changed—we cannot handle it by extending
the classes. This is because we are considering all students together and are
separating the UG and PG students using a flag field. Using the power of
inheritance, we can create a hierarchy in which we have different types of
students as specializations of the base student class. This is what is done in
this refactoring, and the final design is shown in 9.7. Now that we have PG
as a separate class, as thesis is done only by PG students, thesis also has
been made a separate class. Responsibilities have been suitably distributed.
Due to the use of polymorphism, the flag variable (ug-or-pg) now disappears,
and the conditionals using this flag have been replaced with suitable use of
polymorphism.

Once again, the main interface remains the same and the code after this
refactoring can be tested using the initial test script, thereby ensuring that
whatever worked in the start (at least to the extent determined by the test
script) continues to work after refactoring. For this example, the original
code, code after each refactoring, and the Junit test script are ah available
from the Web site.

9.3.3 Bad Smells

We now discuss the signs in the code that can tell us that refactoring may
be called for. These are sometimes called "bad smells" [65]. Basically, these
are some easy to spot signs in the code that often indicate that some of the
desirable design properties may be getting violated or that there is potential
of improving the design. In other words, if you "smell" one of these "bad

9.3. REFACTORING 423

GradReport

^printReportO
^printAIIQ

DOB

% D D : integer
i%MM: integer
|%YY: integer
%Age: integer

^printAgeO
^printDOBO

Course

^CourseNo : integer
j^CourseTit le: String
%Units : integer

^printCourseO
^getUnitsO

Student

^ N a m e : String
%RollNo: integer
^>Address: String

^printDetailsO
^printCPIO
%lieckPass()

UnderGrad

^checkPassO

0..n \ 1

\ , 1

1..n

CourseTaken
|%CourseNumber: integer
%Grade : cliar
%Sem : integer

^printGradesO

Thesis
|<%Title; String
%Guide: String

^printThesisO

Figure 9.7: Class diagram after final refactoring.

smells" it may be a sign that refactoring is needed. Of course, whether
refactoring is indeed needed will have to be decided on a case-by-case basis
by looking at the code and the opportunities that may exist for improving
the code. Some of these bad smells from [65] are given here.

1. Duplicate Code. This is quite common. One reason for this is that
some small functionality is being executed at multiple places (e.g., the
age from date of birth may be computed in each place that needs
the date). Another common reason is that when there are multiple
subclasses of a class, then each subclass may end up doing a similar
thing. Duplicate code means that if this logic or function has to be
changed, it will have to be changed in all the places it exists, making
changes much harder and costlier.

2. Long Method. If a method is large, it often represents the situation
where it is trying to do too many things and therefore is not cohesive.

3. Long Class. Similarly, a large class may indicate that it is encapsulat
ing multiple concepts, making the class not cohesive.

424 9. CODING

4. Long Parameter List. Complex interfaces are clearly not desirable—
they make the code harder to understand. Often, the complexity is
not intrinsic but a sign of improper design.

5. Switch Statements. In object-oriented programs, if the polymorphism
is not being used properly, it is likely to result in a switch statement
everywhere the behavior is to be different depending on the property.
Presence of similar switch statements in different places is a sign that
instead of using class hierarchy, switch statement is being used. Pres
ence of switch statement makes it much harder to extend code—if a
new category is to be added, all the switch statements wih have to be
modified.

6. Speculative Generality. Some class hierarchies may exist because the
objects in subclasses seem to be different. However, if the behavior of
objects of the different subclasses is the same, and there is no imme
diate reason to think that behaviors might change, then it is a case of
unnecessary complexity.

7. Too Much Communication Between Objects. If methods in one class
are making many calls to methods of another object to find out about
its state, this is a sign of strong coupling. It is possible that this
may be unnecessary and hence such situations should be examined for
refactoring.

8. Message Chaining. One method calls another method, which simply
passes this call to another object, and so on. This chain potentially
results in unnecessary coupling.

These bad smehs in general are indicative of a poor design. We can note
that many of these smells existed in our example above.

9.3.4 Common Refactorings

Clearly there are unlimited possibilities of how code can be refactored to
improve its design. A catalog of common refactorings, and steps for perform
ing each of them is presented in [65]. New refactorings are continually being
hsted in www.refactoring.com. As discussed above, a refactoring should help
make the code easier to understand and modify. To achieve this objective,
many refactorings focus on improving the methods, classes, or class hier
archies. Here we discuss briefly some of the refactorings suggested in [65]

http://www.refactoring.com

9.3. REFACTORING 425

in each of these three groups. There are other refactorings that deal with
reducing the message chains, which we do not discuss.

The general process of refactoring is the same for all of these—one refac-
toring step is performed, and then the new code is tested (with automated
test scripts) to make sure that refactoring has not altered any behavior and
old tests still pass. If multiple refactorings are to be applied, they should be
applied one at a time, and a new one should be done only after the current
one has been successfully tested.

Improving Methods

We have seen earlier that a method may not be cohesive and a method may
perform many different functions. A main goal of refactoring to improve
methods is to simplify them and make them more cohesive. The level of
coupling by a method depends considerably on its interface and by simpli
fying the interface, the coupling can be reduced.

1. Extract Method. This refactoring is often done if a method is too long,
indicating that it may not be cohesive and may be performing multiple
functions. The objective is to have short methods whose signatures
give a fairly accurate idea to the users about what the methods do.
During this refactoring, a piece of code from a method is extracted out
as a new method. The variables referred to in this code that are in the
scope of original method become the parameters to the new method.
Any variables declared in this code but used elsewhere will have to be
defined in the original method. In the original method, the extracted
code is replaced by an invocation to the new method. Sometimes, the
new method may be a function returning a value. An illustration of
this refactoring was given in the example above.

Similarly, if there is a method that returns a value but also changes the
state of some objects, then this method should be converted into two
methods—one that returns the desired value, and the other to make
the desired state change. Having a method that only returns a value
and has no side effect generally has a strong functional cohesion. (This
refactoring is called separate query from modifier.)

2. Add/Remove Parameter. If a method needs more information from
its caller, perhaps because the scope of what the method has to do
has expanded, then new parameters need to be added. However, this

426 9. CODING

should be done only if the existing parameters cannot provide the
information that is needed. The dual of this is parameter removal.
Sometimes, for the sake of future extension or flexibility, information
is asked for but is not used. For the sake of simplicity, parameters
that are not being used should be removed. But if a class is part of
a hierarchy, this has to be done carefully to make sure that hierarchy
relationships are not disturbed. Or the change will have to be done at
higher/lower levels of the hierarchy as well.

Improving Classes

Most refactorings under this category focus on improving cohesion of classes
or reducing coupling between classes. Enhancing the cohesion of classes of
ten results in moving fields and methods from one class to another such that
logically connected data items and methods that access them are all encap
sulated together in one object. Couphng reduction often requires changes in
classes to reduce the degree of interaction between them.

1. Move Method. In this a method is moved from one class to another.
This is a very important refactoring, and is generally done when a
method in class A seems to be interacting too heavily with another
object of class B, indicating that perhaps the natural home for the
method is class B and not class A. Often it is not initially clear where
a method may belong, and the designer may assign it to class A. How
ever, later, if it is seen that the natural home is class B, then it should
be moved.

Initially, it is better to leave the source method as a delegating method
which just invokes the new method. This way, the change is limited
only to the two methods. However, whenever possible, the references
or calls to the methods should be redirected to the new method and
the old method should be eliminated. If the original method was not a
private method, then this will imply that all the classes that used the
method will have to be changed.

2. Move Field. If a field in class A is being used more often by methods
in class B, then the field should be moved to class B. This will reduce
the coupling between A and B, and enhance the encapsulation of both
the classes. This refactoring is similar to the one above—in Move
Method the behavior is being reassigned and in this one state is being

9.3. REFACTORING 427

reassigned. Assuming that the field was private, after moving the field
from class A to B, all reference to the field in methods in A will have
to be changed to suitable method calls to class B for getting the state.

3. Extract Class. Often a designer starts with a class and as the need
for new features arise, the classes are extended to do more, sometimes
resulting in large classes that do not have clear abstraction and are
holding too many responsibilities. If there is a large class that seems
to be holding multiple responsibilities or encapsulating more than one
concept, then this refactoring is applied. A new class is created and the
relevant fields and methods are moved to the new class. The refactoring
is justified if the new classes have crisper abstraction than the large
class, and the responsibilities of both can be clearly and succinctly
stated. The class extraction should not result in too much coupling
between the two classes, which will indicate an artificial partitioning.
If the large class was holding multiple responsibilities, the chances are
that different subsets of its methods are primarily accessing different
subsets of its state.

One way to perform this refactoring is to first create the new class and
create a link from the old class to the new one. Then the move field
and move method refactorings can be repeatedly applied to move the
fields and methods that belong to the new class.

4. Replace Data Value with Object. This is similar to the Extract Class
refactoring. Often some data items are treated as fields of the class
initially. As development proceeds, these data items become semanti-
cally richer with more operations being performed on them. Examples
of such data items are date, telephone numbers, social security num
ber, address etc. If multiple operations are being performed within the
class on these data items, then it may make sense to convert the data
into an object.

Improve Hierarchies

Class hierarchy is a key object oriented concept that is the foundation for the
open-closed principle. In order to support this principle, it is imperative that
polymorphism be used effectively. The goal of refactorings here is to leverage
polymorphism to make classes more amenable to easy extension later, and
to use polymorphism to create designs that more naturally represent the
problem.

428 9. CODING

1. Replace Conditional with Polymorphism. If we have a class in which
the behavior of some methods depends on value of some type-code,
we essentially have a situation where a traditional, function-oriented
approach is still being used. Polymorphism can, and should, be used
to capture the situation more naturally. Presence of case statement
(or equivalent) within a method, or some type codes declared in the
class, are good indicators that this refactoring may be needed. An
example of this was given earlier, when in the method printReport()
of GradReport class, which has to deal with behavior of PG and UG
students. In refactoring, a class hierarchy was created where PG and
UG are modeled into two different classes. These objects have some
common functionality inherited from their base class Student, apart
from having their specialized methods. So the object of base class can
now point dynamically to one of the derived classes which got rid of
the case statement. The difference in behavior was captured by the
different sub classes and hence there is no need of an expHcit switch
statement.

2. Pull up Field/Method. An important factor in having a good hierarchy
is to have common elements belonging to parent class while the vari
able elements belonging to the sub classes. Consequently, when there
is a situation that multiple subclasses have the same field, the field
should be pulled up to the superclass. Similarly, if there are methods
in subclasses that are producing identical results (perhaps even with
different code/algorithm) we have a situation where functionality is
being duphcated. And duphcate code is one of the key factors that
makes making changes much harder. Hence, such a situation exists,
the structure is improved if the method is moved up to the superclass.
If the subclasses have constructors which are similar, then they can
also be pulled up into the superclass and be called from the subclass
constructor.

The inverse of pull up is push down, giving us push down field/method
refactorings. If a superclass contains a field that is used only by some
subclass, it is best to push that field down to the class that uses it.
Similarly, if there is some method in the superclass that is relevant
only to some subclass, then it should be moved down to the subclass.

9.4. VERIFICATION 429

9.4 Verification

Once a programmer has written the code for a module, it has to be verified
before it is used by others. So far we have assumed that testing is the means
by which this verification is done. Though testing is the most common
method of verification, there are other effective techniques also. Here we
discuss a few common ones. It should be pointed out that by verification
we do not mean proving correctness of programs, which for our purposes is
only one method for program verification.

Here we will focus on techniques that are now widely used in practice—
inspections (including code reading), unit testing, and program checking. We
will also discuss a formal verification approach, though formal verification is
less widely used and is apphed mostly in special situations.

Though we are focusing on verifying individual programs written by pro
grammers, some of the techniques like program checking are applicable at
the complete system level also.

9.4.1 Code Inspect ions

Inspection, which is a general verification approach that can be applied to
any document, has been widely used for detecting defects. It was started for
detecting defects in the code, and was later applied for design, requirements,
plans, etc. The general inspection process was discussed earlier, and for code
inspection also it remains the same.

Code inspections are usually held after code has been successfully com
piled and other forms of static tools have been applied. The main motivation
for this is to save human time and effort, which would otherwise be spent
detecting errors that a compiler or static analyzer can detect.

The documentation to be distributed to the inspection team members
includes the code to be reviewed and the design document. The team for
code inspection should include the programmer, the designer, and the tester.

The aim of code inspections is to detect defects in code. In addition to
defects, there are quality issues which code inspections usually look for, like
efficiency, compliance to coding standards, etc. Often the type of defects the
code inspection should focus on is contained in a checklist that is provided
to the inspectors. Some of the items that can be included in a checklist for
code reviews are [52]:

A Sample Checklist:

430 9. CODING

• Do data definitions exploit the typing capabilities of the language?

• Do all the pointers point to some object? (Are there any "dangling
pointers"?)

• Are the pointers set to NULL where needed?

• Are pointers being checked for NULL when being used?

• Are all the array indexes within bound?

• Are indexes properly initialized?

• Are all the branch conditions correct (not too weak, not too strong)?

• Will a loop always terminate (no infinite loops)?

• Is the loop termination condition correct?

• Is the number of loop executions "off by one" ?

• Where applicable, are the divisors tested for zero?

• Are imported data tested for validity?

• Do actual and formal interface parameters match?

• Are all variables used? Are all output variables assigned?

• Can statements placed in the loop be placed outside the loop?

• Are the labels unreferenced?

• Will the requirements of execution time be met?

• Are the local coding standards met?

Inspection are very effective for detecting defects and are widely used
in many commercial organizations. However, inspections also tends to be
very expensive as it uses time of many people. Consequently, for some code
segments the cost may not be justified. In these situations, instead of a
group inspection, review by one person can be performed. One approach for
doing this is to have the person inspecting the code apply some structured
code reading technique, which we briefly discuss now.

9.4. VERIFICATION 431

Code reading involves careful reading of the code by the reviewer to
detect any discrepancies between the design specifications and the actual
implementation. It involves determining the abstraction of a module and
then comparing it with its specifications. The process is the reverse of design.
In design, we start from an abstraction and move toward more details. In
code reading we start from the details of a program and move toward an
abstract description.

The process of code reading is best done by reading the code inside-out,
starting with the innermost structure of the module. First determine its ab
stract behavior and specify the abstraction. Then the higher-level structure
is considered, with the inner structure replaced by its abstraction. This pro
cess is continued until we reach the module or program being read. At that
time the abstract behavior of the program/module will be known, which can
then be compared to the specifications to determine any discrepancies.

Code reading is very useful and can detect errors often not revealed
by testing. Reading in the manner of stepwise abstraction also forces the
programmer to code in a manner conducive to this process, which leads to
well-structured programs. Code reading is sometimes called desk review.

9.4.2 Static Analysis

There are many techniques for verification now available that are not testing-
based, but directly check the programs through the aid of analysis tools.
This general area is called program checking. Three forms of checking are
becoming popular—^model checking, dynamic analysis, and static analysis.
(Program verification can also be treated as a form of program checking, but
is generally not performed through tools. We discuss it separately later in
the section.)

In model checking, an abstract model of the program being verified is first
constructed. The model captures those aspects that affect the properties
that are to be checked. The desired properties are also specified and a
model checker checks whether the model satisfies the stated properties. A
discussion of model checking is available in [56, 42]. In dynamic analysis,
the program is instrumented and then executed with some data. The value of
variables, branches taken, etc. are recorded during the execution. Using the
data recorded, it is evaluated if the program behavior is consistent with some
of the dynamic properties. A discussion of dynamic analysis is available in
[117, 3]. Perhaps the most widely used program checking technique is static
analysis, which is becoming increasingly popular with more tools becoming

432 9. CODING

available. In this section we focus primarily on static analysis.
Analysis of programs by methodically analyzing the program text is

called static analysis. Static analysis is usually performed mechanically by
the aid of software tools. During static analysis the program itself is not
executed, but the program text is the input to the tools. The aim of static
analysis is to detect errors or potential errors in the code and to generate
information that can be useful in debugging. (Static analyzers can also gen
erate information for documentation, but we will not discuss this aspect.)

Many compilers perform some limited static analysis. However, the anal
ysis performed by compilers focuses around code generation and not defect
detection. Static analysis tools, on the other hand, exphcitly focus on de
tecting errors. Two approaches are possible. The first is to detect patterns
in code that are "unusual" or "undesirable" and which are likely to represent
defects. The other is to directly look for defects in the code, that is, look for
those conditions that can cause programs to fail when executing.

In either case, a static analyzer, as it is trying to identify defects (i.e.
which can cause failures on execution) without running the code but only by
analyzing the code, sometimes identifies situations as errors which are not
actually errors (i.e. false positives), and sometimes fails to identify some er
rors. These limitations of a static analyzer is characterized by its soundness
and completeness. Soundness captures the occurrence of false positives
in the errors the static analyzer identifies, and completeness characterizes
how many of the existing errors are missed by the static analyzer. As full
soundness and completeness is not possible, the goal is to have static ana
lyzers be as sound and as complete as possible. Usually there is a trade off
involved—a higher level of completeness often implies less soundness (i.e.,
more false positives). Due to imperfect soundness, the errors identified by
static analyzers are actually "warnings"—the program possibly has a defect,
but there is a possibihty that the warning may not be a defect.

The first form of static analysis is looking for unusual patterns in code.
This is often done through data flow analysis and control flow analysis. One
of the early approaches focusing of data flow anamolies is described in [63].
Here, our discussion is based on checkers described in [150], which identify
redundancies in the programs. These redundancies usually go undetected
by the compiler, and often represent errors caused due to carelessness in
typing, lack of clear understanding of the logic, or some other reason. At
the very least, presence of such redundancies imphes poor coding. Hence, if
a program has these redundancies it is a cause of concern, and their presence
should be carefully examined. Some of the redundancies that the checkers

9.4. VERIFICATION 433

identify are:

• Idempotent operations

• Assignments that were never read

• Dead code

• Conditional branches that were never taken

Idempotent operations occur in situations hke when a variable is assigned
to itself, divided by itself, or performs a boolean operation with itself. Re
dundant assignments occur when a variable is assigned some value but the
variable is not used after the assignment, that is, either the function exits
or a new assignment is done without using the variable. Dead code occurs
when there is a piece of code that cannot be reached in any path and conse
quently will never be executed. Redundant conditionals occur if a branching
construct contains a condition that is always true or false, and hence is
redundant. All these situations represent redundancies in programs that
should normally not occur in well thought out programs. Hence, they are
candidates for presence of errors.

Some examples of errors identified by these checks will illustrate the use
of techniques. Small program fragments from large public domain software
systems which contained these redundancies are shown in Figure 9.8 [150].
In these examples the presence of these redundancies actually represents
some type of error in the program.

These checkers are eflBicient and can be applied on large code bases. Ex
periments on many widely used software systems have shown that the warn
ings generated by the static analyzer has reasonable levels of "false positives"
(about 20% to 50% of the warnings are false positives). Experiments also
showed that the presence of these redundancies correlate highly with actual
errors in programs.

The second approach for static analysis is to directly look for errors
in the programs—bugs that can cause failures when the programs execute.
These approaches focus on some types of defects that are otherwise hard to
identify or test. Many tools of this type are commercially available or have
been developed in-house by large software organizations. Here we base our
discussion on the tool called PREfix [28], which has been used on some very
large software systems and in some large commercial software companies.
As they directly look for errors, the level of false positives generated by this
tool tends to be low. Some of the errors PREfix identifies are:

434 9. CODING

/* idempotent operation */
for (i=0; i< size; i++) {

i f (p v [i] ! = - 1 && p v [i] >= v a l)
p v [i] = p v [i] + + ; / * e r r o r * /

>

/* Redundant assignment */
do {

if (signal_pending(current))
{ err = - ERRSTARTSYS; break; }

> while (condition);
return 0; /*value of err lost*/

/* Dead code •/
for (cl; c2; c3) {

if (C) {

break; }
else {

break; }
stmt; /*this is unreachable*/

/* Unnecessary check */
if (!(error && ... && ...))
{

return -1; }
if (error) /*redundant check*/

{ ... >
}

Figure 9.8: Examples of redundant operations.

• Using uninitialized memory

• Dereferencing uninitialized pointer

• Dereferencing NULL pointer

• Dereferencing invalid pointer

• Dereferencing or returning pointer to freed memory

• Leaking memory or some other resource like a file

9.4. VERIFICATION 435

1. #include <stdlib.h>
2. #include <stdio.h>

3. char *f(int size)
4. {
5 . char *result;

6. if (size>0)
7. result = (char *)malloc(size) ;
8. if (size==l)
9. return NULL;
10. result [0] = 0 ;
11 . return result ;
12. }

Figure 9.9: An example program.

• Returning pointer to local stack variable

• Divide by zero

As we can see, these are all situations that can cause failure of the soft
ware during execution. Also, as we have discussed earlier, some of these
errors are made commonly by programmers and are often hard to detect
through testing. In other words, many of these errors occur commonly and
are hard to detect, but can be detected easily and cheaply by the use of this
tool.

To identify these errors, PREfix simulates the execution of functions by
tracing some distinct paths in the function. As the number of paths can
be infinite, a maximum hmit is set on the number of paths that will be
simulated. As it turns out, most of the errors get detected within a limit of
about 100 paths. During simulation of the execution, it keeps track of the
memory state, which it also examines at the end of the path and reports the
memory problems it identifies. (As we can see from the list above, the focus
is quite heavily on memory related errors.)

For complete programs, it first simulates the lowest level functions in the
call graph, and then moves up the graph. For a called function, a model is
built by simulation, which is then used in simulation of the called function.
The model of a function consists of the list of external variables that affect
the function (parameters, global variables, etc.) or that the function affects
(return values, global variables, etc.), and a set of possible outcomes. Each

436 9. CODING

outcome consists of a guard which specifies the pre-condition for this out
come, constraints, and the result (which is essentially the post-conidition).
By simulating called functions and using their outcomes in the simulation of
a called function allows the tool to identify inter-function problems—their
experiments showed that more than 90% of the errors fall in this category
where more than one function is involved. Details of how the analysis is
done are given in the paper [28]. An example of the types of errors identified
will illustrate what the tool does. Consider the program given in Figure 9.9
[28]. The tool will generate three warnings for this program:

8: leaking memory (path: 5 6 7 8)
9: dereferencing uninitialized pointer 'result'

(path: 5 7 9)
9: dereferencing NULL pointer 'result'

(path: 5 6 7 9)

The first warning catches the error that if size is 1, then the allocated
memory is not freed, and hence we have a memory leak. The second warning
catches the error that if size is less than or equal to 0, then line 6 will not
be executed, and hence result is not defined and we access an uninitialized
pointer. If this path is followed in an execution of the program, a runtime
error will be generated at line 9. Similarly, if malloc() cannot allocate mem
ory and returns a NULL pointer in line 6, then there will be a runtime error
of trying to dereference a NULL pointer at line 9.

All these are runtime errors that are detected not by executing the pro
gram but by analyzing the program text. Besides the nature of the error
found, the tool gives the path in whose execution the tool found the error—
this helps the programmer in understanding under which situation the error
occurs. The tool provides a lot more information to help the programmer
clearly identify the error.

As static analysis is performed with the help of software tools, it is a
very cost-effective way of discovering errors. An added advantage of static
analysis is that it detects the errors directly and not just the presence of
errors, as is the case with testing. Consequently, little debugging is needed
after the presence of error is detected. The main issue with using these
tools is the presence of "false positives" in the warnings the tool generates.
The presence of false positives means that a programmer has to also exam
ine the false positives and then discard them, leading to wastage of effort.
More importantly, they cause a doubt in the minds of the programmer on
the warnings which can lead to even correct errors being discarded as false
positives. Still, the use of static analysis is increasing in commercial setups

9.4. VERIFICATION 437

as they provide a cost effective and scalable technique of detecting errors in
the code which are often hard to detect through testing.

The general area of program checking is an active area of research. There
are many commercial and public domain tools available for performing dif
ferent types of analysis.

9.4.3 Proving Correctness

Many techniques for verification aim to reveal errors in the programs, be
cause the ultimate goal is to make programs correct by removing the errors.
In proof of correctness, the aim is to prove a program correct. So, correct
ness is directly established, unlike the other techniques in which correctness
is never really established but is implied (and hoped) by the absence of de
tection of any errors. Proofs are perhaps more valuable during program
construction, rather than after the program has been constructed. Prov
ing while developing a program may result in more reliable programs that
can be proved more easily. Proving a program not constructed with formal
verification in mind can be quite difficult.

Any proof technique must begin with a formal specification of the pro
gram. No formal proof can be provided if what we have to prove is not
stated or is stated informally in an imprecise manner. So, first we have to
state formally what the program is supposed to do. A program will usually
not operate on an arbitrary set of input data and may produce valid results
only for some range of inputs. Hence, it is often not sufficient merely to state
the goal of the program, but we should also state the input conditions in
which the program is to be invoked and for which the program is expected
to produce valid results. The assertion about the expected final state of
a program is called the post-condition of that program, and the assertion
about the input condition is called the pre-condition of the program. Often,
determining the pre-condition for which the post-condition will be satisfied
is the goal of proof. Here we will briefly describe a technique for proving
correctness called the axiomatic method, which was proposed by Hoare [86].
It is often also called the Floyd-Hoare proof method, as it is based on Floyd's
inductive assertion technique.

The Axiomatic Approach

In principle, all the properties of a program can be determined statically from
the text of the program, without actually executing the program. The first

438 9. CODING

requirement in reasoning about programs is to state formally the properties
of the elementary operations and statements that the program uses. In the
axiomatic model of Hoare [86], the goal is to take the program and construct
a sequence of assertions, each of which can be inferred from previously proved
assertions and the rules and axioms about the statements and operations in
the program. For this, we need a mathematical model of a program and all
the constructs in the programming language. Using Hoare's notation, the
basic assertion about a program segment is of the form:

P{S}Q.

The interpretation of this is that if assertion P is true before executing S, then
assertion Q will be true after executing S, if the execution of S terminates.
Assertion P is the pre-condition of the program and Q is the post-condition.
These assertions are about the values taken by the variables in the program
before and after its execution. The assertions generally do not specify a
particular value for the variables, but they specify the general properties of
the values and the relationships among them.

To prove a theorem of the form P{S}Q, we need some rules and axioms
about the programming language in which the program segment S is writ
ten. Here we consider a simple programming language, which deals only
with integers and has the following types of statements: (1) assignment, (2)
conditional statement, and (3) an iterative statement. A program is consid
ered a sequence of statements. We will now discuss the rules and axioms for
these statements so that we can combine them to prove the correctness of
programs.

Axiom of Assignment: Assignments are central to procedural lan
guages. In our language no state change can be accomplished without the
assignment statement. The axiom of assignment is also central to the ax
iomatic approach. In fact, only for the assignment statement do we have an
independent axiom; for the rest of the statements we have rules. Consider
the assignment statement of the form

x:=f

where x is an identifier and / is an expression in the programming language
without any side effects. Any assertion that is true about x after the assign
ment must be true of the expression / before the assignment. In other words,
because after the assignment the variable x contains the value computed by
the expression / , if a condition is true after the assignment is made, then the

9.4, VERIFICATION 439

condition obtained by replacing a; by / must be true before the assignment.
This is the essence of the axiom of assignment. The axiom is stated next:

Pf{x := f}P

P is the post-condition of the program segment containing only the assign
ment statement. The pre-condition is Pf, which is an assertion obtained by
substituting / for all occurrences of x in the assertion P. In other words, if Pf
is true before the assignment statement, P will be true after the assignment.

This is the only axiom we have in Hoare's axiomatic model besides the
standard axioms about the mathematical operators used in the language
(such as commutativity and associativity of the + operator). The reason
that we have only one axiom for the assignment statement is that this is
the only statement in our language that has any effect on the state of the
system, and we need an axiom to define what the effect of such a statement
is. The other language constructs, like alternation and iteration, are for flow
control, to determine which assignment statements will be executed. For
such statements rules of inference are provided.

Rule of Composition: Let us first consider the rule for sequential
composition, where two statements SI and S2 are executed in sequence.
This rule is called rule of composition^ and is shown next:

P{ S1}Q,Q{S2}R
P{S1]S2}R

The explanation of this notation is that if what is stated in the numerator
can be proved, the denominator can be inferred. Using this rule, if we can
prove P{S1}Q and Q{S2}R, we can claim that if before execution the pre
condition P holds, then after execution of the program segment S1;S2 the
post-condition R will hold. In other words, to prove P{S1;S2}R, we have
to find some Q and prove that P{S1}Q and Q{S2}R. This rule is dividing
the problem of determining the semantics of a sequence of statements into
determining the semantics of individual statements. In other words, from
the proofs of simple statements, proofs of programs (i.e., sequence of state
ments) will be constructed. Note that the rule handles a strict sequence of
statements only (recall the earlier discussion on structured programming).

Rule for Alternate Statement: Let us now consider the rules for
an if statement. For formal verification, the entire if statement is treated
as one construct, the semantics of which have to be determined. This is the
way in which other structured statements are also handled. There are two

440 9. CODING

types of if statement, one with an e l se clause and one without. The rules
for both are given next:

PAB{S}Q,PA^B=^Q
P {if B then S}Q

PAB{S1}Q,PAB{S2}Q
P{if B then SI else S2}Q

Let us consider the if-then-else statement. We want to prove a post-condition
for this statement. However, depending on the evaluation of B, two different
statements can be executed. In both cases the post-condition must be sat
isfied. Hence if we can show that starting in the state where P A B is true
and executing SI or starting in a state where PA ~ -B is true and executing
the statement S2, both lead to the post-condition Q, then the following can
be inferred: if the if-then-else statement is executed with pre-condition P,
the post-condition Q will hold after execution of the statement. Similarly,
for the if-then statement, if B is true then S is executed; otherwise the con
trol goes straight to the end of the statement. Hence, if we can show that
starting from a state where P A B is true and executing S leads to a state
where Q is true and before the if statement if PA ~ B imphes Q, then we
can say that starting from P before the if statement we will always reach a
state in which Q is true.

Rules of Consequence: To be able to prove new theorems from the
ones we have already proved using the axioms, we require some rules of
inference. The simplest inference rule is that if the execution of a program
ensures that an assertion Q is true after execution, then it also ensures that
every assertion logically implied by Q is also true after execution. Similarly,
if a pre-condition ensures that a post-condition is true after execution of a
program, then every condition that logically implies the pre-condition will
also ensure that the post-condition holds after execution of the program.
These are called rules of consequence, and they are formally stated here:

P{S}R,R^Q
P{S}Q

P=> R,R{S}Q
P{S}Q

Rule of Iteration: Now let us consider iteration. Loops are the trickiest
construct when dealing with program proofs. We will consider only the

9.4. VERIFICATION 441

while loop of the form while B do S. We have to determine the semantics
of the whole construct.

In executing this loop, first the condition B is checked. If B is false, S
is not executed and the loop terminates. If B is true, S is executed and B
is tested again. This is repeated until B evaluates to false. We would like
to be able to make an assertion that will be true when the loop terminates.
Let this assertion be P. As we do not know how many times the loop will
be executed, it is easier to have an assertion that will hold true irrespective
of how many times the loop body is executed. In that case P will hold true
after every execution of statement S, and will be true before every execution
of S, because the condition that holds true after an execution of S will be the
condition for the next execution of S (if S is executed again). Furthermore,
we know that the condition B is false when the loop terminates and is true
whenever S is executed. These properties have been used in the rule for
iteration:

PAB{S}P
P{while B do S}PA - B

As the condition P is unchanging with the execution of the statements in
the loop body, it is called the loop invariant Finding loop invariants is
the thorniest problem in constructing proofs of correctness. One method for
getting the loop invariant that often works is to extract ~B from the post
condition of the loop and try the remaining assertion as the loop invariant.
Another method is to try replacing the variable that binds the loop execution
with the loop counter. Thus if the loop has a counter i, which goes from 0
to n, and if the post-condition of the loop contains n, then replace n by i
and try the assertion as a loop invariant.

An Example

Although in a theorem of the form P{S}Q, we say that if P is true at the
start and the execution of S terminates, Q will be true after executing S,
to prove a theorem of this sort we work backwards. That is, we do not
start with the pre-condition; we work our way to the end of the program
to determine the post-condition. Instead we start with the post-condition
and work our way back to the start of the program, and determine the pre
condition. We use the axiom of assignment and other rules to determine the
pre-condition of a statement for a given post-condition. If the pre-condition
we obtain by doing this is implied by P, then by rules of consequence we
can say that P{S}Q is a theorem. Let us consider a simple example of

442 9. CODING

(*
1.
2.
3.
4.
5.
6.
7.
8.

Remainder of x/y *)
begin

q : = 0 ;
r := x;
while r > y do
begin

r : - r - y ;
q : = q + l

end;
9.end.

Figure 9.10: Program to determine the remainder.

determining the remainder in integer division, by repeated subtraction. The
program is shown in Figure 9.10.

The pre-condition and post-condition of this program are given as

P^{x>OAy>0}

Q = {x = qy + rAO<r<y}

We have to prove that P {Program} Q is a theorem. We start with Q.
The first statement before the end of the program is the loop. We invent
the loop invariant by removing ~B from the Q, which is also the output
assertion of the loop. For this we factor Q into a form like /A ~B , then
choose I as the invariant. For this program we have ~ B = {r < y},
and Q = {x — qy -{- r A 0 < r A r < y}, hence our trial invariant I is
{x = qy -\- r AO < r}.

Let us now see if this invariant is appropriate for this loop, that is,
starting with this, we get a pre-condition of the form I A B. Starting with
I, we use the assignment axiom and the pre-condition for statement 7 is

x = {q -{- l)y -\- r AO < r{q := q + 1} /

Using the assignment axiom for statement 6, we get the pre-condition for 6
as

X = {q + l)y + {r - y) AO < (r - y),

which is the same ^.sx — qy-\-rAy<r. Using the rule of composition (for
statements 6 and 7), we can say

x = qy + rAy< r{r := r - y]q := q+ 1} / .

9.4. VERIFICATION 443

Because x = qy-\-rAy<r=^lAB^hy rule of consequence and the rule for
the while loop, we have

/{while loop in programjlA ^ (r > y)

where I is a: = ^y + r A 0 < r.
Now let us consider the statements before the loop (i.e., statements 2

and 3). The post-condition for these statements is I. Using the axiom of
assignment, we first replace r with rr, and then we replace q with 0 to get

{x = xAO <x) =^ {0<x).

By composing these statements with the while statement, we get

0 < x{the entire program}/A ~ B.

Because, (/A ^ B) is the post-condition Q of the program and 0<x is the
pre-condition, we have proved the program to be correct.

Discussion

In the axiomatic method, to prove P{S}Q, we assume that S will terminate.
So, by proving that the program will produce the desired post-condition
using the axiomatic method, we are essentially saying that if the program
terminates, it will provide the desired post-condition. The axiomatic proof
technique cannot prove whether or not a program terminates. For this rea
son, the proof using the axiomatic technique is called the proof of partial
correctness.

This is in contrast to the proof of total correctness, where termination
of a program is also proved. Termination of programs is of considerable
interest for obvious reason of avoiding infinite loops. With the axiomatic
method, additional techniques have to be used to prove termination. One
common method is to define a well-ordered set that has a smahest member
and then add an expression to the assertions that produces a value in the
set. If after an execution of the loop body, it can be shown that the value of
the expression is less than it was on the entry, then the loop must terminate.
There are other methods of proving correctness that aim to prove total
correctness.

Proofs of correctness have obvious theoretical appeal and a considerable
body of literature exists in the area. Despite this, the practical use of these
formal methods of verification has been hmited. In the software development

444 9. CODING

industry proving correctness is not generally used as a means of verification.
Their use, at best, is limited to proving correctness of some critical modules.

There are many reasons for the lack of general use of formal verification.
Constructing proofs is quite hard, and even for relatively modest problems,
proofs can be quite large and difficult to comprehend. As much of the
work must be done manually (even if theorem provers are available), the
techniques are open to clerical errors. In addition, the proof methods are
usually limited to proving correctness of single modules. When procedures
and functions are used, constructing proofs of correctness becomes extremely
hard. In essence, the technique of proving correctness does not scale up very
well to large programs. Despite these shortcomings, proof techniques offer
an attractive formal means for verification and hold promise for the future.

9.4.4 Unit Testing

Unit testing is another approach for verifying the code that a programmer
is written. Unit testing is like regular testing where programs are executed
with some test cases except that the focus is on testing smaller programs
or modules called units. In the programming processes we discussed earlier,
the testing was essentially unit testing. A unit may be a function, a small
collection or functions, a class, or a small collection of classes. Most often, it
is the unit a programmer is writing code for, and hence unit testing is most
often done by a programmer to test the code that he or she has written.
Testing, however, is a general technique that can also be used for vahdating
complete systems. We will discuss testing in more detail in the next chapter.

Testing of modules or software systems is a difficult and challenging task.
Selection of test cases is a key issue in any form of testing. We will discuss
the problem of test case selection in detail in the next chapter when we dis
cuss testing. For now, it suffices that during unit testing the tester, who is
generally the programmer, will execute the unit for a variety of test cases
and study the actual behavior of the units being tested for these test cases.
Based on the behavior, the tester decides whether the unit is working cor
rectly or not. If the behavior is not as expected for some test case, then the
programmer finds the defect in the program (an activity called debugging),
and fixes it. After removing the defect, the programmer will generally exe
cute the test case that caused the unit to fail again to ensure that the fixing
has indeed made the unit behave correctly.

For a functional unit, unit testing will involve testing the function with
different test data as input. In this, the tester will select different types of

9A. VERIFICATION 445

test data to exercise the function. Typically, the test data will include some
data representing the normal case, that is, the one that is most likely to
occur. In addition, test data will be selected for special cases which must be
dealt with by the program and which might result in special or exceptional
result.

An issue with unit testing is that as the unit being tested is not a complete
system but just a part, it is not executable by itself. Furthermore, in its
execution it may use other modules that have not been developed yet. Due
to this, unit testing often requires drivers or stubs to be written. Drivers
play the role of the "calling" module and are often responsible for getting
the test data, executing the unit with the test data, and then reporting the
result. Stubs are essentially "dummy" modules that are used in place of the
actual module to facilitate unit testing. So, if a module M uses services from
another module M' that has not yet been developed, then for unit testing
M, some stub for M' will have to be written so M can invoke the services
in some manner on M' so that unit testing can proceed. The need for stubs
can be avoided, if coding and testing proceeds in a bottom-up manner—the
modules at lower levels are coded and tested first such that when modules
at higher levels of hierarchy are tested, the code for lower level modules is
already available.

If incremental coding is practiced, as discussed above, then unit testing
needs to be performed every time the programmer adds some code. Clearly,
for this, automated scripts for unit testing are essential. With automated
scripts, whether the programs pass the unit tests or not can be determined
simply by executing a script. For incremental testing it is desirable that the
programmer develops this unit testing script and keeps enhancing it with
additional test cases as the code evolves. That is, instead of executing the
unit by executing it and manually inputting the test data, it is better if
execution of the unit with the chosen test data is all programmed. Then
this program can be executed every time testing needs to be done. Some
tools are available to facilitate this.

In object-oriented programs, the unit to be tested is usually an object
of a class. Testing of objects can be defined as the process of exercising
the routines provided by an object with the goal of uncovering errors in the
implementation of the routines or state of the object or both [137]. For an
object, we can test a method using approaches for testing functions, but we
cannot test the object using these approaches, as the issue of state comes in.
To test an object, we also have to test the interaction between the methods
provided on the object.

446 9. CODING

State-based testing is a technique that can be used for unit testing an
object. In the simplest form, a method is tested in ah possible states that the
object can assume, and after each invocation the resulting state is checked
to see whether or not the method takes the object under test to the expected
state. For state-based testing to be practical, the set of states in which a
method is tested has to be limited. State modeling of classes can help here
[24, 64], or the tester can determine the important states of the object. Once
the different object states are decided, then a method is tested in all those
states that form valid input for it. We will discuss selection of test cases
based on a state model in the next chapter.

To test a class, the programmer needs to create an object of that class,
take the object to a particular state, invoke a method on it, and then check
whether the state of the object is as expected. This sequence has to be exe
cuted many times for a method, and has to be performed for all the methods.
All this is facilitated if we use frameworks like the Junit (www.junit.org).
Though Junit itself is for Java, similar frameworks have been developed for
other languages like C++ and C # . Here we briefly describe how Junit can
be used for testing a class and give an example.

For testing of a class CUT (class under test) with Junit, the tester
has to create another class which inherits from Junit (e.g., c l a s s CUTtest
extends Juni t) . The Junit framework has to be imported by this class.
This class is the driver for testing CUT. It must have a constructor in which
the objects that are needed for the test cases are created; a setUp() method
which is typically used for creating any objects and setting up values before
executing a test case; a suite(), and a main () that executes the suite() using
a TestRunner provided by Junit. Besides these methods, all other methods
are actually test cases.

Most of these methods are often named t e s txxxxO. Such a method
typically focuses on testing a method under some state (typically the name
of the method and/or the state is contained in xxx). This method first sets
up the state if not already setup (by setup()), and then executes the method
to be tested. To check the results, Junit provides two special methods As-
sertTrue(boolean_expression) and AssertFalse(boolean_expression). By us
ing functions and having a logical expression on the state of the object, the
tester can test if the state is correct or not. If all the assertions in all the
methods succeed, then Junit declares that the test has passed. If any as
sert statements fail, Junit declares that testing has failed and specifies the
assertion that has failed.

To get an idea of how it works, consider the testing of a class Matrix.Java,

http://www.junit.org

9.4. VERIFICATION 447

class Matrix {

private double [][] matrix; //Matrix elements

private int row, col; //Order of Matrix

public MatrixO; // Constructor

public Matrix(int i,int j); // Sets #rows and #cols

public Matrix(int i,int j,double [][] a); // Sets from 2D array

public Matrix(Matrix a); //Constructs matrix from another

public void readO; //read elts from console and set up matrix

public void setElement(int i,int j,double value); // set elt i,j

public int noOfRowsO; // returns no of rows

public int noOfColsO; // returns no of cols

public Matrix add(Matrix a); // add a to matrix

public Matrix sub(Matrix a); // subtracts a from matrix

public Matrix mul(Matrix b); // multiplies b to matrix

public Matrix transposeO; // transposes the matrix

public Matrix minor(int a, int b); // returns a x b sub-matrix

public double determinant(); // determinant of the matrix

public Matrix inverse() throws Exception; // inverse of the matrix

public void print(); // prints matrix on console

public boolean equals(Matrix m); // checks for equality with m

Figure 9.11; Class Matrix.java

which provides standard operations on matrices. The main attributes of the
class and the main methods are given in Figure 9,11.

For unit testing the Matrix class, clearly we need to test standard op
erations like creation of a matrix, setting of values, etc. We also need to
test whether the operations like add, subtract, multiply, determinant are
performing as expected. Each test case we want to execute is programmed
by setting the values and then performing the operation. The result of the
operation is checked through the assert statements. For example, for testing
add(), we create a method testAdd() in which a matrix is added to another.
The correct result is stored apriori in another matrix. After addition, it is
checked if the result obtained by performing add() is equal to the correct
result. The method for this is shown in Figure 9.12. The programmer may
want to perform more tests for add(), for which more test methods will be
needed. Similarly, methods are written for testing other methods. Some of
these tests are also shown in Figure 9.12. The complete script has over 30
assertions spread over more than 20 test methods. The complete code for
classes Matrix.java and MatrixTest.java can be found on the book's Web

448 9. CODING

import junit.framework.*;

public class MatrixTest extends TestCase {

Matrix A, B, C, D, E, res; /* test matrices */

public MatrixTest(String testcase)

super(testcase);

double a[][]=new double [] [] {{9 , 6} , {7 , 5}} ;
A = new Matrix(2,2,a);
double b[][]=new double [] [] {{16 , 21} , {3 , 12}> ;
B = new Matrix(2,2,b);
double d[][]=new double [] [] {{2 , 2 , 3} , {4 , 8 , 6} , {7 , 8 , 9}> ;
res=new Matrix();

>

public void testAddO
{

double c[][]=new double [] [] {{25 , 27} , {10 ,17}} ;
C = new Matrix(2,2,c);
res=A.add(B);
assertTrue(res!=null);

assertTrue(C.equals(res));

}

public void testSetGet ()
{

C=new Matrix(2,2);
for (int i=0;i<2;i++)

for (int j=0;j<2;j++)
C.setElement(i,j,A.getElement(i,j));

assert!rue(C.equals(A));
}

public void testMulO
{

double c[][]=new double [][] {{162 , 261} , {127 , 207}} ;
C = new Matrix(2,2,c);
res=A.mul(B);
assertTrue(res!=null);
assertTrue(C.equals(res));

}

Figure 9.12: Testing the matrix class with Junit.

9.4. VERIFICATION 449

public void testTranspose()
{

res=A.transpose ();
res=res.transpose();

assertTrue(res.equals(A));
}

public void testInverseCorrectness()
{

try{
res=null;
res=A.inverse();
res=res.mul(A);
d o u b l e d d [] [] = n e w d o u b l e [] [] {{1 , 0} , {0 , 1 } } ;
M a t r i x DD=new M a t r i x (2 , 2 , d d) ;
a s s e r t ! r u e (r e s . e q u a l s (D D)) ;

}
catch (Exception e)
{assertTrue(false);

Figure 9.12: Testing the matrix class with Junit (contd.)

site.
As we can see, Junit encourages automated testing. Not only is the exe

cution of test cases automated, the checking of the results is also automated.
This makes running tests fully automatic. By building testing scripts, and
continuously updating them as the class evolves, we always have a test script
which can be run quickly. So, whenever we make any changes to the code,
we can quickly check if the past test cases are running on the click of a
button. This becomes almost essential if incremental coding or test driven
development (discussed earlier in the chapter) is to be practiced.

9.4.5 Combining Different Techniques

After discussing various techniques for verification it is natural to ask how
these techniques compare with each other, and how they should be combined
for applying it on a project. We will first address the comparison issue. For
this purposes we consider two approaches to testing—white box or structural
testing separately. We will discuss these in detail in next chapter. For now,

450 9. CODING

Defect
Computational
Logic
I/O
Data handling
Interface
Data Definition
Database

Code
Review
Med
Med
High
High
High
Med
High

Static
Analysis
Med
Med
Med
High
High
Med
Low

Technique
Proof White box

Test
High High
High High
Low Med
Med Low
low High
Med Low
Low Med

Black box
Test
Med
Med
High
High
Med
Med
Med

Figure 9.13: Comparison of the different techniques.

it is sufficient to say that black box testing is done without the knowledge
of the internals of the programs while white box testing is driven by the
internal structure of the programs.

By effectiveness, we mean the fault detecting capability. The effectiveness
of a technique for testing a particular software will, in general, depend on
the type of errors that exist in the software, as, in general, no one strategy
does better than another strategy for all types of errors. Based on the
nature of the techniques one can make some general observations about the
effectiveness for different types of errors. One such comparison is given in
Figure 9.13 [52].

As we can see, according to this comparison, different techniques have
different strengths and weaknesses. For example, white box testing, as one
would expect, is good for detecting logic errors, but not very good for de
tecting data handling errors. For data handling type errors, static analysis
is quite good. Similarly, black box testing is good for input/output errors
as it focuses on the external behavior, but it is not as good for detecting
logic errors. As the figure shows, no one technique is good at detecting all
types of errors, and hence no one technique can suffice for proper verification
and validation. If high rehabihty is desired for the software, a combination
of these techniques will have to be used. From the table, one can see that
if code reviews, white box testing, and black box testing are all used, then
together they have a high capability of detecting errors in all the categories
described earher.

Another way of measuring effectiveness is to consider the "cost effective
ness" of different strategies, that is, the cost of detecting an error by using
a particular strategy. And the cost includes all the effort required to plan,

9.5. METRICS 451

execute the verification approach, and evaluate the results. In cost effec
tiveness, static analysis fares the best, as without any human effort it can
detect anomalies that have a high probability of containing errors. However,
as many of these tools also have "false positives" which have to be evaluated
before they can be identified as false positives, the effort required is not as
small as it may look.

Code reviews can also be cost effective as they find faults directly, unlike
in testing where only the failure is detected and the fault has to be found
through debugging. Furthermore, no test case planning, test case generation,
or test case execution is needed. However, reviews require considerable effort
by a group of reviewers reviewing the code. Testing tends to be very cost
effective for detecting the earher defects, but as the remaining defects reduce,
uncovering defects by testing becomes much harder. Formal verification is
generally the most expensive as it is mostly human effort, and quite intense.

Let us now discuss how these techniques can be combined. It is clear from
the comparison in Figure 9.13 and from the nature of white box and black
box testing approaches, that the two basic approaches to testing are actually
complementary. One looks at one program from the outside, the other from
the inside. Hence, for effective testing of programs, both techniques should
be applied. An approach to combine them is to start with selecting a set of
test cases for performing the black box testing. These test cases will provide
some coverage but may not provide the desired level of coverage. The set of
test cases is then augmented with additional test cases so that the desired
coverage level is achieved.

Overall, first the available tools should be applied first, as they are prob
ably the least expensive in terms of detecting defects. If unit testing and
inspections both are to be done, then which one should be done first will
probably depend on the situation. Generally, it is believed that inspections
should be done first and then unit testing should be done. However, as in
spections tend to be expensive and may be done only on critical code, it may
be appropriate if inspections are done after some amount of unit testing has
been done. Proofs of correctness are very labor intensive and are applied
only for very critical programs.

9.5 Metrics

Traditionally, work on metrics has focused on the final product, namely the
code. In a sense, all metrics for intermediate products of requirements and

452 9. CODING

design are basically used to ensure that the final product has a high quality
and the productivity of the project stays high. That is, the basic goal of
metrics for intermediate products is to predict or get some idea about the
metrics of the final product. For the code, the most commonly used metrics
are size, complexity, and reliability. We will discuss reliability in the next
chapter, as most reliability models use test data to assess reliability. Here
we discuss a few size and complexity measures.

9.5.1 Size M e a s u r e s

Size of a product is a simple measure, which can be easy to calculate. The
main reason for interest in size measures is that size is the major factor that
affects the cost of a project. Size in itself is of little use; it is the relationship
of size with the cost and quality that makes size an important metric. It is
also used to measure productivity during the project (e.g., KLOC per person-
month). Final quality delivered by a process is also frequently normalized
with respect to size (number of defects per KLOC). For these reasons, size
is one of the most important and frequently used metrics.

The most common measure of size is delivered lines of source code, or
the number of lines of code (LOG) finally delivered. The trouble with LOG
is that the number of lines of code for a project depends heavily on the
language used. For example, a program written in assembly language will
be large compared to the same program written in a higher-level language, if
LOG is used as a size measure. Even for the same language, the size can vary
considerably depending on how lines are counted. Despite these deficiencies,
LOG remains a handy and reasonable size measure that is used extensively.
Gurrently, perhaps the most widely used counting method for determining
the size is to count non-comment, non-blank lines only.

Halstead [79] has proposed metrics for length and volume of a program
based on the number of operators and operands. In a program we define the
following measurable quantities:

• ni is the number of distinct operators

• n2 is the number of distinct operands

• / i J is the number of occurrences of the j * ^ most frequent operator

• f2,j is the number of occurrences of the j ^ ^ most frequent operand

9.5. METRICS 453

Then the vocabulary n of a program is defined as

n = ni +712.

With the measurable parameters listed earlier, two new parameters are de

fined:

Ni is the total occurrences of different operators in the program and N2 is
the total occurrences of different operands. The length of the program is
defined as

N = Ni^N2.

From the length and the vocabulary, the volume V of the program is defined
as

V = Nlog2{n).

This definition of the volume of a program represents the minimum number
of bits necessary to represent the program. Log2{n) is the number of bits
needed to represent every element in the program uniquely, and N is the
total occurrences of the different elements. Volume is used as a size metric
for a program. Experiments have shown that the volume of a program is
highly correlated with the size in LOG.

9.5.2 C o m p l e x i t y M e t r i c s

The productivity, if measured only in terms of lines of code per unit time,
can vary a lot depending on the complexity of the system to be developed.
Clearly, a programmer will produce a lesser amount of code for highly com
plex system programs, as compared to a simple application program. Sim
ilarly, complexity has great impact on the cost of maintaining a program.
To quantify complexity beyond the fuzzy notion of the ease with which a
program can be constructed or comprehended, some metrics to measure the
complexity of a program are needed.

Some metrics for complexity were discussed in Chapter 8. The same met
rics that are applicable to detailed design can be apphed to code. One such
complexity measure discussed in the previous chapter is cydomatic complex
ity, in which the complexity of a module is the number of independent cycles
in the flow graph of the module. A number of metrics have been proposed
for quantifying the complexity of a program [80], and studies have been done
to correlate the complexity with maintenance effort. Here we discuss a few
more complexity measures. Most of these have been proposed in the context
of programs, but they can be applied or adapted for detailed design as well.

454 9. CODING

Size Measures

A complexity measure tries to capture the level of difficulty in understanding
a module. In other words, it tries to quantify a cognitive aspect of a program.
It is well known that, in general, the larger a module, the more difficult it is to
comprehend. Hence, the size of a module can be taken as a simple measure
of the complexity of the module. It can be seen that, on an average, as
the size of the module increases, the number of decisions in it are likely to
increase. This means that, on an average, as the size increases the cyclomatic
complexity also increases. Though it is clearly possible that two programs
of the same size have substantially different complexities, in general, size is
quite strongly related to some of the complexity measures.

Halstead's Measure

Halstead also proposed a number of other measures based on his software
science [79]. Some of these can be considered complexity measures. As
given earher, a number of variables are defined in software science. These
are ni (number of unique operators), n2 (number of unique operands), Ni
(total frequency of operators), and Â2 (total frequency of operands). As
any program must have at least two operators—one for function call and
one for end of statement—the ratio n i /2 can be considered the relative level
of difficulty due to the larger number of operators in the program. The
ratio N2/n2 represents the average number of times an operand is used. In
a program in which variables are changed more frequently, this ratio will
be larger. As such programs are harder to understand, ease of reading or
writing is defined as

^ ^ ni * Â2
2 * 712 '

Halstead's complexity measure focused on the internal complexity of a mod
ule, as does McCabe's complexity measure. Thus the complexity of the
module's connection with its environment is not given much importance. In
Halstead's measure, a module's connection with its environment is reflected
in terms of operands and operators. A call to another module is considered
an operator, and all the parameters are considered operands of this operator.

Live Variables

In a computer program, a typical assignment statement uses and modifies
only a few variables. However, in general the statements have a much larger

9.5. METRICS 455

context. That is, to construct or understand a statement, a programmer
must keep track of a number of variables, other than those directly used in
the statement. For a statement, such data items are called live variables.
Intuitively, the more live variables for statements, the harder it will be to
understand a program. Hence, the concept of live variables can be used as
a metric for program complexity.

First let us define live variables more precisely. A variable is considered
live from its first to its last reference within a module, including all state
ments between the first and last statement where the variable is referenced.
Using this definition, the set of live variables for each statement can be com
puted easily by analysis of the module's code. The procedure of determining
the live variables can easily be automated.

For a statement, the number of live variables represents the degree of dif
ficulty of the statement. This notion can be extended to the entire module
by defining the average number of live variables. The average number of live
variables is the sum of the count of live variables (for all executable state
ments) divided by the number of executable statements. This is a complexity
measure for the module.

Live variables are defined from the point of view of data usage. The logic
of a module is not explicitly included. The logic is used only to determine
the first and last statement of reference for a variable. Hence, this concept
of complexity is quite different from cyclomatic complexity, which is based
entirely on the logic and considers data as secondary.

Another data usage-oriented concept is span, the number of statements
between two successive uses of a variable. If a variable is referenced at n dif
ferent places in a module, then for that variable there are (n — 1) spans. The
average span size is the average number of executable statements between
two successive references of a variable. A large span implies that the reader
of the program has to remember a definition of a variable for a larger period
of time (or for more statements). In other words, span can be considered a
complexity measure; the larger the span, the more complex the module.

Knot Count

A method for quantifying complexity based on the locations of the control
transfers of the program has been proposed in [149]. It was designed largely
for FORTRAN programs, where explicit transfer of control is shown by the
use of goto statements. A programmer, to understand a given program,
typically draws arrows from the point of control transfer to its destination,

456 9. CODING

helping to create a mental picture of the program and the control transfers
in it. According to this metric, the more intertwined these arrows become,
the more complex the program. This notion is captured in the concept of a
"knot."

A knot is essentially the intersection of two such control transfer arrows.
If each statement in the program is written on a separate line, this notion
can be formalized as follows. A jump from line a to line b is represented by
the pair (a, b). Two jumps (a, b) and (p, q) give rise to a knot if either min
(a, b) < min (p, q) < max (a, b) and max (p, q) > max (a, b); or min (a,
b) < max (p, qa) < max (a, b) and min (p, q) < min (a, b).

Problems can arise while determining the knot count of programs using
structured constructs. One method is to convert such a program into one
that explicitly shows control transfers and then compute the knot count. The
basic scheme can be generalized to flow graphs, though with flow graphs only
bounds can be obtained.

Topological Complexity

A complexity measure that is sensitive to the nesting of structures has been
proposed in [31]. Like cyclomatic complexity, it is based on the flow graph
of a module or program. The complexity of a program is considered its
maximal intersect number min.

To compute the maximal intersect, a flow graph is converted into a
strongly connected graph (by drawing an arrow from the terminal node to
the initial node). A strongly connected graph divides the graph into a flnite
number of regions. The number of regions is (edges - nodes + 2). If we draw
a line that enters each region exactly once, then the number of times this
line intersects the arcs in the graph is the maximal intersect min, which is
taken to be the complexity of the program.

9.6 Summary

The goal of the coding activity is to develop correct programs that are also
clear and simple. As reading programs is a much more common activity
than writing programs, the goal of the coding activity is to produce simple
programs that are easy to understand and modify and that are free from
errors. Ease of understanding and freedome from defects are the key proper
ties of high quality code. The focus of this chapter is to discuss approaches
that can be used for developing high quality code.

9.6. SUMMARY 457

We discussed some principles whose application can help improve code
quality. These include structured programming and information hiding. In
structured programs, the program is a sequence of single-entry, single-exit
statements, and the control flow during execution is linearized. This makes
the dynamic structure of a program similar to the static structure, and hence
easy to understand and verify. In information hiding, the data structures
are hidden behind access functions, thereby raising the level of abstraction
and hiding complexity. We also described some common coding errors to
make the programmer aware about them, and some programming practices
that can help reduce errors. We briefly discussed coding standards that help
improve readability as well as reduce errors.

There are different ways a programmer can proceed with developing code.
We discussed a few processes that can be followed by a programmer. One
is the incremental process in which the programmer writes code in small
increments and tests and debugs each increment before writing more code.
Test driven development is a programming approach in which test cases are
written first and then code is written to pass these test cases. When the
code succeeds, the programmer writes another small set of test cases and
then the code to implement it. Test driven development is also an incre
mental programming approach. Pair programming is another approach, in
which coding is done by a pair of programmers. Both programmers together
discuss the strategy, data structures, and algorithms to be used. When one
programmer does the actual coding, the other reviews it as it is being typed.
Regardless of the approach the programmer follows, source code control is
an important part of the coding process. We briefly discussed how source
code control is used by programmers.

Code evolves and changes over time as systems evolve. Often due to these
changes the design of the software becomes too complex making changing
harder. Refactoring is an approach in which during the coding activity,
effort is spent in refactoring the existing code to improve its design so that
changes become easier to make. During refactoring no new functionality is
added—only improvement is done so that the design of the code improves
by reduction of coupling, increase in cohesion, and better use of hierarchies.
We have discussed the refactoring process and various techniques for doing
refactoring, and have given a detailed example.

The code written by a programmer should be verified before it is in
corporated in the overall system. The most commonly used techniques for
verification are static analysis, code inspections, and unit testing. In static
analysis, the source code is examined for anomahes and situations that can

458 9. CODING

represent bugs through suitable tools. It is a very efficient way of detecting
errors and static analyzers can detect a variety of defects. However, warn
ings given by a static analyzers also have "false positives," requiring further
analysis by the programmers to identify actual defects. Code inspections,
using a standard inspection process, is a very effective approach for finding
errors. It can, however, be expensive, and hence is sometimes replaced with
code reading or one-person review. Unit testing the code is a very popular
and most often used practice by programmers. In this drivers and stubs are
written to test the program the programmer had developed. Unit testing
can benefit from tools, and we have briefly discussed how unit testing can
be done with the Junit tool. Formal verification is another approach that is
sometimes used for very critical portions of the system. We have discussed
one approach for formal verification also.

A number of metrics exist for quantifying different qualities of the code.
The most commonly used are size metrics, because they are used to assess
the productivity of people and are often used in cost estimation. The most
common size measure is lines of code (LOG), which is also used in most cost
models. There are also other measures for size. The goal of complexity met
rics is to quantify the complexity of software. Complexity is an important
factor affecting the productivity of projects and is a factor in cost estimation.
A number of different metrics exist. Perhaps the most common is the cyclo-
matic complexity, which is based on the internal logic of the program and
defines complexity as the number of independent cycles in the flow graph of
the program.

Exercises

1. What is structured programming and how does it help improve code quality?

2. If you have all the tools available, how will you do the verification of the
programs you write?

3. For memory and resource related errors (memory leaks, null dereferencing,
etc.) compare the effectiveness and efficiency of the different verification
techniques.

4. Buffer overflow is a common error which is also a main security flaw. What
are some of the coding practices that will help minimize this error? What
other types of errors these practices will impact?

EXERCISES 459

5. Draw a flow diagram describing your own personal process. Critically eval
uate it and suggest modifications that will help improve the quality of the
code you write.

6. Work on some programs alone. Then, along with a friend, develop some
other programs using pair programming. Compare the productivity and code
quality achieved in the two approaches.

7. In your next project, develop a few classes using your standard approach.
Then use Junit and develop a few classes using an incremental approach.
Record effort and defect data and then compare the average development
time, productivity, and defects found.

8. Do a similar experiment with TDD. How does it compare with your regular
development process?

9. What are the major concepts that help make a program more readable?

10. Consider the following program to determine the product of two integers x
and y:

if (x

else

end;

= 0) or (y =
p : = 0

begin
P •'= x;
i : = l ;
while (i !-

P :=
i :=

end;

= 0) then

= y) do begin
= p * x;
: i + 1;

Write formal specifications for a program to compute the product of two
numbers. Then, using the axiomatic method, prove that this program is
correct.

11. Consider the following two algorithms for searching an element ^ in a sorted
array A, which contains n integers. The first procedure implements a simple
linear search algorithm. The second performs a binary search. Binary search
is generally much more efficient in terms of execution time compared to the
linear search.

function lin_search (A, E): boolean
var

460 9. CODING

i : integer;
found: boolean;

begin
found :— false;
i - 1 ;
while (not found) and (i < n) do begin
if (A[i] = E) then found :— true;
i := i + 1;
end;
lin_search := found;

end;

function bin_search (A, E): boolean
var

low, high, mid, i, j : integer;
found : boolean;

begin
low := 1;
high := n;
found := false;
while (low < high) and (not found) do begin

mid := (low + high)/2;
if E < A[mid] then high := mid - 1

else if E > A[mid] then low := mid + 1
else found := true;

end;
bin_search := found;

end;

Determine the cyclomatic complexity and live variable complexity for these
two functions. Is the ratio of the two complexity measures similar for the two
functions?

12. What is Halstead's size measure for these two modules? Compare this size
with the size measured in LOG.

13. Consider the size measure as the number of bytes needed to store the object
code of a program. How useful is this size measure? Is it closer to LOG or
Halstead's metric? Explain.

14. Not all control statements are equally complex. Assign complexity weights
(0-10) to different control statements in Java, and then determine a formula
to calculate the complexity of a program. How will you determine if this
measure is better or worse than other complexity measures?

EXERCISES 461

15. A combination of conditions in a decision makes a decision more complex.
Such decisions should be treated as a combination of different decisions. Com
pared to the simple measure where each decision is treated as one, how much
will the difference in the cyclomatic complexity of a program with 20% of its
conditional statements having two conditions and 20% having three condi
tions be, when evaluated by this new approach?

16. Design an experiment to study the correlation between some of the complexity
measures and between some of the size measures.

17. Design an experiment to study if the "error-proneness" of a module is related
to a complexity measure for the module.

462 9. CODING

Case Studies

Implementation of Structured Design of Case Study 1

The programs were written in C on a Sun workstation, as required. The first
version almost directly implemented the modules specified in the function-
oriented design. The total size of the program was about 1320 lines. We
determined various code based complexity and size metrics for this code
using the tool complexity that we developed. This is shown below.

MODULE SIZE CYCLOMATIC COMPLEXITY

validate_file2

validate_dept.courses

sched_ug_pref

validate_class_rooms

validate_lec_times

print_conflicts
print_TimeTable

chk_fint_time_slot

sched_pg_pref

separate_courses

111
88
104
92
84
50
42
36
82
46

18
17
16
15
15
11
10
10
9
9

Total Size: 1322 Total Cyclomatic Complexity: 243
Avg. s i z e : 33 Avg. Cyclomatic Complexity: 6

From these metrics, it was clear that some of the modules were too large
and had a high complexity value. Based on this information, we carefully
reviewed some of these modules to see if their size or complexity could be
reduced. During the reviews we found that in these modules some parts of
the code were actually implementing some support functions that can be
separated by forming clean, functionally cohesive modules.

As a result of this, a few new modules were formed. The complexity of
many of the modules was reduced, and there was a general dechne in the
average complexity. It is worth noting that the total size and complexity is
reduced by this exercise, besides the reduction in the complexity and size of
the individual modules. That is, by this exercise we did not just redistribute
the complexity, we actually reduced the overall complexity. The overall
figures after the changes are:

CASE STUDIES 463

Total Size: 1264 Total Cyclomatic Complexity: 235

Avg. Size: 30 Avg. Cyclomatic Complexity: 5

OO Des ign Implementat ion of Case S tudy 1

The object-oriented design of the case study given earher was implemented
in C++. The implementation did extend the design a little, as is to be ex
pected, but the extension was mostly in the addition of data members and
some methods. No major design changes were required due to implementa
tion issues. The code could have been analyzed by using some of the metrics
and then modified, as was done in the code implementing the structured de
sign. However, this was not done for this implementation for three reasons.
First, we did not have tools to analyze the C++ programs. Secondly, some
of the tools that were available for use through other sources worked on a
different version of C + + (our implementation is in GNU C++) . And finally,
the 0 0 metrics are still relatively new, and not much data about their use
is available.

The C++ code for the case study is also available from the home page
of the book.

Implementat ion of Case Study 2

This case study was implemented in Java on a PC. Some unit testing was
done on some of the modules using Junit. The unit testing report is available
from the Web site.

The entire code for this case study is also available from the Web site.

10

Testing

In a software development project, errors can be introduced at any stage dur
ing development. Though errors are detected after each phase by techniques
like inspections, some errors remain undetected. Ultimately, these remaining
errors will be reflected in the code. Hence, the final code is Hkely to have
some requirements errors and design errors, in addition to errors introduced
during the coding activity. Testing is the activity where the errors remaining
from all the previous phases must be detected. Hence, testing performs a
very critical role for ensuring quality. The focus of this chapter is primarily
on system testing in which the entire software system is tested, though test
ing is also performed on individual programs written by programmers and
the concepts discussed are also applicable for individual program testing.

During testing, the software to be tested is executed with a set of test
cases, and the behavior of the system for the test cases is evaluated to
determine if the system is performing as expected. Clearly, the success of
testing in revealing errors depends critically on the test cases. Much of this
chapter is devoted to test case selection, criteria for selecting test cases, and
their effect on testing.

We begin this chapter by discussing some definitions and concepts perti
nent to testing. Then we discuss the two basic approaches to testing—black
box or functional testing and white-box or structural testing. Aspects of
testing process is discussed next, followed by a discussion on how testing
data can be used for defect prevention. Then we discuss reliability estima
tion, as rehability is the main metric of interest during testing. This chapter
ends with case studies.

466 10. TESTING

10.1 Testing Fundamentals

In this section we will first define some of the terms that are commonly used
when discussing testing. Then we will discuss some basic issues relating to
how testing can proceed, the need for oracles for testing, the importance
of psychology of the tester, and some desirable properties for the criteria
used for testing. Once these are discussed, we will proceed with the issue of
selection of test cases.

10.1.1 Error, Fault, and Failure

So far, we have used the intuitive meaning of the term error to refer to prob
lems in requirements, design, or code. Sometimes error, fault, and failure are
used interchangeably, and sometimes they refer to different concepts. Let us
start by defining these concepts clearly. We follow the IEEE definitions [91]
for these terms.

The term error is used in two different ways. It refers to the discrepancy
between a computed, observed, or measured value and the true, specified, or
theoretically correct value. That is, error refers to the difference between the
actual output of a software and the correct output. In this interpretation,
error is essentially a measure of the difference between the actual and the
ideal. Error is also used to refer to human action that results in software
containing a defect or fault. This definition is quite general and encompasses
all the phases.

Fault is a condition that causes a system to fail in performing its required
function. A fault is the basic reason for software malfunction and is synony
mous with the commonly used term bug. The term error is also often used
to refer to defects (taking a variation of the second definition of error). In
this book we will continue to use the terms in the manner commonly used,
and no explicit distinction will be made between errors and faults, unless
necessary. It should be noted that the only faults that a software has are
"design faults"; there is no wear and tear in software.

Failure is the inability of a system or component to perform a required
function according to its specifications. A software failure occurs if the
behavior of the software is different from the specified behavior. Failures may
be caused due to functional or performance reasons. A failure is produced
only when there is a fault in the system. However, presence of a fault does
not guarantee a failure. In other words, faults have the potential to cause
failures and their presence is a necessary but not a sufficient condition for

10.1. TESTING FUNDAMENTALS 467

failure to occur. Note that the definition does not imply that a failure must
be observed. It is possible that a failure may occur but not be detected.

Note also that what is called a "failure" is dependent on the project,
and its exact definition is often left to the tester or project manager. For
example, is a misplaced line in the output a failure or not? Clearly, it
depends on the project; some will consider it a failure and others will not.
Take another example. If the output is not produced within a given time
period, is it a failure or not? For a real-time system this may be viewed as a
failure, but for an operating system it may not be viewed as a failure. This
means that there can be no general definition of failure, and it is up to the
project manager or end user to decide what will be considered a failure for
reliability purposes. Note that in the example of a misplaced line, a defect
might be recorded, and even corrected later, but its occurrence might not
be considered a failure.

There are some implications of these definitions. Presence of an error (in
the state) imphes that a failure must have occurred, and the observance of
a failure implies that a fault must be present in the system. However, the
presence of a fault does not imply that a failure must occur. The presence
of a fault in a system only implies that the fault has a potential to cause
a failure to occur. Whether a fault actually manifests itself in a certain
time duration depends on many factors. This means that if we observe the
behavior of a system for some time duration and we do not observe any
errors, we cannot say anything about the presence or absence of faults in the
system. If, on the other hand, we observe some failure in this duration, we
can say that there are some faults in the system.

There are direct consequences of this on testing. In testing, system be
havior is observed, and by observing the behavior of a system or a component
during testing, we determine whether or not there is a failure. Because of
this fundamental reliance on behavior observation, testing can only reveal
the presence of faults, not their absence. By observing failures of the system
we can deduce the presence of faults; but by not observing a failure during
our observation (or testing) interval we cannot claim that there are no faults
in the system. An immediate consequence of this is that it becomes hard to
decide for how long we should test a system without observing any failures
before deciding to stop testing. This makes "when to stop testing" one of
the hard issues in testing.

During the testing process, only failures are observed, by which the pres
ence of faults is deduced. That is, testing only reveals the presence of faults.
The actual faults are identified by separate activities, commonly referred

468 10. TESTING

Testcases Comparatqr>—R®s"'*sof
Testing

Figure 10.1: Testing and test oracles.

to as "debugging." In other words, for identifying faults, after testing has
revealed the presence of faults, the expensive task of debugging has to be
performed. This is one of the reasons why testing is an expensive method
for identification of faults, compared to methods that directly observe faults.

10.1.2 Tes t Orac les

To test any program, we need to have a description of its expected behavior
and a method of determining whether the observed behavior conforms to
the expected behavior. For this we need a test oracle.

A test oracle is a mechanism, different from the program itself, that can
be used to check the correctness of the output of the program for the test
cases. Conceptually, we can consider testing a process in which the test cases
are given to the test oracle and the program under testing. The output of
the two is then compared to determine if the program behaved correctly for
the test cases, as shown in Figure 10.1.

Test oracles are necessary for testing. Ideally, we would like an automated
oracle, which always gives a correct answer. However, often the oracles
are human beings, who can make mistakes. As a result, when there is a
discrepancy between the results of the program and the oracle, we have to
verify the result produced by the oracle, before declaring that there is a fault
in the program.

The human oracles generally use the specifications of the program to
decide what the "correct" behavior of the program should be. However,
the specifications themselves may contain errors, be imprecise, or contain
ambiguities. Such shortcomings in the specifications are the major cause of

10.1. TESTING FUNDAMENTALS 469

situations where one party claims that a particular condition is not a failure
while the other claims it is. There is no easy solution to this problem, as
testing does require some specifications against which the given system is
tested.

There are some systems where oracles are automatically generated from
specifications of programs or modules. With such oracles, we are assured
that the output of the oracle is consistent with the specifications. These
oracles also ehminate the effort of determining the expected behavior for
a test case. However, even this approach does not solve all our problems,
because of the possibility of errors in the specifications. Consequently, an
oracle generated from the specifications will only produce correct results if
the specifications are correct, and it will not be dependable in the case of
specification errors. Furthermore, such systems that generate oracles from
specifications are likely to require formal specifications, which are frequently
not generated during design.

10.1.3 Test Cases and Test Criteria

Having test cases that are good at revealing the presence of faults is central to
successful testing. The reason for this is that if there is a fault in a program,
the program can still provide the expected behavior for many inputs. Only
for the set of inputs that exercise the fault in the program will the output
of the program deviate from the expected behavior. Hence, it is fair to say
that testing is as good as its test cases.

Ideally, we would like to determine a set of test cases such that successful
execution of all of them impfies that there are no errors in the program. This
ideal goal cannot usually be achieved due to practical and theoretical con
straints. Each test case costs money, as effort is needed to generate the test
case, machine time is needed to execute the program for that test case, and
more effort is needed to evaluate the results. Therefore, we would also like
to minimize the number of test cases needed to detect errors. These are the
two fundamental goals of a practical testing activity—maximize the number
of errors detected and minimize the number of test cases (i.e., minimize the
cost). As these two are frequently contradictory, the problem of selecting
the set of test cases with which a program should be tested becomes more
complex.

While selecting test cases the primary objective is to ensure that if there
is an error or fault in the program, it is exercised by one of the test cases. An
ideal test case set is one that succeeds (meaning that its execution reveals no

470 10. TESTING

errors) only if there are no errors in the program. One possible ideal set of
test cases is one that includes all the possible inputs to the program. This is
often called exhaustive testing. However, exhaustive testing is impractical
and infeasible, as even for small programs the number of elements in the
input domain can be extremely large.

So, how should we select our test cases? On what basis should we include
some element of the program domain in the set of test cases and not include
others? For this test selection criterion (or simply test criterion) can be
used. For a given program P and its specifications S, a test selection
criterion specifies the conditions that must be satisfied by a set of test cases
T. The criterion becomes a basis for test case selection. For example, if
the criterion is that all statements in the program be executed at least once
during testing, then a set of test cases T satisfies this criterion for a program
P if the execution of P with T ensures that each statement in P is executed
at least once.

There are two fundamental properties for a testing criterion: reliabihty
and validity [73]. A criterion is reliable if all the sets (of test cases) that
satisfy the criterion detect the same errors. That is, it is insignificant which
of the sets satisfying the criterion is chosen; every set will detect exactly the
same errors. A criterion is vahd if for any error in the program there is some
set satisfying the criterion that will reveal the error. A fundamental theorem
of testing is that if a testing criterion is valid and rehable, if a set satisfying
the criterion succeeds (reveafing no faults), then the program contains no
errors [73]. However, it has been shown that no algorithm exists that will
determine a valid criterion for an arbitrary program.

Getting a criterion that is reliable and valid and that can be satisfied by
a manageable number of test cases is usually not possible. So, often criteria
are chosen that are not valid or reliable like "90% of the statements should
be executed at least once." Often a criterion is not even clearly specified, as
in "all special values in the domain must be included" (what is a "special
value"?).

Even when the criterion is specified, generating test cases to satisfy a
criterion is not simple. In general, generating test cases for most of the
criteria cannot be automated. For example, even for a simple criterion like
"each statement of the program should be executed," it is extremely hard
to construct a set of test cases that will satisfy this criterion for a large
program, even if we assume that all the statements can be executed (i.e.,
there is no part that is not reachable).

A criterion Ci includes (or subsumes) the criterion C2 if for every pro-

10.1. TESTING FUNDAMENTALS 471

gram P and its specification S, any set of test cases that satisfy Ci also
satisfy C2 [145, 67]. This relation is represented as Ci => C2, and is a tran
sitive relation. One may think that if Ci =» C2, testing based on Ci will
always be better than testing based on C2. Unfortunately, this is not the
case. The reason is that the fault-detection capability of a set of test cases
T that satisfy a criterion C depends on the actual test cases in T and not
just C (i.e., the criterion is not valid). In other words, if Ti and T2 both
satisfy C for a program P, it does not mean that Ti and T2 will execute the
same paths of P and detect the same faults in P. Because the actual test
cases also play a role in whether or not an error in a program is detected,
in general, it is possible to have a situation where Ci => C2, Ti satisfies Ci,
T2 satisfies C2, but T2 detects an error that Ti does not. However, if similar
methods are used for test case generation then, generally speaking, Ci will
be better for testing than C2 if Ci =^ C2.

The intent of the preceding discussion is to illustrate that no single cri
terion will serve the purpose of detecting a reasonable number of errors in
a program. Though frequently the focus is on the criterion, to use a crite
rion for testing, the strategy for generating test cases to satisfy a criterion
is also important. As it is generally known that all the faults in a program
cannot be practically revealed by testing, and due to the limitations of the
test criterion, it is best that during testing more than one criterion be used.

10,1.4 Psychology of Testing

As we have seen, devising a set of test cases that will guarantee that all
errors will be detected is not feasible. Moreover, there are no formal or
precise methods for selecting test cases. Even though there are a number of
heuristics and rules of thumb for deciding the test cases, selecting test cases
is still a creative activity that relies on the ingenuity of the tester. Because of
this, the psychology of the person performing the testing becomes important.

The basic purpose of testing is to detect the errors that may be present in
the program. Hence, one should not start testing with the intent of showing
that a program works; but the intent should be to show that a program
does not work. With this in mind we can define testing as the process of
executing a program with the intent of finding errors [121].

This emphasis on proper intent of testing is not a trivial matter because
test cases are designed by human beings, and human beings have a tendency
to perform actions to achieve the goal they have in mind. So, if the goal is
to demonstrate that a program works, we may consciously or subconsciously

472 10. TESTING

select test cases that will try to demonstrate that goal and that will beat
the basic purpose of testing. On the other hand, if the intent is to show
that the program does not work, we will challenge our intellect to find test
cases toward that end, and we are likely to detect more errors. Testing is
essentially a destructive process, where the tester has to treat the program
as an adversary that must be beaten by the tester by showing the presence
of errors. With this in mind, a test case is "good" if it detects an as-yet-
undetected error in the program, and our goal during designing test cases
should be to design such "good" test cases.

One of the reasons many organizations require a product to be tested
by people not involved with developing the program before finally delivering
it to the customer is this psychological factor. It is hard to be destructive
to something we have created ourselves, and we all like to believe that the
program we have written "works." So, it is not easy for someone to test his
own program with the proper frame of mind for testing. Another reason for
independent testing is that sometimes errors occur because the programmer
did not understand the specifications clearly. Testing of a program by its
programmer will not detect such errors, whereas independent testing may
succeed in finding them.

This approach towards testing is suitable for earlier stages of testing,
where indeed the objective is to reveal errors. However, often the last stages
of testing are meant more for evaluating the product. In these types of
testing, test cases are selected primarily to mimic the user behavior or user
scenarios.

10.2 Black-Box Testing

There are two basic approaches to testing: black-box and white-box. In
black-box testing the structure of the program is not considered. Test cases
are decided solely on the basis of the requirements or specifications of the
program or module, and the internals of the module or the program are not
considered for selection of test cases. In this section, we will present some
techniques for generating test cases for black-box testing. White-box testing
is discussed in the next section.

In black-box testing, the tester only knows the inputs that can be given
to the system and what output the system should give. In other words,
the basis for deciding test cases in functional testing is the requirements or
specifications of the system or module. This form of testing is also called

10.2. BLACK-BOX TESTING 473

functional or behavioral testing.
The most obvious functional testing procedure is exhaustive testing,

which as we have stated, is impractical. One criterion for generating test
cases is to generate them randomly. This strategy has little chance of re
sulting in a set of test cases that is close to optimal (i.e., that detects the
maximum errors with minimum test cases). Hence, we need some other cri
terion or rule for selecting test cases. There are no formal rules for designing
test cases for functional testing. In fact, there are no precise criteria for
selecting test cases. However, there are a number of techniques or heuris
tics that can be used to select test cases that have been found to be very
successful in detecting errors. Here we mention some of these techniques.

10.2.1 Equivalence Class Partitioning

Because we cannot do exhaustive testing, the next natural approach is to
divide the input domain into a set of equivalence classes, so that if the
program works correctly for a value then it will work correctly for all the
other values in that class. If we can indeed identify such classes, then testing
the program with one value from each equivalence class is equivalent to doing
an exhaustive test of the program.

However, without looking at the internal structure of the program, it is
impossible to determine such ideal equivalence classes (even with the internal
structure, it usually cannot be done). The equivalence class partitioning
method [121] tries to approximate this ideal. An equivalence class is formed
of the inputs for which the behavior of the system is specified or expected
to be similar. Each group of inputs for which the behavior is expected
to be different from others is considered a separate equivalence class. The
rationale of forming equivalence classes like this is the assumption that if the
specifications require the same behavior for each element in a class of values,
then the program is likely to be constructed so that it either succeeds or
fails for each of the values in that class. For example, the specifications of a
module that determines the absolute value for integers specify one behavior
for positive integers and another for negative integers. In this case, we will
form two equivalence classes—one consisting of positive integers and the
other consisting of negative integers.

For robust software, we must also consider invalid inputs. That is, we
should define equivalence classes for invalid inputs also.

Equivalence classes are usually formed by considering each condition
specified on an input as specifying a valid equivalence class and one or more

474 10. TESTING

invalid equivalence classes. For example, if an input condition specifies a
range of values (say, 0 < count < Max), then form a valid equivalence class
with that range and two invalid equivalence classes, one with values less
than the lower bound of the range (i.e., count < 0) and the other with val
ues higher than the higher bound (count > Max). If the input specifies a
set of values and the requirements specify different behavior for different
elements in the set, then a valid equivalence class is formed for each of the
elements in the set and an invalid class for an entity not belonging to the
set.

One common approach for determining equivalence classes is as follows.
If there is reason to believe that the entire range of an input will not be
treated in the same manner, then the range should be split into two or
more equivalence classes, each consisting of values for which the behavior is
expected to be similar. For example, for a character input, if we have reasons
to believe that the program will perform different actions if the character is
an alphabet, a number, or a special character, then we should split the input
into three vahd equivalence classes.

Another approach for forming equivalence classes is to consider any spe
cial value for which the behavior could be different as an equivalence class.
For example, the value 0 could be a special value for an integer input.

Also, for each valid equivalence class, one or more invalid equivalence
classes should be identified.

It is often useful to consider equivalence classes in the output. For an
output equivalence class, the goal is to have inputs such that the output
for that test case lies in the output equivalence class. As an example con
sider a program for determining rate of return for some investment. There
are three clear output equivalence classes—positive rates—positive rate of
return, negative rate of return, and zero rate of return. During testing, it
is important to test for each of these, that is, give inputs such that each of
these three outputs are generated. Determining test cases for output classes
may be more difficult, but output classes have been found to reveal errors
that are not revealed by just considering the input classes.

Once equivalence classes are selected for each of the inputs, then the
issue is to select test cases suitably. There are different ways to select the
test cases. One strategy is to select each test case covering as many valid
equivalence classes as it can, and one separate test case for each invalid
equivalence class. A somewhat better strategy which requires more test
cases is to have a test case cover at most one valid equivalence class for each
input, and have one separate test case for each invalid equivalence class. In

10.2. BLACK-BOX TESTING 475

Input

s

n

Valid Equivalence Classes

EQl: Contains numbers
EQ2: Contains lower case letters
EQ3: Contains upper case letters
EQ4: Contains special characters
EQ5: String length between 0-N

EQ6: Integer in valid range

Invalid Equivalence Classes

lEQl: non-ASCII characters
IEQ2: String length > N

IEQ3: Integer out of range

Table 10.1: Valid and invalid equivalence classes.

the latter case, the number of test cases for valid equivalence classes is equal
to the largest number of equivalence classes for any input, plus the total
number of invalid equivalence classes.

As an example consider a program that takes two inputs—a string s of
length up to A'' and an integer n. The program is to determine the top n
highest occurring characters in s. The tester beUeves that the programmer
may deal with different types of characters separately. One set of valid and
invalid equivalence classes for this is shown in Table 10.1.

With these as the equivalence classes, we have to select the test cases. A
test case for this is a pair of values for s and n. With the first strategy for
deciding test cases, one test case could be: 5 as a string of length less than
N containing lower case, upper case, numbers, and special characters; and n
as the number 5. This one test case covers all the valid equivalence classes
(EQl through EQ6). Then we will have one test case each for covering lEQl,
IEQ2, and IEQ3. That is, a total of 4 test cases is needed.

With the second approach, in one test case we can cover one equivalence
class for one input only. So, one test case could be: a string of numbers, and
5. This covers EQl and EQ6. Then we will need test cases for EQ2 through
EQ5, and separate test cases for lEQl through IEQ3.

10.2.2 Boundary Value Analysis

It has been observed that programs that work correctly for a set of values
in an equivalence class fail on some special values. These values often lie
on the boundary of the equivalence class. Test cases that have values on
the boundaries of equivalence classes are therefore likely to be "high-yield"
test cases, and selecting such test cases is the aim of the boundary value

476 10. TESTING

analysis. In boundary value analysis [121], we choose an input for a test
case from an equivalence class, such that the input lies at the edge of the
equivalence classes. Boundary values for each equivalence class, including
the equivalence classes of the output, should be covered. Boundary value
test cases are also called "extreme cases." Hence, we can say that a boundary
value test case is a set of input data that lies on the edge or boundary of a
class of input data or that generates output that lies at the boundary of a
class of output data.

In case of ranges, for boundary value analysis it is useful to select the
boundary elements of the range and an invalid value just beyond the two
ends (for the two invalid equivalence classes). So, if the range is 0.0 < x
< 1.0, then the test cases are 0.0, 1.0 (valid inputs), and -0.1, and 1.1 (for
invalid inputs). Similarly, if the input is a list, attention should be focused
on the first and last elements of the list.

We should also consider the outputs for boundary value analysis. If an
equivalence class can be identified in the output, we should try to generate
test cases that will produce the output that lies at the boundaries of the
equivalence classes. Furthermore, we should try to form test cases that will
produce an output that does not lie in the equivalence class. (If we can
produce an input case that produces the output outside the equivalence
class, we have detected an error.)

Like in equivalence class partitioning, in boundary value analysis we first
determine values for each of the variables that should be exercised during
testing. If there are multiple inputs, then how should the set of test cases
be formed covering the boundary values? Suppose each input variable has
a defined range. Then there are 6 boundary values—the extreme ends of
the range, just beyond the ends, and just before the ends. If an integer
range is min to max, then the six values are min — 1, mm, min + l,max —
1, max, max + 1. Suppose there are n such input variables. There are two
strategies for combining the boundary values for the different variables in
test cases.

In the first strategy, we select the different boundary values for one vari
able, and keep the other variables at some nominal value. And we select one
test case consisting of nominal values of all the variables. In this case, we
will have 6n-|-1 test cases. For two variables X and Y, the 13 test cases will
be as shown in Figure 10.2.

A second strategy is to try all possible combinations for the values for
the different variables. As there are 7 values for each variable (6 boundary
values and one nominal value), if there are n variables, there will be a total

10.2. BLACK-BOX TESTING 477

Y ^ max

Y .

X c X

X

X

X

X

X

X

X

X C X

Figure 10.2: Test cases for BVA.

of 7^ test cases.

10.2.3 Cause-Effect Graphing

One weakness with the equivalence class partitioning and boundary value
methods is that they consider each input separately. That is, both con
centrate on the conditions and classes of one input. They do not consider
combinations of input circumstances that may form interesting situations
that should be tested. One way to exercise combinations of different input
conditions is to consider all valid combinations of the equivalence classes
of input conditions. This simple approach will result in an unusually large
number of test cases, many of which will not be useful for revealing any new
errors. For example, if there are n different input conditions, such that any
combination of the input conditions is valid, we will have 2^ test cases.

Cause-effect graphing [121] is a technique that aids in selecting combi
nations of input conditions in a systematic way, such that the number of
test cases does not become unmanageably large. The technique starts with
identifying causes and effects of the system under testing. A cause is a dis
tinct input condition, and an effect is a distinct output condition. Each
condition forms a node in the cause-effect graph. The conditions should be
stated such that they can be set to either true or false. For example, an
input condition can be "file is empty," which can be set to true by having an
empty input file, and false by a nonempty file. After identifying the causes
and effects, for each effect we identify the causes that can produce that effect
and how the conditions have to be combined to make the effect true. Con-

478 10. TESTING

ditions are combined using the Boolean operators "and," "or," and "not,"
which are represented in the graph by &, |, and ~. Then for each effect,
all combinations of the causes that the effect depends on which will make
the effect true are generated (the causes that the effect does not depend on
are essentially "don't care"). By doing this, we identify the combinations of
conditions that make different effects true. A test case is then generated for
each combination of conditions, which make some effect true.

Let us illustrate this technique with a small example. Suppose that for
a bank database there are two commands allowed:

credit acct_number transaction_amount
debit acct_number transaction_amount

The requirements are that if the command is credit and the acct_number is
valid, then the account is credited. If the command is debit, the acct.number
is valid, and the transaction_amount is valid (less than the balance), then
the account is debited. If the command is not valid, the account number is
not valid, or the debit amount is not valid, a suitable message is generated.
We can identify the following causes and effects from these requirements:

Causes:
cl. Command is credit
c2. Command is debit
c3. Account number is valid
c4. Transaction_amt is valid

Effects:
el. Print "invahd command"
e2. Print "invalid account_number"
e3. Print "Debit amount not vahd"
e4. Debit account
e5. Credit account

The cause-effect of this is shown in Figure 10.3. In the graph, the cause-
effect relationship of this example is captured. For all effects, one can easily
determine the causes each effect depends on and the exact nature of the
dependency. For example, according to this graph the effect e5 depends on
the causes c2, c3, and c4 in a manner such that the effect e5 is enabled when
all c2, c3, and c4 are true. Similarly, the effect e2 is enabled if c3 is false.

10.2. BLACK-BOX TESTING 479

Figure 10.3: The cause-effect graph.

From this graph, a Hst of test cases can be generated. The basic strategy
is to set an effect to 1 and then set the causes that enable this condition.
The condition of causes forms the test case. A cause may be set to false,
true, or don't care (in the case when the effect does not depend at all on the
cause). To do this for all the effects, it is convenient to use a decision table.
The decision table for this example is shown in Figure 10.4.

This table lists the combinations of conditions to set different effects.
Each combination of conditions in the table for an effect is a test case.
Together, these condition combinations check for various effects the software
should display. For example, to test for the effect e3, both c2 and c4 have
to be set. That is, to test the effect "Print debit amount not valid," the test
case should be: Command is debit (setting c2 to True), the account number
is valid (setting c3 to False), and the transaction money is not proper (setting
c4 to False).

480 10. TESTING

SNo. 1 2 3 4 5
cl 0 1 X X 1
C2 0 X 1 1 X
c3 X 0 1 1 1
c4 X X 0 1 1

el 1
e2 1
eS
e4
e5

Figure 10.4: Decision table for the cause-effect graph.

Cause-effect graphing, beyond generating high-yield test cases, also aids
the understanding of the functionahty of the system, because the tester must
identify the distinct causes and effects. There are methods of reducing the
number of test cases generated by proper traversing of the graph. Once the
causes and effects are listed and their dependencies specified, much of the
remaining work can also be automated.

10.2.4 Pair-wise Testing

There are generally many parameters that determine the behavior of a soft
ware system. These parameters could be direct input to the software or
implicit settings Hke those for devices. These parameters can take different
values, and for some of them the software may not work correctly. Many of
the defects in software generally involve one condition, that is, some special
value of one of the parameters. Such a defect is called single-mode fault
[125]. Simple examples of single mode fault are a software not able to print
for a particular type of printer, a software that cannot compute fare prop
erly when the traveller is a minor, a telephone billing software that does not
compute the bill properly for a particular country.

Single-mode faults can be detected by testing for different values of
different parameters. So, if there are n parameters for a system, and each
one of them can take m different values (or m different classes of values,
each class being considered as same for purposes of testing as in equivalence
class partitioning), then with each test case we can test one different value
of each parameter. In other words, we can test for all the different values in
m test cases.

10.2. BLACK-BOX TESTING 481

However, all faults are not single-mode and there are combinations of
inputs that reveal the presence of faults. For example, a telephone billing
software that does not compute correctly for night time calling (one param
eter) to a particular country (another parameter). Or an airhne ticketing
system that has incorrect behavior when a minor (one parameter) is trav
elling business class (another parameter) and not staying over the weekend
(third parameter). These multi-mode faults can be revealed during test
ing by trying different combinations of the parameter values—an approach
called combinatorial testing.

Unfortunately, full combinatorial testing is often not feasible. For a sys
tem with n parameters, each having m values, the number of different com
binations is n^. For a simple system with 5 parameters, each having 5
different values the total number of combinations is 3,125. And if testing
each combination takes 5 minutes, it will take over one month to test all
combinations. Clearly, for complex systems that have many parameters and
each parameter may have many values, a full combinatorial testing is not
feasible and practical techniques are needed to reduce the number of tests.

Some research has suggested that most software faults are revealed on
some special single values or by an interaction of pair of values [40]. That
it, most faults tend to be either single-mode or double-mode. For testing for
double-mode faults, we need not test the system with all the combinations
of parameter values, but need to test such that all combinations of values
for each pair of parameters is exercised. This is called pair-wise testing.

In pair-wise testing, all pairs of values have to be exercised during testing.
If there are n parameters, each with m values, then between each two pa
rameter we have m^m pairs. The first parameter will have these many pairs
with each of the remaining n — 1 parameters, the second one will have new
pairs with n — 2 parameters (as its pairs with the first are already included
in the first parameter pairs), the third will have pairs with n — 3 parameters
and so on. That is, the total number of pairs are m * m * n * (n — l) /2 .

The objective of pair-wise testing is to have a set of test cases that cover
all the pairs. As there are n parameters, a test case is a combination of
values of these parameters and will cover (n — 1) -I- (n — 2) -h ... = n(n — l) /2
pairs. In the best case when each pair is covered exactly once by one test
case, w?" different test cases will be needed to cover all the pairs.

As an example consider a software product being developed for multiple
platforms that uses the browser as its interface. Suppose the software is being
designed to work for three different operating systems and three different
browsers. In addition, as the product is memory intensive there is a desire

482 10. TESTING

A
al

al

al

a2

a2

a2

a3

a3

a3

B
bl

b2

bS

bl

b2

bS

bl

b2

bS

C
cl

c2

c3

c2

c3

cl

c3

cl

c2

Pairs 1
(al,bl) (al,cl) (bl,cl)

(al,b2) (al,c2) (b2,c2)

(al,b3) (al,c3) (b3,c3)

(a2,bl) (a2,c2) (bl,c2)

(a2,b2) (a2,c3) (b2,c3)

(a2,b3) (a2,cl) (b3,cl)

(a3,bl) (a3,c3) (bl,c3)

(a3,b2) (a3,cl) (b2,cl)

(a3,b3) (a3,c2) (b3,c2)

Table 10.2: Test cases for pair-wise testing.

to test its performance under different levels of memory. So, we have the
following three parameters with their different values:

Operating System: Windows, Solaris, Linux

Memory Size: 128M, 256M, 512M

Browser: IE, Netscape, Mozilla

For discussion, we can say that the system has three parameters: A
(operating system), B (memory size), and C (browser). Each of them can
have three values which we will refer to as ai,a2,as, bi,b2,bs, and ci,C2, C3.
The total number of pair-wise combinations is 9*3 = 27. The number of test
cases, however, to cover all the pairs is much less. A test case consisting of
values of the three parameters covers three combinations (of A-B, B-C, and
A-C). Hence, in the best case, we can cover all 27 combinations by 27/3=9
test cases. These test cases are shown in Table 10.2, along with the pairs
they cover.

As should be clear, generating test cases to cover all the pairs is not a
simple task. The minimum set of test cases are those in which each pair is
covered by exactly one test case. Often, it will not be possible to generate
the minimum set of test cases, particularly when the number of values for
different parameters is different. Various algorithms have been proposed,
and some programs are available online to generate the test cases to cover
all the pairs.

For many situations where manual generation is feasible, the following
approach can be followed. Start with one combination of parameter values.
Keep adding new combinations, choosing values such that no two values exist

10.2. BLACK-BOX TESTING 483

together in any earlier test case, until all pairs are covered. When selecting
such values is not possible, select the values that has the fewest values that
have existed together in an earlier test case. Essentially we are generating
a test case that can cover as many as new pairs as possible. By avoiding
covering pairs multiple times, we can produce a small set of test cases that
cover all pairs. Efficient algorithms of generating the smallest number of test
cases for pair-wise testing exist. In [40] an example is given in which for 13
parameters, each having three distinct values, all pairs are covered in merely
15 test cases, while the total number of combinations is over 1 million!

Pair-wise testing is a practical way of testing large software systems that
have many different parameters with distinct functioning expected for dif
ferent values. An example would be a billing system (for telephone, hotel,
airhne, etc.) which has different rates for different parameter values. It is
also a practical approach for testing general purpose software products that
are expected to run on different platforms and configurations, or a system
that is expected to work with different types of systems.

10.2.5 Spec ia l Cases

It has been seen that programs often produce incorrect behavior when inputs
form some special cases. The reason is that in programs, some combinations
of inputs need special treatment, and providing proper handling for these
special cases is easily overlooked. For example, in an arithmetic routine,
if there is a division and the divisor is zero, some special action has to be
taken, which could easily be forgotten by the programmer. These special
cases form particularly good test cases, which can reveal errors that will
usually not be detected by other test cases.

Special cases will often depend on the data structures and the function of
the module. There are no rules to determine special cases, and the tester has
to use his intuition and experience to identify such test cases. Consequently,
determining special cases is also called error guessing.

The psychology is particularly important for error guessing. The tester
should play the "devil's advocate" and try to guess the incorrect assump
tions the programmer could have made and the situations the programmer
could have overlooked or handled incorrectly. Essentially, the tester is trying
to identify error prone situations. Then test cases are written for these situ
ations. For example, in the problem of finding the number of different words
in a file (discussed in earlier chapters) some of the special cases can be: file
is empty, only one word in the file, only one word in a line, some empty lines

484 10. TESTING

in the input file, presence of more than one blank between words, all words
are the same, the words are already sorted, and blanks at the start and end
of the file.

Incorrect assumptions are usually made because the specifications are not
complete or the writer of specifications may not have stated some properties,
assuming them to be obvious. Whenever there is reliance on tacit under
standing rather than explicit statement of specifications, there is scope for
making wrong assumptions. Frequently, wrong assumptions are made about
the environments. However, it should be pointed out that special cases de
pend heavily on the problem, and the tester should really try to "get into
the shoes" of the designer and coder to determine these cases.

10.2.6 State -Based Testing

There are some systems that are essentially state-less in that for the same in
puts they always give the same outputs or exhibit the same behavior. Many
batch processing systems, computational systems, and servers fall in this cat
egory. In hardware, combinatorial circuits fall in this category. At a smaller
level, most functions are supposed to behave in this manner. There are,
however, many systems whose behavior is state-based in that for identical
inputs they behave differently at different times and may produce different
outputs. The reason for different behavior is the state of the system, that
is, the behavior and outputs of the system depend not only on the inputs
provided, but also on the state of the system. The state of the system de
pends on the past inputs the system has received. In other words, the state
represents the cumulative impact of all the past inputs on the system. In
hardware the sequential systems fall in this category. In software, many large
systems fall in this category as past state is captured in databases or files
and used to control the behavior of the system. For such systems, another
approach for selecting test cases is the state-based testing approach [34].

Theoretically, any software that saves state can be modeled as a state
machine. However, the state space of any reasonable program is almost
infinite, as it is a cross product of the domains of all the variables that form
the state. For many systems the state space can be partitioned into a few
states, each representing a logical combination of values of different state
variables which share some property of interest [16]. If the set of states of
a system is manageable, a state model of the system can be built. A state
model for a system has four components:

• States. Represent the impact of the past inputs to the system.

10.2, BLACK-BOX TESTING 485

• Transitions. Represent how the state of the system changes from one
state to another in response to some events.

• Events. Inputs to the system.

• Actions. The outputs for the events.

The state model shows what state transitions occur and what actions
are performed in a system in response to events. When a state model is
built from the requirements of a system, we can only include the states,
transitions, and actions that are stated in the requirements or can be inferred
from them. If more information is available from the design specifications,
then a richer state model can be built.

For example, consider the student survey example discussed in Chapter
4. According to the requirements, a system is to be created for taking a
student survey. The student takes a survey and is returned the current result
of the survey. The survey result can be up to five surveys old. We consider
the last architecture given in Figure 4.11, which had a cache between the
server and the database, and in which the survey and results are cached
and updated only after 5 surveys, on arrival of a request. The proposed
architecture has a database at the back, which may go down.

To create a state machine model of this system, we notice that of a series
of six requests, the first 5 may be treated differently. Hence, we divide into
two states: one representing the the receiving of 1-4 requests (state 1), and
the other representing the receiving of request 5 (state 2). Next we see that
the database can be up or down, and it can go down in any of these two
states. However, the behavior of requests, if the database is down may be
different. Hence, we create another pair of states (states 3 and 4). Once
the database has failed, then the first 5 requests are serviced using old data.
When a request is received after receiving 5 requests, the system enters a
failed state (state 5), in which it does not give any response. When the
system recovers from the failed state, it must update its cache immediately,
hence is goes to state 2. The state model for this system is shown in Figure
10.5 {% represents an input from the user for taking the survey).

Note that we are assuming that the state model of the system can be
created from its specifications or design. This is how most state modeling
is done, and that is how the model was built in the example. Once the
state model is built, we can use it to select test cases. When the design is
implemented, these test cases can be used for testing the code. It is because
of this we treat state-based testing as a black box testing strategy.

486 10. TESTING

. i/old data

i/no response

i/old data

Figure 10.5: State model for the student survey system.

However, the state model often requires information about the design of
the system. In the example above, some knowledge of the architecture is uti-
Uzed. Sometimes making the state model may require detailed information
about the design of the system. For example, for a class, we have seen that
the state modeling is done during design, and when a lot is already known
about the class, its attributes, and its methods. Due to this, the state-based
testing may be considered as somewhat between black-box and white-box
testing. Such strategies are sometimes called gray box testing.

Given a state model of a system how should test cases be generated?
Many coverage criteria have been proposed [123]. We discuss only a few
here. Suppose the set of test cases is T. Some of the criteria are:

• All transition coverage (AT). T must ensure that every transition
in the state graph is exercised.

• All transitions pair coverage (ATP). T must execute all pairs of
adjacent transitions. (An adjacent transition pair comprises of two
transitions: an incoming transition to a state and an outgoing transi
tion from that state.)

• Transition tree coverage (TT). T must execute all simple paths,
where a simple path is one which starts from the start state and reaches
a state that it has already visited in this path or a final state.

The first criterion states that during testing all transitions get fired. This
will also ensure that all states are visited. The transition pair coverage is a

10.3. WHITE-BOX TESTING 487

S.No. Transition
2
2
1
3
3
4
5
2

Test case
req()
req() ;req() ;req() ;req() ;req() ;req()
seq for 2; req()
req();fail()
req();fail();req()
req() ;fail() ;req() ;req() ;req() ;req() ;req()
seq for 6; req()
seq for 6; req();recover()

Table 10.3: Test cases for a state based testing criteria.

stronger criterion requiring that all combinations of incoming and outgoing
transitions for each state must be exercised by T. If a state has two incoming
transitions t l and t2, and two outgoing transitions t3 and t4, then a set of
test cases T that executes t l ; t3 and t2;t4 will satisfy AT. However, to satisfy
ATP, T must also ensure execution of tl ; t4 and t2;t3. The transition tree
coverage is named in this manner as a transition tree can be constructed
from the graph and then used to identify the paths. In ATP, we are going
beyond transitions, and stating that different paths in the state diagram
should be exercised during testing. ATP will generally include AT.

For the example above, the set of test cases for AT are given below in
Table 10.3. Here req() means that a request for taking the survey should be
given, fail() means that the database should be failed, and recover() means
that the failed database should be recovered.

As we can see, state-based testing draws attention to the states and
transitions. Even in the above simple case, we can see different scenarios get
tested (e.g., system behavior when the database fails, and system behavior
when it fails and recovers thereafter). Many of these scenarios are easy to
overlook if test cases are designed only by looking at the input domains. The
set of test cases is richer if the other criteria are used. For this example, we
leave it as an exercise to determine the test cases for other criteria.

10.3 White-Box Testing

In the previous section we discussed black-box testing, which is concerned
with the function that the tested program is supposed to perform and does
not deal with the internal structure of the program responsible for actually
implementing that function. Thus black-box testing is concerned with func-

488 10. TESTING

tionality rather than implementation of the program. White-box testing, on
the other hand is concerned with testing the implementation of the program.
The intent of this testing is not to exercise all the different input or output
conditions (although that may be a by-product) but to exercise the different
programming structures and data structures used in the program. White-
box testing is also called structural testing, and we will use the two terms
interchangeably,

To test the structure of a program, structural testing aims to achieve
test cases that will force the desired coverage of different structures. Vari
ous criteria have been proposed for this. Unlike the criteria for functional
testing, which are frequently imprecise, the criteria for structural testing
are generally quite precise as they are based on program structures, which
are formal and precise. Here we will discuss three different approaches to
structural testing: control flow-based testing, data flow-based testing, and
mutation testing.

10.3.1 Control Flow-Based Criteria

Most common structure-based criteria are based on the control flow of the
program. In these criteria, the control flow graph of a program is considered
and coverage of various aspects of the graph are specified as criteria. Hence,
before we consider the criteria, let us precisely define a control flow graph
for a program.

Let the control flow graph (or simply flow graph) of a program P be G. A
node in this graph represents a block of statements that is always executed
together, i.e., whenever the first statement is executed, all other statements
are also executed. An edge (i, j) (from node i to node j) represents a possible
transfer of control after executing the last statement of the block represented
by node i to the first statement of the block represented by node j . A node
corresponding to a block whose first statement is the start statement of P is
called the start node of G, and a node corresponding to a block whose last
statement is an exit statement is called an exit node [129]. A path is a finite
sequence of nodes (ni,n2, ...,nk),k > 1, such that there is an edge (ni,ni+i)
for all nodes Ui in the sequence (except the last node n/^). A complete path
is a path whose first node is the start node and the last node is an exit node.

Now let us consider control flow-based criteria. Perhaps the simplest
coverage criteria is statement coverage, which requires that each statement
of the program be executed at least once during testing. In other words, it
requires that the paths executed during testing include all the nodes in the

10.3. WHITE-BOX TESTING 489

graph. This is also called the all-nodes criterion [129].
This coverage criterion is not very strong, and can leave errors unde

tected. For example, if there is an if statement in the program without
having an e l se clause, the statement coverage criterion for this statement
will be satisfied by a test case that evaluates the condition to true. No test
case is needed that ensures that the condition in the if statement evaluates
to false. This is a serious shortcoming because decisions in programs are
potential sources of errors. As an example, consider the following function
to compute the absolute value of a number:

in t abs (x)
in t x;
{

if (x >= 0) X = 0 - x;
r e tu rn (x)

}

This program is clearly wrong. Suppose we execute the function with the
set of test cases { x=0 } (i.e., the set has only one test case). The statement
coverage criterion will be satisfied by testing with this set, but the error will
not be revealed.

A little more general coverage criterion is branch coverage, which requires
that each edge in the control flow graph be traversed at least once during
testing. In other words, branch coverage requires that each decision in the
program be evaluated to true and false values at least once during testing.
Testing based on branch coverage is often called branch testing. The 100%
branch coverage criterion is also called the all-edges criterion [129]. Branch
coverage implies statement coverage, as each statement is a part of some
branch. In other words, Cbranch =^ Cstrnt- In the preceding example, a set
of test cases satisfying this criterion will detect the error.

The trouble with branch coverage comes if a decision has many conditions
in it (consisting of a Boolean expression with Boolean operators and and or).
In such situations, a decision can evaluate to true and false without actually
exercising all the conditions. For example, consider the following function
that checks the validity of a data item. The data item is valid if it lies
between 0 and 100.

490 10. TESTING

i n t check(x)
i n t x;
•C

if ((x >=) && (x <= 200))
check = True;

else check = False;
}

The module is incorrect, as it is checking for x < 200 instead of 100
(perhaps a typing error made by the programmer). Suppose the module is
tested with the following set of test cases: { x = 5, x = -5 }. The branch
coverage criterion will be satisfied for this module by this set. However, the
error will not be revealed, and the behavior of the module is consistent with
its specifications for all test cases in this set. Thus, the coverage criterion is
satisfied, but the error is not detected. This occurs because the decision is
evaluating to true and false because of the condition (x > 0). The condition
(x < 200) never evaluates to false during this test, hence the error in this
condition is not revealed.

This problem can be resolved by requiring that all conditions evaluate to
true and false. However, situations can occur where a decision may not get
both true and false values even if each individual condition evaluates to true
and false. An obvious solution to this problem is to require decision/condi
tion coverage, where all the decisions and all the conditions in the decisions
take both true and false values during the course of testing.

Studies have indicated that there are many errors whose presence is not
detected by branch testing because some errors are related to some com
binations of branches and their presence is revealed by an execution that
follows the path that includes those branches. Hence a more general cover
age criterion is one that requires all possible paths in the control flow graph
be executed during testing. This is called the path coverage criterion or the
all-paths criterion, and the testing based on this criterion is often called path
testing. The difficulty with this criterion is that programs that contain loops
can have an infinite number of possible paths. Furthermore, not all paths in
a graph may be "feasible" in the sense that there may not be any inputs for
which the path can be executed. It should be clear that Cpath =^ Cbranch-

As the path coverage criterion leads to a potentially infinite number of
paths, some efforts have been made to suggest criteria between the branch
coverage and path coverage. The basic aim of these approaches is to select a

10,3. WHITE-BOX TESTING 491

set of paths that ensure branch coverage criterion and try some other paths
that may help reveal errors. One method to limit the number of paths is
to consider two paths the same if they differ only in their subpaths that are
caused due to the loops. Even with this restriction, the number of paths can
be extremely large.

Another such approach based on the cyclomatic complexity has been
proposed in [116]. The test criterion is that if the cyclomatic complexity
of a module is V, then at least V distinct paths must be executed during
testing. We have seen that cyclomatic complexity V of a module is the
number of independent paths in the flow graph of a module. As these are
independent paths, all other paths can be represented as a combination of
these basic paths. These basic paths are finite, whereas the total number of
paths in a module having loops may be infinite.

It should be pointed out that none of these criteria is sufficient to detect
all kind of errors in programs. For example, if a program is missing some
control flow paths that are needed to check for a special value (like pointer
equals nil and divisor equals zero), then even executing all the paths will
not necessarily detect the error. Similarly, if the set of paths is such that
they satisfy the all-path criterion but exercise only one part of a compound
condition, then the set will not reveal any error in the part of the condition
that is not exercised. Hence, even the path coverage criterion, which is the
strongest of the criteria we have discussed, is not strong enough to guarantee
detection of all the errors.

10.3.2 Data Flow-Based Testing

Now we discuss some criteria that select the paths to be executed during
testing based on data flow analysis, rather than control flow analysis. In the
previous chapter, we discussed use of data flow analysis for static testing
of programs. In the data flow-based testing approaches, besides the control
flow, information about where the variables are defined and where the defi
nitions are used is also used to specify the test cases. The basic idea behind
data flow-based testing is to make sure that during testing, the definitions
of variables and their subsequent use is tested. Just like the all-nodes and
all-edges criteria try to generate confidence in testing by making sure that at
least all statements and all branches have been tested, the data flow testing
tries to ensure some coverage of the definitions and uses of variables. Ap
proaches for use of data fiow information have been proposed in [109, 129].
Our discussion here is based on the family of data fiow-based testing criteria

492 10. TESTING

that were proposed in [129]. We discuss some of these criteria here.
For data flow-based criteria, a definition-use graph {def/use graph, for

short) for the program is first constructed from the control flow graph of the
program. A statement in a node in the flow graph representing a block of
code has variable occurrences in it. A variable occurrence can be one of the
following three types [129]:

• c?e/represents the deflnition of a variable. The variable on the left-hand
side of an assignment statement is the one getting deflned.

• c-use represents computational use of a variable. Any statement (e.g.,
read, write, an assignment) that uses the value of variables for com
putational purposes is said to be making c-use of the variables. In an
assignment statement, all variables on the right-hand side have a c-use
occurrence. In a read and a write statement, all variable occurrences
are of this type.

• p-use represents predicate use. These are all the occurrences of the
variables in a predicate (i.e., variables whose values are used for com
puting the value of the predicate), which is used for transfer of control.

Based on this classiflcation, the following can be deflned [129]. Note that c-
use variables may also affect the flow of control, though they do it indirectly
by affecting the value of the p-use variables. Because we are interested in
the flow of data between nodes, a c-use of a variable x is considered global
c-use if there is no def of x within the block preceding the c-use. With
each node i, we associate all the global c-use variables in that node. The
p-use is associated with edges. If a;i,a:;2, •••,Xn had p-use occurrences in the
statement of a block from where two edges go to two different blocks j and
k (e.g., with an if then else) , then associated with the two
edges [i,j) and (i,/c).

A path from node i to node j is called a def-clear path with respect to
(w.r.t.) a variable x if there is no def of x in the nodes in the path from i to
j (nodes i and j may have a def). Similarly, a def-clear path w.r.t. x from
a node i to an edge (j, k) is one in which no node on the path contains a
deflnition of a:. A def of a variable x in a node i is a global def, if it is the
last def of x in the block being represented by i, and there is a def-clear path
from i to some node with a global c-use of x. Essentially, a def is a global
def if it can be used outside the block in which it is deflned.

10.3. WHITE-BOX TESTING 493

The def/use graph for a program P is constructed by associating sets of
variables with edges and nodes in the flow graph. For a node i, the set def(i)
is the set of variables for which there is a global def in the node i, and the
set c-use(i) is the set of variables for which there is a global c-use in the
node i. For an edge (z, j) , the set p-use(i, j) is the set of variables for which
there is a p-use for the edge (i, j) .

Suppose a variable x is in def{i) of a node i. Then, dcu{x,i) is the set
of nodes, such that each node has x in its c-use, x G def{i), and there is a
def-clear path from i to j . That is, dcu(x, i) represents all those nodes in
which the (global) c-use of x uses the value assigned by the def of x in z.
Similarly, dpu{x, i) is the set of edges, such that each edge has x in its p-use,
X € def{i), and there is a def-clear path from i to {j,k). That is, dpu(x, i)
represents all those edges in which the p-use of x uses the value assigned by
the def of a: in i

Based on these definitions proposed in [129], a family of test case selection
criteria was proposed in [129], a few of which we discuss here. Let G be the
def/use graph for a program, and let P be a set of complete paths of G
(i.e., path representing a complete execution of the program). A test case
selection criterion defines the contents of P.

P satisfies the all-defs criterion if for every node i in G and every x in
def{i), P includes a def-clear path w.r.t. x to some member of dcu{x,i) or
some member of dpu{Xyi). This criterion says that for the def of every
variable, one of its uses (either p-use or c-use) must be included in a path.
That is, we want to make sure that during testing the use of the definitions
of all variables is tested.

The all-p-uses criterion requires that for every x 6 def{i), P include a
def-clear path w.r.t. x from i to some member of dpu{x^ i). That is, according
to this criterion all the p-uses of all the definitions should be tested. However,
by this criterion a c-use of a variable may not be tested. The all-p-uses,
some-c-uses criterion requires that all p-uses of a variable definition must
be exercised, and some c-uses must also be exercised. Similarly, the all-c-
uses, some-p-uses criterion requires that all c-uses of a variable definition be
exercised, and some p-uses must also be exercised.

The all-uses criterion requires that all p-uses and all c-uses of a definition
must be exercised. That is, the set P must include, for every node i and
every x G def{i), a def-clear path w.r.t. x from i to all elements of dcu{x,i)
and to all elements of dpu{x,i). A few other criteria have been proposed in
[129].

In terms of the number of test cases that might be needed to satisfy the

494 10. TESTING

all-paths (path overage)

all-uses

all-c-uses/ all-p-uses/
some-p-uses Some-c-uses

all-defs all-p-uses

I
all-edges (branch coverage)

all-nodes (statement coverage)

Figure 10.6: Relationship between different criteria.

data flow-based criteria, it has been shown that though the theoretical limit
on the size of the test case set is up to quadratic in the number of two-way
decision statements in the program, the actual number of test cases that
satisfy a criterion is quite small in practice [146]. Empirical observation in
[146] seems to suggest that in most cases the number of test cases grows
linearly with the number of two-way decisions in the program.

As mentioned earlier, a criterion Ci includes another criterion C2 (rep
resented by Ci =^ C2) if any set of test cases that satisfy criterion Ci also
satisfy the criterion C2. The inclusion relationship between the various data
flow criteria and the control flow criteria is given in Figure 10.6 [129].

It should be quite clear that all-paths will include all-uses and all other
structure-based criteria. All-uses, in turn, includes all-p-uses, all-defs, and
all-edges. However, all-defs does not include all-edges (and the reverse is not
true). The reason is that all-defs is focusing on all definitions getting used,
while all-edges is focusing on all decisions evaluating to both true and false.
For example, a decision may evaluate to true and false in two different test

10.3. WHITE-BOX TESTING 495

cases, but the use of a definition of a variable x may not have been exercised.
Hence, the all-defs and all-edges criteria are, in some sense, incomparable.

As mentioned earlier, inclusion does not imply that one criterion is al
ways better than another. At best, it means that if the test case generation
strategy for two criteria Ci and C2 is similar, and if Ci =^ C2, then statisti
cally speaking, the set of test cases satisfying Ci will be better than a set of
test cases satisfying C2. The experiments reported in [67] show that no one
criterion (out of a set of control flow-based and data flow-based criteria) does
significantly better than another consistently. However, it does show that
testing done by using all-branch or all-uses criterion generally does perform
better than randomly selected test cases.

10.3.3 An Example

Let us illustrate the use of some of the control flow-based and data flow-based
criteria through the use of an example. Consider the foflowing example of a
simple program for computing x^ for any integer x and y [129]:

1. scanfCx, y); if (y < 0)
2. pow = 0 - y;
3. else pow = y;
4. z = 1.0;
5. while (pow != 0)
6. { z = z * X; pow = pow - 1; }
7. if (y < 0)
8. z = 1.0/z;
9. printf(z);

The def/use graph for this program is given in the Figure 10.7 [129]. In
the graph, the line numbers given in the code segment are used to number
the nodes (each line contains all the statements of that block). For each
node, the def set (i.e., the set of variables defined in the block) and the c-use
set (i.e., the set of variables that have a c-use in the block) are given along
with the node. For each edge, if the p-use set is not empty, it is given in the
graph.

The various sets are easily determined from the block of code representing
a node. To determine the dcu and dpu the graph has to be traversed. The
dcu for various node and variable combination is given next:

496 10. TESTING

def»{X, y)

def = {pow}
c-use = {y}

def = {z, pow},
c-use = {x, z, pow} V_,

r>^ def = {pow}
^ c-use = {y}

def = {z}
c-use = [z]

7 \ d e f = <l)
^ c-use =:{z}

Figure 10.7: def/use graph for the example.

(node, var) dcu dpu

717^^ {6} ^
(1, y) {2, 3} {(1,2), (1,3), (7, 8), (7, 9)}
(2, pow) {6} {(5, 6), (5, 7)}
(3, pow) {6} {(5, 6), (5, 7)}
(4, z) {6,8,9} <t>
(6, z) {6,8,9} </>
(6, pow) {6} {(5, 6), (5, 7)}
(8, z) {9} 4>

Now let us discuss the issue of generating test cases for this program using
various criteria. We can divide the problem of test case selection into two
parts. First we identify some paths that together satisfy the chosen criterion.
Then we identify the test cases that will execute those paths. As the first
issue is more relevant when discussing coverage criteria, frequently in testing
literature only the paths that satisfy the criterion are discussed. While
selecting paths that satisfy a given coverage brings us to the question of
whether the path is feasible, that is, if it is possible to have some test data
that will execute that path. It is known that a program may contain paths

10.3. WHITE-BOX TESTING 497

that are not feasible. A simple example is in a program with a for loop. In
such a program, no path that executes the loop fewer than the number of
times specified by the for loop is feasible. In general, the issue of feasibility
of paths cannot be solved algorithmically, as the problem is undecidable.
However, the programmer can use his judgment and knowledge about the
program to decide whether or not a particular path is infeasible. With the
presence of infeasible paths, it is not possible to fully satisfy the criterion
like all-uses, and the programmer will have to use his judgment to avoid
considering the infeasible paths.

Let us first consider the all-edges criterion, which is the same as 100%
branch coverage. In this we want to make sure that each edge in the graph
is traversed during testing. For this, if the paths executed by the test cases
include the following paths, we can see that all edges are indeed covered:

(1;2;4;5;6;7;8;9),(1;3;4;5;7;9)

Here we could have chosen a set of paths with (1; 2; 4; 5; 6; 7; 9) as one of
them. But a closer examination of the program will tell us that this path is
not feasible, as going from 1 to 2 implies that y is negative, which in turn
implies that from 7 we must go to 8 and cannot go directly to 9. As can be
seen even from this simple example, it is very easy to have paths that are
infeasible. To execute the selected paths (or paths that include these paths),
the following two test cases will suffice: (a; — 3,y = 1) and {x = 3,y = —1).
That is, a set consisting of these two test cases will satisfy the all-edges
criterion.

Now let us consider the all-defs criterion, which requires that for all
definitions of all variables, at least one use (c-use or p-use) must be exercised
during testing. First let us observe that the set of paths given earher for the
all-edges criterion does not satisfy the all-uses criterion. The reason is that
to satisfy all-uses, we must have some path in which the defs in node 6 (i.e.,
for z and pow) also get used. As the only way to get the def of pow in node
6 to be used is to visit 6 again, these paths fail to satisfy the criterion. The
following set of paths will satisfy the all-defs criterion:

(1; 2; 4; 5; 6; 5; 6; 7; 8; 9), (1; 3; 4; 5; 6; 7; 9)

Let's consider the first path in this. The prefix 1; 2; 4; 5; 6; ensures that
all the defs of nodes 1,2, and 4 have been used. Having another 5; 6 after
this ensures that the defs in node 6 are used. This is not needed by the
branch coverage, but it comes because of the def-use constraints. It can

498 10. TESTING

also be easily seen that the set of test cases selected for the branch coverage
will not suffice here. The following two test cases will satisfy the criteria:
(x = 3,y = 4) and {x = 3,y = - 2) .

Let us finally consider the all-uses criterion, which requires that all p-
uses and all c-uses of all variable definitions be tried during testing. In other
words, we have to construct a set of paths that include a path from any
node having a def to all nodes in its dcu and its dpu. The dcu and dpu
sets for all nodes were given earlier. In this example, as it turns out, the
paths given earlier for all-defs also satisfy the all-uses criterion. Hence, the
corresponding test cases will also suffice. We leave the details of this as an
exercise for the reader.

10.3.4 Muta t ion Test ing

Mutation testing is another structural testing technique that differs funda
mentally from the approaches discussed earlier. In control flow-based and
data flow-based testing, the focus was on which paths to execute during
testing. Mutation testing does not take a path-based approach. Instead, it
takes the program and creates many mutants of it by making simple changes
to the program. The goal of testing is to make sure that during the course
of testing, each mutant produces an output different from the output of the
original program. In other words, the mutation testing criterion does not
say that the set of test cases must be such that certain paths are executed;
instead it requires the set of test cases to be such that they can distinguish
between the original program and its mutants. The description of mutation
testing given here is based on [50, 115].

In hardware, testing is based on some fault models that have been devel
oped and that model the actual faults closely. The fault models provide a set
of simple faults, combination of which can model any fault in the hardware.
In software, however, no such fault model exists. That is why most of the
testing techniques try to guess where the faults might lie and then select the
test cases that will reveal those faults. In mutation testing, faults of some
pre-decided types are introduced in the program being tested. Testing then
tries to identify those faults in the mutants. The idea is that if all these
"faults" can be identified, then the original program should not have these
faults; otherwise they would have been identified in that program by the set
of test cases.

Clearly this technique wifl be successful only if the changes introduced
in the main program capture the most likely faults in some form. This is as-

10.3. WHITE-BOX TESTING 499

sumed to hold due to the competent programmer hypothesis and the coupling
effect The competent programmer hypothesis says that programmers are
generally very competent and do not create programs at random, and for a
given problem, a programmer will produce a program that is very "close"
to a correct program. In other words, a correct program can be constructed
from an incorrect program with some minor changes in the program. The
couphng effect says that the test cases that distinguish programs with minor
differences with each other are so sensitive that they will also distinguish
programs with more complex differences. In [115], some experiments are
cited in which it has been shown that the test data that can distinguish
mutants created by simple changes can also distinguish up to 99% of the
mutants that have been created by applying a series of simple changes.

Now let us discuss the mutation testing approach in a bit more detail.
For a program under test P, mutation testing prepares a set of mutants by
applying mutation operators on the text of P. The set of mutation operators
depends on the language in which P is written. In general, a mutation
operator makes a small unit change in the program to produce a mutant.
Examples of mutation operators are: replace an arithmetic operator with
some other arithmetic operator, change an array reference (say, from A to
B), replace a constant with another constant of the same type (e.g., change a
constant to 1), change the label for a goto statement, and replace a variable
by some special value (e.g., an integer or a real variable with 0). Each appli
cation of a mutation operator results in one mutant. As an example, consider
a mutation operator that replaces an arithmetic operator with another one
from the set {+,—,*,**, /}• If a program P contains an expression

a — b>^ {c— d),

then this particular mutation operator will produce a total of eight mutants
(four by replacing '*' and four by replacing '- '). The mutation operators
that make exactly one syntactic change in the program to produce a mutant
are said to be of first order. If the couphng effect holds, then the first-order
mutation operators should be sufficient, and there is no need for higher-order
mutation operators.

Mutation testing of a program P proceeds as follows. First a set of test
cases T is prepared by the tester, and P is tested by the set of test cases in
T. If P fails, then T reveals some errors, and they are corrected. If P does
not fail during testing by T, then it could mean that either the program P
is correct or that P is not correct but T is not sensitive enough to detect the
faults in P. To rule out the latter possibility (and therefore to claim that the

500 10. TESTING

confidence in P is high), the sensitivity of T is evaluated through mutation
testing and more test cases are added to T until the set is considered sensitive
enough for "most" faults. So, if P does not fail on T, the following steps are
performed [115]:

1. Generate mutants for P. Suppose there are N mutants.

2. By executing each mutant and P on each test case in T, find how many
mutants can be distinguished by T. Let D be the number of mutants
that are distinguished; such mutants are called dead.

3. For each mutant that cannot be distinguished by T (called a live mu
tant), find out which of them are equivalent to P. That is, determine
the mutants that will always produce the same output as P. Let E be
the number of equivalent mutants.

4. The mutation score is computed as D/(N — E).

5. Add more test cases to T and continue testing until the mutation score
is 1.

In this approach, for the mutants that have not been distinguished by T, their
equivalence with P has to be determined. As determining the equivalence of
two programs is undecidable, this cannot be done algorithmically and will
have to be done manually (tools can be used to aid the process). There
are many situations where this can be determined easily. For example, if
a condition x < = 0 (in a program to compute the absolute value, say) is
changed to x < 0, we can see immediately that the mutant produced through
this change will be equivalent to the original program P, as it does not matter
which path the program takes when the value of x is 0. In other situations,
it may be very hard to determine equivalence. One thing is clear: the tester
will have to compare P with all the live mutants to determine which are
equivalent to P. This analysis can then be used to add further test cases to
T in an attempt to kill those live mutants that are not equivalent.

Determining test cases to distinguish mutants from the original program
is also not easy. In an attempt to form a test case to kill a mutant, a tester
will have to examine the mutant (and the original program) and then reason
which test case is likely to distinguish the mutant. This can be a complex
exercise, depending on the complexity of the program being tested and the
exact nature of the difference between the mutant and the original program.
Suppose that a statement at line / of the program P has been mutated to

10.3, WHITE-BOX TESTING 501

produce the mutant M. The first property that a test case t needs to have
to distinguish M and P is that the test case should force the execution to
reach the statement at /. The test case t should also be such that after
execution of the statement at /, different states are reached by P and M.
Before reaching /, the state while executing the programs P and M will be
the same as the programs are same until /. If the test case is such that after
executing the statement at /, the execution of the programs P and M either
takes a different path or the values in the state are different, then there is a
possibihty that this difference will be manifested in output being different.
If the state after executing the statement at / continues to be the same in
P and M, we will not be able to distinguish P and M. Finally, t should be
such that when P and M terminate, their states are different (assuming that
P and M output their complete state at the end only). As one can imagine,
constructing a test case that will satisfy these three properties is not going
to be, in general, an easy task.

Finally, let us discuss the issue of detecting errors in the original program
P, which is one of the basic goals of testing. In mutation testing, errors in the
original program are frequently revealed when test cases are being designed
to distinguish mutants from the original program. If no errors are detected
and the mutation score reaches 1, then the testing is considered adequate
by the mutation testing criterion. It should be noted that even if no errors
have been found in the program under test during mutation testing, the
confidence in the testing increases considerably if the mutation score of 1 is
achieved, as we know that the set of test case with which P has been tested
has been able to kill all (nonequivalent) mutants of P. This suggests that
if P had an error, one of its mutants would have been closer to the correct
program, and then the test case that distinguished the mutant from P would
have also revealed that P is incorrect (it is assumed that the output of all
test cases are evaluated to see if P is behaving correctly).

One of the main problems of mutation testing relates to its performance.
The number of mutants that can be generated by applying first-order muta
tion operators is quite large and depends on the language and the size of the
mutation operator set. For a FORTRAN program containing L lines of code
to which the mutation operator can be applied, the total number of mutants
is of the order of L^ [115]. These many programs have to be compiled and
executed on the selected test case set. This requires an enormous amount
of computer time. For example, for a 950-line program, it was estimated
that a total of about 900,000 mutants will be produced, the testing of which
would take more than 70,000 hours of time on a Sun SPARC station [115].

502 10. TESTING

Further, the tester might have to spend considerable time, as he will have to
examine many mutants, besides the original program, to determine whether
or not they are equivalent. These performance issues make mutation testing
impractical for large programs.

10.3.5 Test Case Generat ion and Tool Support

Once a coverage criterion is decided, two problems have to be solved to use
the chosen criterion for testing. The first is to decide if a set of test cases sat
isfy the criterion, and the second is to generate a set of test cases for a given
criterion. Deciding whether a set of test cases satisfy a criterion without the
aid of any tools is a cumbersome task, though it is theoretically possible to
do manually. For almost all the structural testing techniques, tools are used
to determine whether the criterion has been satisfied. Generally, these tools
will provide feedback regarding what needs to be tested to fully satisfy the
criterion.

To generate the test cases, tools are not that easily available, and due to
the nature of the problem (i.e., undecidability of "feasibility" of a path), a
fully automated tool for selecting test cases to satisfy a criterion is generally
not possible. Hence, tools can, at best, aid the tester. One method for
generating test cases is to randomly select test data until the desired criterion
is satisfied (which is determined by a tool). This can result in a lot of
redundant test cases, as many test cases will exercise the same paths.

As test case generation cannot be fully automated, frequently the test
case selection is done manually by the tester by performing structural testing
in an iterative manner, starting with an initial test case set and selecting
more test cases based on the feedback provided by the tool for test case
evaluation. The test case evaluation tool can tell which paths need to be
executed or which mutants need to be killed. This information can be used
to select further test cases.

Even with the aid of tools, selecting test cases is not a simple process.
Selecting test cases to execute some parts of as yet unexecuted code is often
very difficult. Because of this, and for other reasons, the criteria are often
weakened. For example, instead of requiring 100% coverage of statements
and branches, the goal might be to achieve some acceptably high percentage
(but less than 100%).

There are many tools available for statement and branch coverage, the
criteria that are used most often. Both commercial and freeware tools are
available for different source languages. These tools often also give higher

10.3. WHITE-BOX TESTING 503

level coverage data like function coverage, method coverage, and class cover
age. To get the coverage data, the execution of the program during testing
has be closely monitored. This requires that the program be instrumented
so that required data can be collected. A common method of instrumenting
is to insert some statements called probes in the program. The sole purpose
of the probes is to generate data about program execution during testing
that can be used to compute the coverage. With this, we can identify three
phases in generating coverage data:

1. Instrument the program with probes

2. Execute the program with test cases

3. Analyze the results of the probe data

Probe insertion can be done automatically by a preprocessor. The execution
of the program is done by the tester. After testing, the coverage data is
displayed by the tool—sometimes graphical representations are also shown.

Tools for data flow-based testing and mutation testing are even more
complex. Some tools have been built for aiding data flow-based testing
[66, 81]. A data flow testing tool has to keep track of definitions of variables
and their uses, besides keeping track of the control flow graph. For example,
the ASSET tool for data flow testing [66] first analyzes a Pascal program
unit to determine all the definition-use associations. It then instruments
the program so that the paths executed during testing are recorded. After
the program has been executed with the test cases, the recorded paths are
evaluated for satisfaction of the chosen criterion using the definition-use
associations generated earlier. The list of definition-use associations that
have not yet been executed is also output, which can then be used by the
tester to select further test cases.

It should be pointed out that when testing a complete program that
consists of many modules invoked by each other, the presence of procedures
considerably complicates data flow testing. The main reason is that the
presence of global variable creates def-use pairs in which the statements
may exist in different procedures, e.g., a (global) variable may be defined
in one procedure and then used in another. To use data flow-based test
ing on complete programs (rather than just modules), inter-procedural data
flow analysis wifl be needed. Though some methods have been developed
for performing data flow-based testing on programs with procedures [83],
the presence of multiple procedures complicates data flow-based testing. It

504 10. TESTING

should be noted that this problem does not arise with statement coverage
and branch coverage, where there are no special linkages between modules.
The statement or branch coverage of a program can be computed simply
from the statement or branch coverage of its modules. This is one of the
reasons for the popularity of these coverage measures and tools.

In mutation testing, the tool is generally given a program P and a set
of test cases T. The tool has to first use the mutation operations for the
language in which P is written to produce the mutants. Then P and all
the mutants and P are executed with T. Based on the output of different
programs, the mutation score, and the number and identity of dead and
hve mutants are determined and reported to the tester. The score tells the
tester the quality of T according to the mutation criterion, and the set of
live mutants give the feedback to the tester for selecting further test cases
to increase the mutation score. Some mutation testing tools have also been
built [27, 49].

10.4 Testing Process

The basic goal of the software development process is to produce software
that has no errors or very few errors. In an effort to detect errors soon after
they are introduced, each phase ends with a verification activity such as a
review. However, most of these verification activities in the early phases of
software development are based on human evaluation and cannot detect all
the errors. This unreliability of the quality assurance activities in the early
part of the development cycle places a very high responsibility on testing.
In other words, as testing is the last activity before the final software is
delivered, it has the enormous responsibility of detecting any type of error
that may be in the software.

Furthermore, we know that software typically undergoes changes even
after it has been delivered. And to validate that a change has not affected
some old functionality of the system, regression testing is done. In regres
sion testing, old test cases are executed with the expectation that the same
old results will be produced. Need for regression testing places additional
requirements on the testing phase; it must provide the "old" test cases and
their outputs.

In addition, as we have seen in the discussions in this chapter, testing has
its own limitations. These limitations require that additional care be taken
while performing testing. As testing is the costliest activity in software

10A. TESTING PROCESS 505

Client
Needs

^ Acceptance
Testing

Requirements

Design

Code

- System
Testing

Integration
Testing

Unit
Testing

Figure 10.8: Levels of testing.

development, it is important that it be done efficiently.
All these factors mean that testing should not be done on-the-fly, as is

sometimes done. It has to be carefully planned and the plan has to be prop
erly executed. The testing process focuses on how testing should proceed
for a particular project. Having discussed various methods of selecting test
cases, we turn our attention to the testing process.

10.4.1 Levels of Test ing

Testing is usually relied upon to detect the faults remaining from earlier
stages, in addition to the faults introduced during coding itself. Due to this,
different levels of testing are used in the testing process; each level of testing
aims to test different aspects of the system.

The basic levels are unit testing, integration testing, and system and ac
ceptance testing. These different levels of testing attempt to detect different
types of faults. The relation of the faults introduced in different phases, and
the different levels of testing are shown in Figure 10.8.

The first level of testing is called unit testing. In this, different modules
are tested against the specifications produced during design for the modules.
Unit testing is essentially for verification of the code produced during the
coding phase, and hence the goal is to test the internal logic of the modules.

506 10. TESTING

It is typically done by the programmer of the module. A module is con
sidered for integration and use by others only after it has been unit tested
satisfactorily. We have discussed it in more detail the previous chapter.

The next level of testing is often called integration testing. In this, many
unit tested modules are combined into subsystems, which are then tested.
The goal here is to see if the modules can be integrated properly. Hence,
the emphasis is on testing interfaces between modules. This testing activity
can be considered testing the design.

The next levels are system testing and acceptance testing. Here the entire
software system is tested. The reference document for this process is
the requirements document, and the goal is to see if the software meets its
requirements. This is essentially a validation exercise, and in many situations
it is the only validation activity. Acceptance testing is sometimes performed
with realistic data of the client to demonstrate that the software is working
satisfactorily. Testing here focuses on the external behavior of the system;
the internal logic of the program is not emphasized. Consequently, mostly
functional testing is performed at these levels.

These levels of testing are performed when a system is being built from
the components that have been coded. There is another level of testing,
called regression testing, that is performed when some changes are made to
an existing system. We know that changes are fundamental to software; any
software must undergo changes. Frequently, a change is made to "upgrade"
the software by adding new features and functionality. Clearly, the modified
software needs to be tested to make sure that the new features to be added
do indeed work. However, as modifications have been made to an existing
system, testing also has to be done to make sure that the modification has
not had any undesired side effect of making some of the earlier services faulty.
That is, besides ensuring the desired behavior of the new services, testing
has to ensure that the desired behavior of the old services is maintained.
This is the task of regression testing.

For regression testing, some test cases that have been executed on the old
system are maintained, along with the output produced by the old system.
These test cases are executed again on the modified system and its output
compared with the earlier output to make sure that the system is working as
before on these test cases. This frequently is a major task when modifications
are to be made to existing systems.

A consequence of this is that the test cases for systems should be properly
documented for future use in regression testing. In fact, for many systems
that are frequently changed, regression testing scripts are used, which auto-

10.4. TESTING PROCESS 507

mate performing regression testing after some changes. A regression testing
script executes a suite of test cases. For each test case, it sets the system
state for testing, executes the test case, determines the output or some as
pect of system state after executing the test case, and checks the system
state or output against expected values. These scripts are typically pro
duced during system testing, as regression testing is generally done only for
complete systems. When the system is modified, the scripts are executed
again, giving the inputs specified in the scripts and comparing the outputs
with the outputs given in the scripts. Given the scripts, through the use of
tools, regression testing can be largely automated.

Even with testing scripts, regression testing of large systems can take a
considerable amount of time, particularly because execution and checking
of all the test cases cannot be automated. If a small change is made to
the system, often executing the entire suite of test cases is not justified,
and the system is tested only with a subset of test cases. This requires
prioritization of test cases. For prioritization, generally more data about
each test case is recorded, which is then used during a regression testing
to prioritize. For example, one approach is to record the set of blocks that
each test case executes. If some part of the code has changed, then the test
cases that execute the changed portion get the highest priority for regression
testing. Test case prioritization is an active research area and many different
approaches have been proposed in literature for this. We will not discuss it
any further.

10.4.2 Test Plan

In general, testing commences with a test plan and terminates with accep
tance testing. A test plan is a general document for the entire project that
defines the scope, approach to be taken, and the schedule of testing as well
as identifies the test items for the entire testing process and the personnel
responsible for the different activities of testing. The test planning can be
done well before the actual testing commences and can be done in paral
lel with the coding and design activities. The inputs for forming the test
plan are: (1) project plan, (2) requirements document, and (3) system de
sign document. The project plan is needed to make sure that the test plan is
consistent with the overall quality plan for the project and the testing sched
ule matches that of the project plan. The requirements document and the
design document are the basic documents used for selecting the test units
and deciding the approaches to be used during testing. A test plan should

508 m TESTING

contain the following:

• Test unit specification

• Features to be tested

• Approach for testing

• Test deliverables

• Schedule and task allocation

One of the most important activities of the test plan is to identify the test
units. A test unit is a set of one or more modules, together with associated
data, that are from a single computer program and that are the object of
testing. A test unit can occur at any level and can contain from a single
module to the entire system. Thus, a test unit may be a module, a few
modules, or a complete system.

As seen earlier, different levels of testing have to be used during the
testing activity. The levels are specified in the test plan by identifying the
test units for the project. Different units are usually specified for unit,
integration, and system testing. The identification of test units estabhshes
the different levels of testing that will be performed in the project. Generally,
a number of test units are formed during the testing, starting from the lower-
level modules, which have to be unit-tested. That is, first the modules that
have to be tested individually are specified as test units. Then the higher-
level units are specified, which may be a combination of already tested units
or may combine some already tested units with some untested modules. The
basic idea behind forming test units is to make sure that testing is being
performed incrementally^ with each increment including only a few aspects
that need to be tested.

An important factor while forming a unit is the "testability" of a unit. A
unit should be such that it can be easily tested. In other words, it should be
possible to form meaningful test cases and execute the unit without much
effort with these test cases. For example, a module that manipulates the
complex data structure formed from a file input by an input module might
not be a suitable unit from the point of view of testability, as forming mean
ingful test cases for the unit will be hard, and driver routines will have to be
written to convert inputs from files or terminals that are given by the tester
into data structures suitable for the module. In this case, it might be better

10.4. TESTING PROCESS 509

to form the unit by including the input module as well. Then the file input
expected by the input module can contain the test cases.

Features to be tested include all software features and combinations of
features that should be tested. A software feature is a software characteristic
specified or implied by the requirements or design documents. These may
include functionality, performance, design constraints, and attributes.

The approach for testing specifies the overall approach to be followed in
the current project. The techniques that will be used to judge the testing
effort should also be specified. This is sometimes called the testing criterion
or the criterion for evaluating the set of test cases used in testing. In the
previous sections we discussed many criteria for evaluating and selecting test
cases.

Testing deliverables should be specified in the test plan before the actual
testing begins. Deliverables could be a list of test cases that were used,
detailed results of testing including the list of defects found, test summary
report, and data about the code coverage. In general, a test case specification
report, test summary report, and a list of defects should always be specified
as deliverables. Test case specification is discussed later. The test summary
report summarizes the results of the testing activities and evaluates the
results. It defines the items tested, the environment in which testing was
done, and a summary of defects found during testing.

The test plan, if it is a document separate from the project management
plan, typically also specifies the schedule and effort to be spent on different
activities of testing. This schedule should be consistent with the overall
project schedule. For detailed planning and execution, the different tasks in
the test plan should be enumerated and allocated to test resources who are
responsible for performing them. Many large products have separate testing
teams and therefore a separate test plan. A smaller project may include the
test plan as part of its quality plan in the project management plan.

10.4.3 Test Case Specifications

The test plan focuses on how the testing for the project will proceed, which
units will be tested, and what approaches (and tools) are to be used during
the various stages of testing. However, it does not deal with the details of
testing a unit, nor does it specify which test cases are to be used.

Test case specification has to be done separately for each unit Based on
the approach specified in the test plan, first the features to be tested for this
unit must be determined. The overall approach stated in the plan is refined

510 10. TESTING

Requirement
Number

Condition to be
tested

Test data and
settings

Expected
output

Figure 10.9: Test case specifications.

into specific test techniques that should be followed and into the criteria
to be used for evaluation. Based on these, the test cases are specified for
testing the unit. Test case specification gives, for each unit to be tested, all
test cases, inputs to be used in the test cases, conditions being tested by the
test case, and outputs expected for those test cases. Test case specifications
look like a table of the form shown in Figure 10.9.

Sometimes, a few columns are also provided for recording the outcome
of different rounds of testing. That is, sometimes test case specifications
document is also used to record the result of testing. In a round of testing,
the outcome of all the test cases is recorded (i.e., pass or fail). Hopefully, in
a few rounds all the entries will pass.

Test case specification is a major activity in the testing process. Careful
selection of test cases that satisfy the criterion and approach specified is
essential for proper testing. We have considered many methods of generating
test cases and criteria for evaluating test cases. A combination of these
can be used to select the test cases. It should be pointed out that test
case specifications contain not only the test cases, but also the rationale
of selecting each test case (such as what condition it is testing) and the
expected output for the test case.

There are two basic reasons test cases are specified before they are used
for testing. It is known that testing has severe limitations and the effective
ness of testing depends very heavily on the exact nature of the test cases.
Even for a given criterion, the exact nature of the test cases affects the ef
fectiveness of testing. Constructing "good" test cases that will reveal errors
in programs is still a very creative activity that depends a great deal on the
ingenuity of the tester. Clearly, it is important to ensure that the set of test
cases used is of "high quality."

As with many other verification methods, evaluation of quality of test
cases is done through "test case review." For any review, a formal document
or work product is needed. This is the primary reason for having the test

10.4. TESTING PROCESS 511

case specification in the form of a document. The test case specification
document is reviewed, using a formal review process, to make sure that
the test cases are consistent with the pohcy specified in the plan, satisfy
the chosen criterion, and in general cover the various aspects of the unit to
be tested. For this purpose, the reason for selecting the test case and the
expected output are also given in the test case specification document. By
looking at the conditions being tested by the test cases, the reviewers can
check if all the important conditions are being tested. As conditions can
also be based on the output, by considering the expected outputs of the test
cases, it can also be determined if the production of all the different types
of outputs the unit is supposed to produce are being tested. Another reason
for specifying the expected outputs is to use it as the "oracle" when the test
case is executed.

Besides reviewing, another reason for specifying the test cases in a doc
ument is that the process of sitting down and specifying all the test cases
that will be used for testing helps the tester in selecting a good set of test
cases. By doing this, the tester can see the testing of the unit in totality and
the effect of the total set of test cases. This type of evaluation is hard to do
in on-the-fly testing where test cases are determined as testing proceeds.

Another reason for formal test case specifications is that the specifications
can be used as "scripts" during regression testing, particularly if regression
testing is to be performed manually. Generally, the test case specification
document itself is used to record the results of testing. That is, a column
is created when test cases are specified that is left blank. When the test
cases are executed, the results of the test cases are recorded in this column.
Hence, the specification document eventually also becomes a record of the
testing results.

10.4.4 Test Case Execution and Analysis

With the specification of test cases, the next step in the testing process
is to execute them. This step is also not straightforward. The test case
specifications only specify the set of test cases for the unit to be tested.
However, executing the test cases may require construction of driver modules
or stubs. It may also require modules to set up the environment as stated in
the test plan and test case specifications. Only after all these are ready can
the test cases be executed. Sometimes, the steps to be performed to execute
the test cases are specified in a separate document called the test procedure
specification. This document specifies any special requirements that exist

512 10. TESTING

for setting the test environment and describes the methods and formats for
reporting the results of testing. Measurements, if needed, are also specified,
along with methods to obtain them.

Various outputs are produced as a result of test case execution for the
unit under test. These outputs are needed to evaluate if the testing has been
satisfactory. The most common outputs are the test summary report, and
the error report. The test summary report is meant for project management,
where the summary of the entire test case execution is provided. The sum
mary gives the total number of test cases executed, the number and nature
of errors found, and a summary of the metrics data collected. The error
report is the details of the errors found during testing.

Testing requires careful monitoring, as it consumes the maximum effort,
and has a great impact on final quality. A few metrics are very useful for
monitoring testing. Testing effort is the total effort actually spent by the
team in testing activities, and is an indicator of whether or not sufficient
testing is being performed. If inadequate testing is done, it will be reflected
in a reduced testing effort or reduced testing schedule. Prom the plan and
past experience we should know the expected effort and duration of test
ing. The estimated effort is used for monitoring. Such monitoring can catch
the "miracle finish" cases, where the project "finishes" suddenly, soon after
the coding is done. Such "finishes" occur for reasons such as unreasonable
schedules, personnel shortages, and slippage of schedule. Such a finish usu
ally implies that to finish the project the testing phase has been compressed
too much, which is hkely to mean that the software has not been evaluated
properly.

Computer time consumed during testing is another measure that can
give valuable information to project management. In general, in a software
development project, the computer time consumption is low at the start,
increases as time progresses, and reaches a peak. Thereafter it is reduced as
the project reaches its completion. Maximum computer time is consumed
during the latter part of coding and testing. By monitoring the computer
time consumed, one can get an idea about how thorough the testing has
been. Again, by comparing the previous buildups in computer time con
sumption, computer time consumption of the current project can provide
valuable information about whether or not the testing is adequate.

The error report gives the list of all the defects found. The defects are
generally also categorized into different categories. To facihtate reporting
and tracking of defects found during testing (and other quality control ac
tivities), defects found must be properly recorded. This recording is generally

10.4. TESTING PROCESS 513

Figure 10.10: Life cycle of a defect.

done using tools. Let us now look at the defect logging and tracking activity,
and how sorae simple analysis can be done on the defect data to aid project
monitoring. With defect logging using tools, the error report is really a view
of the logged defect data.

10.4.5 Defect Logging and Tracking

A large software project may include thousands of defects that are found by
different people at different stages of the project. Often the person who fixes
a defect is different than the person who finds or reports the defect. In such
a scenario, defect reporting and closing cannot be done informally. The use
of informal mechanisms may lead to defects being found but later forgotten,
resulting in defects not getting removed or in extra effort in finding the
defect again. Hence, defects found must be properly logged in a system and
their closure tracked. Defect logging and tracking is considered one of the
best practices for managing a project [26], and is followed by most software
organizations.

Let us understand the life cycle of a defect. A defect can be found by
anyone at anytime. When a defect is found, it is logged in a defect control
system, along with sufficient information about the defect. The defect is then
in the state "submitted," essentially implying that it has been logged along
with information about it. The job of fixing the defect is then assigned to
some person, who is generally the author of the document or code in which
the defect is found. The assigned person does the debugging and fixes the
reported defect, and the defect then enters the "fixed" state. However, a
defect that is fixed is still not considered as fully done. The successful fixing
of the defect is verified. This verification may be done by another person
(often the submitter), or by a test team, and typically involves running some
tests. Once the defect fixing is verified, then the defect can be marked as
"closed." In other words, the general life cycle of a defect has three states—
submitted, fixed, and closed, as shown in Figure 10.10. A defect that is not
closed is also called open.

514 10. TESTING

This is a typical life cycle of a defect which is used in many organizations
(e.g. [97]). However, the life cycle can be expanded or contracted to suit the
purposes of the project or the organization. For example, some organizations
developing critical systems may have more stages in the life cycle to track
the defect more closely. Similarly, in a small non-critical project, the hfe
cycle may have only two states—open and closed.

When logging a defect, sufficient information has to be recorded so that
the effects can be recreated and debugging and fixing can be done. However,
just tracking each defect is not sufficient for most projects, as analysis of
defect data can also be very useful for improving the quahty. To permit
such analysis, suitable information has to be recorded. What data is recorded
depends on the organization, and an example from an organization can be
found in [97].

To understand the nature of defects being found, frequently defects are
categorized into a few types, and the type of each defect is recorded. Such
a classification is essential if causes of defects are to be identified later and
then removed in an attempt to prevent defects from occurring. The de
fects can be classified in many diff'erent ways, and many schemes have been
proposed. The orthogonal defect classification scheme [33], for example,
classifies defects in categories that include functional, interface, assignment,
timing, documentation, and algorithm. Some of the defect types used in a
commercial organization are: Logic, Standards, User Interface, Component
Interface, Performance, and Documentation [97].

The severity of the defect with respect to its impact on the working
of the system is also often divided into few categories. This information is
important for project management. For example, if a defect impacts a lot
of users or has a catastrophic eflFect, then a project leader will want to fix it
urgently. Similarly, if a defect is of a minor nature, it may be scheduled at
ease. Hence classification of defects with respect to severity is very important
for managing a project. Recording severity of defects found is also a standard
practice in most software organizations. Most often a four-level classification
is used. One such classification is:

• Critical. Show stopper; aflFects a lot of users; can delay project.

• Major. Has a large impact but workaround exists; considerable amount
of work needed to fix it, though schedule impact is less.

• Minor. An isolated defect that manifests rarely and with little impact.

10A. TESTING PROCESS 515

Cumulative Defect Trends

- Cumulative Closed

Cumulative Grand Total

Figure 10.11: Defect arrival and closure trend.

• Cosmetic. Small mistakes that don't impact the correct working.

At the end of the project, ideally no open defects should remain. How
ever, this ideal situation is often not practical for most large systems. Using
severity classification, a project may have release criteria like "software can
be released only if there are no critical and major bugs, and minor bugs are
less than x per feature."

The defect data can be analyzed in other ways to improve project mon
itoring and control. A standard analysis done on almost all long lasting
projects is to plot and observe the defect arrival and closure trend. Plotting
both the arrival and removal can at a glance provide a view of the state of the
quality control tasks in the project. An example of such a curve is shown in
Figure 10.11 [97]. According to this curve, the gap between the total defects
and the total closed defects is gradually increasing, although the increase
is not too alarming. (In the project, this visibility prompted a change in
the project schedule—development activity was slowed and resources were
assigned to defect fixing such that the number of open defects was brought
down.)

In addition to plotting the arrival and fixing, the volume of open defects
can also be plotted. This gives a direct plot of how many defects are still
not closed. This plot, generally increases with time first, and then starts
decreasing. Towards project completion this plot should reach towards zero.
For some intervals, the number of open defects might touch zero. That is, at
some point during the project, all defects have been closed. Of course, this

516 10, TESTING

does not mean that there are no defects in the software^after reaching the
zero open defect, further testing (and adding of code) may reveal defects. In
other words, this plot is not monotonically decreasing, though it is expected
that for most controlled projects its general trend will be downwards.

The defect data can also be analyzed for improving the process. One
specific technique for doing this is defect prevention. We will discuss this
further in the following section.

10.5 Defect Analysis and Prevention

We have seen that defects are introduced during development and are re
moved by the various quality control tasks in the process. Whereas the focus
of the quahty control tasks it to identify and remove the defects, the aim
of defect prevention is to learn from defects found so far on the project and
prevent defects from getting injected in the rest of the project. Some forms
of defect prevention are naturally practiced and in a sense the goal of all
standards, methodologies, and rules, is basically to prevent defects. How
ever, when actual defect data is available, more effective defect prevention is
possible through defect data analysis [76, 75]. Here we discuss an approach
for doing focused defect prevention, based on practices of a commercial or
ganization [97].

Defects analysis and prevention can be done at the organization level as
well as at the project level. At the organization level, analysis of defects can
lead to enhancements of organization-wide checklists, processes, or training.
Defects analysis at the project level, aims to learn from defects found so far
on the project and prevent defects in the rest of the project. Here we discuss
only project-level analysis.

The main reason behind any defect prevention activity is to improve
quality and improve productivity. Quality improves as with fewer defects
injected, with the same effectiveness of quality control processes, the final
system will have fewer defects. Productivity improves as lesser effort is spent
on removing defects.

For a project, defect analysis for prevention can be done after some
amount of coding has been done and a representative set of defects is known.
If an iterative process is used, then the natural place for doing defect analysis
will be after an iteration. The main tasks to be performed for doing defect
prevention are: Do Pareto analysis to identify the main defect types, perform
causal analysis to identify the causes of defects, and identify solutions to

10.5. DEFECT ANALYSIS AND PREVENTION 517

attack the causes.

10.5.1 Pareto Analys is

Pareto analysis is a common statistical technique used for analyzing causes,
and is one of the primary tools for quality management [119, 139]. It is also
sometimes called the 80-20 rule: 80% of the problems come from 20% of the
possible sources. In software it can mean that 80% of the defects are caused
by 20% of the root causes or that 80% of the defects are found in 20% of the
code.

The first step for defect prevention is to draw a Pareto chart from the
defect data. The number of defects found of different types is determined
from the defect data and is plotted as a bar chart in the decreasing order.
Along with the bar chart, a chart is also plotted on the same graph showing
the cumulative number of defects as we move from types of defects given on
the left of the x-axis to the right of the x-axis. The Pareto chart makes it
immediately clear in visual as well as quantitative terms which are the main
types of defects, and also which types of defects together form 80-85% of the
total defects. If defects are being logged with information about their type,
it is relatively easy to draw the Pareto chart.

As an example, consider the Pareto chart of the defect data for a project
shown in Figure 10.12 [97]. This is a project in which features are being
added to an existing system. The defects data for all enhancements done so
far was used for this analysis. As can be seen, the logic defects are the most,
followed by user interface defects, followed by standards defects. Defects
in these three categories together account for more than 88% of the total
defects, while the defects in the top two categories account for over 75%
of the defects. Clearly, the target for defect prevention should be the top
two or the top three categories such that defects in these categories can be
reduced.

10.5.2 Perform Causal Analysis

The Pareto chart helps identify the main types of defects that have been
found in the project so far, and are likely to be found in the rest of the
project unless some action is taken. These can be treated as "effects" which
we would hke to minimize in future. For reducing these defects, we have to
find the main causes for these defects and then try to eliminate these causes.
Cause-effect (CE) diagram is a technique that can be used to determine the

518 10. TESTING

Pareto Chart

-d̂ ' y 6̂ "' J' ^^^ -"^"^ -'^'' -*̂
J- # . # .OÔ # ' # ' .6^^

.e- ^ - Ô^ ^̂ ^ ^
P^"

.6^

Figure 10.12: Pareto chart for defects found in ACE project.

causes of the observed effects [119, 139]. The understanding of the causes
helps identify solutions to eliminate them.

The building of a CE diagram starts with identifying an effect whose
causes we wish to understand. In the example above, the effect could be
''too many GUI errors." To identify the causes, first some major categories
of causes are established. For manufacturing, these major causes often are
manpower, machines, methods, materials, measurement, and environment.
One possible standard set of major causes in software can be process, people,
technology, and training (this is used in an organization [97]). With the effect
and major causes, the main structure of the diagram is made—effect as a
box on the right connected by a straight horizontal line, and an angular line
for each major cause connecting to the main line.

For analyzing the causes, the key is to continuously ask the question
"Why does this cause produce this effect?" This is done for each of the
major causes. The answers to these questions become the sub-causes and
are represented as short horizontal lines joining the line for the major cause.
Then the same question is asked for the causes identified. This "Why-Why-
Why" process is repeated till all the root causes have been identified, i.e. the
causes for which asking a "Why" does not make sense. When all the causes
are marked in the diagram, the final picture looks like a fish-bone structure
and hence the cause-effect diagram is also called the fish-bone diagram, or
Ishikawa diagram after the name of its inventor.

The main steps in drawing a cause-effect diagram are as follows [139]:

10.5. DEFECT ANALYSIS AND PREVENTION 519

Process

Standards/

checklists not

not documented well

Lack of
technical skills

Lack of
training '

Training

Unclear/incorrect
specifications

Oversight

Logic/UI/
standard
defects

Figure 10.13: Cause-effect diagram for the example.

1. Clearly define the problem (i.e., the effect) that is to be studied. For
defect prevention, it typically will be "too many defects of type X".

2. Draw an arrow from left to right with a box containing the effect drawn
at the head. This is the backbone of this diagram.

3. Decide the major categories of causes. These could be the standard
categories or some variation of it to suit the problem.

4. Write these major categories in boxes and connect them with diagonal
arrows to the backbone. These form the major bones of the diagram.

5. Brainstorm for the sub-causes to these major causes by asking repeat
edly, for each major cause, the question, "Why does this major cause
produce the effect?"

6. Add the sub-causes to the diagram clustered around the bone of the
major cause. Further sub-divide these causes, if necessary. Stop when
no worthwhile answer to the question can be found.

Once the fishbone diagram is finished, we have identified all the causes
for the effect under study. However, most likely the initial fishbone diagram
will have too many causes. Clearly, some of the causes have a larger impact
than others. Hence, before completing the root cause analysis, the top few
causes are identified. This is done largely through discussion. For defect

520 10. TESTING

prevention, this whole exercise can be done for the top one or two categories
of defects found in the Pareto analysis.

The fish bone diagram for this example is shown in Figure 10.13 . In
this analysis, causes of all the three major types of defects were discussed to
gether. Hence, our effect is "too many logic/GUI/standards defects." When
we asked the question "why do people and training cause too many logic or
GUI or standards defects," some of the (almost obvious) reasons came out—
lack of training, oversight, lack of technical skills. Similarly, when we asked
the question "why do processes cause too many logic/GUI/standards de
fects," the answer came out as "standards not comprehensively documented"
and "people not aware of standards." Similarly, for technology the causes
were "unclear specifications" and "technical problems of tools." The brain
storming sessions for the causal analysis, of course, threw up many more
causes. But after listing all the suggestions made during the meeting, they
were prioritized. Prioritization can be done easily by considering each of the
defects and identifying the causes for that defect. The causes that show up
most frequently are the ones that are high priority, and are shown in Figure
10.13.

10.5.3 Deve lop and Implement Solutions

So far we have discussed how to identify the types of defects that are occur
ring frequently, and what are the root causes for the major defect categories.
But no action has yet been taken to reduce the occurrence of defects. This
is done in this phase.

Once the root causes are known, then the next natural step is to think
of what can be done to attack the root causes, such that their manifestation
in the form of defects is lessened. Some common prevention actions are are
building/improving checklists, training programs, reviews, use of some spe
cific tool. The solutions are developed through a brainstorming session. The
cause-effect analysis also is done through brainstorming. Hence, frequently,
these two steps might be done in the same session. There is one brainstorm
ing session in which the cause-effect analysis is done and the preventive
solutions are identified. The root causes and the preventive actions for the
example are also shown in Table 10.4. The preventive actions proposed are
self-explanatory.

The preventive solutions are action items which someone has to perform.
Hence, the implementation of the solutions is the key. Unless the solutions
are implemented, they are of no use at all. One way to ensure this is to treat

10.6. METRICS—RELIABILITY ESTIMATION 521

Root Cause
Standards not
followed

Oversight

Unclear/Incorrect
Specifications

1 Lack of training

1 Lack of techinical
Skills

Preventive Actions |
Do a group reading of the standards. 1
Ensure that standards are followed in mock
projects.

Effective self review
Rigorous code reviews

Conduct specification reviews

Every new entrant will do a mock project.
A detailed specification and test plan will be
made for the same.

Develop tutorials for the key technologies.
Have members do mock projects.

Table 10.4: Root causes and proposed solutions.

these as project activities, assign them to project members, and include them
in the detailed project schedule.

An important part of implementing the solutions is to see if it is having
the desired effect, that is, reducing the injection of defects and thereby reduc
ing the rework effort expended in removing the defects. Analysis of defects
some time after the solutions have been implemented can given some insight
into this question. Generally, the next analysis for defect prevention can be
used for this purpose. Besides tracking the impact, such follow-up analysis
has tremendous reinforcing value—seeing the benefits convinces people like
nothing else. Hence, besides implementation, the impact of implementation
should also be analyzed.

10.6 Metrics—Reliability Estimation

After the testing is done and the software is delivered, the development is
considered over. It will clearly be very desirable to know, in quantifiable
terms, the reliability of the software being delivered. As testing directly
impacts the reliability and most reliability models use data obtained during

522 10. TESTING

testing to predict reliability, reliability estimation is the main product met
rics of interest at the end of the testing phase. We will focus our attention
on this metric in this section.

Before we discuss the reliability modeling and estimation, let us briefly
discuss a few main metrics that can be used for process evaluation at the
end of the project.

Once the project is finished, one can look at the overall productivity
achieved by the programmers during the project. As discussed earfier, pro
ductivity can be measured as fines of code (or function points) per person-
month.

Another process metric of interest is defect removal efficiency. The defect
removal efficiency of a defect removing process is defined as the percentage
reduction of the defects that are present before the start of the process
[104], The cumulative defect removal efficiency of a series of defect removal
processes is the percentage of defects that have been removed by this series.
The defect removal efficiency cannot be determined exactly as the defects
remaining in the system are not known. However, at the end of testing, as
most defects have been uncovered, removal efficiencies can be estimated.

Let us now return to our main topic—software reliabifity modeling and
assessment. Reliability of software often depends considerably on the quality
of testing. Hence, by assessing reliability we can also judge the quality of
testing. Alternatively, reliability estimation can be used to decide whether
enough testing has been done. Hence, besides characterizing an important
quality property of the product being delivered, reliability estimation has a
direct role in project management—the reliability models being used by the
project manager to decide when to stop testing.

Many models have been proposed for software reliability assessment, and
a survey of many of the models is given in [71, 120, 61]. A discussion of the
assumptions and consequent fimitations on the models is given in [71]. Here
we will discuss Musa's basic model, as it is one of the simplest models.
The discussion of the model is based largely on the book [120]. It should,
however, be pointed out that reliability models are not in widespread use
and are used mostly in special situations.

10.6.1 Basic Concepts and Definitions

Reliability of a product specifies the probability of failure-free operation of
that product for a given time duration. As we discussed earlier in this chap
ter, unrefiability of any product comes due to fafiures or presence of faults

10.6. METRICS—RELIABILITY ESTIMATION 523

in the system. As software does not "wear out" or "age" as a mechanical or
an electronic system does, the unreliability of software is primarily due to
bugs or design faults in the software. It is widely believed that with the cur
rent level of technology it is impossible to detect and remove all the faults
in a large software system (particularly before delivery). Consequently, a
software system is expected to have some faults in it.

Reliability is a probabilistic measure that assumes that the occurrence of
failure of software is a random phenomenon. That is, if we define the life of
a software system as a variable, this is a random variable that may assume
different values in different invocations of the software. This randomness of
the failure occurrences is necessary for reliability modeling. Here, by ran
domness all that is meant is that the failure cannot be predicted accurately.
This assumption will generally hold for larger systems, but may not hold for
small programs that have bugs (in which case one might be able to predict
the failures). Hence, rehability modeling is more meaningful for larger sys
tems (In [120] it is suggested that it should be applied to systems larger than
5000 LOG, as such systems will provide enough data points to do statistical
analysis.)

Let X be the random variable that represents the life of a system. Reli
ability of a system is the probability that the system has not failed by time
t. In other words,

R{t)=P{X>t).

The reliability of a system can also be specified as the mean time to failure
(MTTF). MTTF represents the expected lifetime of the system. From the
reliability function, it can be obtained as [140]:

/•oo

MTTF= / R{x)dx.
Jo

Note that one can obtain the MTTF from the reliability function but
the reverse is not always true. The rehabihty function can, however, be
obtained from the MTTF if the failure process is assumed to be Poisson,
that is, the hfe time has an exponential distribution [140]. With exponential
distribution, if the failure rate of the system is known as A, the MTTF is
equal to 1/A.

Rehability can also be defined in terms of the number of failures experi
enced by the system by time t. Clearly, this number will also be random as
failures are random. With this random variable, we define the failure inten
sity A(t) of the system as the number of expected failures per unit time at

524 10. TESTING

time t. With failure intensity, the number of failures that will occur between
t and t -\- At can be approximated as X{t)At,

Let us define what is meant by time in these reliability models. There
are three common definitions of time for software reUability models [120]:
execution time, calendar time, and clock time. Execution time is the actual
CPU time the software takes during its execution. Calendar time is the
regular time we use, and clock time is the actual clock time that elapses
while the software is executing (i.e., it includes the time the software waits
in the system). Different models have used different time definitions, though
the most commonly used are execution time and calendar time. It is now
believed that execution time models are better and more accurate than cal
endar time models, as they more accurately capture the "stress" on the
software due to execution.

Though faults are the cause of failures, the failure of software also de
pends critically on the environment in which it is executing [120]. It is well
known that software frequently fails only if some types of inputs are given. In
other words, if software has faults, only some types of input will exercise that
fault to affect failures. Hence, how often these inputs cause failures during
execution will decide how often the software fails. The operational profile of
software captures the relative probability of different types of inputs being
given to the software during its execution. As the definition of reliability is
based on failures, which in turn depends on the nature of inputs, reliabihty
is clearly dependent on the operational profile of the software. Hence, when
we say that the reliability of software is R{t), it assumes that this is for some
operational profile. If the operational profile changes dramatically, then we
will need to either recompute R{t) or recalibrate it.

10.6.2 A Reliabil ity Mode l

Let us now discuss one particular reliability model^Musa's basic execution
time model. The description given here of the model is based on [120]. This
is an execution time model, that is, the time taken during modeling is the
actual CPU execution time of the software being modeled. The model is
simple to understand and apply.

The model focuses on failure intensity while modeling reliability. It as
sumes that the failure intensity decreases with time, that is, as (execution)
time increases, the failure intensity decreases. This assumption is generally
true as the following is assumed about the software testing activity, during
which data is being collected: during testing, if a failure is observed, the fault

10.6. METRICS—RELIABILITY ESTIMATION 525

Total Failures

Figure 10.14: Failure intensity function.

that caused that failure is detected and the fault is removed. Consequently,
the failure intensity decreases. Most other models make similar assumption
which is consistent with actual observations.

In this model, it is assumed that each failure causes the same amount
of decrement in the failure intensity. That is, the failure intensity decreases
with a constant rate with the number of failures. That is, the failure intensity
(number of failures per unit time) as a function of the number of failures is
given as

A(/i) = A o (l - ^) ,

where AQ is the initial failure intensity at the start of execution (i.e., at time
t = 0), /Li is the expected number of failures by the given time t, and UQ is the
total number of failures that would occur in infinite time. The total number
of failures in infinite time is finite as it is assumed that on each failure, the
fault in the software is removed. As the total number of faults in a given
software whose reliability is being modeled is finite, this implies that the
number of failures is finite. The failure intensity, as a function of the total
number of failures experienced, is shown in Figure 10.14 [120].

The linear decrease in failure intensity as the number of failures observed
increases is an assumption that is likely to hold for software for which the
operational profile is uniform. That is, for software where the operational

526 10. TESTING

profile is such that any valid input is more or less equally likely, the as
sumption that the failure intensity decreases linearly generally holds. The
intuitive rationale is that if the operational profile is uniform, any failure can
occur at any time and all failures will have the same impact in failure inten
sity reduction. If the operational profile is not uniform, the failure intensity
curves are ones whose slope decreases with the number of failures (i.e., each
additional failure contributes less to the reduction in failure intensity). In
such a situation the logarithmic model is better suited.

Note that the failure intensity decreases due to the nature of the soft
ware development process, in particular system testing, the activity in which
rehabihty modeling is apphed. Specifically, when a failure is detected dur
ing testing, the fault that caused the failure is identified and removed. It
is removal of the fault that reduces the failure intensity. However, if the
faults are not removed, as would be the situation if the software was already
deployed in the field (when the failures are logged or reported but the faults
are not removed), then the failure intensity would stay constant. In this sit
uation, the value of A would stay the same as at the last failure that resulted
in fault removal, and the reliability will be given by R{t) = e"'̂ '̂ , where r is
the execution time.

The expected number of failures as a function of execution time r (i.e.,
expected number of failures by time r) , /^(r), in the model is assumed to
have an exponential distribution. That is,

/x(r) = z/o(l-e~^°/''°*^).

By substituting this value in the equation for A given earlier, we get the
failure intensity as a function of time:

A(T) = Ao*e-^o/^«*^.

A typical shape of the failure intensity as it varies with time is shown in
Figure 10.15 [120].

This reliabihty model has two parameters whose values are needed to
predict the reliability of given software. These are the initial failure inten
sity Ao and the total number of failures î o- Unless the value of these are
known, the model cannot be applied to predict the reliabihty of software.
Most software reliabihty models are like this; they frequently will have a few
parameters whose values are needed to apply the model.

It would be very convenient if these parameters had constant values for
all software systems or if they varied in a manner that their values for a par
ticular software can be determined easily based on some clearly identified

10.6, METRICS—RELIABILITY ESTIMATION 527

Execution Time x

Figure 10.15: Failure intensity with time.

and easily obtained characteristic of the software (e.g., size or complexity).
Some speculations have been made regarding how these parameters may
depend on software characteristics. However, no such simple method is cur
rently available that is dependable. The method that is currently used for
all software reliability models is to estimate the value of these parameters
for the particular software being modeled through the failure data for that
software itself. In other words, the failure data of the software being modeled
is used to obtain the value of these parameters. Some statistical methods
are used for this, which we will discuss shortly.

The consequence of this fact is that, in general, for reliability modeling,
the behavior of the software system is carefully observed during system test
ing and data of failures observed during testing is collected up to some time
r. Then statistical methods are applied to this collected data to obtain the
value of these parameters. Once the values of the parameters are known, the
reliability (in terms of failure intensity) of the software can be predicted. As
statistical methods require that "enough" data points be available before ac
curate estimation of the parameters can be done, this implies that reliability
can be estimated only after sufficient data has been collected. The require
ment that there be a reasonably large failure data set before the parameters
can be estimated is another reason reliability models cannot effectively be

528 10. TESTING

applied to software that is small in size (as it will not provide enough failure
data points). Another consequence of this approach is that we can never de
termine the values of the parameters precisely. They will only be estimates,
and there will always be some uncertainty with the values we compute. This
uncertainty results in corresponding uncertainty in the reliability estimates
computed using the models.

Let us assume that the failure data collection begins with system testing
(as is usually the C£ise). That is, time r = 0 is taken to be the commence
ment of system testing. The selection of the start of time is somewhat
arbitrary. However, selecting the start of time where the assumptions about
randomness and operational profile may not hold will cause the model to
give incorrect estimates. This is why data of unit testing or integration test
ing, where the whole system is not being tested, is not considered. System
testing, in which the entire system is being tested, is really the earliest point
from where the data can be collected.

This model can be applied to compute some other values of interest
that can help decide if enough testing has been done or how much more
testing needs to be done to achieve a target reliability. Suppose the target
rehability is specified in terms of desired failure intensity, Xp- Let the present
failure intensity be Xp. Then the number of failures that we can expect to
observe before the software achieves the desired reliability can be computed
by computing Xp — Xp, which gives,

AM = ^ (A P - A F) .
XQ

In other words, at any time we can now clearly say how many more failures
we need to observe (and correct) before the software will achieve the target
rehabihty. Similarly, we can compute the additional time that needs to be
spent before the target reliability is achieved. This is given by

At = —In-—.
XQ Xp

That is, we can expect that the software needs to be executed for At more
time before we will observe enough failures (and remove the faults corre
sponding to them) to reach the target rehability. This time can be converted
to calendar time, which is what is used in projects, by incorporating some
parameters about the software development environment. This issue will be
discussed later.

10.6. METRICS—RELIABILITY ESTIMATION 529

10.6.3 Failure D a t a and Parameter Est imat ion

To apply the reliability model for a particular software, we need to obtain the
value of the two parameters: AQ and UQ. These parameters are not the same
for all software and have to be estimated for the software being modeled
using statistical techniques.

For statistical approaches to parameter estimation, data has to be col
lected about the failures of the software being modeled. Generally, the ear
liest point to start collecting data for reliability estimation is the start of
system testing (a later point can also be taken, though it will reduce the
number of failures that can be observed). The data can be collected in two
different forms. The first form is to record the failure times (in execution
time) of the failures observed during execution. This data will essentially be
a sequence of (execution) times representing the first, second, and so on fail
ures that are observed. The second form of data is to record the number of
failures observed during execution in different time intervals (called grouped
failure data). This form might sometimes be easier to collect if the unit is
a clearly identified unit, like a day. In this form, the data will be in the
form of a table, where the duration of the interval (in execution time) and
the number of failures observed during that interval are given. We will only
discuss the parameter estimation with the first form. For further details on
parameter estimation, the reader is referred to [120].

There are many ways in which the model can be "fitted" to the data
points to obtain the parameters or coefficients. One common method is the
least squares approach in which the goal is to select the parameters for the
model so that the square of the difference between the observed value and
the one predicted by the model is minimized. This approach works well
when the size of the data set is not very large.

For applying the least squares approach, we will consider the equation
for the failure intensity as a function of the mean number of failures (i.e.,
\{fi) — Ao(l — (I/VQ)). TO determine parameters for this equation, we need
a set of observed data points, each containing the value of the dependent
variable and the value of the independent variable. In this case, this means
that we need data points, each of which gives the failure intensity and the
number of failures.

The data collected, as specified earlier, may be in the form of failure
times or grouped failure data. The first thing that needs to be done is to
convert the data to the desired form by determining the failure intensity for
each failure. If the data about failure times is available, this conversion is

530 10. TESTING

done as follows [120]. Let the observation interval be (0,te] (tg is the time
when the observations are stopped; it will generally be greater than the time
of the last failure). We partition this observation interval at every kth. failure
occurrence. That is, this time interval is partitioned into sub-intervals, each
(except the last one) containing k distinct failures. If the total number of
failures observed until te is rrie, then the number of subintervals is p, where
p = [me/A:]. The observed failure intensity for an interval can now be
computed by dividing the number of failures in that interval by the duration
of the interval. That is, for an interval I, the observed failure intensity ri is
given by

k
n = 7 ^ = i , . . . , p - i .

m - tk{i-i)

For the last interval, the failure intensity is

rUe - k{p- 1)

ê - tk{l-l)

These failure intensities are independent of each other as the different time
intervals are disjoint. The estimate for the mean value for the lib. interval,
mi, can be obtained by

mi = k{l — 1).

(This takes the start value for the interval but has been found to be better
than taking the average or midpoint value [120].) In this method, if k is
chosen to be too small, large variations will occur in failure intensity. If the
value of k is very large, too much smoothing may occur. A value of about
five (i.e., /c — 5) gives reasonable results [120].

Obtaining data in this form from grouped data is even easier. For each
time interval for which failures were counted, dividing the number of failures
by the duration of the interval will give the failure intensity of that interval.
The total number of failures for an interval is the sum of all the failures of
all the intervals before this interval.

In this manner, we can get from the collected data a set of p data points,
each giving a failure intensity and the total number of failures observed.
As the relationship between them is linear, a regression line can be fit in
these data points. From the coefficients of the line, model parameters can
be determined easily.

However, the approach of simple linear regression minimizes the sum of
absolute errors (between the predicted value by the model and the actual
value observed). This approach gives a higher weight to the data points with

10.6. METRICS—RELIABILITY ESTIMATION 531

larger failure intensity. In other words, the coefficients will be influenced
more by data points with larger failure intensity. A better approach is to
consider relative error, which is absolute error divided by the value given by
the model. The least squares approach here will be to minimize the sum of all
the relative errors. With relative errors, each data point is given the same
weight. However, with this, linear regression cannot be used, and closed-
form equations for determining the coefficients are not available. For this
approach, numerical methods must be used to determine the coefficients.
The approach will be to obtain the derivatives of the equation for least
squares (with relative error) with the two coefficients to be determined, set
these to 0, and then solve these two simultaneous equations through some
standard numerical technique like the Newton-Raphson method. For further
discussion on this, the reader is referred to [120] or any numerical analysis
text.

Once the parameters are known, we can also predict the number of faults
in the delivered software using the reliability model (which can be used to
predict faults per KLOC). As we don't otherwise know how many faults
remain in software, generally, this data is available for a project only after
the software has been in operation for a few years and most of its faults have
been identified. By using the reliability model, we can predict this with some
confidence.

The total failures experienced in infinity time by a software is related to
the total faults in the system, as we are assuming that faults are generally
removed after a failure is detected. However, the fault removal process may
not be perfect and may introduce errors. In addition, each failure may not
actually result in removing of a fault, as the information obtained on failure
may not be sufficient for fault detection. If the total number of faults in the
software is UJQ, we can get UQ from this by using the fault reduction factor,
B:

The fault reduction factor, B, is the ratio of the net fault reduction to the
total number of failures experienced. If each failure resulted in exactly one
fault being removed, then B would be 1. However, sometimes a failure is
not sufficient to locate a fault or a fault removal adds some faults. Due to
these, the fault reduction factor is not always 1. Currently available data
suggests that B is close to 1, with an average value of about 0.95 [120].
This value can be used to predict the number of faults that remain in the
software. Alternatively, the value of B can be computed from the data

532 10. TESTING

collected (additional data about fault correction will have to be compiled).

10.6.4 Translating to Calendar T ime

The model discussed here is an execution-time model: all the times are the
CPU execution time of the software. However, software development and
project planning works in calendar time—hours, days, months, etc. Hence,
we would like to convert the estimates to calendar time, particularly when we
are trying to predict the amount of time still needed to achieve the desired
reliability. In this case, it is clearly desirable to specify the time in calendar
time, so that the project plan can be modified appropriately, if needed.

As reliability modeling is performed from system testing onward, the
execution time can be related to the effort for testing, debugging, etc. The
simplest way to do this is to determine an average ratio of the amount of
effort to execution time and then to use this effort to estimate the calendar
time. Alternatively, instead of giving one ratio, two ratios can be specified—
one for the CPU time expended and one for the failures detected. These
ratios can then be used to determine the total amount of effort.

Let us explain this approach with a simple example. Generally, the main
resource during testing is the test team effort. For now, we consider this
as the only resource of interest for modeling calendar time. Suppose the
test team runs the software for 10 CPU hours, during which it detects 25
failures. Suppose that for each hour of CPU execution time, an average of
8 person-hours of the test team are consumed (ratio of effort to CPU time),
and that on an average 4 person-hours is needed on each failure to analyze
it (ratio of effort to failures). Hence, the total effort required for this is

10*8 + 25*4 = 180 person-hours.

If the quantity of test team resources (i.e., the number of members in the
test team) is three persons, this means that the calendar time for this is 60
hours. As the number of failures experienced is a function of time according
to the Basic model, one overall ratio could also have been given with CPU
time (or with number of failures). In this example, the overall ratio will be
18 person-hours per CPU hour.

10.6.5 A n Example

Let us illustrate the use of the reliability model discussed earlier through
the use of an example. In [120], times for more than 130 failures for a real

10.6. METRICS—RELIABILITY ESTIMATION 533

Time of Failure

311
366
608
676
1098

1278

1288

2434

3034

3049

3085

3089

3089

3565

3623

4080

4380

4477

4740

5192

5447

5644

5837

5843

5922

6738

8089

8237

8258

8491

8625

8982

9175

9411

9442

9811

(in CPU
10,559

10,559

10,791

11,121

11,486

12,708

13,251

13,261

13,277

13,806

14,185

14,229

sec)

14,358

15,168

Table 10.5: Failure data for a real system.

system called T l are given. For illustration purposes, we select about 50
data points from it, starting from after about 2000 CPU sec have elapsed
(from the 21st failure). We define r - 0 after the first 2000 sec of [120] to
illustrate that the choice of r — 0 is up to the reliability estimator and to
eliminate the first few data points, which are likely to show a wider variation,
as they probably represent the start of testing. The times of failures with
this r = 0 are given in Table 10.5 [120].

As we can see, this is the failure times data. From this, using /c = 5, we
obtain the failure intensities and the cumulative failures as discussed earlier.
The data points we get are:

(0.0045, 0), (0.0026, 5), (0.0182, 10), (0.0047, 15), (0.0040, 20),
(0.0020, 25), (0.0056, 30), (0.0032, 35), (0.0023, 40), (0.0035, 45)

For the purposes of this example, we will try to fit a regression line to this
data using the regular least squares approach, for which parameter determi
nation can be done in a simple manner. As discussed earlier, this method is
likely to give poorer results compared to minimizing the square of relative
errors. Using the regular regression line fitting approach, we get AQ = 0.0074
failure/CPU sec and UQ « 70 failures. (If the complete data from [120] is
used, then UQ comes out to about 136 failures. Because we are not counting
the first 20, this means that by fitting a line on the complete data using the
relative error approach, UQ would come out to be around 110. This error in

534 10. TESTING

our estimate is coming due to the smaller sample and the use of absolute
error for determining the coefficients.) By the reliability model, the current
reliability of the software (after 50 failures have been observed) is about
0.002 failure per CPU second.

We can see that the total number of estimated faults in the system at
the start of the time is 70. Out of this, 50 faults have been removed (after
observing the 50 failures). Hence, there are still 20 faults left in the software.
Suppose the size of the final software was 20,000 LOG. If the failure data
given earlier is until the end of system testing (i.e., the software is to be
delivered after this) and this software development project is a typical project
for the process that was followed, we can say that the capability of this
process is to deliver software with a fault density of 1.0 per KLOC.

Now let's suppose the current failure intensity after 50 failures is not
acceptable to the client. The desired failure intensity is 0.001 failure per
CPU second. Using the model, we can say that to achieve this reliability,
further testing needs to be done and the amount of CPU time that will be
consumed in this extra testing can be estimated to be

70/0.0074 * ;n(0.002/0.001) = 6,527 CPU - sec.

That is, approximately 1.81 CPU hours of testing needs to be performed
to achieve the target reliability. Suppose the limiting resource is only the
testing personnel, there is one person assigned to test this software, and on
an average 20 person-hours of testing personnel effort is spent for each hour
of CPU time. In this case, we can say that more than 36 person-hours of
testing need to be done. In other words, the calendar time needed to achieve
the target rehability is about a week.

10.7 Summary

Testing plays a critical role in quality assurance for software. Due to the
limitations of the verification methods for the previous phases, design and
requirement faults also appear in the code. Testing is used to detect these
errors, in addition to the errors introduced during the coding phase.

Testing is a dynamic method for verification and validation, where the
system to be tested is executed and the behavior of the system is observed.
Due to this, testing observes the failures of the system, from which the
presence of faults can be deduced. However, separate activities have to be
performed to identify the faults (and then remove them).

10.7. SUMMARY 535

There are two approaches to testing: black-box and white-box. In black-
box testing, the internal logic of the system under testing is not considered
and the test cases are decided from the specifications or the requirements. It
is often called functional testing. Equivalence class partitioning, boundary
value analysis, and cause-effect graphing are examples of methods for select
ing test cases for black-box testing. State-based testing is another approach
in which the system is modeled as a state machine and then this model is
used to select test cases using some transition or path based coverage cri
teria. State-based testing can also be viewed as grey-box testing in that it
often requires more information than just the requirements.

In white-box testing, the test cases are decided entirely on the internal
logic of the program or module being tested. The external specifications
are not considered. Often a criterion is specified, but the procedure for
selecting test cases is left to the tester. The most common control flow-
based criteria are statement coverage and branch coverage, and the common
data flow-based criteria are all-defs and all-uses. Mutation testing is another
approach for white-box testing that creates mutants of the original program
by changing the original program. The testing criterion is to kill all the
mutants by having the mutant generate a different output from the original
program.

As the goal of testing is to detect any errors in the programs, different
levels of testing are often used. Unit testing is used to test a module or
a smafl collection of modules and the focus is on detecting coding errors in
modules. During integration testing, modules are combined into subsystems,
which are then tested. The goal here is to test the system design. In system
testing and acceptance testing, the entire system is tested. The goal here
is to test the system against the requirements, and to test the requirements
themselves. White-box testing can be used for unit testing, while at higher
levels mostly black-box testing is used.

The testing process usually commences with a test plan, which is the
basic document guiding the entire testing of the software. It specifies the
levels of testing and the units that need to be tested. For each of the different
units, first the test cases are specified and then they are reviewed. During the
test case execution phase, the test cases are executed, and various reports are
produced for evaluating testing. The main outputs of the execution phase
are the test summary report and the error report.

The main metric of interest during testing is the reliability of the software
under testing. Reliability of software depends on the faults in the software.
To assess the reliability of software, reliabihty models are needed. To use

536 10. TESTING

a model for a given software system, da ta is needed about the software
that can be used in the model to estimate the rehability of the software.
Most reliability models are based on the da ta obtained during the system
and acceptance testing. Data about time between failures observed during
testing are used by these models to estimate the reliability of the software.
We discussed one such reliability model in the chapter in some detail and
have discussed how the reliability model can be used in a project and what
the limitations of reliability models are.

Exercises

1. What are the different levels of testing and the goals of the different levels?
For each level, specify which of the testing approaches is most suitable.

2. Testing, including debugging and fixing of bugs, is the most expensive task
in a project. List the major activities in the entire testing process, and give
your view on what % of the testing effort each consumes.

3. Suppose a software has three inputs, each having a defined valid range. How
many test cases will you need to test all the boundary values?

4. For boundary value analysis, if the strategy for generating test cases is to
consider all possible combinations for the different values, what will be the
set of test cases for a software that has three inputs X, Y, and Z?

5. Take three variables A, B, and C, each having two values. Generate a set of
test cases that will exercise all pairs.

6. Suppose a software has five different configuration variables that are set in
dependently. If three of them are binary (have two possible values), and the
rest have three values, how many test cases will be needed if pair-wise testing
method is used?

7. Consider a vending machine that takes quarters and when it has received two
quarters, gives a can of soda. Develop a state model of this system, and then
generate sets of test cases for the various criteria.

8. Suppose you have to test a class for implementing a queue of integers. Using
state-based approach (and one criteria for it), generate a set of test cases that
you will use to test it. Assume standard operations like add, delete on the
queue.

9. Consider a simple text formatter problem. Given a text consisting of words
separated by blanks (BL) or newline (NL) characters, the text formatter has
to covert it into lines, so that no line has more than MAXPOS characters,
breaks between lines occurs at BL or NL, and the maximum possible number

10.7. SUMMARY 537

of words are in each line. The following program has been written for this
text formatter [73]:

alarm := false;
bufpos := 0;
fill := 0;
repeat

inchar(c);
if (c - BL) or (c = NL) or (c = EOF)
then

if bufpos != 0
then begin

if (fill + bufpos < MAXPOS) and (fill ! - 0)
then begin

outchar(BL);
fill := fill + 1; end

else begin
outchar(NL);
fill := 0; end;

for k:==l to bufpos do
outchar(buffer [k]);

fill := fill + bufpos;
bufpos := 0; end

else
if bufpos = MAXPOS
then alarm := true
else begin

bufpos := bufpos + 1;
buffer [bufpos] := c; end

until alarm or (c = EOF);

For this program, do the following:

(a) Select a set of test cases using the black-box testing approach. Use as
many techniques as possible and select test cases for special cases using
the "error guessing" method.

(b) Select a set of test cases that will provide 100% branch coverage.

(c) Select a set of test cases that will satisfy the all-defs and the all-uses
criteria (except the ones that are not feasible).

(d) Create a few mutants by simple transformations. Then select a set of
test cases that will kill these mutants.

(e) Suppose that this program is written as a procedure. Write a driver
for testing this procedure with the test cases selected in (a) and (b).

538 10. TESTING

Clearly specify the format of the test cases and how they are used by
the driver.

10. Suppose three numbers A, B, and C are given in ascending order representing
the lengths of the sides of a triangle. The problem is to determine the type
of the triangle (whether it is isosceles, equilateral, right, obtuse, or acute).
Consider the following program written for this problem:

read(a, b, c);
if (a < b) or (b < c) then

print ("Illegal inputs");
return;

if (a=b) or (b=c) then
if (a=b) and (b=c) then print ("equilateral triangle")
else print ("isosceles triangle")

else begin
a := a*a; b := b*b; c := c*c;
d := b+c;
if (a = d) then print ("right triangle")
else if (a<d) then print("acute triangle")
else print ("obtuse triangle");

end;

For this program, perform the same exercises as in the previous problem.

11. What are the limitations of, the reliability model discussed in the chapter for
using it for estimating the reliability of a product?

12. Suppose you want to predict the reliability of a product at the time of the
release using the model discussed in the chapter. What data will you collect
and when for this, and what changes (if any) will you make in your testing?

13. Define some data flow criteria for testing an entire class (i.e., not just for
testing the methods independently) (refer to [82]).

14. In your next project, collect the defects in the last stages of testing. Perform
the cause-effect analysis for these defects leading to some actions on how you
should do things diff'erently in the future for reducing the errors you make.

15. Another method for evaluating software reliability is to use the Mill's seed
ing approach. In this method some faults are seeded in the program, and
reliability is assessed based on how many of these seeded faults are detected
during testing. Develop a simple reliability model based on this approach.
Define your parameters, and give a formula for estimating the reliability and
the number of faults remaining in the system. Also discuss the drawbacks
and limitations of this model?

CASE STUDIES 539

Case Studies

Here we briefly discuss the test plans and strategy for the two case studies.
The detailed test case specifications for system testing are available from the
Web site.

Test P lan for Case S tudy 1 (Course Scheduling)

This document describes the plan for testing the course scheduling software.
All major testing activities are specified here; additional testing may be
scheduled later, if necessary.

1. Test Units
In this project we will perform two levels of testing: unit testing and system
testing. Because the system is small, it is felt that there is no need for
elaborate integration testing. The basic units to be tested are:

Modules to input file-1
Modules to input file-2
Modules for scheduling

In addition, some other units may be chosen for testing. The testing for
these different units will be done independently.

2. Features to be Tested
All the functional features specified in the requirements document will be
tested. No testing will be done for the performance, as the response time
requirement is quite weak.

3. Approach for Testing
For unit testing, structural testing based on the branch coverage criterion
will be used. The goal is to achieve branch coverage of more than 95%.
The CCOV coverage analyzer tool will be used to determine the coverage.
System testing will be largely functional in nature. The focus is on invalid
and valid cases, boundary values, and special cases.

4. Test Deliverables
The following documents are required (besides this test plan):

540 10. TESTING

• Unit test report for each unit

• Test case specification for system testing

• Test report for system testing

• Error report

The test case specification for system testing has to be submitted for review
before system testing commences.

5. Test Case Specifications for System Testing
For test case specifications we specify all test cases that are used for system
testing. First, the different conditions that need to be tested, along with
the test cases used for testing those conditions and the expected outputs
are given. Then the data files used for testing are given. The test cases
are specified with respect to these data files. The test cases have been
selected using the functional approach. The goal is to test the different
functional requirements, as specified in the requirements document. Test
cases have been selected for both valid and invalid inputs. The entire test
case specifications is available from from the Web site.

Case Study 2 — P I M S

The test plan for PIMS is similar to the previous one. It also follows a
two level testing—unit and then system. Unit testing is performed by the
programmers, and no unit test reports are mandated. As the overall plan is
the same, we do not discuss it here. We just discuss some aspects of planning
for system test cases.

System testing would begin with the development team releasing appli
cations to the test team. The sequence of activities is:

• Development team does a unit testing of the application, fixes identified
problems and hands over the environment to the Test team.

• Test team runs some quick checks (e.g., that the system installs, that
it can take inputs) and some tests for critical functionality. If 80% of
these tests pass, then the application is considered ready for system
testing, otherwise it is returned to the developers.

• The test team runs the test cases.

CASE STUDIES 541

• Testing will be suspended if during testing the test team encounters
any critical defects, or a set of major defects which would prevent
effective testing.

• The testing shall resume only when 100% of critical defects are fixed
and at least 80% major defects are fixed.

• Testing shall end when all the test cases in the test plan have been
executed.

• Defects identified will be notified to the development team regularly
and all defect fixes received from the development team will be included
for retesting.

For this case study, the system test plan was prepared with inputs from
some software quality professionals from commercial organizations. So, in
a sense, the test cases represent the type of testing that may be done by
professionals. The test case specifications are available from the Web site.

Bibliography

[1] F. B. Abreu and R. Carapuca. Candidate metrics for object-oriented software
wihin a taxonomy framework. Journal of Systems and Software, 26(l):87-96,
Jan. 1994.

[2] A. J. Albrecht and J. E. Gaffney. Software function, source lines of code, and
development effort prediction: A software science validation. IEEE Transac
tions on Software Engineering, 9(6):639-648, Nov. 1983.

[3] T. Ball. The concept of dynamic analysis. In ESEC/FSE-7: Proceedings of the
7th European software engineering conference held jointly with the 7th ACM
SIGSOFT international symposium on Foundations of software engineering,
pages 216-234, Toulouse, France, 1999. Springer-Verlag.

[4] S. Balsamo, A DiMarco, P. Inverardi, and M. Simeoni. Model-based perfor
mance prediction in software development: a survey. IEEE Transactions on
Software Engineering, 30(5):295-310, May 2004.

[5] V. R. Basili. Tutorial on models and metrics for software management and
engineering. IEEE Press, 1980.

[6] V. R. Basili, L. Briand, and W. L. Melo. A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10):751-761, Oct 1996.

[7] V. R. Basili and A, Turner. Iterative enhancement, a practical technique for
software development. IEEE Transactions on Software Engineering, SE-1(4),
Dec. 1975.

[8] V. R. Basili and D. M. Weiss. Evaluation of a software requirements document
by analysis of change data. In 5th Int. Conf. on Software Engineering, pages
314-323. IEEE, 1981.

[9] L. Bass, P. Clements, and Rick Kazman. Software Architecture in Practice,
Second Edition. Addison Wesley Professional, 2003.

[10] K. Beck. Extreme Programming Explained. Addison-Wesley, 2000.

544 BIBLIOGRAPHY

[11] K. Beck. Test Driven Development: by Example. Addison-Wesley Profes
sional, 2002.

[12] E. H. Bersoff. Elements of software configuration management. IEEE Trans
actions of Software Engineering, pages 79-87, Jan. 1984.

[13] E. H. Bersoff, V. D. Henderson, and S. G. Siegel. Software configuration
management: A tutorial. IEEE Computer, pages 6-14, Jan. 1979.

[14] E. H. Bersoff, V. D. Henderson, and S. G. Siegel. Software configuration
management—an investment in product integrity. Prentice-Hall, Inc., Engle-
wood Cliffs, NJ, 1980.

[15] B. Beyer. Object Oriented Software Construction. Prentice Hall, 1988.

[16] R.V. Binder. Testing Object-Oriented Systems—Model, Patterns, and Tools.
Addison Wesley, 1999.

[17] B. Boehm. Software engineering. IEEE Transactions on Computers, 25(12),
Dec. 1976.

[18] B. Boehm. A spiral model of software development and enhancement. IEEE
Computer, pages 61-72, May 1988.

[19] B. Boehm. Tutorial: software risk management. IEEE Computer Socity,
Washington D.C., 1989.

[20] B. W. Boehm. Software engineering economics. Prentice Hall, Englewood
Cliffs, NJ, 1981.

[21] B. W. Boehm. Software engineering economics. IEEE Transactions on Soft
ware Engineering, 10(1): 135-152, Jan. 1984.

[22] B. W. Boehm. Improving software productivity. IEEE Computer, pages 43-
57, Sept. 1987.

[23] G. Booch. Object-oriented analysis and design. The Benjamin/Cummings
Publishing Company, Santa Clara, CA, 1994.

[24] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

[25] F. Brooks. The Mytical Man Month. Addison-Wesley, Reading, MA, 1975.

[26] N. Brown. Industrial-strength management strategies. IEEE Software, July
1996.

[27] T. A. Budd et al. The design of a prototype mutation system for program
testing. In National Computer Conference, 1978.

[28] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding
dynamic programming errors. Software Practice and Experience, 30(7):775-
802, June 2000.

BIBLIOGRAPHY 545

[29

[30:

R.N. Charette. Software Engineering Risk Analysis and Management. Mc-
Graw Hill, 1989.

R.N. Charette. Large-scale project management is risk management. IEEE
Software., July 1996.

[31] E. Chen. Program complexity and programmer productivity. IEEE Transac
tions on Software Engineering, SE-4:187-194, May 1978.

[32] S. R. Chidamber and C. F. Kemerer. A metrics suite for object-oriented
design. IEEE Transactions on Software Engineering, 20(6):476-493, June
1994.

[33] R. Chillarege et al. Orthogonal defect classification—a concept for in-process
measurements. IEEE Transactions on Software Engineering, 18(ll):943-956,
Nov 1992.

[34] T.S. Chow. Testing software design modeled by finite state machines. IEEE
Transactions on Software Engineering, 4(3):178-187, 1978.

[35] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,
and J. Stafford. Documenting Software Architectures: Views and Beyond.
Addison Wesley, 2003.

[36] P. Coad and E. Yourdon. Object-oriented analysis. Prentice Hall, 1990.

[37] P. Coad and E. Yourdon. Object-oriented design. Prentice Hall, 1991.

[38] A. Cockburn. Agile Software Development. Addison-Wesley, 2001.

[39] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2001.

[40] D.M. Cohen, S.R. Dalai, M.L. Fredman, and G.C. Patton. The AETG system:
An approach to testing based on combinatorial design. IEEE Transactions
on Software Engineering, 23(7):437-443, 1997.

[41] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software engineering metrics
and models. The Benjamin/Cummings Publishing Company, 1986.

[42] J.C. Corbett et al. Bandera: extracting finite-state models from Java source
code. In International Conference on Software Engineering, pages 439-448,
2000.

[43] Cyrelli Artho. Jlint homepage: http://artho.com/jlint.

[44] A. M. Davis. Operational prototyping: A new development approach. IEEE
Software, pages 70-78, Sept. 1992.

[45] A. M. Davis. Software Requirements: Objects, Functions, and States. Prentice
Hall, Englewood Cliffs, NJ, 1993.

[46] A. M. Davis. Software prototyping. In Advances in Computers, Vol. 40, pages
39-63. Academic Press, 1995.

http://artho.com/jlint

546 BIBLIOGRAPHY

[47] J. S. Davis. Identification of errors in software requirements through use of au
tomated requirements tools. Information and Software Technology, 31(9):472-
476, Nov. 1989.

[48] T. DeMarco. Structured analysis and system specification. Yourdon Press,
1979.

[49] R. A. DeMillo et al. An extended overview of the MOTHRA testing envi
ronment. In Workshop on Software Testing, Verification, and Analysis, July
1988.

[50] R. A. DeMillo, R. A. Lipton, and F. G. Sayward. Hints on test data selection:
Help for the practicing programmer. IEEE Computer, pages 34-41, Apr. 1978.

[51] L. Dobrica and E. Niemela. A survey on software architecture analysis meth
ods. IEEE Transactions on Software Engineering, 28(7):638-653, 2002.

[52] R. H. Dunn. Software defect removal. McGraw-Hill Inc., 1984.

[53] J. Eder, G. Kappel, and M. Schrefl. Coupling and cohesion in object-oriented
systems. Technical report, University of Klagenfurt, 1994.

[54] T. J. Emerson. A discriminating metric for module cohesion. In Proc. of the
7th Int. Conf. on Software Engineering, pages 294-303, 1984.

[55] D. Engler. Racerx: Effective, static detection of race conditions and deadlocks.
Technical report, citeseer.ist.psu.edu/674744.html.

[56] D. Engler and M. Musuvathi. Static analysis versus software model checking
for bug finding. In 5th Intl. Conference Verification, Model Checking and
Abstract Interpretation (VMCAI '04), 2004.

[57] D. Evans. Static detection of dynamic memory errors. In SIC PLAN Con
ference on Programming Language Design and Implementation (PLDI '96),
1996.

[58] M. E. Pagan. Design and code inspections to reduce errors in program devel
opment. IBM System Journal, (3):182-211, 1976.

[59] M. E. Pagan. Advances in software inspections. IEEE Transactions on Soft
ware Engineering, 12(7):744-751, July 1986.

[60] R. E. Pairly. Software engineering concepts. McGraw-Hill Inc., 1985.

[61] W. Parr. Software reliability modeling survey. In M. R. Lyu, editor, Soft
ware Reliability Engineering, pages 71-117. McGraw Hill and IEEE Computer
Society, 1996.

[62] S. I. Peldman. Make—a program for maintaining computer programs. Soft
ware Practice and Experience, 9(3):255-265, March 1979.

[63] L. D. Posdick and L. J. Osterweil. Dataflow analysis in software reliability.
ACM Computing Surveys, 8(3), Sept. 1978.

http://citeseer.ist.psu.edu/674744.html

BIBLIOGRAPHY 547

[64

[65

M. Fowler. UML Distilled—A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley Professional, 2003.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[66] P. G. Frankl, S. Weiss, and E. J. Weyuker. ASSET: A system to select and
evaluate tests. In Proc. IEEE Conference on Software Tools, pages 72-79,
Apr. 1985.

[67] P. G. Frankl and E. J. Weyuker. Provable improvements on branch testing.
IEEE Transactions on Software Engineering, 19(10):962-975, Oct. 1993.

[68] D. P. Freedman and G. M. Weinberg. Handbook of Walkthroughs, Inspections,
and Technical Reviews—Evaluating Programs, Projects, and Products. Dorset
House, 1990.

[69] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns—
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional,
1995.

[70] T. Gilb and D. Graham. Software Inspection. Addison-Wesley, 1993.

[71] A. L. Goel. Software reliability models: Assumptions, limitations and appli
cability. IEEE Transactions on Software Engineering, SE-11:1411-1423, Dec.
1985.

[72] H. Gomma and D. B. H. Scott. Prototyping as a tool in the specification of
user requirements. In Fifth Int. Conf. on Software Engineering, pages 333-
341, 1981.

[73] J. Goodenough and S. L. Gerhart. Towards a theory of test data selection.
IEEE Transactions on Software Engineering, SE-1:156-173, 1975.

[74] S. E. Goodman and S. T. Hedetniemi. Introduction to the design and analysis
of algorithms. McGraw-Hill Inc., 1977.

[75] R. Grady. Practical Software Metrics for Project Management and Process
Improvement. Prentice Hall, 1992.

[76] R. Grady and D. Caswell. Software Metrics: Establishing a Company-wide
Program. Prentice Hall, 1987.

[77] R. B. Grady and T. V. Slack. Key lessons learned in achieving widespread
inspection use. IEEE Software, pages 48-57, July 1994.

[78] E.M. Hall. Managing Risk: Methods for Software Development and Enhance
ment. Addison-Wesley, 1998.

[79] M. Halstead. Elements of Software Science. Eslevier North-Holland, New
York, 1977.

548 BIBLIOGRAPHY

[80] W. Harrison, K. Magel, R. Kluczny, and A. DeKock. Applying software
complexity metrics to program maintenance. IEEE Computer, pages 65-79,
Sept. 1982.

[81] M. J. Harrold and P. Kolte. Combat: A compiler based data flow testing
system. In Proc. of the Pacific Northwest Quality Conference, pages 311-323,
1992.

[82] M.J . Harrold and G. Rothermel. Performing data flow testing on classes. In
ACM Foundations on Software Engineering, pages 154-163, 1994.

[83] M. J. Harrold and M. L. SofFa. Interprocedural data flow testing. In Proc. of
the 3rd Testing, Analysis, and Verification Symposium, pages 158-167, 1989.

[84] S. Henry and D. Kafura. Software structure metrics based on information
flow. IEEE Transactions on Software Engineering, 7(5):510-518, 1981.

[85] S. Henry and D. Kafura. The evaluation of software systems' structures using
quantitative software metrics. Software Practice and Experience, 14(6):561-
573, June 1984.

[86] C. A. R. Hoare. An axiomatic basis for computer programming. Communi
cations of the ACM, 12(3):335-355, 1969.

[87] D. Hovemeyer and W. Pugh. Finding bugs is easy. In Proceedings, OOP SLA
2004; also findbugs.sourceforge.net, 2004.

[88] M. Howard and D. LeBlanc. Writing Secure Code (2nd ed.). Microsoft Press,
2002.

[89] W. E. Humphrey. Managing the software process. Addison Wesley, 1989.

[90] D. H. Hutchens and V. R. Basih. System structure analysis: clustering with
data bindings. IEEE Transactions on Software Engineering, SE-11(8):749-
757, Aug. 1985.

[91] IEEE. Software engineeing standards. Technical report, 1987.

[92] IEEE. IEEE software engineeing standards collection, 1994 edition. Technical
report, 1994.

[93] IEEE. IEEE recommended practice for architectural description of software-
intensive systems. Technical Report 1471-2000, 2000.

[94] International Standards Organization. Software engineering—product quality.
part 1: Quality model. Technical Report IS09126-1, 2001.

[95] I. Jacobson. Object-oriented Software Engineering—A Use Case Driven Ap
proach. Addison Wesley Pubhshing Co., 1992.

[96] P. Jalote. CMM in Practice—Processes for Executing Software Projects at
Infosys. Addison-Wesley, 1999.

http://findbugs.sourceforge.net

BIBLIOGRAPHY 549

[97] P. Jalote. Software Project Management in Practice. Addison-Wesley, 2002.

[98] P. Jalote and M. Haragopal. Overcoming the nah syndrome for inspection
deployment. In Proc. 20th Intl. Conf. On Software Engg., pages 371-378,
Kyoto, Japan, 1998.

[99] P. Jalote, A. Palit, and P. Kurien. The timeboxing process model for iterative
software development. In Advances in Computers, Vol. 62, pages 67-103.
Academic Press, 2004.

100] P. Jalote, A. Palit, P. Kurien, and V. T. Peethamber. Timeboxing: A pro
cess model for iterative software development. The Journal of Systems and
Software, 70:117-127.

101] P. Jalote and A. Saxena. Optimum control limits for employing statistical
process control in software processes. IEEE Transactions on Software Engi
neering, 28(12):1126-1134, Dec 2002.

102] P. Jalote and B. Vishal. Optimal resource allocation for the quality control
process. In Proceedings, Int. Symp. on Sw Reliability (ISSRE-2003), Denver,
Colorado, 2003.

103] R. E. Johnson and B. Foote. Designing reusable classes. Journal of Object
Oriented Programming, l(2):22-25, 1988.

104] S.H. Kan. Metrics and Models in Software Quality Engineering. Addison
Wesley, 1995.

105] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere.
The architecture tradeoff analysis method. In Proceedings, IEEE Interna
tional Conference on Engineering of Complex Computer Systems (ICECCS),
pages 68-78, Aug 1998.

106] C. F. Kemerer. An empirical validation of software cost estimation models.
CACM, 30(5):416-429, May 1987.

107] T. Korson and J. D. Gregor. Understanding object-oriented: A unifying
paradigm. Commn. of the ACM, 33(9):40-60, Sept. 1990.

108] P. Kruchten. The Rational Unified Process—An Introduction. Addison-
Wesley, 2000.

109] J. W. Laski and B. Korel. A data flow oriented program testing strategy.
IEEE Transactions on Software Engineering, 9(3):347-354, May 1983.

110] H. Lichter, M. S. Jufschmidt, and H. Zullighoven. Prototyping in indus
trial software projects—bridging the gap between theory and practice. IEEE
Transactions on Software Engineering, 20(ll):825-832, Nov. 1994.

m l W. Lie and S. Henry. Object-oriented metrics that predict maintainability.
Journal of Systems and Software, 23(2):111-122, 1993.

550 BIBLIOGRAPHY

[112] B. Liskov. Data abstraction and hierarchy. SIGPLAN Notices, 23(5), May
1988.

[113] G. C. Low and D. R. Jeffery. Function points in the estimation and evalu
ation of the software process. IEEE Transactions on Software Engineering,
16(1):64-71, Jan. 1990.

[114] M. Mantei. The effect of programming team structure on programming tasks.
Communications of the ACM, 24(3), March 1981.

[115] A. P. Mathur. Mutation testing. In Encyclopedia of Software Engineering,
pages 707-713. John Wiley, 1994.

[116] T. J. McCabe. A complexity measure. IEEE Transactions on Software, SE-
2(4):308-320, Dec. 1976.

[117] M. Mock. Dynamic analysis: bottom-up. In WODA 2003: ICSE Workshop
on Dynamic Analysis, Portland, OR, May 2003.

[118] D. E. Monarchi and G. I. Puhr. A research topology for object-oriented
analysis and design. Communications of the ACM, 35(9);35-47, Sept. 1992.

[119] D.C. Montgomery. Introduction to Statistical Quality Control, Third Edition.
John Wiley and Sons, 1996.

[120] J. D. Musa, A. lannino, and K. Okumoto. Software reliability—measurement,
prediction, application. McGraw Hill Book Company, 1987.

[121] G. Myers. The art of software testing. Wiley-Interscience, New York, 1979.

[122] P. G. Neumann. Risks to the public in computers and related systems. Soft
ware engineering notes, 13(2):5-18, April 1988.

[123] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann. Generating test data from
state-based specifications. The Journal of Software Testing, Verification, and
Reliability, 13(l):25-53, March 2003.

[124] M. Page-Jones. Fundamentals of Object-Oriented Design in UML. Addison-
Wesley, 1999.

[125] M.S. Phadke. Planning efficient software tests. Crosstalk, Oct 1997.

[126] L. H. Putnam. A general empirical solution to the macro software sizing
and estimation problem. IEEE Transactions on Software Engineering, pages
345-361, July 1978.

[127] L. H. Putnam and W. Myers. Industrial Strength Software: Effective Man
agement Using Measurement. IEEE Computer Society Press, 1997.

[128] R. Radice et al. A programming process architecture. IBM Systems Journal,
24(2), 1985.

BIBLIOGRAPHY 551

1291 S. Rapps and E. J. Weyuker. Selecting software test data using data flow in
formation. IEEE Transactions on Software Engineering, ll(4):367-375, Apr.
1985.

130] D. T. Ross. Structured analysis: A language for communicating ideas. IEEE
Transactions on Software Engineering, 3(1): 16-34, Jan. 1977.

131] J. Rothfeder. Its late, costly, incompetent—but try firing a computer system.
In B. W. Boehm, editor. Tutorial: Software Risk Management, pages 63-64.
IEEE Computer Society, 1989.

132] W. W. Royce. Managing the development of large software systems. In Proc.
9th Int. Conf. on Software Engineering (ICSE-9); originally in IEEE Wescon,
Aug 1970, pages 328-338. IEEE, 1987.

133] J. Rumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall,
Englewood Cliffs, NJ, 1991.

134] SEI (Software Engineering Institute). The Capability Maturity Model: Guide
lines for Improving the Software Process. Addison-Wesley, 1995.

135] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

136] M. D. Smith and D. J. Robson. Object oriented programming: The prob
lems of validation. Proc. of 6th International IEEE Conference on Software
Maintenance, pages 272-282, Nov. 1990.

137] M. D. Smith and D. J. Robson. A framework for testing object-oriented
programs. Jounal of Object-Oriented Programming (JOOP), pages 45-53,
June 1992.

138] W. P. Stevens, G. J. Myers, and L. Constantine. Structured design. IBM
Systems Journal, 13(2), 1974.

139] J.A. Swift. Introduction to Modern Statistical Quality Control and Manage
ment. St. Lucie Press, Florida, 1995.

140] K. S. Trivedi. Probability and statistics with reliability, queuing, and computer
science applications, Second Edition. Wiley-Interscience, New York, 2002.

141] V. Vagela and P. Jalote. List of common bugs and programming practices
to avoid them. Technical report, Indian Institute of Technology Kanpur,
www.cse.iitk.ac.in/users/jalote/papers/CommonBugs.pdf, 2004.

142] C. Watson and C. Felix. A method of programming measurement and esti
mation. IBM Systems Journal, 16(1), Jan. 1977.

143] G. M. Weinberg and E. L. Schulman. Goals and performance in computer
programming. Human Factors, 16(l):70-77, 1974.

http://www.cse.iitk.ac.in/users/jalote/papers/CommonBugs.pdf

552 BIBLIOGRAPHY

144] E. F. Weller. Lessons learned from three years of inspection data. IEEE
Software, pages 38-53, Sept 1993.

145] E. J. Weyuker. The evaluation of program based software test data adequacy
criteria. Communications of the ACM, 31(6):668-675, June 1988.

146] FE. J. Weyuker. The cost of data flow testing: An empirical study. IEEE
Transactions on Software Engineering, 16(2): 121-128, Feb 1990.

147] D. Whitgift. Methods and tools for software configuration management. John
Wiley and Sons, 1991.

148] N. Wirth. Program development by stepwise refinement. Communications of
the ACM, 14(4):221-227, April 1971.

149] M. Woodward, M. Hennell, and D. Hedley. A measure of control flow complex
ity in program text. IEEE Transactions on Software Engineering, SE-5:45-50,
Jan. 1979.

150] Y. Xie and D. Engler. Using redundancies to find errors. IEEE Transactions
on Software Engineering, 29(10):915-928, Oct 2003.

151] S. S. Yau and J. S. Collofello. Design stability measures for software main
tenance. IEEE Transactions on Software Engineering, ll(9):849-856, Sept.
1985.

152] R. T. Yeh and P. Zave. Specifying software requirements. Proceedings of the
IEEE, 68(9): 1077-1088, Sept. 1980.

153] B. H. Yin and J. W. Winchester. The establishment and use of measures to
evaluate the quality of designs. Software Engineering Notes, 3:45-52, 1978.

154] E. Yourdon and L. Constantine. Structured design. Prentice Hall, 1979.

155] W. M. Zage and D. M. Zage. Evaluating design metrics on large-scale software.
IEEE Software, pages 75-81, July 1993.

Index

Abstract data type, 310
Abstraction, 251

data, 253
functional, 252

Acceptance testing, 506
Accessing uninitialized memory, 395
Activity diagram, 340
Adaptive maintenance, 7
Aggregation, 314, 335
Agile approach, 46
Algorithm design, 374
All defs criterion, 493
All uses criterion, 493
Alternate statement rule, 439
Analysis, 85, 89, 149

data flow modeling, see Structured
analysis

for Case Study 1 (Scheduling), 152
for Case Study 2 (PIMS), 156
informal approach, 90
level of detail, 87
object-oriented analysis, see Object-

oriented analysis
problem partitioning, 89
projection, 89
prototyping, see Prototyping
similarity with design, 87
structured analysis, see Structured

analysis
transition to specification, 87, 117

Architecture, see Software architecture
Architecture description language, 193
Assignment axiom, 438
Associations, 105
Axiomatic approach for verification, 437

alternate statement rule, 439
an example, 441
assignment axiom, 438
iteration rule, 440
loop invariant, 441
post condition, 437
pre condition, 437
program specification, 438
rule of composition, 439
rule of consequence, 440

Base class, 315
Behavioral testing, see Black-box testing
Black-box testing, 472

boundary value analysis, 475
cause eff'ect graphing, 477
equivalence class partitioning, 473
error guessing, 483
example, 475, 476, 478, 481, 485
pair-wise testing, 480
state-based testing, see State-based

testing
Bottom up design, 254
Bottom-up approach to coding, 409
Boundary value analysis, 475

an example, 476
selecting test cases, 476

Branch testing, 489
Buffer overflow, 397
Bug, see Fault, Error
Build process, 416

Capability Maturity Model, 15, 70
Case study 1 (Scheduling)

design analysis, 299

554 INDEX

design metrics, 299
development process, 245
estimation, 245
implementation of 0 0 design, 463
implementation of the function-oriented

design, 462
object-oriented design, 364
problem analysis, 152
project planning, 245
software architecture, 203
structured design, 294
test plan, 539

Case study 2 (PIMS)
development process, 246
estimation, 246
implementation of the design, 463
object-oriented design, 368
problem analysis, 156
project planning, 246
software architecture, 203
test plan, 540

Causal analysis of defects, 517
Cause effect graphing, 477

an example, 478
selecting test cases, 479

Cause-effect diagram, 518
an example, 520
steps for constructing, 518

Central transforms, 270
Change request frequency, 148
Chief programmer team, 224
Class, 104, 307, 309

container, 346
hierarchy, 316
inheritance, see Inheritance
methods, 311
operation types, 310
relationship to abstract data types,

310
relationship to objects, 310
state modeling, 378

Class diagram, 104, 331
drug store example, 105
restaurant example, 111

Client-server interaction of objects, 312
Client-server style, 181
COCOMO, 215

cost driver attributes, 216
distribution with phases, 216
effort multipliers, 216
example, 218
project types, 215
schedule distribution, 221
schedule estimation, 220

Code inspection, 429
Code inspection checklist, 429
Code reading, 430
Code verification, 429, 457

code reading, 430
combining different techniques, 451
cost effectiveness of techniques, 450
dynamic analysis, 431
effectiveness of different techniques,

450
formal verification, see Axiomatic ap

proach for verification
inspection, 429
model checking, 431
static analsyis, see Static analysis
unit testing, see Unit testing

Coding, 19, 391
bottom-up approach, 409
errors, see Coding errors
goal of, 391
incremental coding, 410
of function-oriented design of case

study 1, 462
of 0 0 design of the case study 1,

463
of 0 0 design of the case study 2,

463
pair programming, 413
process, 409
refactoring, see Refactoring
test driven development, 411
top-down approach, 409

Coding errors
accessing unitialized memory, 395

INDEX 555

arithmetic exceptions, 396
array index out of bounds, 396
buffer overflow, 397
enumerated data type, 396
freeing an already freed resource, 394
lack of unique addresses, 395
memory leaks, 393
NULL dereferencing, 394
off by one, 396
string handling, 397
synchronization, 395

Coding standards, 406
commenting and layout, 408
conventions for statements, 407
conventions on files, 407
naming conventions, 406

Cohesion, 257, 325, 359
determining, 260
levels, 258

Cohesion metric, 387
Collaboration diagram, 337
Combinatorial testing, 481
Commenting, 408
Communicating processes style, 183
Comparison of different V&V techniques,

449
Competent programmer hypothesis, 499
Complexity metrics, 453
Component and connector view, 167, 188,

200
blackboard style, 179
client-server style, 181
communicating processes style, 183
component types, 169
components, 167
connector implementation, 171
connector type, 170
connectors, 169
example, 172
n-tier structure, 181
object-oriented style, 182
peer-to-peer style, 182
pipe and filter style, 176
pipe and filter style example, 178

publish-subscribe style, 182
shared data style example, 179
shared-data style, 178
styles, 176, 200

Configuration management, see Software
configuration management

Consistency checkers, 382
Constructor of an object, 310
Container classes, 346
Context diagram, 97, 99
Control flow based testing

an example, 495
criteria, 488

Control flow graph, 383, 384, 488
Corrective maintenance, 6
Correctness of design, 248
Cost estimation, see Estimation
Cost of correcting errors, 35
Cost of fixing requirement errors, 83
Cost schedule milestone graph, 240
Coupling, 255, 323, 358

between classes, 358
Coupling effect, 499
Coverage analysis, 503
Critical design review, 381
Cross referencing of requirements, 141
Cyclomatic complexity, 383
Cyclomatic complexity based testing, 491

Data abstraction, 253
Data bindings, 386
Data dictionary, 91, 94

example, 94
restaurant example, 101

Data flow based testing, 491
all defs criterion, 493
all uses criterion, 493
an example, 495
def/use graph, 492

Data flow diagram, 91, 267, 346
common errors, 95
conventions, 92
example, 91
leveled, 94

556 INDEX

restaurant example, 99, 100
rules for construction, 93

Data flow modeling, see Structured anal
ysis

Debugging, 444
Def/use graph, 492
Defect, 14

classification, 514
closure, 515
life cycle, 513
logging and tracking, 513
prevention, see Defect prevention
severity, 514
severity classification, 514
types, 514

Defect arrival and closure trends, 515
Defect distribution, 35
Defect injection and removal cycle, 227
Defect prevention, 36, 516

an example, 520
at organization level, 516
at project level, 516
causal analysis, 517
cause-effect diagram, 518
Pareto analysis, 517
root cause analysis, 520
solutions, 520

Defect removal efficiency, 522
Defects, 239
Delphi approach, 236
Depth of inheritance tree, 357
Design, 18

architecture, see Software architec
ture

detailed, see Detailed design
high level, see System design

Design analysis of the case study, 299
Design constraints, 122
Design heuristics, 276
Design methodology, 248
Design metrics, 283

graph impurity, 284
identifying error prone modules, 289
information flow metrics, 288

network metrics, 284
of object-oriented design, see OOD

Metrics
stability, 285

Design principles, 248
Design review, 281, 381
Design review checklist, 282, 381
Design specification, 260, 265
Design verification, 281
Design walkthrough, 380
Desk review, 431
Destructor of an object, 310
Detailed design, 18, 247, 371, 388

algorithm design, 374
PDL, 371
state modeling of classes, 378
stepwise refinement, 375
verification, 380

Detailed design review, 381
Development process, 16, 27, 37

a step, 29
agile approach, 46
comparison of models, 50
entry criteria for a step, 30
ETVX specification, 30
exit criteria for a step, 30
extreme programming, 46
iterative development, see Iterative

development
iterative enhancement model, 44
prototyping, see Prototyping
rational unified process, 46
spiral model, 45
timeboxing model, see Timeboxing

model
waterfall model, see Waterfall model

Dynamic analysis, 431
Dynamic binding, 322
Dynamic modeling, 343

Efficiency, 13
Eflftciency of design, 249
Effort, 239
Eff'ort estimation, see Estimation

INDEX 557

Encapsulation, 307
Equivalence class partitioning, 473

an example, 475
selecting test cases, 474

ER diagram, 104
Error, 465, see also Defect
Error guessing, 483
Error report, 512
Errors in coding, see Coding errors
Estimation, 208, 242

a bottom-up approach example, 213
bottom-up approach, 213
building models, 211
COCOMO, see COCOMO
delhpi approach, 209
for case study 1 (Scheduling), 245
models, 211
multivariable models, 215
person-months, 209
single variable models, 211
size estimation, 212
top-down approach, 212
uncertainties, 209

Exhaustive testing, 470
External interface requirements, 123
Extreme programming, 46, 413, 417

Factoring, 267, 273
Failure, 466
Failure intensity, 523
Fan-in of modules, 276
Fan-out of modules, 276
Fault, see also Error, Defect

multi-mode, 481
single-mode, 480

Fault tolerance, 123
Finite state automata, 379
Fishbone diagram, 519

an example, 520
Formal verification of programs, see Ax

iomatic approach for verification
Function point analysis, 142

advantages, 146
drawbacks, 146

parameter complexity, 143
parameters, 143
relationship to LOG, 145
unadjusted function points, 144
weights, 144

Function-oriented design, 247
Function-oriented design of the case study,

294
Functional abstraction, 252
Functional modeling, 345
Functional requirements, 121
Functional testing, see Black-box testing
Functionality, 13

Generic types, 347
Graph impurity metric, 284

Halstead's measures, 452, 454
Hardware-software cost, 4
High level design, see System design

Identifying redundancies in code, 432
Impact analysis, 68
Incremental development, 410, 445, 457

refactoring, see Refactoring
test driven development, 411

Industrial strength software, 2, 3, 22
Inflow of a module, 288
Information flow metrics, 288
Information hiding, 401, 402
Inheritance, 104, 315

base class, 315
class hierarchy, 316
multiple, 320
non-strict, 320
repeated, 321
strict, 319
subclass, 315
superclass, 315

Inspection process, 54, 74, 429
checklists, 56
defect log, 58
experiments to evaluate benefits, 61
group review meeting, 56

558 INDEX

guidelines for work products, 60
moderator, 55
moderator responsibilities, 59
overview and preparation, 55
planning, 55
reviewer responsibilities, 60
rework and follow up, 58
roles and responsibilities, 59
scribe, 57
self-preparation log, 56
self-review, 56
sorjie characteristics, 54
summary report, 58
summary report example, 58

Integration testing, 506
Interaction diagram, 336
Internal documentation of programs, 408
Iron triangle, 15
Ishikawa diagram, 518
ISO9000, 15
Iterative development, 74

iterative enhancement model, 44
spiral model, 45
strengths, weaknesses, and applica

bility, 50
timeboxing model, see Timeboxing

model
Iterative enhancement model, 44

Knot count, 455

Lack of cohesion in methods, 359
Layers of abstraction, 254
Least squares approach, 529
Leveled data flow diagram, 94
Levels of testing, 505
Life cycle of a defect, 513
Liskov substitution principle, 329
Live variables, 454
Logic design of modules, 374
Loop invariant, 441

Maintainability, 13
Maintenance, 6

adaptive, 7
corrective, 6
costs, 7

Manpower ramp-up in a project, 220
Mean time to failure, 523
Measurements

defects, 239
effort, 239
size, 239

Memory leaks, 393
Methods of a class, 311
Metrics, 21, 383, 451

cohesion metric, 387
complexity measures, 453
cyclomatic complexity, 383
data bindings, 386
defect removal efficiency, 522
for design, see Design metrics
for object-oriented design, see Met

rics for OOD
function points, see Function point

analysis
graph impurity, 284
Halstead's, 452
information flow metrics, 288
knot count, 455
live variables, 454
network metrics, 284
process metrics, 21
product metrics, 21
productivity, 522
reliability, 521
size measures, see Size
span, 455
stability, 285
text size, 142
topological complexity, 456

Metrics analysis of the case study design,
299

Metrics for OOD, 356, 361
coupling between classes, 358
depth of inheritance tree, 357
lack of cohesion in methods, 359
number of children, 358

INDEX 559

response for a class, 359
weighted methods per class, 356

Model checking, 431
Modularity, 253, 291
Module size, 403
Monitoring and control, 242
Most abstract inputs, 269
Most abstract outputs, 269
Multi-mode faults, 481
Multiple inheritance, 320
Musa's basic model, see Reliability model
Mutation testing, 498

competent programmer hypothesis,
499

coupling effect, 499
mutants, 499
mutation operators, 499
performance, 501

Nesting of constructs, 403
Network metrics, 284
Newton-Raphson method, 531
NULL dereferencing, 394

Object, 307
behavior, 308
constructor, 310
destructor, 310
identity, 309
interface, 307
relationships between, 312
state, 308

Object modeling technique, 341, 342
Object-oriented analysis, 103, 342

aggregation, 104
assembly, 104
associations, 105
attributes, 108
class, 104
class diagram, see Class diagram
defining services, 109
generalization-specialization, 104
identifying associations, 109
identifying attributes, 108

identifying classes, 107
identifying structures, 108
inheritance, 104
methodology, 107
relationship to design, 304
relationship to ER diagram, 104
restaurant example, 110
services, 104
transition to design, 305
UML, see UML

Object-oriented design, 303
aggregation, 314
association between objects, 313
class diagram, 342
class hierarchy, 316
cohesion, 325
coupling, 323
defining internal classes and opera

tions, 346
design guidelines, 329
design patterns, 303
dynamic modeling, 343
functional modeling, 345
Liskov substitution principle, 329
methodology, 341
metrics, see Metrics for OOD
of case study 1 (Scheduling), 364
of case study 2 (PIMS), 368
open-closed principle, 327
optimization, 347
rate of returns example, 352
relationship to analysis, 304
state modeling of classes, 378
UML, see UML
word counting example, 349

OOP testing
state based testing, 445

Open-closed principle, 327
Operational profile, 524
Orthogonal defect classification, 514
Outflow of a module, 288

Pair programming, 413
Pair-wise testing, 480, 481

560 INDEX

an example, 481
generating test cases, 482
objective, 481

Pareto analysis of defects, 517
an example, 517

Partial correctness, 443
Path testing, 490
Peak team size, 220
Peer-to-peer style, 182
Performance requirements, 122
Pipe and filter style, 176

example, 178
Polymorphism, 315, 321
Portability, 13
Post condition, 437
Postmortem analysis, 53
Pre condition, 437
Predictability of a Process, 31
Problem analysis, see Analysis
Problem of scale, 9
Problem partitioning, 89, 250
Process, see Software process
Process design language (PDL), 371
Process improvement, 36
Process management, 28, 69

software engineering process group,
28

Process management process, 75
Process model, 26, 37, 73
Process planning, 208
Process Predictability, 31
Process tailoring, 27, 208
Process under statistical control, 32
Productivity, 1, 3, 4, 12, 522
Programmer time distribution, 33
Programming practices, 392, 402

checking read return value, 404
coding standards, see Coding stan

dards
control constructs, 402
correlated parameters, 405
empty if, while, 404
importance of exceptions, 406
information hiding, 402

nesting of constructs, 403
return from finally block, 405
robustness, 403
side effects, 403
switch case with default, 404
trusted data sources, 405
use of gotos, 402
use of user defined types, 402

Programming principles, 392
Project management, 10, 20, 27, 52, 74

cost estimation, see Estimation
monitoring and control, see Project

monitoring and control
planning, see Project planning, see

Project planning
postmortem analysis, 53
process, 52
project monitoring, 52
project tracking, 52
quality, see Quality plan
relationship with development pro

cess, 54
risk management, see Risk manage

ment
scheduling, see Project scheduling

Project monitoring and control, 52, 237
activity-level monitoring, 240
cost schedule milestone graph, 240
measurements, 239
milestone analysis, 240
status reports, 240

Project planning, 20, 52, 207
case study 1 (Scheduling), 245
case study 2 (PIMS), 246
chief programmer team, 224
democratic teams, 225
effort estimation, see Estimation
manpower ramp-up, 220
peak team size, 220
process planning, 208
quality plan, 226, 229
risk management, see Risk manage

ment
schedule, see Project scheduling

INDEX 561

team structure, 224
Project scheduling, 219, 242

an example, 223
detailed schedule, 221
distribution among different phases,

221
estimation, 219
flexibility, 219
Microsoft project, 222
milestones, 220
overall schedule estimation, 219
square root check, 220

Project tracking, 52
Projection, 89
Prototyping, 41, 74, 113

cost, 42, 115
cost-cutting methods, 42
design prototype, 113
development, 115
evolutionary, 113
horizontal, 114
process, 41
process suitability, 43
restaurant example, 116
selecting requirements, 114
strengths, weaknesses, and applica

bility, 50
throwaway, 41, 113
vertical, 115

Proving correctness, see Axiomatic ap
proach for verification

Psychology of testing, 471
Publish-subscribe style, 182

Quality, 5, 12, 13, 82, 465
defect injection and removal cycle,

227
management approaches, 228
procedural approach, 228
quantitative management approach,

229
using statistical process control, 229

Quality and productivity, Q&P, 15
Quality attributes, 12

Quality plan, 226, 229

Rational unified process, 46
Rayleigh curve, 220
Refactoring, 416

an example, 419
bad smells, 422
impact on design, 418
objective, 417
risk mitigation, 418
test suite, 418
to improve classes, 426
to improve hierarchies, 427
to improve methods, 425
unit testing, 420

Regression testing, 7, 506
Reliabihty, 6, 13, 14, 521, 522

calendar and clock times, 524
definition, 523
failure intensity, 523
mean time to failure, 523
musa's basic model, see Reliability

model
operational profile, 524

Reliability model, 524
an example, 532
assumptions, 524
failure data, 529
parameter estimation, 529
transition to calendar time, 532

Repeated inheritance, 321
Requirement analysis, see Analysis
Requirement change, 8, 15, 28, 84, 148

change request, 68
impact analysis, 68
management process, 67, 148

Requirement errors, 82
Requirement metrics, 142, 150

change request frequency, 148
function points, see Function point

analysis
number of errors found, 147
quality, 147
text size, 142

562 INDEX

Requirement specification, 81, 117, 159
components, 120
design constraints, 122
desired characteristics, 118
document structure, 125
external interface requirements, 123
functional requirements, 121
IEEE standards, 125
performance requirements, 122
specification language, 124
use cases, see Use cases

Requirement validation, 138
cross-referencing, 141
error types, 139
review checklist, 140
reviews, 140

Requirements, see Software requirements
Requirements activity, 80
Requirements review, 140
Restaurant example, 99, 110, 116
Reviews, see Inspection process
Rework, 7, 8, 84
Risk management, 230, 242

a practical approach, 237
activities, 231
an example, 237
checklists of frequently occuring risks,

232
delphi approach, 236
risk, 230
risk analysis, 234
risk assessment, 232
risk control, 236
risk exposure, 235
risk identification, 232
risk monitoring, 236
risk prioritization, 234, 237
top 10 risks, 232

Root cause analysis of defects, 520

Scenario, 130
Scenarios for modeling, 343
Schedule, 12, 239
Security, 123, 398

Semantic objects, 305
Sequence diagram, 335
Severity of defects, 514
Shared-data style, 178

example, 179
Side effects, 403
Single-entry, single-exit constructs, 400
Single-mode faults, 480
Size, 4, 11, 212, 239, 452

function points, see Function point
analysis

halstead's measure, 452
lines of code, 452
lines of code (LOG), 1, 4
of some products, 11

Size estimation, 212
Software, 3

costs, 4, 12
industrial strength software, 2
metrics, see Metrics
problem of scale, 9
productivity, 4
size, see Size
student system, 2

Software architecture, 18, 159, 199
allocation view, 165
analysis, see Software architecture

evaluation
behavior description, 192
blackboard style, 179
case study 1 (Scheduling), 203
case study 2 (PIMS), 203
client-server style, 181
combining views, 193
communicating processes style, 183
component and connector view, see

Component and connector view
definition, 160
deployment view, 188, 340
description, 161
description language, 193
designing, 200
documenting, 190
element catalog, 191

INDEX 563

elements, 164
evaluation, see Software architecture

evaluation
example, 172
example implementation, 185
integrity, 185
layered style, 182
mismatch with implementation, 188
module view, 164, 247
object-oriented style, 182
peer-to-peer style, 182
pipe and filter style, 176
pipe and filter style example, 178
preserving integrity, 184
primary view, 191
publish-subscribe style, 182
quality attributes, 194
rationale, 191
relationship among views, 165
relationship between elements, 164
relationship with design, 183
role in analysis, 163
role in communication, 161
role in construction, 162
role in reuse, 162
shared data style example, 179
shared-data style, 178
stakeholders, 190
styles, 200
system context, 191
views, 163, 165, 200

Software architecture analysis, 188
Software architecture evaluation, 194, 201

an example, 196
approaches, 194
availability analysis, 198
performance analysis, 189
quality attributes, 194
response time analysis, 198
the ATAM approach, 195, 201
tradeoffs, 196

Software configuration management, 28,
61, 62, 75, 225, 242, 414

baselines, 64

configuration control board, 67
configuration controller, 67
configuration identification, 64
dependency between items, 64
functionality, 63
library management, 66
life of an item, 65
mechanisms, 64
plan, 226
process, 66
relationship to development process,

62
source code control, see Source code

control
status auditing, 67
version control, 64

Software design, see Design
Software engineering, 2, 22

definition, 8
problem domain, 2

Software engineering process group, 28
Software fault, see Fault, Defect, Error
Software inspections, see Inspection pro

cess
Software process, 16, 25, 28, 73

characteristics, 31, 73
components, 27
development process, see Develop

ment process
early defect removal, 35
ETVX specification, 30
improvement, see Process improve

ment
inspection process, see Inspection pro

cess
management, 28
non-engineering processes, 25
predictability, 31
product engineering processes, 28
project management process, see Project

management
requirement change management pro

cess, see Requirement change
specification, 29

564 INDEX

support for change, 34
tailoring, 27, 208
under statistical control, 32

Software process improvement, 69
Software quality, see Quality
Software Reliability, see Reliability
Software requirement process, 85
Software requirement specification, see

Requirement specification
Software requirements, 7, 17, 79, 117,

148
analysis, see Analysis
case study 1 (Scheduling), 152
case study 2 (PIMS), 156
change, see Requirement change
consistent, 119
cost of fixing errors, 83
definition, 80
error types, 139
errors, 82, 83, 139
impact on development cost, 84
impact on quality, 82
metrics, see Requirement metrics
modifiable, 120
need, 81
process, 85
specification, see Requirement spec

ification
use cases, see Use cases
validation, see Requirement valida

tion
verifiable, 119

Software size, see Size
Source code control, 414

checkout, 414
command types, 414
conflicts, 415
tools, 65, 414
version maintenance, 415

Specification, 437
Specification language, 124
Spiral model, 45
Stability metrics for design, 285
Standards compliance, 123

State diagram, 340, 379
State modeling of classes, 378

an example, 379
State-based testing, 484

an example, 485
coverage criteria, 486
example of selecting test cases, 487
of classes, 445
selecting test cases, 485
state model, 484
test case selection criteria, 486

Statement coverage criterion, 489
Static analysis, 431

by compilers, 432
checkers, 433
completeness, 432
cost effectiveness, 436
data flow anamolies, 432
false positives, 436
identifying redundancies, 432
PREfix, 433
soundness, 432

Statistical process control, 229
Stepwise refinement, 254, 375

example, 376
Structural testing, see White-box testing
Structure chart, 261, 271

an example, 261
decision representation, 263
iteration representation, 263
module types, 263
of the case study, 297

Structured analysis, 91
context diagram, 97
data dictionary, 91
data flow diagram, 91
man-machine boundary, 98
methodology, 96
modeling the current system, 97
restaurant example, 99

Structured design methodology, 266, 291
applying to case study, 294
central transforms, 270
design heuristics, 276

INDEX 565

factoring, 267, 273
first level factoring, 271
most abstract input, 269
most abstract output, 269
steps, 267
transaction analysis, 277
transform analysis, 277

Structured programming, 398, 457
Superclass, 315
System design, 18, 247

abstraction, 251
bottom up approach, 254
correctness, 248
efficiency, 249
function-oriented design, see Struc

tured design methodology
modularity, 253
object-oriented design, see Object-

oriented design
principles, 248
problem partitioning, 250
simplicity, 249
specification, 265
top down approach, 254
verification, see Design verification

System testing, 506

Team structure, 224
Test case generation, 502
Test C£Lse review, 510
Test case specification, 509
Test criterion, 470

generating test cases, 470
inclusion or subsumption, 470
reliability, 470
validity, 470

Test driven development, 411, 417, 457
Test oracle, 468
Test plan, 507

of case study 1, 539
of case study 2, 540

Test summary report, 512
Testing, 3, 19, 465

acceptance testing, 20, 506

black-box, see Black-box testing
defect logging, 513
deliverables, 509
error report, 20, 512
exhaustive, 470
functional, see Black-box testing
integration testing, 19, 506
levels of, 505
mutation testing, see Mutation test

ing
of object-oriented programs, 445
process, 504
psychology of, 471
purpose of, 471
regression, 7, 506
structural testing, see White-box test

ing
system testing, 19, 506
test case execution and analysis, 511
test case review, 510
test case specification, 509
test cases, 469
test criterion, see Test criterion
test oracle, 468
test plan, 20, 507
test report, 20
test summary report, 512
unit testing, see Unit testing
white-box testing, see White-box test

ing
Testing process, 504
Timeboxing model, 46, 74

a time box, 47
execution with three stage time box,

48
iteration completion times, 48
pipelined execution of iterations, 47
stages in a time box, 47
strengths, weaknesses, and applica

bility, 50
suitability, 50
team size, 49
team-wise activity, 49
teams, 49

566 INDEX

Tool support for testing, 502
Top down design, 254
Top-down approach to coding, 409
Topological complexity, 456
Total correctness, 443
Transaction analysis, 277
Transform analysis, 277

UML, 361
activity diagram, 340
aggregation, 335
association between classes, 331
class diagram, 331
class hierarchy representation, 333
collaboration diagram, 337
components, subsystems, packages,

339
interaction diagrams, 336
part-whole relationship representa

tion, 335
sequence diagram, 335
state diagram, 340
stereotype, 341
subtype, supertype relationship, 331
tagged values, 341
use case diagrams, 341

Unified modeling language, see UML
Unit testing, 19, 444, 458, 505

an example, 446
of classes, 420
with Junit, 446

Usability, 13
Use case diagram, 131
Use cases, 128, 149

actor, 129
development, 136
examples, 132, 136
extension scenario, 130
failure conditions, 137
failure handling, 137
level of detail, 138
levels, 137
main success scenario, 130, 137
precondition, 132

primary actor, 129
refinement, 134
scenario, 130, 343
scope, 135
summary level, 135
use case diagram, 131
writing them, 138

User-defined types, 402

Verification and Validation (V&V), 227
Verification of code, see Code verifica

tion
Verification of detailed design, 380

Waterfall model, 37, 74
impact of linear ordering of phases,

38
limitations, 40
outputs, 38
stages, 37
strengths, weaknesses, and applica

bility, 50
Weighted methods per class, 356
Weinberg experiment, 392
White-box testing, 487

an example, 495
branch testing, 489
control flow based, 488
cyclomatic complexity based testing,

491
data flow based, 491
mutation testing, see Mutation test

ing
path testing, 490
statement coverage criterion, 489
test case generation, 502
tool support, 502

Work products, 29, 38

	AN INTEGRATED APPROACH TO SOFTWARE ENGINEERING, 3RD ED.
	Springerlink
	Title Page
	Copyright Page
	Contents
	Preface to the Third Edition
	Chapter 1. Introduction
	1.1 The Problem Domain
	1.1.1 Industrial Strength Software
	1.1.2 Software is Expensive
	1.1.3 Late and Unreliable
	1.1.4 Maintenance and Rework

	1.2 The Software Engineering Challenges
	1.2.1 Scale
	1.2.2 Quality and Productivity
	1.2.3 Consistency and Repeatability
	1.2.4 Change

	1.3 The Software Engineering Approach
	1.3.1 Phased Development Process
	1.3.2 Managing the Process

	1.4 Summary
	Exercises

	Chapter 2. Software Processes
	2.1 Software Process
	2.1.1 Processes and Process Models
	2.1.2 Component Software Processes
	2.1.3 ETVX Approach for Process Specification

	2.2 Desired Characteristics of Software Process
	2.2.1 Predictability
	2.2.2 Support Testability and Maintainability
	2.2.3 Support Change
	2.2.4 Early Defect Removal
	2.2.5 Process Improvement and Feedback

	2.3 Software Development Process Models
	2.3.1 Waterfall Model
	2.3.2 Prototyping
	2.3.3 Iterative Development
	2.3.4 Timeboxing Model
	2.3.5 Comparision of Models

	2.4 Other Software Processes
	2.4.1 Project Management Process
	2.4.2 The Inspection Process
	2.4.3 Software Configuration Management Process
	2.4.4 Requirements Change Management Process
	2.4.5 Process Management Process

	2.5 Summary
	Exercises

	Chapter 3. Software Requirements Analysis and Specification
	3.1 Software Requirements
	3.1.1 Need for SRS
	3.1.2 Requirement Process

	3.2 Problem Analysis
	3.2.1 Informal Approach
	3.2.2 Data Flow Modeling
	3.2.3 Object-Oriented Modeling
	3.2.4 Prototyping

	3.3 Requirements Specification
	3.3.1 Characteristics of an SRS
	3.3.2 Components of an SRS
	3.3.3 Specification Language
	3.3.4 Structure of a Requirements Document

	3.4 Functional Specification with Use Cases
	3.4.1 Basics
	3.4.2 Examples
	3.4.3 Extensions
	3.4.4 Developing Use Cases

	3.5 Validation
	3.6 Metrics
	3.6.1 Size—Function Points
	3.6.2 Quality Metrics

	3.7 Summary
	Exercises
	Case Studies
	Case Study 1—Course Scheduling
	Case Study 2—Personal Investment Management System

	Chapter 4. Software Architecture
	4.1 Role of Software Architecture
	4.2 Architecture Views
	4.3 Component and Connector View
	4.3.1 Components
	4.3.2 Connectors
	4.3.3 An Example

	4.4 Architecture Styles for C&C View
	4.4.1 Pipe and Filter
	4.4.2 Shared-Data Style
	4.4.3 Client-Server Style
	4.4.4 Some Other Styles

	4.5 Discussion
	4.5.1 Architecture and Design
	4.5.2 Preserving the Integrity of an Architecture
	4.5.3 Deployment View and Performance Analysis
	4.5.4 Documenting Architecture Design

	4.6 Evaluating Architectures
	4.6.1 The ATAM Analysis Method
	4.6.2 An Example

	4.7 Summary
	Exercises
	Case Studies
	Case Study 1—Course Scheduling
	Case Study 2—PIMS

	Chapter 5. Planning a Software Project
	5.1 Process Planning
	5.2 Effort Estimation
	5.2.1 Uncertainties in Effort Estimation
	5.2.2 Building Effort Estimation Models
	5,2.3 A Bottom-Up Estimation Approach
	5.2.4 COCOMO Model

	5.3 Project Scheduling and Staffing
	5.3.1 Overall Scheduling
	5.3.2 Detailed Scheduling
	5.3.3 An Example
	5.3.4 Team Structure

	5.4 Software Configuration Management Plan
	5.5 Quality Plan
	5.5.1 Defect Injection and Removal Cycle
	5.5.2 Approaches to Quality Management
	5.5.3 Quality Plan

	5.6 Risk Management
	5.6.1 Risk Management Concepts
	5.6.2 Risk Assessment
	5.6.3 Risk Control
	5.6.4 A Practical Risk Management Approach

	5.7 Project Monitoring Plan
	5.7.1 Measurements
	5.7.2 Project Monitoring and Tracking

	5.8 Summary
	Exercises
	Case Studies
	Case Study 1—Course Scheduling
	Case Study 2—PIMS

	Chapter 6. Function-Oriented Design
	6.1 Design Principles
	6.1.1 Problem Partitioning and Hierarchy
	6.1.2 Abstraction
	6.1.3 Modularity
	6.1.4 Top-Down and Bottom-Up Strategies

	6.2 Module-Level Concepts
	6.2.1 Coupling
	6.2.2 Cohesion

	6.3 Design Notation and Specification
	6.3.1 Structure Charts
	6.3.2 Specification

	6.4 Structured Design Methodology
	6.4.1 Restate the Problem as a Data Flow Diagram
	6.4.2 Identify the Most Abstract Input and Output Data Elements
	6.4.3 First-Level Factoring
	6.4.4 Factoring the Input, Output, and Transform Branches
	6.4.5 Design Heuristics
	6.4.6 Transaction Analysis
	6.4.7 Discussion

	6.5 Verification
	6.6 Metrics
	6.6.1 Network Metrics
	6.6.2 Stability Metrics
	6.6.3 Information Flow Metrics

	6.7 Summary
	Exercises
	Case Studies
	Structured Design

	Chapter 7. Object-Oriented Design
	7.1 OO Analysis and OO Design
	7.2 OO Concepts
	7.2.1 Classes and Objects
	7.2.2 Relationships Among Objects
	7.2.3 Inheritance and Polymorphism

	7.3 Design Concepts
	7.3.1 Coupling
	7.3.2 Cohesion
	7.3.3 The Open-Closed Principle
	7.3.4 Some Design Guidelines

	7.4 Unified Modeling Language (UML)
	7.4.1 Class Diagram
	7.4.2 Sequence and Collaboration Diagrams
	7.4.3 Other Diagrams and Capabilities

	7.5 A Design Methodology
	7.5.1 Dynamic Modeling
	7.5.2 Functional Modeling
	7.5.3 Defining Internal Classes and Operations
	7.5.4 Optimize and Package
	7.5.5 Examples

	7.6 Metrics
	7.7 Summary
	Exercises
	Case Studies
	Case Study 1—Course Scheduling
	Case Study 2— PIMS

	Chapter 8. Detailed Design
	8.1 Detailed Design and PDL
	8.1.1 PDL
	8.1.2 Logic/Algorithm Design
	8.1.3 State Modeling of Classes

	8.2 Verification
	8.2.1 Design Walkthroughs
	8.2.2 Critical Design Review
	8.2.3 Consistency Checkers

	8.3 Metrics
	8.3.1 Cyclomatic Complexity
	8.3.2 Data Bindings
	8.3.3 Cohesion Metric

	8.4 Summary
	Exercises

	Chapter 9. Coding
	9.1 Programming Principles and Guidelines
	9.1.1 Common Coding Errors
	9.1.2 Structured Programming
	9.1.3 Information Hiding
	9.1.4 Some Programming Practices
	9.1.5 Coding Standards

	9.2 Coding Process
	9.2.1 An Incremental Coding Process
	9.2.2 Test Driven Development
	9.2.3 Pair Programming
	9.2.4 Source Code Control and Build

	9.3 Refactoring
	9.3.1 Basic Concepts
	9.3.2 An example
	9.3.3 Bad Smells
	9.3.4 Common Refactorings

	9.4 Verification
	9.4.1 Code Inspections
	9.4.2 Static Analysis
	9.4.3 Proving Correctness
	9.4.4 Unit Testing
	9.4.5 Combining Different Techniques

	9.5 Metrics
	9.5.1 Size Measures
	9.5.2 Complexity Metrics

	9.6 Summary
	Exercises
	Case Studies
	Implementation of Structured Design of Case Study 1
	OO Design Implementation of Case Study 1
	Implementation of Case Study 2

	Chapter 10. Testing
	10.1 Testing Fundamentals
	10.1.1 Error, Fault, and Failure
	10.1.2 Test Oracles
	10.1.3 Test Cases and Test Criteria
	10.1.4 Psychology of Testing

	10.2 Black-Box Testing
	10.2.1 Equivalence Class Partitioning
	10.2.2 Boundary Value Analysis
	10.2.3 Cause-Effect Graphing
	10.2.4 Pair-wise Testing
	10.2.5 Special Cases
	10.2.6 State-Based Testing

	10.3 White-Box Testing
	10.3.1 Control Flow-Based Criteria
	10.3.2 Data Flow-Based Testing
	10.3.3 An Example
	10.3.4 Mutation Testing
	10.3.5 Test Case Generation and Tool Support

	10.4 Testing Process
	10.4.1 Levels of Testing
	10.4.2 Test Plan
	10.4.3 Test Case Specifications
	10.4.4 Test Case Execution and Analysis
	10.4.5 Defect Logging and Tracking

	10.5 Defect Analysis and Prevention
	10.5.1 Pareto Analysis
	10.5.2 Perform Causal Analysis
	10.5.3 Develop and Implement Solutions

	10.6 Metrics—Reliability Estimation
	10.6.1 Basic Concepts and Definitions
	10.6.2 A Reliability Model
	10.6.3 Failure Data and Parameter Estimation
	10.6.4 Translating to Calendar Time
	10.6.5 An Example

	10.7 Summary
	Exercises
	Case Studies
	Test Plan for Case Study 1 (Course Scheduling)
	Case Study 2—PIMS

	Bibliography
	Index

